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Abstract 
During initial exploration efforts in the Barents Sea several gas prone and underfilled prospects were 

drilled which significantly dropped the interest in the area. The Hammerfest Basin however turned out 

to hold significant hydrocarbon volumes. Although still mostly underfilled, the discoveries here today 

make up the Snøhvit oil and gas field. The Hammerfest Basin is an overfilled petroleum basin, meaning 

that the several source intervals have produced enough hydrocarbons over time to fill all the traps. This, 

and the hydrocarbon shows below the hydrocarbon-water contacts inside the traps indicate that the 

reason behind underfilled structures is leakage. This means that the main exploration risk in the area is 

trap integrity.  

Given the large amount of evidence for fault-assisted remigration, this thesis focuses on explaining the 

hydrocarbon column heights observed today in these structures with the help of fault valve theory. The 

theory suggests that a subset of faults oriented at the right angles to the stress field can control the pore 

pressures in a pressure compartment in a dynamic equilibrium. When pressure increases with 

hydrocarbon charge, or gas dissolution the effective stress drops which can reactivate the faults leading 

to the leakage of hydrocarbons from the trap. 

In this study, the slip tendencies of faults around the Albatross, Snøhvit and Askeladd structures were 

calculated and plotted on the interpreted fault planes. This gave the critical pressure perturbations of the 

faults, i.e. the pressure increase needed to cause slip on them. Faults and fault segments with low critical 

pressure perturbations are regarded as areas of high risk of leakage. After identifying high risk segments, 

their intersection with the top reservoir was found and compared with the level of hydrocarbon-water 

contacts. 

On Albatross Sør and Snøhvit Nord high risk faults and fault intersections intersect the top reservoir on 

the level of the gas-water contact. On Albatross and Snøhvit, both of which have leaked considerably, 

high risk faults were identified near the culmination of the trap. Askeladd, Askeladd Vest and Askeladd 

Gamma which are not as severely underfilled, the fault planes show higher critical pressure 

perturbations. Delta Vest, an empty structure also has higher pressure perturbations, however it has a 

fault intersection right at the culmination. Askeladd Beta, the second dry structure showed higher risk 

on a fault directly at the top of the structure.  
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1. Introduction 

1.1. Overview and objective 
The Barents Sea is an intracratonic shelf area containing a mosaic of platforms, basins and structural 

highs (Doré (1995); (Gabrielsen et al., 1990). Surrounded by the Svalbard, Novaya Zemlya 

archipelagos, the Russian and Norwegian coasts, and the Atlantic margin; it is a target for hydrocarbon 

exploration. It is part of a circumpolar region with known petroleum basins, some of which contain 

giant fields (e.g. the Sthokman gas field situated in the Russian Barents Sea). This circumpolar region 

contains the largest unexplored prospective area in the world; and the majority of undiscovered 

resources are expected to occur in the offshore areas of it (Bird et al., 2008). In the Norwegian sector 

of the Barents Sea, however relatively small and gas prone fields dominate. The first blocks (altogether 

7) in this area were awarded at the 5th licensing round in 1980; which were followed by five more in the 

8th round in 1984 (Jakobsson, 2018). The first discoveries soon followed: Askeladd, Albatross and 

Snøvhit; all of which today belong to the Snøvhit field complex (Jakobsson, 2018). These gas-filled 

structures and the residual oil in traps near the Troms-Finnmark Fault Complex have proven that 

remigration from traps was common in the area; which caused the perceived prospectivity to drop. 
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Figure 1A: Undiscovered resources by area on the 

NCS (source: https://www.norskpetroleum.no) B: 

Resource growth with wildcats by area on the NCS. 

The huge economic potential of the Barents Sea can 

be affected by small, underfilled prospects (source: 

https://www.norskpetroleum.no). 

 

 

After the 1980’s, interest in the Barents Sea remained low, with a steady amount of discoveries in 

different plays; but no commercially viable prospects. This negative trend was fortunately broken by 

the discovery of a commercial oil accumulation (Goliat) in 2000 and the more recent discoveries of 

Johan Castberg, and the Alta-Gohta fields (2011). However, after almost four decades since the first 

exploration well; the area still remains the most under-explored on the Norwegian Continental Shelf 

(NCS). By the end of 2018, more than 1100 wildcats had been drilled on the NCS, with 700 of those in 

the North Sea, about 250 in the Norwegian Sea and only about 120 in the Barents Sea (Figure 1B). 

However, the general increase in interest towards natural gas, and the fact that 60% of the undiscovered 

resources on the NCS are estimated to be found in the Barents Sea (Figure 1A); will definitely increase 

exploration activity in the area. Another vital part in the revitalization of the area is the new geological 

assessment from the Norwegian Petroleum Directorate containing large; still closed areas of the NE 

Barents Sea, increasing the estimate of total undiscovered resources by 40% compared to its previous 

assessment (NPD, 2018). Thus, it seems timely to reassess some of the available data to aid future 

exploration efforts. 
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The biggest geological reason for the relative low interest in the Barents Sea are underfilled and gas-

prone structures. Several studies have focused on the possible leakage mechanisms and plumbing 

systems associated with these emptied traps (S. M.; Mohammedyasin et al., 2016), (Ostanin et al., 

2017), (Ostanin et al., 2012), (Rodrigues Duran et al., 2013), (Tasianas et al., 2016), 

(Vaddakepuliyambatta et al., 2013). Two important points emphasized by all of these studies are the 

periods of uplift and erosion during the Cenozoic as a trigger for remigration; and the importance of 

fault planes as pathways for vertical fluid flow. Despite the obvious economic significance, there is 

little attempt at finding a relation between leakage mechanisms and the observed fluid contacts in these 

traps. The  most extensive study that tries to explain the observed hydrocarbon column heights is done 

by Christian; Hermanrud et al. (2014), who looked at the underfilled fields of the western Hammerfest 

Basin. According to Christian; Hermanrud et al. (2014), from the 12 structures investigated in this study, 

only one is filled to its structural spillpoint (Alke Nord), while only one contains a thin oil leg (Snovhit). 

The emptying of the traps occurred via spilling and leakage.  

Figure 2: Vertical distance between hydrocarbon-water contacts (HWC) and spillpoints in the structures investigated by 

Christian; Hermanrud et al. (2014). Figure from Christian; Hermanrud et al. (2014). 

Christian; Hermanrud et al. (2014) emphasized the importance of fault intersections as main conduits 

of fluid flow. They also explained the position of the fluid contacts with fault intersections, assuming a 

clear causation where these intersections and fluid contacts coincide (figure 3). The fault valve theory 

(introduced in chapter 3) however, adds nuance to the issue of fault permeability by showing a complex 

interplay between the stress field, fault orientations and reservoir pore pressure. Even less studies have 

investigated fault permeability in the Hammerfest Basin from this dynamic perspective, despite several 

studies emphasizing the role of pore pressure in leakage processes (Finkbeiner et al., 2001; Christian 

Hermanrud et al., 2005; Hillis & Nelson, 2005a; Mildren et al., 2005; Nordgard Bolas & Hermanrud, 

2003; Sibson, 2000; Wiprut & Zoback, 2002). 
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Figure 2. Leaky faults’ spatial relation to hydrocarbon-water contact according to (Christian; Hermanrud et al., 2014). Figure 

from (Christian; Hermanrud et al., 2014) 

In the Hammerfest Basin and the Barents Sea in general, the process that could have contributed to an 

increase in pore fluid pressures is the Cenozoic uplift causing the expansion of the gas caps, and the 

push out of oil legs (Henriksen et al., 2011). There is ample evidence, that subsequent leakage was fault-

assisted, but some authors also propose the tensile failure of the cap rock as a possible dynamic 

controlling mechanism (Tasianas et al., 2016). Nordgard Bolas et al. (2005) and Christian Hermanrud 

et al. (2005) suggest however, that crustal flexuring caused by, for instance, the advancement and retreat 

of glaciers can perturb the stress field; resulting in a more anisotropic stress field, ultimately promoting 

shearing along fault planes instead of tensile failure. Where stresses remained more isotropic, chances 

are bigger for seal hydrofracturing. Hoshino (1972) warns for the development of the embrittlement 

zone, that makes cap rocks more vulnerable to hydrofracturing in uplifted basins. Deciding on which 

fracturing mode controls the hydrocarbon column heights can be ambiguous. Finkbeiner et al. (2001) 

attempted to determine the type of dynamic control in different pressure compartments by calculating 

the dynamic capacity of traps in the Gulf of Mexico. 

There is considerable advantage in having knowledge about fault conductivity during the risking of 

prospects. This is especially true to the Hammerfest Basin, which is an overfilled petroleum basin (Ohm 

et al., 2008). This means that several source rock intervals exist in the stratigraphic column, that have 

expelled enough hydrocarbons during the basin’s hiStøry to fill the investigated traps. The underfilled 

traps we see today are exclusively the result of spill and leakage. Hence, the most important risk factor 

during exploration is seal integrity. This is the characteristic of basins that underwent considerable uplift 

causing pressure redistribution, changes in seal rheology and stress perturbations. Having fault bounded 
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traps only adds to the risk, since the critical pressures for these traps are generally lower than those of 

non-faulted traps (Wiprut & Zoback, 2002). Faults can place dynamic controls on the amount of 

pressure that can be Støred in a compartment. This can be an aid in estimating hydrocarbon column 

heights and in place volumes (Figure 4). 

(Wiprut & Zoback, 2002)

 

Figure 4. The effect of water phase pore pressure on hydrocarbon column heights. Figure from Wiprut and Zoback (2002) 

The purpose of this thesis is to revisit some of the prospects investigated by Christian; Hermanrud et al. 

(2014) from a more dynamic perspective; estimating dynamic capacities of the traps, finding weak spots 

for leakage from them, and attempt to explain the level of hydrocarbon-water contacts by assuming a 

dynamic equilibrium. 

2. Geological background 

2.1.1. Regional setting 
The hydrocarbon fields in this study are located in the Hammerfest Basin, SW Barents Sea. Presently, 

it is one of the largest continental shelf areas in the world and is part of the Northeast Atlantic passive 

margin. West of this margin, the Fram strait and the Lofoten Basin consisting of oceanic crust separates 

the Barents and the Greenland shelves (Figure 5.). The shelf consists of various subbasins, structural 

highs and fault zones of different ages (Figure 5.). The Western Barents Sea can be divided into two 

domains: to the north, the Svalbard Platform consists of a thin sedimentary cover; while between the 

Svalbard and the Troms-Finnmark platforms lies a depression consisting of a patchwork of sub-basins 

and highs where thick Mesozoic and Upper-Paleozoic sediments have been preserved (Berglund et al., 

1986). The structural elements of the Western Barents Sea dip towards the west, and they are 

characterized by a westward thickening of the Jurassic-Cretaceous, while in the westernmost parts along 
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the continental margin a westward prograding Plio-PleiStøcene sedimentary wedge is preserved 

(Faleide et al., 1993). 

Figure 5. Major structural features around the Hammerfest Basin 

The subbasins can be grouped into two geological provinces, based on their sedimentary infill: the 

Cretaceous/Lower Tertiary (Harstad, Tromsø, Sørvestsnaget Basins), and the Mesozoic (Hammerfest, 

Fingerdjupet) basins (Faleide et al., 1993). The latter basins are located further away from the 

continental margin to the east, and lack the pronounced Cretaceous-Tertiary subsidence that is 

characteristic of the former province (Figure 6). While the main tectonic event for the formation of 

these basins is the Late Jurassic-Early Cretaceous rifting (Cimmerian phase); earlier structural grains, 

and later reactivations of fault zones also had a profound effect on the divergent evolution of these 

basins (Berglund et al., 1986), (Brekke & Riis, 1987), (Gabrielsen, 1984), (Gernigon et al., 2014). 

2.1.2. Tectonic evolution 
In a tectonic sense the Barents shelf can be subdivided into two provinces: the eastern province was 

largely influenced by the Uralian orogeny; while the western Barents region’s evolution was mainly 

shaped by post-Caledonian events (Faleide et al., 1993; Smelror et al., 2009; Worsley, 2008). 
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Basins in the SW Barents Sea were affected by previous structural grains. Major tectonic events 

influencing the structural evolution here include the Caledonian orogeny, the Kimmerian tectonic phase 

and the opening of the North Atlantic (Gabrielsen, 1984). It is suggested that the Carboniferous and 

Permian graben systems (related to the Caledonian orogeny) are situated in a similar NE-SW trend 

below the Mesozoic basins; defining an inherited structural grain (Gudlaugsson et al., 1998). After some 

minor tectonic events in the Early Triassic, the Middle and Late Triassic were both characterized by 

post-rift thermal subsidence (Gernigon et al., 2014). The Late Jurassic-Early Cretaceous Cimmerian 

phase mostly affected the western margin of the Barents Sea. This is also the time that the Hammerfest 

Basin was established as a separate depocenter from the Nordkapp Basin (Berglund et al., 1986). This 

tectonic phase has led to the characteristic E-W oriented horst-graben system in the northern parts of 

the basin (Figure 7.). Rifting continued well into the Cretaceous and Early Tertiary in the western 

margin along approximately N-S, NW-SE striking rotated fault blocks; creating the deep Cretaceous 

basins (Brekke & Riis, 1987), (Faleide et al., 1993), (Gabrielsen, 1984), (Gernigon et al., 2014). 

Renewed tectonic activity prior to the opening of the Norwegian-Greenland Sea saw the formation of 

the Spitsbergen orogenic belt (Worsley, 2008). 

Lastly, Plio-PleiStøcene glaciations eroded the Barents shelf leading to isostatic uplift in the 

Hammerfest Basin. Vorren et al. (1991) estimates the average erosion in the southern Barents Sea to be 

around 420 m; while in the Hammerfest Basin it can reach up to 1000 m (Henriksen et al., 2011). The 

base of the glacial erosion is a well traceable reflector called the Upper Regional Unconformity (URU). 

The URU progressively deepens towards the shelf edge at the west; where ice streams deposited large 

mouth-fans such as the Sørvestsnaget fan. 

This glacial episode is important since it could have affected the preservation of hydrocarbons in a 

number of ways: (1) the transition between net uplift and net deposition (hinge line) tilted the traps 

towards the west, altering the closure (Henriksen et al., 2011); (2) at the hinge line crustal flexuring 

under excess sediment load can locally perturb the stress field (Nordgard Bolas et al., 2005); (3) the 

cyclic loading-unloading caused by advancing and retreating ice sheets cause similarly cyclic pressure 

changes within the reservoirs (Ostanin et al., 2017); (4) the final uplift has also led to a pressure increase 

in the reservoirs via gas cap expansion.  

2.2. Hammerfest Basin 
In the following, a more detailed look is taken on the structural and stratigraphic setting of the 

Hammerfest Basin. Important aspects of the geological framework with relation to petroleum geology 

will be highlighted. 

2.2.1. Hammerfest Basin’s structural framework 
The Hammerfest Basin is an elongated (70 km wide and 150 km long) asymmetrical basin striking NE-

SW to NNE-SSW and dipping to the west (Figure 5). Neighboring structures include the Loppa High 
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to the north, the Tromsø Basin to the west, the Troms-Finnmark Platform to the south and the Nordkapp 

Basin to the east (Figure 6.). Major fault complexes defining the basin are the Asterias FC towards the 

Loppa High, the Ringavassoy-Loppa FC (RLFC) towards the Tromsø Basin and the Troms-Finnmark 

FC (TFFC) towards the Troms-Finnmark Platform (Figure 6). 

