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Abstract
For a real-analytic connected CR-hypersurface M of CR-dimension n ≥ 1 having a
point of Levi-nondegeneracy the following alternative is demonstrated for its symmetry
algebra s = s(M): (i) either dim s = n2 + 4n + 3 and M is spherical everywhere;
(ii) or dim s ≤ n2 + 2n + 2 + δ2,n and in the case of equality M is spherical and has
fixed signature of the Levi form in the complement to its Levi-degeneracy locus. A version
of this result is proved for the Lie group of global automorphisms of M . Explicit examples of
CR-hypersurfaces and their infinitesimal and global automorphisms realizing the bound in
(ii) are constructed. We provide many other models with large symmetry using the technique
of blow-up, in particular we realize all maximal parabolic subalgebras of the pseudo-unitary
algebras as a symmetry.

Keywords Real hypersurface in complex space · CR-automorphism · Holomorphic vector
field · Submaximal symmetry dimension · Parabolic subalgebra · Gap phenomenon

Mathematics Subject Classification 32V40 · 32C05 · 32M12 · 53C15

1 Introduction

1.1 Formulation of the problem

Investigation of symmetry is a classical problem in geometry. For a class C of manifolds
endowedwith particular geometric structures, denote by s(M) the Lie algebra of vector fields
on M preserving the structure (infinitesimal automorphisms). It is important to determine
the maximal value Dmax of the symmetry dimension dim s(M) over all M ∈ C.

Often the values immediately below Dmax are not realizabile as dim s(M) for any M ∈ C,
which is known as the gap phenomenon. One then searches for the next realizable value, the
submaximal dimension Dsmax, thus obtaining the interval (Dsmax, Dmax) called the first gap
(or lacuna) for the symmetry dimension.

The first and next gaps were successfully identified in Riemannian geometry, both in the
global and infinitesimal settings [22,23], see also [13,18]. A large number of other situations
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where the gap phenomenon has been extensively studied falls in the framework of parabolic
geometry [6], see the results and historical discussion in [31].

This article concerns symmetry in CR-geometry. While there was a considerable progress
for Levi-nondegenerate CR-manifolds, in which case the geometry is parabolic, the problem
of bounding symmetry dimension in general has been wide open.

1.2 The status of knowledge

Recall that an almost CR-structure on a smooth manifold M is a subbundle H(M) ⊂ T (M)

of the tangent bundle, called the CR-distribution, endowed with a field of operators Jx :
Hx (M) → Hx (M), J 2x = −id, smoothly depending on x ∈ M . CR-dimension of M is
CRdimM = 1

2 rank H(M), CR-codimension ofM is dim M−rank H(M). The complexified
CR-distribution splits H(M) ⊗ C = H (1,0)(M) ⊕ H (0,1)(M), where

H (1,0)
x (M) = {X − i Jx X | X ∈ Hx (M)}, H (0,1)

x (M) = {X + i Jx X | X ∈ Hx (M)}.
The almost CR-structure on M is said to be integrable if the distribution H (1,0)(M) is invo-
lutive. An integrable almost CR-structure is called a CR-structure and a manifold equipped
with a CR-structure a CR-manifold. In this paper we consider only CR-hypersurfaces, i.e.
CR-manifolds of CR-codimension 1.

A real hypersurface M in a complex manifold (M,J ) has an induced CR-structure:
Hx (M) = Tx (M)∩Jx Tx (M) and Jx = J |Hx (M) for x ∈ M . Conversely, every analytic CR-
hypersurface is locally realizable as such real hypersurface of CR-dimension dimC M − 1.
In smooth situation a realization is not always possible, but in this article we restrict to
real analytic CR-structures and hence make no distinction between abstract and embedded
CR-hypersurfaces.

The Levi form of a CR-hypersurface M at x is given by the formula LM (x)(ζ, ζ ′) =
i[z, z′](x)mod Hx (M) ⊗ C, ζ, ζ ′ ∈ H (1,0)

x (M), where z, z′ are arbitrary local sections of
H (1,0)(M) near x such that z(x) = ζ , z′(x) = ζ ′. By identifying Tx (M)/Hx (M)with R, this
is a Hermitian form on the CR-distribution defined up to a real scalar multiple.

As shown in classical works [7–9,40,41], see also [5,6], the dimension of the symmetry
algebra s(M) of a Levi-nondegenerate connected CR-hypersurface M of CR-dimension n
does not exceed n2 + 4n + 3. If dim s(M) attains this bound then M is spherical, i.e. locally
CR-equivalent to an open subset of the hyperquadric

Qk =
{
(z, w) ∈ C

n × C : Imw =
k∑
j=1

|z j |2 −
n∑

j=k+1

|z j |2
}

(1.1)

for some 0 ≤ k ≤ n/2. The Levi form of Qk has signature (k, n − k) everywhere and
dim s(Qk) = n2 + 4n + 3 for all k. Thus, for the class of Levi-nondegenerate connected
CR-hypersurfaces of CR-dimension n one has Dmax = n2+4n+3. Further, Dsmax = n2+3
in the strongly pseudoconvex (Levi-definite) case for n > 1 and Dsmax = n2 + 4 in the
Levi-indefinite case [30]. The situation n = 1 is exceptional with Dsmax = 3 [7,8,31].

In the absence of Levi-nondegeneracy, finding the maximal and submaximal dimensions
of the symmetry algebra is much harder. As is customary, assume the CR-manifold M and
the vector fields forming the symmetry algebra to be real-analytic. Then s(M) = hol(M) is
finite-dimensional provided that M is holomorphically nondegenerate, see [2, §11.3, §12.5],
[11,39]. Regarding the maximal symmetry dimension Dmax, the following is a variant of
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Beloshapka’s conjecture, cf. [4, p. 38]. The authors of [28] argument that for n = 1 this is a
version of Poincaré’s problème local [35].

Conjecture 1.1 For any real-analytic connected holomorphically nondegenerate CR-
hypersurface M of CR-dimension n one has dim s(M) ≤ n2 + 4n + 3, with the maximal
value n2 + 4n + 3 attained only if on a dense open set M is spherical.

For n = 1 the above conjecture holds true since a 3-dimensional holomorphically non-
degenerate CR-hypersurface always has points of Levi-nondegeneracy. For n = 2 the
conjecture was established in [21] where the proof relied on a reduction of 5-dimensional
uniformly Levi-degenerate 2-nondegenerate CR-structures to absolute parallelisms (see [2,
§11.1] for the definition of k-nondegeneracy). Thus, for real-analytic connected holomorphi-
cally nondegenerate CR-hypersurfaces of CR-dimension 1 ≤ n ≤ 2 one has, just as in the
Levi-nondegenerate case, Dmax = n2 + 4n + 3.

It was shown in [28] that for n = 1 the condition dim hol(M, x) > 5 for x ∈ M implies
that M is spherical near x , where hol(M, x) is the Lie algebra of germs at x of real-analytic
vector fields on M whose flows consist of CR-transformations. In [19] we gave a short proof
of this fact, and, applying the argument of [19] to the symmetry algebra s(M) instead of
hol(M, x), one also obtains Dsmax = 5. Notice that the result of [19,28] improves on the
statement of Conjecture 1.1 for n = 1 by replacing the assertion of generic sphericity of M
by that of sphericity everywhere.

Further, in the recent paper [20] we considered the case n = 2. It was shown that in this
situation either dim s(M) = 15 and M is spherical, or dim s(M) ≤ 11 with the equality
occurring only if on a dense open subset M is spherical with Levi form of signature (1, 1).
This result improves on the statement of Conjecture 1.1 for n = 2 as it yields sphericity near
every point of M . In addition, we constructed a series of examples of pairwise nonequivalent
CR-hypersurfaces with dim s(M) = 11 thus establishing Dsmax = 11. This fact also led to
the following analogue of the result of [28] for n = 2: the condition dim hol(M, x) > 11 for
x ∈ M implies that M is spherical near x , and this estimate is sharp.

1.3 Main results

In the present paper we assume that n is arbitrary and that the Levi-nondegeneracy locus is
nonempty, which is a condition stronger than holomorphic nondegeneracy. Of course, in this
case M is Levi-nondegenerate on a dense open subset of M , perhaps with different Levi-
signatures at different points, and the symmetry dimension is finite. One of our goals is to
determine the maximal and submaximal dimensions in this situation.

Theorem 1.2 Assume that M is a real-analytic connected CR-hypersurface of CR-dimension
n ≥ 1 having a point of Levi-nondegeneracy. Then for its symmetry algebra s = hol(M)

exactly one of the two situations is possible:

(i) dim s = n2 + 4n + 3 and M is spherical everywhere,
(ii) dim s ≤ n2 + 2n + 2 + δ2,n and in the case of equality M is spherical on its Levi-

nondegeneracy locus with fixed signature of the Levi form.

Moreover, the upper bound in (ii) is realizable and so the submaximal dimension is Dsmax =
n2 + 2n + 2 + δ2,n.

This result improves on the statement of Conjecture 1.1. Note that the result is global in
M , even if one takes M = U to be a small fixed neighborhood of a point x ∈ M . The proof
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of the theorem also leads to the following local version of the result, generalizing theorems
from [19,20,28] for arbitrary n.

