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Abstract 

Background: Lipids have important structural roles in cell membranes and changes to these 

membrane lipids may influence β- and γ-secretase activities and thus contribute to Alzheimer’s 

disease (AD) pathology. 

Objective: To explore baseline plasma lipid profiling in participants with mild cognitive 

impairment (MCI) with and without AD pathology. 

Method: We analysed 261 plasma lipid profiles using reversed phase chromatography mass 

spectrometry in cerebrospinal fluid (CSF) amyloid positive (Aβ+) or negative (Aβ-) 

participants with mild cognitive impairment (MCI) as compared to healthy controls. 

Additionally, we analysed the associations of plasma lipid profiles with performance on 

neuropsychological tests at baseline and after two years.  

Results: Sphingomyelin (SM) concentrations, particularly, SM(d43:2), were lower in MCI 

Aβ+ individuals compared to controls. Further, SM(d43:2) was also nominally reduced in 

MCI Aβ+ individuals compared to MCI Aβ-. No plasma lipids were associated with 

performance on neuropsychological tests at baseline or between the two time points after 

correction for multiple testing.  

Conclusion: Reduced plasma concentrations of SM, was associated with AD.   
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Introduction 
Alzheimer’s disease (AD) is a heterogeneous disorder where both amyloid and non-amyloid 

centric mechanisms could play different causative roles for the manifestations of the disease, 

i.e. familial vs. sporadic AD [1, 2]. The hallmarks of AD are extracellular plaques mainly 

containing β-amyloid peptides and intracellular neurofibrillary tangles consisting of hyper- 

and abnormally phosphorylated tau protein, both of which are reflected in the concentrations 

of the cerebrospinal fluid (CSF) biomarkers amyloid-beta42 (Aβ42) and CSF phosphorylated 

tau (p-tau), respectively [1]. Despite current clinical trials focusing on altering amyloid 

metabolism [3], and reports of some positive results [4], no effective disease-modifying 

treatment is currently available [5]. It is therefore crucial to explore other disease mechanisms 

as potential novel treatment targets, and to that end, novel non-amyloid markers as low-cost 

and feasible diagnostic and prognostic blood-based biomarkers are warranted [6].  

Several studies report altered blood lipid levels in sporadic AD pathology [7-10]. The human 

brain is a lipid-rich organ, highly abundant of cholesterol, glycerophospholipid and 

sphingolipid [11]. Lipids are required as energy storage and serve important structural and 

regulatory roles in cellular membrane formation, cellular transport, protein stabilisation and 

modulation, cell signalling, and regulation of gene expression [6]. 

The cellular membrane, exhibit lipids rafts, liquid-ordered domains rich in cholesterol, 

sphingolipids, including sphingomyelin (SM), and glycerophospholipids, including 

ganglioside 1 and 2 (GM1 and GM2, respectively) [11]. 

Amyloid precursor protein (APP), β- and γ-secretases are all transmembrane proteins, hence 

changes to the lipid raft and its composition and function might contribute to changes in β- 

and γ-secretase activities and consequently affect the production of Aβ42 in AD [6, 12].  

Investigating lipid homeostasis alterations during AD pathogenesis will complement the 

proteomic approaches channeled towards the development of early diagnosis of AD and 

possibly also AD progression [6]. These studies should be done in well characterized 

longitudinal cohorts aiming to link blood-based lipidomic changes with neuropathology and 

to integrate findings with known genomic and proteomic alterations in AD, and might make 

way for novel disease-modifying treatments [6, 9] although this has not always been the case 

in most previous studies. 

In this study we explore baseline plasma lipid profiling aiming to identify as many lipids as 

possible in participants with mild cognitive impairment (MCI) with and without AD 

pathology. We hypothesized that specific plasma lipids would associate with MCI due to AD, 

and possibly predict disease progression of cognitive impairment at two-year follow-up. 