 

Figure 6. Characteristic strike of major faults in the study area. Red lines indicate the positions of the sections in Figure 7. and 

8. 

The TFFC separates the shelf’s sedimentary sequences from the Scandinavian mainland mostly 

consisting of crystalline bedrock. According to Gabrielsen (1984) faults of this complex originate in the 

crystalline basement, meaning that this lineament has probably been active for most of the post 

Caledonian evolution of the basin. The zone strikes roughly NE-SW, with a characteristic dog-leg 

pattern, having E-W striking segments between the main NE-SW trends (Berglund et al., 1986). It is 

associated with basinward listric normal faults, often featuring rollover anticlines in the hanging wall. 

The RLFC separating the Tromsø and Hammerfest basins consists of NNE-SSW striking rotated, 

detached normal faults dipping towards the Tromsø Basin (Gabrielsen, 1984). Intersections of these 

faults often result in rhomb-shaped terraces containing some hydrocarbon accumulations (Figure 8). 

The ESE-WSW trending Asterias Fault Complex separating the Hammerfest Basin from the Loppa 

High to the north features complex cross-cutting normal faulting often involving antithetic faults 

(Berglund et al., 1986). 

All the fault complexes mentioned above delineate the Hammerfest Basin, while also affecting the fault 

patterns inside the basin, especially towards the marginal areas. However, the basin itself has a 

characteristic fault pattern as well termed as the Hammerfest Basin Fault System (HBFS) by Gabrielsen 

(1984). The HBFS mainly consists of E-W trending normal faults resulting in horst-graben structures 

(Figure 7). They have been connected to the Late Jurassic Cimmerian tectonic phase, and run oblique 
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to the axis of the basin defined by the TFFC. This has led Gabrielsen (1984) to suggest that while the 

main trend of the basin represents an older Caledonian grain; the HBFS is the manifestation of a younger 

Jurassic stress field. As such, these faults are not rooted in the basement contrary to the fault zones 

described above.  

Berglund et al. (1986) uses a classification system that contains five different types of faults to 

distinguish the fault systems within the Hammerfest Basin. Types 1, 2 and 3 correspond to faults of the 

TFFC, the RLFC and Asterias FC, respectively. Types 4 and 5 are part of the HBFS, but the latter type 

contains shallow faults that do not penetrate the Triassic succession. 

 

Figure 7. Schematic section of the Hammerfest Basin along line AA’ 

 

Figure 8. Schematic section of the Hammerfest Basin along line BB’ 
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2.2.2. Stratigraphic evolution of Hammerfest Basin 
Deposition inside the present-day Hammerfest Basin started as early as the Carboniferous, but the basin 

did not become an independent depocenter until the Late Jurassic Cimmerian event. Therefor it makes 

sense to investigate the stratigraphic evolution separately as pre, and post Cimmerian phases. 

Pre-Cimmerian phase 

The evolution of the Hammerfest Basin can be traced back to Upper Paleozoic times. The sediments 

from this period were accumulated in the hinterland basins of the Caledonides and are associated with 

post-Caledonian orogenic collapse (Gernigon et al., 2014).  At this time, the Hammerfest Basin made 

up a single structure with the Nordkapp Basin (Berglund et al., 1986). In the Carboniferous, carbonate 

platform sedimentation dominated the area, while evaporitic sequences were deposited inside the 

graben systems. The Upper Permian is characterized by general basin wide subsidence, and clastic 

deposition which formed in response to the Uralian Orogeny (Brekke & Riis, 1987; S. M.; 

Mohammedyasin et al., 2016). Fine grained clastic sedimentation continued into the Early Triassic in 

the form of westerly-prograding clinoforms. From Late Triassic to Middle Jurassic a cyclic alteration 

of continental and shallow marine sediments can be observed in the Hammerfest Basin. From the 

Middle Jurassic another general rise in sea level took place initially leading to the deposition of marine 

sandStønes, then calcareous shales as the nearby sediment source drowned. 

 

Figure 9. Stratigraphy, 

and tectonic evolution of 

the Hammerfest Basin (S. 

M.; Mohammedyasin et 

al., 2016) 

 

Post-Cimmerian 

phase 

The Late Jurassic 

faulting has led to 

the creation of deep 

anoxic basins where 

organic material was 

deposited and 

resulted in a shale 

event not only in the 

Barents Sea, but in 
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the Norwegian and North Seas as well. This Cimmerian faulting phase has established the Hammerfest 

Basin as an independent entity from the Early Cretaceous onwards. The characteristic E-W, NW-SE 

and NE-SW oriented normal faults of the HBFS developed during this time. The Cretaceous contains 

open marine sediments, with some with periodic restricted bottom circulation (Faleide et al., 1993). The 

thickness of the sequence is mainly controlled by fault of the HBFS and the RLFC. Cretaceous faulting 

in the HBFS caused a structural high in the basin axis, where the Cretaceous sequence thins out. 

Meanwhile, the RLFC showed intensive reactivation during this time. As a result, the Cretaceous 

sediments thicken away from the basin axis and towards the west, before they onlap to the Loppa High 

and the Troms-Finnmark Platforms (Faleide et al., 1993). Paleogene sediments consisting mostly of 

clayStønes and interbedded siltStønes from a marine shelf environment sit unconformably on the 

Cretaceous, and span in age from Upper Paleocene to Lower/Middle Eocene (Berglund et al., 1986; 

Faleide et al., 1993). The Paleogene succession thickens and contains progressively younger sediments 

towards the west. From the Eocene into the Oligocene a western progradation can be seen. From Middle 

Oligocene times, the areas east of the now developed passive margin experienced erosion, while a large 

sediment influx came into basins on the margin. The Neogene/Quaternary in the Hammerfest Basin is 

represented by a thin sediment cover sitting unconformably on the Paleogene (Berglund et al., 1986). 

2.3. Petroleum geology of Hammerfest Basin 
One the most important hydrocarbon plays (and the only one considered by Christian; Hermanrud et al. 

(2014) and this study), in the Hammerfest Basin is the Middle Jurassic associated with the pre-rift 

sandStønes of the Nordmela and Stø Formations; deposited in coastal-plain and shallow marine 

environments (Christian; Hermanrud et al., 2014). Source rocks in the area range in age from 

Carboniferous to Tertiary shales (Sund et al., 1986), however in the Hammerfest basin only the Upper 

Triassic-Lower Jurassic coal sequences (Kobbe and Snadd Formations), and the Upper Jurassic shales 

(Hekkingen Formation) have contributed significantly to current hydrocarbon volumes (S. M. 

Mohammedyasin, 2017; Sund et al., 1986). Generation of hydrocarbons from the Kobbe started in Late 

Triassic, in the Snadd from Early Cretaceous and in the Hekkingen from Late Cretaceous times, but 

accumulation in the Middle Jurassic play only started from the Paleocene; by which time all three source 

rocks have entered into the gas window mainly in the northwestern edge of the basin (Rodrigues Duran 

et al., 2013). After expulsion, hydrocarbons from the Kobbe and Snadd Formations have reached the 

pre-rift reservoirs via fault assisted vertical migration. The same vertical migration from the Hekkingen 

shale mostly charged the Cretacous Knurr Formation (S. M. Mohammedyasin, 2017). 

The Middle Jurassic play is located in fault blocks. The cap rocks are the Fuglen and Hekkingen 

Formations, which are followed by 1-3 km thick mostly Cretaceous and Paleogene overburden. The 

preservation of hydrocarbons in this system was strongly affected several phases of uplift and erosion. 

Earlier Oligocene uplift resulted in gas expansion and the total or partial lateral spill of oil legs; while 
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the vertical leakage of gas through fault planes is mainly associated with stress and pore pressure 

perturbations during Neogene glacial erosion (Rodrigues Duran et al., 2013). 

3. Theoretical background 
This chapter aims to provide an overview of some basic concepts of petroleum geology that bear 

relevance to this thesis. The most important concepts include dynamic trapping mechanisms, the 

influence of stress regimes and pore pressure on trapping mechanisms; and the different processes that 

can lead to leakage from a dynamically constrained trap. To understand these concepts, an introduction 

to the petroleum system, and some of its elements is needed. After defining traps and dynamic traps as 

well, stress regimes will be discussed. Finally, this chapter will close off with a brief introduction to 

seismic surveys.  

  

 

 

3.1. The hydrocarbon trap 
A hydrocarbon trap is a place where “oil and gas are barred from further movement”(Selley & 

Sonnenberg, 2015). There are a number of different classification schemes for traps, but on the most 

basic level structural and stratigraphic traps are commonly distinguished. The former consists of traps 

that are defined by secondary structures; most commonly anticlinal and fault related traps. On the other 

hand stratigraphic traps are delineated by changes in lithology that can either be syn, or post 

depositional. Typical syn-depositional traps include sand bars, sand barriers and channels that can form 

pinchout structures; or carbonate reefs. Post-depositional traps can be diagenetic traps, or traps related 

to unconformities. 

3.1.1. Nomenclature of a trap  
The highest point of a trap is called culmination. The lowest point of the trap is the point from where 

an extra drop of hydrocarbon would migrate in a different updip direction. This point is called the spill 

point. The vertical distance between the culmination and the spill point is the closure of the trap (Figure 

10). In hydrocarbon filled traps the different phases separate from each other: gas being the most 

buoyant creates a gas cap at the top, which can be followed by an oil leg and formation water below the 

oil. The contacts between these phases are called gas-oil (GOC), oil-water (OWC) and gas-water 

contacts (GWC). In a hydrocarbon filled trap the vertical distance between the culmination and any 
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hydrocarbon-water contact (HWC) is called the hydrocarbon column height. If the hydrocarbon column 

height equals the closure, the trap is said to be filled-to-spill; otherwise it is underfilled. 

Figure 10. Nomenclature of a trap illustrated by a simple anticlinal trap. Figure from Selley and Sonnenberg (2015). 

 

3.1.2. Hydrocarbon filling 
Both oil and gas are more buoyant than water, which means that the first drop of hydrocarbon in a water 

filled closure migrate updip all the way to the culmination of the trap. Subsequent droplets of 

hydrocarbons will be replacing the formation water below this uppermost drop; gradually pushing the 

HWC down in the trap, creating a continuous hydrocarbon column. This process can continue until an 

equilibrium state (one drop in, one drop out) is reached. The equilibrium state imposes an upper limit 

on the hydrocarbon column height; and can be controlled by different factors (Figure 11). 

3.1.2.1. Structural controls  

If the column heights are controlled by structural factors, then the traps can fill up to the spill point 

(given that there is sufficient amount of hydrocarbons), since it’s the structural configuration of the trap 

that determines the position of the spillpoint. The spillpoint can be the lowest hinge point in the case of 

an anticlinal trap; or the highest point of a reservoir-reservoir juxtaposition across a non-sealing fault 

plane. Structural controls prevail, when none of the dynamic controls discussed in the next section affect 

hydrocarbon column heights. 
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Figure 11. Different controls on hydrocarbon column heights in traps. Figure from  (M. D. Zoback, 2007) 

3.1.2.2. Dynamic controls 

A dynamic equilibrium can occur when the reservoir pore fluid pressure reaches either the pore throat 

entry pressure of the seal, the fracture pressure of the seal, or a pressure high enough to cause slip on a 

fault intersecting the reservoir. This dynamic equilibrium can result in a HWC that is higher than the 

spillpoint, hence the trap can be underfilled. In this case “the maximum column the reservoir can support 

depends on (1) the initial water-phase pressure in the reservoir, (2) the mechanism by which fluids 

migrate out of the trap, and (3) the density of the hydrocarbon phase” (Finkbeiner et al., 2001). The 

second point will be explored more in the following sections. 

Capillary entry pressure 

Hydrocarbon traps are sealed off in updip direction by a seal. Sealing lithologies are low permeability 

rocks that owe their good sealing characteristics to their large capillary entry pressure. The capillary 

entry pressure is the force that a buoyant hydrocarbon column has to overcome in order to enter the 

pores: 

Pce < (ρw −ρhc)gh 
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where Pce is the capillary entry pressure, ρw is water density, ρhc is hydrocarbon density, g is gravitational 

acceleration, and h is the hydrocarbon column height. Pce is dependent on the largest pore throat radius 

of the seal. 

Hydraulic fracture limit 

The other characteristic that makes a good seal is its propensity to ductile deformation. Certain 

conditions however can promote the development of “shale embrittlement”, where fractures open up 

enhancing permeability (Hoshino, 1972). Seal failure is often associated with the hydraulic fracture 

limit, which is reached when the reservoir pore pressure is as high as the minimum effective principal 

stress (see section 3.4.4.). In case of a seal failure, an amount of hydrocarbons that is proportional to 

the amount pressure causing the failure can leak out of the trap.  

Dynamic fault slip 

Traps bounded by critically stressed faults (see section 3.4.3.1.) can be vulnerable to hydrocarbon 

leakage in the fault plane; when the fault is reactivated. In this case the height of the HC column is 

controlled by a critical pressure that relates to a number of variables including fault plane orientation 

with respect to stress field, frictional coefficient and cohesive strength of the fault, and stress anisotropy. 

Similarly to hydraulic fracture limit; a reactivated fault plane can act as an open valve for hydrocarbons, 

promoting leakage out of the trap. This behavior is discussed in more detail in the following section. 

3.2. The fault valve theory 
The fault valve theory is the main principle behind this research. The theory of fault-controlled 

hydrocarbon prospects is based on the static and dynamic properties of faults. This theory suggests that 

faults have a differential role in fluid flow when active and inactive-an idea that forms the basis for 

dynamic fault slip, and fault controlled hydrocarbon columns.  

3.2.1. Static and dynamic permeability 
A large number of publications is concerned with the static properties of fault planes((Fristad et al., 

1997; Gartrell et al., 2003; Harper & Lundin, 1997; Knipe et al., 1997; Sverdrup & Bjorlykke, 1997; 

Welbon et al., 1997)). These all emphasize the importance of reservoir-seal juxtaposition, fault core 

lithologies, clay smearing, fault intersections, diagenesis etc. when it comes to fault permeability. It is 

generally accepted that static fault conductivity is a complex issue, with many variables; and it is hard 

to come up with a general rule to determine it. An exception from this rule could be the fault valve 

theory, suggesting that faults which are oriented for failure in a given stress regime (i.e. potentially 

active); are the most likely to conduct fluids. (Linjordet & Skarpnes, 1992) used borehole breakout data 

to determine principal stress orientations, and to explain an acoustic masking zone interpreted as a gas 

column at the western perimeter of the Snovhit discovery (Linjordet & Grung Olsen, 1992). (Wiprut & 

Zoback, 2002) calculated the leakage potential on the surface of a fault plane intersecting the Visund 
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field in the North Sea; based on the orientation of the fault plane to the stress field. They were able to 

demonstrate, that a large gas column appears over the section of the fault where it starts striking for 

failure at present stress field. (Sibson, 2000) describes a so called fault valve mechanism, where well-

oriented faults would fail after a buildup of excess pressure in their compartments; thus functioning as 

a pressure release valve. 

It can thus be seen, that the issue of fault permeability can be broken down into static and dynamic 

permeability. The former is concerned with faults that emplace a structural control on hydrocarbon 

column heights, while the latter investigates the dynamic controls that active faults emplace through the 

critical pore pressure. 