Corollary 1.3 With the assumptions of Theorem 1.2 in the case n ≥ 3 the condition
dim hol(M, x) > n2 + 2n + 2 for x ∈ M implies that M is spherical in a neighborhood of
the point x, and this estimate is sharp.

As in papers [19,20], our argument relies on the techniques fromLie theory, notably on the
description of proper subalgebras of maximal dimension of su(p, q) obtained in Theorem
3.3, where 1 ≤ p ≤ q , p + q ≥ 3. These pseudo-unitary algebras are precisely the maximal
symmetry algebras of spherical models. We show that among proper maximal subalgebras
of those the maximal dimension is attained on certain parabolic subalgebras. This raises the
question if all parabolic subalgebras can be symmetries of CR-hypersurfaces. To this we
answer affirmatively as follows.

Theorem 1.4 All maximal parabolic subalgebras of the pseudo-unitary algebra su(p, q) are
realizable as the symmetry of a certain blow up of the standard hyperquadric (1.1).

We suggest that other (non-maximal) parabolic subalgebras can be realized as symmetries
of iterated blow-ups, and we demonstrate this in the first non-trivial case of CR-dimension
n = 2. This contributes to the models with large symmetry algebras considered in [20]. The
general problem is discussed in the conclusion of the paper.

Note that a blow-up construction in CR-geometry has been discussed so far only phe-
nomenologically [24,27], and even a formal definition of this procedure was lacking in
general (so rather a blow-down has been identified in loc.cit.). We approach the general
problem in Sect. 2.1. The relation of such blow-up to symmetry is not straightforward. We
discuss it in Sects. 2.2 and 2.3. For instance, we will show that an iterative blow-up (which
can be considered as one blow-up from the naïve topological viewpoint) can reduce the
symmetry beyond expectations.

It is not true that all sub-maximally symmetric models can be obtained by the proposed
blow-up construction. This concerns the series ofmodels in [20] andwe constructmore exam-
ples in Sect. 4.1. Actually, Theorem 4.1 gives a series of examples of pairwise nonequivalent
CR-hypersurfaces with the submaximal value dim s(M) = n2 + 2n + 2 for n �= 2. However
all examples we constructed and investigated can be shown (in many cases a-posteriori) to
be obtained by a blow-up with an additional ramified covering that we describe in Sect. 4.3.
This gives a new powerful tool for generating symmetric models in CR-geometry.

Finally, let us characterize Lie groups of automorphisms with large dimensions.

Theorem 1.5 Under the assumptions of Theorem 1.2 the automorphism group G = Hol(M)

satisfies one of the alternatives:

(i) dimG = n2 + 4n + 3 and M is spherical everywhere,
(ii) dimG ≤ n2 + 2n + 2 + δ2,n and in the case of equality M is spherical on its Levi-

nondegeneracy locus with fixed signature of the Levi form.

The upper bound in (ii) is realizable, implying that the submaximal dimension of the auto-
morphism group is the same Dsmax as in the Lie algebra case.

The structure of the paper is as follows. In Sect. 2we introduce theCRblow-up, as ourmain
tool to create examples, and we construct some models with large symmetry algebra/group
of automorphims. In Sect. 3, using the algebraic and analytic techniques, we derive a sharp

123



Blow-ups and infinitesimal automorphisms of CR-manifolds 1705

upper bound on the symmetry dimension, thus proving the maximal and submaximal sym-
metry bounds; the reader interested in the gap phenomenon can proceed directly there. Then
in Sect. 4 we provide further examples, containing an infinite sequence of submaximally
symmetric and other models with large symmetry. Finally, in the Conclusion we formulate a
more general conjecture on the symmetry dimension of CR-hypersurfaces and discuss other
relevant problems.

2 The blow-up construction

Recall a construction from affine geometry. Let L be a subspace of a vector space V ,
codim(L, V ) = m. The blow-up of V along L (below � is a subspace and x a point)
is

BlLV = {(x,�) : x ∈ � ⊃ L; codim(L,�) = 1}.
This works over any field, in particular for complex V , L,� the blow-up is a complex
algebraic manifold. The projection πL : BlLV → V , (x,�) 
→ x , is a biholomorphism
when restricted to π−1

L (V \L), and π−1
L (x) = P(V /L) � CPm−1 for x ∈ L .

The construction canonically extends to complex analytic geometry: if L is a complex
submanifold of a complexmanifold V , apply the above formula using local charts V ⊃ Uα �
C
n , straightening L∩Uα and patching the charts to obtain BlLV , see e.g. [16]. The projection

πL : BlLV → V is holomorphic and satisfies the same properties: π−1
L (V \L) � V \L and

π−1
L (x) � CPm−1 for x ∈ L . Everywhere below we will assume that m = codimL > 1,

because otherwise BlLV � V for m = 1.
Our aim is to extends this construction from complex geometry to CR-geometry. Though

such a construction can be given on the abstract level, it is convenient to present a version for
embedded CR-surfaces and we restrict to hypersurfaces. In this section we formulate only the
standard blow-up; variations on it, like iterated blow-ups, weighted blow-ups and ramified
coverings will be discussed in Sect. 4.3.

2.1 Blow-up in CR-geometry

Let ι : M ↪→ V be a real hypersurface in a complex manifold of dimension n + 1 and
πL : BlLV → V a blow-up along a complex submanifold L meeting M ≡ ι(M). In
general, L does not belong to M and the germ of L along M ⊂ V is uniquely determined by
L ′ = L ∩ M . Define

M̃ = π−1
L (M) = (M\L ′) ∪ π−1

L (L ′) ⊂ BlLV .

This subset has singular points 	M̃ ⊂ π−1
L (L ′). For our purposes it is enough to describe

singularities in an affine chart: V = C
n+1 and L ⊂ V a subspace.

Lemma 2.1 A point x̃ = (x,�) ∈ M̃ belongs to 	M̃ if and only if x = πL(x̃) ∈ L ′ and
� ⊂ H(x), where H(x) is the CR-plane of M at the point x.

Proof Let M be the zero set of a non-singular function f : V → R, i.e. dx f �= 0 for all
x ∈ M . A point x̃ is critical for f̃ = π∗

L f if dx̃ f̃ = 0. Since H(x) ⊂ TxM = Ker(dx f ), the
map dx̃ f̃ = dx f ◦ dx̃πL : Tx̃BlLV → R factorizes through TxV /H(x) � C.
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Since πL is a diffeomorphism outside L , we can restrict to x ∈ L ′. With such x one readily
verifies that the image of dx̃πL : Tx̃BlLV → TxV at x̃ = (x,�) coincides with �, and so it
belongs to the kernel of dx f if and only if � ⊂ H(x).

Thus x̃ is non-singular unless Tx L = Tx L ′ ⊂ � ⊂ H(x). A priori it could happen that
M̃ possesses another defining function f̃ near such x̃ that is not a pullback π∗

L f , yet a closer
analysis shows that the singularity at x̃ is conical and hence essential. ��
Corollary 2.2 Let m = codim(L, V ) and x ∈ L ′ = M∩L. Then the fiber over x is π−1

L (x) �
C
m−1 = CPm−1\CPm−2 if Tx L ⊂ H(x) and π−1

L (x) � CPm−1 else. �

Removing singularities from M̃ we obtain what we call CR-blowup of M along L:

BlLM = M̃\	M̃

In particular, for L = o ∈ M we obtain the CR-blowup of M at the point o.

Proposition 2.3 For real-analytic CR-hypersurfaces M the CR-blowup construction is well-
defined, i.e. a change of the embedding ι results in a CR-equivalence of BlLM. Moreover,
BlLM is connected if M is connected.

Proof Note at first that the construction is defined because every real-analytic CR-surface
admits a closed real-analytic CR-embedding as a hypersurface to a complex manifold V [1].
Next, by Theorem 1.12 of loc.cit. such an embedding is unique up to a biholomorphism of
(the germ of) a neighborhood of ι(M) ⊂ V . Since biholomorphisms naturally induce maps
of blow-ups the first claim follows.

The second claim of the proposition follows from Corollary 2.2. ��
Example 2.4 Let us blow-up the hyperquadric Q = {Im(w) = ‖z‖2} ⊂ C

n(z) × C(w) at
the point o = (0, 0), where ‖z‖2 = ∑n

j=1 σ j |z j |2, σ j = ±1, z = (z1, . . . , zn). The blow-up
contains the following open dense subset

BloQ ⊃ M = {Im(w) = |w|2 · ‖z‖2} πo−→ Q
with πo(z, w) = (w · z, w). The model M for n = 1 appeared in [27].

The whole blow-up is obtained from
{(

(z1, . . . , zn, w), [ζ1 : · · · : ζn : � ]) ∈ C
n+1 × CPn ,

Im(w) = ‖z‖2, z1
ζ1

= · · · = zn
ζn

= w

�

}

by removing singularities. In the chart � �= 0 we get U0 = M as above. For 1 ≤ k ≤ n in
the chart ζk �= 0 we get

Uk = {
Im(zkw) =

∑
j �=k

σ j |z j zk |2 + σk |zk |2
}
.

The singularities of Uk are 	k = {zk = 0, w = 0}, so U ′
k = Uk\	k is the nonsingular part.

