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Interfering with neighbouring communities: Allelopathy astray in the tundra delays seedling development  28 

Abstract 29 

1. Altered species composition caused by environmental and climatic change can affect the transfer of plant 30 

residues among communities. Whereas transferred residues are typically considered a resource in recipient 31 

systems, residues of allelopathic species may instead cause interference.  32 

2. Evergreen dwarf shrubs, specifically the allelopathic species Empetrum nigrum are increasing in abundance 33 

in response to a warming climate. Empetrum has small, evergreen leaves that can be transferred to other 34 

communities when withered and lost from the plant. 35 

3. We hypothesize that Empetrum can have allelopathic effects in the recipient communities of the withered 36 

leaves. We call this allochthonous allelopathy as opposed to autochthonous allelopathy, which is well 37 

documented in communities where it grows. 38 

4. We measured influx of allochthonous Empetrum leaves onto snow-covered snowbeds, where they are easily 39 

identified within the debris. Next, we compared the bioactivity of allochthonous withered leaves with that of 40 

green Empetrum leaves. Finally, we conducted an experiment testing the germination and seedling growth of 41 

ten tundra species in snowbed soil supplemented with no (control) and three densities of allochthonous 42 

Empetrum leaves. 43 

5. We found Empetrum leaves to be common on the snow cover of snowbeds. We found Empetrum leaves 44 

collected on snowbeds to be as bioactive as green leaves. Finally, we found forb species to have reduced 45 

germination and all ten species to have delayed seedling development when growing in snowbed soil 46 

supplemented with withered Empetrum leaves. Seedlings under the control treatment were 2.3 times longer 47 

and had 3.2 times more leaves in comparison to seedlings grown under the strongest allochthonous leaf 48 

treatment. 49 

6. Results from our study imply that Empetrum is allelopathic in recipient systems of its allochthonous leaves. 50 

The abundant nature of Empetrum in the tundra, suggests that allochthonous allelopathy is a common 51 

phenomenon, causing biotic stress in snowbeds and potentially other parts of the tundra. Exemplifying the 52 

ability of a plant to interfere in neighbouring communities, our study demonstrates a plant trait that may 53 

provide insight to other study systems.   54 
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Introduction  55 

Movement of plant detritus is ubiquitous and can strongly influence ecosystem dynamics in neighbouring systems 56 

(Polis, Anderson & Holt 1997). Altered species composition caused by environmental and climatic change can 57 

therefore have consequences beyond their particular systems. The movement of terrestrial detritus into riparian 58 

systems, typically termed allochthonous input, can represent important nutrient resources subsidizing both 59 

freshwater food webs and neighbouring plant communities (Xiong & Nilsson 1997). Likewise, plant detritus 60 

boosts the nutrient and energy availability in terrestrial recipient systems, such as aeolian ecosystems where 61 

plant detritus is an essential resource (Polis, Anderson & Holt 1997). However, there is considerable variation in 62 

both the quality of plant residues (Cornwell et al. 2008), and in the fate of plant residues in any given recipient 63 

system (Freschet, Aerts & Cornelissen 2012). The effect of allochthonous plant detritus, or “away-field” detritus 64 

(sensu Ayres et al. 2009), is therefore highly context dependent. Identifying the quality and quantity of plant 65 

residues moving between systems can provide a better understanding of ecosystem dynamics and modification 66 

under environmental and climatic change. 67 

The capacity to be a source of allochthonous plant detritus varies between species causing recipient systems to 68 

receive a selection of the leaf litter produced in source systems. Species whose withered parts possess traits 69 

facilitating the movement with physical forces such as wind and water (Polis, Anderson & Holt 1997) are likely to 70 

be more common in the plant detritus. The source species and plant parts of allochthonous detritus are therefore 71 

not random, but rather dominated by plants with adapted traits.  72 

After deposition, the traits contained in the detritus can affect the recipient system. Allochthonous as opposed to 73 

autochthonous litter may have a lower content of nutrients and secondary metabolites depending on the extent to 74 

which the litter is disintegrated during movement. In addition, decomposition rates, and hence the release of 75 

nutrients and secondary metabolites, can be lower in the recipient system due to the soil biota not being adapted 76 

to the litter (Veen et al. 2015). This suggests allochthonous plant detritus is in general of low nutrient quality in 77 

recipient systems. However, secondary metabolites can still be active in leaves after they have withered 78 

(Hättenschwiler, Tiunov & Scheu 2005). Secondary metabolites in allochthonous plant litter may thus modify the 79 

environment of the recipient system through processes of ecosystem engineering or niche construction (Odling-80 
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Smee et al. 2013). Depending on whether the resulting niche construction is of benefit to the source species, by 81 

creating a suitable, future habitat, allochthonous detritus with secondary metabolites may even be selected for 82 

(Matthews et al. 2014). In summary, plant species that produce allochthonous plant detritus may affect 83 

communities in which they do not grow mostly through their secondary metabolites. We term this allochthonous 84 

niche construction. 85 

Here we address Empetrum nigrum as a candidate for allochthonous niche construction by means of 86 

environmental modification through allelopathy (Figure 1). Empetrum is a dwarf shrub common in heaths of 87 

circumboreal-polar areas (http://nhm2.uio.no/paf/) and is allelopathic in its home-soil (Nilsson & Zackrisson 1992; 88 

Bråthen, Fodstad & Gallet 2010). The allelopathic capacity of Empetrum leaves is attributed to the production of 89 

secondary metabolites, most notably the dihydrostilbene Batatasin-III (Odén et al. 1992; Wallstedt et al. 1997; 90 

Nilsson, Gallet & Wallstedt 1998) in the glands of its small, evergreen leaves (Muravnik & Shavarda 2012, Figure 91 

S1 in Supporting Information). Batatasin-III is temporally stable, resistant to microbial degradation (Wallstedt et al. 92 

