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1. Introduction 

1.1 Apheresis in a historical perspective  

The word apheresis comes from the late Greek word apherein which means “to remove”. One 

medical understanding of the word apheresis used today is: “A procedure in which blood is 

temporarily withdrawn, one or more components selectively removed, and the rest of the 

blood is reinfused into the donor. “The process is used in treating various disease conditions 

in the donor and for obtaining blood elements for the treatment of other patients or for 

research” (1). The first experimental plasmapheresis was described by Abel, after performing 

the procedure on uremic dogs (2). Apheresis was developed for medical purposes in the 1950s 

when Cohn et al developed a method for separating Albumin from human whole blood using 

a centrifuge (3). This centrifugal version went through modifications and became 

commercially available as a single use centrifugal device for platelet donation and 

therapeutical apheresis procedures (4). In 1968 Judson et al published an article about a 

continuous-flow centrifugal device and argued that this could be used for the collection of 

cells and particles such as macromolecules, e.g. chylomicrons, immunoglobulins and 

cryoglobulins (5). This continuous flow or membrane apheresis as it’s called today was 

developed from the technique used in hemofiltration with modified column membrane 

characteristics (6). From the mid-1970`s membrane plasmapheresis was invented for the 

removal of specific plasma solutes without the need for discharge of the complete plasma 

volume. Diseases where plasma exchange or therapeutical apheresis was either tried for or 

existed as established treatment at that time, included Waldenstroms macroglobulinemia, 

multiple myeloma, myasthenia gravis, hypercholesterolemia, hypertriglyceridemia and toxin 

removal (7).  
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1.2 Low-density lipoprotein (LDL) apheresis systems  

The first published treatment using plasma separation for hypercholesterolemia was done in 

Paris, 1967 (8). In 1975 Thompson et al described therapeutic apheresis for treatment of 

familial hypercholesterolemia (FH). Centrifugal methodology modified for the removal of 

plasma rather than leukocytes was applied, and the authors noted a reduction in plasma 

cholesterol, and both patients were relieved from their angina pectoris symptoms (9). 

Selective LDL apheresis techniques have since developed and several systems exist today 

(10), as will be discussed below. 

 

1.2.1 Plasma separation LDL apheresis systems 

The Heparin-induced LDL precipitation (HELP) separation apheresis system uses low pH 

mediated by the use of acetate and heparin in precipitating cholesterol before its removal from 

plasma. This technique requires bicarbonate dialysis for correction of electrolytes and pH, 

before returning plasma to the patient and is as such a complex procedure (11). Heparin is 

used as anticoagulation. Lipid filtration (membrane differentiated filtration (MDF) or double 

filtration plasmapheresis (DFPP) is also a plasma separation LDL apheresis system and 

extracts LDL cholesterol from plasma based on the three-dimensional structure and molecular 

weight and pore size in the column. Plasma proteins with a diameter larger than 15 nm are 

captured by the column, smaller proteins pass through the column and are returned to the 

patient (12). Heparin is used as anticoagulation. The third method used is lipid adsorption 

from plasma. The method is based on electrostatic binding between cellulose beads covered 

with negatively charged dextran sulphate groups that bind to positively charged 

Apolipoprotein B100 incorporated in the membrane of LDL and very low-density lipoprotein 

(VLDL) particles (13-15). The adsorbing beads are regenerated during the procedure, making 
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the system capable of treating large volumes of plasma, hence removing large quantities of 

LDL cholesterol. In this model as well, heparin is used as anticoagulation.  

 

1.2.2 Whole blood LDL apheresis systems 

LDL cholesterol absorption systems adsorbing directly from whole blood use modified 

polyacrylate ligands immobilized on polyacrylamide matrix (16) or modified dextran sulphate 

cellulose, both negatively charged, with larger particle size beads for LDL adsorption (17). 

Positively charged Apolipoprotein B100 included in LDL and VLDL particles binds to the 

negatively charged beads upon perfusion. Heparin as a bolus dose and citrate as a continuous 

infusion is used as anticoagulation in both whole blood lipoprotein apheresis systems. The 

columns cannot be regenerated. Angiotensin converting enzyme inhibitors should not be used 

when performing dextran sulphate cellulose or polyacrylate LDL apheresis due to the 

accumulation of bradykinin. Bradykinin can cause an anaphylactoid reaction in patients. 

However, angiotensin II receptor antagonists can safely be used (18).  

 

Performing whole blood LDL apheresis is a simpler procedure compared to the plasma 

separation systems (19). There are differences in adverse effects according to the system and 

anticoagulation used for LDL apheresis, the precipitation system showing more mild adverse 

effects, and the double filtration plasmapheresis systems showing more moderate adverse 

effects (20). Patient experiences indicate that double filtration plasmapheresis has fewer side 

effects than dextran sulphate plasma separation and whole blood LDL apheresis (21), 

however, the treatment systems are in general well tolerated. A new membrane has also been 

developed using polysulfone as the basis on which negatively charged sodium alginate 

sulphate was attached for capturing LDL particles through the principle of electrostatic 

binding (22).  
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The filtration and adsorption LDL apheresis systems also adsorb Lipoprotein (a) (Lp (a)) 

efficiently (13, 23). Further and possibly connected to the removal of Lp (a), lipoprotein 

apheresis also removed oxidized lipoproteins (24, 25). Triglycerides are also reduced with 

whole blood LDL apheresis (26).   

 

The reduction of LDL cholesterol and Lp(a) for all systems is in the range of 30-70 % during 

one session, depending on the system used, and the blood or plasma volume treated (10, 27, 

28).  

 

In Europe, LDL apheresis is mainly performed within dialysis units and nephrologists are 

involved in the treatment. In the United Kingdom, the favoured system used is whole blood 

dextran sulphate cellulose adsorption (29). In the USA, there are separate apheresis centers in 

addition to dialysis and blood bank units performing LDL apheresis treatment, and also 

endocrinology departments perform this treatment. Specialists in preventive cardiology and 

nephrologists are involved in conducting this treatment. The HELP and plasma separation 

dextran sulphate cellulose system are reimbursed and widely used. In Japan, cardiology units 

are those most involved in the treatment, and the lipid filtration and both the whole blood and 

plasma separation dextran sulphate adsorption systems are widely used (30). Table 1 

summarizes the most widely used systems for LDL apheresis used today.  
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System/Commercial 

Instrument 

Principle of LDL 

Cholesterol Removal 

Anticoagulation Blood 

component 

perfused 

HELP: Heparin-

induced LDL 

precipitation. 

Use low pH for precipitation 

of LDL with heparin and 

other molecules 

Heparin Plasma 

Liposorber system 

Filter: LA15® 

Negatively charged dextran 

sulphate beads on cellulose 

adsorb Apo B-100 containing 

lipoproteins 

Heparin  Plasma 

Lipid filtration  

Filter: EC50® 

Filtration of LDL based on 

molecular weight. Membrane 

retains LDL  

(MW 2300000 Dalton) 

Heparin Plasma 

DALI® system Negatively charged 

polyacrylate beads on 

polyacrylamide adsorb Apo 

B-100 containing lipoproteins 

Heparin bolus 

and citrate 

continuous 

infusion 

Whole blood 

Liposorber system 

Filter: Liposorber 

D® 

 

Negatively charged dextran 

sulphate beads on cellulose 

adsorb Apo B-100 containing 

lipoproteins.  

Heparin bolus 

and citrate 

continuous 

infusion 

Whole blood 

Immune 

adsorption  

Perfusion through sepharose 

columns coated with LDL 

antibodies 

Heparin bolus 

and citrate 

continuous 

infusion 

Plasma 

 

Table 1. LDL apheresis systems  
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1.3 Familial hypercholesterolemia 

Heterozygous familial hypercholesterolemia (HeFH) is a common autosomal dominant 

inherited disease, which leads to reduced LDL receptor activity, defects in apolipoprotein B, 

or increased levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) and hence 

increased level of LDL cholesterol in affected individuals (31). Mutation testing is considered 

the gold standard for diagnosing the condition, however, the use of tests varies widely across 

the world, and hence clinical criteria are often used instead (e.g. The Dutch Lipid Clinic 

Network Diagnostic Criteria) (32). High levels of LDL cholesterol in FH are associated with 

premature risk of disabling cardiovascular disease and cardiovascular death (33). On a 

worldwide base, the prevalence of FH is estimated to 1/313 (32). It has been estimated that 

approximately 23000 people in Norway could be affected, giving a prevalence of 1/228. (34). 

The homozygous form of familial hypercholesterolemia (HoFH) has an estimated prevalence 

of 1:1000000, but studies from the Dutch surveillance program indicate a prevalence of 

1:300000 (35). At this time in Norway, there are 11 known patients with HoFH (Martin 

Prøven Bogsrud, OUS, personal communication). This form of FH includes severely 

increased levels of LDL cholesterol and extremely early cardiovascular disease, including 

myocardial infarction in children (36). Initial treatment of FH consists of statins and ezetimibe 

supplemented with the use of PCSK9 inhibitors, or PCSK9 inhibitors alone when adverse 

events are experienced with the use of statins. LDL apheresis is a supplement to the initial 

treatment if adverse effects occur or target cholesterol levels are not met, especially in HoFH 

(37).  In many countries, including Norway, the use of PCSK9 inhibitors was limited by strict 

rules for reimbursement by the governments or insurance companies.  
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1.4 The use of LDL apheresis systems beyond the reduction of lipoproteins 

Even if the columns used in LDL apheresis are selective for capture and removal of LDL 

cholesterol and Lp(a), these systems were also shown to affect several other molecules related 

to several human biological systems. Alterations in markers of vascular function include a 

decrease in Endothelin-1 (38) and an increase in prostaglandin-2 (39), bradykinin and nitric 

oxide, depending on the anticoagulation used in the treatment (40). Effect on markers of 

coagulation and fibrinolysis has been documented by the reduction of thrombin, coagulation 

factors V, VII, XI, XII and fibrinogen (27, 28, 41-43). Studies have documented reduced 

blood viscosity during LDL apheresis treatment partly by the favourable alteration of red cell 

aggregation and deformability and reduced concentration of fibrinogen, however, this effect 

occurred immediately after treatment and was not long-lasting (44). Molecules in the 

inflammatory network were also shown to be altered to various degrees by LDL apheresis, 

mostly with reduced concentrations (45, 46). Furthermore, studies have shown decreased 

concentrations of markers of endothelial dysfunction (47). These studies were performed with 

different LDL apheresis systems, and also using different anticoagulation during treatment, 

and it is hence difficult to generalize about the effects of different LDL apheresis systems on 

markers of human biological systems (48). In addition to adsorption documented by 

proteomic studies of columns used for LDL apheresis (49), there are indications that removal 

of LDL through adsorption columns can co-precipitate extracellular vesicles containing 

certain pro-coagulant proteins (50). A possible effect on gene expression and signaling has 

also been indicated and is another mechanism in which LDL apheresis possibly affects 

biological systems in long term treatment. Studies have described reduction of micro 

ribonucleic acid (miRNA) and other gene expression products, with a possible role in 

regulation of lipid homeostasis after LDL apheresis (51). Micro RNA of pentraxin 3 was 

reduced and messenger RNA coding for IL-1α, IL-6 and TNF was reduced during LDL 
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apheresis treatment (52, 53). There are also indications that LDL apheresis reduces the soluble 

form of activated leukocyte cell adhesion molecules which are recognized as pattern 

recognition receptors and hence markers of inflammation (54).  

 

1.5 The Complement system (Fig. 1) 

The complement system is part of the innate immune system. It consists of about 50 

membrane-bound and soluble proteins. The complement system is a self-amplifying cascade 

and its potency is illustrated by the fact that it contains only one regulatory protein, properdin, 

that increases activity, but > 10 soluble and membrane-bound proteins that act as inhibitors. 

The amplification loop is essential for the short activation time of the complement system 

when needed in host defence (55). The complement system can be activated by three different 

pathways: classical, lectin and the alternative pathway. The classical pathway responds to 

antibodies and pentraxins, the lectin pathway responds to carbohydrates trough mannose-

binding lectin, ficolins, collectins and IgM antibodies, and the alternative pathway responds to 

damaged self or non-self (as in artificial surfaces). The three pathways converge in the C3 

convertase which activates C3 and forms C3a, C3b and iC3b. C3b connects with the C3 

convertase and forms the C5 convertase which cleaves C5 into C5a and C5b. The 

anaphylatoxins C3a and C5a induce the production of inflammatory mediators and also work 

as chemotaxins. C5b binds to other complement proteins to form the terminal complement 

complex and C3b is cleaved into iC3b which promotes inflammation, phagocytosis and 

oxidative burst. 
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Fig. 1. There are three main activation pathways in the complement system (top). The classical (left), the 

lectin (middle) and the alternative pathway (right) The classical pathway is mainly activated by 

antibodies. The lectin pathway is mainly activated by carbohydrates through mannose-binding lectin. The 

alternative pathway is typically activated by recognition of damaged cells of foreign or self origin, and can 

also be activated by artificial materials. The classical and lectin pathways merge and form the classical 

and lectin pathway C3 convertase (C4bC2a) and the alternative pathway forms the alternative pathway 

convertase (C3bBbP).  

The alternative pathway convertase is also formed by continuous low-speed hydrolysis of C3(H2O) to 

C3b(H2O)BbP.  

Properdin (FP) stabilizes the C3 convertase providing an amplification loop potentiating the response 

upon activation trough all three initial pathways.  

The C3 convertases add another C3b molecule and convert into the C5 convertases (C4bC2aC3b and 

C3bBbC3bFP)) which cleaves C5 into C5a and C5b. C5b is incorporated as a part of the terminal 

complement complex (TCC, C5b-9) which contributes to cell lysis (bottom right). C3b takes part in 

regulation (middle right). C3a together with C5a act as an anaphylatoxin in the inflammation response 

(bottom left).  

The only positive stimulating molecule in the complement system is properdin (FP) which stabilizes the C3 

convertase.  Negative regulators are factor H (FH), C1 inhibitor (C1-INH), C4 binding protein (C4BP), 

factor I (FI), anaphylatoxin inhibitor (AI), vitronectin (Vn) and clusterin (Cl). The figure is used with 

permission from prof. Tom Eirik Mollnes. 



 

19 
 

1.6 System biocompatibility  

The current definition of biocompatibility is formulated as “the ability of a material to 

perform with an appropriate host response in a specific application“ (56). The term 

biocompatibility does not only include the properties of the biomaterial. It is of importance to 

recognize that biocompatibility is the interaction between the biomaterial and the biological 

system it is located in and that the interaction is bidirectional. A call for changing the 

nomenclature and not to use the phrase “biocompatibility of a biomaterial”, but rather use the 

phrase “biocompatibility of the system” was put forward and is advantageous for emphasizing 

the bidirectional interactions taking place (57).  The general understanding describing the 

interaction is that the biomaterial is first exposed to molecular adsorption and/or mechanical, 

physical and chemical factors. Secondly, this leads to cell responses of a defensive, targeting 

or interfering way (57). On a molecular level, there are arguments to view system 

biocompatibility as an inflammation. The biomaterial represents or induces the formation of 

danger associated molecular patterns being recognized by pattern recognition receptors. This 

leads to activation of the immune system (56), sterile inflammation, and at the end, 

interactions, effects or interference that give a wanted or unwanted outcome for the patient. 

Mechanotransduction is one of the main perspectives on how system biocompatibility 

processes are initiated. In this view, any mechanic effect on the interface between the 

biological system and the biomaterial converts into biological signals leading to a sterile 

inflammatory reaction and the biocompatibility reaction within the biological system where 

the biomaterial is placed (58, 59).  

Another view on system biocompatibility is the activation of the cascade systems as the initial 

step leading to inflammation, secondly leading to the biocompatibility reaction. The binding 

of plasma proteins on to the biomaterial surface is believed to be the first step (60, 61). The 

proteins can go through conformational changes and together with the biomaterial itself act as 
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binding seats for proteins of the innate immune system initiating an inflammatory response 

(62).  The reaction includes activation of the complement system through both classical, lectin 

and alternative pathway, and the kinin-kallikrein system as well as activation of the 

coagulation system including platelet activation. All the cascade systems are involved in this 

crosstalk reaction termed thromboinflammation (63-65). The activation of the complement 

system initiates the production of C3a and C5a and other proteins that activate the cellular 

components of the immune system. Monocytes, granulocytes and endothelial cells induce the 

production of cytokines further enhancing the immune response (66, 67). The flow of blood 

through needles, tubing and columns included in extracorporeal treatment systems including 

apheresis, exerts flow stress and shear stress on the contents of the blood. Platelets are 

vulnerable to shear stress and can be activated with increased expression of CD62P and CD42 

binding to von Willebrand factor which can lead to clot formation. Increased expression of the 

CD41/CD61 integrin receptor on platelets can bind to the CD11b/CD18 integrin receptor on 

activated leukocytes leading to the formation of leukocyte-platelet conjugates (68). Shear 

stress is also known to increase the formation of extracellular vesicles. The content of these 

vesicles depends on which cell they are derived from and can in plasma separation include 

platelet-derived extracellular vesicles containing CD62P and activated CD41/CD61 

complexes. The generation of extracellular vesicles is also recognized as a potential marker of 

adverse events in treatments, including extracorporeal circulation (69). Activation of the 

leukocytes is also recognized by exposure to shear stress (70), indicating contribution to the 

system compatibility reaction.  
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1.7 Clinical perspectives 

The initial use of LDL apheresis was for the reduction of LDL cholesterol in patients with FH 

when the medication was not tolerated or the target for LDL reduction was not met (71). The 

arrest of progression of coronary atherosclerosis during treatment with LDL apheresis in 

combination with cholesterol lowering drugs was documented in the LAARS and L-CAPS 

studies (72, 73). Prospective randomized trials on endpoints are not documented, however, 

Thompson used plasmapheresis for LDL reduction in siblings with HoFH. Siblings treated 

regularly with plasma exchange survived their siblings treated with medical treatment of the 

time by 5,5 years (9). A non-randomized study by Mabuchi and co-workers compared patients 

treated with LDL apheresis and cholesterol lowering drugs with a group of patients receiving 

only medical treatment for six years. They found a significant reduction in nonfatal 

myocardial infarction, and death from coronary heart disease, in the group also treated with 

LDL apheresis compared to the drug treated patient group (74). Results showing improvement 

of left ventricular ejection fraction in LDL apheresis treated patients, independent of 

concomitant statin treatment, have also been published in a small study (75). LDL apheresis 

has a role in cardiovascular risk reduction (74, 76), and there are also indications that Lp (a) 

reduction with LDL apheresis treatment may further prevent coronary events (77-80). 

Recently LDL apheresis was used as lipid lowering treatment in acute coronary syndrome, as 

a supplement to statins, and performed within 72 hours of percutaneous coronary intervention 

(81). The authors conclude that the procedure is safe and that there is a trend towards early 

coronary plaque regression.  

Lipoprotein apheresis is also used for other medical indications besides lowering LDL 

cholesterol and Lp(a). A guideline document was published by The American Society for 

Apheresis indicating that lipoprotein apheresis could be of use in the treatment of phytanic 

acid storage disease, sudden sensorineural hearing loss and focal segmental 
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glomerulosclerosis (82). Using lipoprotein apheresis in the treatment of nephrotic syndrome 

of various etiologies (83-87) and nephropathy in diabetes mellitus (88, 89) has also shown 

positive results. It has also been suggested that lipoprotein apheresis can have favourable 

effects in patients with critical limb ischemia due to below-knee arterial lesions (90, 91) and 

can reduce the risk of in-stent coronary restenosis in the early post-implantation period (47). 