3.2.2. The stress field 
When discussing the dynamic permeability of faults, and the controls they emplace on hydrocarbon 

column heights; a basic understanding of the stress field is needed. Both the absolute, and the relative 

magnitudes of principal stresses affect fault permeability. More specifically; it’s the effective stress 

magnitudes that are important to the fault valve theory. Effective stress is the difference between stress 

and pore pressure. As a result, pore pressure also becomes central when describing the state of stress in 

a reservoir. 

“Stress is a tenSør which describes the density of forces acting on all surfaces passing through a given 

point” (M. D. Zoback, 2007). Contrary to pressure, a stress field can be anisotropic (which is mostly 

the case in the crust), so an ellipsoid is commonly used to visualize it. The 3 axes of the ellipsoid 

correspond to the three principal axes of the stress field; these are poles to the planes on which no shear 

stresses act. The symbols for these from largest to lowest are S1, S2 and S3. 

The surface of the crust is always in contact with a fluid unable to support shear stresses. Hence one of 

the principal stresses in the crust is always perpendicular to the surface, with the remaining two axes 

being horizontal, and perpendicular to each other. The vertical axis is the weight of the overburden, and 

is commonly denoted as Sv. The horizontal stresses are made up of several factors such as the horizontal 

elastic deformation of rocks, and tectonic stresses. The largest horizontal principal stress is commonly 

written as Shmax, while the smallest Shmin.  

The vertical principal stress 

The vertical principal stress (Sv) corresponds to the weight of the overburden, so it is most commonly 

simply calculated by integrating density logs from several wells and taking an average value to account 

for the small differences between wells (Nordgard Bolas & Hermanrud, 2002). The gradient of Sv is 

commonly referred to as the lithostatic gradient, and for simpler calculations an average rock density 

of 2.3 g/cm3 is usually assumed; resulting in a lithostatic gradient of 23 MPa/km. 

Least horizontal stress 
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The least horizontal stress (Shmin) is the least principal stress (S3) in both normal and strike-slip faulting 

regimes. Nordgard Bolas and Hermanrud (2002) warns based on the World Stress Map database; that 

assuming a normal faulting regime in most of the World’s sedimentary basins is a faulty preconception. 

Even so, the Shmin=S3 assumption would work in approximately two-thirds of the basins. The only 

exception would be reverse faulting regimes where Sv=S3. 

Where Shmin=S3; the least horizontal stress gradient becomes an important boundary for both 

exploration and well operations. If the wellbore fluid pressure reaches the level of Shmin, loss of 

circulation can occur. Also, a pore pressure increase in the reservoir reaching Shmin is associated with 

seal failure and a leakage of hydrocarbons. The cause behind these processes is hydrofracturing; the 

opening of tensile fractures oriented perpendicular to the direction of S3 via an increase in pore pressure. 

Since rocks generally have little or no tensile strength; hydrofracturing will occur when the pore 

pressure reaches the value of S3. 

This makes it suitable to use controlled hydrofracturing in wellbores (called as leak-off tests-LOT) to 

constrain Shmin gradients. Plotting the leak-off pressures (LOP) from several wells and from different 

depths in a given basin will provide the Shmin gradient in the area. LOP’s close to Sv can either indicate 

a reverse faulting regime, or a close to isotropic stress field. 

Maximum principal stress 

There is no direct measurement for the maximum principal stress. However assuming that S3 will equal 

Shmax; then S3 may be calculated from the occurrence of borehole breakouts (Nordgard Bolas & 

Hermanrud, 2002). Wellbore breakouts are  wellbore enlargements caused by stress-induced failure of 

a well occurring 180 degrees apart (M. D. Zoback, 2007). In a vertical well; the azimuth of breakouts 

correspond with the orientation of Shmin, while drilling induced tensile fractures (situated 90 degrees 

away from breakouts around the wellbore) correspond with Shmax. Thus, the elliptical shape of a vertical 

wellbore mirrors the anisotropy of the horizontal stress components. Through more complex 

calculations borehole breakouts can give absolute stress magnitudes, relative stress magnitudes; while 

in the simplest case, the orientation of the horizontal stress components. 

Linjordet & Skarpnes, (1992) used breakout orientations inferred from caliper logs to risk fault bounded 

prospects with regards to fault seal effectiveness. The theory is that prospects bounded by faults that 

strike parallel with Shmax will have higher exploration risks associated with them, since these faults will 

be more open and permeable; due to the fact that they have the lowest possible normal stresses resolved 

on their surfaces. 

Pore pressure 

Pore pressure is simply the pressure of any fluid occupying the pore space in a rock. The pressure of a 

water column that can be found in interconnected pores all the way to the surface, and is not sealed off 
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from communication with atmospheric pressure is called hydrostatic pressure; while its gradient is the 

hydrostatic gradient. The hydrostatic gradient is approximately 10 MPa/km coming from the density of 

water. Pore pressures higher than hydrostatic are called overpressures, while formations with pressures 

plotting below the hydrostatic gradient are said to be underpressured. 

Pressure measurements in porous formations are commonly done by the Repeat Formation Tester (RFT) 

wireline tool. Pressure samples from different depths in a reservoir can be plotted in a pressure vs depth 

space. The obtained pressure gradients can be useful in separating fluid columns with different densities 

inside the reservoir. Fluids with lower densities than water will always result in pore pressures deviated 

from hydrostatic conditions; but the values that are much more telling about the reservoir’s initial 

pressure characteristic is the water-phase pressure. The horizontal distance between the water-phase 

gradient and the hydrostatic gradient gives the initial magnitude of overpressure-this would ultimately 

affect the hydrocarbon column height as well. In a hydrocarbon filled reservoir pore pressures measured 

in the gas or oil columns will reflect the added effect of their lower densities. 

Stress regimes and stress provinces 
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When we are discussing stress in the crust, the relative magnitudes of Sv, Shmax and Shmin has a large 

significance. Depending on how they relate to S1, S2 and S3 Anderson distinguished at least three 

different stress regimes (Figure 12). He also theorized what styles of faulting would be active in each 

of these stress regimes. With the help of this classification scheme a basic description of the state of 

stress in any given location can be done by giving the stress regime and the orientation of one of the 

horizontal principal stresses (usually Shmax).  

Figure 12. Anderson’s classification of different types of faulting, and how they relate to stress regimes. Source: (M. D. 

Zoback, 2007) 

M. L. Zoback et al. (1989) has noted that in situ stress measurements at different locations have shown 

that stress regimes and the orientations of principal stresses can show large continuity over extensive 

geographical areas. Such areas with more or less uniform stress magnitudes and orientations are called 

stress provinces. It is worth noting that stress provinces are not only spatial but also temporal concepts; 

meaning stress regimes change over geological time. Fault populations that were introduced in a given 

stress regime can stay dormant afterwards, or possibly get reactivated in a different stress regime. 
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3.3. Failure processes 
This section will briefly discuss the method behind determining the dynamic capacity of a trap in a 

given stress field. Afterwards an overview is given on how fracture criteria for failure processes is 

incorporated in a Mohr space. 

3.3.1. The Mohr diagram 
The Mohr diagram is used to get the amount of shear and normal stress on a plane with a given 

orientation to the stress field (Figure 13.). It is very useful in assessing the possibility of failure.  

3.3.2. 3D Mohr diagram 
The 3D diagram shows all three principal stresses, and contains three Mohr circles (Figure 13.). It is 

able to display the shear and normal stresses of all the planes with regards to their orientations to the 

stress field. The planes are represented by points found in the area between the two smaller and the 

largest Mohr circles. To define one plane, we need its ϴ angle to at least two of the principal stresses.  

 

Figure 13. Representation of a 2D and 3D Mohr circle. Green color shows the possible stress configurations of planes. The 

vertical axis shows effective shear stress and the horizontal axis shows effective normal stress. 

3.3.3. Fracture criteria 
Certain configurations of stresses and pore pressures can give rise to the failure of rocks. The states of 

stresses that can lead to failure in the crust are represented by the so-called failure envelope in the Mohr 

diagram. Failure envelopes in the Mohr space represent the different combinations of shear and normal 

stresses that would cause a given type of rock to fail. The envelopes are commonly determined 

experimentally, and they can be differing depending on the type of rock, whether it is intact or not, or 

the mode of failure involved. 
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The geometric relation of a Mohr circle to the failure envelope defines different states of stress: in a 

stable state the Mohr circle does not touch the failure envelope (Figure 14.). All the states of stress, 

where the Mohr circle is intersecting the envelope are unstable. Unstable states of stress are theoretical, 

but do not exist in the nature, because as soon as the Mohr circle touches the envelope; failure occurs 

followed by a stress release; causing the state of stress to revert to stable state. The state of stress where 

the Mohr circle touches the failure envelope is referred to as critical. In this state, an incrementally small 

increase in stress anisotropy, or a decrease in effective stress would cause imminent failure. 

 

Figure 140. Relation of a Mohr circle to the failure envelope: green points represent planes with stable stress configurations, 

while the red ones are unstable. The two yellow planes are critically stressed.  

3.3.3.1. Critically stressed faults 

When the resolved shear and normal stresses on a fault’s surface allow slip (shear failure) to occur on 

the surface (or in other words the Mohr circle is touching the fault’s failure envelope), the fault is said 

to be critically stressed. In a natural crustal setting, critically stressed faults would be a subset of faults 

in the crust, that are oriented according to Anderson’s faulting theory in any given stress regime. 

Critically stressed faults have a huge importance since in a dynamically controlled pressure 

compartment these faults are the weakest; and so it is the dynamic properties of these faults and their 

relationships to the prevailing stress field that will put constrains on the pore pressure inside the 

compartment.  

3.3.3.2. Causes of failure 

There are two broad processes by which failure can occur: increase in stress anisotropy and decrease in 

effective stress. The former can be caused by the accumulation of tectonic stress, or stress perturbations 

from the differential loading of crust. The increase in differential stress means that the diameter of the 

Mohr circle increases, until it touches the failure envelope. 
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The decrease in effective stress happens through an increase in pore pressure. In this case all of the 

effective principle stresses decrease by the same amount, shifting the Mohr circle to the left in the 

diagram while keeping the differential stress constant. Again, this will lead to an eventual failure as the 

Mohr circle touches the failure envelope. 

The pore pressure induced failure of critically stressed faults is one of the most important natural 

regulator of hydrocarbon column heights in dynamically controlled compartments. 

3.3.4. Modes of failure 
Shear failure is a type of failure, that involves considerable movement parallel with the surface of the 

fracture. Shearing occurs on surfaces over which the shear stresses are relatively high compared to 

normal stresses. The shear strength of different media is defined by the Mohr-Coulomb failure envelope. 

The shear strengths of cohesionless fault surfaces are for example commonly represented by a Mohr-

Coulomb envelope starting from the center of the diagram with a steepness that corresponds to a 

frictional coefficient of 0.6.  

Extensional (Mode I) fractures form with low shear stresses on the fracture surface. The bulk of the 

movement is perpendicular to the fracture walls, and they open up perpendicular to the least principle 

stress. This means that with the exception of a reverse faulting regime these fractures will always be 

vertical. If we want to include the formation of extensional fractures into our model; then the Griffith-

Coulomb failure envelope represents a more realistic behavior of rocks. Instead of a straight line all the 

way, this failure criteria becomes parabolic towards low confining pressures (Figure 15). 
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Figure 15.  (Previous page) Geomechanical parameters for fracture related seal breach. A Mohr-Coulumb envelope (starting 

from the center) only allows for the modelling of shear failure. The Griffith envelope gives a more realistic interpretation 

with the possibility of tensile failure at low differential stresses. Figure from Mildren et al. (2005) 

As mentioned above, there many approaches to the determination of the critical pressure in a 

dynamically controlled trap depending on modes of failure, petrophysical characteristics etc. As a 

consequence there are a number different parameters that can be used to quantify and asses dynamic 

trap risk (Figure 16.).  

Gaarenstroom et al. (1993) introduced retention capacity (RC) as the difference between pore 

pressure and the minimum principal stress (minimum principal effective stress) to assess the risk of 

seal related failure on prospects of the Central Graben in the North Sea. This approach assumes tensile 

fracturing of a seal without tensile strength as the main control on hydrocarbon column heights. A low 

retention capacity can either be indicative of a dynamically underfilled trap (with a pore pressure 

lower than dynamic equlibrium); or a trap in dynamic equlibrium but with a different mode of failure 

active (Mildren et al., 2005). RC can only be a measure of true dynamic capacity where the cap rock 

has no tensile strenght, and there are no well-oriented cohesionless faults in the rock (Sibson, 1996). 

In most of the cases however, real rocks are far from intact and have faults going through them in 

every direction; making a fault-shear reactivation more realistic (M. D. Zoback, 2007). In recognition 

of this; other parameters were commonly used including slip-tendency (Morris et al., 1996), the 

Coulomb failure function and the critical pressure perturbation (Wiprut & Zoback, 2002). None of 
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these techniques incorporate the tensile and cohesive strength of the faults, and the tensile and 

cohesive strength of intact cap rock. 

Figure 16. The different methods for assessing dynamic capacity. Figure from (Mildren et al., 2005) 

The Fault Analysis Seal Technology (FAST) technique developed by (Mildren et al., 2005) and used by 

(Hillis & Nelson, 2005b) in the North Sea gives an opportunity to model a wide range of failure 

mechanisms. This method allows for the incorporation of cohesive and tensile strength of fault rocks 

together with intact cap rocks. In most cases the cap rock is assumed to be stronger, however 

according to (Hillis & Nelson, 2005b) this does not need to be the case all the time. This is the most 

comprehensive geomechanical analysis so far since it allows for a seal breach via for different cases: 

shear reactivation of faults, extensional reactivation of faults, shear failure of cap rock and extensional 

failure of cap rock (Figure 17.).  
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Figure 17. The 4 basic modes of seal breach: shear failure of fault (a), tensile failure of fault (b), shear failure of cap rock (c), 

tensile failure of cap rock (d) Figure from Mildren et al. (2005) 

3.4.  3D reflection seismic 
Reflection seismic is one of the most commonly used geophysical tools in exploration and field 

development alike. It uses the measured travel time of sound waves reflected from geophysical 

boundaries to construct a geological model. At sea, sound waves are usually generated using air guns, 

while an array of geophones detect the waves. Energy gets reflected every timethe incident wave 

arrives at a surface with different acoustic impedances across it. The acoustic impedance of a material 

is given by the seismic velocity times the density of that material. Thus surfaces with acoustic 

impedance constrasts can be layers in a sedimentary sequence.Hence, the most common surfaces 

appearing on sesimic data are sedimentary layers, unconformities and fluid contacts. 

The reflection coefficient tells us what percentage of an incident wave energy gets reflected from a 

given surface of acoustic impedance contrast. The larger the acoustic impedance contrast, the more 

energy gets reflected from it, resulting in a more pronounced sign. On seismic data this will manifest 

itself as bigger amplitude waves. 

As a rule of thumb, acoustic impedance will increase with depth. In some cases however a downward 

penetrating wave can reach layers associated with a decrease in impedance. This will result reverse 

phase reflection in contrast to a normal phase wave that is produced by an increase in acoustic 

impedance. A common form of reverse phase waves is the so-called bright spots. Bright spots are 



32 

 

reverse phase wavelets with increased amplitudes, that is commonly associated with gas charged 

sediments.  