1997; Wallstedt, Gallet & Nilsson 2005) and resists change in response to altered environmental conditions 93 

(González et al. 2015). The withered leaves of Empetrum decompose slowly (Tybirk et al. 2000; Parker et al. 94 

2018) and retain allelopathic secondary metabolites, although at lower concentrations than in green leaves 95 

(Gallet, Nilsson & Zackrisson 1999). Copious amounts of Empetrum litter can accumulate as reported from a 96 

boreal forest site where the average litter abundance was 425 ±60 g/m2 (Wallstedt et al. 2000). With an average 97 

leaf weight of 0.53 mg (± 0.11 mg) (Appendix 1 in Supplementary Information) the leaves are comparable to 98 

intermediate sized tundra seeds (González et al. 2010). It thus can be inferred that the leaves are able to 99 

disperse with both fluvial and aeolian processes (Figure 1) and accumulate on snowbeds like seeds (Larsson & 100 

Molau 2001) (Figure S2). In summary, Empetrum might have capacity for allochthonous niche construction when 101 

its leaves are transported to other communities (Figure 1).  102 

The tundra is changing in response to a warming climate, particularly through shrub encroachment (Olofsson et 103 

al. 2009; Bråthen et al. 2017; Vowles & Björk 2019). Studies on ongoing and predicted changes often focus on 104 

responses to abiotic (warming, changing snow conditions, nutrients) and biotic factors (herbivory) (Björkman et al. 105 

2020). However, in the tundra, species composition and richness can be more strongly linked to dominant plant 106 

species than to changes in abiotic factors and herbivory (le Roux et al. 2013). Furthermore, these dominant 107 
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species are often favoured by climate warming (Wookey et al. 2009). Empetrum is one of these dominant 108 

species, responds positively to warming, and its presence is a predictor of species presence and/or species 109 

richness in the tundra (Pellissier et al. 2010; Ravolainen et al. 2010; le Roux et al. 2014; Bråthen, González & 110 

Yoccoz 2018). By addressing allochthonous niche construction, this study explores the potential for Empetrum to 111 

also be a predictor in neighbouring communities. We focus on snowbeds, because they are affected by climate 112 

change (Björk & Molau 2007). With an ongoing decline in the duration of snow cover by 30% (Box et al. 2019), 113 

changes in vegetation composition are already considerable (Wipf & Rixen 2010). Here we ask whether snowbed 114 

communities can be affected by Empetrum through allochthonous allelopathy.  115 

We performed our study in three parts. We quantified allochthonous Empetrum leaves on snowbeds, we 116 

assessed bioactivity in allochthonous Empetrum leaves collected on the snow-cover of snowbeds and compared 117 

it to the bioactivity of green leaves. Finally, we conducted an experiment testing germination and seedling growth 118 

of ten tundra species in snowbed soil treated with allochthonous Empetrum leaves. We predicted that; I) 119 

Allochthonous Empetrum leaves exist in snowbed environments. II) The bioactivity of allochthonous Empetrum 120 

leaves is similar to that of green leaves. III) Germination and plant growth of tundra species will decrease with 121 

increasing concentration of allochthonous Empetrum leaves added to their soil, independent of their growth form 122 

and habitat affinity.  123 

 124 
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Figure 1. A conceptual presentation of the allelopathic effect of Empetrum in recipient snowbed communities. 125 

Soil beneath Empetrum is allelopathic (Nilsson & Zackrisson 1992; Bråthen, Fodstad & Gallet 2010). The 126 

secondary metabolites in Empetrum leaves are released as leachates from both fresh senescing and withered 127 

leaves (brown leaves, autochthonous litter) during snowmelt and rain events (Brännäs et al. 2004) (shaded area). 128 

The withered leaves have not lost their allelopathic capacity (Gallet, Nilsson & Zackrisson 1999). If the withered 129 

leaves are transported to neighbouring habitats through wind, snowdrift, or meltwater streams (Körner 2003), we 130 

hypothesize they can cause allochthonous allelopathy in recipient systems. 131 

  132 
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Material and Methods  133 

Study sites  134 

The study sites were located across Northern Fennoscandia, with particular sampling efforts above the treeline at 135 

the mountain pass of Ifjord (Ifjordfjellet), Finnmark county (250 – 450 m asl) for the snowbed study, and in tundra 136 

sites in northern Troms county (50 - 600 m asl) for the sampling of soil, leaves and seeds (Figure 2). Bioactivity 137 

tests, chemical analyses and the phytotron experiment were conducted at UiT- The Arctic University of Norway. 138 

139 

Figure 2. Map of sampling locations. Locations of the snow bed study were at Ifjordfjellet (purple dots in inset). 140 

Sampling locations of leaves for the bioactivity assessment were distributed over several sites across Northern 141 

Fennoscandia (bluegreen dots). Sampling locations for seeds, soil and dead leaves for the phytotron experiment, 142 

were situated in Troms (light green dots). Leaves for the bioactivity assessment were also sampled at Ifjordfjellet 143 

(no specific locations marked).  144 
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Snowbed study  145 

The study of allochthonous Empetrum leaves on snowbeds was conducted within an area of 20 km2 of Ifjordfjellet 146 

during five days in late June 2013 (Figure 2). Typical habitats of this tundra area are dwarf shrub heaths 147 

dominated by Empetrum nigrum, Vaccinium myrtillus and Betula nana and snowbeds dominated by acrocarp 148 

bryophytes such as Dicranum spp., vascular plants such as the prostrate shrub Salix herbacea, small forbs such 149 

as Sibbaldia procumbens and Omalotheca supina and graminoids such as Anthoxanthum nipponicum.  150 

All accessible snowbeds in the area were included in the study as long as they had a snow cover larger than 20 151 

m2 (size set to avoid sampling only small snowbeds). Detritus accumulates in non-uniform patterns on snowbeds 152 