Wu et al have also indicated that LDL apheresis can have an immediately positive effect on 

coronary microvascular dysfunction (92). Whole blood LDL apheresis has been used in 

severe cases of hypertriglyceridemia with recurrent pancreatitis (26, 93). Reduction of LDL 

cholesterol and oxidized cholesterol (94), with the theoretical potential of reduction of foam 

cell formation, and modification of the endothelial damage and inflammatory mechanisms, 

with subsequent favourable clinical effects, have been suggested as possible mechanisms. In 

addition, the possible removal of a putative, yet still unknown, soluble factor in nephrotic 

syndrome, and improvement of hemorheology, possibly trough cholesterol and/or fibrinogen 

removal, reduction of proinflammatory cytokines and adhesion molecules were suggested as 

mechanisms (47, 95-98). In these studies, double filtration plasmapheresis, dextran sulphate 

plasma adsorption and heparin-induced extracorporeal LDL precipitation were used as 

lipoprotein apheresis systems. There were also indications that LDL apheresis can be used in 

preeclampsia for prolongation of pregnancy. The mechanism is not clear, whether it is 

because of reducing cholesterol or because of the removal of placental soluble fms-like 

tyrosine kinase-1 (99). One study has also described that LDL apheresis can reduce the 

concentration of extracellular microparticles shredded by platelets in FH patients. The finding 

was also positively correlated to a reduction in thrombin formation, indicating another 

possible effect of LDL apheresis beyond the reduction of LDL cholesterol (100). 

With the introduction of PCSK9 inhibitors (101, 102) the use of LDL apheresis for treatment 

of FH has decreased (103). However, it is still a treatment option for some patients with high 
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cardiovascular risk scores as well as in HoFH (104). In addition, LDL apheresis is at present 

the only treatment option that effectively reduces elevated Lp (a) (80, 105), but with new 

medications in the pipeline (106), the use of LDL apheresis may be reduced also for this 

group of patients.  

A rationale for using LDL apheresis in the treatment of Alzheimer’s disease was put forward 

in a recent article (107) with the intention being a decrease of what is called “metabolic 

inflammation”. This article points to the capability not only to reduce LDL cholesterol and 

Lp(a) but also removal of circulating cytokines, immune complexes, proinflammatory metals 

and toxic chaperones. As the Covid-19 pandemic is evolving, articles have been published 

about the possible association between elevated concentrations of Lp (a), risk of coronary 

complications during Covid-19 infection and the possible role of LDL apheresis (108). 

Furthermore, the use of extracorporeal treatments like LDL apheresis, therapeutic plasma 

exchange and immune adsorption has been discussed, the intention being cytokine removal to 

dampen the cytokine release syndrome seen in patients critically ill from Covid-19 infection 

(109-111).  

 

LDL apheresis can be used with a favourable clinical effect in medical conditions other than 

hypercholesterolemia. The mechanisms of action are not clarified. It is the treatment of choice 

in HoFH patients and patients with elevated Lp(a) and is still a supplement in the treatment of 

HeFH.  
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2. Aims of the study 

2.1 General aims 

Many studies describe the effects of different LDL systems on cholesterol removal, plasma 

proteins and other inflammation markers and mediators (48, 112, 113).  

 

Authors Year Apheresis systems 

used 

Inflammation marker: 

system and effect 

Otto et al. (27) 2007 DL75, DALI DL75: IL-6 ↑, CRP ↓ 

DALI: IL-6 ↔, CRP ↓ 

Stefanutti et al. (48) 2011 LA15 TNF-α ↓, IL-1ra ↑, VEGF ↓ 

Utsumi et al. (114) 2007 LA15 IL-1β ↓, TNF ↔. 

Dihazi et al. (115)

  

2008 EC50, DALI, HELP EC50/DALI/HELP: 

Complement factor B ↓. 

Tishko et al. (47) 2017 EC50 ICAM-1 ↓, VCAM- 1 ↓ 

Kopprasch et al 

(116) 

2015   LA15 vs EC50 LA15 vs EC50: ↓ Nox-NADPH 

oxidase activity, ↓ opsonin 

receptor activity 

    
Table 2: Studies describing concentration change in inflammation markers in different lipoprotein 

apheresis systems used in this study focusing mainly on cytokine and complement system effects.  

↔ Unchanged. ↓ Reduction. ↑ Increase. 

 

However systematic comparisons of multiple systems including the whole blood system 

Liosorber D® are infrequent. The primary aim of the study was to perform a systematic 

investigation of how the whole blood lipoprotein apheresis column Liposorber D®, the plasma 

separation LDL adsorption apheresis column LA15® and the plasma separation LDL filtration 

column EC50® affect the immune system, including the complement cascade, the cytokine 

network and the activation of the cell fraction of the immune system under in vivo and ex vivo 

conditions.  Secondly, to describe the effect of a commonly used plasma separation column 

OP-05®, and finally, if possible, to indicate differences between the systems that can be 

favourable in a clinical and biocompatibility perspective. The reason for the choice of these 

systems was that they represent different principles, both whole blood and plasma separation 

lipoprotein apheresis systems. They apply different types of anticoagulation known to affect 
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activation of the immune, coagulation and complement systems differently. Including the 

LA15 system in the study, which was well described for its effect on the immune system, 

gave a basis for comparison of the different systems (48). These systems have for years been 

clinically used in our hospital, as well as in numerous hospitals worldwide.  

 

2.2 Specific aims  

Article I 

The first article investigated how three different LDL apheresis systems (one whole blood 

adsorption, one plasma separation-adsorption, and one plasma separation lipid filtration LDL 

apheresis system) affected the immune system represented by the complement and the 

cytokine network in an in vivo clinical treatment situation.  

Article II 

The second article investigated how three different LDL apheresis systems ( one whole blood 

adsorption, one plasma separation-adsorption and one plasma separation lipid filtration LDL 

apheresis system) affected the complement system in an ex vivo situation using blood from 

healthy donors. The investigation also included the ability to explore temporal differences 

between the three LDL apheresis systems during treatment, and to differentiate between the 

effect on the plasma separation column and the LDL apheresis column in the two plasma 

separation LDL apheresis systems.  

Article III 

The third article was a follow-up of the second article and investigated how three different 

LDL apheresis systems ( one whole blood adsorption, one plasma separation-adsorption and 

one plasma separation lipid filtration LDL apheresis system) affected the cytokine network 

under ex vivo conditions.  
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Article IV  

The fourth article explored to which extent a number of the reactions seen in the plasma 

separation column used in the plasma separation LDL apheresis systems were dependent on 

the complement system. For this we used blood from a complement factor 5 deficient donor 

and blood from healthy blood donors. Readouts were CD11b/CD18 (CR3) upregulation on 

leukocytes, leukocyte-platelet conjugate formation, changes in concentration of the terminal 

complement complex and changes in platelet counts. The investigation also included the 

ability to explore temporal differences for the chosen readouts.   

 

2.3 Hypothesis 

Article I 

H0: Complement and cytokine concentrations are equally affected by three LDL apheresis 

treatment systems under in vivo conditions. 

HA:  Complement and cytokine concentrations are differently affected by three different LDL 

apheresis treatment systems under in vivo conditions 

Article II 

H0: Complement factor concentrations are equally affected by three LDL apheresis treatment 

systems under ex vivo conditions. 

HA: Complement factor concentrations are differently affected by three LDL apheresis 

treatment systems under ex vivo conditions. 

Article III 

H0: Cytokine concentrations are equally affected by three LDL apheresis treatment systems 

under ex vivo conditions. 

HA: Cytokine concentrations are differently affected by three LDL apheresis treatment 

systems under ex vivo conditions. 
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Article IV 

H0: Granulocyte and monocyte CD11b expression and platelet-leukocyte conjugate 

generation are not dependent on complement factor C5 during ex vivo plasma separation  

HA: Granulocyte and monocyte CD11b expression and platelet-leukocyte conjugate 

generation are dependent on complement factor C5 during ex vivo plasma separation 
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3. Materials and Methods 

3.1 Article I 

Article I was a prospective crossover clinical study. The blood sampling was done in a regular 

patient LDL apheresis treatment situation. Anticoagulation was performed as described in the 

user manual for each system. Heparin was used in the LA15 and EC50 system and acid citrate 

dextrose (ACD-A) was used in the DL75 system. The study participants were three HeFH 

patients who had received LDL apheresis treatment with either the plasma filtration LDL 

adsorption (LA15) or the double filtration plasmapheresis  (EC50) system for more than two 

years. Random selection order was chosen for the first two LDL apheresis systems used for 

each patient. Six consecutive weekly treatments were done with each of the three LDL 

apheresis systems (LA15, EC50, and DL75). The total number of samples for each LDL 

apheresis system was 18. Blood samples were taken from the arteriovenous fistula 

immediately before the treatment started and immediately after the treatment stopped. All 

treatments were performed at the department of nephrology/dialysis unit and a limited number 

of nurses and doctors handled the treatments and blood samples. The study was approved by 

the regional ethics committee and was performed following the Helsinki declaration. A 

signed, written informed consent was obtained from all participants. 
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Fig. 2. The plasma separation column is shown to the left and the LDL apheresis column LA15 on the 

right. In the hand, the blood sample site pre LDL apheresis column.  

 

 

Fig. 3. The lab engineers Judith Krey Ludviksen to the left and Dorthe Christiansen to the right, and 

Randolf Hardersen in the middle.  
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3.2 Articles II and III 

The results in article I indicated differences in concentration of complement activation 

products and cytokines and thus prompted us to investigate the selective effect of the columns 

in each system during treatment. An ex vivo study was set up for individual system 

comparison also with the capability to enlighten temporal concentration changes during 

treatment. The blood donors were six healthy volunteers. A blood bag was used as a blood 

reservoir and as a control. Lepirudin was used as anticoagulation in order not to affect 

complement activation during treatment (117). The study was performed at the Research 

Laboratory, Nordland Hospital Trust, Bodø. The biological samples for articles II and III were 

obtained in the same study. The study was approved by the regional ethics committee and was 

performed in accordance with the Helsinki declaration. A signed, written informed consent 

was obtained from all participants.  
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Fig 4. Schematic drawing of the ex vivo study model used in articles II and III. 

A. Schematic drawing of the DL75 ex vivo model with blood sample positions. The blood reservoir denotes 

the whole blood bag to which the thrombin specific inhibitor lepirudin was added. Blood samples were 

obtained from a position after the reservoir (BS1) and then after the lipoprotein apheresis column (BS2). 

B. The columns LA15 and EC50 required plasma separation before lipoprotein apheresis. The sample 

sites were before plasma separation (BS1), after plasma separation (PS1), after lipoprotein apheresis 

(PS2), and after the cell fraction (from plasma separation) and plasma (after lipoprotein apheresis) were 

combined (BS2). BS2 indicates the position where the treated blood would be returned to the patient in a 

clinical setting. The arrows show the direction of flow in the system.   

The control blood reservoir was kept on the test tube rotator and samples (SC) were drawn directly from 

the bag. 
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3.3 Article IV 

Article number II and III indicated that the plasma separation column used in the plasma 

separation LDL apheresis systems induced complement activation. An ex vivo study was set 

up to investigate the influence of this column separately on complement activation and 

granulocyte and monocyte activation. As the complement system is of importance in system 

biocompatibility, blood from a, by nature, complement 5 deficient (C5D) donor was used 

without and with added purified complement factor 5. Purified C5 was added to C5-deficient 

(C5DR) blood to give a final plasma concentration of 80 μg/mL, corresponding to the 

concentration of C5 in normal individuals (118). As a control, blood from two healthy 

individuals was used (CTR). As a control to the plasma separation system blood was kept in a 

blood bag under constant movement and temperature. Lepirudin was used as anticoagulation. 

The study was approved by the regional ethics committee and was performed following the 

Helsinki declaration. A signed, written informed consent was obtained from all participants. 
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Fig. 5. Schematic drawing of the ex vivo model used in article IV.  

The plasma separation blood bag served as the reservoir for the plasma separation circuit. Plasma 

separation blood samples (C5D, C5DR, CTR-PS) were obtained from the tubing blood sample outlet after 

the plasma separation blood reservoir. The arrows show the direction of blood flow and plasma flow in 

the system. The no-plasma separation blood reservoir was kept at 37°C on the test tube rotator next to the 

plasma separation blood reservoir. No-plasma separation blood samples (C5D, C5DR, CTR-NPS) were 

drawn directly from the no-plasma separation blood reservoir.  
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3.4 Complement analysis (articles I, II and IV) 

The complement samples were anticoagulated with EDTA and centrifuged. The plasma was 

frozen in aliquots at -70 °C for later analysis. The complement activation products C4d, C3a, 

C3bc, Bb and C5a were measured using enzyme immunoassays based on capture antibodies 

reacting with neoepitopes exposed selectively in the activation product. TCC was analyzed 

using a monoclonal antibody attaching to a neoantigen on the C9 exposed selectively in the 

activation product. C1rs - C1-inh was quantified using an enzyme immunoassay analysis, 

previously described, based on a neoepitope of the molecule (119). 

 

3.5 Cytokine analysis (articles I and III)  

The cytokine samples were anticoagulated with EDTA and centrifuged. The plasma was 

frozen in aliquots at -70 °C for later analysis. Samples were analyzed using a multiplex 

cytokine immunoassay (Bio-Plex Pro Human cytokine Grp I Panel 27-Plex; Bio-Rad 

Laboratories Inc., Hercules, CA) containing the following 27 analytes: Interleukin (IL)-1β 

(IL-1β), IL-1 receptor antagonist (IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, 

IL-10, IL- 12, IL-13, IL-15, IL-17, eotaxin (CCL11), basic fibroblast growth factor, 

granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating 

factor (GM-CSF), Interferon-γ (IFN-γ), chemokine (C-X-C motif) ligand 10 (IP-10 or 

CXCL10), monocyte chemoattractant protein 1 (MCP-1 or CCL2), macrophage inflammatory 

protein (MIP) -1α (MIP-1α or CCL3), MIP-1β (or CCL4), platelet-derived growth factor 

(PDGF), regulated on activation T-cell expressed and secreted (RANTES or CCL5), tumor 

necrosis factor (TNF), and vascular endothelial growth factor (VEGF). The analysis was 

performed according to the manufacturer's instructions (120).  
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3.6 Routine biochemistry analysis  

Hematocrit, Hemoglobin, leukocytes, and platelets were analyzed using a Siemens ADVIA® 

2120 Hematology System (Siemens Healthcare Diagnostics Ltd., Camberly, UK). Total 

protein, albumin, C4, IgG, IgM, and IgA were analyzed in an ADVIA®1800 system (Siemens 

Medical Solutions Diagnostics, Japan) with reagents from Siemens Healthcare Diagnostics 

Ltd. Cholesterol parameters and high-sensitivity C-reactive protein (hs-CRP) were 

immediately measured by standardized laboratory tests in the hospital laboratory. Routine 

biochemistry analysis was done immediately after sample collection. 

 

3.7 Flow cytometric analysis (article IV) 

 

Flow cytometric analysis was used to detect upregulation of CR3 on granulocytes and 

monocytes. Flow cytometry differentiates granulocytes and monocytes at the X-axis based on 

cell shape and at the Y-axis based on granularity and complexity. Cells were labeled with anti 

CD14 for gating purpose and phycoerythrin labeled anti-human CD11b specific for the alpha 

subunit of the CD11b/CD18 integrin before gating in an anti-CD14 dot plot, and mean 

fluorescent intensity (MFI) for anti-CD11b was calculated (121).  
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Fig. 6. Flow cytometric readouts (MFI) at 30 min of granulocyte and monocyte CD11b. During 

acquisition, the threshold was set on the nuclear stain LDS 751 (A). Granulocytes and monocytes were 

gated for in a CD14 FITC/SSC dotplot (B). Granulocyte CD11b expression in samples C5DR-PS and 

C5D-PS shown in a histogram (C). 

 

3.8 Leukocyte - platelet conjugate analysis (article IV) 

For detection of leukocyte - platelet conjugates fixed blood cells were stained with anti-CD14 

PE (anti-CD14 phycoerythrin), anti-CD61 FITC (fluorescein isothiocyanate), LDS (label 

double-stranded) -751. Granulocytes and monocytes were gated in an SSC (side scatter 

flowcytometric)/anti-CD14-dotplot, and the mean fluorescent intensity values for CD61 were 

calculated. 

 

3.9 Correction for dilution (articles II, III and IV) 

A priming solution was used to prepare the tubing and columns before the ex vivo and in vivo 

loop which could affect the concentration. Hematocrit was used to correct the concentrations 

of the read-outs according to a standardized formula (122). 
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3.10 Statistical analysis 

In article I mean ± SD of standard laboratory tests were compared with a t-test. A two-tailed 

P-value < 0.05 was considered statistically significant. Because of inter-individual variation, 

cytokine and complement activation product concentrations were normalized for evaluation of 

column effect and changes are in percent. The column effects on complement activation 

products and cytokines were furthermore studied using a (blocked) one-way ANOVA. This is 

a one-way analysis of variance correcting for the pre-treatment level of the inflammatory 

parameter. As responses from different individuals are likely to differ, the analysis treats the 

patients as block effects. Statistical analysis was performed with SPSS® 16.0 software for 

Windows. In article II mean concentrations of complement activation factors with the 

standard error of the mean (SEM) were calculated. A correlation was calculated according to 

Spearman. A two-tailed P value of <0.05 was considered statistically significant.  

Calculations were performed with Prism® 5.0,  GraphPad software for Windows. In article III 

results are presented as mean and SEM. For calculation of differences in SC between baseline 

(T0) and after 240 minutes perfusion (T240), a two-tailed unpaired student's t-test was used. 

The significance level was set at < 0.05. For pairwise comparison of the lipoprotein apheresis 

systems, a regular two-way ANOVA analysis of the covariance, with Sidak's multiple 

comparison modification was used. The significance level was set at < 0.05. Statistical 

calculations presented were performed with Prism® 7.05, GraphPad software for Windows.  
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3.11 The Candidate`s contribution 

The candidate was the second author in articles I and II and the first author of articles III and 

IV. The candidate participated in the planning of all the studies before the start and 

throughout the study period together with the co-authors.  He also participated in setting up 

and conducting of the ex vivo studies at the laboratory. Flow cytometric and enzyme 

immunosorbent analysis were done by co-authors and other colleagues at the research 

laboratory. The candidate actively participated in the writing of articles I and II, including 

approving the final drafts and made the first draft of articles III and IV which then were 

reviewed by the co-authors. The candidate made changes to the manuscript in line with 

feedback from fellow authors who approved the final drafts.  
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4. Summary of main results 

4.1 Article I 

This in vivo investigation showed an equal concentration increase in TCC for all LDL 

apheresis systems. Complement activation factor Bb (Bb) representing alternative pathway 

complement activation showed an increase in concentration for all systems, however, results 

indicated that factor Bb concentration increased more in the LA15 and EC50 systems 

compared to the DL75 LDL apheresis system. Complement factor 4d (C4d), representing 

classical pathway complement activation, increased the most in the DL75 system and showed 

only a marginal change in the LA15 and EC50 systems.  Complement factor 3a (C3a) 

concentration increased for all LDL apheresis systems, most pronounced in the EC50 system. 

Complement factor 5a (C5a) concentration was reduced in the DL75 and LA15 systems and 

showed no concentration change in the EC50 system. Eight of the 27 cytokines showed 

marked concentration changes during LDL apheresis. IL-1ra, IP-10 and MCP-1 were 

increased in all systems, IP-10 more so in the DL75 and LA15 system. IFN- γ, TNF, 

RANTES, VEGF, PDGF-BB were reduced in concentration, TNF and RANTES more so in 

the DL75 and LA15 system. All LDL apheresis systems reduced LDL cholesterol to the same 

extent.  