 

Methods 

Materials 

Participants were drawn from the Norwegian multicentre longitudinal cohort study “Dementia 

Disease Initiation” (DDI) [3], which included participants from 2013 from referrals to  

memory clinics, or self-referrals from advertisements in media. Cognitively healthy controls 

were included among spouses of participants and from patients who had had a lumbar 

puncture for orthopedic surgery. Criteria for inclusion were age between 40 and 80, and 

native language from one of the three Scandinavian countries. Participants underwent a 

comprehensive evaluation including a full medical history, physical and neurological 

examinations and brain imaging in addition to blood tests and lumbar puncture. More details 

of recruitment and diagnostic procedures have been described previously [3]. The cognitive 
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examination battery included the Mini Mental State Examination (MMSE) [13], verbal 

learning and memory (CERAD word list test) [14], visuoperceptual ability (VOSP 

silhouettes) [15], psychomotor speed (Trail Making Test A: TMT-A), divided attention 

(TMT-B) [16] and verbal fluency (COWAT) [17]. Except for the MMSE, standardized T-

scores (M=50, SD=10) were calculated for the tests based on demographically adjusted norms 

[15, 18, 19]. The Clinical Dementia Rating (CDR) Scale was also used to assess cognitive and 

daily functioning [20] based on interviews of participants and an informant by a physician 

alone or together with a psychologist. The cognitive assessment is performed approximately 

every 2 years. Research staff participated in bi-annual meetings, with case discussions to align 

procedures.  

Out of the 658 participants available from the DDI cohort in January 2019, we identified 50 

Aβ+ (as defined below) MCI participants, who were sex and age matched by manual 

matching with 50 Aβ- MCI and 50 healthy controls, who, if possible, had completed the first 

follow up visit two years after baseline. One participant was later excluded due to later being 

reclassified as not having MCI. There were a few (1-5) missings on cognitive tests, and 138 

had complete follow-up cognitive assessment after an average of 24.5 months.  

Cognitive test battery and standardized classification of MCI diagnosis 

The NIA-AA criteria were used to classify MCI, requiring reporting of subjective cognitive 

impairment or decline, verified objectively by low performance on clinical cognitive tests in 

one or more cognitive domains [21, 22]. The cutoff value for MCI (defined as normal versus 

abnormal cognition) was results ≤ 1.5 standard deviations below the age, sex and education 

adjusted normative mean on either CERAD word list (delayed recall) [18], TMT-B, COWAT 

[19] or VOSP silhouettes (this test was only adjusted for age) [15].  

CERAD memory composite score 

In order to provide a robust measure of memory function, we constructed a memory 

composite score comprising subtests from The Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) wordlist memory test (WLT). The composite included 

CERAD subtest total learning, recall and recognition and was constructed following an 

established method for cognitive composites [23, 24]. Similar CERAD memory composite 

scores have previously been shown accurate in detecting prodromal AD [25]. Briefly, raw 

scores for CERAD subtest total learning (30 items), recall (10 items) and recognition (20 

items) were standardized to a score between 0 – 1. Then, these scores were summed and 

averaged to compute a 0 – 1 standardized composite score. In order to provide normative 

adjustment for pertinent demographics, a regression-based norming procedure [18, 26] was 

employed using n=146 healthy controls from the DDI cohort [3]. Standardized T-scores were 

then calculated for the participants in the present study. (See supplementary material, 

including supplementary table S1, S2 and S3 for a full description).  

Blood and cerebrospinal fluid 

Blood samples were drawn, collected and handled according to standardized procedures and 

then shipped to and stored at the main study center Akershus University Hospital (AHUS) and 

then shipped to the United Kingdom (UK) for lipid profiling (see below). Serum lipid 

analyses were performed locally at each center according to local procedures including total 

cholesterol, HDL cholesterol, LDL cholesterol and triglycerides. At two centres LDL 

cholesterol measurements were not done. For lipid profiling analyses EDTA blood samples 

were drawn, centrifuged at 1200 g for 13 min before plasma was aliquoted in polypropylene 

tubes and stored at -80°C. Time from venipuncture until aliquoted plasma was frozen was 

below 2 hours. Plasma was kept at -80°C until analysis.  
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Plasma lipid profiling was performed at King’s College London, UK, using methods as 

described in O’Gorman et al [27]. Briefly, 20uL of plasma sample was added to a 2mL 

Eppendorf tube. 20uL of 0.9% w/v NaCL (aq), 56uL of Chloroform/Methanol (2:1) 

containing 14 internal standards (10ug/mL for all) and 184uL of Chloroform/methanol (2:1) 

were added to the Eppendorf tube containing samples. The mixture was then vortexed and 

centrifuges at 1000g for 10 minutes under 4°C. The lipids containing lower chloroform layer 

was extracted for reverse phase analysis using ultra-high performance chromatography 

coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOFMS). 