The projections πk
o : U ′

k → Q and the gluing maps ϕk : U ′
k\{w = 0} → U0 are given by the

formulae:

πk
o (z1, . . . , zn, w) = (z1zk, . . . , zk−1zk, zk, zk zk+1, . . . , zk zn, zkw),

ϕk(z1, . . . , zn, w) =
( z1

w
, . . . ,

zk−1

w
,
1

w
,
zk+1

w
, . . . ,

zn
w

, zkw
)
.
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Thus BloQ is obtained from the union of U0,U1, . . . ,Un by gluing via ϕ1, . . . , ϕn . Since
∪n
k=1π

k
o (U ′

k) ∩ {w = 0} (this is empty only for the sign definite norm ‖z‖2) is the null-cone
{‖z‖2 = 0, z �= 0, w = 0} = Q\πo(M), we obtain

BloQ = Q ∪ M

In what follows we often change the blow-up BloQ to M .

Example 2.5 More generally, let C
n(z) = C

n−k(z′) × C
k(z′′) be the direct product and let

‖z‖2 = ‖z′‖2 + ‖z′′‖2 be the quadric of signature ( p̄, q̄), where both quadrics ‖z′‖2 and
‖z′′‖2 are nondegenerate of signatures (p′, q ′) and (p′′, q ′′) with p′ + p′′ = p̄, q ′ + q ′′ = q̄.
Let L = C

k(z′′). The corresponding blow-up contains the following model

BlLQ ⊃ M = {Im(w) = |w|2 · ‖z′‖2 + ‖z′′‖2} πL−→ Q
with πL(z′, z′′, w) = (w · z′, z′′, w).

2.2 Symmetry of a blow-up

Next we describe how the symmetry algebra of M changes upon the blow-up construction.
Recall that the Levi-degeneracy locus in M is an analytic subset.

Theorem 2.6 Let M be a connected real analytic CR-hypersurface having Levi non-
degenerate points. If L ′ �= L assume that either each component of L ′ contains a
Levi-nondegenerate point or that the Levi-degeneracy locus in M has codim > 1.

Then the symmetry algebra of the blow-up s(BlLM) is the subalgebra in the Lie algebra
s(M) consisting of symmetries preserving L ′, i.e. tangent to L along M. The same is true for
the germs of symmetries, i.e. hol(BlLM, x̃) ⊂ hol(M, πL (x̃)) is determined by the condition
to preserve L ′ in a neighborhood of πL(x̃).

Proof By [1, Theorem 1.12] and [2, Proposition 12.4.22], the infinitesimal symmetries of
M are bijective with holomorphic vector fields on the germ of M in V that along M are
tangent to H(M), the holomorphic tangent bundle of M . In other words, every real-analytic
infinitesimal CR-automorphism defined on an open subset U ′ ⊂ M is the real part of a
holomorphic vector field defined on an open subset U ⊂ V with ι(U ′) ⊂ ι(M) ∩ U . The
condition in the theorem is easily verified to be independent of the choice of CR-embedding
(realization) ι : M → V .

Now we claim that BlLM is Levi-degenerate along π−1
L (L ′). Recall that the Levi form

LM of M at x can be identified with i∂∂̄ f |H(x), where f is the defining function of M in V .
Similarly, the Levi form of the blow-up at x̃ is i∂∂̄ f̃ |H(x̃), where f̃ = f ◦ πL . Since πL is
holomorphic we get LBlL M (x̃) = i∂∂̄ f ◦dπL |H(x̃). We already noted in the proof of Lemma
2.1 that the image of dx̃πL at x̃ = (x,�) with x = πL(x̃) ∈ L ′ is � ⊂ TxM . Thus in the
case when m = codim(L) > 2 the rank of the Levi form is at most dim� < 2n and so
LBlL M (x̃) is degenerate. For m = 2 the same argument works if Tx L �⊂ TxM because then
� �⊂ H(x) and the rank does not exceed dim(H(x) ∩ �) < 2n.

In the case Tx L ⊂ TxM the points x̃ = (x,�), where � ⊂ H(x), correspond to the
singularity stratum 	M̃ that is removed, and the argument applies as well. Alternatively, we
note that when L ⊂ M the blow-up contains the complex hypersurface π−1

L (L) � C
m−1×L

and so BlLM is not minimal along it. Our further arguments can be applied component-wise,
so we can assume L ′ (and L) to be connected.
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1708 B. Kruglikov

If L ′ = L then dim π−1
L (L) = 2n. If a symmetry is not tangent to this complex

submanifold, then a flow along it generates an open subset of Levi-degenerate points,
which is impossible because Levi-nondegenerate points are dense in M . If L ′

� L then
dim π−1

L (L ′) = 2n − 1. Any symmetry must be therefore tangent to π−1
L (L ′) if Levi degen-

eracy locus has codim > 1. Alternatively, if L ′ contains a Levi-nondegenerate point x , then
any point from a small neighborhoodUx ⊂ M of x is Levi-nondegenerate. Thus a symmetry
must be tangent to π−1

L (L ′ ∩ Ux ) and hence, by analyticity of vector fields from s(M), this
symmetry is tangent to π−1

L (L ′) everywhere.
We conclude that in any case the symmetries of BlLM must be tangent to π−1

L (L ′). Thus
they descend to the blow-down manifold M . Indeed, consider a symmetry s ∈ s(BlLM)

restricted toBlLM\π−1
L (L ′) � M\L ′. Choose a neighborhoodU ⊂ V of x ∈ L ′ and adapted

complex coordinates to the submanifold L ⊂ V . In these coordinates the components of s
are holomorphic functions that analytically extend to L by the Hartogs principle applied to
U (it is important here that m = codimL > 1). In other words, L ′ is a removable singularity
for the symmetry s on M .

Therefore we get a map qL : s(BlL(M)) → s(M), which is clearly a homomorphism
of Lie algebras. Since πL : BlLM → M is a biholomorphism over M\L ′ the map qL is
injective. Indeed, qL(s̃) = 0 for s̃ ∈ s(BlLM) implies s̃|U = 0 forU ⊂ M\L ′ and therefore
s̃ = 0 by analyticity and connectedness of BlLM .

It is clear that the vector fields s ∈ s(M) that lift to BlLM must preserve L ′. Conversely,
if s preserves L ′ it lifts to the blow up of V along L . Since s is also a symmetry of M ,
it restrict to M̃ and then to the non-singular part BlLM . Thus qL has the required image:
qL(s(BlL(M))) = {s ∈ s(M) : s(x) ∈ Tx L ′ ∀x ∈ L ′}.

The proof in the case of germs of symmetries is completely analogous. ��
Remark 2.7 The Levi-nondegeneracy assumptions in Theorem 2.6 can be relaxed to k-
nondegeneracy for k > 1, as was kindly communicated to us by a reviewer: A combination of
[12, Theorem 1.1,Theorem 1.4] implies that every point x̃ of π−1

L (L ′) is not of finite type in
the sense of Kohn and Bloom-Graham, so not finitely-nondegenerate by [2, Remark 11.5.14].
On holomorphically nondegenerate M every point in the complement to a proper analytic
set is finitely-nondegenerate [2, Theorem 11.5.1].

Example 2.8 The symmetry algebra of the hyperquadricQ is su(p, q), where ( p̄, q̄) = (p−
1, q−1) is the signature of the Levi form. The isotropy algebra of a point is the first parabolic
subalgebra p1,n+1, and hence this is the symmetry of the blow-up model BloQ constructed
in Example 2.4. In Sect. 4.2 we will give explicit formulae for the symmetry fields of the
open dense submanifold M ⊂ BloQ.

This example implies the following statement.

Corollary 2.9 The first parabolic subalgebra p1,n+1 ⊂ su(p, q) is realizable as symmetry of
an analytic CR-hypersurface of CRdim = n containing Levi nondegenerate points. As such
one can take either the constructed blow-up or its submanifold M ⊂ BloQ.

Proof That the symmetry of BloQ is as indicated follows from Theorem 2.6. Let us also
show that the symmetry does not grow upon restriction to the submanifold M . The subset
πo(M) ⊂ Q is obtained from the quadric by removing the hyperplane {w = 0} punctured
at o. The symmetry algebra of both πo(M) and Q is su(p, q). Now the same argument as
in the above proof shows that qL : s(M) → s(πo(M)) is an injective map with the image
consisting of symmetry fields vanishing at o. ��
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Example 2.10 Considering the more general blow-up model from Example 2.5 with k =
dimC L ∈ (0, n) we conclude that its symmetry is smaller in dimension than the parabolic
subalgebra fixing a subspace of dimension (k + 1) in linear representation. For instance,
for p̄ = q̄ = 1 the symmetry algebra s(BlLQ) has dimension 8, while the corresponding
parabolic algebra p2 ⊂ su(2, 2) has dimension 11. This is in accordance with Theorem 2.6,
if one verifies the action of s(Q) on L .

2.3 Automorphisms of a blow-up

The argument of the previous theorem extends to the Lie group case and we get:

Theorem 2.11 Let M be a real analytic CR-hypersurface having Levi-nondegenerate points.
Let G be the CR-automorphism group of M, and G̃ be the CR-automorphism group of
BlL(M). Let subgroups G0, G̃0 be their components of unity.