4. Data and Methods 

4.1. Data 

4.1.1. Seismic 
The seismic dataset used in this study was ST15M04, a 3D depth-coverted seismic cube provided by 

Equinor. The seabed produces a normal polarity, zero-phase wavelet. It covers the Snøhvit, Albatross 

and Askeladd fields; in addition with two dry structures (Askeladd Beta, Delta Vest) (Figure 18.) that 

were originally investigated by Christian; Hermanrud et al. (2014).   

Figure 18: Depth map of top Stø interpretation over the survey area. 

4.1.2. Well data 
Well tops were used during seismic interpretation to correlate reflections with formation tops. Well 

correlation was especially important in this particular survey area, where the heavily faulted nature 

of the reservoir level often makes interpretation between fault blocks ambigous. Well data was also 

utilized during the stress field modeling. Calculations of overburden stresses were done by the help of 

density logs. Caliper logs documenting borehole breakout orientations were unfortunately unavailable 
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to this study, so determining horizontal stress orientations was done via studies that did contain this 

information. A description of these studies will follow in the next chapter. 

RFT pressure measurements were an integral part of determining the pressure profile and the degree 

of overpressure in the reservoirs. Pressure profiles were also utilized when determining the initial fluid 

contact levels in the traps. For simplicity’s sake, the same fluid contact level was assumed in each trap; 

meaning that the possibility of reservoir compartmentalization was ignored during this study. RFT 

pressure points and other important well parameters (water depth, kelly bushing height) were 

obtained from well completion reports publicly available on NPD’s website. At each of the traps 

information from the discovery wellbore, (or from the first wellbore in the case of no discovery) were 

used as reference for that entire trap. 

Leak off tests (xLOT) were used form wells and provided by Equinor. The data from these tests was 

used to approximate S3 of the stress field. With the help of xLOTs and and overburden calculations 

from density logs; a realistic approximation for Shmin and Sv was achieved, which helped constraining 

the final principle stress (Shmax). This will be elaborated further in the following section. 

4.2. Methods 
The workflow for this study can be divided into two main parts: seismic interpretation involving 

horizon and fault interpretation; and constraining and building the stress model. The structure of this 

chapter reflects this two phase workflow. 

4.2.1. Seismic interpretation 

The seismic interpretation was done with Schlumberger’s Petrel software. Several seismic horizons 

were picked and interpreted using seeded 3D autotracking, or more crude interpretation methods 

where the seismic signals were deterioated. The Hekkingen and Fuglen formations were chosen as 

cap rocks, and the Stø and Nordmela as main reservoirs (Figure 19/A.). Faults were interpreted in and 

around of known discoveries and prospects. On the shallower western parts of the survey variance 

volume attribute was used to aid fault interpretation. In the deeper parts of the survey (around the 

Askeladd fields) the seismic signal was too deterioted for variance aided interpretation. Through dip-

linkage these faults often link up vertically with deeper (Paleozoic) and shallower (Cainozoic) fault 

segments alike. Interpretations however were kept mainly on the Jurassic level never going shallower 

than the Upper Jurassic unconformity; or deeper than the top of Fruholmen Formation (Figure 19/B). 

The reasons for this include: a rapidly deterioating seismic signal below the Jurassic sequence, dip 

separation seems to be concenrtrated around the Jurassic reservoirs and the fact that the Upper 

Jurassic unconformity provides a good approximation as the top of the traps. This way, trap geometry 

can be defined as an intersection between the top Hekkingen and fault surfaces. 
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Figure 19. A: N-S seismic section through Snøhvit, showing the interpreted horizons around the reservoir. Yellow horizons 

belong to the reservoir, green is source rock, while the black ones are cap rocks. B: The same section in variance attribute 

view: fault planes light up as areas of higher variance (red-yellow colors) between the fault blocks. Mapping of fault planes 

were kept between top Knurr, and top Fruholmen surfaces.  

4.2.2. Constraining the stress field 
In order to incorporate the influence of the stress field in fault permeability evaluations; the following 

important points must be addressed: 

1. A model for the local stress field is required. The simplest way to define a stress field (also used 

in this thesis) is by estimating the magnitude of the three principal stresses; and the orientation 

of the horizontal principal stresses 

2. An understanding of the pore pressure within the reservoir is required 

3. And finally, a geomechanical model for the failure process thought to be in “dynamic control” 

is needed. 

This section will go through these points following the order above; detailing the workflow and 

discussing the weakspots of each of the methods. 

4.2.2.1. Determining the stress field 

*In the following section would like to introduce the process of building a geomechanical model. Since 

the stress field profoundly influences the final results of this research, this is a crucial step with regards 

to the validity of any findings presented about fault permeability. The geomechanical model was mainly 

based on well data (density logs, caliper logs, xLOTs). 
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The World Stress Map project was a worldwide cooperation between research institutes to gather 

information about the large scale stress fields. The project put a big emphasis on tectonically less active 

intraplate areas where earthquake focal mechanism data are scarce and other techniques are required to 

get a grip on the active stress field. The techniques used to collect data for this project are still relevant 

today; and form the basis for stress measurements. M. L. Zoback et al. (1989) gave a good overview of 

these methods. Below a short description follows of the ones that are relevant to this thesis. 

Sv from density logs 

The vertical stress Sv is purely derived from the weight of the overburden and is the only principal stress 

not affected by tectonic forces. Because of this it is also the easiest to estimate. It is commonly calculated 

by multiplying the densities from a density log with the height and the gravitational constant. If density 

logs are not available, an average density of around 2.3 g/cm3 is commonly used; however a more 

precise way to calculate Sv is to integrate on the densities of a well log by calculating the weight of 

small intervals for the whole length of the survied borehole and then adding them up: 

𝑆v= ∫ 𝜌𝑔 𝑑ℎ ; 

where ρ is density, g is the gravity constant and h is the height. 

This will give the weight of the overburden over the length of the borehole where density logging was 

done. With the knowledge of this length the overburden gradient can easily be calculated. 

It is important to mention that with this method, the overburden gradient is slightly overestimated since 

the less compacted and lighter sediments in the shallower parts of the borehole are not accounted since 

logging is usually not carried out in the first couple 100 meters of the well. 

Methods for estimating Shmin via xLOT 

Hydrofractures are MODE I (extensional) fractures that develop when the pore pressure (or in the case 

of a wellbore the drilling mud pressure) is greater than the least principle stress (M. D. Zoback, 2007). 

The criteria for forming hydrofractures is that the fluid pressure must overcome the compressive stresses 

and the tensile strength on a given plane. The basis for using them as an indicator for S3 comes from 

the work of Hubbert and Willis (1957). According to that study, hydrofractures always propagate 

perpendicular to S3 (since this is the least energy configuration) with the same strike and dip. 

Additionally, naturally occurring rocks have tensile strength close to zero; meaning that the pressure at 

which they open only correlates with the in-situ least principle stress. 
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Leak-off tests (LOT) are the most common type of method for determining the minimum principal 

stress via the creation of hydrofractures. These tests are usually preformed in the earliest stages of a 

new well section; after they drilled through the casing shoe and the cement of the previous section. The 

determination of S3 is done via the interpretation of pressure vs time plots of LOT tests. Technical terms 

related to these plots include the leak-off pressure (LOP), formation breakdown pressure (FBP), fracture 

propagation pressure (FPP), instantaneous shut-in pressure (ISIP) and fracture closure pressure (FCP) 

(Figure 20). The number of studies concerned with different ways of interpreting these plots is 

extensive; however there seems to be an agreement that in the most simple case S3 can be approximated 

by LOP and ISIP. According to Raaen et al. (2006) the only reliable pressure value that is directly 

connected to S3 is the fracture closing pressure. 

Figure 20. A typical pressure vs time curve from an LOT. Figure from Raaen et al. (2006) 

Leak-off tests provide the drilling mud density and the depth at which ISIP occurred. This gives a good 

basis for estimating the gradient of the least principle stress. Moreover; the tensile failure occurring 

during hydrofracturing can also help constraining relative stress magnitudes (see next section). 

Determining relative stress magnitudes and constraining Shmax 

Shmax is the most difficult principle stress to determine, since there are no direct measurements that could 

be used for this purpose (M. D. Zoback, 2007). Instead, the most common way to estimate, it is to put 

constraints on the possible values based on knowledge about relative stress magnitudes; and borehole 

breakouts. 

Relative stress magnitudes have a basic influence on the type of active faulting within a stress regime. 

For the description of these regimes based on Anderson’s faulting theory, the reader is referred to 

section 3.3.2. Based on this theory several assumptions can be made about the stress field by only 

knowing the overburden stress and the minimum principle stress. If these two coincide, that could be 
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an indication of a strike-slip/normal or a reverse faulting regime. When the least principle stress is 

smaller than the overburden that either points to a pure normal faulting or a pure strike-slip regime. In 

each of these faulting regimes, differential stress cannot accumulate indefinitely; since failure would 

occur at some point limiting the growth of it. According to frictional failure equilibrium theory 

discussed in section 3.4.3.1.; the most likely type of failure limiting stress accumulation is by shear 

failure along well-oriented zones of weakness with a coefficient of friction of around 0.6. With this in 

mind, stress polygons can be constructed; showing the possible range of values for the horizontal 

principle stresses given that the overburden gradient is known. In normal and strike-slip faulting regimes 

this makes it possible to assign a theoretical minimum and maximum value to Shmax given that Shmin and 

Sv are known. 

Wellbore breakouts and drilling induced tensile fractures (DITF) are fractures formed around a wellbore 

due to the diStørtion in stress trajectories caused by the wellbore itself. It should be noted that these can 

also be used to constrain Shmax: the width of wellbore breakouts depends on the differential stress 

involved; while plotting the failure criteria for DITFs on the stress polygon can also narrow down the 

possible range of values (Figure 21). 

 

 

 

 

Figure 21: Example of constraining Shmax with a stress polygon. 

Dashed lines represent the limit between Anderson’s faulting 

regimes. The outer boundaries of the polygon are determined based 

on frictional failure equilibrium theory assuming a frictional 

coefficient of 0.6. The 0 line is the failure criteria for DITF if the 

temperature difference between the mud and the formation is 25° 

with an excess mud pressure of 6 MPa. If Shmin is also known to be 

50 MPa at this depth, this gives a possible range for Shmax 

highlighted by the red line. Figure modified from (M. D. Zoback, 

2007). 

 

 

 

Orientation of wellbore breakouts 
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Wellbore breakouts are fractures formed around the wellbore by compressive failure that locally give 

an increase to wellbore diameter. They occur in pairs on opposite sides of a wellbore; often resulting in 

a distinct elliptical shape. These compressive fractures form; where stress trajectories become 

“squeezed” around the wellbore resulting in a local increase in hoop stress (the stress around the 

wellbore). In a vertical well these areas of locally increased hoop stress can be found 90 degrees away 

from Shmax; or at the azimuth of Shmin. The azimuth of breakouts were earlier commonly measured with 

caliper log; nowadays FMI tool is standard. 

A few previous studies have looked at caliper logs from wells in and around the Snøhvit field in order 

to determine Shmax azimuths in the area. The findings of these papers were incorporated into the stress 

model used in this study. That process is further detailed in the Results chapter. 

Reservoir pore pressure 

Figure 22: Retention capacity is a commonly used parameter to measure a trap’s dynamic capacity. It assumes that the 

controlling mechanism is hydrofracturing.  

A dynamically constrained reservoir’s ability to trap hydrocarbons is mainly influenced by an interplay 

between the regional stress patterns and the reservoir’s pore pressure. Therefor it is very common to 

display a reservoir’s state of stress using a diagram showing the stress gradients and the pore pressure 

together in a depth vs pressure space. This is very useful for both exploration and drilling operations; 
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since the initial water phase pore pressure of the reservoir, and a critical stress gradient (commonly 

taken as S3 or Shmin) defines a pressure window. This pressure window is the amount of overpressure 

the trap can accommodate before failure. 

When talking about dynamically constraiend traps, most commonly the critical pressure (the pressure 

the trap can tolerate before failure) is taken to be the minimum principal stress. This assumption 

however heavily relies on a number of factors, and can lead to erroneous interpreatations of the 

dynamic capacity of the trap; if not used cautiously. The minimum prinicpal effective stress equals the 

amount of pressure needed to open the weakest fractures perpendicular to S3. In other words, it 

assumes that the primary leakage mechanism out of a dynamically controlled trap would be by 

hydrofracturing (extensional failure) of preexisting, cohesionless fractures (Figure 22). 

Since other fracture mechanisms can result in lower critical pressure gradients than S3; this thesis 

considers other critical pressures as well. In the pressure vs depth plots presented in the results 

chapter, two critical pressure gradients are displayed: one by assuming the shear failure of a 

cohesionless fracture with a frictional coefficient of 0.6; while the other also assuming shear failure of 

a fracture with the same frictional coefficient but with a cohesion of 3 MPa. The distance of the 

maximum recorded pressure to the former gradient is referred to as critical pressure (Ppcrit) in this 

work. 

Pressure vs depth plots provide an overview of the different controlling mechanisms, and the possible 

hydrocarbon column heights; but does not contain spatial information e.g. the stress orientations. They 

are perfect for presenting retention capacities which take a single pressure value from the crest of the 

trap (Hillis & Nelson, 2005b); but are not suitable for the determination of critical pore pressure 

variations along a fault plane. Hence, when it comes determining the distance to failure on every point 

of a fault plane, the calculations and visualizations were done by Badley’s TrapTester software by 

getting the distance (critical pressure perturbations (Figure 16.) ) to the failure envelope from different 

points of the fault surfaces and plotting them on the faults. 

As mentioned earlier, RFT pressure plots were also used to determine the fluid contacts in a trap. Since 

different fluids have different densities, the depth of fluid contacts are easily identifiable on RFT plots 

as a shift in the steepness of the curve. In the example below (Figure 23), a gas-water contact is defined 

on a seismic section of Snøhvit Nord with the help of a superimposed RFT plot created from 

measurements in the discovery wellbore.  
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Figure 23: Method of determining initial fluid contacts from RFT logs. Example from Snøhvit Nord: RFT pressure log from well 

7121/4-2 is superimposed on a seismic section of the trap. 

 

Visualization of critical pressure perturbation on fault planes 

The critical pressure perturbation (Ppcrit) is the amount of stress needed in a given stress field to induce 

slip on a fault surface of a given orientation. This parameter was visualized on fault planes with the help 

Badley’s TrapTester. After interpretation in Petrel, the fault surfaces were exported into T7, where after 

specifying the stress field and pore pressure; Ppcrit was plotted on the fault surfaces with a color code. 

Two basic stress field models were created for the survey area with distinct pressure gradients: one for 

the shallower eastern parts (used for the Albatross, Albatross Sør, Snøhvit, Snøhvit Nord structures) 

(Table 1.); while another one for the deeper western parts (used at Albatross, Albatross Gamma, 

Albatross Vest, Albatross Beta and Delta Vest) (Table 2.). Due to the relatively low certainty with which 

the stress field can be determined; the faults at each of the structures were tested for 6 different stress 

scenarios (Table 1&2.). These scenarios were needed to cover the uncertainty of SHmax magnitude and 

orientation. In order to obtain a correct value of effective stress at reservoir level; the gradients within 

each of these scenarios had to be adjusted with sea depth, and overpressure. These two values were 

obtained from well completion reports of the discovery wellbore at each of the structures. 