 

 

4.2 Article II  

This case-control ex vivo investigation indicated that the factors of the complement system 

were differently influenced by the three LDL apheresis systems.  In the sample control, TCC, 

Bb and C3a showed a small concentration increase, C4d and C5a did not change in 

concentration during 240 minutes. The concentration of TCC did not change during treatment 

in the DL75 system whereas the concentration increased initially in the LA15 and EC50 LDL 
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apheresis systems and was reduced towards baseline at the end of the treatment. At position 

post LDL apheresis column the concentration of TCC stayed at baseline during the whole 

treatment in the LA15 and EC50 LDL apheresis system. For the DL75 system, concentrations 

of C4d, Bb and the anaphylatoxins C3a and C5a stayed at baseline during the whole 

treatment. In the LA15 and EC50 systems, there was an initial increase in the concentration of 

C4d, Bb, C3a and C5a in position post plasma separation. The LA15 system reduced the 

concentration of C4d, Bb, C3a and C5a towards baseline at the end of the treatment, and in 

position post LDL apheresis the concentration of the anaphylatoxins stayed close to baseline 

during treatment. In the EC50 system C4d, Bb, C3a and C5a concentration was increased 

from T15-T30 and throughout the entire treatment period in all positions.   

In the DL75 system, C1rs-C1-inh stayed at the concentration level of the sample control 

during the 60 minutes sample period. In the LA15 and EC50 systems there was an initial 

increase in concentration at position post plasma separation however the concentration stayed 

at a baseline level in position post LDL apheresis.   

 

4.3 Article III 

This case-control ex vivo investigation showed that also the concentrations of cytokines are 

differently influenced by the three LDL apheresis systems.  In the sample control bag, there 

was a marked increase of cytokines IFN-γ, IL-8, IL-1ra, TNF, PDGF-BB, RANTES and MIP-

1β. The other biomarkers stayed on the baseline for 240 minutes. In the DL75 and LA15 LDL 

apheresis system IFN-γ, IL-8, IL-1ra, eotaxin, TNF, MCP-1, PDGF-BB, MIP-1β, and IP-10 

were reduced in concentration, but only the DL75 system reduced RANTES concentration. 

IL-17 was unchanged in both systems and RANTES was unchanged in the LA15 system. 

VEGF and GM-CSF were increased in both systems. The EC50 system reduced the 

concentration of IFN-γ, IL-1ra, TNF, MIP-1β, and IP-10.  IL-8, eotaxin, IL17, and PDGF-BB 
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were unchanged, and MCP-1, VEGF, GM-CSF, and RANTES were increased in 

concentration. Temporal patterns of concentration change included early increase and 

reduction, early reduction and increase, and late reduction and late increase during 240 

minutes of treatment. Eotaxin concentration was reduced in position post plasma separation 

from the start of the treatment, in the LA15 and EC50 systems, indicating that the plasma 

separation column possibly can be a barrier to filtration into the plasma fraction in the plasma 

separation LDL apheresis systems.   

 

4.4 Article IV 

This is a case-control ex vivo investigation comparing blood from healthy individuals with 

blood from a C5 deficient individual and blood from the C5 deficient individual reconstituted 

with purified C5.  

In the blood sample from the healthy individuals, granulocyte CD11b expression increased in 

plasma separation but not in the no-plasma separation sample. Monocyte CD11b expression 

increased in plasma separation and to a lesser extent in no-plasma separation. In the C5 

deficient blood sample, granulocyte CD11b expression increased neither in plasma separation 

nor in the no-plasma separation sample. Monocyte CD11b expression also remained on the 

baseline in the plasma and no-plasma separation sample. In the C5 deficient blood sample 

reconstituted with purified C5, granulocyte and monocyte CD11b expression showed a 

substantial increase both in the plasma separation and no-plasma separation sample.  

In the sample from the healthy individuals, granulocyte-platelet and monocyte-platelet 

conjugate formation increased to the same extent both in the plasma separation and no plasma 

separation. In the C5 deficient sample, granulocyte-platelet conjugate formation showed 

slightly less increase compared to the sample from C5 deficient reconstituted with purified C5 
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in plasma separation.  Monocyte-platelet conjugate formation was equal in the C5 deficient 

and C5 reconstituted sample both in plasma separation and no-plasma separation sample. 

Platelet count, total protein and complement factor 4 (C4) concentrations were all reduced in 

the sample from the healthy individuals, the C5 deficient and in the C5 deficient sample 

reconstituted with purified C5 in plasma separation, but remained on the baseline in all the 

no-plasma separation samples. Leukocyte count stayed on the baseline in the sample from the 

healthy individuals, the C5 deficient sample and in the sample from the C5 deficient 

reconstituted with purified C5 both in plasma separation and no-plasma separation. 

Complement factor 3bc (C3bc) was increased in the sample from the healthy individuals, the 

C5 deficient and in the sample from C5 deficient reconstituted with purified C5 both in 

plasma separation and no-plasma separation. TCC concentration increased in the sample form 

the healthy individuals both in plasma separation and no-plasma separation. TCC stayed on 

the baseline in the C5 deficient sample both in plasma separation and no-plasma separation. In 

the sample reconstituted with purified C5, the TCC concentration increased in the plasma 

separation and the no-plasma separation samples above the concentration level in the control 

sample from the healthy individuals.  
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5. Discussion 

5.1 Methodological considerations 

In article I the blood donors were patients treated with LDL apheresis for more than two years 

before the investigation took place. Studies have indicated that LDL apheresis can alter gene 

expression of inflammatory markers (53) and this may have influenced our readouts. Blood 

was taken from the AV fistula immediately after the end of treatment and this did not allow 

for equalization of concentrations between the body fluids before blood sampling which could 

affect our results. Blood samples were collected from individuals with genetically verified 

HeFH and established cardiovascular disease in article I. In articles II and III, six healthy 

volunteers were used as blood donors. In article IV a C5 deficient individual and two healthy 

volunteers were used as blood donors. There are differences in inflammatory status and 

hemorheology between individuals with and without cardiovascular disease or high levels of 

cholesterol and this might have an impact on inflammatory responses on an individual level 

(123), and the fact that we used both healthy individuals and individuals with cardiovascular 

disease and HeFH as donors implies a methodological difference between our, and others, in 

vivo and ex vivo investigations. In article IV, C5 deficient blood was reconstituted with 

purified human C5. Purified human C5 has been described to be hyper-reactive compared to 

native C5. We have experienced this with the purified C5 in our laboratory (non-published 

observations). This probably had an impact in this study as TCC from the reconstituted 

samples was elevated compared to TCC from the healthy individuals. Heparin is a highly 

negatively charged molecule and interacts with a number of proteins (124). Interactions 

between heparin and blood proteins can possibly contribute to the differences seen in the in 

vivo and ex vivo study. In the ex vivo investigations (articles II-IV) lepirudin was chosen for 

anticoagulation, because of its ability not to influence the complement system (117, 125). 
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5.2 Biocompatibility 

5.2.1 Complement system 

The in vivo study indicated complete activation of the complement system by the elevation of 

TCC in all systems. Factor Bb, a marker of the alternative pathway activation, was markedly 

elevated in all systems, and one can argue that the alternative pathway activation was of most 

importance in accordance with former studies (55). C4d, a marker of classical pathway 

activation was to some degree elevated in the whole blood LDL apheresis system but showed 

only minor concentration changes in the plasma separation-LDL apheresis systems indicating 

either activation of the complement system in the whole blood column or adsorption in the 

other systems. Activation of the classical pathway by artificial surfaces is recognized in other 

studies (126). The ex vivo investigation indicated that all three LDL columns were able to 

adsorb TCC keeping it at baseline values. The DL75 system adsorbed TCC from start to end 

of treatment. The LA15 and EC50 systems showed a first pass increased production of TCC 

before adsorption reduced the concentration to baseline at the end of treatment.  This indicates 

either better adsorption capabilities of the DL75 column or initially increased activation of the 

complement system by the two plasma separation LDL apheresis systems in the ex vivo study. 

In the ex vivo study, factor Bb was completely adsorbed by the DL75 column as opposed to 

in the in vivo study. In the LA15 system, there was an initial high generation of Bb and late 

complete adsorption. In the EC50 system, Bb was initially generated but not to the same 

extent as in the LA15 system and the concentration level remained increased throughout the 

treatment. This indicates reduced removal capabilities in the EC50 column compared to the 

LA15 column and may be caused by different materials and principles of action between the 

two columns as described in the introduction. C3a and C5a were increased in all three systems 

in the in vivo study, however, the ex vivo study showed the same pattern of production and 

adsorption as factor Bb, exemplifying the first pass effect on activation of the complement 

system in the two plasma separation based systems and the adsorption capabilities of dextran-
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sulphate based adsorption columns.  One can argue that in the first minutes of circulation the 

foreign material surface is exposed to the blood proteins in a way that activates the 

complement system vigorously. Later during treatment, the surfaces are covered with proteins 

that either enhance or reduce this cascade, balancing out the generation of complement 

components making the relative removal capability supersede the production. Proteomic 

studies were done investigating the eluate from LDL apheresis columns after treatments of 

patients with FH. Several complement proteins were identified indicating adsorption and 

filtration by the LA15 and EC50 columns (49, 115). It is known that heparin influences the 

complement system in a biphasic pattern. At low concentration complement alternative 

pathway is enhanced and at high concentration the level of factor Bb and TCC reduced (127). 

This might contribute to the differences seen as we used heparin as anticoagulation in the in 

vivo study. 

 

5.2.2 Cytokines 

There were also differences in the concentration changes of cytokines between the in vivo and 

ex vivo studies. IFN-γ, TNF, and PDGF-BB had the same direction of concentration change in 

all LDL systems, in vivo and ex vivo. IL-1ra and IP-10 were increased in the in vivo study and 

reduced in the ex vivo study. The ex vivo investigation excluded the total body blood volume 

and organs that may respond to biocompatibility reactions. This may have consequences for 

regulatory mechanisms, and to some degree contribute to the difference between the in vivo 

and ex vivo study. Furthermore, heparin and ACD-A were used as anticoagulation according 

to the description by the manufacturer of the equipment in the in vivo study. Citrate, as in 

ACD-A, not only inhibits the coagulation system, it also reduces cytokine secretion and 

activation of the complement system (128).  A recent study also documented that heparin and 

citrate anticoagulation also influence which proteins that are bound to the membrane in 
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dialysis columns (129) and different anticoagulation used in our studies could affect the 

results and should be taken into account in the interpretation of the results.  

 

5.2.3 Temporal concentration changes 

Temporal changes in concentration (article III) showed that some cytokines are immediately 

adsorbed (eotaxin, IP-10) and some are adsorbed after a first pass induction of expression 

(PDGF, RANTES) in the whole blood column DL75. The LA15 column showed adsorption 

capacities at the same level as the DL75 column except for RANTES where the concentration 

increased from treatment start to finish even though the LA15 beads seemed to adsorb 

RANTES keeping the concentration at a low level at position post LDL apheresis column. 

This illustrated the difference in the two systems and points to the possible effect of the 

plasma separation column which increased the production of RANTES. The temporal change 

of eotaxin concentration is an example of a cytokine not easily filtered through the 

plasmapheresis column as the concentration of eotaxin was reduced immediately after the 

treatment started, in position post plasma separation in the LA15 and EC50 system. The LA15 

bead removed the small amount of eotaxin present in the plasma and decreased the 

concentration during the treatment. The reduced filtration capabilities of eotaxin in the plasma 

separation column might be caused by the chemical structure of eotaxin as this protein has a 

disordered N-terminus compared to e.g. RANTES (130, 131). The EC50 column did not 

decrease the eotaxin concentration beyond the first pass reduction. The immediate fall in 

position post plasma separation, with no further temporal removal, is in alignment with the 

demonstrated initial coating of foreign material with proteins when contact with blood is 

established (61).   
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5.2.4 Shear stress in artificial systems 

GM-CSF and VEGF showed a clear increase in the LDL apheresis systems compared to the 

control bag (article III) and there was also a clear reduction of platelet count in the 

plasmapheresis circuit compared to the control bag (article IV). Shear stress in artificial 

systems circulating blood induces expression of platelet glycoprotein Ib -IX-V receptor 

complex which can induce agglutination (132, 133). Biomaterial surface interaction also 

induces platelet activation through conformational changes of the platelets (134), expression 

of surface P-selectin and glycoprotein IIb/IIIa receptors (135) and microparticle formation and 

release (136), which can induce cytokine release and cloth formation.  

 

5.2.5 CD11b expression and conjugate formation. 

The results in article number IV indicated C5 dependent upregulation of CD11b expression on 

granulocytes and monocytes and is supported by former studies (137, 138). The results also 

indicated a possible dependence on C5 for the formation of granulocyte-platelet conjugates. 

Monocytes-platelet conjugate formation was C5 independent and there was no difference in 

leukocyte-conjugate formation between plasma separation and no-plasma separation samples. 

This is not in line with former studies (137, 138), where partial C5 dependent monocyte-

platelet conjugate formation was demonstrated. Leukocyte-platelet conjugates are primarily 

created by binding between P- selectin (CD62P) and P-selectin glycoprotein ligand-1 (PSGL-

1)/CD15 and integrin-mediated ligations via glycoprotein (GP) IIb/IIIa - fibrinogen - 

CD11b/CD18. Platelet glycoprotein 4 (GPIV, CD36) - thrombospondin also contributes 

(139). It was described that the integrin binding via glycoprotein (GP) IIb/IIIa - fibrinogen - 

CD11b/CD18 is of more importance when shear force increased (139). It is also known that 

under certain shear stress conditions the CD11b/CD18 integrin can be downregulated (70). 

Other studies have concluded a certain C5 dependence of monocyte - platelet conjugate 
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formation (138), and the lack of difference with and without C5 demonstrated in article IV 

despite the difference in expression of CR3 can be explained by the contribution of other 

mechanisms forming conjugates under the conditions used in this study. 

 

5.3 Clinical consideration 

The LDL apheresis systems equally reduced LDL cholesterol and the choice of which system 

to use for LDL lowering can be made according to the physicians' preferences and possible 

adverse effects from the treatment. The use of LDL apheresis in the treatment for other 

indications, e.g. nephrotic syndrome or improved peripheral circulation can possibly be 

beneficial to the patient, however, the different systems need to be tested for each indication 

independently, as each system had its own profile on how the immune system was modulated 

and how different mediators and markers of inflammation were changed in concentration also 

during the treatment time applied.  
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6. Main Conclusions 

In vivo, the EC50 LDL apheresis system showed the least impact on inflammatory markers 

pre and post treatment, indicating the EC50 LDL apheresis system being the most 

biocompatible system. However, the DL75 and LA15 LDL apheresis systems showed a more 

beneficial inflammatory profile concerning concentration changes in complement factors and 

cytokines profile. 

 

The ex vivo experiments showed that both the classical and alternative pathways of the 

complement were activated in the systems tested. There were differences in how the three 

LDL apheresis systems affected the different complement factors. All the three LDL apheresis 

columns reduced TCC. The cytokines were differently affected by the three LDL apheresis 

systems, the DL75 column being the most effective in reducing cytokines.  

 

The plasma separation column increased CD11b/CD18 integrin upregulation on granulocytes 

and monocytes in a C5 dependent manner. Formation of monocyte - platelet aggregates was 

C5 independent in ex vivo plasma separation indicating several possible mechanisms for the 

formation of leukocyte - platelet conjugates. The plasma separation system induced platelet 

agglutination.  

 

As LDL apheresis systems were used for other indications than the removal of lipoproteins, 

partly to favourably modulate the immune system by altering concentrations of cytokines, it is 

of importance to acknowledge that the cytokines and the complement factors were differently 

affected by the three LDL apheresis systems herein tested, both under ex vivo and in vivo 

conditions. This is a fact that underlines the need to test every system independently for each 

medical indication where it is used, and as close to the clinical setting as possible. Temporal 
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differences also ought to be taken into account. It is not recommended to solely rely on 

methods and results from similar studies with comparable systems.  

 

7. Future perspectives 

The traditional indications for the use of LDL apheresis will probably be reduced as new 

treatment options regarding LDL-cholesterol reduction evolve. However, patients with HoFH 

and patients who do not tolerate LDL-cholesterol lowering therapy may still require this 

treatment option. 

There is evidence that LDL apheresis may improve microcirculation and can reduce 

extracellular vesicles, indicating a possible effect in the treatment of acute coronary 

syndromes which should be further explored.  

The possible beneficial effect of LDL apheresis in the treatment of nephrotic syndrome and 

other diseases needs further investigation in larger studies.  

Mechanisms of platelet aggregation in extracorporeal treatments are also a field requiring 

further investigation (139-141).  
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Low-density lipoprotein (LDL) apheresis is well-established in selected patients with uncontrolled LDL levels.

As such treatment affects biomarkers important in atherosclerosis and acute coronary syndromes, we systemati-

cally compared the inflammatory response induced by three LDL apheresis columns. Three patients with hetero-

zygous familial hypercholesterolemia participated in a cross-over study with six consecutive treatments with three

different LDL apheresis columns: DL-75 (whole blood adsorption), LA-15 (plasma adsorption), and EC-50W

(plasma filtration). Biochemical parameters and inflammatory biomarkers, including complement activation prod-

ucts and 27 cytokines, chemokines, and growth factors were measured before and after treatment. Complement

was activated through the alternative pathway. The final end product sC5b-9 increased significantly (P < 0.01)

and equally with all devices, whereas the anaphylatoxins C3a and C5a were lower by use of the adsorption col-

umns. Hs-CRP was reduced by 77% (DL-75), 72% (LA-15), and 43% (EC-50W). The cytokines were consis-

tently either increased (IL-1ra, IP-10, MCP-1), decreased (IFN-g, TNF-a, RANTES, PDGF, VEGF), or hardly

changed (including IL-6, IL8, MIP-1ab) during treatment. The changes were in general less pronounced with the

adsorption columns. All columns reduced LDL significantly and to the same extent. In conclusion, three LDL-

apheresis devices with equal cholesterol-lowering effect differed significantly with respect to the inflammatory

response. J. Clin. Apheresis 24:247–253, 2009. VVC 2009 Wiley-Liss, Inc.

Key words: LDL cholesterol; inflammation; cytokines; apheresis; familial hypercholesterolemia

INTRODUCTION

Low-density lipoprotein (LDL) apheresis is a well-
established treatment modality in hypercholesterolemia
when target LDL levels cannot be achieved by diet
and/or lipid lowering drug therapy or because of intol-
erance to the drugs [1]. LDL apheresis is often used in
patients with homozygous familial hypercholesterole-
mia, but also in heterozygosity when LDL cholesterol
cannot be adequately controlled. Familial hypercholes-
terolemia carries a high-risk of premature coronary ar-
tery disease if not treated [2]. Clinical effects of cho-
lesterol reduction with drugs and/or LDL apheresis
include reduced mortality and morbidity in coronary
heart disease [3] as well as functional improvement
and arrested progression of coronary stenoses [4]. LDL
cholesterol can be removed from plasma by adsorption
devices, precipitation devices, or filtration devices, or
more recently from whole blood. All methods are
effective in reducing LDL levels [1], but superiority
regarding prevention of coronary events has so far not
been demonstrated for any of the columns. The com-
plement system is postulated to be of pathogenetic

importance for development of atherosclerotic lesions
[5–8] and there is evidence that apheresis treatment
activates complement and thus increases the amount of
systemic complement activation products [9]. Chemo-
kines (chemotactic cytokines) are important in many
diseases including atherosclerotic coronary heart dis-
ease [10] and several chemokines correlate with cardio-
vascular risk [11]. Some studies have compared differ-
ent apheresis columns regarding immunoglobulins,
coagulation, and some inflammatory markers [12–16],
but a systematic investigation of how three different
columns affect a whole range of biomarkers such as
chemokines and complement activation products has
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not previously been performed. Different column
effects could be of great importance for patients facing
many years of LDL apheresis and possible column de-
pendent effects on the immune system. The aim of the
present study was therefore to examine and compare
the inflammatory response induced by LDL apheresis
treatment utilizing three different apheresis columns.

METHODS

The study was designed as a cross-over study in
which three patients already established in long-term
LDL apheresis treatment underwent six consecutive
treatments with three different LDL apheresis columns.
The order of the columns was random for each patient.