If L ′ satisfies the assumption of Theorem 2.6, then G̃0 is the stabilizer of (each component
of) L ′ in G0. If, in addition, M is minimal in the case L ′ = L or, alternatively, the Levi
degeneracy locus of M has codim > 2, then G̃ is the stabilizer of L ′ in G. �

The second statement follows by dimension comparison of Levi degeneracy loci.
We give an application of this theorem. Let p + q = n + 2, 1 ≤ s ≤ p ≤ q . Recall that

the parabolic subgroup Ps,n−s+2 ⊂ SU (p, q) is the stabilizer of a null s-plane (and thus also
of the orthogonal co-isotropic (n − s + 2)-plane) in the standard representation of SU (p, q)

on C
n+2, its Lie algebra is the parabolic subalgebra ps,n−s+2.

Example 2.12 Let k = s − 1. Consider the hyperquadric Qp−1 ⊂ C
n(z) × C(w) defined as

Im(w) =
k∑
j=1

(
z j z̄ j+k + z j+k z̄ j

) + ‖z′‖2,

where

z′ = (z2k+1, . . . , zn), ‖z′‖2 =
p−1+k∑
�=2k+1

|z�|2 −
n∑

�=p+k

|z�|2.

Let

L = {(z, w) ∈ C
n+1 : z j = 0 (1 ≤ j ≤ k), z� = 0 (2k + 1 ≤ � ≤ n), w = 0}. (2.2)

Clearly, L has dimension k and lies in Qp−1. An open dense subset M of the blow-up
BlLQp−1 belongs to the hypersurface S ⊂ C

n(z) × C(w) given by

Im(w) =
k∑
j=1

(
z jwz̄ j+k + z j+kw̄z̄ j

) + |w|2 · ‖z′‖2 (2.3)

with the projection πL : S → Qp−1 given by

πL(z1, . . . , zn, w) = (z1w, . . . , zkw, zk+1, . . . , z2k, z2k+1w, . . . , znw,w). (2.4)

The hypersurface S contains the hyperplane {w = 0} = π−1
L (L), and for every x ∈ L the

fiber π−1
L (x) is an (n − k)-dimensional vector subspace of C

n+1. The singular locus of S is
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given by

	S =
{ k∑

j=1

z j z̄ j+k = − i

2
, w = 0

}
.

The CR-hypersurface M is obtained by excluding	S from S. Thus M ⊂ S is an open subset
containing an open subset of the hyperplane {w = 0}.

By Theorem 2.6 the symmetry algebra s(M) is ps,n−s+2. We do not provide details of this
derivation here because in Sect. 4.2 we present these symmetries explicitly. This will realize
all maximal parabolic subalgebras of su(p, q).

Note that the automorphism group of the spherical surface Qp−1 is not SU (p, q), but
its parabolic subgroup P1,n+1 due to incompleteness, and so the automorphism group of its
blow-up is not Ps,n−s+2 (even for s = 1).

Example 2.13 Let us consider the compact version, possessing the automorphism group of
maximal size. For this embed the hyperquadricQ = Qp−1 into projective space and take the
closure:

Q =
⎧
⎨
⎩[z : w : ξ ] ∈ CP

n+1 : wξ̄ − ξw̄

2i
=

k∑
j=1

(
z j z̄ j+k + z j+k z̄ j

) +
p−1+k∑
�=2k+1

|z�|2 −
n∑

�=p+k

|z�|2
⎫
⎬
⎭ ,

where the hyperplane at infinity is CP
n = {ξ = 0}.

The Lie group G = PSU(p, q) acts transitively on Q. Moreover, it acts transitively on
the manifold N of linear subspaces of CP

n+1 of dimension k that lie in Q with dim N =
(k + 1)(2n − 3k + 1). The stabilizer of a point L in N is the parabolic subgroup Ps,n−s+2 ⊂
PSU (p, q), and one can verify using Theorem 2.11 that this is indeed the automorphism
group of BlLQ.

3 The gap phenomenon

In this section we prove Theorem 1.2, Corollary 1.3, Theorem 1.5 and further results.

3.1 An algebraic dimension bound

Consider the simple Lie algebra su(p, q), 1 ≤ p ≤ q , p + q = n + 2 ≥ 3, where p counts
the number of positive eigenvalues and q the number of negative ones in the signature of the
corresponding Hermitian form. The case of sign-definite metric, i.e. the algebra su(n + 2),
will be excluded from consideration.

The algebra has type An+1, and its parabolic subalgebra corresponding to the crossed
nodes that form a subset I of the nodes of the Satake diagram is denoted by pI . In particular,
the maximal parabolic subalgebras are ps,n−s+2 for 1 ≤ s ≤ p, where for n = 2m − 2 we
identify pm,m with pm . Recall that a cross can be imposed only on a white node of the Satake
diagram; any two white nodes related by an arrow shall be crossed simultaneously. Here are
some examples:
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Proposition 3.1 Dimension of the maximal parabolic subalgebra ps,n−s+2 ⊂ su(p, q) is
dn(s) = n2 − 2sn + 3s2 + 4n − 4s + 3.

Proof For g = su(p, q) the grading g = g−ν ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gν corresponding to a
parabolic subalgebra p � g0 ⊕ · · · ⊕ gν of g has g0 � z(g0) ⊕ gss0 , where the first summand
is the center of dimension equal to the number of crosses in the Satake diagram of g and
the second (semisimple) summand corresponds to the Satake diagram obtained by removing
the crosses. Thus, a maximal parabolic subalgebra of g, independently of the coloring of the
nodes, satisfies:

dim ps,n−s+2 = 1
2 (dim g + dim g0)

= 1
2 (dim An+1 + 2 + 2 dim As−1 + dim An−2s+1)

= 1
2 ((n + 2)2 + (n − 2s + 2)2) + s2 − 1 = dn(s).

The case n = 2m, s = m + 1 is special yet subject to this formula. ��
Some initial values of dn(s) are as follows:

Corollary 3.2 The maximal dimension of a parabolic subalgebra of su(p, q) is uniquely
given by dim p1,n+1 = n2 + 2n + 2 except for n = 2 where the maximum is attained by
dim p2 = 11 > dim p1,3 and n = 4 where dim p3 = dim p1,5 = 26.

Nowwe restrict the dimension of a proper subalgebra of the pseudounitary algebra, which
simultaneously gives a bound for subgroups of the pseudounitary group.

Theorem 3.3 A proper subalgebra of su(p, q) of maximal dimension is a parabolic subal-
gebra, as described in Corollary 3.2.

Proof ByMostow’s theorem [34], a maximal subalgebra of a real simple Lie algebra is either
parabolic, or the centralizer of a pseudotorus, or semisimple.

The centralizers of pseudotoric subalgebras of su(p, q) have the maximal possible dimen-
sion for either u(p, q − 1) or u(p − 1, q), both of dimension (n + 1)2 < dim p1,n+1.

Next, fix a semisimple subalgebra h ⊂ su(p, q); by complexifying it we obtain a subal-
gebra hC ⊂ su(p, q)C = sl(n + 2, C). By Dynkin’s theorem (see [10] and also [14, Chap.
6, Sect. 3.2]) a maximal semisimple subalgebra of the simple Lie algebra of type An+1 is
either (i) nonsimple irreducible, or (ii) simple irreducible.

If hC falls in Case (i), we have n + 2 = st (1 < s ≤ t < n + 2, hence n ≥ 2) and hC =
sl(s, C) ⊕ sl(t, C) is embedded in sl(n + 2, C) via the representation on C

s ⊗ C
t = C

n+2.

Then dimC hC = s2+ t2−2 = s2+ (n+2)2

s2
−2. Themaximum of the function s2+ (n+2)2

s2
−2

on the interval 2 ≤ s ≤ n + 1 is attained at s = n + 1 and is clearly seen to be strictly less
than dim p1,n+1.

In Case (ii) we first assume that hC is a classical Lie subalgebra of sl(n + 2, C). If hC has
type A, then dimC hC is maximal if hC = sl(k + 1, C) ⊂ sl(n + 2, C), k ≤ n, which does
not give the optimal dimension as dimC sl(k + 1, C) ≤ n2 + 2n < dim p1,n+1.
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IfhC has type B or D, then dimC hC ismaximal ifhC = so(n+2, C) ⊂ sl(n+2, C), which
does not give the optimal dimension since dimC so(n+2, C) = 1

2 (n
2+3n+2) < dim p1,n+1.

Suppose that hC has type C and write n = 2k + r , where r is either 0 or 1. Then dimC hC

is maximal if hC = sp(2k + 2, C) ⊂ sl(n + 2, C), which again does not give the optimal
dimension as dimC sp(2k+2, C) = (k+1)(2k+3). Indeed, this number is strictly less than
dim p1,n+1 for n �= 2 and is strictly less than 11 = dim p2 for n = 2.

Consider now the exceptional Lie algebras. The representation V of minimal dimension
of g2 = Lie(G2) has dimension 7 (V = Rλ1 ), so if hC = g2 we have n ≥ 5. Hence g2 does
not give the optimal dimension since dimC g2 = 14 < 52 + 2 · 5 + 2.

Similarly, the representation V of minimal dimension of the exceptional Lie algebra
f4 = Lie(F4) has dimension 26 (V = Rλ4 ), so if hC = f4 we have n ≥ 24. Hence f4 does
not give the optimal dimension since dimC f4 = 52 < 242 + 2 · 24 + 2.

