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SUMMARY 

 

In teleost fish, gill plays an important role of controlling ion transport mechanisms 

for the maintenance of ion- and osmoregulatory homeostasis in both fresh water and 

seawater. Leptin mRNA expression has been found in several fish species, and was 

also found in gills of Arctic charr (Salvelius alpinus) in this study. However, no study 

has been reported on the function of leptin in the gills of fish. The question arise f 

Leptin may have some function related to ion- and osmoregulation in fish gills. In this 

study, Arctic charr were sampled during their smolting period in freshwater. Seawater 

tolerance, as well as gill Na+, K+-ATPase activity of the fish increased from winter to 

spring in these fish, showing that they smoltified. There was no change in gill leptin 

mRNA expression during and after smolting in the fish acclimated to freshwater and 

hence, the results gave no evidence for a paracrine role of leptin in the regulation of 

the adaptational changes in gill during smolting. It can not be excluded, however, that 

leptin may be involved in the changes taking place in the gill in association with 

seawater exposure, and future studies must include sampling of gill tissue, and 

analyses of leptin mRNA expression after seawater transference.  
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1. INTRODUCTION 

 

A substantial proportion of teleost fishes are either hyperosmotic (brackish and 

freshwater species) or hyposmotic (marine species) to the aquatic environment in 

which they live. Salmonid fish (belonging to the family Salmonidae) are diadromous 

species which can migrate between freshwater and marine environments at different 

stages of the life history, depending on their genetic constitution (e.g. species) and 

environmental factors. They spawn, and grow up in freshwater, after which they 

undertake one or several feeding migrations to the sea, and this life strategy is termed 

anadromy (Rounsefell, 1958). Before seaward migration, most anadromous salmonids 

undergo a series of physiological, biochemical and behavioural changes that are 

pre-adaptive for marine residency. The transformation, from freshwater adapted parr 

to a seawater adapted smolt, is termed parr-smolt transformation, smoltification or 

smolting (Hoar, 1988; Beouf, 1993). Smoltification is a dynamic phenomenon, 

corresponding to information deeply inscribed in the genome, expressing itself at a 

specific time in the life of the fish under both internal control (nervous and 

endocrinological), and external synchronization with ecological factors (mainly 

photoperiod and temperature: Hoar, 1976, 1988; Boeuf, 1993).  

 

The Arctic charr (Salvelinus alpinus) is the world’s northernmost distributed 

freshwater fish species. They have a circumpolar distribution and the anadromous life 

history strategy in this species is restricted to oligotrophic northern lakes with access 

to the sea (Johnson, 1980). The anadromous Arctic charr have a seasonal migration 

rhythm which involves a short (1-2 months) feeding residency in coastal seawater 

every summer and residency in freshwater for the rest of the year (Johnson, 1980; 

Klemetsen et al., 2003).  

 

The gill is the main external organ for regulating ion balance in teleost fishes. 

Many studies have been devoted to gill physiology during smoltification of salmonids. 

Several reviews present the role of the gill in osmoregulation, this organ becoming of 
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the highest importance in seawater (Payan et al., 1984; McCormick et al., 1989; 

Avella and Bornancin, 1990). The gill epithelium is the site of active sodium and 

chloride uptake in freshwater fishes, and active excretion of these ions in marine 

fishes (Evans et al., 1999). Na+, K+-ATPase (known as the sodium pump) operates at 

the basolateral membrane of gill chloride cells to transport sodium and chloride into 

the fish (in fresh water) or out of the fish (in seawater). ATP is energizing the pump, 

which drives the formation of sodium and potassium gradients (Karnaky et al., 1976). 

In the anadromous Arctic charr, studies have demonstrated that wild, downstream 

migrating fish display increased hypoosmoregulatory ability (Halvorsen et al., 1993: 

Nilssen et al., 1997; Gulseth et al., 2001) and higher gill Na+, K+-ATPase activity than 

freshwater-resident Arctic charr (Damsgård, 1991; Arnesen et al., 1995). It has also 

been shown that, during seawater acclimation of anadromous Arctic charr, increased 

hypoosmoregulatory ability is mainly attributed to increased gill Na+, K+-ATPase 

activity (eight-fold), rather than increased gill Na+, K+-ATPase protein levels 

(three-fold) (Bystriansky and Ballantyne, 2006). Gill Na+, K+-ATPase activity may be 

regulated by multiple mechanisms and not determined only by enzyme number. It was 

proposed by Towle et al. (1977) that Na+, K+-ATPase activity is also modulated 

post-translationally, potentially through modifications of the properties of the 

membrane that surrounds the enzyme. The activity of Na+, K+-ATPase has been 

shown to be sensitive to the lipid composition of its surrounding membrane 

environment (Ottolenghi, 1975; Stekhoven and Bonting, 1981) and correlated to 

several physical membrane properties such as phospholipid composition (Vemuri and 

Philipson, 1989) and fatty acyl chain length (Marcus et al., 1986). Na+, K+-ATPase 

activity has also been reported to correlate with membrane cholesterol content in 

many tissues, including rainbow trout kidney and intestine (Crockett and Hazel, 1997). 