After specifying the stress field; T7 computes pressure vs depth profiles for each of the fields. From 

this; the Mohr diagrams for any given depth can be constructed. In our case the Mohr diagrams represent 

the state of stress at the top reservoir of the discovery wellbore. The following strep was defining a slip 

gradient. With that defined, the Mohr space could be color coded based on how far away is each point 

from the failure line. Here warm colors were chosen to represent closeness to failure, i.e. low Ppcrit or 

dynamic capacity. After importing the fault planes into T7, the software assigns points to the surfaces. 
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These points are then plotted on the Mohr diagram, from where the Ppcrit can be determined for each 

of these points. Lastly, with the help of the color code; Ppcrit values can be visualized on the interpreted 

surfaces and locations with higher risk of leakage can be identified. 

5. Results 

5.1. Reservoir state of stress 
Determining the state of stress in a reservoir (stress orientations and magnitudes, pore pressure) is the 

most important step when investigating the dynamic capacities of traps. Scarcity of relevant available 

data from the area of investigation is an issue here. As a result, this thesis also relies on the small number 

of studies conducted in the Barents Sea that make estimations on the stress regime in the area. 

Generalizations were made on the stress regime, with the introduction of the regional stress regime 

concept. In the regional stress regime model data from the whole of the Hammerfest Basin was used to 

establish stress orientations and magnitudes on a broader regional scale; to which pore pressure data 

from the individual prospects can be compared. Based on previous studies, two regional stress models 

seem to be reasonable. The two base regional stress models are called Snøhvit (Table 1) and Askeladd 

(Table 2). The former was used for the two Albatross and two Snøhvit structures, while the latter is for 

the Askeladd structures and Delta Vest in the Western part of the study area. Within these two base 

models different stress scenarios were created to account for the uncertainty of SHmax magnitude and 

orientation. All of these scenarios were applied to the individual structures. Reservoir state of stress 

were calculated at each structure for each stress scenario by applying the base stress model’s gradients 

to reservoir depth, pore pressure and water depth. 

After determining the stress field, pressure points from the reservoirs were plotted along with the 

principal stress gradients and some failure gradients. The process of establishing these gradients for the 

stress models is detailed in the next two sections. 

5.1.1. Stress regime 
An important aspect of any stress regime is the type of active faulting involved (faulting regime). A low 

degree of seismicity in the Barents Sea region makes it difficult to determine the current faulting regime 

through the usual analysis of earthquake focal mechanisms. However, most of the studies assume a 

normal faulting regime similar to other parts of the Norwegian shelf (L. Chiaramonte et al., 2011). This 

is reasonable, based on the relative low stress anisotropy observed in the area. L. Chiaramonte et al. 

(2011) assumes a normal-fault/strike slip regime to account for a relatively large SHmax. 

In a SS/NF stress regime the orientation of Shmax is decisive in the question of fault permeability. Gölke 

and Brudy (1996) have reported that on a regional scale, the E-W orientation observable in the North 

Sea undergoes a progressive clockwise rotation into a N-S orientation at the Barents Sea. The main 

cause of this N-S oriented Shmax is thought to be ridge push from the Nansen Ridge to the north. This 

means, that this stress regime is a direct result of the opening of the Atlantic Ocean, thus it is assumed 
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that it started no later than Oligocene times. Some studies however, including that of Linjordet and 

Grung Olsen (1992) who used observations of borehole breakouts in Snøhvit wells, have noted that 

local variations (especially around active faults) in orientations and magnitudes can be observed. 

Lastly, regional stress gradients were determined and placed into this model. The largest stress gradient 

in this model is the vertical stress (overburden). In this analysis, the regional Sv gradient of 23.1 MPa/km 

is going to be used for the Snøhvit base model, and 23.7 MPa/km for the Askeladd base model. The 

former is from the density log of well 7120/9-1; while the latter is derived from the same log of well 

7120/8-2.  

5.1.2. Methods for estimating Shmin via xLOT 
Leak-off tests (LOT) are the most common type of method for determining the minimum principal 

stress. These tests are usually preformed in the earliest stages of a new well section; after they drilled 

through the casing shoe and the cement of the previous section. The determination of S3 is done via the 

interpretation of pressure vs time plots of LOT tests. Technical terms related to these plots include the 

leak-off pressure (LOP), formation breakdown pressure (FBP), fracture propagation pressure (FPP), 

instantaneous shut-in pressure (ISIP) and fracture closure pressure (FCP). The number of studies 

concerned with different ways of interpreting these plots is extensive; however there seems to be an 

agreement that in the most simple case S3 can be approximated by LOP and ISIP. According to Raaen 

et al. (2006) the only reliable pressure value that is directly connected to S3 is the fracture closing 

pressure.   

Two Shmin gradients needed to be determined for the two base stress models. For the Snøhvit base models 

an xLOT from a Snøhvit injection well (7121/4-F-2H) was used. This gave a regional Shmin gradient of 

15.6 MPa/km. Similarly, the Shmin gradient of 16.5 MPa/km for the Askeladd base model was obtained 

from xLOT data of well 7120/8-4. 

A critical pressure related to fault reactivation (Ppcrit) is also plotted. For this, I assumed a cohesionless 

fracture with no tensile strength and with a frictional coefficient of 0.6. A failure envelope for this 

hypothetical fracture was plotted in Mohr space together with Shmin and Sv corresponding to different 

crustal depths with the gradients given above. After this a pore pressure induced failure of the fracture 

was simulated by shifting the Mohr circle towards the envelope until it touches it (Figure 24). This 

exercise was done at several depths with the stress gradients of both base models. The result is two Ppcrit 

gradients for the two base models that in theory represent the failure line of a cohesionless fault surface 

with a coefficient of friction of 0.6. This gradient is 12 MPa/km in the Snøhvit, and 13.1 MPa/km in the 

Askeladd base model. 
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Figure 24: (previous page) Increasing the fluid pressure until the Mohr circle touches the failure envelope determines the 

failure gradient for the given type of failure in a given stress field. 

 A failure line for faults with 3 MPa cohesion and 0.6 coefficient of friction was also plotted on the 

individual stress diagrams of the fields. Instead of determining a regional gradient, the failure line was 

only determined at the level of the reservoirs by bringing a Mohr circle representative of the state of 

stress at reservoir level to failure with an envelope of said cohesion and friction. This is because for this 

type of failure it is not possible to determine a linear gradient for all depths; since the Griffith failure 

envelope itself is not linear at lower stresses (shallow depths). 

 

Askeladd base 

stress model 

(Ppcrit: 13.1 

MPa/km) 

Shmin (MPa/km) SHmax 

(MPa/km) 

Sv (MPa/km) SHmax 

orientation 

SH160_Sh 16.5 16.5 23.7 160° 

SH160_12 16.5 19.8 23.7 160° 

SH160_Sv 16.5 23.7 23.7 160° 

SH160_SHmax 16.5 51.2 23.7 160° 

SH180_Sh 16.5 16.5 23.7 180° 

SH180_12 16.5 19.8 23.7 180° 

SH180_Sv 16.5 23.7 23.7 180° 

SH180_SHmax 16.5 51.2 23.7 180° 
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Table 1: (Previous page) Askeladd base stress model and the stress scenarios 

The individual pressure profiles of the investigated prospects were then plotted on this regional stress 

model. The data used here were RFT pressure measurements from the discovery wells. All of the points 

were taken from the hydrocarbon charged parts, or from the main Middle Jurassic reservoirs. Plotting 

of the RFT measurements resulted in pressure profiles from the reservoir levels. Table 1 and 2 below 

summarize the stress gradients used in the two base stress models and the different stress scenarios. 

Table 3 is the summary of the reservoirs’ state of stress. 

SH160_Sh 15.6 15.6 23.1 160° 

SH160_12 15.6 18.7 23.1 160° 

SH160_Sv 15.6 23.1 23.1 160° 

SH160_SHmax 15.6 48.4 23.1 160° 

SH180_Sh 15.6 15.6 23.1 180° 

SH180_12 15.6 18.7 23.1 180° 

SH180_Sv 15.6 23.1 23.1 180° 

SH180_SHmax 15.6 48.4 23.1 180° 

Table 2. Snøhvit stress model with the different stress scenarios 

 

Snøhvit base 

stress model 

(Ppcrit: 12 

MPa/km) 

Shmin (MPa/km) SHmax 

(MPa/km) 

Sv (MPa/km) SHmax 

orientation 
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Table 3. Summary of reservoir state of stress 

5.2. Reservoirs’ state of stress and slip stabilities 
In the following section a short description of each of the structures are followed by a summary of the 

reservoir’s state of stress and dynamic capacities. Slip stabilities in the different stress scenarios are also 

presented here. 

Albatross 

Albatross is a gas discovery located at the edge of an Upper Jurassic platform that trends roughly E-W 

within the Hammerfest Basin. The northernmost edge of Albatross is delineated by an E-W trending, N 

dipping normal fault that considerably deepens the basin towards the north, creating a closure in the 

Middle Jurassic reservoirs (Figure 25). The southern edge is bordered by south dipping normal faults 

with similar strikes. At the western edge of the discovery, a zone of acoustic masking can be observed. 

 Pressure Overpressure SHmin RC OpF Ppcrit Delta 

Ppcrit 

Albatross 20.35 2.5 26.55 6.2 0.28 21 0.65 

Albatross 

Sør 

21 2.8 27.2 6.2 0.31 21.7 0.7 

Snøhvit 26.52 3.6 33.94 7.42 0.25 26.64  

Snøhvit 

Nord 

27.37 2.8 35.7 8.3 0.25 28.9 1.5 

Askeladd 23.4 2.8 32.3 9 0.24 26.2 2.8 

Askeladd 

Gamma 

24.15 3 33.5 9.3 0.24 27.1 3 

Askeladd 

Vest 

26.6 2.8 37.8 11.2 0.2 30.5 4 

Delta 

Vest 

31.5 2.8 45.6 14.1 0.165 36.75 5.25 

Askeladd 

Beta 

27 4.5 35.2 8.2 0.35 28.5 1.5 
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Figure 25: Faults and GWC of Albatross and Albatross Sør. GWC is shown by red line. See figure 18 for the color bar. 

Discovery well 7120/9-1 hit the structure in the center. The hydrocarbon zone was hit at a depth of 1817 

m below sea level, while the GWC at 1881 m. Pressure profiles derived from RFT data show a gas 

gradient of 0.084 psi/ft corresponding to 1.90 MPa/km (Figure 26). Pressure at the top of the gas column 

in the well reaches 20.35 MPa, while in the water zone just below the GWC it is 20.58 MPa. 

Overpressure at the top of the gas column is around 2.5 MPa. Given the regional gradient of Shmin of  
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Figure 26: (previous page) RFT plot of Albatross 

15.6 MPa/km, and a water column of 320 m on the spot; a hydraulic fracture limit of 26.55 MPa can be 

assumed at the top of the gas column. This gives an RC of around 6 MPa, with an OpF (overpressure 

factor) of 0.28. Meanwhile Ppcrit without a cohesion at this depth can be assumed to be around 21 MPa, 

which is within 1 MPa from the observed pore pressure. Meanwhile the Ppcrit for a fracture with 3 MPa 

cohesion would be around 26.2 MPa at this depth. 

In the SH160_Sh case faults 2, 3, 4 and 7 on the western side of the structure seem to be closer to failure 

with critical pressures reaching below 2 MPa (Figure 27). Meanwhile, the three on the eastern part 

remain with a moderate critical pressure. Increasing the SHmax will lead to a considerable increase in 

fault stability in this scenario resulting in critical pressures in excess of 10 MPa on most of the fault 

surfaces (Figure 28 & 29).  

Figure 27: Slip stabilities at SH160_Sh on Albatross 

Figure 28: Slip stabilities at SH160_12 on Albatross 
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Figure 29: Slip stabilities at SH160_Sv 

In the SHmax180 stress scenarios the very same pattern can be observed. 

Albatross Sør 

Albatross Sør is situated south of Albatross (Figure 25). Both structures can be found in the shallowest 

part of the survey area; where north dipping fault blocks dominate. Both Albatross discoveries are 

towards the axis of the basin, where these fault blocks become the shallowest. Albatross Sør is 

delineated by one major north dipping fault towards the north; while towards the south the gas column 

tapers off to zero before reaching the next fault zone. 

Figure 30: RFT plot of Albatross Sør from well 7121/7-2 
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Discovery well 7121/7-2 hit the top reservoir at 1860 m below sea level. Based on RFT measurements 

the GWC was recognized at 1892 m. Pressure at the top of the gas reaches to 21 MPa, while at the GWC 

it gets close to 22 MPa (Figure 30). The hydrostatic pressure at this depth can be expected around 18.2 

MPa, which gives a slight overpressure of 2.8 MPa. The hydraulic fracture limit is around 27.2 MPa, 

which means RC is around 6.2 MPa. OpF is at 0.31. Similarly, to Albatross however the dynamic 

capacity seems to be much lower if we consider Ppcrit for shear failure in cohesionless fractures: at this 

depth it can be expected to be around 21.7 MPa, which is within 1 MPa away from the actual pore 

pressure. 

In the SH160_Sh scenario slip stability is lowest on fault 2 at the west of the structure. Similarly to the 

ones on Albatross, the critical pressure here comes within 2 MPa. On fault number 1 and on the smaller 

fault segment to the south (number 3) critical pressures rarely go below 4 MPa (Figure 31). With an 

increase in SHmax gradient, the fault planes become more stable until Sv is reached (Figure 32 & 33). 

Again, the orientation of SHmax does not affect the critical pressures in the different scenarios: SH180 

scenarios came out with the same results. 

Figure 31: Slip stabilities at SH160_Sh on Albatross Sør 

Figure 32: Slip stabilities at SH160_12 on Albatross Sør 
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Figure 33: Slip stabilities at SH160_Sv on Albatross Sør 

Snøhvit 

Figure 34: Faults and HWC at Snøhvit. See figure 18 for color code. 
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Snøhvit is an oil and gas discovery lying in the northern, deeper half of the basin characterized by horst-

graben structures. The E-W trending structure is delineated by E-W normal faults on the northern and  

Figure 35: RFT pressure plot of Snøhvit from well 7121/4-1 

southern edge, and SW-NE and SE-NW fault segments on the eastern and western edges (Figure 34).  

Similarly to Albatross, the seismic data is degraded by a zone of acoustic masking to the west, while 

another masking zone can be observed close to the NE corner of the structure. 

Figure 36: Slip stabilities at SH160_Sh at the southern edge of Snøhvit 
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Figure 37: (previous page) Slip stabilities at SH160_Sh on fault 5 

Discovery well 7121/4-1 encountered gas in the Stø and Nordmela formations from 2296 m. A GOC 

was identified at 2403 m, while the OWC at 2420 m. RFT pressures show a gas gradient of 0.09 psi/ft 

or about 2 MPa/km; and an oil gradient of 0.32 psi/ft (7.23 MPa/km) (Figure 35). At the top of the 

hydrocarbon column in the well the pressure reaches 26.52 MPa, while at the bottom the water phase 

pressure is at 27.17 MPa. Shmin at depth can be expected at 33.94 MPa, while hydrostatic pore pressure 

would be at 22,92 MPa. This gives an RC of 7.44 MPa, with an OpF of 0.33. Ppcrit at the top of the HC 

column can be assumed at 26.64 MPa. 