In the same way, we argue for the E-series: the representation V of minimal dimension
for e6, e7, e8 has dimension 27, 56, 248, respectively (and for V we have, respectively,
Rλ1 � Rλ6 , Rλ7 , Rλ8 in Bourbaki’s enumeration). Hence, none of these algebras gives the
optimal dimension since dimC e6 = 78 < 252+2 ·25+2, dimC e7 = 133 < 542+2 ·54+2,
dimC e8 = 248 < 2462 + 2 · 246 + 2.

Thus, all semisimple subalgebras of su(p, q) have dimensions strictly smaller than the
maximal possible dimension of a parabolic subalgebra. ��
Remark 3.4 By [20, Proposition 2.1; Remark 2.5], for n = 2 every proper subalgebra of
su(p, q) of dimension 10 = n2 + 2n + 2 is also parabolic and conjugate to p1,3.

3.2 Establishing the submaximal symmetry dimension

We assumed that M has a point of Levi-nondegeneracy, which implies that M is holomorphi-
cally nondegenerate, see [2, Theorem 11.5.1]. The condition of holomorphic nondegeneracy
for a real-analytic hypersurface in complex space was introduced in [39] and requires that for
every point of the hypersurface there exists no nontrivial holomorphic vector field tangent
to the hypersurface near the point. Extensive discussions of this condition can be found in
[2, §11.3], [11], but we only make a note of the fact, stated in [2, Corollary 12.5.5], that the
holomorphic nondegeneracy ofM is equivalent to the finite-dimensionality of all the algebras
hol(M, x). Notice that together with [2, Proposition 12.5.1] this corollary implies that the
finite-dimensionality of hol(M, x0) for some x0 ∈ M implies the finite-dimensionality of
hol(M, x) for all x ∈ M .

Clearly, s(M) = hol(M)may be viewed as a subalgebra of hol(M, x) for any x . Therefore
for a holomorphically nondegenerate M , and in particular for the case we consider, the
symmetry algebra s(M) is finite-dimensional.

Proof of Theorem 1.2 For n = 1 the theorem was obtained in [19,28], for n = 2 its stronger
variant was proven in [20], so we assume that n ≥ 3.

Let SM be the Levi-degeneracy locus of M . It is a proper real-analytic subset of M . Then
U = M\SM is an open dense subset of M .

Choose a point x ∈ U . The natural map hol(M) → hol(U ) → hol(M, x) is injective. If
x is not spherical, [30] implies dim hol(M) ≤ n2 + 4 that is less than n2 + 2n + 2.

Thus every point of U is spherical. Then hol(M) is a subalgebra of su(p, q) for some
1 ≤ p ≤ q , p + q = n + 2, and by Theorem 3.3 there is an alternative:

(i) hol(M) = su(p, q);
(ii) dim hol(M) ≤ n2 + 2n + 2.
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Consider Case (i) first. We will show that M is spherical everywhere. Since we already
established sphericity on U , fix a point x0 ∈ SM . Consider the isotropy subalgebra hol0(M)

of hol(M) at x0. Clearly, dim hol0(M) ≥ (n + 2)2 − 1 − (2n + 1) = n2 + 2n + 2. Hence,
appealing to Theorem 3.3 once again, we see that one of the following holds:

(ia) dim hol0(M) = n2 + 2n + 2;
(ib) hol0(M) = hol(M) = su(p, q).

In Case (ia), the orbit of x0 under the corresponding local action of the group SU(p, q)

is open, so it contains a spherical point x ∈ U , and hence M is spherical near the point x0 as
well.

In Case (ib), by the Guillemin-Sternberg theorem [15, pp. 113–115], the action of the
simple Lie algebra su(p, q) is linearizable near x0, and we obtain a nontrivial (2n +
1)-dimensional representation of su(p, q). But the lowest-dimensional representation of
su(p, q) is the standard C

p,q of real dimension 2n + 4, which is a contradiction.
Consider now Case (ii) and assume that dim hol(M) = n2 + 2n + 2. Then by Theorem

3.3 the algebra hol(M) is isomorphic either to the parabolic subalgebra p1,n+1 of su(p, q),
or, if n = 4 and p = q = 3, to the parabolic subalgebra p3 of su(3, 3). As all such
parabolic subalgebras are pairwise nonisomorphic, we see that p and q are determined
uniquely. Therefore, the Levi form of M has fixed signature on U .

Finally, the obtained upper bound for the symmetry dimension is realizable due to Corol-
lary 2.9. This finished the proof. ��

Proof of Corollary 1.3 If M is holomorphically nondegenerate, then for every x ∈ M there
exists a connected neighborhoodU of x inM for which the naturalmap hol(U ) → hol(M, x)
is surjective [2, Proposition 12.5.1]; for any such U we have hol(M, x) = hol(U , x) =
hol(U ). Taking U instead of M in Theorem 1.2, the statement of the corollary follows. ��

3.3 Some results on spherical points

Let us further discuss the result of Theorem 1.2. First note that the exceptional case n = 2
can be included into part of the statement as follows.

Proposition 3.5 Assume that M is a real-analytic connected CR-hypersurface of CR-
dimension n ≥ 1 having a Levi-nondegenerate point. If dim s(M) ≥ n2 + 2n + 2, then
M is spherical on its Levi-nondegeneracy locus with fixed signature of the Levi form.

Proof Only the case n = 2 is special in regard to the proof of Sect. 3.2. In this case dim s =
10 = n2 + 2n + 2, and the statement follows by Remark 3.4 since the parabolic subalgebras
p1,3 ⊂ su(1, 3) and p1,3 ⊂ su(2, 2) derived in [20] are not isomorphic. ��

Next, set

d0 =
⎧⎨
⎩
3 if n = 1,

n2 + 4 if n > 1.

Proposition 3.6 Under the assumption of Proposition 3.5 the inequality dim s > d0 implies
that M is spherical on its Levi-nondegeneracy locus, possibly with different signatures of the
Levi form at different points.
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Proof Let S be the Levi-nondegeneracy locus of M . If there exists a point of S near which
M is not spherical, then, since the natural map hol(M) → hol(M, x) is injective for every
x ∈ M , by [7,8,30] we have dim hol(M) ≤ d0. ��

Remark 3.7 Concerning Proposition 3.6, [27, Example 6.2] actually shows that it is possible
for the Levi-nondegeneracy locus S of a real-analytic CR-hypersurfaceM to be disconnected,
for the signature of the Levi form of M to be different on different connected components
of S, and for M to be locally CR-equivalent to different hyperquadrics near different points.
By Proposition 3.5 such an effect is impossible if the algebra hol(M) has large dimension.

The hypersurface M ⊂ C
3 from [27, Example 6.2] is given by the equation

w̄ = w

(
i |z1|2 − √

1 + 2i |z2|2w − |z1|4
1 + 2i |z2|2w

)2

.

We found that its symmetry algebra is spanned by the vector fields

R = 2Re(−z2∂z2 + 2w∂w), S = Re(i z1∂z1), J = −2Re(i z2∂z2),

X = Re(i z1z2w∂z1 + ∂z2 + 2i z2w
2∂w), Y = Re(z1z2w∂z1 + i∂z2 + 2z2w

2∂w),

Z = Re(z1w∂z1 + 2w2∂w).

This algebra is isomorphic to , where R is the grading element, S is the center and
J is the complex structure on the contact subspace in

heis3 = 〈X , Y , Z : [X , Y ] = Z〉.
We have [R, X ] = X , [R, Y ] = Y , [R, Z ] = 2Z , [J , X ] = Y , [J , Y ] = −X .

3.4 Group version of themain results

Let us first note that the situations in (ii) can correspond to the existence of Levi-degenerate
points as in Theorem 1.2 (the models are in Example 2.13), but the dimension can also
drop by purely topological reasons, reducing the pseudo-unitary group to its subgroup. For
instance, removing from hyperquadric (1.1) a subspace Ls−1 of dimension (s − 1) reduces
PSU (p, q) to its maximal parabolic subgroup Ps,n−s+2.

The global infinitesimal automorphisms are un-altered by this removal of Ls−1, but some
of the vector fields from s(M) become incomplete resulting in reduction of G. This is the
only global effect and it is manifested in a remarkably short proof of Theorem 1.5 given
below. In fact, it is a simpler statement than that for the global infinitesimal automorphisms
since realization, indicated in the previous paragraph, follows from the very definition of the
parabolic subgroup as the stabilizer of a linear subspace in the projective version of the flat
model and does not appeal to blow-ups.

Proof of Theorem 1.5 Let s be the infinitesimal automorphism algebra of M and g = Lie(G)

the Lie algebra of G. Because g ⊂ s the assumption of case (i) in Theorem 1.5 implies the
assumption of case (i) in Theorem 1.2 and consequently the implications align.

Consider nowcase (ii) inTheorem1.5. Ifg = s then the implications align again andwe are
done. Otherwise dim s > dim g and this implies, by Theorem 3.3, that dim s = n2 + 4n + 3,
so we are under the assumption of case (i) in Theorem 1.2, which yields sphericity of M
everywhere. ��
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4 Models with large symmetry

We will now elaborate on CR-hypersurfaces with submaximal symmetry dimension. First
we exhibit a countably many non-equivalent models with the symmetry algebra being the
first parabolic subalgebra p1,n+1.