Modulation of membrane lipids may be responsible for the rapid rise (after 30 min) of 

Na+, K+-ATPase activity in the gill of killifish, Fundulus heteroclitus exposed to high 

salinity (Towle, 1981). Pre-adaptive increase in hepatocyte fatty acyl 

desaturation/elongation activities were found in freshwater during smoltification in 

Atlantic salmon (Tocher et al., 2000). But apparent lack of correlation was found 
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between gill Na+, K+-ATPase activity and gill basolateral membrane lipid 

compostition in Arctic charr acclimated to freshwater (Bystriansky and Ballantyne, 

2006). Environmental salinity may also alter gill lipid composition, and hence lead to 

a modulation of gill Na+, K+-ATPase activity (Bystriansky and Ballantyne, 2006). 

However, the influence of changing membrane composition of fish gills on ion 

regulatory mechanisms has not been adequately studied, and very little, if any, 

knowledge exists on the (endocrine) mechanisms regulating membrane composition. 

 

Leptin is a member of the class-1 helical cytokine family produced primarily by 

adipose tissue in mammals (Zhang et al., 1994). Its major role in regulating food 

intake, energy homeostasis, and reproduction in mammals has now been 

comprehensibly studied and confirmed (Friedman, 2002). The leptin cDNA coding in 

fish was first identified and reported in the pufferfish, Takifugu rubripes (Kurokawa et 

al., 2005). Later, the gene encoding for leptin has been cloned and reported for two 

salmonid species: the rainbow trout, Oncorhynchus mykiss (Murashita et al., 2008) 

and Arctic charr (Frøiland et al., 2009). Recent studies have shown that the liver, 

rather than adipose tissue, is the major leptin-expressing tissue in the common carp, 

Cyprinus carpio (Huising et al., 2006), rainbow trout (Murashita et al., 2008) and 

Arctic charr (Frøiland et al., 2009). However, leptin gene expression has also been 

found in many other tissues including the gill in Japanese medaka, Oryzias latipes, 

(Kurokawa and Murashita, 2009). Amino acid sequences of human leptin and 

pufferfish leptin share only 13.2% identity, but the gene arrangement around the leptin 

gene and the three-dimensional (3D) structural protein model are well conserved 

between human and pufferfish leptin (Kurokawa and Murashita, 2009). In a recent 

study it was shown that recombinant trout leptin exerted a strong suppression of food 

intake in rainbow trout (Murashita et al., 2008), showing that the role of leptin in 

regulating appetite and energy homeostasis is highly conserved in vertebrates. In 

addition to the role of leptin in regulating appetite and energy homeostasis, it has been 

shown that leptin stimulates cell proliferation and differentiation in a wide range of 

tissues in mammals (Gat-Yablonski and Philip, 2008) and participates in the 
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regulation of fat metabolism (Friedman, 2002). The presence of the leptin gene in fish 

gills means that leptin has a function in regulatory processes in the gill. Taking into 

consideration the substantial changes occurring in the gill during smoltification (i.e. 

membrane composition and chloride cell differentiation and proliferation), it is 

tempting to imagine a role of leptin in these processes. 

 

On this background the present study was undertaken to investigate 1) if the leptin 

gene is present in the gill of Arctic charr, and 2) if there is any change in gill leptin 

mRNA expression during the smoltification process which correlates with parameters 

such as time, length, condition factor, plasma osmolality, and gill Na+, K+-ATPase 

activity. To do so, a smoltification experiment was set up with anadromous Arctic 

charr, which were examined for smolting indices (gill Na+, K+-ATPase activity and 

hypoosmoregulatory ability). Along with the sampling of gill filaments for Na+, 

K+-ATPase activity analyses, filaments were also taken for leptin mRNA analyses. 

The experiment also included a third objective, namely to train myself in classical 

molecular techniques involved in quantifying specific gene expression. 
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2. MATERIALS AND METHODS 

 

2.1Experiment design 

The experiment was performed with 2-year-old hatchery-reared offspring of 

anadromous Arctic charr originally caught in Lake Vårflusjøen, Svalbard (79oN) in 

1990. Before and during the experiment, the fish had been held under ambient water 

temperature and natural light conditions (transparent roof, 69 oN). Fish were fed 

commercial dry feed (Skretting, Stavanger, Norway) in excess. In January 2008, a 

total of 209 fish were sorted out from the stock tank and transferred to a 3000 litre, 

cylindrical tank with running freshwater, in which they were held throughout the 

experiment period. Water supply as continuously adjusted to maintain oxygen 

saturation above 90%.  

 

At seven sampling dates (February 20th, April 18th, May 9th, June 6th and 19th, July 

3rd and 17th), 10 fish were taken out from the cylindrical tank by a dip-net and killed 

with an overdose (120 ppm) of benzocaine. Small pieces of gill filaments were then 

sampled from the second gill arch at the left side of the fish. The gill filaments were 

kept in ice cold SEI-buffer (0.3 M sucrose, 0.02 M Na2-EDTA, and 0.1 M imidazole) 

and frozen at -80 oC for analyses of gill Na+, K+-ATPase activity. Thereafter the whole 

gill tissue at the right side of the fish was excised, wrapped in aluminum foil, frozen 

in liquid nitrogen, and stored at -80 oC for later analyses of gill leptin mRNA 

expression.  

 

Immediately following the freshwater sampling, a new sub-sample of 10 fish were 

taken out by a dip-net from the 3000 litre cylindrical tank and transferred to a 300 litre 

tank filled with running, full-strength (34 ‰) seawater at 6 oC. They were held in the 

tank, without being fed, for 48 hours, after which they were removed by a dip-net and 

killed in an overdose (120 ppm) of benzocaine. Blood was sampled from the caudal 

vein with lithium heparinized (30 USP units) vacutainers. The blood samples were 

held on ice until centrifugation (6000 xg, 10 min). Plasma were separated and stored 
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at -20 ºC until analyses for osmolality. Fork length (± 0.1 cm) and body weight (± 0.5 

g) of all fish sampled were recorded at the time of sampling. 