(Figure S2). Therefore, we chose a subjective placement of 40 cm × 40 cm plots within each snowbed on the 153 

patches with the highest detritus concentration. In each plot, the presence and abundance of Empetrum leaves in 154 

the accumulated detritus was recorded as one of five categories (0, 1-10, 10-20, 20-30, and more than 30 155 

leaves). On average 8 plots per snowbed (with a minimum of four and a maximum of ten plots) were examined 156 

for a total of 408 plots on 45 snow-covered snowbeds.  157 

To assess whether the influx of leaves was dependent on the distance to the nearest Empetrum source, we 158 

measured the distance between the snowbed’s edge to the closest area of Empetrum dominance. The distances 159 

measured were exact to the meter up to 20 meters, after which distances were measured to the closest 10 m. 160 

For an assessment of the importance of snowbed slope for the accumulation of leaves, the snowbeds’ slope was 161 

measured in the centre of their snow cover.   162 
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Bioactivity and chemical content of allochthonous leaves 163 

We conducted bioassays on Empetrum leaves collected from two snow-covered snowbeds at Ifjordfjellet in 2009 164 

to ascertain whether allochthonous Empetrum leaves retain bioactivity. In addition, we analysed their Batatasin-III 165 

and total phenolics content. For a comparison of allochthonous leaves and green leaves, we ran bioassays and 166 

chemical analyses of green Empetrum leaves collected at Ifjordfjellet (n=8) (Figure 2). Finally, to assess whether 167 

our findings from Ifjordfjellet are representative for the larger region, we collected and tested green leaves across 168 

Northern Fennoscandia (n=12).  169 

The bioassays and the Batatasin-III analysis were conducted using methodology described in González et al. 170 

(2015). For each collection site, approx. 25 mg of leaves were placed in each of two Ø 4.5 cm Petri dishes under 171 

two pieces of Whatman No 1 filter paper. The filter papers were moistened with 1.5 ml distilled water and 10 172 

germinated lettuce (Lactuca sativa) seedlings were transferred onto them. Then the lid was attached with 173 

parafilm. Three Petri dishes without Empetrum leaves served as controls. After five days, average root length per 174 

Petri dish was calculated.   175 

Batatasin-III was extracted from 25 mg of dried leaves with ethyl acetate. Extracts were evaporated to dryness 176 

with Speedvac concentrator and Rotary evaporator. Dried residue was dissolved in 1 ml acetonitril:water 1:1 177 

(V:V), acidified with 0.5% acetic acid and filtered with a 0.45 µm Millipore filter. Separation and quantification of 178 

Batatasin-III was performed with gradient high-performance liquid chromatography (HPLC) and DAD detection 179 

using a 996 Photodiode array (PDA) detector. Batatasin-III was separated on Waters x-bridge C18-5 µm particle 180 

size column (4.6 x 150 mm) (part no. 186003116) at 30°C, with injection volume of 20 µl, flow rate of 1ml min-1, 181 

and retention time of 20.8 min. Batatasin-III was confirmed using an internal standard and quantified using an 182 

appropriate calibration curve produced by the Waters Alliance chromatographic system. The wavelength 183 

measured was 273.2 nm. Batatasin-III was determined using a gradient of mobile phases with milliQ water and 184 

acetonitrile, both acidified with 0.5% acetic acid.  185 

The phenolic analysis was based on the same extract as the Batatasin-III analysis. We measured total phenolics 186 

by the Folin-Ciocalteau colorimetry method. We followed the basic protocol 1 in Current Protocols in Food 187 
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Analytical Chemistry (Waterhouse 2002), with Gallic acid as standard and reading absorbance at 750 nm using a 188 

Spectra MAX 250.  189 

Abundance of Empetrum 190 

Using published survey data (Bråthen & Lortie 2016a), we compared the abundance of Empetrum at Ifjordfjellet, 191 

to that of other regions in Fennoscandia to assess whether the density of allochthonous leaves found in the 192 

snowbed study could be representative to that of other tundra regions. In the survey, Empetrum abundance was 193 

measured as point intercepts and converted to biomass. Because these measures of Empetrum abundance are a 194 

minor part of this particular study, we refer to previously published papers for an explanation of the study design 195 

(e.g. Bråthen & Lortie 2016b). 196 

Collection of Empetrum leaves, seeds and soil for phytotron experiment 197 

Empetrum leaves, soil and seeds for the phytotron experiment were sampled at various sites in Troms county, 198 

Norway, in between July and early October 2012 (Figure 2). Withered leaf samples were collected in areas where 199 

Empetrum was a dominant species. Soil and seeds were collected from sites with 500 m minimum distance to 200 

Empetrum dominated areas.  201 

Because of the focus on dispersed Empetrum leaf litter, all leaves for the phytotron experiment were collected 202 

from branches already detached from the mother plant or branches showing clear signs of withering. Leaf 203 

samples were stored dry and at room temperature. A pre-experiment assessment of the withered leaves 204 

demonstrated that they were clearly bioactive (Appendix 2).  205 

Plant species representing different growth forms (forbs, woody plants or graminoids) and habitat affinities 206 

(snowbed or more generalist), had to be present in at least three sites to justify seed collection. Consequently, 207 

the seeds of the forbs Bistorta vivipara, Omalotheca supina, Pedicularis lapponica, Sibbaldia procumbens and 208 

Solidago virgaurea, the grasses Anthoxantum nipponicum, Avenella flexuosa and Nardus stricta, and the woody 209 

species Chamaepericlymenum suecicum, Dryas octopetala, Empetrum nigrum, Salix herbacea and Vaccinium 210 

myrtillus were gathered. We refer to Pan Arctic Flora database (http://nhm2.uio.no/paf/) for nomenclature and  Lid 211 

and Lid (2005) for categorization of species according to habitat. We collected approximately 50 seeds or 25 212 

inflorescences for each species present at a given site. The range of seed collection sites ensured that seeds 213 
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represent different populations and environmental contexts. Seeds were stored at room temperature until cleaned 214 

and thereafter frozen at -10°C. 215 

We tested the baseline germination rate using 100 seeds per species (Appendix 3). The low germination rates of 216 