Then we realize in two non-equivalent ways all maximal parabolic subalgebras proving
Theorem 1.4. In particular, for n = 2 we obtain an example of a CR-hypersurface with
dim s(M) = n2 + 2n+ 3 = 11 that is more elementary compared to those discussed in [20].
For n = 4 we get an example of a CR-hypersurface with dim s(M) = n2 + 2n + 2 = 26;
its algebra dim s(M) = p3 ⊂ su(3, 3) yields yet another model with symmetry of the same
dimension as p1,5.

Finally we show other means to produce models with large symmetry: iterated blow-ups
and ramified coverings. In fact, both the series of examples in Sect. 4.1 and those from [20]
can be seen as a combination of a blow-up and a ramified covering.

4.1 A series of different realizations of p1,n+1

Fix n ≥ 1 and 1 ≤ p ≤ q with p + q = n + 2, and set ( p̄, q̄) = (p − 1, q − 1). The
parabolic subalgebra g = p1,n+1 ⊂ su(p, q), which has a 2-grading g = g0 ⊕ g1 ⊕ g2, is
abstractly isomorphic to , where g0 = su( p̄, q̄) ⊕ R

2 and is
the Heisenberg algebra of dimension 2n + 1.

For every m ∈ N and ε = ±1 consider the real-analytic hypersurface Mm,ε given in
coordinates z1, . . . , zn , w = u + iv in C

n+1 by

v = εu tan

(
1

2m
arcsin(‖z‖2)

)
, ‖z‖ < 1, (4.5)

where

‖z‖2 =
n∑
j=1

σ j |z j |2 = |z1|2 + · · · + |z p−1|2 − |z p|2 − · · · − |zn |2

is the standard Hermitian form of signature ( p̄, q̄). Here σ j = +1 for 1 ≤ j ≤ p̄ and
σ j = −1 for p ≤ j ≤ n (notice that σ j = −1 for all j in the Levi-definite case).

For n = 1 this hypersurface was introduced in [4] and also appeared in [24]. Clearly,
Mm,ε contains the complex hypersurfaceSm,ε = {‖z‖ < 1, w = 0} = Mm,ε ∩ {u = 0} and
is Levi-nondegenerate with signature ( p̄, q̄) away fromSm,ε . The complement Mm,ε\Sm,ε

has exactly two connected components; they are defined by the sign of u. The hypersurface
Mm,ε is not minimal, hence not of finite type (in the sense of Kohn and Bloom-Graham) at
any point of Sm,ε (see [2, §1.5]).

We now observe that every point (z, w) ∈ Mm,ε satisfies the equation

Im(w2m)
√
1 − ‖z‖4 = εRe(w2m) ‖z‖2. (4.6)

In fact, for every value of ε, Eq. (4.6) describes 2m pairwise CR-equivalent smooth hyper-
surfaces, with (4.5) being one of them. The other hypersurfaces are obtained from (4.5) by
multiplying w by a root of order 2m of either 1 or −1. One obtains m hypersurfaces from
the roots of 1 and the other m ones from the roots of −1 (notice that two opposite roots lead
to the same equation). All these hypersurfaces intersect along {w = 0}. For example, when

123



1716 B. Kruglikov

m = 1 the set described by Eq. (4.6) is the union of the following two smooth hypersurfaces:

v = εu tan

(
1

2
arcsin(‖z‖2)

)
and u = −εv tan

(
1

2
arcsin(‖z‖2)

)
, ‖z‖ < 1.

Each of the 2m hypersurfaces given by (4.6) is spherical away from Sm,ε. Indeed,
fix a point (z0, w0) satisfying (4.6) with w0 �= 0. Then Re(w2m

0 ) �= 0, and setting
σ = ε sgnRe(w2m

0 ), we see that the map

(z, w) 
→ (zwm, σw2m)

transforms a neighborhood of (z0, w0) on the relevant hypersurface to an open subset of the
hyperquadric (1.1) that we rewrite so

Q p̄ = {(z, w) ∈ C
n × C : v = ‖z‖2}. (4.7)

Theorem 4.1 For every m ∈ N and ε = ±1 the symmetry algebra of Mm,ε has dimension
n2+2n+2; in fact one has s = p1,n+1. Furthermore, form �= k andany ε, δ ∈ {−1, 1}neither
the hypersurfaces Mm,ε and Mk,δ nor their germs at the origin are equivalent by means of a
real-analytic CR-diffeomorphism. In addition, for p �= q neither the hypersurfaces Mm,−1

and Mm,+1 nor their germs at the origin are equivalent by means of a real-analytic CR-
diffeomorphism.

Proof It is straightforward to check that the following vector fields span the algebra s(Mm,ε),
where 1 ≤ j ≤ n, j < � ≤ n and summation over repeated indices is not assumed:

Re(w∂w), Re
(
w2m(mξ + w∂w)

)
,

Re(z j∂z� − σ jσ�z�∂z j ), Re(i z j∂z� + iσ jσ�z�∂z j ), Re(i z j∂z j ),

Re
(
z jw

m(mξ + w∂w) + imεσ jw
m∂z j

)
, Re

(
i z jw

m(mξ + w∂w) + mεσ jw
m∂z j

)
,

(4.8)

with ξ = ∑n
j=1 z j∂z j . Furthermore, one can check that vector fields (4.8) define a faithful

representation of the parabolic subalgebra p1,n+1 ⊂ su(p, q).
Since the surface Mm,ε is not everywhere spherical, Theorem 1.2 yields the upper bound

dim s(Mm,ε) ≤ n2 + 2n + 2+ δ2,n . Moreover in case n = 2 the equality is only attained for
the parabolic subalgebra p2 ⊂ su(2, 2), and since the other parabolic p1,3 does not embed
into p2, we conclude that in fact dim s(Mm,ε) ≤ n2 + 2n + 2. But since vector fields (4.8)
in totality n2 + 2n + 2 constitute the symmetries of the model, we conclude the opposite
inequality and hence s(Mm,ε) = p1,n+1.

Similarly, for any connected neighborhood U of a point x ∈ Sm,ε in Mm,ε we have
hol(U ) = p1,n+1, while if U ∩ Sm,ε = ∅ we get hol(U ) = su(p, q).

Next, formulas (4.8) show that all elements of s(Mm,ε) vanish precisely at the origin.
Hence, if a real-analytic CR-diffeomorphism F establishes equivalence between Mm,ε and
Mk,δ , we have F(0) = 0. Observe now that the highest order of the vanishing of a vector
field in the algebra s(Mm,ε) at the origin is 2m + 1, and this number must be preserved by
F . This shows that m = k. The same argument yields the nonequivalence of the germs of
Mm,ε and Mk,δ at the origin by means of a real-analytic CR-diffeomorphism unless m = k.

Further, if a real-analytic CR-diffeomorphism F establishes equivalence between Mm,−1

and Mm,+1, we have again F(0) = 0. Since F holomorphically extends to a neighbourhood
of the origin, let us write it as

(z, w) 
→ ( f (z, w), g(z, w)),
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with

f (z, w) = Az + Bw + · · · , g(z, w) = Cw + · · · ,

where dots denote higher-order terms and A, B,C are complex matrices of sizes n×n, n×1,
1× 1, respectively (note that g contains no linear terms in z because F must preserveSm,ε).
The condition that F maps Mm,−1 to Mm,+1 is written as the identity
[
Im

(
g(z, w)

)−Re
(
g(z, w)

) · tan
(

1

2m
arcsin(‖ f (z, w)‖2)

)]∣∣∣∣
w=u−iu tan( 1

2m arcsin(‖z‖2))
=0.

The terms linear in u yield ImC = 0. Then ReC �= 0 and the next terms in decomposition
of the above identity imply

‖z‖2 = −‖Az‖2.
Since signature is an invariant of the quadric, for p �= q this condition is impossible. The
same argument yields the nonequivalence of the germs of Mm,−1 and Mm,+1 at the origin by
means of a real-analytic CR-diffeomorphism. ��

Remark 4.2 The last statement of Theorem 4.1 does not hold for p = q (just interchange the
groups of variables z1, . . . , zn/2 and zn/2+1, . . . , zn). The invariance of the pair (m, ε) for
n = 1 was claimed in [4].

4.2 Realization of maximal parabolics

We will now construct realizations of all the maximal parabolic subalgebras ps,n−s+2, 1 ≤
s ≤ p.

Finding such realizations is interesting in its own right, as this adds up to the study of
symmetry of polynomial CR models, cf. [3,25,26].