 

2.2 Plasma osmolality and gill Na+, K+-ATPase activity analyses 

Plasma samples were thawed on ice, vortexed for thirty seconds and analyzed for 

osmolality with a Fiske One-Ten Osmometer (Fiske Associates, MA, USA). Gill Na+, 

K+-ATPase activity was analyzed by a standard microassay procedure (McCormick, 

1993). Both these analyses were performed by my colleague Bjørn Erik Bye.   

 

2.3 Gill mRNA level analyses for leptin expression 

Both qualitative and quantitative Polymerase Chain Reaction (PCR) analyses of 

leptin mRNA expression levels were performed in the experiment.  

 

2.3.1 Total RNA extraction  

Total RNA for analysing leptin mRNA level was extracted using TRIzol 

Reagent® (Invitrogen, USA) from a total number of 70 samples (10 fish for each 

sampling, 7 sampling dates). For each sample, the whole gill tissue wrapped in 

aluminum foil was taken out from -80 oC freezer and thawed on ice. Approximately 

50 mg of gill filament was cut out using sterile blades on a 15 cm Petri dish and added 

to 1 ml trizol. Blades and petri dishes were changed between samples. To minimize 

RNA degradation, only 4 samples were processed at a time and all procedures were 

performed as quickly as possible. The gill filaments in trizol were sonicated on ice for 

a few pulses until no large pieces of tissue were observed. The sonicator was washed 

for 10 minutes in 1M NaOH, 2 minutes in 100% ethanol, 1 minute in 1mM NaOH, 1 

minute in Milli-Q water and 1 minute in a second Milli-Q water solution sequentially 

between samples. For each sample, after sonication, the mixture was transferred to an 

autoclaved eppendorf tube. 200 µl chloroform (CHCl3) was then added to the 

eppendorf tube. After vortexing for 30 seconds, samples were centrifuged for 15 

minutes at 13,000 rpm at 4 oC. The transparent upper aqueous phase (~300µl ) 

containing total RNA was transferred to a new eppendorf tube. 500 µl of isopropanol 
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was added to the RNA phase. After vortexing, the mixture was centrifuged for 20 

minutes at 13,000 rpm at 4 oC. The isopropanol phase was removed carefully, leaving 

the RNA pellet at the bottom of the tube. The RNA pellet was washed in 1000 µl of 75 

% ethanol. After vortexing, the mixture was centrifuged for 10 minutes at 13,000 rpm 

at 4 oC. The ethanol phase was then removed. The pellet was dried in air at room 

temperature for 5 minutes. 30 µl Ultra Pure Water was added to the tube and 

incubated for 5 minutes at 65 oC to dissolve the RNA pellet. More water and longer 

incubation was needed if the pellet was not completely dissolved. Total RNA was 

quantified using a Nanodrop 1100 spectrophotometer. RNA integrity was checked by 

1% agarose gel electrophoresis as shown in Figure 1. Total RNA extracted from all 

samples had high purity (A260:280>1.8) and integrity (5S, 18S and 28S bands can be 

clearly observed instead of smear).  

 

 

Figure 1. 1% agarose gel for total RNA quality check  

 

Three rRNA bands (5S, 18S and 28S) can be seen (Figure 1), showing there was 

not much degradation during the extraction procedure and mRNA quality was good 

for later reverse transcription.  

 

2.3.2 DNase I treatment to remove genomic DNA  

All 70 samples were treated with DNase I (Invitrogen, USA) using the following 

steps. 20 U DNase I and 5 µg of total RNA were added to an eppendorf tube. Water 
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was added to make up to the total reaction volume to 10µl. After incubation for one 

hour at 37 °C and then 10 minutes at 65 °C, 30 out of 70 samples were randomly 

chosen to perform two PCR tests using the DNase I treated total RNA as templates to 

check if all genomic DNA were removed. Two primer pairs were designed to bind to 

any DNA templates in the samples. If genomic DNA were not removed completely by 

DNase I, there will be some PCR product amplified. The primer pair used in PCR1 

was 5’-ACTACGACCGCCTGTACAGCCTGAGGAACA-3’ (forward) and 

5’-CATCACTAGGTTTCAGTTTGGTCCTTTGCT-3’ (reverse). In PCR2, following 

primer pair was used: 5’-CAGTGCCCAACTTCTTTGTTGGCTCCCTGC-3’ 

(forward) and 5’-TAACCCGATGTTTCACTTGAATCACCAGCA-3’ (reverse). All 

primer pairs were purchased from Operon (Eurofins MWG Operon, USA). The PCR 

program for both PCR tests was 95° C 1min, [94° C 30s, 60°C 1min, 68°C 30s]X3, 

[94°C 20s, 55°C 1min, 68° C 30s]X3, [94° C 20s, 50° C 1min, 68° C 30s]X3, [94° C 

20s, 42°C 1min, 68°C 30s]X3, [94°C 20s, 37°C 1min, 68°C 30s]X30, 68°C 7min. 

PCR protocols were shown in Table I in Appendix.  