Patients and Ethics

Three patients with familial hypercholesterolemia
who were established in LDL apheresis for more than
24 months were included. They were heterozygous for
the C210G mutation in the LDL receptor gene and had
coronary artery disease. There were two women and
one man ranging from 41 to 47 years of age. They
were all intolerant to statins due to myalgia. Vascular
access was obtained by arterio-venous (AV) fistulas.
The study was approved by the local ethic committee
and all patients gave their written, informed consent.

LDL Apheresis

The following devices were compared as follows:
Liposorber1 D DL-75 (DL-75; Kaneka Corporation,
Osaka, Japan), Liposorber1 LA-15 (LA-15; Kaneka
Corporation), and Cascadeflo EC-50W (EC-50W;
Asahi Kasei, Medical Europe). Treatment with the DL-
75 and LA-15 columns was conducted with the Kaneka
MA-03 (Kaneka Corporation) machine. The OctoNova
(MeSys Gmbh, Hannover, Germany) machine was used
in the treatment with the EC-50W filter.

DL-75 is a whole blood adsorption column and part
of the Liposorber D system. This column utilizes dex-
tran sulphate cellulose beads for adsorption of LDL. It
is modified with regard to the particle size and allows
for perfusion and adsorption of LDL cholesterol
directly from whole blood [17,18].

LA-15 is a dextran sulfate cellulose adsorption col-
umn, removing LDL from plasma. It is based on elec-
trostatic binding between positively charged Apo B and
the negative charges of dextran [19].

The Cascadeflo EC-50W is a lipid filtration system
eliminating LDL on the basis of molecular weight and
three-dimensional structure [20].

Anticoagulation is mandatory during the apheresis
treatment. In whole blood apheresis (DL-75) acid ci-
trate dextrose-A was used, and in the two plasma-sys-
tems (LA-15 and EC-50W) heparin was used.

Treatment volume averaged 4500 ml plasma for
both plasma columns (LA-15 and EC-50W) and 8500
ml whole blood for the DL-75 column. The treatment
was performed weekly.

Blood Samples and Analyses

Blood samples were drawn from the AV-fistulas im-
mediately before and after the LDL apheresis treat-
ment. Analyses included routine biochemical markers,
lipid parameters, and a number of inflammatory
markers. The patients underwent six weekly treatments
with each apheresis system, adding up to 18 treatments
per patient and 36 sets of samples per patient.

LDL cholesterol and high-sensitivity C-reactive pro-
tein (hs-CRP) were measured by standardized labora-
tory tests in the hospital laboratory immediately after
collection. For complement and cytokine analyses,
blood was anticoagulated with EDTA and centrifuged
for 15 min, 3220g at 48C. The plasma was frozen in
aliquots at 2708C until analyzed.

Complement Activation Products

C4d, C3a, and Bb were analyzed according to the
manufacturer’s specifications in kits delivered by Qui-
del Corporation (San Diego, CA). C5a was analyzed
by a kit from BD Biosciences Pharmingen (San Diego,
CA). The fluid-phase terminal sC5b-9 complex (TCC)
was analyzed according to a method previously
described [21].

Cytokines

Plasma samples were analyzed using a multiplex
cytokine assay (Bio-Plex Human Cytokine 27-Plex
Panel; Bio-Rad Laboratories Inc., Hercules, CA) con-
taining the following 27 analytes: IL (interleukin) 1
beta (IL-1b), IL-1 receptor antagonist (IL-1ra), IL-2,
IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-
12, IL-13, IL-15, IL-17, eotaxin (CCL11), basic fibro-
blast growth factor (FGF), G-CSF, GM-CSF, IFN-g,
chemokine (C-X-C motif) ligand 10 (IP-10 or
CXCL10), monocyte chemoattractant protein 1 (MCP-1
or CCL2), MIP-1a (or CCL3), MIP-1b (or CCL4), pla-
telet derived growth factor (PDGF), regulated on acti-
vation T cell expressed and secreted (RANTES or
CCL5), TNF-a, and vascular endothelial growth factor
(VEGF). The analysis was performed according to the
manufacturer’s instructions.

Statistics

Mean � SD of standard laboratory tests were com-
pared with t-tests. A two-tailed P-value < 0.05 was
considered statistically significant. Because of inter-
individual variation, cytokine and complement activa-
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tion product concentrations were normalized for evalu-
ation of column effect and changes are in percent.

The column effects on complement activation prod-
ucts and cytokines were furthermore studied using a
(blocked) one-way ANCOVA (analysis of covariance).
This is a one way analysis of variance (ANOVA) cor-
recting for the pretreatment level of the inflammatory
parameter. As responses from different individuals are
likely to differ, the analysis treats the patients as block
effects. All statistical analyses were performed with
SPSS for Windows (SPSS 16.0, Chicago, IL).

RESULTS

Complement

All columns induced complement activation as
revealed by a significant (P < 0.01) and similar
increase (approximately 500%) in the soluble C5b-9
terminal complement complex (TCC) indicating that,
the cascade was activated to completion (Fig. 1). A
substantial increase in fragment Bb, reflecting alterna-
tive pathway activation, was observed for all columns.
The increase in Bb for the whole blood column (DL-
75) was markedly less than for the plasma columns
(LA-15 and EC-50W). C4d, reflecting classical and
lectin pathway activation, changed only marginally.
The anaphylatoxins C3a and C5a varied substantially
between the columns. C3a increased to the same extent
in the adsorption columns (DL-75 and LA-75) and sub-
stantially more in the filtration device (EC-50W),
whereas C5a was reduced in the adsorption columns
and unchanged in the filtration device, consistent with

the well-known adsorptive properties of the anaphyla-
toxins. When the columns were compared with
ANCOVA there were significant differences before and
after apheresis for complement activation products for
the three columns (P < 0.05).

Hs-CRP

Mean hs-CRP was lowered by all columns and to
the greatest extent by the adsorption columns (Fig. 2).
Thus, DL-75 reduced hs-CRP from 1.2 � 0.4 mg/l to
0.3 � 0.1 mg/l (77%) and LA-75 reduced hs-CRP from
1.4 � 0.7 mg/l to 0.4 � 0.2 mg/l (72%), whereas the
filtration device EC-50W reduced hs-CRP from 1.3 �
0.5 mg/l to 0.7 � 0.3 mg/l (43%) (P < 0.001 for all).

Cytokines

Eight of the 27 cytokines, chemokines, and growth
factors examined showed substantial changes during
treatment and could be grouped according to whether
they increased or decreased (Fig. 3). IL-1ra, IP-10, and
MCP-1 were consistently increased (approximately
doubled) after apheresis, whereas IFN-g, TNF-a,
RANTES, VEGF, and PDGF consistently decreased.
Notably, the whole blood adsorption column DL-75
had no effect on the levels of the chemokine MCP-1.
Other cytokines including IL-6, IL-8, eotaxin, FGF-
basic, G-CSF, and GM-CSF showed less changes (0.5-
to 1.5-fold) during treatment; e.g., IL-6 changed by 10,
40, and 210% with columns DL-75, LA-15, and EC-
50W, respectively (data not shown). The statistical
significances between the three columns for the eight
biomarkers that changed substantially during treatment
are shown in Table I. Interestingly, the two adsorption
columns LA-15 and DL-75 behaved similarly without
significant differences for six of the eight markers

Fig. 1. Complement activation: Percent change in complement

activation products relative to baseline (mean, standard error) with

the columns DL-75, LA-15, and EC-50W. TCC, the soluble C5b-9

complement complex; Bb, split product, alternative pathway; C4d,

split product, classical/lectin pathways; C3a, C5a, anaphylatoxins

from cleavage of C3 and C5; respectively.

Fig. 2. Hs-CRP: Percent change relative to baseline in hs-CRP for

the three different LDL apheresis columns as reported in Figure 1.
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(Table I, left column), whereas the plasma filtration de-
vice differed significantly from the adsorption columns
LA-15 and DA-75 for six and seven of the eight
markers, respectively (Table I, middle and right col-
umns).

Lipid Parameters

All three columns efficiently reduced LDL choles-
terol. Thus, mean LDL cholesterol was lowered from
5.6 � 0.4 mmol/l to 1.9 � 0.3 mmol/l (67%) for DL-
75 (P < 0.001), from 5.3 � 1.3 mmol/l to 1.3 � 0.3
mmol/l (75%) for LA-15 (P < 0.001), and from 5.6 �
0.9 mmol/l to 1.8 � 0.3 mmol/l (68%) for EC-50W (P
< 0.001). There were reductions in HDL-cholesterol of
20%, 12%, and 18% for the columns DL-75, LA-15,
and EC-50W, respectively (all P < 0.001).

DISCUSSION

The present study is the first to systematically com-
pare the effects of three different LDL apheresis col-
umns on the inflammatory network during treatment of
familial hypercholesterolemia. Although only marginal
changes in general biochemical markers were observed,
the effect on inflammation was distinct and should be
taken into account when evaluating the overall biocom-
patibility since inflammatory biomarkers might give
adverse long-term vascular effects. The whole blood
adsorption column DL-75, the plasma adsorption col-

umn LA-15, and the plasma filtration device EC-50W
all reduced LDL cholesterol efficiently and to the same
extent. All columns reduced hs-CRP significantly, the
two adsorption columns being most effective. Inflam-
matory biomarkers from the complement system and
the cytokine network were differently affected by the
devices in a complex manner as discussed in detail
later.

Complement

Both plasma separation columns and LDL apheresis
columns may activate the complement system [9].
Kobayashi et al. found that C3a was reduced during a
single pass through an LDL adsorbent column ex vivo
whereas C5a was unchanged [17]. This is apparently in
contrast to our findings, as we observed a marked
increase in C3a with all columns. The increase was,
however, substantially less pronounced in the adsorp-
tion columns. Furthermore, our study was performed in
vivo, in which plasma or blood was passed continu-
ously through the columns in a true clinical setting.
Complement activation by apheresis columns cannot
merely be evaluated by measuring single intermediate
activation products; e.g., the anaphylatoxins C3a and
C5a are subject to adsorption to various surfaces
because they are highly positively charged (pI of C3a
is 11.3). Our finding of high levels of the neutrally
charged TCC, induced equally by all columns, proves
large scale complement activation with formation of
C5a, although plasma levels of this marker actually
decreased after apheresis. Thus, our findings indicate
that complement is activated similarly by all columns,

Fig. 3. Cytokines: Percentage change in cytokines (columns indi-

cated in Fig. 1). IL-1ra, interleukin 1 receptor antagonist; IP-10,

interferon-induced protein 10; MCP-1, monocyte chemotactic pro-

tein-1; IFN-g, interferon gamma; TNF-a, tumor necrosis factor-

alpha; RANTES, regulated on activation normal t cell expressed and

secreted; VEGF, vascular endothelial growth factor; PDGF-BB,

platelet-derived growth factor-BB.

TABLE I. Pair-Wise Comparison of Three LDL Apheresis

Columns with P-Values Indicating Differences for Selected

Inflammatory Parameters Using ANCOVA Statistics

Biomarker

DL-75 vs.

LA-15a
DL-75 vs.

EC-50W

LA-15 vs.

EC-50W

IL-1ra 0.557 0.037b 0.137

IP-10 0.307 0.007 0.031
MCP-1 0.003 0.002 0.809

IFN-g 0.767 0.120 0.015
TNF-a 0.809 0.004 0.001
RANTES 0.588 <0.001 <0.001
PDGF-BB 0.297 <0.001 <0.001
VEGF <0.001 0.012 0.035

Abbreviation used for the biomarkers: IL-1ra, Interleukin 1 receptor

antagonist; IP-10, Interferon-inducible protein 10; MCP-1,

Monocyte chemotactic protein-1; IFN-g, Interferon gamma; TNF-a,
Tumor necrosis factor-alpha; RANTES, Regulated on activation

normal t cell expressed and secreted; PDGF-BB, Platelet-derived

growth factor-BB; VEGF, Vascular endothelial growth factor.
aThe following columns were used: DL-75: whole blood adsorption

column; LA-15: plasma adsorption column; EC-50W: Plasma filtra-

tion device.
bStatistically significant differences indicated in bold italics.

250 Hovland et al.

Journal of Clinical Apheresis DOI 10.1002/jca



but C3a and C5a are adsorbed to the surface of the
adsorption columns and thereby show less increase
than the filtration device. Of clinical importance, how-
ever, is the fact that even if the anaphylatoxins are
attached to an adsorption column they may still be bio-
logically active. In a recent proteomic study, LDL
apheresis columns were shown to remove various com-
ponents of the complement system, and in line with
our findings there were differences between the col-
umns [22]. C4d and Bb do not have the characteristic
positive charges as the anaphylatoxins, which may in
part explain the different patterns displayed by the vari-
ous activation products in the present study.

It should be kept in mind that the concentration of
the various complement activation products in the
blood leaving the columns is the net result of activation
by the artificial surface, biological degradation and
adsorption by the column. Furthermore, the concentra-
tion measured does not reflect the systemic concentra-
tion, as blood entering the patient will be thoroughly
mixed in the venous circulation. Epidemiological stud-
ies have shown that serum levels of complement com-
ponent C3 are associated with cardiovascular risk [23]
and complement activation products have been identi-
fied in tissue samples of recent myocardial infarctions
[24]. Speidl et al. reported that the circulating level of
C5a seems to be associated with increased cardiovascu-
lar risk in patients with advanced atherosclerosis.25
Thus, our finding that C3a increased the most with the
filtration device EC-50W and that C5a was reduced by
the adsorption columns DL-75 and LA-15 may be of
clinical importance. However, any direct causal role of
complement activation in atherosclerosis has not been
fully established. Therefore, our preliminary results
should be confirmed in a larger group of patients with
different end points. Although the activation products
may be biologically active after adsorption as discussed
earlier, it is reasonable to suggest that the adsorption
effect is overall beneficial for the individual because
the total load of biologically active products released
to the circulation is reduced.

Hs-CRP

Several studies have shown that LDL apheresis with
different apheresis devices lowers hs-CRP [12,15].
Hershcovici et al. systematically compared plasmapher-
esis, dextran sulfate attached cellulose (DSA), and the
whole blood DALI system in four patients and found a
47.5%, 36.1%, and 22% reduction in hs-CRP, respec-
tively [14]. We found the largest reduction in hs-CRP
for the whole blood column DL-75. This is in contrast
to Hershcovicis findings. However, they used a differ-
ent whole blood column that may have had less adsorp-
tive effects than DL-75. Notably, the plasma adsorption
column LA-15 reduced hs-CRP virtually to the same

extent as the whole blood column in our study,
whereas the reduction in the filtration device EC-50W
was less pronounced. Hs-CRP is now thought to take
part in the inflammatory response [26] and recently, in
a large clinical statin trial with rosuvastatin, both CRP
and clinical end-points were reduced in the treatment
arm [27]. Thus, how the LDL apheresis columns affect
this biomarker may be of clinical importance and our
data imply a favorable effect of the adsorption columns
in this regard.

Cytokines

A few previous studies have addressed how LDL
apheresis affects biomarkers including cytokines.
Kobayashi et al. performed LDL apheresis in patients
with peripheral artery disease and found a nonsignifi-
cant increase in MCP-1 after treatment with the LA-15
column [15], in line with our findings. Kojima et al.
noted a 70% increase in IL-6 during dextran-sulfate
LDL apheresis even if hs-CRP was reduced [19]. We
found less changes in IL-6 than Kojima, with a 10, 40,
and 210% differences in IL-6 levels with columns
DL-75, LA-15, and EC-50W, respectively. A recent ar-
ticle from Otto et al. describes a significant 40%
increase in IL-6 after treatment with Liposorber D
compared with another whole blood system (DALI)
[28]. We could not demonstrate such a relationship
using the whole blood adsorption column DL-75, find-
ing a nonsignificant increase.

Cytokines are classified as proatherogenic (for
instance TNF-a, MCP-1, RANTES) or antiatherogenic
(for instance IL-1ra and IL-10) [29]. Serum levels of
RANTES are very recently associated with coronary
artery disease risk [30]. We found significantly higher
levels of the antiatherogenic IL-1ra with the adsorption
columns DL-75 and LA-15 than with the filtration de-
vice EC-50W. Regarding proatherogenic chemokines,
DL-75 had no effect on levels of MCP-1, whereas LA-
15 and EC-50W induced a modest increase. For both
RANTES and TNF-a, there was a significantly more
pronounced decrease after treatment with the DL-75
and the LA-15, than with the EC-50W filter, where
only minor changes were observed. This illustrates that
various LDL apheresis columns affect proatherogenic
and antiatherogenic cytokines differently, and from our
data it is tempting to speculate that the adsorption col-
umns display a more beneficial inflammatory profile.
As this kind of treatment is given for a long time, these
differences could be of importance for progression of
the atherosclerotic disease. At the present, it is not pos-
sible from our results to determine whether differences
in cytokine levels between the columns reflect differen-
ces in adsorption to the columns, but the net effect of a
lower load of inflammatory mediators released to the
circulation would probably be beneficial as discussed
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for the anaphylatoxins earlier. In an in vitro model of
biocompatibility, we have previously shown that inhibi-
tion of complement activation blocked the release of
certain cytokines and chemokines indicating that com-
plement activation may also affect cytokine release in
the present setting [31].

Lipid Parameters

A comparison of several studies has documented
that apheresis treatment significantly reduces LDL-cho-
lesterol [1], and we correspondingly found a 67% to
75% decrease. HDL-cholesterol is typically reduced
from 10% to 20% [1] as we also noted. There are few
studies comparing columns head-to-head, but Julius
et al. found a more pronounced decrease in LDL cho-
lesterol in whole blood apheresis than in LDL plasma
apheresis, however stating that both methods are clini-
cally effective and that LDL reduction partly is a func-
tion of treated volume [32]. Poli and Busnach com-
pared two different whole blood apheresis systems
(direct adsorption with a polyacrylic acid column vs.
adsorption with a modified dextran sulfate column) and
found LDL reductions of 62% and 59%, respectively,
in accordance with our findings [33]. Thus, the
intended therapeutic effect was equal with the three
columns studied, but as discussed earlier differences in
inflammatory profile should be taken into account
when comparing columns for long-term clinical use.

Limitations

A limitation of the present study is the sample size,
and due to this our study might function as a pilot study.
The small sample size is partly counteracted by treat-
ment with the different columns in a randomized cross-
over design attenuating the significance of possible
carry-over effects. Furthermore, as the study was per-
formed in only one center, sample collection and analy-
ses were highly standardized. The different lab tests and
biomarkers were sampled immediately before and after
apheresis treatment. The kinetics of the changes occur-
ring before the next apheresis treatment is not known.
The fact that none of the patients received statin therapy
might have influenced levels of the inflammatory bio-
markers compared to statin users. However, statin intol-
erance is a frequent indication for LDL apheresis in
patients with familial hypercholesterolemia (FH) mean-
ing that the present combination is clinically relevant
and fairly common.

CONCLUSIONS

Several complement activation products and cyto-
kines with importance for progression of vascular ath-
erosclerosis as well as plaque stability, including C3a,
C5a, IL-1ra, MCP-1, and TNF-a were differently

affected by the three apheresis columns DL-75, LA-15,
and EC-50W even if LDL cholesterol was reduced
equally by all of them. However, as LDL apheresis is a
long-term treatment, differences between apheresis col-
umns with respect to their inflammatory profile could
be of clinical significance for patients with or at high
risk for atherosclerotic diseases. For most of the
inflammatory markers studied, EC-50W was the filter
with the smallest changes between pretreatment and
post-treatment levels, but the differences between the
two adsorption columns were minor. In general, the
adsorption columns showed an apparently more benefi-
cial inflammatory profile than the filtration device.
Larger studies are needed to confirm our findings and
also to establish whether the different changes in
inflammatory biomarkers are due to unequal activation
by the various columns, whether the columns have dif-
ferent adsorptive properties or both. Furthermore, clini-
cal end points related to changes in biomarkers should
be addressed.