Pedicularis, Chamaepericlymenum, and Empetrum excluded them from further experiments.  217 

Soil was collected from snowbeds in the vicinity of five seed collection sites (Figure 2). This geographic range 218 

ensured variation in environmental contexts. Preference was given to snowbeds with deeper organic layers and 219 

sparse vegetation covers. This ensured collecting a sufficient amount of soil organic matter and avoided soil with 220 

high root density. First, a soil core (Ø 5 cm, 10 cm deep) was taken. If the soil profile showed at least 6 cm of 221 

non-sandy topsoil, 200-250 grams of topsoil was collected at each of 10 subsites and the litter and moss layer 222 

discarded. The collected soil was dried at room temperature and sieved with a 4 mm sieve to remove non-organic 223 

matter and roots. Soil from all subsites within a site was pooled and stored at -10°C. Soil analysis (Appendix 4), 224 

showed that the sites were comparable in soil quality (Table 1).   225 
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Table 1. Description of the snowbed soils included in the greenhouse experiment in terms of soil pH and soil 226 

element concentration (average ± SD of soils from five collection sites). 227 

pH P 

(%) 

K 

(%) 

N 

(%) 

C - org 

(%) 

C - inorg 

(%) 

Water 

(%) 

4.52 ± 0.17 0.0013 ± 0.0001 0.0102 ± 0.0013 0.96 ± 0.08 43.6 ± 3.3 13.6 ± 1.6 42.8 ± 1.7 

 228 

Estimation of abundance of Empetrum leaves in soil from snowbeds 229 

We measured the abundance of Empetrum leaves in two soil cores (Ø 5.5 cm, 10 cm deep) at the snow cover 230 

edge of each of the five snowbeds sampled for soil, to ascertain the concentrations of Empetrum leaves in 231 

snowbed soils. 232 

The soil cores were weighed, dried at 95°C for 12 hours and sieved. All Empetrum leaves found during sieving 233 

were counted. Importantly the leaves occurred throughout the soil core, indicating that leaves become 234 

incorporated over time. Using the approximation of 1 leaf = 1 mg, leaf abundance within 1 kg of soil was 235 

calculated. Leaf abundance in soil varied from 10 g to 43 g kg-1 soil, with 6 out of 10 samples having 25 - 35 g kg-236 

1 soil. From this, we established a treatment gradient with four levels at 0, 15, 30 and 45 g Empetrum leaves kg-1 237 

soil at field capacity.   238 

Phytotron experiment  239 

The experiment was conducted in autumn 2012 in the phytotron at UiT- The Arctic University of Norway.  240 

First, the frozen soil was thawed in a dark room at 4°C for three days and mixed with sand at a 1:5 ratio as 241 

suggested by Medina-Roldán, Paz-Ferreiro and Bardgett (2012) to remove site-specific differences. The soil was 242 

placed in a dark room for 48 hours at 0.5°C and then quartered. One part was kept as control (0 g leaves kg-1 243 

soil), while the remaining parts were mixed with dry, withered Empetrum leaves in the previously established 244 

treatment concentrations. The soil was then transferred into standard cylindrical planting pots (Ø 9 cm, 7.5 cm 245 

deep) for a total of 20 pots per treatment.  246 
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Seeds were thawed and planted for a total of ten seeds in each of two pots per species and treatment. The soil 247 

was covered with fine grade Perlite© to avoid water loss. In order to break seed dormancy, the seeds were 248 

stratified in a darkened room at 0.5°C for 7 days. Seeds were left to germinate under 24 hours artificial light at 249 

8°C (simulating the low-alpine light and temperature of Northern Fennoscandia).  250 

The seeds were visited every three days for watering and germination assessment. After the first seed 251 

germinated in a pot, seed germination was registered for a period of 25 days and summed for a maximum of 10 252 

per pot.  253 

All germinated seedlings above the first five were removed from pots to avoid seedling competition. The 254 

remaining five seedlings were allowed to grow for 25 days after which their height and number of secondary 255 

leaves was recorded. The pot-specific germination of the ≥5 first seedlings was synchronized within the tree day 256 

interval between visits. Thus, no measures to control for varying seedling ages within pots was conducted.  257 

Data Analysis  258 

We analysed the data using linear mixed effects models (Pinheiro & Bates 2000) in the R environment version 259 

3.4.4 (http://www.r-pro- ject.org). We used the lme package for statistical analysis and the ggplot2 package for 260 

the graphic representation of data. Whenever data did not conform to normal distribution, they were transformed 261 

for the analysis and back-transformed for the presentation of model predictions. 262 

The average density distribution of Empetrum leaves within snowbeds was displayed according to the five leaf 263 

density categories. The density of Empetrum leaves on snowbeds in response to distance from Empetrum heath 264 

and snowbed slope was modelled with the leaf density as a fixed factor and the identity of snowbeds as random 265 

factor. The leaf density categories were treated as a continuous variable from 0 to 4. The interaction between 266 

distance and slope did not improve the model and was excluded from the final model.  267 

The test of bioactivity and chemical content dependence on leaf source (allochthonous or green Empetrum 268 

leaves), used leaf source as fixed factor and sampling locations as random factor. Testing bioactivity and 269 

chemical content dependence on region (Ifjord vs other sampling regions within Northern Fennoscandia), we 270 

used region (Ifjord vs other Fennoscandian) as a fixed factor and the location of all regions as random factor.  271 
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For the analysis of Empetrum abundance in Ifjord vs other regions within Northern Fennoscandia, we used region 272 