 

No bands were observed in 1% agarose gel electrophoresis performed after DNase 

I treatment, which indicated that genomic DNA was removed. Only RNA templates 

were in the DNase I treated samples for reverse transcription of cDNA.  

 

2.3.3 Reverse transcription 

Reverse transcription is a process to synthesize cDNA from mRNA. A short 

double-stranded sequence is needed at the 3’end of the mRNA which acts as a start 

point for the reverse transcriptase (an RNA-dependent DNA polymerase). This is 

provided by the poly (A) tail found at the 3’end of most eukaryotic mRNA to which a 

short complementary synthetic oligo-nucleotide (oligo dT primer) is hybridized. 1µg 

of DNase I treated total RNA was mixed with 1 µl oligo dT primer (100 µM) (Thermo 

scientific, ABgene, UK) to synthesis the first strand cDNA for each sample. Water 

was added to make up total volume to 11 µl. After incubation for 5 minutes at 65 °C, 

the mixture was incubated on ice for 4 minutes. 1 µl dNTP (10 mM)(Promega, 
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Madison, USA), 4 µl 5X buffer, 2 µl DTT (20mM), 0.5 µl RTase (Takara, Japan), 0.5 

µl RNAsin (Promega, Madison, USA) and 1 µl H20 were added to each reaction tube. 

The reaction tube was incubated for 1 hour and 30 minutes at 42 °C and then for 15 

minutes at 70 °C. cDNA for all 70 samples were synthesized.  

 

2.3.4 Qualitative analyses of leptin expression 

Assessment of cDNA quality was performed by amplifying partial β-actin gene 

using PCR. β-actin is often used as a housing keeping gene to check the quality of 

cDNA for specific gene expression. The sequence of the primer pair to amplify the 

β-actin fragment (ca. 100bp) was 5’-AGAGCTACGAGCTGCCTGAC-3’ (forward) 

and 5’-GCAAGACTCCATACCGAGGA-3’ (reverse). The primer pair was purchased 

from Operon (Eurofins MWG Operon, USA). The PCR program to amplify the 

β-actin fragment was 95 oC 1min, [95 oC 15sec, 60 oC 15sec, 72 oC 30sec]X30, 72 oC 

5min. PCR protocol can be found in Table II in Appendix.  

 

1% agarose gel electrophesis was performed with each sample to check the PCR 

products. β-actin fragments were amplified using cDNA from all 70 samples 

indicating the high quality of cDNA ready for leptin gene expression. Samples with 

more than one band or which had bands at wrong positions were noted down and 

reverse transcription was performed again until all samples showed the β-actin band.  

  

 
Figure 2. β-actin PCR products in 1% agarose gel  
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The two left lanes (Figure 2) were loaded with cDNA samples as templates, a 

strong band around 100 bp (β-actin) can be observed. Ф174 ladder was used to 

identify the size of β-actin band (not shown here). The two right lanes (negative 

control) were loaded with water instead of sample as templates. Lower bands in all 

four lanes could be the primer bands with the sizes around 20bp. One of the negative 

controls showing two bands might be due to non-specific self-binding of primers 

(primer dimer). β-actin fragments amplified by PCR in all cDNA samples showed that 

cDNA quality was good. Since we didn’t know if the leptin gene was expressed in the 

gill sample of Arctic charr or not, cDNA quality check by amplifying β-actin fragment 

was important to avoid an incorrect conclusion caused by experimental error in 

previous steps.  

 

Leptin gene amplification by PCR 

PCR protocols for leptin gene amplication are shown in Table III in Appendix. 

The leptin primer pair (same as one used in q-PCR later) is listed in Table 1. Touch 

down PCR program for leptin was 95 oC 1min, [95 oC 15sec, *68 oC 30sec, 68oC 

30sec] X10(* represents annealing temperature decreased 1 oC per PCR cycle from 68 

oC to 58 oC in 10 cycles), [95 oC 15sec, 65 oC 30sec, 68oC 30sec]X30, 68 oC 10min.  

 

The leptin cDNA (474bp) had been cloned and sequenced in our lab. The two 

leptin primers were used here to amplify a partial leptin gene length of 146bp. The 

sequence of the partial gene is (primer sequences are underlined): 

5’-TGTCGCGCTGCCCAGGTCGCCAGCAGAAACAGACAGGAGAGGGTGGGT

TGGAGGAGGCTCTGAAGGACAGTGTCAGGAAGTTTGGTCTGAGTGTGTGT

CCAGTGGCACTAAACAGACTCAAGGGCTACCTCGATCGGCTACTGCTG-3’ 

 

All cDNA of the 70 samples from all sampling dates were randomly picked to 

perform the leptin gene amplification PCR. 1% agarose gel electrophoresis was 

performed with each sample. Ф174 ladder was loaded to indicate the size of PCR 
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products. Negative controls were added to each PCR test using ultra pure water 

instead of cDNA as templates.  

 

 
Figure 3. 1% agarose gel electrophoresis to detect leptin PCR product.  

 

One sample from each sampling date was grouped together for one PCR 

amplification (10 groups). PCR products of 7 samples plus 1 negative control (water 

as template) are shown in Figure 3. Bands around 146bp were leptin. Strong leptin 

bands represented strong leptin mRNA expression in the gills for specific samples.  