The first model has been already introduced in Example 2.12, see Eq. (2.3) applicable to
all 1 ≤ s ≤ n

2 + 1. It is a blow-up (2.4) of the hyperquadric Q p̄ along the subspace L given
by (2.2). Let us denote this model Ms

I .
Its locus of Levi degeneracy is a complex submanifold Ss

I of real dimension 2n. Indeed,
Ss

I is an open subset of the hyperplane {w = 0} (coincides with it for s = 1).
The second model is applicable for 1 < s < n

2 + 1, i.e. k = s − 1 ∈ (0, n
2 ). It is a blow

up along the following subspace in C
n(z) × C(w) of dimension n − k:

L = {(z, w) ∈ C
n+1 : z j = 0 (1 ≤ j ≤ k), w = 0}. (4.9)

An important difference between (2.2) and (4.9) is that the latter L is not contained in Q p̄ ,
so the blow-up happen along the real-analytic subvariety L ′ = L ∩ Q p̄ . An open subset of
BlLQ p̄ embeds into the hypersurface S ⊂ C

n(z) × C(w) given by

Im(w) =
k∑
j=1

(
z jwz̄k+ j + zk+ j w̄z̄ j

) + ‖z′‖2 (4.10)

(‖z′‖2 has the same meaning as in Example 2.12) with the projection given by

πL(z1, . . . , zn, w) = (z1w, . . . , zkw, zk+1, . . . , z2k, z2k+1, . . . , zn, w). (4.11)
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The hypersurface S contains the real-analytic subvariety S′ = {‖z′‖ = 0, w = 0} =
π−1
L (L ′), and for every x ∈ L ′ the fiber π−1

L (x) is a k-dimensional vector subspace of C
n+1.

This subvariety has real dimension

dimS′ =
⎧⎨
⎩
2n − 1 if k < p̄,

4k < 2n if k = p̄.

Excluding the singular locus

	S =
{ k∑

j=1

z j z̄ j+k = − i

2
, w = 0, z� = 0, � = 2k + 1, . . . , n

}

from S, we obtain our secondmodel denotedMs
II. Its Levi-degeneracy locus is an open subset

Ss
II of S

′.

Theorem 4.3 Both models Ms
I (1 ≤ s ≤ n

2 + 1) and Ms
II (1 < s < n

2 + 1) have symmetry
algebra s = ps,n−s+2. They are neither globally CR equivalent nor locally equivalent near
the Levi degeneracy locus.

Of course, this assertion implies Theorem 1.4. Note that complementarity of dimensions
of L in both cases (s − 1 and n − s + 1) reflects certain duality and it gives light to the fact
that both surfaces have the same symmetry algebra.

Proof The symmetries of both models are obtained by straightforward but very demanding
computations (involving many Maple experiments). For (2.3), denoting

ζ =
n∑

j=2k+1

z j∂z j − w∂w, ξ =
k∑

a=1

za∂za + ζ, η =
k∑

a=1

za+k∂za+k + w∂w,

the following are the generators of s(Ms
I ) with indices in the range 1 ≤ a, b ≤ k, a < c ≤ k,

2k + 1 ≤ j ≤ n, j < � ≤ n:

Re(∂za + 2i za+kη), Re(i∂za + 2za+kη), Re(∂za+k − 2i zaξ),Re(i∂za+k − 2zaξ),

Re
(
w(∂za+k + 2i zaη)

)
, Re

(
w(i∂za+k + 2zaη)

)
, Re(wη), Re(ζ − w∂w),

Re(i zaw∂za+k ), Re(za∂zb − zb+k∂za+k ), Re(i za∂zb + i zb+k∂za+k ),

Re
(
w(za∂zc+k − zc∂za+k )

)
, Re

(
w(i za∂zc+k + i zc∂za+k )

)
,

Re(za∂z j − σ j z jw∂za+k ), Re(i za∂z j + iσ j z jw∂za+k ),

Re(z j∂z� − σ jσ�z�∂z j ), Re(i z j∂z� + iσ jσ�z�∂z j ), Re(i z j∂z j ),

Re(∂z j + 2iσ j z jwη), Re(i∂z j + 2σ j z jwη). (4.12)

Similarly, for (4.10), if we denote

ζ =
n∑

j=2k+1

z j∂z j + w∂w, ξ =
k∑

a=1

za+k∂za+k + ζ, η =
k∑

a=1

za∂za − w∂w,

and use the same range for indices, then the following are the generators of s(Ms
II):

Re(∂za + 2i za+kξ), Re(i∂za + 2za+kξ), Re(∂za+k − 2i zaη), Re(i∂za+k − 2zaη),

Re(w
(
∂za+k + 2i zaξ)

)
, Re(w

(
i∂za+k + 2zaξ)

)
, Re(wξ), Re(ζ + w∂w),
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Re(i zaw∂za+k ), Re(za∂zb − zb+k∂za+k ), Re(i za∂zb + i zb+k∂za+k ),

Re(w
(
za∂zc+k − zc∂za+k )

)
, Re(w

(
i za∂zc+k + i zc∂za+k )

)
,

Re(z j∂za+k − σ j zaw∂z j ), Re(i z j∂za+k + iσ j zaw∂z j ),

Re(z j∂z� − σ jσ�z�∂z j ), Re(i z j∂z� + iσ jσ�z�∂z j ), Re(i z j∂z j ),

Re(w∂z j + 2iσ j z jξ), Re(iw∂z j + 2σ j z jξ). (4.13)

Finally note that the CR-manifolds Ms
I and Ms

II for 1 < s < n
2 +1 are not equivalent even

by means of a smooth CR-diffeomorphism. Indeed, any such diffeomorphism must preserve
the points of Levi-degeneracy and therefore mapSs

I ontoS
s
II, which is impossible since they

have different dimensions. Similarly, for any point x ′ ∈ Ms
I and any point x

′′ ∈ Ms
II the germs

of (Ms
I , x

′) and (Ms
II, x

′′) are not equivalent by means of a smooth CR-diffeomorphism. ��
Remark 4.4 The CR-manifold M1

I with symmetry algebra s = p1,n+1 is not equiva-
lent to any of the hypersurfaces Mm,ε introduced in (4.5) by means of a real-analytic
CR-diffeomorphism. Indeed, any such diffeomorphism must preserve the points of Levi-
degeneracy and therefore map S1

I onto Sm,ε . On the other hand, formula (4.12) shows that
the subspace of vector fields in s(M1

I ) identically vanishing onS1
I is 1-dimensional, whereas

by formulas (4.8) the subspace of vector fields in s(Mm,ε) identically vanishing onSm,ε has
dimension 2n + 2 for any m ∈ N, ε = ±1.

The same argument demonstrates that for any point x ∈ S1
I and any point y ∈ Sm,ε

the germs of (M1
I , x) and (Mm,ε, y) are not equivalent by means of a real-analytic CR-

diffeomorphism for all m ∈ N, ε = ±1.

Remark 4.5 Note that the spherical surfaceM1
I \{w = 0} is globally equivalent to the spherical

surface M1
II\{w = 0}: the CR-diffeomorphism is given by

(z1, . . . , zk, zk+1, . . . , z2k, z2k+1, . . . , zn, w) 
→
(−zk+1, . . . ,−z2k, z1, . . . , zk, z2k+1, . . . , zn,− 1

w
).

This map however does not induce a transformation of (4.12) to (4.13). Instead it maps the
parabolic subalgebra ps,n−s+2 in su(p, q) to the opposite parabolic pops,n−s+2 signifying the
above-mentioned duality.

Let us also note that other blow-ups that mix (2.3) and (4.10) like

Im(w) =
k∑
j=1

(
z jwz̄k+ j + zk+ j z̄ j w̄

) +
r∑

j=2k+1

σ j |za |2 + |w|2 ·
n∑

j=r+1

σ j |za |2

for 2k + 1 < r < n have the symmetry algebra strictly smaller in dimension than ps,n−s+2;
this can be explained by Theorem 2.6.

4.3 Other examples

The above blow-up procedure admits a useful modification, which we will only discuss for
the case when L is a point. The idea is to consider, instead of the blow-up of hyperquadric
(4.7) at the origin, a “weighted” blow up of a ramified cover over it.

Example 4.6 For r ∈ N and σ = ±1 consider the map ψr ,σ (z, w) = (z, σwr ). The ramified
cover Q̃ p̄ = ψ−1

r ,σ (Q p̄) is the hypersurface in C
n+1 given by the equation

Im(wr ) = σ ‖z‖2.
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Clearly, Q̃ p̄ is singular if r > 1.Wewill now blow up Q̃ p̄ at the origin by aweighted analogue
of map πL with L = o, namely, by the map

πo,m : (z, w) 
→ (zwm, w),

where m ∈ N. The result of the blow-up is the hypersurface Rr ,m = π−1
o,m(Q̃ p̄), which is

described by the equation

Im(wr ) = σ |w|2m ‖z‖2. (4.14)

Fix m ∈ N and set r = 2m. One can rewrite Eq. (4.14) of R2m,m as

Im(w2m) = σ
√
Re(w2m)2 + Im(w2m)2 ‖z‖2.

Taking squares, we obtain Im(w2m)2 (1 − ‖z‖4) = Re(w2m)2 ‖z‖4, i.e.
Im(w2m)

√
(1 − ‖z‖4) = σ |Re(w2m)| · ‖z‖2. (4.15)

The pair of equations in (4.15) for σ = ±1 describes the same set of points as the pair of
equations in (4.6) for ε = ±1. This set is formed by 4m smooth hypersurfaces all intersecting
along w = 0. Otherwise said, the models of Theorem 4.1 can be considered as a ramified
covering of a weighted blow-up.

Remark 4.7 For n = 1 theweighted blow-up R2m,m of a ramified cover over the hyperquadric
was considered in [24], see, e.g., Lemmas 22, 26 therein.