The lumbar puncture procedure and CSF analyses, including Aβ42  and total tau (t-tau) and 

phosphorylated tau (p-tau)  analyzed at the Department of Interdisciplinary Laboratory 

Medicine and Medical Biochemistry at Akershus University Hospital have been described 

previously [3, 28]. The CSF Aβ42 measurements were dichotomized using a cutoff of  ≤ 708 

ng/L previously determined in a DDI PET [18F]-Flutemetamol uptake study [29]. 

Ethics 

All participants signed a written informed consent and the study was approved by the 

Regional Ethics Committee (2013/150). The entire study conduct was in line with the 

guidelines provided by the Helsinki declaration of 1964 (revised 2013) and the Norwegian 

Health and Research Act. 

Statistical analyses 

Demographic and serum lipids statistical analyses 

SPSS version 24 was used for statistical analyses for demographical baseline data and serum 

lipids. Normality was assessed by inspection of QQ-plots, histograms and the Shapiro-Wilk 

test of normality. For continuous variables with normal distributions, between-group 

comparisons were carried out using one-way ANOVAs. For the continuous variables of non-

normal distributions, between-group comparisons were performed with the Kruskal-Wallis 

tests. For statistically significant ANOVA, post-hoc Bonferroni (equal variances assumed) or 

Thamhane’s T2 (equal variances not assumed) were applied. For Kruskal-Wallis tests 

Bonferroni adjusted Dunn’s pairwise comparisons were performed. For dichotomous 

variables, between group comparisons were performed using Chi-square tests. 

Plasma lipid analyses 

RStudio (1.2.1335) was used for statistical analyses of the plasma lipids. All plasma lipids 

were normalized using inverse normal transformation (INT). Two participants with extremely 

high BMI were removed as outliers.  

The primary analyses were the association of plasma lipids with a) diagnosis i.e MCI Aβ+, 

MCI Aβ- and healthy controls, and b) memory function as measured by the baseline CERAD 

composite T score and the change between baseline and follow-up as residualized change 

score (Δ) as described below (ΔCERAD composite T-score). 

Secondary analyses were the associations of plasma lipids with the baseline of the other 

cognitive tests, i.e CERAD learning T-score, CERAD recall T-score, TMT A T-score, TMT B 

T-score, COWAT T-score, and VOSP T-score, and the change between baseline and follow-

up (ΔCERAD learning T-score, ΔCERAD recall T-score, ΔTMT A T-score, Δ TMT B T-

score, ΔCOWAT T-score, and ΔVOSP T-score). 

In preliminary analyses, linear regression analyses were used in order to investigate the 

association of each plasma lipid with each potential covariate (age, sex, education, BMI, 

HDL, LDL, TG, DM, HC, HT, lipid lowering medication, smoking status and APOE). In the 
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main univariate analyses both logistic and linear regression analyses were performed with 

diagnosis and cognition as the respective outcomes. Briefly, logistic regression was used to 

investigate the association of lipids with diagnosis at baseline and linear regression analyses 

were used to investigate the association of lipids with CERAD composite T score at baseline 

and the ΔCERAD composite T-score. Linear regression analyses were also run using all 

secondary outcomes. All logistic and linear regression analyses were adjusted for BMI, HC, 

HT and smoking status. As a next step the analyses were adjusted for APOE status. To 

calculate the change (Δ) in all cognitive outcomes between baseline and follow-up, each 

cognitive test at follow-up was regressed against the baseline and the residuals were used 

(further adjusted for months of follow-up). A Bonferroni threshold of p<0.005/70 was used 

whereby 70 is the number of lipid principle components explaining >95% of variation in 

lipids following principal component analysis. For the binary outcomes, the Odds Ratios (OR) 

represent the odds ratio for being MCI Aβ+  per 1-SD  (INT transformed) metabolite 

concentration and for the continuous outcomes the β-regression coefficients (beta) represent 

the change in the respective T-score between T1 and T2 per 1-SD  (INT transformed) 

metabolite concentration. 

 

As lipids are highly correlated and the number of variables exceed that of the observations 

(p>n), multivariate analysis was also performed on the main outcomes to observe whether 

associations between the lipids and the tested outcomes remained when taking into account 

lipids intercorrelation, and to identify which lipids are strong contributors to the outcomes.  

Two types of multivariate analyses, PLS-DA and Random Forests (RA), were run on the main 

outcomes. All lipids were regressed against all covariates and the lipid residuals were used for 

downstream multivariate analyses. Internal cross-validation was used (data was internally 

split into 75-25 train-test and 1000 bootstraps took place and average results presented).  