 

2.3.5 Quantitative analyses of leptin expression 

Gill leptin mRNA levels were measured by quantitative-PCR using Power SYBR 

Green PCR Master Mix (Applied Biosystems, USA) and ABI Prism 7000 Sequence 

Detection System (Applied Biosystems, USA). 18S, instead of β-actin, was used as an 

internal control (housekeeping gene) and the average of leptin mRNA level from 10 

samples in the first sampling date (Feb 20th) as calibrator. The leptin mRNA level 

measured is the relative quantification of leptin gene expression. Calculations were 

performed based on the instruction manual provided by Applied Biosystems, USA.  
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Standard curve 

One sample showing high leptin expression in qualitative analyses was chosen for 

leptin gene amplification using touch down PCR (the same touch down PCR program 

as in the qualitative analyses). PCR products were serial diluted 10 times (10X each 

time) to generate standard curves for leptin and 18S. 7 diluted PCR products were 

selected and used to generate one standard curve for each q-PCR plate. Primers used 

in PCR are shown in Table 1.  

 

Table 1. Leptin and 18S primers and sequences used in touch down PCR (standard 

curve) and quantitative PCR (q-PCR).  

Primer Sequence  Probes 

Leptin forward  5’- TGTCGCGCTGCCCAGGTCGCCAGCA-3’ SYBR Green 

Leptin reverse  5’- CAGCAGTAGCCGATCGAGGTAGCCC-3’ SYBR Green 

18S forward 5’- TGTGCCGCTAGAGGTGAAATT-3’ 

 

SYBR Green 

18S reverse 5’- CGAACCTCCGACTTTCGTTCT-3’ 

 

SYBR Green 

*All primers listed were purchased from Operon (Eurofins MWG Operon, USA). 

 

Quantitative PCR setting 

cDNA for each sample was diluted 10X for leptin and 10,000X for 18S and used 

as the templates for q-PCR in duplicates. 70 samples were divided into two plates for 

leptin and 18S (4 plates in total). 5 samples at the same sampling dates were placed in 

one q-PCR plate to minimize the error caused by actual q-PCR efficiencies among 

plates. In each plate, a standard curve was generated. The primers and sequences are 

shown in Table 7. Q-PCR program used was: 50 oC 2min, 95 oC 10min, [95 oC 30sec, 

60 oC 30sec, 72 oC 30sec]X40. The detector read the fluorescence in every cycle after 

30sec at 60 oC. A dissolve program, as follows, was added to observe the melting 

temperature: 95 oC 15sec, 60 oC 20sec, 95 oC 15sec. This is to reveal if the right 
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product was amplified. Q-PCR protocols are shown in table IV in Appendix.   

 

2.4 Statistical analysis 

 

All data were presented as mean ± standard error of means (s.e.m). Condition 

factor was calculated using the formula [K = W . L-3 . 1000], where W was fish mass 

(g) and L was fork length (cm). Statistical analysis was performed using Statistica 6.1 

(Statsoft, Inc. Tulsa, OK, USA). A parametric test (ANOVA, general linear model 

(GLM)) was used to reveal possible effects of time on gill Na+, K+-ATPase activity in 

the fish that were sampled in freshwater and on plasma osmolality in the fish that 

were sacrificed after the 48 h seawater test. In the latter test, fork length was included 

as a continuous predictor of plasma osmolality. ANOVA was also used to reveal 

possible effects of time on gill leptin mRNA expression measured by q-PCR in all fish 

sampled. A post-hoc, Tukey test was used to reveal where differences occurred. 

Results were considered to be significant when the probability level was lower than or 

equal to 0.05.  
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3. RESULTS 

 

3.1 Indices of smoltification 

Body mass, fork length and condition factors of Arctic charr sampled in 

freshwater at the various sampling dates are presented in Table 9. Plasma osmolalities 

after the seawater tests and gill Na+, K+-ATPase activity data of the fish sampled in 

freshwater are plotted in Figure 4.  

 

Table 9. Mean (s.e.m.) body mass (g), fork length (cm) and condition factor (CF) of 

the Arctic charr sampled at the various dates in freshwater.  

Sampling dates n Body mass (g) Fork length (cm) CF 

February 20th 10 192 (11.6) 26.8 (0.5) 0.99 (0.03) 

April 18th  10 166 (23.1) 25.5 (0.7) 0.95 (0.06) 

May 9th  10 169 (16.3) 25.3 (0.6) 1.02 (0.05) 

June 6th  10 186 (21.5) 25.7 (0.90) 1.07 (0.06) 

June 19th  10 238 (33.9) 27.1 (0.94) 1.12 (0.08) 

July 3rd  10 230 (37.8) 26.1 (1.29) 1.17 (0.06) 

July 17th  10 294 (24.0) 29.1 (0.76) 1.17 (0.03) 

 

The ANOVA test showed that there was a significant effect of time (F = 2.44; p < 

0.05) on condition factor. However, the Tukey post-hoc test could not reveal any 

pairwise, significant differences between dates in condition factor. 
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Figure 4. (A) Seasonal change in plasma osmolality (mOsmol) of Arctic charr after 48 

h seawater tests and (B) gill Na+, K+-ATPase activities (µmol Pi mg prot.-1 h-1) of 

Arctic charr sampled in freshwater. Values represent means ± s.e.m. and different 

letters denote dates that are significantly different. 
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Plasma osmolalities after the seawater (SW) tests were significantly effected by 

time (F = 8.59; p < 0.001) but not by fork length (F = 0.28; p > 0.05). Plasma 

osmolalities were high after the seawater tests in winter, but decreased gradually from 

April until a nadir in June, after which there was an abrupt increase again until July 

when the level was similar to those observed during winter. Gill Na+, K+-ATPase 

activity was significantly affected by time (F = 2.95; p < 0.05) but not fork length 

(F=0.13; p > 0.05). A post-hoc Tukey test on plasma osmolalities showed that there 

were significant differences between sampling dates: between April 18th and 3 

sampling dates (June 6th, June 19th, July 3rd), also between the 3 sampling dates and 

July 17th.  Activity was low in April after which there was a 3-fold increase until 

mid-June and an abrupt decrease until mid-July when the activity was similar to that 

in April. 