REFERENCES

1. Thompson GR. LDL apheresis. Atherosclerosis 2003;167:1–13.

2. Neil HA, Huxley RR, Hawkins MM, Durrington PN, Betteridge

DJ, Humphries SE. Comparison of the risk of fatal coronary

heart disease in treated xanthomatous and non-xanthomatous

heterozygous familial hypercholesterolaemia: a prospective

registry study. Atherosclerosis 2003;170:73–78.

3. Mabuchi H, Koizumi J, Shimizu M, Kajinami K, Miyamoto S,

Ueda K, Takegoshi T. Long-term efficacy of low-density lipo-

protein apheresis on coronary heart disease in familial hypercho-

lesterolemia. Hokuriku-FH-LDL-Apheresis Study Group. Am J

Cardiol 1998;82:1489–1495.

4. Kroon AA, Aengevaeren WR, van der WT, Uijen GJ, Reiber

JH, Bruschke AV, Stalenhoef AF. LDL-Apheresis Atherosclero-

sis Regression Study (LAARS). Effect of aggressive versus con-

ventional lipid lowering treatment on coronary atherosclerosis.

Circulation 1996;93:1826–1835.

5. Distelmaier K, Adlbrecht C, Jakowitsch J, Winkler S, Dunkler

D, Gerner C, Wagner O, Lang IM, Kubicek M. Local comple-

ment activation triggers neutrophil recruitment to the site of

thrombus formation in acute myocardial infarction. Thromb

Haemost 2009;102:564–572.

6. Wu G, Hu W, Shahsafaei A, Song W, Dobarro M, Sukhova

GK, Bronson RR, Shi GP, Rother RP, Halperin JA, Qin X.

Complement regulator CD59 protects against atherosclerosis by

restricting the formation of complement membrane attack com-

plex. Circ Res 2009;104:550–558.

7. Leung VW, Yun S, Botto M, Mason JC, Malik TH, Song W,

Paixao-Cavalcante D, Pickering MC, Boyle JJ, Haskard DO.

Decay-accelerating factor suppresses complement C3 activation

and retards atherosclerosis in low-density lipoprotein receptor-

deficient mice. Am J Pathol 2009;175:1757–1767.

8. Yun S, Leung VW, Botto M, Boyle JJ, Haskard DO. Brief

report: accelerated atherosclerosis in low-density lipoprotein recep-

tor-deficient mice lacking the membrane-bound complement regu-

lator CD59. Arterioscler Thromb Vasc Biol 2008;28:1714–1716.

9. Fadul JE, Alarabi AA, Wikstrom B, Danielson BG, Nilsson B.

Identification of complement activators and elucidation of the

fate of complement activation products during extracorporeal

plasma purification therapy. J Clin Apher 1998;13:167–173.

252 Hovland et al.

Journal of Clinical Apheresis DOI 10.1002/jca



10. Hansson GK. Inflammation, atherosclerosis, and coronary artery

disease. N Engl J Med 2005;352:1685–1695.

11. Aukrust P, Halvorsen B, Yndestad A, Ueland T, Oie E, Otterdal

K, Gullestad L, Damas JK. Chemokines and cardiovascular risk.

Arterioscler Thromb Vasc Biol 2008;28:1909–1919.

12. Wang Y, Blessing F, Walli AK, Uberfuhr P, Fraunberger P,

Seidel D. Effects of heparin-mediated extracorporeal low-den-

sity lipoprotein precipitation beyond lowering proatherogenic

lipoproteins—reduction of circulating proinflammatory and pro-

coagulatory markers. Atherosclerosis 2004;175:145–150.

13. Julius U, Metzler W, Pietzsch J, Fassbender T, Klingel R. Intra-

individual comparison of two extracorporeal LDL apheresis

methods: lipidfiltration and HELP. Int J Artif Organs 2002;25:

1180–1188.

14. Hershcovici T, Schechner V, Orlin J, Harell D, Beigel Y. Effect

of different LDL-apheresis methods on parameters involved in

atherosclerosis. J Clin Apher 2004;19:90–97.

15. Kobayashi S, Oka M, Moriya H, Maesato K, Okamoto K,

Ohtake T. LDL-apheresis reduces P-selectin, CRP and fibrino-

gen—possible important implications for improving atheroscle-

rosis. Ther Apher Dial 2006;10:219–223.

16. Schechner V, Shapira I, Berliner S, Comaneshter D, Hershcovici

T, Orlin J, Zeltser D, Rozenblat M, Lachmi K, Hirsch M, Beigel

Y. Significant dominance of fibrinogen over immunoglobulins,

C-reactive protein, cholesterol and triglycerides in maintaining

increased red blood cell adhesiveness/aggregation in the periph-

eral venous blood: a model in hypercholesterolaemic patients.

Eur J Clin Invest 2003;33:955–961.

17. Kobayashi A, Nakatani M, Furuyoshi S, Tani N. In vitro evaluation

of dextran sulfate cellulose beads for whole blood infusion low-

density lipoprotein-hemoperfusion. Ther Apher 2002;6:365–371.

18. Otto C, Kern P, Bambauer R, Kallert S, Schwandt P, Parhofer

KG. Efficacy and safety of a new whole-blood low-density lipo-

protein apheresis system (Liposorber D) in severe hypercholes-

terolemia. Artif Organs 2003;27:1116–1122.

19. Kojima S, Shida M, Yokoyama H. Changes in C-reactive pro-

tein plasma levels during low-density lipoprotein apheresis.

Ther Apher Dial 2003;7:431–434.

20. Klingel R, Mausfeld P, Fassbender C, Goehlen B. Lipidfiltra-

tion—safe and effective methodology to perform lipid-apheresis.

Transfus Apher Sci 2004;30:245–254.

21. Mollnes TE, Lea T, Froland SS, Harboe M. Quantification of

the terminal complement complex in human plasma by an

enzyme-linked immunosorbent assay based on monoclonal anti-

bodies against a neoantigen of the complex. Scand J Immunol

1985;22:197–202.

22. Dihazi H, Koziolek MJ, Sollner T, Kahler E, Klingel R, Neuh-

off R, Strutz F, Mueller GA. Protein adsorption during LDL-

apheresis: proteomic analysis. Nephrol Dial Transplant 2008;23:

2925–2935.

23. Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomas-

setti V, Drago G, Martignani C, Pacilli P, Boni P, Puddu P.

Relationship of serum C3 to fasting insulin, risk factors and pre-

vious ischaemic events in middle-aged men. Eur Heart J 2000;

21:1081–1090.

24. Nijmeijer R, Krijnen PA, Assink J, Klaarenbeek MA, Lagrand

WK, Veerhuis R, Visser CA, Meijer CJ, Niessen HW, Hack

CE. C-reactive protein and complement depositions in human

infarcted myocardium are more extensive in patients with rein-

farction or upon treatment with reperfusion. Eur J Clin Invest

2004;34:803–810.

25. Speidl WS, Exner M, Amighi J, Kastl SP, Zorn G, Maurer G,

Wagner O, Huber K, Minar E, Wojta J, Schillinger M. Comple-

ment component C5a predicts future cardiovascular events in

patients with advanced atherosclerosis. Eur Heart J 2005;26:

2294–2299.

26. Verma S, Szmitko PE, Yeh ET. C-reactive protein: structure

affects function. Circulation 2004;109:1914–1917.

27. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr.,

Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen

JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ.

Rosuvastatin to prevent vascular events in men and women with

elevated C-reactive protein. N Engl J Med 2008;359:2195–2207.

28. Otto C, Berster J, Otto B, Parhofer KG. Effects of two whole

blood systems (DALI and Liposorber D) for LDL apheresis on

lipids and cardiovascular risk markers in severe hypercholestero-

lemia. J Clin Apher 2007;22:301–305.

29. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic

and regulatory pathways. Physiol Rev 2006;86:515–581.

30. Koh SJ, Kim JY, Hyun YJ, Park SH, Chae JS, Park S, Kim JS,

Youn JC, Jang Y, Lee JH. Association of serum RANTES con-

centrations with established cardiovascular risk markers in mid-

dle-aged subjects. Int J Cardiol 2009;132:102–108.

31. Lappegard KT, Bergseth G, Riesenfeld J, Pharo A, Magotti P,

Lambris JD, Mollnes TE. The artificial surface-induced whole

blood inflammatory reaction revealed by increases in a series of

chemokines and growth factors is largely complement depend-

ent. J Biomed Mater Res A 2008;87:129–135.

32. Julius U, Parhofer KG, Heibges A, Kurz S, Klingel R, Geiss

HC. Dextran-sulfate-adsorption of atherosclerotic lipoproteins

from whole blood or separated plasma for lipid-apheresis—com-

parison of performance characteristics with DALI and lipid fil-

tration. J Clin Apher 2007;22:215–223.

33. Poli L, Busnach G. Whole blood selective LDL-apheresis: a

comparison of two different adsorbers. Int J Artif Organs 2006;

29:726–732.

LDL Apheresis Columns Affect Inflammation 253

Journal of Clinical Apheresis DOI 10.1002/jca





Article II 
Hovland, A., Hardersen, R., Nielsen, E.W., Enebakk, T., Christiansen, D., Ludviksen, J.K. Mollnes, 
T.E. & Lappegard, K.T. (2012).  

Complement profile and activation mechanisms by different LDL apheresis systems. 

Acta Biomaterialia, 8(6), 2288-2296.   





Complement profile and activation mechanisms by different LDL apheresis systems

Anders Hovland a,b,⇑, Randolf Hardersen c, Erik Waage Nielsen b,d, Terje Enebakk c, Dorte Christiansen e,
Judith Krey Ludviksen e, Tom Eirik Mollnes e,f, Knut Tore Lappegård a,b

a Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
b Institute of Clinical Medicine, University of Tromsø, Norway
c Dialysis Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
d Department of Anesthesia, Nordland Hospital, Bodø, Norway
e Somatic Research Laboratory, Nordland Hospital, Bodø, Norway
f Institute of Medical Biology, University of Tromsø, Norway

a r t i c l e i n f o

Article history:
Received 24 October 2011
Received in revised form 29 January 2012
Accepted 21 February 2012
Available online 25 February 2012

Keywords:
Extracorporeal circulation
Lipid
Complement
Biocompatibility

a b s t r a c t

Extracorporeal removal of low-density lipoprotein (LDL) cholesterol by means of selective LDL apheresis
is indicated in otherwise uncontrolled familial hypercholesterolemia. During blood–biomaterial interac-
tion other constituents than the LDL particles are affected, including the complement system. We set up
an ex vivo model in which human whole blood was passed through an LDL apheresis system with one of
three different apheresis columns: whole blood adsorption, plasma adsorption and plasma filtration. The
concentrations of complement activation products revealed distinctly different patterns of activation and
adsorption by the different systems. Evaluated as the final common terminal complement complex (TCC)
the whole blood system was inert, in contrast to the plasma systems, which generated substantial and
equal amounts of TCC. Initial classical pathway activation was revealed equally for both plasma systems
as increases in the C1rs–C1inh complex and C4d. Alternative pathway activation (Bb) was most pro-
nounced for the plasma adsorption system. Although the anaphylatoxins (C3a and C5a) were equally gen-
erated by the two plasma separation systems, they were efficiently adsorbed to the plasma adsorption
column before the ‘‘outlet’’, whereas they were left free in the plasma in the filtration system. Conse-
quently, during blood–biomaterial interaction in LDL apheresis the complement system is modulated
in different manners depending on the device composition.

� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Heterozygous familial hypercholesterolemia is common and,
due to high levels of low-density lipoprotein (LDL) cholesterol, car-
ries a high risk of premature atherosclerosis if not treated [1]. In
most cases the disease is controlled by lipid lowering medication,
but in some instances extracorporeal treatment by means of LDL
apheresis is necessary [2]. This treatment is highly effective in
reducing LDL cholesterol and clinical end-points [2,3]. The artificial
surfaces may, however, affect other constituents of the blood in an
adverse manner. Studies on blood–biomaterial interaction during
extracorporeal treatment have demonstrated that complement
activation may be triggered by biomaterial surfaces [4], and studies
in hemodialysis have shown that hemodialysis membranes trigger
the complement system [5]. The biocompatibility of dialysis mem-
branes is also linked to clinical end-points [6]. Studies indicate that
the alternative pathway (AP) of complement activation is important

when foreign surfaces interact with blood [7,8]. The alternative
pathway can be activated directly by the surface or amplified after
initial activation by classical or lectin pathway activation [4,9], in
both cases playing a pivotal role in the degree of activation beyond
C3. Notably, even if the biomaterial surfaces induce complement
activation, the membranes may also adsorb complement factors
such as C3a and C5a [10]. Consequently, it is the net result after
extracorporeal treatment that is of clinical importance. This is in
accordance with the definition of biocompatibility as being ‘‘the
ability of a material to perform with an appropriate host response
in a specific application’’ [11], recently revised to ‘‘Biocompatibility
refers to the ability of a biomaterial to perform its desired function
with respect to a medical therapy, without eliciting any undesirable
local or systemic effects in the recipient or beneficiary of that ther-
apy, but generating the most appropriate beneficial cellular or tis-
sue response in that specific situation, and optimizing the
clinically relevant performance of that therapy’’ [12].

Complement activation may be of particular clinical importance
for patients undergoing long-term, potentially lifelong, LDL apher-
esis treatment as the complement system plays a role in the devel-
opment of atherosclerosis [13]. Whereas activation of the initial
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phase (C1–C3) might contribute to the clearance of plaque debris,
the later phase (C5–C9) may enhance inflammation and lead to
plaque destabilization. Our previous work has indicated that three
LDL apheresis columns affect biomarkers, including complement
activation products, differently [14,15]. This prompted us to set
up an ex vivo study investigating in detail the complement com-
patibility of these LDL apheresis columns by repeatedly circulating
whole blood from healthy donors through the systems while sam-
pling at sites prior to and after plasma separation and column pas-
sage. Total complement activation was evaluated by measuring the
fluid phase terminal C5b–9 complex (TCC). The initial pathway
activation mechanisms were revealed by determining the levels
of C1rs–C1 inhibitor complexes (C1rs–C1inh) for the classical
pathway, C4d for the classical and the lectin pathways, and Bb
for the alternative pathway. The ‘‘inflammatory load’’ from the
common activation of all pathways was evaluated as the amounts
of the potent anaphylatoxins C3a and C5a.

2. Materials and methods

2.1. Ethics

The local ethics committee approved the study and all blood do-
nors signed an informed consent.

2.2. Donors

Blood was drawn from six healthy donors (three males and
three females). Each individual donated 450 ml of blood three
times at approximately one month intervals.

2.3. LDL apheresis

The following devices were compared: Liposorber1 D DL-75
(DL-75) (Kaneka Corp.n, Osaka, Japan); Liposorber1 LA-15 (LA-15)
(Kaneka Corp.); Cascadeflo EC-50W (EC-50W) (Asahi Kasei Medical
Europe). Treatment with the DL-75 and LA-15 columns was con-
ducted using a Kaneka MA-03 (Kaneka Corp.) machine. The Octo-
Nova (MeSys Gmbh, Hannover, Germany) machine was used in
treatment with the EC-50W column.

DL-75 is a whole blood adsorption column and part of the Lipo-
sorber D system. This column utilizes dextran sulfate cellulose
beads for adsorption of LDL cholesterol. It is modified with regard
to the particle size and allows for perfusion and adsorption of LDL
cholesterol directly from whole blood. The flow rate was
30 ml min–1. LA-15 is a dextran sulfate cellulose adsorption

column which removes LDL cholesterol from plasma. It is based
on electrostatic binding between positively charged apolipoprotein
B (ApoB) and the negative charges of dextran. The flow rate was
100 ml min–1, the plasma flow rate 20 ml min–1. Cascadeflo EC-
50W is a lipid filtration system eliminating LDL cholesterol on
the basis of molecular weight and three-dimensional structure.
The flow rate was 100 ml min–1, the plasma flow rate 20 ml min–1.

The plasma separation column used in both LA-15 and EC-50W
is a PlasmaFlo OP-05 W column (Asahi Kasei Medical Europe) and
hence the column is identical for both the plasma separation based
systems.

Anticoagulation is mandatory during clinical apheresis treat-
ment. In whole blood apheresis (DL-75) acid citrate dextrose-A is
used, while in the two plasma systems (LA-15 and EC-50W) hepa-
rin is commonly used. In the current ex vivo model lepirudin was
used, as it has been demonstrated that lepirudin does not affect the
complement system [16].

A total of 18 ex vivo LDL apheresis treatments were performed,
for six donors on the three different LDL apheresis columns (DL-75,
LA-15 and EC-50W). Treatment time was 240 min for each column.

2.4. Ex vivo model

25 mg lepirudin (Refludan, Celgene, Marburg, Germany) in
50 ml of 0.9% NaCl was added to a 600 ml Blood-Pack Unit without
anticoagulant (Fenwal, Lake Zürich, IL). The freshly donated whole
blood (450 ml) was immediately transported to the research labo-
ratory (transportation time <5 min). 50 ml was transferred to a
control bag (sample control (SC)) similar to that mentioned above
(Fig. 1). The main bag served as a reservoir for the closed circuit.
The blood reservoir and the control bag were then placed in a
temperature controlled heater (Binder, Binder GmBH, Tuttlingen,
Germany) set at 37 �C, with constant movement by means of a
modified test tube rotator (Rock ’n Roller, Labinco BV, Breda, The
Netherlands). The reservoir was attached to the LDL apheresis
system (DL-75, Fig. 1A, LA-15 and EC-50W, Fig. 1B).

Blood samples were obtained from the control bag (SC) before
LDL apheresis (T0), and then during apheresis at 15, 30, 60, 120,
180 and 240 min at the positions shown in Fig. 1. All blood samples
from the different positions were drawn simultaneously (within a
time frame of 1 min) for each sample time.

2.5. Blood samples and analyses

Samples were drawn into tubes containing EDTA (to block any
further complement activation) to a final concentration of 10 mM

Fig. 1. Schematic drawing of the ex vivo model with blood sample postitions. The reservoir denotes the whole blood bag to which leipuridin was added. (A) Blood samples
were obtained from a position after the reservoir (BS1) and then after the LDL apheresis column DL-75 (BS2). A red arrow shows the direction of flow in the system. The
control bag was kept on the test tube rotator next to the reservoir and samples were drawn directly from this bag (SC). (B) The columns LA-15 and EC-50W, which required
plasma separation before LDL apheresis. The sample sites were before plasma separation (BS1), after plasma separation (PS1), after LDL apheresis (PS2), and after red cells
(from plasma separation) and plasma (after LDL apheresis) were combined (BS2), indicating the position where the treated blood would be returned to the patient in a clinical
setting. Again, the direction of flow is denoted with a red arrow. As for the whole blood system, samples from the control bag are indicated by SC.
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and then placed on ice before centrifugation for 15 min at 3220g at
4 �C. The plasma was frozen in aliquots at �70 �C until analysis in
batches.

2.6. Complement activation products

The complement activation products were measured using en-
zyme immunoassays based on capture antibodies reacting with
neoepitopes exposed selectively in the activation product and not
in the native component. C4d, C3a, Bb (Quidel Corporation, San
Diego, CA) and C5a (BD Biosciences, San Jose, CA) were analyzed
according to the manufacturer’s specifications. The fluid phase
TCC and C1rs–C1-inh were analyzed according to methods previ-
ously described in detail [17,18].

2.7. Correction for dilution

A small amount of priming solution (isotonic saline) was used
to prepare the tubing and columns before the ex vivo loop was
started. Hematocrit was used to correct the concentrations of
the complement activation products according to a standardized
formula [19].