(Ifjord vs other Fennoscandian) as fixed factor and the hierarchical sampling levels of the study design in  273 

Bråthen and Lortie (2016b) as random factors. 274 

Both the germination test and the seedling growth test were modelled with treatment as a continuous predictor. 275 

When testing whether the treatment effect was dependent on growth form (forbs, grasses and woody) and/or 276 

habitat affinity (heath, snowbed, general), we used treatment in interaction with growth form and habitat affinity as 277 

fixed factors. For each model Pot ID nested in species identity was applied as random factor. Growth form or 278 

habitat affinity were not retained in models where they did not explain variation in treatment effects.  279 

To display the effect of treatment on the species level, we used the ggplot2 package with linear model fit. 280 

 281 

Results  282 

Snowbed study 283 

Empetrum leaves were found on the snow cover of all 45 surveyed snowbeds, in the majority of plots per 284 

snowbed and, for most plots, in medium to high abundance (Figure 3). Leaf density on snowbeds was 285 

independent of snowbed slope (effect size - 0.009 ± 0.016 CI) and distance from Empetrum heath (effect size - 286 

0.007 ± 0.008 CI) (Figure 3).  287 
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 288 

Figure 3. Density of Empetrum leaves on the snow cover of 45 snowbeds at Ifjordfjellet (A). Boxplots display 289 

outliers more than 1.5 times the interquartile range. Average density of Empetrum leaves on the snow-covered 290 

snowbeds in response to distance from the snowbed edge to the nearest Empetrum-dominated vegetation (B). 291 

Bioactivity and chemical content of allochthonous leaves 292 

We found similar bioactivity in green and allochthonous leaves in terms of how they affected lettuce root length 293 

(effect size 0.128 ± 0.430 C.I.), and that the lettuce roots in the controls (no leaves) was considerably longer than 294 

that of lettuce affected by the allochthonous leaves (effect size 1.874 ± 0.700 C.I.) (Figure 4). However, the leaf 295 

content of phenols was clearly highest in green leaves (effect size 11.142 ± 3.716 C.I.) and although not 296 

significant, the leaf content of Batatasin-III was also higher (effect size 7.536 ± 13.643 C.I.) (Figure 4).  297 
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 298 

 299 

Figure 4. Comparison of the bioactivity and chemical content of Empetrum leaves of allochthonous (on 300 

snowbeds) and autochthonous (green leaves on plants) source. The bioactivity assay (A) includes a control 301 

treatment (no leaves). Chemical content of Batatasin-III (B) and total Phenols (C) in allochthonous and green 302 

leaves. Boxplots display outliers more than 1.5 times the interquartile range. 303 

Comparison of green leaves between Ifjord and other regions in Fennoscandia. 304 

In order to evaluate whether results from Ifjordfjellet (the site of the snowbed study and of the collection of leaves 305 

for comparison between green and allochthonous leaves) were representative, we compared Empetrum 306 

abundance, bioactivity and chemical content of green, fresh leaves in Ifjord to that of other regions in Northern 307 

Fennoscandia. 308 

Empetrum was present in 87 % of plant communities in Ifjord and 85 % of plant communities in other regions, 309 

suggesting that Empetrum is extraordinarily common in the low alpine areas of Ifjord and other regions of 310 

Fennoscandia (Bråthen et al 2017). The abundance of Empetrum in terms of biomass was similar between the 311 

regions (effect size 2.771± 10.164 C.I.) (Figure S3). 312 

Green leaves from Ifjord were more effective in limiting lettuce root length than green leaves from other regions in 313 

Northern Fennoscandia (effect size 3.911 ± 1.667 C.I.) (Figure S3). The leaf content of Batatasin-III, however, 314 
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was comparatively lower in Empetrum leaves from Ifjord (effect size - 13.771 ± 6.664 C.I.). There also was a 315 

tendency for lower phenol content at Ifjord (effect size - 16.795 ± 24.575 C.I.) (Figure S3). Thus, results of 316 

bioactivity and chemical content were inconsistent in indicating the direction of difference in the allelopathic effect 317 

by Empetrum leaves from Ifjord in comparison to other regions in Fennoscandia, indicating there are potentially 318 

other compounds having effect that were not studied here. Overall the results indicate that Empetrum leaves are 319 

bioactive and contain both Batatasin-III and phenols across Northern Fennoscandia. 320 

Greenhouse experiment  321 

Seed germination was reduced by the allochthonous leaf treatment, but only among forb species (Table 2, Figure 322 

5). Among forbs, the treatment effect corresponded to the sum of germinated seeds being reduced from 7.9 323 

seeds under control conditions, to 7, 6.2 and 5.3 germinated seeds under the 15 g, 30 g and 45 g allochthonous 324 

leaf treatment respectively. This reduction corresponds to a 1.5-fold, or 33% decrease between the control and 325 

the strongest allochthonous leaf treatment. There was no modification of treatment effect by habitat affinity (effect 326 

size 0.026 ± 0.042 C.I.). 327 
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 328 

Figure 5. Sum of germinated seeds per pot per growth form in response to treatment with Empetrum leaves in 329 

soil.  330 

Seedling growth was reduced by the allochthonous leaf treatments in terms of the number of secondary leaves 331 

and leaf height (Table 2, Figure 6). The seedlings had an average of 3.9, 2.5, 1.8 and 1.2 leaves and an average 332 

of 2.8, 1.9, 1.6 and 1.2 cm height under the control (0 g), 15 g, 30 g and 45 g allochthonous leaf treatment 333 

respectively. In total, seedlings under the control treatment were 2.3 times longer and had 3.2 times more leaves 334 

in comparison to seedlings grown in the strongest allochthonous leaf treatment. 335 

Leaf number was clearly affected by treatment independent of growth form (effect size of grass 0.008 ± 0.029 336 