 

3.2 Quantitative PCR (q-PCR) 

Table 10. Standard curve data from each plate, 18S representing the house keeping 

gene and leptin the leptin gene.  

 Slope  Intercept  R2 Threshold  

18S plate 1 -3.250127 38.825527 0.996142 0.02928645 

18S plate 2 -3.529757 41.250614 0.993853 0.1420303 

leptin plate 1 -3.255512 37.134991 0.998285 0.1191765 

leptin plate 2 -3.181794 36.726902 0.994460 0.1339628 

 

Thresholds were set manually at an early exponential phase for all samples. A 

linear standard curve was fitted for each plate with R2 around 0.995. We conclude that 

q-PCR efficiency for all samples in each plate should be almost the same from the 

standard curves. Relative leptin mRNA levels could then be measured by calculation 

from the q-PCR data. These data are shown in Figure 5. 
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Figure 5. Relative gill leptin mRNA expression in Arctic charr sampled in freshwater 

at the various sampling dates. 

 

Gill leptin mRNA expression were neither significantly effected by time (F = 1.07; 

p > 0.05), fish length (F = 0.32; p > 0.05) nor condition factor (F = 0.41; p > 0.05). 

Gill leptin mRNA level increased slightly in early April, but the individual variation 

was large at that point and the increase was not statistically significant. After returning 

to a similar level as in February, gill leptin mRNA level gradually increased from May 

to late July. Again there were large individual variations in leptin mRNA expression 

accompanying the increase in July.  
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4. DISCUSSION 

 

Leptin mRNA expression was found in gills of Arctic charr in this study. To the 

question: “what is the role of leptin if the gene is expressed in the gills of Arctic 

charr?”, my first guess would be that it might have some function related to ion- and 

osmoregulation of fish because of the major function of the gill in ion- and 

osmoregulation. In this study, Arctic charr were sampled during the smoltification 

period in freshwater. Seawater tests were performed to examine the development of 

hypoosmoregulation, and Na+, K+-ATPase activities were measured at various dates to 

reveal the smolting process in these fish. The activity of gill Na+, K+-ATPase, an 

enzyme directly involved in ionic extrusion in seawater, can be used as a valuable 

indicator of seawater adaptability in migrating salmonids (Folmar and Dickhoff, 1980; 

Hoar, 1988). Quantitative PCR was performed in order to examine possible changes 

in gill leptin mRNA during the smoltification. Concurrent changes in gill leptin 

expression and smoltification indices (e.g. gill Na+, K+-ATPase activity) would 

provide indication of a role of leptin in the gill associated with the smoltification 

process. However, the data obtained in the experiment gave no indication of such an 

association.  

 

4.1 Smolting 

Gill Na+, K+-ATPase activities increased significantly in the smoltifying Arctic 

charr. A peak in enzyme activity was reached in mid June, after which the activity 

decreased to the pre-smolting level by mid July. This observed increase in gill Na+, 

K+-ATPase activity is thought to be an important adaptation which enables smolts to 

successfully acclimate to the marine environment (Hoar, 1988). Since fish subjected 

to a seawater challenge test in early and mid June (when gill Na+, K+-ATPase 

activities reached a peak) had a significantly lower plasma osmolality than in winter 

and early spring after the seawater test, it confirms that gill Na+, K+-ATPase activity 

represents a predictive and reliable index of smolt development in anadromous Arctic 

charr, as in many other salmonids (McCormick et al., 1987). The low plasma 
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osmolality after the seawater test in mid-June (~360 mOsm) indicate that the fish in 

the present study developed full seawater tolerance since these plasma osmolality 

levels are close to those seen in fully smoltified Atlantic salmon after 24 h seawater 

tests (Strand et al., 2007). 

 

Smolting is a progressive sequence of events and does not refer only to the last 

changes occurring at the end of the stay in freshwater. It is a gradual process starting 

several weeks before readiness to enter the marine environment (Boeuf, 1993). Many 

processes involved in pre-adaptation (e.g. those associated with metabolic changes), 

are linked to the need to grow rapidly in seawater (Dickhoff et al., 1997). A stunting 

phenomenon is commonly observed in mariculture; fish do not grow, or cease 

growing, in seawater, probably due to incomplete smolt development (Boeuf, 1993). 