2.8. Statistics

Mean concentrations of complement activation factors, cor-
rected for dilution as described above, with the standard error of
the mean (SEM) were calculated. Correlation was calculated
according to Spearman. A two-tailed P value of <0.05 was consid-

Fig. 2. Formation of TCC. The three left panels (A–C) show the concentrations of the terminal C5b-9 complex (TCC) for the three LDL apheresis columns, DL-75 (whole blood
adsorption), LA-15 (plasma adsorption) and EC-50W (plasma filtration). The sampling positions are as indicated in Fig. 1. Times of sampling are indicated on the x-axes.
Concentrations are corrected for dilution and shown as means with the standard error of the mean for each sample site. The right panels compare post plasma separation
values for columns LA-15 and EC-50W (D), TCC concentrations measured immediately after the LDL apheresis columns for all three columns (E) and, finally, a pre-return value
for the three columns (F), indicating the position where the treated blood would return to the patient in a clinical setting.
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ered statistically significant. All calculations were performed with
Prism 5.0 for Mac, Graphpad software (San Diego, USA).

3. Results

3.1. Terminal common pathway activation (Fig. 2)

TCC is the final common activation product of complement and
was used to indicate the degree of total complement activation. In
the whole blood system DL-75 there was no change in TCC before
or after LDL apheresis (Fig. 2A). In contrast, TCC was markedly
increased (>40-fold) after passage through the plasma separation
columns in LA-15 and EC-50W (Fig. 2B and C), with the increase

being slightly less for EC-50W than for LA-15 (Fig. 2D). The TCC
concentration gradually decreased with time. Notably, TCC concen-
trations were reduced to background after passage through the LDL
apheresis columns in both plasma systems (Fig. 2E). There was a
slight and similar increase in TCC in all control bags (SC), reflecting
spontaneous in vitro activation (data not shown). This increase was
not seen in post-apheresis samples in any of the three systems
(BS2 for DL-75 and PS2 for the plasma systems), consistent with
adsorption of the plasma separation-induced TCC by the apheresis
column. In the BS2 sample (corresponding to ‘‘return to patient’’)
there was increased levels of TCC in both plasma systems, but
not in the whole blood system, during the first hour of apheresis
(Fig. 2F).

Fig. 3. Formation of C4d. The three left panels show the concentrations of C4d for the sample positions described in Fig. 1A and B. Sample times are given on the x-axes, with
the columns being as described in Fig. 2. The three right panels denote the comparison described in Fig. 2.
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3.2. Mechanisms of initial pathway activation (Figs. 3–5)

C4d is a marker for both classical and lectin pathway activation.
In the whole blood system DL-75 there was no change in C4d be-
fore or after LDL apheresis (Fig. 3A). In contrast, C4d was markedly
increased (>10-fold) after passage through the plasma separation
columns LA-15 and EC-50W (Fig. 3B and D). The LDL apheresis col-
umns LA-15 and EC-50W reduced C4d. After 30 min the concentra-
tion of C4d was back to the background level in the LA-15 system,
whereas it remained elevated throughout in the EC-50W system
(Fig. 3C and E). Furthermore, the pre-return values of C4d re-
mained more than 15-fold higher after 240 min in the closed EC-
50W circuit compared with the other two systems. C4d remained
stable in the control bags (data not shown). Samples from two do-
nors at selected time points were analyzed for C1rs–C1inh, which
is specific for the classical pathway. In the whole blood system
DL-75 there was no change in C1rs–C1inh before or after LDL
apheresis (Fig. 4A). In contrast, C1rs–C1inh was markedly in-
creased (>100-fold) after passage through the plasma separation
columns (Fig. 4B and C), providing evidence for classical pathway
activation. Accordingly, there was a highly positive correlation be-
tween C4d and C1rs–C1inh, with r2 = 0.77 (P < 0.0001).

Bb is a marker for the alternative pathway. In the whole blood
system DL-75 there was no change in Bb before or after LDL apher-
esis (Fig. 5A). In contrast, Bb was markedly increased (>10-fold)
after passage through the plasma separation columns (Fig. 5B
and C), substantially more for LA-15 than for EC-50W (Fig. 5D).
After passage through the LA-15 and EC-50W LDL apheresis col-
umns the Bb levels were reduced (Fig. 5E), with the levels of Bb
at BS2 (‘‘return to patient’’) being consistently higher for LA-15.
Similarly to TCC, there was a slight increase in all control bags
(data not shown).

3.3. Anaphylatoxins C3a and C5a

(Figs. 6 and 7) C3a and C5a represent biologically highly active
fragments of similar size and physico-chemical properties. They
behaved strikingly similarly in the LDL apheresis study (Figs. 6
and 7). In the whole blood system DL-75 there were no changes
in C3a and C5a before or after LDL apheresis (Figs. 6A and 7A). In
contrast, C3a and C5a were markedly increased (100–1000-fold)
after passage through the plasma separation columns (Figs. 6 and
7B and C). C3a and C5a were reduced to baseline levels after pas-
sage through the LDL apheresis column LA-15. The EC-50W system
only slightly reduced the anaphylatoxin levels, which remained at
stable high levels from 30 min apheresis. The pre-return values of
C3a and C5a were about 1000-fold higher in the filtration system
EC-50W than in the other two systems (Figs. 6F and 7F). Similarly
to TCC and Bb the C3a and C5a concentrations increased with time
in the control bags (data not shown).

4. Discussion

In a previous in vivo study of LDL apheresis we showed that the
complement cascade is activated to completion, predominantly
through the alternative pathway [14]. In the current ex vivo study
the experimental set-up has allowed us to demonstrate that the
initial complement activation is through the classical pathway.
Subsequently the alternative pathway amplifies complement
activation.

4.1. Terminal common pathway activation

In the in vivo study we found that TCC increased approximately
three times for the tested columns DL-75, LA-15 and EC-50W [14].

Fadul et al. studied different types of plasma purification therapies,
including LDL apheresis, and found that TCC was increased after
the plasma separation column and decreased after the LDL apher-
esis column [20]. Our findings are consistent with these observa-
tions; in the whole blood system (DL-75) TCC was unchanged,
while in both plasma separation systems (LA-15 and EC-50W)
TCC was markedly increased after the plasma separation columns,
but subsequently removed in the LDL apheresis columns. The com-
position of the biomaterial may also be of importance and Ferraz
et al. have demonstrated that the pore size of a biomaterial is of
importance for activation of the complement system and forma-
tion of soluble TCC [21]. The fact that TCC is a large molecule

Fig. 4. Formation of C1rs–C1inh. The three panels show concentrations of C1
rs–C1inh, for two selected donors, for the sample positions described in Fig. 1A and
B. Sample times are given on the x-axes, with the columns being as described in
Fig. 2.
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may contribute to the observation that the filtration column EC-
50W is also able to clear this molecule due to the filtration pore
size. With time the effects of the plasma separation columns on
complement activation were reduced and the concentration of
TCC approached baseline values. It is likely that this was due to
coating of the biomaterials used in the columns and diminished
activation of the complement system with time, analogous to the
clinically known ‘‘first use syndrome’’ in which allergic reactions
to hemodialysis membranes are attenuated with repetitive use
[22], in addition to adsorption and/or degradation of activated
complement factors.

It should be noted that when studying complement activation
in blood–biomaterial interactions the choice of anticoagulant is
crucial. We have previously shown that the direct thrombin inhib-
itor lepirudin is at present the best candidate for this purpose as it

has no effect on complement activation in doses sufficient for ade-
quate anti-coagulation. Both heparin and calcium-binding agents
such as EDTA may affect complement activation and are thus
unsuitable for the purpose [16]. This should be kept in mind when
comparing our results with previous studies.

4.2. Mechanisms of initial pathway activation

Experimental studies have demonstrated that the alternative
pathway is important for complement activation in blood–bioma-
terial interactions [7,8], and a recent review has also underlined
the importance of the alternative pathway as an amplification loop
for the classical and lectin pathways [23]. Interestingly, we found
no changes in the alternative pathway marker Bb for the DL-75
columns, while there was an increase in Bb after the plasma

Fig. 5. Formation of Bb. The three left panels show concentrations of Bb for the sample positions described in Fig. 1A and B. Sample times are given on the x-axes, with the
columns being as described in Fig. 2. The three right panels denote the comparison described in Fig. 2.
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separation columns for LA-15 and EC-50W. With time Bb was re-
duced in the closed circuit of the LA-15 column, suggesting adsorp-
tion by the LDL apheresis column. In contrast, the filtration column
EC-50W did not clear Bb. Therefore, during LDL apheresis the bio-
material of the plasma separation column activated complement
by the alternative pathway, as expected. The classical pathway,
however, is thought to be of less importance for complement acti-
vation during blood–biomaterial interaction [4]. Complement fac-
tor C4d is a marker of activation via the classical and/or lectin
pathways. We found no increase after the DL-75 column. However,
there was an increase after both plasma separation columns, indi-
cating activation other than by the alternative pathway. The LA-15
column removed C4d, while the EC-50W column did not. The fact
that C1rs–C1inh was increased in parallel with the increase in C4d,
and the fact that these biomarkers were highly correlated, are fur-
ther evidence of activation through the classical pathway as well as
the alternative pathway in the blood–biomaterial interaction dur-
ing LDL apheresis, even if additional activation through the lectin

pathway cannot be completely ruled out. Unfortunately, at present
there is no specific marker available to indicate isolated lectin
pathway activation. Accordingly, we have proved that in addition
to activation through the alternative pathway there is direct evi-
dence that the complement cascade is activated through the clas-
sical pathway during LDL apheresis.

4.3. Anaphylatoxins C3a and C5a

The anaphylatoxins C3a and C5a are small molecules. A previ-
ous apheresis study has indicated that C3a is increased after the
plasma separation column and decreased after the LDL apheresis
column [20]. Takeda et al. demonstrated that the anaphylatoxins
C3a, C4a and C5a were inactivated by cellulose acetate beads
[24]. Würzner et al. studied complement activation in heparin-in-
duced extracorporeal elimination of low density lipoproteins
(HELP) and found induction of C3 and C5a in the plasma separation
column. Furthermore, in their study C3 was removed by the LDL

Fig. 6. Formation of C3a. The three left panels show concentrations of C3a for the sample positions described in Fig. 1A and B. Sample times are given on the x-axes, with the
columns being as described in Fig. 2. The three right panels denote the comparison as described in Fig. 2.
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apheresis column, but C5a was not. It was suggested that clearance
of complement was associated with the ability to bind LDL choles-
terol [25]. We found only minor changes in the anaphylatoxins C3a
and C5a for the whole blood column DL-75. There were marked in-
creases in both of these anaphylatoxins for both plasma separation
systems, indicating activation. With time C3a and C5a were
adsorbed by the LDL apheresis column LA-15, but not by the filtra-
tion column EC-50W, underlining the inability of the latter column
to remove the anaphylatoxins being formed. We have previously
established that the ability to lower LDL cholesterol was equal
for the three columns [14], even though there were differences be-
tween the same columns regarding complement activation. This
shows that clearance of complement factors cannot solely be
dependent on the ability of columns to bind LDL cholesterol.

Several reviews have pointed out the importance of the comple-
ment system for atherosclerosis [13,26]. Complement activation

through the alternative pathway seems to be proatherogenic due
to pro-inflammatory effects, whereas activation through the classi-
cal or lectin pathways seems to be protective [13,27]. C3a and C5a
are pro-inflammatory and, indeed, C5a is associated with plaque
ruptures leading to acute cardiovascular events [28]. The terminal
pathway with formation of TCC is associated with atherosclerosis
[13] and Wu et al. have demonstrated that inhibiting formation
of the complement membrane attack complex protects against
atherosclerosis [29].

We have shown that the whole blood system DL-75 is biocom-
patible and that the complement system is not activated by this
system, and thus in this setting is ‘‘complement compatible’’. The
two plasma separation-based systems both induced the pro-ath-
erogenic factors TCC, C3a and C5a, however, LA-15 was able to
clear C3a and C5a, but the plasma filtration column EC-50W was
not and thus was less complement compatible. These findings

Fig. 7. Formation of C5a. The three left panels show concentrations of C5a for the sample positions described in Fig. 1A and B. Sample times are given on the x-axes, with the
columns being as described in Fig. 2. The three right panels denote the comparison described in Fig. 2.
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could be of importance for patients facing possible lifelong treat-
ment with extracorporeal removal of LDL cholesterol. The current
study was performed ex vivo and thus in a closed system different
from the clinical setting, in which complement factor production
and removal may take place in the body. Evidently, the in vitro
and in vivo half-lives of the proteins and their activation products
also differ between these conditions. Furthermore, in the clinical
setting anticoagulants are different from lepirudin, which may ex-
plain differences in the read-outs. The flow rate was also lower for
DL-75 than in an ordinary clinical setting, which may also affect
the findings. In a clinical study we found increased levels of TCC
and C3a at the end of the treatment (compared with baseline),
while C5a was reduced [14]. In the ex vivo study we extended
these findings to a continuous time axis, demonstrating that TCC,
C3a and C5a were increased after the plasma separation columns,
and that LA-15 adsorbed these factors during time while EC-50W
could not.

5. Conclusions

There are marked differences in biocompatibility between
different LDL apheresis columns with regard to complement
activation. Plasma separation columns induced the formation of
pro-atherogenic complement factors, and there were marked
differences in the ability of the LDL apheresis columns to clear
these factors. Furthermore, the complement cascade was activated
through both the classical and the alternative pathway during
blood–biomaterial interaction in LDL apheresis.
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Abstract

Introduction: Even if proprotein convertase subtilisin/kexin type 9 inhibitors

have replaced lipoprotein apheresis in many patients, lipoprotein apheresis still

is an important option in homozygous familial hypercholesterolemia, progres-

sive atherosclerosis or when removal of lipoprotein(a) is indicated. Additional

possible favorable effects beyond lipid lowering could include changes in the

concentration of cytokines and improvement of hemorheology.

Methods: We evaluated how whole blood adsorption, dextran sulfate plasma

adsorption, and double filtration plasmapheresis lipoprotein apheresis systems

affected cytokine concentrations, using a human whole blood ex vivo model

differentiating the effect of the lipoprotein apheresis and plasma separation

columns and describing temporal changes.

Results: Compared to the control bag, the whole blood adsorption system

reduced Interferon-γ (IFN-γ), IL-8, IL-1ra, eotaxin, tumor necrosis factor

(TNF), monocyte chemoattractant protein 1 (MCP-1), platelet derived growth

factor (PDGF)-BB, regulated on activation T cell expressed and secreted

(RANTES), macrophage inflammatory protein-1β (MIP-1β), and IP-10

(P < .05). The dextran sulfate plasma adsorption system reduced IFN-γ, IL-8,
IL-1ra, eotaxin, TNF, MCP-1, PDGF-BB, MIP-1β, and IP-10 (P < .05). Vascular

endothelial growth factor (VEGF) and granulocyte macrophage colony stimu-

lating factor (GM-CSF) were increased in the whole blood and dextran sulfate

plasma adsorption systems (P < .05). The double filtration plasmapheresis sys-

tem reduced IFN-γ, IL-1ra, TNF, MIP-1β, and IP-10 (P < .05), while MCP-1,-

VEGF, GM-CSF, and RANTES were increased (P < .05). The plasma
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separation column increased concentration of RANTES, and was a barrier to

reduction of eotaxin. Temporal patterns of concentration change indicated first

pass increase of PDGF-BB and first pass reduction of IP-10.

Conclusion: There were marked differences in how the three systems affected

total and temporal cytokine concentration changes in this in vitro model, as

well as compared to former in vivo studies.
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biocompatibility, cytokine, ex vivo, lipoprotein apheresis

1 | INTRODUCTION

Lipoprotein apheresis has traditionally been used in cardio-
vascular risk reduction, when lipid lowering therapy was
not tolerated or the therapeutic target was not achieved, in
particular in patients with familial hypercholesterolemia.1-3

Beneficial effect on clinical endpoints was documented in
the LAARS and L-CAPS study.4,5 As new types of lipid low-
ering therapy have emerged, in particular proprotein con-
vertase subtilisin/kexin type 9 (PCSK9) inhibitors, the use
of lipoprotein apheresis has diminished. However, it is still
an option in homozygous familial hypercholesterolemia
and for other selected high-risk patients when pharmaco-
logical lipid lowering therapy fails to reduce low-density
lipoprotein (LDL) cholesterol sufficiently. It can further-
more be a treatment option when progression of atheroscle-
rosis is not inhibited, or when the concentration of
lipoprotein (a) is high,2,6 since lipoprotein apheresis super-
sedes PCSK9 inhibition in reducing levels of lipoprotein
(a).7 Lipoprotein apheresis can be performed with columns
designed for perfusion of whole blood or plasma and LDL
cholesterol removal from plasma depends on plasma sepa-
ration prior to LDL cholesterol removal. The mechanisms
involved in lipoprotein apheresis are either adsorption or
capture through filtration or precipitation.8

Promising results have been reported when using lipo-
protein apheresis for other purposes than LDL cholesterol
reduction. The American Society for Apheresis has publi-
shed a guideline document indicating that lipoprotein aphe-
resis could be of use in focal segmental glomerulosclerosis,
sudden sensorineural hearing loss, and phytanic acid storage
disease.9 Lipoprotein apheresis has also shown promising
results in treatment of nephropathy in diabetes mellitus10,11

and nephrotic syndrome of various etiologies.12-14 It has
been suggested that lipoprotein apheresis can reduce the risk
of in-stent coronary restenosis in the early postimplantation
period,15 and also have favorable effects in patients with crit-
ical limb ischemia due to below-knee arterial lesions.16,17 In
these studies, double filtration plasmapheresis, dextran sul-
fate plasma adsorption, and heparin-induced, extracorporeal

LDL precipitation were used as lipoprotein apheresis sys-
tems. Possible mechanisms for the effects include improve-
ment of hemorheology, possibly trough cholesterol and/or
fibrinogen removal, reduction of pro-inflammatory cyto-
kines, adhesion molecules and lipoprotein (a), and the possi-
ble removal of a putative, yet still unknown, soluble factor
in nephrotic syndrome. It has also been suggested that the
reduction in LDL cholesterol itself reduces foam cell forma-
tion, modifying endothelial damage and inflammatory
mechanisms with subsequent favorable clinical
effects.15,18-20

It is well known from a biocompatibility perspective
that lipoprotein apheresis and plasma separation col-
umns modify the complement system and induce
changes in the levels of cytokines.21 Furthermore, activa-
tion of immune cells and platelets occurs in lipoprotein
apheresis, as in all forms of contact between blood and
artificial surfaces.8,22 Our group has previously shown
that different types of lipoprotein apheresis systems have
different impact on the cytokine concentration and the
complement system in vivo.23,24 Others have also studied
changes of cytokines during lipoprotein apheresis, but
the results are not entirely consistent.25

The aim of the present study was to investigate how
different lipoprotein apheresis columns affect cytokines,
including chemokines and growth factors. We used an
ex vivo model with three commercially available lipopro-
tein apheresis systems. The model allowed for differentia-
tion of effects between the plasma separation and the
lipoprotein apheresis column, as well as evaluation of
temporal changes during perfusion.

2 | METHODS

2.1 | Ethics

The local ethics committee approved the study and all
blood donors signed an informed consent. Blood was
drawn from six healthy donors (three males and three
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females). Each individual donated 450 mL of blood three
times at approximately 1 month intervals.

2.2 | Lipoprotein apheresis

The experimental setup has, beyond below stated,
previously been described in detail.24 A short sum-
mary is given here. The blood pack used as both the
sample control (SC) bag and the apheresis blood res-
ervoir was made from polyvinylchloride copolymer
plasticized with di-2-ethylhexyl phthalate. Lepirudin
(Refludan, Celgene, Marburg, Germany) was used as
sole anticoagulant in all tree lipoprotein apheresis
systems and in the SC bag, in this study. Blood flow
in the whole blood adsorption lipoprotein apheresis
system (DL75) (Filter DL75, Kaneka Corp., Osaka,
Japan) was 30 mL/min. In the dextran sulfate plasma
adsorption (LA15) (Filter LA15; Kaneka Corp.) and
double filtration plasmapheresis (EC50) (Filter EC50;
Asahi Kasei Medical, Europe) lipoprotein apheresis
systems blood flow was 100 mL/min and the plasma
flow 20 mL/min. Six treatments were performed with
each lipoprotein apheresis system. The same plasma
separation column (PlasmaFlo OP05; Asahi Kasei
Medical) was used in the two plasma separation

lipoprotein apheresis systems. The three experimen-
tal apheresis models are illustrated in Figure 1, show-
ing the whole blood adsorption lipoprotein apheresis
system DL75 (A) and the dextran sulfate plasma
adsorption and the double filtration plasmapheresis
systems LA15 and EC50 (B).