 

Figure 38: Slip stabilities at SH160_12 from the north side of Snøhvit 

Figure 39: Slip stabilities at stress scenario SH160_12 on fault 6 
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Figure 40. Slip stabilities at SH160_12 on the southern faults at Snøhvit 

In the SH160_Sh case all the major faults delineating and crosscutting the structure show low critical 

pressures. With the exception of fault 8, 3, 9 and 10 all faults have segments where the critical pressure 

goes below 2 MPa (Figure 36 & 37). Major critical areas extend along the strikes of these faults, 

resulting in an overall high risk on the whole structure. With an increasing SHmax gradient two things 

happen: fault segments with higher risk become more localized, but at the same the absolute magnitude 

of critical pressure increases. As a result, these localized critical segments do not pose as big of a risk 

to fault leakage as in the case of a 2D stress field. Nevertheless, the spatial distribution of critical 

segments in these stress fields can still correlate with the ones in the SH160_Sh scenario. Hence, it is 

still worth emphasizing that in the SH160_12 and SH160_Sv scenarios the middle parts of fault 5 and 

the more NW-SE striking segments of fault 6 seem to have lower critical pressures (Figure 38, 39, 41, 

42). Both of these segments can be found on the Eastern, Northeastern parts of the structure. 
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Figure 41 (previous page): Slip stabilities at SH160_Sv on fault 5 

 

Figure 42. Slip stabilities at SH160_Sv on fault 6 

In the SH180 scenarios the same trend can be observed. Naturally, some difference appears in the 

locations of the critical segments that is due to the different horizontal stress orientations. The NE-SW 

striking smaller faults (3,7,8) and the two N-S segments at the Eastern edge of the field (9, 10) also 

become favorably oriented in SH180_12 and SH180_Sv (Figure 43, 44, 45). 

Figure 43. Slip stabilities on the north side of Snøhvit at SH180_12 
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Figure 44. Slip stabilities on the north side of Snøhvit at SH180_Sv 

 

Figure 45. Slip stabilities on faults 9 and 10 at SH180_Sv. 
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Snøhvit-Nord 

Wildcat well 7121/4-2 hit Snøhvit Nord in a horst just north of Snøhvit. The southern edge of the 

prospect is delineated by southerly dipping normal faults. Towards the north a gentle antiform creates 

closure in a different fault block (Figure 46). 

Figure 46. Faults and GWC at Snøhvit Nord. See figure 18 for color code. 

The gas bearing Stø formation was hit at 2458 m below sea level, and the GWC was found to be at 2495 

m. At the top of the gas pressure reaches 27.37 MPa, while at the GWC 27.67 MPa was measured 

(Figure 47). This means that the reservoir is only slightly overpressured, with approximately 2.8 MPa 

over hydrostatic pressure. A LOT just before hitting the reservoir has been performed in this well at 

2460 m RKB. Leak-off occurred at a pressure equivalent to a mud weight of 1.86 g/cm3 corresponding 

to 38.7 MPa. The regional Shmin gradient of 15.6 MPa gives an Shmin value of 35.7 MPa. That is a 

difference of 3 MPa, but for the RC and OpF calculations the latter value will be used for conservative 

calculations. That still gives an RC of 8.3 MPa-a huge margin when taking into account the average 

natural gas densities. The OpF value from this is around 0.25; showing that despite the high absolute 

value of RC; the trap is probably much closer to its dynamic capacity thanks to a narrow mud window. 
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This is even more true to the critical pressure associated with cohesionless faults; which at this depth 

would be around 28.9 MPa; or less than 2 MPa away from the actual recorded pressure. 

Figure 47. RFT plot for Snøhvit Nord from well 7121/4-2 

When it comes to slip stability on faults; fault 1 is the most unstable in SH160_Sh scenario. This is the 

only fault plane that has considerably large segments with critical pressure perturbations of less than 2 

MPa (Figure 48). Faults 2, 3 and 5 have critical pressures mostly between 4 and 6 MPa, while faults 4 

and 7 have 10 MPa and above. Increasing SHmax will again increase slip stability as well, however 

different fault planes will be favorably oriented. In SH160_12 scenario all faults become more favorably 

oriented for failure except for faults 4 and 7; while in SH160_Sv scenario faults 3 and 5 would slip most 

easily (Figure 49). 
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Figure 48 (previous page): Slip stabilities on the south side of Snøhvit Nord at SH160_Sh 

Figure 49. Slip stabilities on fault 3 and 5 at SH160_Sv 

By nature a stress field that is isotropic in the horizontal plane is insensitive to horizontal stress 

orientations. Hence as usual SH180_Sh scenario produces identical slip tendencies as its SH160_Sh 

counterpart (Figure 50). Increasing SHmax in the SH180_12 scenario will lead to an increase in absolute 

slip stability. The most unstable fault in this scenario is fault 5 (Figure 51). The situation is very similar 

in scenario SH180_Sv with the difference that the role of fault 5 becomes even more pronounced as 

slip stabilities increase further on all the other faults (Figure 52).  



59 

 

Figure 50. Slip stabilities at Snøhvit Nord at SH180_Sh viewed from the north 

Figure 51. Fault 5 is the most unstable at SH180_12 scenario 

Figure 52. Fault 5 is still the main risk at SH180_Sv 
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Askeladd 

The Askeladd structure is the easternmost one of a group of gas fields sitting on terraces that are 

separated by N-S trending normal faults of the RLFC. The biggest fault delineating this structure to the 

west also belongs to this fault complex. In the northernmost part of the structure this fault starts to rotate 

into a more NW-SE strike. The northern edge of Askeladd is delineated by a NE-SW trending fault; 

while to the east the GWC mostly follows the structural relief. Some exceptions from this can be seen 

as some smaller E-W striking faults seem to affect the GWC in this area (Figure 53). 

Figure 53. Faults and GWC at Askeladd 
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Figure 54. RFT profile of Askeladd from well 7120/8-2 

The Stø formation in Askeladd was first spudded by well 7120/8-2, which hit the top reservoir at 2056 

m below sea level. The GWC was recognized at 2136 m from the RFT pressure profile; which gave a 

pressure of 23.4 MPa at the top of the gas column and 23.56 MPa at the bottom (Figure 54). This means, 

that the pressure at the top of the gas column is around 2.8 MPa above hydrostatic pressure. Regional 

Shmin gradient gives a minimum stress of 32.3 MPa for this depth considering a water depth of 245 m. 

This gives a retention capacity of almost 9 MPa. OpF is 0.24. If we consider shear failure along 

cohesionless fault surfaces to be the dynamic control, then a critical pressure of around 26.2 MPa can 

be expected at this depth. The actual pressure at the top of the gas column is only 2.8 MPa away from 

this value. 

Faults in the SH160_Sh case show moderate slip stability. None of the fault planes have extensive areas 

with less than 2 MPa critical pressure. The lowest slip stabilities are shown by fault 1, 9 and 11, where 

critical pressure perturbations of 5 MPa can be observed (Figure 55(A)). With the increase of SHmax the 

effect of fault strike becomes more pronounced. Hence, in the SH160_12 scenario it can be observed 

that the faults most favorably oriented for failure are 10 and 11 (Figure 55(B)). On fault 11 areas with 

smaller than 2 MPa slip stability can be seen, while fault 10 stays around 5 MPa. With SHmax reaching 

the magnitude of Sv in  
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Figure 55. Slip stabilities on Askeladd at SH160_Sh (A), at SH160_12 (B), SH160_Sv (C) at SH180_Sh (D) 
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SH160_Sv the importance of these to fault planes becomes even more highlighted, while other fault 

planes become more stable both in absolute and relative terms (Figure 55(C)). 

Figure 56. Slip stabilities on Askeladd faults at SH180_12 (A), and at SH180_Sv (B) 

In SH180_Sh scenario critical pressures are even lower than for its SH160_Sh counterpart (Figure 

55(D)). Increasing SHmax will destabilize fault 11 in the same manner as in the stress fields with 160 

degree SHmax orientations (Figure 56 (A)). Fault 10 will also become a bit more unstable, but faults 1 

and 2 on the northern edge of the structure also show lower relative stability. This lower relative stability 

however is still somewhere between 3 and 6 MPa. Only fault 11 shows critical pressures less than 3 

MPa. Further increasing SHmax will lead to fault 11 being the only fault with considerable risk (Figure 

56(B)).  



64 

 

Askeladd Gamma 

Figure 57. Faults and GWC at Askeladd Gamma (to the right) and Askeladd Vest (to the left). See figure 18 for color code. 

Askeladd Gamma lies just west of the main Askeladd structure. It is located on a deeper terrace formed 

by faults of the RLFC. The structure is also bounded by an E-W and a NW-SE striking fault (Figure 

57). 

This gas accumulation was discovered by wildcat well 7120/7-2 that hit top Stø at a depth 2127.5 m 

below sea level. The GWC was recognized from RFT plots at 2206 m (Figure 58). Pressure at the top 

of the gas column reaches 24.15 MPa, while 24.4 MPa was measured at the top of the water leg. This 

means that pressure in the reservoir is just over 3 MPa over hydrostatic pressure. The stress field model 

for the Askeladd area predicts an Shmin of around 33.5 MPa. This means a retention capacity of 9.3 MPa 

and an OpF of 0.24. Ppcrit at this depth is expected to be 27.1 MPa which is only 3 MPa away from actual 

pore pressure. 

In the SH160_Sh case only moderate critical pressures can be observed mostly on fault 2 delineating 

the structure to the east (Figure 59 (A)). Increasing SHmax will result in slip stabilities lower than 4 MPa 

on the same fault surface, however the fault still seems relatively stable overall (Figure 59 (B)). The 

same can be said until increasing SHmax to the magnitude of Sv (Figure 60 (A)). In the case of Askeladd 
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Gamma the stress models with N-S SHmax orientations seem to produce very similar results (Figure 60 

(B)-(D)). 

Figure 58. RFT plot of Askeladd Gamma from well 7120/7-2 

 

 

Figure 59. Slip stabilities on Askeladd Gamma at SH160_Sh (A), and SH160_12 (B) 
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Figure 60. Slip stabilities on Askeladd Gamma at SH160_Sv (A), at SH180_Sh (B), SH180_12 (C), and SH180_Sv (D) 

 

Askeladden Vest 

Askeladd Vest is the westernmost of all the Askeladd structures also situated on a N-S trending terrace 

(Figure 57). It is bounded by several faults with mostly NNE-SSW, N-S, E-W and WNE-ESW 

orientations. For the most part the reservoir is delineated by faults, however on the SE corner of the 

structure the GWC is defined by depth contour. 

The structure was hit by well 7120/7-1, that reached top Stø at a depth of 2383 m below sea level. The 

GWC in the well was recorded at 2448 m. Pressure at the top of the gas column was 26.6 MPa, or 2.8 

MPa above hydrostatic pressure. Shmin at this depth can be expected around 37.8 MPa, while Ppcrit can 

be at 30.5 MPa. This means the dynamic capacities in this structure are above average with a retention 
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capacity of 11.2 MPa and an OpF of 0.2. Even Ppcrit is around 4 MPa away from the recorded pore 

pressure, which is significant compared to numbers from other fields. 

Figure 61. Slip stabilities at Askeladd Vest at SH160_Sh 

Figure 62. Slip stabilities at Askeladd Vest at SH160_12 stress scenario. 
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Figure 63. Slip stabilities at Askeladd Vest at SH160_Sv (A), at SH180_Sh (B), at SH180_12 (C) and at SH180_Sv (D) 
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The SH160_Sh scenario produces very similar outcomes to that of Askeladd Gamma (Figure 61). Not 

one fault plane has slip stabilities lower than 2 MPa, and for the most part they stay between the 5-8 

MPa range. Not much change can be observed in the SH160_12 case (Figure 62). Notable observation 

is that faults 1 and 5 stayed very “cold” while the other fault planes have retained their moderate slip 

stabilities. Further increasing SHmax, it becomes clear that the more unstable faults surrounding the 

structure are the ones roughly N-S oriented (faults 2, 3, 4, 6). Absolute critical pressures however are 

still high, rarely going below 4 MPa (Figure 63 (A)). 

The situation is very similar in the SH180 models: with the increase of SHmax it seems like the more or 

less N-S oriented faults are the most unstable ones (Figure 63 (B)-(D)). 

Delta Vest 

Delta Vest is a horst structure at the NW corner of the survey area. Its main NW-SE trend is defined by 

two similarly trending normal faults which intersect each other at the SE termination of the structure. 

The NW-SE trending main structure is dissected into two smaller horsts and a graben by two NE-SW 

faults (Figure 64). 

Figure 64. Fault around Delta Vest. See figure 18 for color code. 

The structure was drilled by well 7120/7-3 at the culmination of the northwesternmost fault block. The 

closure of this block is created to the southeast by the first SW-NE trending normal fault. Towards the 

northwest this block progressively deepens towards the Tromsø Basin. On the survey area there is no 

mappable fault in this direction, meaning that this block has the most direct connection to the source 

areas. The well has hit top Stø in this block at a depth of 2867 m. Here, they have recorded a pressure 
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of around 31.5 MPa, that is 2.8 MPa over the hydrostatic pressure. Retention capacity is around 14.1 

MPa with an OpF of 0.165 assuming an Shmin of 45.6 MPa. 

Figure 65. Slip stabilities at Delta Vest at SH160_Sh (A) and SH160_12 (B) 

 

 

 



71 

 

Figure 66. Slip stabilities at Delta Vest at SH160_Sv (A), at SH180_Sh (B), at SH180_12 (C) and SH180_Sv 

In the SH160_Sh case there is no considerable variation in the slip tendencies of the different fault 

planes (Figure 65 (A)). All of them show intermediate critical pressures ranging between 4 and 8 MPa. 

Increasing the SHmax to 1.2x Shmin will make faults 3 and 4 cold; while critical pressures stay the same 

on faults 1 and 2 (Figure 65 (B)). This trend will continue until SHmax=Sv (Figure 66 (A)). The same 

trends can be observed under the SH180 stress models, with the small differences that faults 1 and 2 

seem to remain a bit more stable than in SH160 models (Figure 66 (B)-(D)).  
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Askeladden-Beta 

Askeladden Beta is a dry structure located just just to the north of the main Askeladden discoveries. To 

the west it is delineated by a fault of the RLFC. Two E-W faults intersect this larger fault; both of which 

rotate to a NE-SW strike towards the NE end of the structure. The NE termination of the structure is 

defined by a fault segment striking approximately E-W. Here; close to 90 degree fault intersections also 

become common.  

Figure 67. Slip stabilities at Askeladd Beta at SH160_Sh (A) and SH160_12 (B) 

Figure 68. Slip stabilities at Delta Vest at SH160_Sv 
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The structure was drilled by wildcat well 7120/8-4, which reached the Stø Formation at 2240.8 m below 

sea level. The main Jurassic reservoirs were found to be dry, however substantial residual oil and gas 

shows that this structure was also formerly hydrocarbon bearing. Pressure points recorded after hitting 

the Stø formation scatter around 27 MPa. This means that pressure in the empty reservoir is around 4.5 

MPa over the hydrostatic pressure. The regional Shmin gradient used in the geomechanical model for the 

Askeladd area gives an Shmin of around 35.2 MPa considering a water depth of 275 m. This means an 

RC of around 8.2 MPa and an OpF of 0.35. The regional gradient of Ppcrit means that the critical pressure 

at this depth will be around 28.5 MPa; or less than 2 MPa over the recorded pressures. 