C.I. and woody -0.029±0.032 C.I. vs that of forbs) or habitat affinity (effect size of snowbed -0.029 ± 0.029 C.I. vs 337 

generalist species). Similarly, growth expressed as leaf height was clearly affected by treatment independent of 338 

growth form (effect size of grass -0.012 ± 0.024 C.I. and woody 0.002±0.026 C.I. vs that of forbs) or habitat 339 

affinity (effect size of snowbed -0.004 ± 0.024 C.I. vs that of generalists). 340 
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 341 

Figure 6. Growth response of seedlings of a range of species to treatment with Empetrum leaves added to their 342 

soil. Growth responses are presented in terms of number of secondary leaves (A) and height (B).  343 

Table 2. Effect size (±95% C.I.) of treatment effects of allochthonous leaves on the sum of germinated seeds and 344 

seedling growth. Growth was measured as the number of secondary leaves and leaf height. Estimates from 345 

mixed models with species and Pot ID as random factors.  346 

Response Interacting factor Effect size (± 95 % C.I.) 

GERMINATION Forbs -0.056 (-0.084, -0.028) 

 Grasses -0.002 (-0.035, 0.030) 

 Shrubs -0.003 (-0.036, 0.029) 

GROWTH   

Number of leaves  -0.057 (-0.069, -0.044) 

Height  -0.034 (-0.043, -0.024) 

  347 
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Discussion 348 

In this study we find evidence of allochthonous allelopathy using the model species Empetrum nigrum. First, a 349 

high concentration of Empetrum leaves was found in the debris on snow beds distanced 3 to 50 meters away 350 

from Empetrum heath, establishing Empetrum as a source of allochthonous detritus into snowbed environments. 351 

Second, allochthonous leaves were as bioactive as green leaves in reducing the growth of lettuce seedlings. 352 

Although at lower concentrations than green leaves, the allochthonous leaves contained secondary metabolites 353 

associated to the allelopathic capacity of Empetrum (Gallet, Nilsson & Zackrisson 1999, this study). Third, both 354 

seed germination and seedling growth of a range of tundra plant species negatively responded to allochthonous 355 

Empetrum leaves in soil at concentrations likely to occur in snowbed soils. Surprisingly, germination was 356 

negatively affected only in forb species. Our findings suggest that Empetrum can reduce primary productivity at 357 

vital life stages of vascular plant species in tundra snowbeds through allochthonous allelopathy. 358 

Delaying the development of plant species in recipient systems of allochthonous Empetrum leaf litter, may be at 359 

Empetrum’s benefit and even selected for. If the recipient system represents a potential habitat, modifying the 360 

environment to the disadvantage of other species result in benefits to the niche constructor (Matthews et al. 361 

2014). Empetrum establishment in snowbeds is likely. Empetrum berries are dispersed by zoochory of migratory 362 

animals such as reindeer (Bråthen et al. 2007a), providing opportunities for establishment in new habitats. In 363 

snowbeds, reduced competition for light and other resources by the extant flora in response to the allochthonous 364 

allelopathy, could facilitate the establishment of slow growing species such as Empetrum. Because it is dispersed 365 

by endozoochory, resources in the faeces could further boost Empetrum growth and reduce the allelopathic 366 

impact of the allochthonous Empetrum leaves present (Bråthen, Fodstad & Gallet 2010). The latter process also 367 

facilitates the establishment of other species dispersed with zoochory. In contrast, in areas unsuitable as new 368 

habitats, for instance late snowbeds with insufficient growth season length for Empetrum, the allochthonous 369 

allelopathy could contribute to the appearance of barren snowbeds with low productivity.    370 

Batatasin-III “becomes physically trapped by organic matter” (Wallstedt, Gallet & Nilsson 2005) which neutralises 371 

its allelopathic effect (González et al. 2015). For this reason, snowbed soil rich in organic matter content might 372 

absorb and neutralize the allelopathic effect of Batatasin-III. However, if Batatasin-III is retained in low degradable 373 
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leaves, prevented from being trapped by the organic soil (Parker et al. 2018) and released in leachate pulses 374 

whenever water drains the soil, it may take substantial organic material such as mammalian faeces or even fire, 375 

to neutralize its bioactivity (Bråthen, Fodstad & Gallet 2010). Wallstedt et al. (2000) found indications that 376 

Batatasin-III can disturb membrane integrity and, consequently, disrupt fundamental processes such as ion 377 

uptake from roots. Perhaps for this reason, signs of reduced growth were observed for all species only after 378 

seedlings had started growing and their roots came in contact with the Batatasin-III reservoir.  379 

This study found delayed development at the seedling stage in common species from three growth forms when 380 

growing in snowbed soil with withered leaves of Empetrum. The finding corresponds a study on the effect of 381 

Batatasin-III, where reduced germination and seedling growth for a range of tundra growth forms was observed 382 

(González et al. 2015). It is noteworthy that the deciduous shrub Betula nana and the evergreen dwarf shrub 383 

Vaccinium vitis-idea—species encroaching into snowbed environments in response to climate warming along 384 

with Empetrum  (Vowles et al. 2017) — also experienced reduced germination and seedling growth in response 385 

to Batatasin-III (González et al. 2015). Empetrum might, therefore, delay seedling establishment of other shrub 386 

species and their encroachment through allochthonous allelopathy. It remains unknown, whether Empetrum 387 

gains enough competitive advantage through allochthonous allelopathy to outcompete other expanding shrubs or 388 

whether Empetrum simultaneously delays its own establishment, thereby negating any competitive advantage. 389 