2.3 | Cytokines

Plasma samples were analyzed using a multiplex cyto-
kine assay (Bio-Plex Pro Human Cytokine Grp I Panel
27-Plex; Bio-Rad Laboratories Inc., Hercules, California)
containing the following 27 analytes: Interleukin (IL)-1β
(IL-1β), IL-1 receptor antagonist (IL-1ra), IL-2, IL-4, IL-5,
IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL- 12, IL-13, IL-15,
IL-17, eotaxin (CCL11), basic fibroblast growth factor,
granulocyte colony stimulating factor (G-CSF), granulo-
cyte macrophage colony stimulating factor (GM-CSF),
Interferon-γ (IFN-γ), chemokine (C-X-C motif) ligand
10 (IP-10 or CXCL10), monocyte chemoattractant protein
1 (MCP-1 or CCL2), macrophage inflammatory protein
(MIP) -1α (MIP-1α or CCL3), MIP-1β (or CCL4), platelet
derived growth factor (PDGF), regulated on activation T
cell expressed and secreted (RANTES or CCL5), tumor
necrosis factor (TNF), and vascular endothelial growth

FIGURE 1 A, Schematic drawing of the DL75 ex vivo model with blood sample positions. The apheresis blood reservoir denotes the

whole blood bag to which the thrombin specific inhibitor lepirudin was added. Blood samples were obtained from a position after the

reservoir (BS1) and then after the lipoprotein apheresis column (BS2). B, The columns LA15 and EC50 required plasma separation before

lipoprotein apheresis. The sample sites were before plasma separation (BS1), after plasma separation (PS1), after lipoprotein apheresis (PS2),

and after the cell fraction (from plasma separation) and plasma (after lipoprotein apheresis) were combined (BS2). Position BS2 indicates the

position where the treated blood would be returned to the patient in a clinical setting. The arrows show the direction of flow in the system.

The control blood reservoir (sample control [SC]) was kept on the test tube rotator and samples were drawn directly from the bag
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factor (VEGF). The analysis was performed according to
the manufacturer's instructions.

2.4 | Calculations and statistics

Results are presented as mean and SEM. Statistical calcu-
lations presented were performed with Prism 7.05 for
Windows, GraphPad software (San Diego, California).
For calculation of differences in SC between baseline
(T0) and after 240 minutes perfusion (T240) a two-tailed
unpaired student's t test was used. Significance level was
set at <.05. For pairwise comparison of the lipoprotein
apheresis systems, a regular two-way analysis of covari-
ance model with Sidak's multiple comparison modifica-
tion was used. Significance level was set at <.05.

3 | RESULTS

3.1 | Overall concentration changes in
the SC bag and the lipoprotein apheresis
systems

The rationale for selecting the 27 cytokines was both to
be able to compare results with formerly published data
from our and other groups, and because these cytokines
are included in a reliable test kit. Thirteen of the 27 cyto-
kines analyzed in the multiplex cytokine assay gave qual-
itatively acceptable readouts within the limits of the

assay used. The other cytokines were out of range and
not usable for analysis. The results are presented in
Table 1 and Figure 2. Figure 2 is divided into A and B to
discriminate between small (A) and large
(B) concentration changes.

3.2 | SC bag

In SC, IFN-γ, IL-8, IL-1ra, TNF, PDGF-BB, RANTES, and
MIP-1β increased in concentration at 240 minutes (T240)
compared to baseline (T0) (P < .05) (Figure 2A,B, white
bars). The other biomarkers did not differ in concentra-
tion in SC at T240 compared to baseline.

3.3 | DL75 lipoprotein apheresis system

In the DL75 system IFN-γ, IL-8, IL-1ra, eotaxin, TNF,
MCP-1, PDGF-BB, RANTES, MIP-1β, and IP-10 were
reduced (P < .05), IL-17 was unchanged and VEGF and
GM-CSF were increased (P < .05) in position blood sam-
ple 2 (BS2), before the apheresis blood reservoir, com-
pared to the SC at T240 (Figure 2A,B, black bars).
RANTES was reduced only in the DL75 lipoprotein aphe-
resis system. The other parameters did not differ between
the DL75 and LA15 systems at T240. IL-8, eotaxin, MCP-
1, PDGF-BB, RANTES, MIP-1β, and IP-10 were reduced
in the DL75 system compared to the EC50 lipoprotein
apheresis system (P < .05). The other biomarkers did not

TABLE 1 The cytokines are listed

with main biological property or action

(p, pro-inflammatory; a, anti-

inflammatory; gf, growth factor), and

pairwise comparison of adsorption

(DL75 and LA15) vs filtration (EC50)

lipoprotein apheresis systems

Biomarker Action DL75 vs LA15 DL75 vs EC50 LA15 vs EC50

IFN-γ p $ $ $
IL-8 p $ # #
Eotaxin p $ # #
TNF p $ $ $
IL-17 p $ $ $
MCP-1 p $ # #
RANTES p # # #
MIP-1β p $ # #
IP-10 p $ # #
IL-1ra a $ $ $
VEGF gf $ $ $
GM-CSF gf $ $ $
PDGF-BB gf $ # #

Note: #: reduction (P < .05). $: unchanged.
Abbreviations: GM-CSF, granulocyte macrophage colony stimulating factor; IFN-γ, Interferon-γ; MIP-1β,
macrophage inflammatory protein-1β; MCP-1, monocyte chemoattractant protein 1; PDGF, platelet derived
growth factor; RANTES, regulated on activation T cell expressed and secreted; VEGF, vascular endothelial

growth factor; TNF, tumor necrosis factor.
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differ between the DL75 and EC50 systems at T240
(Table 1).

3.4 | LA15 lipoprotein apheresis system

In the LA15 system, IFN-γ, IL-8, IL-1ra, eotaxin, TNF,
MCP-1, PDGF-BB, MIP-1β, and IP-10 were reduced
(P < .05), IL17 and RANTES were unchanged and VEGF
and GM-CSF were increased (P < .05) in position BS2
compared to the SC at T240. (Figure 2A,B, light gray
bars). IL-8, eotaxin, MCP-1, PDGF-BB, RANTES, MIP-1β,
and IP-10 were reduced in the LA15 system compared to
the EC50 system (P < .05). The other biomarkers did not
differ between the LA15 and EC50 systems at T240
(Table 1).

3.5 | EC50 lipoprotein apheresis system

In the EC50 system, IFN-γ, IL-1ra, TNF, MIP-1β, and IP-
10 were reduced (P < .05), IL-8, eotaxin, IL17, and PDGF-
BB were unchanged and MCP-1,VEGF, GM-CSF, and
RANTES were increased (P < .05) in position BS2 com-
pared to the SC at T240 (Figure 2A,B, dark gray bars).

3.6 | Temporal patterns of concentration
change

The biomarkers eotaxin, RANTES, PDGF-BB, and IP-10
were chosen to describe temporal patterns of concentra-
tion change in lipoprotein apheresis systems. Detailed fig-
ures of the cytokines not described below are available as
supplementary material.

3.7 | Eotaxin

Eotaxin concentration was unchanged from baseline to
T240 in SC (Figure 3A-C).

In the DL75 system, position BS2, eotaxin showed a mar-
ked reduction from T0 to T15 and remained on this level
until T240 (Figure 3A,F). In the LA15 system, plasma sample
1 (PS1), position post plasma separation, concentration of
eotaxin was reduced from 158.3 pg/mL ± 44.8 at T0 to
46.2 pg/mL ± 14.9 at T15 (Figure 3B,D). The concentration
remained on this level until T240, indicating only minor filtra-
tion of eotaxin into plasma in the plasma separation column.
In position BS2, eotaxin concentration was reduced gradually
from 158.3 pg/mL ± 44.9 at T0 to 55.1 pg/mL ± 20.2 at T240
indicating reduction in the LA15 column (Figure 3B,F). In
the EC50 system, position PS1, a similar pattern was seen as
for the LA15 system (Figure 3C,D); however, in position PS2,
eotaxin increased slightly from T15 until T240 (Figure 3C,E).

3.8 | Platelet derived growth factor-BB

PDGF-BB concentration increased 25-fold from baseline to
T240 in SC (Figures 4 and 5A-C). In the DL75 system, posi-
tion blood sample 1 (BS1), after the blood reservoir, PDGF-BB
increased from 42.4 pg/mL ± 8.9 at T0 to 1563.7 pg/mL
± 246.4 at T15. From T15 PDGF-BB was reduced to
276.5 pg/mL ± 70.9 at T30 (Figure 5A), indicating a pattern of
first pass increase and reduction of concentration. In the
LA15 system, position PS1, there was a 30-fold increase in
concentration from T0 to T120 (Figure 5A,D). From T120
until T240, there was a decrease in concentration toward base-
line (Figure 5B,F). In position PS2, the concentration stayed at
baseline from T0 to T240 (Figure 5B,E) indicating effective
reduction in the LA15 column. In the EC50 system, positions
BS1, BS2, PS1, and PS2, there was a 40-fold gradual increase
in PDGF-BB concentration from T0 to T240 (Figure 5C-F).

3.9 | Regulated on activation T cell
expressed and secreted

RANTES concentration increased from baseline to T240
in SC (Figure 5A-C). In the DL75 system, position BS1,

FIGURE 2 Concentration change (pg/mL ± SEM) in

lipoprotein apheresis system DL75, LA15, and EC50 relative to the

sample control (SC) bag from T0 to T240 at position BS2. The figure

was divided into two parts for better visualization of small (A) and

large (B) concentration differences
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RANTES increased fourfold until T15 before a gradual
reduction to below baseline at T240 (Figure 5A). In the
LA15 system, position BS2, concentration increased form

baseline to T240 (Figure 5B,F) indicating that the LA15
system as a whole increased the concentration of
RANTES. In position PS1, the same pattern was seen as

FIGURE 3 Eotaxin. Panels A-C: Change in eotaxin concentration (pg/mL ± SEM) in positions BS1, BS2, PS1, PS2 and sample control

(SC) for systems LA15, EC50, and DL75 during 240 minutes. Panels D-F: Change in eotaxin concentration (pg/mL) at selected positions in

the LA15, EC50, and DL75 systems during 240 minutes
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FIGURE 4 Platelet derived growth factor (PDGF)-BB. Panels A-C: Change in PDGF-BB concentration (pg/mL ± SEM) in position BS1,

BS2, PS1, PS2, and sample control (SC) for systems LA15, EC50, and DL75 during 240 minutes. Panels D-F: Change in PDGF-BB

concentration (pg/mL) at selected positions in the LA15, EC50, and DL75 systems during 240 minutes
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in position BS2 (Figure 5B,E); however, in position PS2,
there was a reduction from 748.8 pg/mL ± 342.5 at T0 to
8.1 pg/mL ± 1.0 at T15 (Figure 5B,E). The concentration

was at this level until T240 indicating effective reduction
of RANTES in the LA15 column. In the EC50 system,
position BS1, BS2, PS1, and PS2, there was an increase in

FIGURE 5 Regulated on activation T cell expressed and secreted (RANTES). Panels A-C: Change in RANTES concentration (pg/mL

± SEM) in position BS1, BS2, PS1, PS2, and sample control (SC) for systems LA15, EC50, and DL75 during 240 minutes. Panels D-F: Change

in RANTES concentration (pg/mL) at selected positions in the LA15, EC50, and DL75 systems during 240 minutes
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FIGURE 6 IP-10. Panels A-C: Change in IP-10 concentration (pg/mL ± SEM) in position BS1, BS2, PS1, PS2, and sample control

(SC) for systems LA15, EC50, and DL75 during 240 minutes. Panels D-F: Change in IP-10 concentration (pg/mL) at selected positions in the

LA15, EC50, and DL75 systems during 240 minutes
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concentration of RANTES from T0 until T240
(Figure 5C-F).

3.10 | IP-10

IP-10 concentration was unchanged from baseline to
T240 in SC (Figure 6A-C). In the DL75 system, position
BS2, the IP-10 concentration was markedly reduced
from T0 to T15 (Figure 6A,F), and remained on a low
level until T240. In the LA15 system, position PS1,
there was a gradual fall in concentration from T0 to
T240 (Figure 6B,D). In position PS2, there was an initial
fall from 1048.5 pg/mL ± 230.1 at T0 to 39.1 pg/mL
± 0.9 at T15 and then continuously low concentration
until T240. In the position BS2, there also was a gradual
concentration reduction from T0 until T240 (Figure 6B,
F). This indicates effective reduction of IP-10 in the
DL75 and LA15 columns (Figure 6B,E). In the EC50
column, position PS1, there was a fall from T0 to T15
after which the concentration remained stable until
T240 (Figure 6C,D). In position PS2, there was a reduc-
tion from 1284.6 pg/mL ± 224.9 at T0 to 104.0 pg/mL
± 24.5 at T15, before an increase in concentration to
582.4 pg/mL ± 98.0 at T30, indicating a first pass reduc-
tion and a subsequent increase. From T30 until T240,
the concentration was stable (Figure 6C,E). In position
BS2, there was an initial reduction from T0 to T15 and
thereafter a stable concentration until T240
(Figure 6C,F).

4 | DISCUSSION

Several studies presenting changes in inflammatory bio-
markers, hemorheological parameters, and oxidative
stress during in vivo lipoprotein apheresis with different
columns have been published.21,23,26-28 To our knowl-
edge, this is the first study presenting a systematic com-
parison of three lipoprotein apheresis systems' impact on
cytokines, also including temporal changes, in an ex vivo
model. Fourteen of the 27 cytokines were out of range in
the laboratory test kit used in this study and not usable
for further analysis. It is known that the hemorheology is
influenced by the level of cholesterol29 and this might
impact on the inflammation responses and the results
from the test kit used in this study as the blood donors
were healthy volunteers.

Uniform concentration changes in the SC indicate
robust and stable testing conditions. The rate of increase
in cytokine concentrations in SC were slow compared to
changes in the apheresis systems as seen for RANTES
and PDGF. Other biomarkers as VEGF, GM-CSF, and IP-

10 showed only a small or no increase in SC indicating
only minor activation of cells producing these cytokines
in the environment of the SC. The temporal and relative
changes in cytokine concentrations in the SC bag are due
to known bioincompatibility mechanisms taking
place.30,31

The chemical, electrical, and three-dimensional prop-
erties of the column membrane or adsorbing beads is the
basis for removal of LDL cholesterol32-34 and also affect
biocompatibility properties and hence concentration
change of cytokines. The LA15 and EC50 columns pro-
cess plasma as compared to the DL75 column, which pro-
cesses whole blood. Adding a second column, as in the
plasma separation lipoprotein apheresis systems, might
contribute to bioincompatibility. The choice of anti-
coagulation impacts the result as there is a crosstalk
between coagulation and inflammation, termed
thromboinflammation, and manipulation of coagulation
may influence the inflammatory response when foreign
surfaces are exposed to blood.31,35 Unlike heparin, the
thrombin inhibitor lepirudin, used as anticoagulation in
this study, does not affect the complement system, an
important biological factor for cytokine induction in bio-
incompatibility.36 This is of crucial importance when
comparing our results with previous ex vivo as well as
in vivo studies where heparin, citrate or ethylene diamine
tetraacetic acid were used as anticoagulation. Our results
show that the adsorption lipoprotein apheresis systems,
DL75 and LA15, are more effective in reducing the pres-
ented biomarkers compared to the filtration lipoprotein
apheresis system EC50.

The temporal concentration change of eotaxin
showed the difference between the whole blood and the
plasma separation systems. In the LA15 and EC50 sys-
tems, eotaxin was filtered into plasma only to a small
extent per time unit, as the concentration in post plasma-
pheresis position PS1 fell immediately after the treatment
started, indicating that the plasma separation column can
be a barrier to removal of eotaxin. This might be
explained by the chemical structure of eotaxin having a
disordered N-terminus as compared to, for example,
RANTES.37,38 No further removal was seen in the EC50
system. This indicates coating of the lipoprotein column
membrane until saturation as the cause of the initial fall
in concentration. Coating of foreign surfaces by plasma
proteins has previously been described as the first step of
the bioincompatibility process in contact between blood
and foreign materials.39

Increase in concentration of VEGF was shown for all
the apheresis systems tested compared to the SC indicat-
ing that tubing, columns, and shear flow and shear stress
had an impact on production of VEGF.40 Our results
regarding VEGF are in contrast to former in vivo studies
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which displayed a decrease in VEGF concentration in all
systems used.23,25 VEGF is known to bind heparin41

which is used for anticoagulation in clinical settings of
lipoprotein apheresis, and this might explain the differ-
ence as heparin binding can enhance capture of VEGF in
the lipoprotein apheresis columns in an in vivo setting.

Platelets are activated and PDGF-BB released in the
bioincompatibility process,42 and the immediate increase
in PDGF-BB in the DL75 system at T15 is a characteristic
first pass induction effect seen in this system. This could
probably be due to this column circulating whole blood
and thus activating cytokine producing cells to a higher
extent than the other lipoprotein apheresis columns. The
direction of concentration change in PDGF-BB seen was
the same as in an in vivo study, hence supporting the
lipoprotein apheresis systems influence on PDGF-BB.23

The temporal concentration change of RANTES also
demonstrated a difference between the whole blood and
the plasma separation systems. The DL75 column, after a
first pass induction, adsorbed RANTES leaving the final
concentration below baseline. In the LA15 system, the
concentration at position BS2 was at the level of SC or
slightly above at T240. It is tempting to assume that the
plasma separation column participates in the induction
of RANTES as the concentration in position PS1, after
the plasma separation column, in the LA15 system
increased during time. Hirata et al demonstrated that
the plasma separation column activated the comple-
ment system but not cell components of the blood.43 A
study on CD11b expression being complement factor
5 (C5) dependent, using the same plasma separation col-
umn, showed a clear C5 independent decrease in circu-
lation platelets.44 These findings put together indicate
that the plasma separation column does activate the
platelets hence increasing the production of RANTES.
An in vivo study found that the DL75 and LA15 systems
reduced RANTES concentration, supporting our find-
ings for the DL75 column but being contradictory with
regard to the LA15 column.23 Stefanutti et al found, in
an in vivo study using the DALI whole blood lipoprotein
apheresis system, increase in RANTES, also contradic-
tory to the findings in this study for the DL75 whole
blood column, indicating a possible difference between
whole blood lipoprotein apheresis systems with regard
to concentration changes of RANTES.45

In the lipoprotein apheresis systems, reduction of
cytokine concentration could be seen either immediately
or after a period of time. For IP-10 in the DL75 system, a
near complete removal from circulation was seen at T15,
indicating an immediate adsorption. In the LA15 system,
there was a gradual reduction in IP-10 concentration dur-
ing 240 min. The difference is probably due to the DL75
column adsorbing cytokines direct form whole blood, as

compared to the LA15 system, which adsorbs cytokines
from plasma. Our results indicate that IP-10 is not easily
filtered through the pores of the plasma separation col-
umn, and this is mandatory for IP-10 to be available for
adsorption in the lipoprotein apheresis column LA15 and
EC50. The LA15 column was effective in adsorbing IP-10
as the concentration in post plasma separation position
PS2 was low from T15. We have previously demonstrated
an in vivo increase in IP-10 with the same lipoprotein
apheresis columns used in the present study.23 This may
indicate that lipoprotein apheresis affects expression of
IP-10 differently in an in vivo and an ex vivo setting.
Recently, Stefanutti et al demonstrated an impact on the
messenger RNA of IL-1α, IL-6, and TNF in patients
undergoing lipoprotein apheresis, indicating a possible
regulatory effect on the expression of precursors in the
chain of production of inflammatory mediators.46,47 This
could contribute to explaining the observed differences
between in effect on IP-10 in in vivo and ex vivo studies.