 

Results 
The baseline characteristics of the 149 participants are presented in Table 1. There were no 

significant differences between the groups regarding age, sex, education, medical history, 

smoking status, BMI or serum lipid status. The three groups differed regarding cognitive test 

scores (Table 1). A total of 261 lipids were identified, and annotated as ceramides (Cer) 

diacylglycerols (DG), phosphatidylcholines (PC), Lysophosphatidylcholines (LPC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI), sphingomyelins (SM) or 

triglycerides (TG). Most lipids were found to be inter-correlated (Supplementary Figure 1) 

and associated with many of the covariates (Supplementary Figure 2)   

Plasma lipid profile and MCI-AD vs MCI non-AD 

A sphingomyelin (SM(d43:2) was the only lipid associated with MCI Aβ+ compared to 

controls after passing correction for multiple testing, being decreased in MCI Aβ+ (OR=0.29, 

95% CI 0.14-0.56, p=6.2 x10-4) (Figure 1A). An additional 17 lipids were associated with 

MCI Aβ+ compared to controls at p<0.05. Further, 11 of these lipids were also associated 

with MCI Aβ+ compared to MCI Aβ- but no association passed correction for multiple testing 

(Figure 1B), with the strongest association at p<0.05 being with a TG (TG(60:2) (OR=2.32, 

95% CI 1.30-4.41, p=6.4 x10-3). It was also observed that SM(d43:2) was associated with 

MCI Aβ+ compared to MCI Aβ- at p<0.05 (OR=0.52, 95% CI 0.29-0.89, p=2.1 x10-2) (Figure 

1C). 
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Plasma lipid profile and cognitive impairment 

No associations with CERAD composite T-score at baseline or ΔCERAD composite T-scores 

passed correction for multiple testing (Figure 2A&B). Altogether 8 lipids were associated 

with CERAD composite T-score at baseline at p<0.05, the strongest association being with a 

Phosphatidylinositol (PI), PI(36:4) (beta=-2.82, 95% CI -4.9 to -0.74, p=8.2 x10-3), and; two 

no lipids were associated with ΔCERAD composite T-scores (the strongest association being 

with PC(O-36:0) (beta=-0.182, 95% CI -0.37 0.001, p=0.05). 

Regarding the secondary outcomes, two associations passed correction for multiple testing. 

These were both with two PIs (PI(38:3) and PI(38:4)) and baseline VOSP T-score (beta=-

3.98, 95% CI -6.0 –  -2.00 p=1.12 x10-4 and beta=-3.65, 95% CI -5.59 – -1.71, p p=2.89 x10-4 

respectively) (Supplementary Figure 3). 

The associations of all lipids with all main and secondary outcomes are presented in 

Supplementary Table 4 and Supplementary Figure 4. There was modest overlap between the 

lipids associated with each outcome. Most of the overlap across the different outcomes was 

for PIs. For example, PI(36:4), was associated with MCI Aβ+ diagnosis, with CERAD 

composite, learning and recall, and with VOSP T score at p<0.05. 

Multivariate data analysis highlighted that the lipids with the highest variable importance 

(VIP) in most models were the same lipids highlighted by univariate analysis (Supplementary 

Figure 5). This was most evident for the diagnosis models (MCI Aβ+ compared to controls), 

where the top lipids based on their VIP using PLS-DA(SM(d42:3) and SM(d43:2)) and RF 

(SM(d43:2)) were also the top molecules in univariate associations. The PLS-DA model 

predicted MCI Aβ+ with 0.624 accuracy (Sensitivity=0.623, Specificity=0.629 and 

AUC=0.638; the top model included 5 components) and the RF model with 0.662 accuracy 

(Sensitivity=0.691, Specificity=0.692 and AUC=0.662). 

 

Discussion 

The main finding in the current study, after screening 261 plasma lipids in individuals with 

MCI with and without AD pathology and healthy controls, was that a number of plasma SM 

concentrations, and particularly, SM(d43:2), were lower in MCI Aβ+ individuals compared to 

controls. Further, SM(d43:2) was also nominally reduced in MCI Aβ+ individuals compared 

to MCI Aβ-. Although no lipids were associated with CERAD composite T-score at baseline, 

or with ΔCERAD composite T-score after correction for multiple testing, a number of PI 

showed modest negative associations with CERAD composite T-score at baseline, i.e. an 

increase in PI was associated with a lower baseline CERAD composite T-score. Further, a PC 

showed borderline negative associations with ΔCERAD composite T-score, i.e. decrease in 

PC is associated with an increase in CERAD composite T-score between the two time points. 