Smolting is also influenced by the growth in the juvenile stage. In Atlantic salmon, it 

has been shown that juvenile groups split into two modes in the distribution of length 

or weight (Boeuf et al., 1985). The larger individuals reach the size threshold for 

smolting before the small fish, and consequently smoltify and leave the river one year 

before their smaller siblings. In Atlantic salmon, the growth in length is very high near 

the end of smolting, and the condition factor (K=W . L-3 . 1000, W, weight in g, and  

L, fork length in cm) decreases at the same time, from a range of 1.25-1.40 in the 

Atlantic salmon pre-smolt to 0.90-1.00 in the smolt (Hoar, 1988). In the Arctic charr, 

on the other hand, the condition factor increased during the smoltification period from 

0.95 in April to 1.12 near the end of smolting in mid-June. Condition factor decreased 

in smolting Atlantic salmon due to increased length growth and utilization of energy 

(fat) reserves (Boeuf, 1993). Concentrations of liver and muscle cholesterol decrease, 

and triacylglycerol is used extensively during smolting (Sheridan et al., 1983). Lipid 

depletion results primarily from reduced triacylglycerols, the major lipid storage 

compounds (Sheridan and Kao, 1998). Glycogen depletion results from increased 

glycogen phosphorylase a activity and decreased glycogen synthetase activity, while 

lipid depletion results from increased triacylglycerol lipase activity and decreased 

fatty acid synthesis (Sheridan et al., 1985). These metabolic changes in Atlantic 
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salmon are important for fuelling the smoltification process (Sheridan, 1989) and the 

resulting change to a more slim body shape is considered to be adaptive for the 

change in life style from a bottom dwelling parr to a pelagic, actively swimming smolt 

(Hoar, 1988). The lack of any decrease in condition factor in Arctic charr during 

smoltification, as shown here indicate lower utilization of metabolic reserves such as 

lipid in smolting Arctic charr than in smolting Atlantic salmon. This indicates that the 

smoltification process is less costly in the anadromous Arctic charr than in the Atlantic 

salmon. For example, there is normally a several fold higher increase in gill Na+, 

K+-ATPase activity in salmon (Nilson et al., 2003) than in charr (Jørgensen et al, 2007; 

this study). Notably, as evident in Figure 4, variation of gill Na+, K+-ATPase activity 

of Arctic charr sampled in June was much larger than variation of plasma osmolality 

of the fish. It may suggest that a high hypoosmoregulatory ability and salinity 

tolerance is not only caused by high gill Na+, K+-ATPase activity in Arctic charr. It 

may also imply that the Arctic charr have established a pelagic life long before they 

start to smoltify.  

 

4.2 Leptin 

Leptin is an important hormone for regulating feed intake and balance in 

mammals (Friedman, 2002). Pufferfish leptin shares only 13.2% amino acid identity 

with human leptin, but the gene arrangement around the leptin gene and the 

three-dimensional (3D) structural protein model are well conserved between human 

and pufferfish leptin (Kurowaka and Murashita, 2009). Within mammalian classes, 

amino acid sequences of leptin are highly conserved (>80%). On the other hand, 

leptin sequences showed higher diversity (18-48% identical) within fish in a 

phylogenetic analysis (Kurowaka et al., 2005). Mammalian leptin is primarily 

produced by adipose tissue (Zhang et al., 1994). Leptin has impact on two central 

peptide signaling systems: it inhibits the orexigenic NPY/AGRP system; stimulates 

the anorexigenic pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript system (Arora, 2006; Meister, 2007). It is also 

involved in regulation of linear growth and cell differentiation and proliferation in 
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mammals (Gat-Yablonski and Philip, 2008). Recent studies have shown that the liver, 

rather than adipose tissue, is the major leptin expressing tissue in pufferfish 

(Kurokawa et al., 2005), common carp (Huising et al., 2006), rainbow trout 

(Murashita et al., 2008) and Arctic charr (Frøiland et al., 2009). The amino acid 

sequence of fish leptin is very different from that of mammalian leptin. Therefore, 

previous functional studies of human and rat leptin used in fish have provided 

contradictory results on the role of this hormone in fish (Silverstein and Plisetskaya, 

2000). However, the results of recombinant trout leptin injection in rainbow trout 

showed a strong anorexigenic effect, with a decrease in hypothalamic expression of 

NPY mRNA and increase in POMC mRNA (Murashita et al., 2008). Effects of leptin 

on other processes in fish, for example skeletal growth and lipid metabolism, has so 

far not been reported.  

 

The expression of leptin in fish gills (Kurokawa and Murashita, 2009) has 

probably nothing to do with the appetite regulating action of leptin seen in mammals 

and fish. In the present study I wanted to see if there are changes in gill leptin 

expression during the smolting process, to provide evidence for, or against, a 

paracrine role of leptin in the changes taking place in the fish gill during the smolting 

process. Such a role could, for example, be associated with the changes in gill lipid 

composition taking place during smolting. Lipid composition in the gills of Masu 

salmon (Oncorhychus masou) changes during parr-smolt transformation, shown 

mainly by decreasing levels of triglycerides (Takeuchi et al., 1990). Reduction of the 

triglyceride proportion in gill and body lipids were also observed in steelhead (Salmo 

gairdneri) (Sheridan et al., 1983). Further, it could be possible that leptin is involved 

in the stimulation of differentiation and proliferation of the chloride cells that takes 

place during smolting in anadromous salmonids (McCormick, 2001). The results 

provided no evidence for a role of leptin in the gill during smoltification, since there 

were no changes in leptin expression.  