Snowbeds are among the habitats most affected by climate change (Björk & Molau 2007). The decline in the 390 

duration of snow cover is likely to cause a reduction in forbs that, in contrast to species of other growth forms, 391 

benefit from late snowmelt and are hence most vulnerable to earlier snowmelt (Wipf & Rixen 2010). In addition, 392 

results from this study indicate that forbs are most vulnerable to allochthonous allelopathy by Empetrum, 393 

exhibiting reduced germination rates in addition to reduced seedling growth. Yet, importantly, all growth forms 394 

were equally affected by allochthonous allelopathy by Empetrum at their seedling stage, which suggests overall 395 

reduced growth. Plants in snowbeds represent an important resource to many tundra herbivores (review in Björk 396 

& Molau 2007). Changes in vegetation composition and productivity will therefore also have consequences to 397 

trophic aboveground interactions. In particular, lemmings, depending on snowbeds for their winter-habitat, might 398 

be affected. Yet, lemming activity could also cause disturbances that promote seedling density richness in 399 

snowbeds (Nystuen et al. 2014) and counteract the allelopathic effects by Empetrum with their faeces. Such 400 
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disturbance may, in turn, benefit forbs, that are found to be the most disturbance resistant growth form (Evju, 401 

Hagen & Hofgaard 2012). In summary, snowbeds are affected by a multitude of factors. Here, we identify 402 

allochthonous allelopathy as	an additional factor to be considered when predicting snowbed change.	403 

Our results suggest that allochthonous allelopathy in snowbeds is a phenomenon to be expected over large 404 

spatial scales in Northern Fennoscandia and other regions where Empetrum is common. The extent of 405 

allochthonous allelopathy is likely to increase as Empetrum is advancing in response to climate change (Bråthen, 406 

González & Yoccoz 2018; Vowles & Björk 2019) and resistant to climatic variability (González et al. 2019). 407 

Furthermore, although Empetrum is vulnerable to trampling (Tybirk et al. 2000), it is not decreasing in response 408 

to higher animal densities (Bråthen et al. 2007b), and can even increase in the presence of mammalian 409 

herbivores (Vowles et al. 2017). Our study focused on snowbeds as recipient system. It is likely that Empetrum 410 

can be a source for allochthonous detritus to other habitat types, albeit with lower influx rate of leaves and a 411 

weaker allochthonous allelopathic effect. Large-scale, observational studies suggest that the contribution of 412 

autochthonous allelopathy by Empetrum is substantial (Ravolainen et al. 2010; Bråthen & Ravolainen 2015; Mod 413 

et al. 2016), lowering the species richness and abundance of herbaceous vascular plants (Bråthen, González & 414 

Yoccoz 2018). However, Empetrum also explains biodiversity patterns at spatial scales at the landscape level 415 

(Ravolainen et al. 2010), suggesting allochthonous allelopathy is also of considerable importance.	416 

 417 

Conclusion 418 

Changes in the tundra are ongoing. These changes are varied and not always as predicted (Björkman et al. 419 

2020). This indicates there are several contributing factors and processes that still need to be established. We 420 

suggest that one such factor is allochthonous allelopathy, which, along with niche construction by dominant 421 

plants in their home communities, can represent a confounding factor to the consequences of environmental and 422 

climatic change. Allochthonous allelopathy can be a common and increasing phenomenon, as indicated by the 423 

abundance of Empetrum, causing biotic stress in snowbeds and other parts of the tundra. Furthermore, 424 

allochthonous allelopathy may modify the capacity of existing and novel species in the tundra to encroach further.  425 
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Table S1. Soil content description for each of the five sites included in the greenhouse experiment.  565 

Appendix 1. Leaf traits enabling dispersal 566 

Appendix 2.  Pre-experiment assessment of bioactivity of leaves 567 

Appendix 3.  Baseline germination rate  568 

Appendix 4.  Soil analysis  569 

  570 



 26 

SUPPORTING INFORMATION 571 

 572 

 573 

Figure S1. Small glands on the Empetrum nigrum leaves and molecular formula of Batatasin III. A 574 
photograph depicting the white-looking small glands on the Empetrum nigrum leaves where Batatasin-III can be 575 
found, and the formula of the dihydrostilbene Batatasin-III. Photograph taken by last author. 576 

  577 
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 579 

 580 

 581 

Figure S2. Photocollage depicting the process of transport and accumulation of allochthonous Empetrum 582 
nigrum leaves. A. Empetrum can cover vast areas and dominate in the vegetation. B. Autochthonous withered 583 
leaves of Empetrum can be attached to the plant but are easily detached when touched or when exposed to 584 
strong winds. C. Detritus on snowbed surfaces contain withered leaves of Empetrum. D. When the snow cover of 585 
snowbeds melts out, vast amounts of accumulated detritus may be exposed. E. The abundance of detritus can 586 
be so high it almost completely covers the ground, also causing shade. F. A closer look reveals at the detritus 587 
reveals that withered Empetrum leaves are common. Photographs were taken in the Varanger Peninsula 588 
National Park in July 2015 by last author. 589 
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 591 

Figure S3 Comparison between Ifjord and other regions within Northern Fennoscandia.  Comparison of 592 
Empetrum abundance (A), green leaf bioactivity (B), chemical content of Batatasin-III (C) and total Phenols (D) 593 
from Ifjord, where the snowbed study was conducted, compared to that of other regions within Northern 594 
Fennoscandia. Boxplots display outliers when more than 1.5 times the interquartile range. 595 

 596 

 597 

Appendix 1. Leaf traits enabling dispersal 598 

Empetrum nigrum has small leaves (Lid & Lid 2005). Small size is a leaf trait that is likely to facilitate dispersal. In 599 
order to compare leaf traits of Empetrum to that of seed traits with known dispersal range, we measured 50 600 
Empetrum nigrum fresh leaves. The leaves had an average leaf weight of 0.53 mg (+/- 0.11 mg), with an average 601 
length between 4.5 to 5 mm and a width of 1mm at the broadest point. Comparing these values to that of the 602 
terminal velocity of wind dispersed seeds of similar proportions (Kattge et al. 2011), suggests Empetrum leaves 603 
have aerodynamic properties that facilitate wind dispersal. In addition, these leaf trait values suggest Empetrum 604 
leaves are easily transported with meltwater streams (Körner 2003). 605 