In the SH160_Sh larger spots of around 2 MPa critical pressure can be observed on faults 1 and 3, while 

fault 2 remains more between 2 and 4 MPa (Figure 67 (A)). Increasing SHmax until Sv it becomes quite 

clear that the main dynamic control is emplaced by fault 3 Figure 68. Not much difference can be seen 

in the SH180 models, except maybe that faults 1 and 2 do not become cold as rapidly with an increase 

in SHmax; however the overall role of fault 3 is still unquestionable.  

6. Discussion 

6.1. Failure mechanisms controlling HC columns 
Based on data from Hermanrud (2014) about the underfilling of the traps; it is quite clear that the 

hydrocarbon column heights in the studied structures are not controlled by their spillpoints. According 

to Hermanrud (2014) two structures are possible exceptions from this; the main Askeladd structure and 

Albatross Sør. In these cases the HWC is too close to the spillpoint to establish without uncertainty if 

the traps are underfilled or not. This however does not invalidate the point that a simple geometric fill-

spill scenario is not the dominant controlling factor on HC column heights in the area. Hence, the first 

question to be asked is whether it is possible to pick a dynamic controlling mechanism that can give an 

explanation to the observed HC column heights. The most simple tool for this analysis is by plotting 

the reservoir pressures on stress plots together with the estimated principal stress gradients, and failure 

gradients as done in the previous chapter. 

This method helps visualizing the different dynamic capacities through the horizontal distance between 

the RFT pressure plot from the reservoir and the different stress and failure gradients. It also provides 

a good visual/graphical method for estimating HC column heights given that the failure gradient of the 

controlling factor is known. This could be the case when pressure plots seem to align themselves along 

a given gradient. In this case pressure buildup in the reservoir would be Støpped at a pressure equivalent 

to the stress determined by the failure gradient for that given depth. Graphically, the pressure increase 

can happen in two ways: increasing the height of the RFT plot, or increasing the height of a lower 

density phase, essentially pushing the plot to the right. An example to the former would be a simple 

filling of the trap via secondary or tertiary migration, while for the latter gas dissolution and expansion 

would be a common cause. The method can also be used in reverse: empirically determining a failure 
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gradient by choosing a best fit line to several pressure plots from different prospects would allow to 

speculate on the possible dynamic mechanism controlling the HC heights in these traps. 

The main issue however, is that this method completely disregards the spatial orientation of the 

structural elements that might be conduits of leakage (incl. fault planes) with regards to the stress field. 

Assuming that if a given RFT plot aligns itself with a failure gradient then that gradient is the controlling 

factor is only true when favorably oriented structural elements exist. This means fractures or faults that 

are perpendicular to Shmin in case of tensile failure or oriented 30 degrees away from the largest principal 

stress in case of (most) shear failure(s) (according to Mohr-Coulomb failure criteria). The further away 

the real orientations are from this ideal orientation, the larger pore pressure increase is needed to induce 

failure. This also means that the RFT plot on a pressure vs depth diagram can pass the failure line.  

For this discussion and study, this comes with an important consequence. The failure line for the 

cohesionless tensile failure of the cap rock is represented by the Shmin gradient in this study. The other 

two failure gradients were constructed by determining the amount of pressure increase needed to induce 

a shear failure at different depths on a cohesionless plane with a frictional coefficient of 0.6 and on a 

plane with the same friction but with a cohesion of 3 MPa; in both cases assuming the failure of an 

ideally oriented fault segment. Hence, these failure models do not account for the cases where ideally 

oriented fault segments do not exist; and so less favorably oriented segments can become the weak point 

in the structure through a different failure mechanism.  

Nevertheless, the sequence of the dynamic controlling mechanisms is generally in agreement with what 

we can see on the stress plots: a cohesionless fault is naturally relatively weak. With the increase of  

cohesion, the pressure needed to induce slip also increases. Finally, this is followed by tensile failure of 

cap rock. Although not a topic of the thesis, but capillary leakage through the seal is generally the 

dynamic process requiring the largest critical pressure. An exception from this rule can often be the 

tensile failure of seal. The tensile failure of seal or a fault plane can happen before shear failure of fault 

plane especially in more isotropic stress fields (Figure 17). The stress gradients used in the base models 

(especially that of Sv and Shmin since these are the ones affecting stress anisotropy in a normal faulting 

setting) do not suggest that this is a very likely scenario; however uncertainties around stress field 

heterogenity in the study area would bring us not to rule out the possibility of such failures becoming 

controlling mechanisms locally. 

In the cases of this study, RFT pressure plots from all the fields seem to well align themselves with the 

failure gradient of a cohesionless shear failure. This result is even more compelling when we consider 

that this is the case in both base stress models (in the Snøhvit model this gradient is 12 Mpa/km, while 

in the Askeladd model it is 13.1 Mpa/km). On some structures the measured pressures come within 2 

MPa from Ppcrit. Some variation can be observed in the critical pressures among the different structures, 

but some of that could also be explained by well position. The RFT plots were taken from wildcat wells, 
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which are generally drilled close to the culmination of a trap, but some of the wells hit the top reservoir 

downdip from this point. This would mean that the recorded pressures at the top of the gas column 

could be a bit further away from the failure gradient than at the top of the structure. Hence, the further 

away the well is from the culmination, the more inaccurate the estimations on critical pressure can be. 

This inaccuracy however can easily be handled if the slope of the gas gradient and the vertical distance 

between the top reservoir at the well and the top reservoir at the culmination are known. 

The larger issue is posed by reservoir compartmentalization. The pressure recorded in the wildcat wells 

of the structures were uniformly extrapolated to the whole structure. This way, the present study does 

not account for reservoir compartmentalization. This means, that in theory parts of the investigated 

structures can have considerably different pore pressures than what was incorporated in the stress 

models. This can affect the results, bringing Ppcrit down in case of higher than anticipated pressures, or 

brining it up in the opposite case. A few studies have written about reservoir compartmentalization 

mainly on the Snøhvit structure with regards to pressure increase in injection wells (L. Chiaramonte et 

al., 2011), (Laura Chiaramonte et al., 2015). Based on these it does seem that some parts of the reservoir 

are not in pressure communication with each other. However, the amount of overpressure seems to be 

stable across the different structures, so it does not seem likely that compartmentalization would 

seriously affect the results. 

A simple way of risking a prospect based on its reservoir pore pressure is by calculating the retention 

capacity. A low RC can indicate a high geomechanical risk (high risk of mechanical failure). At the 

same time, a low RC can also indicate a low risk from an exploration point of view. The reason for this 

is that RC is calculated by subtracting the pore pressure from the least principal stress at the given depth. 

Since failure and leakage that happen around pore pressures equaling Shmin are usually associated with 

extensional failure; a low RC is an indication that 1, the reservoir pressure is around dynamic equlibrium 

and 2, the controlling dynamic mechanism is hydrofracturing. This is a preferable condition during 

exploration, since shear failure along preferably oriented fault planes usually limits pore pressures and 

HC columns at a lower pressure, i.e. smaller HC columns.  

The result of this is that large retention capacities do not necessarily mean that those traps are able to 

fill further up to the level of S3, but rather that there is another dynamic process that controls the 

pressures at a lower equilibrium. As discussed above, this could be shear failure along fault planes. 

Shear failure can limit the magnitude of pressure in the reservoir at different levels depending on a 

number of factors. These factors include fault plane orientation, stress anisotropy and fault cohesion. 

The further away a fault plane is oriented from the ideal orientation for failure (according to Anderson`s 

faulting theory), the harder it reactivates, hence it allows a higher pressure. An increase in fault cohesion 

affects the dynamic capacity in a similar manner. Finally, the lower the stress anisotropy, the higher 
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pressure increase is possible without the Mohr circle touching a failure envelope. Hence, a low stress 

anisotropy generally promotes HC column preservation. 

Stress anisotropy and fault plane orientations can also affect the shear failure`s limiting ability relative 

to extensional failure (related to S3). In some cases extensional failure can happen at a lower pressure 

than shear failure, and so becoming the main dynamic control (Figure 17). 

As discussed in data & methods chapter, failure lines were calculated for the stress vs depth diagrams. 

Since stress anisotropy affects failure, separate failure gradients were established for the two base stress 

models that are both based on shear failure on cohesionless surfaces. Since failure envelopes with 

cohesion are not linear; a linear stress gradient cannot be given. Instead, the required pore pressures for 

shear failure on these planes were calculated for each of the structures at the HC column`s depth interval. 

A cohesion of 3 MPa was chosen. 

The most obvious observation is that in all structures both shear failure lines are lower than S3, meaning 

that in theory shear failure is the main dynamic controlling factor. In some cases (Albatross, Albatross 

Sør, Askeladd, Askeladd Gamma) the failure line with cohesion gets within 1 MPa of the S3 gradient. 

However, these two failure gradients do not seem to affect pore pressure in any way, since RFT pressure 

points seem to well align themselves with the failure gradient for the cohesionless shear failure. The 

two Albatross structures and Snøhvit all had pore pressures within 1 MPa from the estimated Ppcrit. 

Meanwhile, their retention capacities are around 6-7 MPa, and with overpressure factors of only around 

0.25-0.3. Albatross Sør`s OpF of 0.31 is the second largest from all the structures; which is most likely 

a result of a relatively narrow mud window due to its shallow depth. Looking at the commonly used RC 

and OpF values of these two structures points to a common misunderstanding during exploration 

already discussed above. Taking these two values as an indication of dynamic capacity (and ignoring 

other failure mechanisms than hydrofracturing); could lead us to believe that the pressures are not in 

dynamic equilibrium. In the case of an overfilled petroleum basin (like the Hammerfest Basin), where 

hydrocarbon supply was enough to fill the trap, this can lead to a false conclusion that the traps could 

be filled to spill. The thought behind such conclusion would be that the traps` closure is relatively small 

compared how strong the seal is. The controlling factors for HC column heights in this case would be 

geometric features (closure, reservoir-reservoir juxtaposition) since the traps can fill up before any 

failure occurs. 

However, when we consider other failure mechanisms it becomes apparent that the pressures 

encountered in the reservoir can still be the results of a dynamic equilibrium. Instead of simply equaling 

seal strength to S3, this approach acknowledges that seal strength can be subjected to variability that is 

influenced by a number of factors discussed above. Since a lot of the fields on the NCS are in faulted 

traps; only using RC and OpF as indexes for dynamic capacity ignores the role of fault planes in leakage 

and puts all the emphasis on the hydrofracturing of seal. Albatross, Albatross Sør and Snøhvit are all 1 
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MPa away from Ppcrit while showing a relatively high RC. Examining both factors can mean the 

difference between a filled to spill and an underfilled interpretation. This is especially important in the 

case of the Hammerfest Basin where no fluid contacts have been recognized on seismic data. 

It is interesting to note; that these three structures that have similarly low Ppcrit values, have significantly 

different underfilling. While Albatross has the biggest distance between the deepest HC shows and its 

spillpoint, and Snøhvit is also approximately 150 m underfilled; Albatross Sør is almost filled to spill 

(Figure 2). This observation is taken as evidence that even if similar controlling mechanisms limit the 

HC column heights in the traps; the degree of underfilling can be affected by several factors. From these 

factors this thesis will examine the spatial distribution of potentially leaky fault planes and their relative 

position to the structures` culminations. 

The highest Ppcrit with over 5 MPa was observed at Delta Vest, one of the empty structures. The other 

empty trap, Askeladd Beta has around 1.5 MPa, however it is important to note that for the wildcat well 

of this latter trap a well completion log was not available, so the pressure value from here might be 

inaccurate. The evidence for this comes from the amount of overpressure; which in every other structure 

in the survey seems to be relatively stable between 2.5-3 MPa, while it is 4.5 MPa for Askeladd Beta. 

Hence, the pressure inside this reservoir might have been overestimated, which would cause the real 

Ppcrit to be larger as well. 

It is important to emphasize, that the different Ppcrit values across the structures do not necessarily 

differences in dynamic control mechanisms. The highest observed Ppcrit from Delta Vest belongs to the 

Askeladd base stress model. The structures belonging in this base model on average exhibit higher Ppcrit 

values than those in the Snøhvit area. This can be explained by the lower anisotropy of the Askeladd 

stress model which resulted in a higher failure gradient. Moreover, Delta Vest is also the deepest 

structure, so it is not surprising that it has the highest Ppcrit, considering that the gradients diverge with 

depth. 

To summarize the experiences from the pressure records it can be said that the introduction of Ppcrit as 

the pressure increase necessary to induce shear failure on incohesive fault planes showed that the 

structures can be in fact in dynamic equlibrium and high retention capacities do not guarantee that they 

are filled to spill or that they are able to refill. In order to further understand the possible role of Ppcrit in 

HC column heights, a fault slip stability analysis was carried out, where the spatial variation of Ppcrit 

was visualized on the fault planes in different stress regimes. 

6.2. The effect of Ppcrit on HC column preservation 
Albatross 
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Albatross is a gently south dipping structure with mostly E-W trending faults. Faults 5 and 6 at the 

Eastern edge of the structure also go into more NE-SW orientations. Most of the faults are north dipping, 

the exception from this are faults 2 and 3 at the SW corner of the structure. The culmination of the trap 

can be found at the center of structure in the footwall of fault 4. The top reservoir gets shallower towards 

the north, until fault 4 displaces it into a graben creating a closure that reaches a depth of 1756 m below 

sea level at its shallowest (Figure 69 (B)). To the east, faults 5 and 6 maintain this closure; but to the 

west the top Stø becomes shallower again in the hanging wall, dipping SE and creating another, deeper 

closure with fault 7 (Figure 69 (A)). This closure to the NW is connected to the main central closure 

via a fault relay ramp between fault 3 and 4. 

Figure 69. View of top Stø at Albatross with faults and the GWC in 

red (A) cross section of Albatross (shown by yellow line on A) (B). 

Dark yellow is top Fruholmen, light yellow top Stø, green is top Hekkingen and black is top Knurr 

As seen in the results, the faults on the western side of the structure seem to have larger risk of leakage 

in every stress scenario. This larger risk is retained even when increasing Shmax, even though in absolute 

terms the fault planes become more stable. It is interesting to note that the relatively large change in 

strike of fault 5 and 6 do not seem to affect their slip stabilities. Based on these observations it can be 

concluded that Albatross is definitely a high risk structure when it comes to fault assisted leakage. This 

is because the most unstable faults around the structure are the ones closest to the shallowest parts of 

the top reservoir. Fault 4 is the one directly at the culmination of the structure, while faults 3 and 7 also 

have a major role in creating a secondary closure to the NW. Among the structures investigated by 

Christian; Hermanrud et al. (2014); Albatross is the most underfilled one. However, with around 300 

m, Albatross also has the largest closure. 

Albatross Sør 
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Albatross Sør has a very similar structure to Albatross. Across much of the structure, the top reservoir 

is dipping gently to the S-SW. Here, the GWC does not come into direct contact with any fault planes. 

The closure is created by faults 1 and 2; two north dipping, E-W striking normal faults (Figure 70). The 

culmination of the structure is around 1850 m deep in the hanging wall of fault 1. 