Regarding the secondary outcomes, two PI were found to be negatively associated with VOSP 

T score at baseline, i.e. increase in PI was associated with decrease in VOSP at baseline after 

correction for multiple testing.  

 

Previous metabolomics studies have shown alterations in SM pathways in AD, although 

results are not always in agreement. A small cross-sectional study reported lower levels of 

plasma SM in AD patients compared to controls [30] while Toledo et al. found serum SM to 

be increased in AD and to be associated with worse cognitive outcomes [31]. Interlaboratory 

variability and methodology have been observed regarding the use of serum versus plasma 

and also marked differences in how they are processed. This might affect the results, further 

underlining the importance of consistency across laboratories [6].  
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Conflicting results could be due to the stage of the disease [30], as it has been reported that 

low levels of serum SM vary according to the timing of the onset of memory impairment, a 

deficit observed early in AD pathogenesis [32]. Similar results have been found concerning 

CSF, as Kosicek et al. reports significantly increased SM levels in CSF from individuals with 

prodromal AD compared to normal controls, however no change between mild and moderate 

AD groups and normal controls [33]. Interestingly, SM(d43:2) was detected as one of the key 

lipids that was altered in a study investigating the cerebrospinal fluid (CSF) lipidomic 

signature of ALS patients by mass spectrometry, similar to our approach, suggesting an 

involvement of the glyosphingolipid pathway in neurodegeneration in both AD and ALS [34].  

 

Glycosphingolipids have been shown to bind specifically to Aβ oligomers on synaptic 

membranes of neurons [35]. In accordance with these data and our data on altered 

sphingomyelins in MCI/AD, Molander-Melin et al. showed that biochemical equivalents of 

lipid rafts also termed detergent resistant microdomains from frontal cortex of AD brains 

displayed higher concentration of ganglioside GM1 and GM2 [36] compared to normal 

control brains. 

 

PI have been found to be present in tau aggregates [37], however, despite previous 

recommendation of linking longitudinal changes in lipids not only to Aβ levels, but also tau 

pathology [6], associations of PI or any plasma lipid with tau pathology was not the scope of 

this study. Whilst Mapstone et al. [7] found a PI to be one in ten serum lipids that can 

accurately predict memory loss in up to 90% of cases 2 years before the onset of dementia [7], 

these results could not be replicated in a later study [38]. Thus, the role of PI in cognitive 

impairment remains unclear.  

In the current study we present norms for a CERAD composite measure. The use of a 

CERAD composite measure as a primary outcome could be a limitation, as this could mask 

domain specific cognitive functions such as learning, recall and recognition, which are 

qualitatively different aspects of learning and memory. However, a composite measure may 

also offer a more robust and reliable index of learning and memory function. A composite 

score capitalizes on regression towards the mean. I.e., the participant is less likely to obtain 

two or more low scores on several measures of learning and memory function and may be 

more robust against chance low performance on one measure not related to neurodegeneration 

or cerebral dysfunction (e.g. low motivation or inattention during a particular test). We also 

investigated associations with lipids and two of the subdomain measures of the CERAD word 

list test (learning and delayed recall) as well as other cognitive domains (psychomotor speed, 

executive functions, verbal fluency/language, and visual cognition) in the secondary analyses. 

We did not find any significant associations between lipids and the composite score or 

specific subdomain measures of verbal learning and memory. The utility of this measure 

needs to be further explored with regard to sensitivity and specificity for AD in longitudinal 

follow-up cohorts.  

Other limitations of this study include the rather small size of the samples and potentially the 

non-fasting design [39]. We have done plasma lipid analyses, which have also been done by 

other researchers [7, 8], while others have used serum [32]. Future interlaboratory agreement 

regarding methodology is of importance in order to be able to replicate the findings. 