 606 

Appendix 2.  Pre-experiment assessment of bioactivity of leaves 607 

The bioactivity of the collected withered leaves was assessed in a pre-experiment bioassay using lettuce 608 
(Lactuca sativa) seedlings. The bioassays were conducted using methodology as described in González et al. 609 
(2015). For each treatment 0 mg, 15 mg, 30 mg or 45 mg of withered leaves were placed into each of 15 Ø 4.5 610 

B 
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cm Petri dishes with two pieces of Whatman No 1 filterpapers on top. The filterpapers were moistened with 1.5 ml 611 
distilled water before a set of 3 germinated lettuce seedlings were carefully transferred on top of the filterpaper  612 
and the lid attached with parafilm. The assay lasted for three days after which the rootlength of each seedling 613 
was measured and the average rootlength per petridish was calculated.   614 

The withered Empetrum leaves collected for the allochthonous leaf treatment showed clear bioactivity at all 615 
treatment levels. The root lengths of the lettuce seedlings were reduced from an average of 2.933 cm of controls 616 
(no leaves) with -1.510, - 2.071 and - 2.373 cm (all ± 0.286 C.I.), at treatments with 15, 30 and 45 mg withered 617 
leaves per Petri dish respectively.  618 

 619 

Figure S4. Root length of lettuce seedlings in response to a three-day treatment with allochthonous (withered) 620 
leaves at concentrations of 0, 15, 30 and 45 mg leaves per Petri dish.  621 

Using the molecular weight of Batatasin-III of 244.28 g/mol (molecular formula of Batatasin-III in SI I) and 622 
anticipating a leaf concentration of 5 mg Batatasin-III g-1 allochthonous leaves (Figure 5 this study), the 0, 15, 30 623 
and 45 mg leaf treatments in the experiment correspond to a Batatasin-III treatment effect of 0, 0.3, 0.6 and 0.9 624 
µMol respectively. This allochthonous treatment effect is a magnitude lower than the 0.1 - 4 mM applied in 625 
bioassays finding clear effects of Batatasin-III (González et al. 2015). The leaf treatments are however more 626 
similar to the concentration of 1.3 µM Batatasin-III, as calculated from a concentration of 0.32 µg Batatasin-III g-1 627 
humus collected at Empetrum sites (Bråthen, Fodstad & Gallet 2010). This latter concentration was also related 628 
to a very clear autochthonous allelopathic effect, significantly reducing the growth of the grass Avenella flexuosa 629 
and the forb Soildago virgaurea, two of the species also tested here, during a nine-week long experiment 630 
(Bråthen et al 2010). Importantly therefore, it may not be Batatasin-III alone that cause reduced growth as 631 
Empetrum leaves of low or no Batatasin-III content still have high bioactivity (González et al. 2015). 632 

 633 
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Appendix 3.  Baseline germination rate  634 

In order to obtain a baseline germination rate, 100 seeds of each species were placed in a 4.5 cm diameter petri 635 
dish equipped with Whatmann filterpaper (Nr. 1), moistened with 1.5 ml distilled water and germinated at room 636 
temperature. Germination rates differed markedly between the species: Bistorta vivipara (94.67 %), Omalotheca 637 
supina (57.12 %), Pedicularis lapponica (0 %), Sibbaldia procumbens (52.34 %), Solidago virgaurea (78.11 %), 638 
Anthoxantum nipponicum (73.98 %), Avenella flexuosa (60.34 %), Nardus stricta (63 %), Chamaepericlymenum 639 
suecicum (0 %), Dryas octopetala (89.47%), Empetrum nigrum (2.47 %), Salix herbacea (89.79%), and 640 
Vaccinium myrtillus (76.80 %). 641 

 642 

Appendix 4.  Soil analysis  643 

In order to compare the make-up of soils from the five sampling locations, soil analyses were conducted. A total 644 
of three samples of 25 gram soil from each of the five soil sampling sites were taken for chemical analysis of pH 645 
and content of P, K and N, whereas a total of ten samples of 5 gram soil were taken for a combustion analysis of 646 
water and C content. Chemical analysis was conducted at the Institute for Sustainable Plant Production (NPP) of 647 
the Austrian Agency for Health and Food Safety (AGES). The combustion analysis was conducted at UiT. Each 5 648 
gram sample of soil was placed in a pre-weighed crucible. The samples were then dried at 95 degrees Celsius for 649 
12 hours and allowed to cool before weighing. Thereafter, the samples were incinerated at 450°C for 4 hours, 650 
allowed to cool and then weighed again before the soil organic, ash and water content were calculated. Water 651 
was calculated as the weight of the dried sample subtracted from the weight of the fresh sample, the organic 652 
Carbon content as the weight of burnt sample subtracted from the weight of the dried sample, and the inorganic 653 
Carbon content (ash) as the weight of the burnt sample. 654 
 655 
Table S1. Soil content description for each of the five sites included in the greenhouse experiment.  656 
	657 

Site number pH P 

(%) 

K 

(%) 

N 

(%) 

C - organic 

(%) 

C - inorganic (ash) 

(%) 

Water 

(%) 

1 4.8 0.0014 0.0096 0.97 42 15 43 

2 4.5 0.0013 0.0101 0.86 46 12 42 

3 4.3 0.0013 0.0101 1.01 45 13 42 

4 4.6 0.0015 0.0126 1.08 38 16 46 

5 4.4 0.0011 0.0086 0.87 47 12 41 
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Average 4.52 0.0013 0.0102 0.96 43.6 13.6 42.8 

SD 0.17 0.0001 0.0013 0.08 3.3 1.6 1.7 

 658 
 659 
 660 
 661 
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