Figure 70. View of top Stø at Albatross Sør (A) Cross section 

at Albatross Sør (B) 

The faults of Albatross Sør had very similar patterns of slip tendency in both SH160 and SH180 stress 

scenarios. It is obvious that with the increase of SHmax, absolute slip stability increases and there is no 

real threat of fault assisted leakage. At lower values of Shmax however, both fault 1 and 2 register lower 

slip stabilities. The bigger risk seem to be posed by fault 2 with major areas of the fault plane showing 

less than 2 MPa of Ppcrit. This fault however, does not intersect the top reservoir at the culmination. Fault 

1 around the structure`s culmination shows rather moderate values of Ppcrit (4-6 MPa). Based on this 

observation, Albatross Sør is a lower risk structure. According to Christian; Hermanrud et al. (2014) 

Albatross Sør is one of the structures that can be potentially filled to spill. On the top reservoir and fault 

interpretation used in this study; the shallowest intersection between fault 2 and top Stø is around a 

depth of 1885 m, which is only 7 m shallower from the GWC as recorded from the RFT plot of well 

7121/7-2. It is worth mentioning however, that while Albatross Sør could be filled to spill, it also has a 

small closure of around 70 m. 

Snøhvit 

Snøhvit is a very complex structure, where the HWC for the most part abuts against fault surfaces. 

Faults 4 and 5 separate the structure into a northern and a southern part (Figure 72). The southern block 

is a shallower westerly dipping horst that contains the culmination at the eastern edge. Here, the top Stø 

reaches up to around 2270 m below sea level. The other shallow area that can be observed on the top 

Stø interpretation at the southwestern edge of the structure is probably the result of an area of major 

acoustic masking and is not a real structural element. The main faults delineating the structure from the 
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north and south are E-W striking normal faults (faults 1, 2, 5, 6). Fault 6 has a NW-SE striking segment 

to the east, while there are a number of NE-SW oriented faults to the west (faults 3, 4, 7, 8). Faults 9 

and 10 are N-S striking, the former intersects the southern block around the culmination.  

 

Figure 71. High risk faults at Snøhvit 

 

 

Figure 72. Cross section at Snøhvit shown by the yellow line on figure 71. 

The risk areas here show much variation with strike and Shmax orientation. In the case of an Shmax oriented 

at 160 degrees fault 5 and 6 (especially the NW-SE striking parts) become high risk, with faults 4 and 

7 also having Ppcrit of less than 2 MPa. The same is true faults 1 and 2 at the southern edge of the 

structure. Increasing Shmax will concentrate the risk areas around the central and eastern parts of fault 5 
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and at the NW-SE segment of fault 6. This would be less favorable for HC preservation, since fault 5 

at the eastern parts is close the culmination of the southern block. In the case of N-S Shmax the NE-SW 

striking faults at the western edge of the field would pose a higher risk; as it has been concluded by 

previous studies (Linjordet & Skarpnes, 1992), . Of these faults, fault 7 has its shallowest intersection 

with the top reservoir exactly at GWC. Fault 8 with similar orientation intersects the top Stø at a 

shallower level, but it is difficult to establish where exactly, due to acoustic masking. Another risk area 

in this scenario is still the NW-SE segment of fault 6. Also faults 9 and 10 have a higher slip potential 

when Shmax is increased to Sv, but their absolute significance seems low. 

In summary, the Snøhvit structure would be classified as high risk based on fault slip tendency. This is 

due to the large variety of strikes that can be observed on faults in and around the structure. Fault 2 

intersects the top reservoir around the culmination. This fault would only pose major risk around there 

in the SH160_Sh scenario. However, fault 5 and 6 have segments that seem to be consistently among 

the riskiest areas. These come close to the culmination of the trap at the eastern edge (Figure 71).  

Snøhvit Nord 

Snøhvit Nord is a heavily faulted horst just north of Snøhvit. The structure has two main culminations: 

in the southern part a horst wedging out to the east, delineated by faults 1 and 3; and in the northern 

delineated by faults 2 and 3. This latter culmination is situated at a fault relay ramp created by fault 2 

and 3. The GWC also seems to be controlled by fault intersections at the western and southeastern edges 

of the structure (Figure 73). 

Figure 73. View of top Stø at Snøhvit Nord 

At low Shmax=Shmin the only fault plane with considerable risk fault 1. With an increase of Shmax in the 

SH160 scenario fault 3, while in SH180 scenario fault 3 and 5 stand out. These two faults also have an 
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intersection, which intersects the top reservoir around the GWC. The same thing can be said about the 

fault intersection at the western edge of the field (Figure 73). 

Askeladd 

The Askeladd structure lies at the western edge of a terrace separating the Hammerfest Basin from the 

deeper Tromsø Basin. The most obvious feature is the N-S trending normal fault delineating the 

structure from the west and creating a closure for the gently S-SE dipping top Stø. The structure can be 

dealt up into at least four smaller parts each with its own closure. From north to south these smaller 

blocks are separated by roughly E-W trending normal faults. 

Based on the slip stability modeling it can be concluded that the Askeladd structure shows only 

moderate levels of risk when it comes to fault assisted leakage. Even in the Shmax=Shmin stress scenarios, 

where Ppcrit is generally the lowest; the fault planes only show moderate levels of critical pressure. It is 

obvious that fault 11 to the west and faults 1, 2, 9 and 10 have the biggest risk of failure depending on 

the different stress models; but even their critical pressures remain above 2 MPa. It is interesting to note 

that according to Christian; Hermanrud et al. (2014) Askeladd is yet another structure that is potentially 

filled to spill. 

Figure 74. View of Askeladd  
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Figure 75. Cross section at Askeladd 

Askeladd Gamma 

Askeladd Gamma lies on the next terrace west from Askeladd. The top Stø here gently dips towards the 

east (Figure 76), southeast and the main closure is created by a large N-S trending normal fault to the 

west. Two E-W trending faults delineate the structure to the north and south. The main culmination of 

the structure can be found in the middle of the terrace, just east from the main fault in the form of an 

antiform, probably related to fault drag. On the interpretation the top Stø forms an east dipping 

monocline just before fault that seems to reach a shallower depth than the antiform. It is difficult to tell 

which of these is the real culmination of the structure, but the fact that the top reservoir has a closure 
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that is not in direct contact with any fault plane, would already reduce the exploration risk of this 

prospect. 

Figure 76. View of top Stø and Askeladd Gamma (A), cross section of Askeladd Gamma (B) 

This is especially important, since the fault with the main leakage risk seems to be fault 2, the main 

fault creating the closure itself. And although the absolute critical pressures do not seem to reach below 

2 MPa on the fault surface; it does seem like that fault and the anticline plays a major role in the level 

of GWC. This is based on the observation that the projection of the GWC on the top Stø interpretation 

seems to follow the axis of the antiform. 

Askeladd Vest 

Figure 77. View of top Stø at Askeladd Vest (A), cross section of 

Askeladd Vest (B) 
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Askeladd Vest is the deepest structure sitting on the terraces towards the Tromsø Basin (Figure 77). 

The shallowest points on the structure can be found at the western and eastern edges of the field, right 

next to faults 2, 3, 4 and 6.  

These are also the faults that seemed to be the most unstable in all of the stress scenarios. Faults 1 and 

5 but also 7 remain relatively cold during all stress scenarios. As with the other Askeladd fields so far, 

the overall risk of fault failure and fault assisted leakage seem to be lower than that of the Snøhvit and 

Albatross structures. 

Delta Vest 

Figure 78. View of top Stø and faults at Delta Vest (A), cross section of Delta 

Vest (B) 

The culmination of Delta Vest can be found in the southeasternmost block at the intersection of faults 

1 and 2 (Figure 78). Faults 1 and 2 seem to be the fault planes involving the most risk in this structure. 

Since their intersection can be found updip and close to the culmination, it is obvious that this structure 

would be associated with a large exploration risk. 

Askeladd Beta 

Figure 79. View of top Stø at Askeladd Beta (A) and a cross section of 

Askeladd Beta (B) 

This structure has its culmination against fault 3 which is the main fault delineating the structure to the 

west. This fault is a part of the RLFC. The main strike in that fault complex changes from a N-S 
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dominating around the other Askeladd structures to a more NW-SE orientation around Askeladd Beta. 

This has made it more favorably oriented in the SH160 scenario, but its also the main risk on the 

structure when Shmax is N-S oriented.  

Edmundson et al. (2019) has conducted a study into possible leakage mechanisms covering Albatross, 

Snøhvit and the main Askeladd structures. The study investigated the theoretical hydrocarbon column 

heights in the traps in different controlling mechanisms; assuming a charge that is able to fill the traps. 

The different controlling mechanisms considered were capillary leakage through cap rock, capillary 

leakage through fault planes, hydrofracturing of cap rock and fault reactivation. The study concludes 

that fault reactivation is the one leakage process that best explains the underfilling of the structures; and 

with the help of throw-depth profiles along fault surfaces it also identified faults that were reactivated 

after charge and would pose the main risk. These faults would be fault 2 on Albatross south, 3 and 4 on 

Albatross, 1, 2 and 6 on Snøhvit and 1, 8, 9 and 11 on Askeladd.  

7. Conclusions 
• The Hammerfest Basin is a well explored, mature hydrocarbon basin located in the SE Barents 

Sea, offshore Norway. The basin contains a number of different petroleum plays with source 

rocks and reservoir rocks at several stratigraphic levels. The most well explored play is the one 

associated with the Middle Jurassic sandStønes of the Realgrunnen subgroup. It consists of 

fault bounded traps that were created by the Late Jurassic-Early Cretaceous Cimmerian rifting 

phase. The resulting low porosity shale formations such as Fuglen and Hekkingen form the 

seal for the Middle Jurassic plays; and while the latter is also a high quality source rock, it 

probably had minor role in charging these traps besides the Triassic sources of Klappmyss and 

Steinkobbe formations.  

• The Snøhvit field complex can be found in the western part of the Hammerfest Basin; 

consisting of a number of structures that include Snøhvit, Snøhvit Nord, Albatross, Albatross 

Sør, Askeladd, Askeladd Gamma and Askeladd Vest. These structures have all presented the 

issues that pose as the biggest exploration risk in the area: underfilled and gas prone traps. 

With a number of dry structures also drilled in the area and hydrocarbon shows down to the 

spillpoints of the underfilled traps as well; it became obvious that the reason behind dry and 

underfilled traps is not insufficient hydrocarbon charge. 

• A number of different mechanisms and processes have been named in various studies as the 

main reason behind spill and leakage from these traps. These inculde: differential tiliting of 

traps, gas exsolution and expansion realated to erosion and uplift, stress and pore pressure 

perturbations related to glacial erosion and cylic loading and unloading from glaciers, seal 
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breach via hydrofracturing and fault assisted leakage to name a few. These processes are 

often related and connected to each other as well. 

• Evidence has been accumulating for the role of faults in vertical leakage in the area in the form 

of bright spots, amplitude anomalies around fault planes, and gas chimneys and pockmarks at 

fault tips. Establishing which fault planes are prone to leakage can be one of the main ways of 

risking prospects in the area. However the issue of fault permeability is extremely complex 

with many different variables such as fault gouge(?) ratio, fault juxtaposition, fault throw, 

degree of cementation, orientation relative to stress field etc. Hermanrud et al (2014) looked 

at the relative positions of fault-top reservoir intersections and the HWC in traps of the 

Snøhvit field complex. That study emphasized the importance of fault intersections in 

controlling the hydrocarbon column heights in these traps. There is however also evidence for 

the reactivation of some of the faults in the study area after filling of the traps. This has led to 

interpretations where reactivated faults formed the primary pathways for migration out of 

the traps. This resulted in studies investiagting the throw vs depth profiles of the fault planes 

to find out about the active phases of these faults. 

• The approach used by this thesis to find fault planes prone for reactivation was the critically 

stressed fault theory. The method incorporates stress field models, the relative orientation of 

fault planes to the principal stresses and reservoir pore pressure to find the slip stabilities of 

fault planes. Slip stabilities give a delta pressure (referred to as Ppcrit), or critical pressure. 

This is the amount of pressure increase that is needed to cause slip on the fault surface, and 

make it a poterntial leakage pathway. 

• After establishing the principal stress gradients for the two main stress models used in the 

study; the RFT pressure plots from the wildcat wells of the different structures were plotted 

on a pressure vs depth plot against hydrostatic pressure gradient, and the principal stress 

gradients. Failure gradients for cohesionless faults with a coefficient of friction of 0.6 were 

also calculated for the two stress models, by bringing the representative Mohr circles to a 

shear failure with the failure envelope. From these, retention capacities (RC) and critical 

pressures (Ppcrit) were calculated for close to the culmination of the traps. The results showed 

that for all of the traps in the study area the RC is much higher than Ppcrit. A high RC however 

does not necessairily mean that the traps are not in dynamic equlibrium since RC only 

accounts for one specific failure mechanism; that is hydrofracturing (tensile opening of 

cohesionless fractures oriented prependicular to minimum prinicpal stress) of the seal. 

Instead, based on the proximity of the RFT plots to the fault shear failure gradients on the 
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pressure vs depth plots; and the low Ppcrit values it is much more likely that these traps are 

in fact dynamic equlibrium that is controlled by fault reactivation.  

• In the next step the critical pressures were plotted on the fault planes. These were done in 

different stress scenarios to account for the uncertainties in the stress models. Also, each of 

the input parameters at the different stress scenarios were calibrated for the water depth for 

each of the structures. High risk fault planes and fault segments were identified as the ones 

that consistently showed low critical pressures in the various stress scenarios.  

• The results showed that in general the Askeladd structures have lower risk associated with 

them when it comes to fault assisted leakage. Structural factors (like an antiform downdip 

from the culmination of the trap like in the case of Askeladd Gamma) also play a factor in this; 

but the absolute slip stabilities of the faults on the Askeladd traps seems a bit higher than on 

the other structures to the east. The exception from this is Askeladd Beta which shows critical 

pressures below 2 MPa on the main fault at the SW corner of the trap around the culmination. 

This is also one of the dry structures. The other dry structure Delta Vest does not have 

anomalously low slip stabilities compared to the underfilled Askeladd structures; however two 

of its faults associated with the highest risk intersect each other at the top of the structure. 

Lying in the eastern part of the survey area, Albatross is the most underfilled structure; and 

with high risk faults around the highest points of the trap. Snøhvit and Snøhvit Nord also have 

high risk faults close to the culminations, with the latter field also having fault intersections 

around the GWC. While Albatross and the two Snøhvit structures show high risk of fault 

assisted leakage; the exception here is Albatross Sør. This trap has a fault to the west that 

shows low slip stabilities; however this fault does not intersect the top reservoir around the 

culmination. In fact; the highest point of intersection between this fault and the top reservoir 

coincides with the GWC in the trap. 

• Uncertainties with the results mainly come from the stress models. Some of that uncertainty 

has been incorporated with the use of different stress scenarios, but local stress field 

perturbations are still a possibility. Having more reliable information on the stress field could 

improve the reliability of the results greatly. Also, there was no available data on the 

mechanical properties of the faults in this area. Cohesionless faults were used to model slip 

stabilities since the failure line for such a fault fit the reservoir pressures quite well. It is 

important to mention however, that it is highly unlikely that these fault surfaces would be 

cohesionless in reality as well. Since it seems like that dynamic controls are in fact affecting 
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the hydrocarbon column heights in the area, it could be beneficial to focus on collecting more 

reliable data on the stress field for future exploration efforts in the Barents Sea.  
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