 

The strengths of this study include the randomized and longitudinal design and the age and 

sex matched samples. In addition this study holds information regarding proteomics and 

genetics in relation to lipidomics, which has previously been identified as a potential focus for 

further studies [6].  
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Furthermore, we used logistic and linear regression analyses controlling for a number of 

variables that are associated with lipids and which are also known to be associated with AD 

and cognitive decline. These included age, sex, BMI, lipid lowering medication, smoking 

status, and history of hypercholesterolemia and hypertension. As the number of lipid variables 

is high and many lipids are inter-correlated we also employed a machine learning approach 

using PLS-DA and RF for the main outcomes. Results from the two approaches were in 

agreement, especially for the diagnosis that showed the strongest associations with lipids.  

 

In conclusion, we found that plasma sphingomyelins concentrations, and particularly, 

SM(d43:2), were lower in MCI Aβ+ individuals compared to controls and also nominally 

reduced in MCI Aβ+ individuals compared to MCI Aβ-.  

Future randomized studies with a longitudinal design, possibly with longer observational 

times are warranted in order to achieve additional knowledge and understanding of the lipid 

contribution to AD pathology.  

Lipid alterations associated with AD pathology could possibly complement the proteomic 

approach channeled toward development of a low-cost and safe method to identify early AD 

pathology, progression and potential novel treatment modalities.  
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Table 1.  Baseline demographic and clinical characteristics 
Variable Groups F / χ2 , (p) ANOVA post-hoc 

(Bonferroni/Tamhane’s)/Dunn’s 

pairwise comparisons (p)  

 1. Healthy         

controls 

n=50 

2. MCI Aβ42+ 

n=50 

3. MCI Aβ42- 

n=49 

 1 vs 2 1 vs 3 2 vs 3 

Age Mean (SD) 65.0 (6.8) 65.3 (8.0) 64.9 (9.5) F=0.03#, (p=0.97)      

Female n (%) 25 (50) 25 (50) 24 (49) χ2=0.01, (p=1.0)    

Years of education Mean (SD) 13.7 (3.0) 13.9 (3.4) 13.4 (3.3) F=0.28, (p=0.75)      

Smoking count (%)         

    Current smoker 5 (20) 8 (32) 12 (48)  

χ2=6.0 (p=0.2)  

 

   

    Previous smoker 18 (30) 22 (37) 20 (33)    

    Non-smoker 27 (43) 19 (30) 17 (27)    

BMI mean (SD) 26.3 (3.6) 25.1 (3.8) 26.6 (4.7) F=1.83, (p=0.17)    

Medical history, count (%)  

    Hypercholesterolemia 16 (32) 19 (38) 18 (37) χ2=0.4, (p=0.8)    

    Hypertension 19 (38) 12 (24) 19 (39) χ2=3.1, (p=0.21)    

    Diabetes Mellitus 3 (6) 3 (6) 2 (4) χ2=0.2, (p=0.89)    

Serum Lipids mean (SD)        

    Total Cholesterol 5.3 (1.2) 5.7 (1.4) 5.3 (1.1) F=1.67, (p=0.19)    

    HDL Cholesterol 1.5 (0.4) 1.6 (0.4) n=49 1.5 (0.4) F=0.02, (p=0.99)    

    LDL Cholesterol 3.4 (1.2) n=47 3.9 (1.6) n=24 3.1 (0.9) n=30 F=2.4#, (p=0.05)    

    Triglycerides median (IQR) 1.2 (0.82) 1.2 (0.82)n=49 1.1 (0.77) χ2=0.90, (p=0.64)    

CERAD composite T-score 

Mean (SD) 

52.2 (9.6) 32.3 (9.4)n=48 40.1 (9.1)n=46 F=57.7, (p<0.001)   p<0.001   p<0.001   p<0.001 

CERAD Learning T-score 

Mean (SD)  

51.5 (10.2) 34.8 (8.4) 40.8 (10.4) F=37.9, (p<0.001) p<0.001 p<0.001 p=0.01 

CERAD Recall T-score Mean 

(SD)  

52.3 (9.7) 31.4 (9.6) 38.9 (10.2) F=57.7, (p<0.001) p<0.001 p=<0.001 p=0.001 

TMT-A T-score Mean (SD)   47.3 (9.6) n=49 41.0 (10.6) 42.1 (9.4) F=5.6, (p=0.004) p=0.006 p=0.032 p=1.0 

TMT-B T-score Mean (SD)   49.0 (7.4) n=49 37.2 (13.3) 43.1 (11.1) F=16.4#, (p<0.001) p<0.001 p=0.007 p=0.06 

COWAT T-score Mean (SD) 49.8 (8.6) n=49 46.2 (9.7) 43.7 (7.2) n=48 F=6.1, (p=0.003) p=0.12 p=0.002 p=0.47 