 

 On the other hand it has been shown that seawater exposure, per se, stimulates 
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development of gill Na+, K+-ATPase activity and changes in lipid composition 

(Bystriansky and Ballantyne, 2006). It can therefore not be excluded that leptin is 

involved in processes taking place after seawater exposure and further studies should 

include sampling of gill tissue during the first period after transfer to seawater. Fish 

seem also to commonly possess two types of leptin (A and B type) genes, derived 

from whole-genome duplication early in the teleost lineage (Kurokawa and Murashita, 

2009). The Arctic charr leptin gene cloned in a recent study was a typical salmonid 

leptin gene (A type), but it is likely that the Arctic charr also have the B type leptin 

gene (Frøiland et al., 2009). Functional differences between these two leptin types 

have not been reported yet, but future studies on the role of leptin (endocrine and 

paracrine) should also include the B type leptin. Further, a regulation at the receptor 

level can not be excluded. The fish leptin receptor gene was first identified in marine 

medaka, Oryzias melastigma (Wong et al., 2007) and in Japanese medaka, Oryzias 

latipes (Kurokawa and Murashita, 2009). Quantitative and qualitative analysis of 

leptin receptor mRNA expression needs to be performed to examine the function of 

leptin in the gills of Arctic charr and other anadromous salmonids.  

 

4.3 Importance to fisheries management 

The study of parr-smolt transformation has become very important in various 

aspects of the management of natural populations of anadromous salmonids and in the 

rapidly growing mariculture industry. Since salmonids transform into a seawater state 

in the freshwater phase, before entering the sea, the physiological changes are 

therefore not triggered by the external salinity but by a ‘specific genetic program’ 

(Boeuf, 1993). External factors such as temperature and photoperiod synchronize the 

timing of the parr-smolt transformation (Hoar, 1976, 1988; Folmer and Dickhoff, 

1980; Wedemeyer et al., 1980). In the wild, migratory behaviour seems to be 

controlled by physiological status, but very little is known about the mechanisms 

triggering migration (seawater preference) (Ojima and Iwata, 2007). Moreover, smolts 

of many salmonid species remain a few days in the brackish water to adapt to full 

salinity seawater progressively (Zaugg et al., 1985). In salmon reared in captivity, the 
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fish are normally transferred directly to seawater. These fish may have problems 

adapting to the seawater environment if they possess an incomplete smolt status. 

Some big fish may survive, but not grow (the stunting phenomenon). The true smolt 

stage (so called smolt-window), which allows full adaptation to seawater followed by 

good growth, lasts for a very short time (Hoar, 1988). Changes in general body shape 

and coloration are not sufficient by themselves to determine true smolt status. 

Seawater tests and gill Na+, K+-ATPase activity analysis are necessary for reliable 

information about smolt status. In both intensive marine culture, where on-growing 

salmon are kept in net pens or ponds in the sea, and extensive culture, where the fish 

is released in rivers or coastal areas and recaptured at later stages, a good smolt 

quality is the key to maximize production. We must therefore have a deep 

understanding of both the physiological and behavioural aspects of smolting and there 

is still a paucity of knowledge, particularly regarding the behavioral part of the 

smolting process.  

 

 

5. CONCLUSION 

 

Leptin mRNA was found to be expressed in the gill of Arctic charr. We measured 

plasma osmolality and gill Na+, K+-ATPase activity to reveal the smolt status of the 

fish. Quantitative PCR were performed to see if gill leptin expression correlates with 

smolt indices. Seawater tolerance, as well as gill Na+, K+-ATPase activity, increases 

during the smoltification process. There was no change in gill leptin mRNA 

expression during and after smolting in the fish acclimated to freshwater. Results gave 

no evidence for a paracrine role of leptin in adaptational changes in gill during 

smolting. Further study of the possible role leptin in the fish exposure to seawater is 

needed. 
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APPENDIX 
 
Table I. PCR1 and PCR2 protocols to detect existence of genomic DNA.  

PCR1 (per reaction) PCR2 (per reaction) 

10X buffer 2.5µl 10X buffer 2.5µl 

dNTP 0.5µl dNTP 0.5µl 

Primer forward (10pm) 1.0µl Primer forward (10pm) 1.0µl 

Primer reverse (10pm) 1.0µl Primer reverse (10pm) 1.0µl 

Finn polymerase 0.3µl Finn polymerase 0.3µl 

H2O 19.2µl H2O 17.7µl 

DNase I treated sample 0.5µl PCR1 product 2.0µl 

Total volume 25µl Total volume 25µl 

 
Table II: PCR protocol for cDNA quality check (β-actin fragment amplification) 

cDNA quality check PCR (per reaction) 

10X buffer 2.5µl 

dNTP 0.5µl 

β-actin forward (10pm) 1.0µl 

β-actin reverse (10pm) 1.0µl 

Finn polymerase 0.3µl 

H2O 19.2µl 

Sample 0.5µl 

Total volume 25µl 
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Table III. PCR protocols for leptin gene amplification 

Leptin gene expression PCR (per reaction) 

10X buffer 5.0µl 

dNTP 0.5µl 

Leptin forward (10pm) 1.0µl 

Leptin reverse (10pm) 1.0µl 

Finn polymerase 0.5µl 

H2O 38.5µl 

MgCl2 1.5µl 

cDNA 2.0µl 

Total volume 50µl 

 
Table IV. Q-PCR protocols 

Leptin q-PCR (per reaction) 18S q-PCR (per reaction) 

Leptin forward (5pm) 1.5µl 18S forward (5pm) 1.5µl 

Leptin reverse (5pm) 1.5µl 18S reverse (5pm) 1.5µl 

SYBR Green  12.5µl SYBR Green  12.5µl 

cDNA+H20 (10X) 9.5µl cDNA+H20 (10X) 9.5µl 

Total reaction volume 25µl Total reaction volume 25µl 

 
 