Let us note that surface (4.14) for r = 1 is an iterated blow-up of the hyperquadric (1.1).
In fact, o = (0, 0) ∈ C

n(z) × C(w) is the regular point of the surface

Qm = {Im(w) = |w|2m ‖z‖2}.
Note that Q0 = Q p̄ , where p̄ = p − 1 and ( p̄, q̄) is the signature of the quadric ‖z‖2
( p̄ + q̄ = n), and that Q j+1 = BloQ j for all j ≥ 0.

By Theorem 2.6 the symmetry algebra of Q1 is obtained from that of Q0 as stabilizer of
o in su(p, q), the resulting algebra of vector fields has generators (4.12) for k = 0. This is
the reduction to the parabolic subalgebra p1,n+1.

Again, using Theorem 2.6 the symmetry algebra of Q2 is obtained from that of Q1 as
stabilizer of o in the algebra p1,n+1. This is obtained by removing the vector fields in the
last line of (4.12) for k = 0. Further blow-ups do not change the dimension (only some
coefficients are being modified), and we conclude dim s(Qm) = n2 + 2.

Actually, this dimension persists for the symmetry algebra of the ramified equation.

Proposition 4.8 The symmetry algebra of (4.14) for m > 1 is u( p̄, q̄)⊕sol(2), where sol(2)
is the two-dimensional solvable Lie algebra.

Proof Since we already restricted the dimension from above, it is enough to indicate the
generators. They are given below with the index range 1 ≤ � ≤ n, � < j ≤ n:

Re(z�∂z j − σ�σ j z j∂z� ), Re(i z�∂z j + iσ�σ j z j∂z� ), Re(i z�∂z� ),

Re
(
w∂w − (m − r

2 )

n∑
j=1

σ j z j∂z j
)
, Re

(
wr (w∂w − (m − r)

n∑
j=1

σ j z j∂z j )
)
.

The abstract Lie algebra structure is straightforward. ��
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Finally, let us show an example of iterated blow-up giving a surface with a non-maximal
parabolic symmetry algebra. We do it in the simplest case n = 2 with parabolic p1,2,3 in
su(2, 2) being the Borel subalgebra.

Example 4.9 If we blow up the hyperquadric Im(w) = 2Re(z1 z̄2) in C
3 along L1 = {z1 =

0 = w} via πL1(z1, z2, w) = (z1w, z2, w) we get the surface

Im(w) = 2Re(z1wz̄2) (4.16)

with the symmetry algebra p2 ⊂ su(2, 2). Blowing it up again along L1 = {z1 = 0 = w}
(in new coordinates) we get the surface

Im(w) = 2Re(z1w
2 z̄2). (4.17)

Proposition 4.10 The symmetry algebra of (4.17) is p1,2,3 ⊂ su(2, 2).

Proof The symmetry algebra has generators:

Re(3z1∂z1 − z2∂z2 − 2w∂w), Re
(
w(z1∂z1 − z2∂z2 − w∂w)

)
,

Re
(
∂z2 − 2i z1w(2z1∂z1 − w∂w)

)
, Re

(
i∂z2 − 2z1w(2z1∂z1 − w∂w)

)
,

Re
(
w∂z2 − 2i z1w

2(z1∂z1 − z2∂z2 − w∂w)
)
, Re

(
iw∂z2 − 2z1w

2(z1∂z1 − z2∂z2 − w∂w)
)
,

Re(z1∂z1 − z2∂z2), Re(i z1∂z1 + i z2∂z2), Re(i z1w
2∂z2).

They satisfy the structure equations of theBorel subalgebra in su(2, 2). In fact, the stabilizer of
L1 in 11-dimensional symmetry algebra of (4.16) is the indicated 9-dimensional subalgebra
p1,2,3 ⊂ p2, in accordance with Theorem 2.6. ��
Example 4.11 We remark that (iteratively) blowing up surface M (4.16) again along L2 =
{z2 = 0 = w} via πL2(z1, z2, w) = (z1, z2w,w) we get the surface

Im(w) = 2Re(z1 z̄2) |w|2 (4.18)

with the symmetry algebra p1,3 ⊂ su(2, 2). This seems to contradict Theorem 2.6 because
p1,3 does not embed into p2.

The explanation is as follows. The surface (4.18) is only an open dense part of the blow-up
of (4.16) along L2. The projection πL2 is not epimorphic on M , the subset {(z1, z2, 0) : z2 �=
0} is not in the image of πL2 restricted to (4.18). This implies that the symmetry of M fixing
this subset and L1 (as per definition) also fixes their intersection, i.e. the point o = (0, 0, 0)
leading to the symmetry algebra p1,3.

The blow-up BlL2M of the surface M (4.16) is obtained from

M ′ = {Im(w′) = 2Re(z′1 z̄′2) |w′|2} and M ′′ = {Im(z′′2w′′) = 2Re(z′′1w′′) |z′′2 |2},
with singular lines {(z′′1, 0, 0)} and {(z′′1, i

2z̄′′1
, 0) : z′′1 �= 0} removed from M ′′, by gluing them

via ϕ(z′1, z′2, w′) = (z′′1, z′′2, w′′) = (z′1, z′2w′, 1/z′2). And this bigger surface gives reduction
of the symmetry to an 8-dimensional subalgebra of both p1,3 and p2.

5 Conclusion

Let us outline a possible generalization and formulate some open problems.
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5.1 On generalization of themain result

Motivated by results in the present paper and a series of preceding works in complex analysis,
we formulate the following claim, generalizing Conjecture 1.1.

Conjecture 5.1 Symmetry of any real-analytic connected holomorphically nondegenerate
CR-hypersurface M of CR-dimension n satisfies dim s(M) ≤ n2 + 4n+ 3, with the maximal
value attained only if M is everywhere spherical. Otherwise dim s(M) ≤ n2 +2n+2+ δ2,n,
with the maximal value attained only if on a dense open set M is spherical and of fixed
signature of the Levi form.

Let us support this claim. It holds for 1 ≤ n ≤ 2, and also for larger n, provided M is Levi
nondegenerate somewhere. For the case n = 2 we utilized in [20] the following fact: a real-
analytic connected holomorphically nondegenerate CR-hypersurface of dimension 5 with
everywhere degenerate Levi form is generically 2-nondegenerate. By appealing to the main
result of [21], this allowed to estimate the dimension of the symmetry algebra in everywhere
Levi-degenerate case by 10, see also [32,33].

For n ≥ 3 some partial results generalizing this have been obtained in the literature. CR
hypersurfaces that are 1-degenerate and 2-nondegenerate in the sense of Freeman with a
certain additional condition were investigated in [37] for n = 3 and in [36] for general n. The
upper bound on symmetry achieved in those references confirms our conjecture. Also in [38]
all Levi degenerate homogeneous 7-dimensional CR hypersurfaces (n = 3) were classified.
Again, the results align with Conjecture 5.1.

We expect that elaboration uponCartan andTanaka theories in the spirit of [29] can provide
effective bounds on local symmetry important for this claim. Global topological behavior of
M results in passing from a local algebra to a subalgebra and, by the results of Section 3.1,
this cannot change the submaximal dimension bound.

5.2 Onmodels with large symmetry

Realizations of many symmetry algebras remain beyond the scope of this paper. For instance,
we conjecture that non-maximal parabolic subalgebras of the pseudo-unitary algebras can
also be realized as symmetries of polynomial CR models. Realization of other maximal
subalgebras, discussed in the proof of Theorem 3.3, is important too.

Large symmetry algebras can also be obtained via intersection of maximal subalgebras.
For instance, blow-up of the hyperquadric Q p̄ at two different points reduces the symmetry
algebra su(p, q) to the intersection of two conjugated parabolicsp1,n+1 that vary in dimension
depending on position of the points.

In [20] we presented a series of examples of 5-dimensional CR manifolds with symmetry
dimension ≤ 11. In particular, for dim s = 9 we borrowed the following example from [25]:
M5 = {Im(w) = |z1|2+|z2|4}.We computed that its symmetry algebra is s(M5) = u(1, 2), a
reductive maximal subalgebra in su(2, 2). Note that the symmetry algebra p1,2,3, constructed
in Example 4.9, is also of dimension 9.

The same problem is interesting for the automorphism group. For n = 2 consider the lens
space Lm = S5/Zm , m > 1, where Zm ⊂ U (1) acts on the unit sphere S5 ⊂ C

3 by complex
multiplication. By [17, p. 37] the Lie group Hol(Lm) is U (3)/Zm , again of dimension 9.
Note that Lm is everywhere spherical falling into part (ii) of Theorem 1.5.

Finally, provided the Levi nondegeneracy locus is nonempty for n > 2, the models of
symmetry dimension Dmax are spherical. Classification of CR-hypersurfaces with symme-

123



Blow-ups and infinitesimal automorphisms of CR-manifolds 1723

try dimension Dsmax is not fully solved even for n = 1. The real difficulties show in the
construction of the models in [20]. The approach taken in this paper suggests more tractable
problems: Which weighted blow-ups and ramified coverings of the hyperquadric lead to
the models with submaximal symmetry dimension? Can these be classified? We hope these
directions show fruitful in the future.
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