VOSP T-score Mean (SD) 2.9 (10.4) n=49 44.0 (11.1) n=47 45.8 (11.7) n=48 F=8.7, (p<0.001) p<0.001 p=0.006 p=1 

CSF Aβ1-42 Mean (SD)  1010 (248) 546 (100) 1046 (196) F=172.5#, (p<0.001) p<0.001 p=0.81 p<0.001 

CSF t-tau Mean (SD)   334 (165) 

 

577 (305) 

 

373 (258) 

 

F=12.3#, (p<0.001) p<0.001 p=0.75 p=0.002 

CSF p-tau Mean (SD)   56 (20) 82 (38) 

 

58 (32) F=9.2#, (p<0.001) p<0.001 p=1.0 p=0.004 

APOE-ε4 count (%)        

    Heterozygote 22 (44) 23 (46) 19 (40)  

χ2=27.5, (p<0.001) 

   

    Homozygote 1 (2) 14 (28) 1 (2)    

    Non-carriers 27 (64) 13 (26) 28 (58)    

 

n=sample size; F=F-statistic; # =Welsh correction; χ2= chi-square or Kruskal-Wallis statistic; p=p-value. 
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Figure 1A 
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Figure 1B 
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Figure 1C 

 

 

Figure 1 Legends 

1. Volcano plots depicting the association of the 261 lipids with the main diagnostic 

outcomes: Controls vs MCI Aβ+ (A) and MCI Aβ- vs MCI Aβ+ (B) following logistic 

regression analyses. The black lines in the volcano plots represent the p<0.05 threshold and 

the red lines represent the multiple correction threshold at p<0.0007.  X-axis represents the 

OR (MCI Aβ+ vs Controls and MCI Aβ- respectively) and y-axis represents -log10 

transformed p-value from the logistic regression. C) Boxplot of SM.d43.2. levels (Inverse-

variance transformed) in the three groups (Controls, MCI Aβ- and MCI Aβ+).  
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Figure 2A 
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Figure 2B  
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Figure 2 Legends 

2. Volcano plot depicting the association of the 261 lipids with CERAD composite T score at 

T1 (A) and ΔCERAD composite T score (Β) following linear regression analyses. The black 

lines in the volcano plots represent the p<0.05 threshold and the red lines represent the 

multiple correction threshold at p<0.0007.  X-axis represents the beta coefficient (change in T 

score per 1-SD increase in Inverse-variance transformed lipid levels) and y-axis represents -

log10 transformed p-value.  
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Supplementary material 

Demographically adjusted CERAD memory composite age 41-80 years  

Procedure for construction of the CERAD memory composite 

 Raw scores for CERAD subtest total learning (30), recall (10) and recognition (20) was 

standardized to a score between 0 – 1 using the following the formula: (raw score - minimum 

possible score)/(maximum possible score - minimum possible score).  Then, these scores were 

summed and averaged to compute a 0 – 1 standardized composite score.  

In order to provide normative adjustment for pertinent demographics, a regression-based 

norming procedure was employed.  

 

Normative adjustment of the CERAD memory composite 

Norms were based on the performance of n=146 healthy normal controls from the DDI 

study[3]. We used regression norming procedures similar to Kirsebom et al [18] and Testa el 

al [26] which requires 5-6 times smaller sample size compared to conventional discrete 

norming procedures [40]. Demographics of the normative sample are shown in Table 1. We 

first normalized the control group standardized composite score by retrieving the cumulative 

frequency distribution for the score. The resulting distribution was converted into a standard 

scaled score with a mean of 10, and a standard deviation of 3 (Table 2).  We then regressed 

the resulting scaled scores on age, gender and education. Plots of standardized residuals 

predicted values were assessed to ensure that the assumption of homoscedasticity was not 

violated, and normality of the residuals was checked visually with Q-Q plots. 

Demographically adjusted T-scores are computed using the following stepwise procedure: 1) 

Look up the scaled score for a given subtest in Table 2. 2) Use the regression coefficients 

found in Table 3 to obtain a predicted scaled score [intercept + individual age(coefficient for 

age) + individual gender(coefficient for gender) + individual years of education(coefficient 
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for education)]. 3) Then, subtract the actual scaled score from the predicted scaled score and 

divide it by the standard deviation of the residual (Table 3) to obtain a standardized z score 

which may be converted to a T score [T = z(10)+50].  

 

  

Table S1. Healthy control group demographics   
 

Variable 

 

DDI Healthy controls  

n=146 

Age Mean (SD) 

[Range] 

62 (8.9)  

[41-80) 

Years of education Mean (SD) 

[Range] 

14.3 (3.2) 

[8-23] 

Female n (%) 85 (58 %) 
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Table S2. Unadjusted CERAD composite to scaled score conversion   
 

Scaled score 

 

Standardized average of CERAD composite 

3 ≤0.4278 

4 .4279-.4330 

5 .4331-.5908 

6 .5909-.6278 

7 .6279-.6889 

8 .6890-.7444 

9 .7445-.7889 

10 .7890-.8361 

11 .8362-.8645 

12 .8646-.8889 

13 .8890-.9222 

14 .9223-.9530 

15 .9531-.9556 

16 .9557-.9784 

17 .9785-.9889 

18 ≥9890 
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Table S3. Normative regression models for the CERAD memory composite score 
Variable Predictor B Standard error B T P Partial R2 SD Residual 

CERAD 

Learning  

 

Intercept 

 

15.269 

 

1.874 

 

8.146 

 

 

<.0001 

 2.47311 

 Age -0.129 0.024 -5.420 <.0001 0.17  

 Education 0.170 0.064 2.671 <.01 0.05  

 Sex 1.210 0.423 2.857 <.001 0.05  

Notes. B = unstandardized regression coefficient; T = the t test statistic; SD = standard deviation. 
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Supplementary Figure 1   

 

Supplementary Figure 1. Heatmap depicting pairwise correlations of lipid measures. 

Colours represent the Pearson’s correlation coefficients (rho) with positive correlations in red 

and, negative correlations in blue. Lipids are ordered by lipid family. 
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Supplementary Figure 2 

 

Supplementary Figure 2. Heatmap depicting the associations between each the 261 lipids 

and each of the covariates. Color denotes the direction of effect between each lipid and each 

covariate after regressing each lipid against each covariate (red: positive association, green 

negative association).  Color intensity represents p-value with associations with p>=0.05 

being in white. The Bonferroni corrected p-value threshold is p<0.0007. 
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Supplementary Figure 3. 

 

Supplementary Figure 3. Volcano plot depicting the association of the 261 lipids with 

VOSP T score at T1, following linear regression analyses. The black lines in the volcano plots 

represent the p<0.05 threshold and the red lines represent the multiple correction threshold at 
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p<0.0007.  X-axis represents the beta coefficient (change in T score per 1-SD increase in 

Inverse-variance transformed lipid levels) and y-axis represents -log10 transformed p-value.  

 

 

 

 

  



 

28 
 

Supplementary Figure 4.   

 

Legend Figure 4. Heatmap depicting  the associations between each the 261 lipids and each 

outcome (Controls vs MCI Aβ+,  MCI Aβ- vs MCI Aβ, and all the cognitive  outcomes at T1 

and the  residualised change (Δ) between T1 and T2), following logistic and linear regression 
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L
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id

P-value

p>=0.05

0.0007>=p<0.05

p<0.0007

Direction of effect

Negative
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Association of Lipids with Main and Secondary Outcomes
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analyses.  For cognitive outcomes color denotes the direction of effect (beta) between each 

lipid and each outcome after linear regression analyses (red: positive association, green 

negative association).   For the diagnostic outcomes, red indicates increased odds in controls 

(i.e. a positive diagnostic outcome) and green indicates decreased odds in controls, in order to 

be able to directly compare with the continuous cognitive outcomes. Color intensity 

represents p-value; associations with p>=0.05 are in white. The Bonferroni corrected p-value 

threshold is p<0.0007.  
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Supplementary Figure 5. 
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5D 
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5E 
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5G 
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5H 

 

Variable Importance (VI) of the top 20 lipids following multivariate analyses. A). Controls vs 

MCI Aβ+ using PLS-DA; B) Controls vs MCI Aβ+ using RF; C) MCI Aβ- vs MCI Aβ+ 

using PLS-DA; D) MCI Aβ- vs MCI Aβ+ using RF; E) CERAD composite T at T1 using PLS 
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regression; F) CERAD composite T at T1 using RF regression; G) ΔCERAD composite T 

using PLS regression; Η) ΔCERAD composite T using RF regression. 

 

 

 