5 | CONCLUSION

The results presented in this ex vivo study demonstrate
differences between the whole blood adsorption, dex-
tran sulfate plasma adsorption, and the double filtration
plasmapheresis lipoprotein apheresis systems regarding
their effects on cytokines, a fact that underlines the need
to test every system independently, and not relying on
results from similar or comparable systems. The results
add to the current knowledge of effects of different lipo-
protein apheresis systems on inflammatory mediators
including temporal concentration changes, in ex vivo
conditions. To answer the question whether differences
in pattern changes of individual cytokines could play a
role in therapeutic practice, further in vivo studies are
needed, as this question is not answered in the present
study. The results also underline the importance of
studying biocompatibility processes not only in ex vivo
but also in in vivo experiments close to the clinical set-
ting in order to obtain a more complete understanding
of the effects of contact between blood and the foreign
material.
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Granulocyte and monocyte CD11b expression during plasma separation is dependent on complement factor 5
(C5) – an ex vivo study with blood from a C5-deficient individual. APMIS 2018; 126: 342–352.

The aim of the study was to investigate the role of complement factor 5 (C5) in reactions elicited by plasma separation
using blood from a C5-deficient (C5D) individual, comparing it to C5-deficient blood reconstituted with C5 (C5DR)
and blood from healthy donors. Blood was circulated through an ex vivo plasma separation model. Leukocyte CD11b
expression and leukocyte–platelet conjugates were measured by flow cytometry during a 30-min period. Other markers
were assessed during a 240-min period. Granulocyte and monocyte CD11b expression did not increase in C5D blood
during plasma separation. In C5DR samples granulocytes CD11b expression, measured by mean fluorescence intensity
(MFI), increased from 10481 � 6022 (SD) to 62703 � 4936, and monocytes CD11b expression changed from
13837 � 7047 to 40063 � 713. Granulocyte–platelet conjugates showed a 2.5-fold increase in the C5DR sample com-
pared to the C5D sample. Monocyte–platelet conjugates increased independently of C5. In the C5D samples, platelet
count decreased from 210 9 109/L (201–219) (median and range) to 51 9 109/L (50–51), and C3bc increased from
14 CAU/mL (21–7) to 198 CAU/mL (127–269), whereas TCC formation was blocked during plasma separation. In
conclusion, up-regulation of granulocyte and monocyte CD11b during plasma separation was C5-dependent. The
results also indicate C5 dependency in granulocyte–platelet conjugates formation.

Key words: C5 deficiency; bioincompatibility; plasma separation; CD11b/CD18; leukocyte–platelet conjugate.
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CD11b is part of the integrin heterodimer contain-
ing CD11b (integrin aм) and CD18 (integrin b2).
CD11b/CD18 (CR3) has approximately 40 reported
protein ligands. Biologic functions during the
inflammatory response include adhesion of leuco-
cytes, regulation of cytokine secretion, and there
are indications of direct adhesion to platelets (1). In

commonly accepted biocompatibility models acti-
vated leukocytes expressing CD11b/CD18 binds
iC3b molecules included in the initial protein layer
bound to the artificial surface, which is considered
one of the first steps in the bioincompatibility reac-
tion (2, 3).

Studies have shown that hemodialysis up-regu-
lates the adhesion molecule CD11b on leukocytes,
corresponding to elevated platelet–leukocyteReceived 23 June 2017. Accepted 21 January 2018
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aggregate counts, concluding that expression of
CD11b is a reliable marker of leukocyte activation
during hemodialysis (4). When plasma separation is
used in treatment of, for example, vasculitis, the
plasma fraction is disposed and substituted with
either fresh frozen plasma or a Ringer/albumin
solution before it is merged with the cellular com-
ponent and returned to the patient. In plasma sepa-
ration used in LDL apheresis systems, the cell
fraction is merged with the plasma fraction before
returned to the patient after LDL removal has
taken place from the plasma fraction. If the plasma
separation process in itself has adverse effects on
the cellular components, either directly or by acti-
vation of the innate immune system, this may prove
disadvantageous to the patient.

It has previously been demonstrated that plasma
separation induces complement activation during
ex vivo low-density lipoprotein (LDL) double filtra-
tion apheresis (5), and that CD11b up-regulation is
dependent on the presence of complement factor 5
(C5) in an ex vivo model with polyvinylchloride
tubing (PVC) (6). Studies have also shown up-regu-
lation of CD11b on monocytes and granulocytes,
and an increase in monocyte–platelet and granulo-
cyte–platelet conjugates after circulating blood
through PVC tubing. Furthermore, blocking of C5a
receptor 1 (C5aR1, CD88) on granulocytes and
monocytes largely counteracted the CD11b presen-
tation. Thus, CD11b up-regulation by PVC is medi-
ated through complement activation, mainly by
C5a (7), and CD11b up-regulation on granulocytes
is thus to some extent a proxy for complement acti-
vation. Crosstalk between parts of the innate
immune systems (complement system, coagulation
system, and contact activation system) in plasma
separation procedures leads to activation of the cel-
lular component of the immune system, and thus
enhancement of the immune response. The result is
an inflammatory response in the patient undergoing
treatment including blood exposure to artificial sur-
faces, also involving the cellular component of the
immune system (2). This treatment-induced sys-
temic response may have unwanted consequences
for the patient.

The aim of the present study was to investigate
the role of complement in leukocyte activation dur-
ing plasma separation, as measured by expression
of CD11b and formation of leukocyte–platelet con-
jugates. We developed an ex vivo model of plasma
separation and compared blood from an individual
with C5 deficiency (C5D) with C5-deficient blood
reconstituted with C5 (C5DR), and blood from
healthy donors as control (CTR). C5 deficiency is
extremely rare, with only a few dozen individuals
reported worldwide (8), but as these individuals

represent nature0s own knock-outs their blood is
well-suited to study the role of complement in gen-
eral and the role of C5 in particular in various
models of inflammation.

MATERIALS AND METHODS

Ethics

The regional ethics committee approved the study and all
blood donors signed an informed consent.

Donors

Blood from a previously described C5-deficient individual
(9) and blood from three healthy donors were used. Blood
was drawn four times from the C5-deficient donor, and
twice from each healthy donor. The individuals donated
450 mL of blood on each occasion. Time duration
between blood donations was approximately 6 months.

Blood sampling and plasma separation

Lepirudin (Refludan�, Celgene, Marburg, Germany),
25 mg in 50 mL of 0.9% NaCl, was added to a 600 mL
filterless Blood Pack Unit (Fenwal, Lake Z€urich, USA,
made from polyvinylchloride copolymer plasticized with
di-2-ethylhexyl phthalate, without other additives, before
blood donation, giving a final concentration of 0.05 mg
lepirudin/mL blood and a final volume of 500 mL in the
blood pack unit. Lepirudin in this concentration gives effi-
cient anticoagulation without affecting complement activa-
tion (10).

Fifty milliliters of blood were then transferred to an
empty blood pack to serve as a control for time-depen-
dent, contact-induced activation (no-plasma separation
blood reservoir, NPS). The remaining 450 mL served as
the reservoir for blood circulating in the plasma separa-
tion model (plasma separation blood reservoir, PS)
(Fig. 1). Both blood packs were placed in a temperature-
controlled heater (Binder, Binder GmBH, Tuttlingen, Ger-
many) set at 37 °C, with constant movement by means of
a modified test tube rotator (Rock ‘n Roller, Labinco BV,
Breda, The Netherlands). The blood reservoir was
attached to the plasma separation system which consisted
of an Octo-Nova (MeSys Gmbh, Hannover, Germany)
machine with a PlasmaFlo OP-05W column (Asahi Kasei
Medical Europe) plasma separation column and PVC tub-
ing. The flow rates were 100 mL/min for the blood pump
and 20 mL/min for the plasma pump. Blood samples for
flow cytometry were obtained at 0, 5, 15, and 30 min (T0–
T30), whereas the other markers were obtained at 0, 5, 30,
120, and 240 min (T0–T240).

All blood samples were drawn simultaneously (within a
time frame of 1 minute) for each sample time and loca-
tion. Blood samples were drawn into polystyrene tubes
containing EDTA (to block any further complement acti-
vation) to a final concentration of 10 mM and then placed
on ice before centrifugation for 15 min at 3220 g at 4 °C.
The plasma was frozen in aliquots at �80 °C until analy-
sis in batches. Blood smears were made immediately after
blood sampling, at T0 and at T240.
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Flow cytometric studies of CD11b

Flow cytometric studies were performed with an LSRII
(Becton Dickinson (BD), San Jose, CA, USA). At each
point of time, blood (100 lL) was fixed with 100 lL 0.5%
paraformaldehyde for 4 min at 37 °C, and 25 lL fixed
blood was then incubated for 15 min at room temperature
in the dark with anti-CD11b-PE (BD) or the isotype con-
trol IgG2a-PE (BD). For threshold, the nuclear stain
LDS-751 (Molecular Probes, InvitrogenTM Thermo Fisher
Scientific, Waltham, MA, USA) was added. In addition,
anti-CD14 FITC (BD) was used for gating purpose. One
mL PBS was added and samples were acquired after
15 min. Granulocytes and monocytes were gated in an
SSC/anti-CD14-dotplot, and the mean fluorescent inten-
sity values for CD11b were calculated (Fig. 2). The anti-
body used in our study (mouse anti-human-CD11b-
Phycoerythrin, clone D12, Becton Dickinson, San Jose,
CA, USA) is specific for the 165-kilodalton (kd) a-subunit
of the CD11b/CD18 antigen heterodimer, and is as such
unable to disclose if the CD11/CD18 integrin is conforma-
tionally changed into its active form. However, the same
anti-human CD11b antibody is used by our and other
groups in studies exploring CD11b up-regulation in
inflammation, and taken into account for the conforma-
tional change of the heterodimer into its active form and
activation of leukocytes (11–14).

Leukocyte–platelet conjugates

Fixed blood cells were stained with anti-CD14 PE (BD),
anti-CD61 FITC (BD), LDS-751 and re-suspended as

described above. Granulocytes and monocytes were gated
in an SSC/anti-CD14-dotplot, and the mean fluorescent
intensity values for CD61 were calculated.

Routine biochemistry

Hemoglobin, leukocytes, and platelets were analyzed using
a Siemens ADVIA� 2120 Hematology System (Siemens
Healthcare Diagnostics Ltd., Camberly, UK). Total pro-
tein, albumin, C4, IgG, IgM, and IgA were analyzed in an
ADVIA�1800 system (Siemens Medical Solutions Diag-
nostics, Japan) with reagents from Siemens Healthcare
Diagnostics Ltd.

Complement components and functional activity

assays

Purified human complement protein C5 was obtained
from Quidel (Quidel Corporation, San Diego, CA, USA).
Purified C5 was added to C5-deficient blood to give a final
plasma concentration of 80 lg/mL, corresponding to the
concentration of C5 in normal individuals (15). The com-
plement activation products C3bc and the terminal com-
plement complex (TCC) were measured using enzyme
immunoassays based on capture antibodies reacting with
neoepitopes exposed selectively in the activation product
and not in the native component as described in detail
previously (16).

Correction for dilution

A small amount of priming solution (isotonic saline) was
used to prepare the tubing and columns before the ex vivo
loop was started. Hematocrit was used to correct the con-
centration for the plasma parameters, according to a stan-
dardized formula (17).

Statistics

Formation of leukocyte–platelet conjugates and CD11b
expression was measured as mean fluorescent intensity �
standard deviation (SD), all other measurements are med-
ian � range. The rarity of the C5 deficiency precluded the
use of many repeated samples in this study. Due to the
few numbers of observations, we have presented the data
without further tests of statistical significance. All calcula-
tions presented were performed with Prism 5.0 for Win-
dows, Graphpad software (San Diego, CA, USA).

RESULTS

Expression of CD11b on leukocytes

Granulocytes (Fig. 3A): Blood from control indi-
viduals showed an increase in CD11b expression in
the plasma separation sample from 2621 � 498
(mean and SD) at T0 to 30727 � 9165 at T30
(CTR-PS: Fig. 3A, left panel). In contrast, the C5-
deficient blood (C5D) showed no increase in granu-
locyte CD11b expression in the plasma separation
sample changing from 5351 � 919 at T0 to

Plasma 
separation  

blood 
reservoir

No-plasma 
separation blood 

sample (NPS)

Plasma separation 
blood sample (PS)

Blood circuit

Plasma 
separation 

filter

No-plasma 
separation 

blood 
reservoir

Separated 
plasma

C5D-PS
C5DR-PS
CTR-PS

C5D-NPS
C5DR-NPS
CTR-NPS

Fig. 1. Schematic drawing of the ex vivo model. The
plasma separation blood bag served as the reservoir for
the plasma separation circuit. Plasma separation blood
samples were obtained from the tubing blood sample out-
let after the plasma separation blood reservoir. The arrows
show the direction of blood flow and plasma flow in the
system. The no-plasma separation blood reservoir was
kept at 37 °C on the test tube rotator next to the plasma
separation blood reservoir. No-plasma separation blood
samples were drawn directly from the no-plasma separa-
tion blood reservoir.
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7935 � 1648 at T30 (C5D-PS: Fig. 3A, left panel).
After reconstituting the C5-deficient blood with
purified C5 (C5DR), granulocyte CD11b expression
in the plasma separation sample increased from
10481 � 6022 at T0 to 62703 � 4936 at T30
(C5DR-PS: Fig. 3A, left panel).

In the time-dependent, spontaneous activation,
no-plasma separation sample (NPS), there was a
small increase in CD11b expression in blood from
the control persons from 2443 � 725 at T0 to
6419 � 218 at T30 (CTR-NPS: Fig. 3A, right
panel). Similarly, there was a small increase in C5-
deficient blood from 5351 � 919 at T0 to

10537 � 890 at T30 (C5D-NPS; Fig. 3A right
panel). After reconstitution, there was an increase
in CD11b expression from 10481 � 6022 at T0 to
47080 � 17186 at T30 (C5DR-NPS: Fig. 3A, right
panel).

Monocytes (Fig. 3B): In blood from control indi-
viduals, the plasma separation sample showed a
marked increase in monocyte CD11b expression
from 3894 � 285 at T0 to 23575 � 6765 at T30
(CTR-PS; Fig. 3B, left panel). In C5-deficient
blood, there was no increase in CD11b expression
as it changed from 9027 � 456 at T0 to
11478 � 1461 at T30 (C5D-PS: Fig. 3B, left panel)
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Fig. 2. Flow cytometric readouts at 30 min of granulocyte and monocyte CD11b. During acquisition, threshold was set
on the nuclear stain LDS 751 (A). Granulocytes and monocytes were gated for in a CD14 FITC/SSC dotplot (B). Granu-
locyte CD11b expression in samples C5DR-PS and C5D-PS shown in a histogram (C).

Fig. 3. CD11b expression. Expression of CD11b on granulocytes (A) and monocytes (B). CD11b expression from baseline
(T0) through 30 min (T30) expressed as mean fluorescent intensity and standard deviation in the C5D, C5DR, and CTR
samples in the plasma separation blood samples (PS) and in the no-plasma separation blood samples (NPS).
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similar to that seen for the granulocytes. Upon
reconstitution with C5 monocyte expression of
CD11b in C5-deficient blood also increased, from
13837 � 7047 at T0 to 40063 � 713 at T30
(C5DR-PS: Fig. 3B, left panel).

In the no-plasma separation samples, there was a
small and equal increase in CD11b expression on
monocytes for controls and C5D (CTR-NPS and
C5D-NPS: Fig. 3B, right panel). Similar to the
granulocytes, there was an increase in CD11b
expression in the monocyte C5DR-NPS samples
from 13837 � 7047 at T0 to 40532 � 543 at T30
(Fig. 3B, right panel).

Formation of leukocyte–platelet conjugates

Granulocyte–platelet conjugates (Fig. 4A): In blood
from control individuals, the plasma separation
sample showed an increase in granulocyte–platelet
conjugate formation from 1325 � 250 at T0 to
5633 � 3199 at T30 (CTR-PS: Fig. 4A, left panel).
In C5D blood, granulocyte–platelet conjugate for-
mation during plasma separation increased from
1931 � 337 at T0 to 3247 � 1066 at T30 (C5D-PS:
Fig. 4A, left panel). The reconstituted C5-deficient
blood increased from 1851 � 805 at T0 to
4743 � 485 at T30 (C5DR-PS: Fig. 4A, left panel).

In the no-plasma separation samples (Fig. 4A,
right panel), there was a small and equal increase
during the observation time in the three groups.

Monocyte–platelet conjugates (Fig. 4B): There
were increases in monocyte–platelet conjugate

formation for all groups during plasma separation
from T0 to T30 (Fig. 4B left panel). The increases
seen in the no-plasma separation samples during
the 30 min observation time were less than in
plasma separation samples and also similar in all
groups (Fig. 4B right panel).

Platelet and leukocyte counts

Platelet count was reduced in all groups during
plasma separation (T0–T240); CTR: 235 109/L
(218–246) (median and range) to 67 9 109/L (26–
68), C5D: 210 9 109/L (201–219) to 51 9 109/L
(50–51), C5DR: 191 9 109/L (158–224) to
31 9 109/L (26–36) (Fig. 5A, left panel). Blood
smears obtained from the plasma separation sam-
ples at the end of the apheresis session showed pla-
telet agglutination (data not shown). None of the
groups changed in platelet count in the no-plasma
separation samples (Fig. 5A right panel). Further-
more, there were no significant changes in the leu-
cocyte counts during plasma separation or in the
no-plasma separation samples in the different
groups (Fig. 5B).

Total protein and complement factor 4 (C4)

In the plasma separation control sample, there was
a reduction in total protein from T0 53 g/L (45–54)
(median and range) to 25 g/L (18–31) at T5 with
no further reduction at T240 (CTR-PS: Fig. 6A,
left panel). There were similar reductions in total

Fig. 4. Leukocyte–platelet conjugates. Granulocyte–platelet (A) and monocyte–platelet (B) conjugate formation from base-
line (T0) through 30 min (T30) expressed as mean fluorescent intensity and standard deviation in the C5D, C5DR, and
CTR samples in the plasma separation blood samples (PS) and in the no-plasma separation blood samples (NPS).
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protein for all groups during plasma separation
(C5D-PS and C5DR-PS: Fig. 6A, left panel). No
such reduction was seen in the no-plasma separa-
tion samples (Fig. 6A, right panel). The same pat-
tern was seen for albumin, IgG, IgM, and IgA
(data not shown).

Resembling the pattern for total protein, there
were reductions in C4 for all groups during plasma
separation starting at T5, with no further reduction
at T240 (Fig. 6B, left panel), whereas the levels in
the no-plasma separation samples remained
unchanged during time (Fig. 6B, right panel).

Fig. 5. Platelet and leukocyte counts. Platelet (A) and leukocyte (B) from baseline (T0) through 240 min (T240) expressed
as median and range in the C5D, C5DR, and CTR samples in the plasma separation blood samples (PS) and in the
no-plasma separation blood samples (NPS).

Fig. 6. Plasma protein concentrations. Total protein (A) and complement factor 4 (B) from baseline (T0) through 240 min
(T240) expressed as median and range in the C5D, C5DR, and CTR samples in the plasma separation blood samples (PS)
and in the no-plasma separation blood samples (NPS).
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Complement activation

In all plasma separation samples, there were
increases in the complement activation product
C3bc, starting at 5 min with further increase after
30 min (Fig. 7A, left panel). In the no-plasma sepa-
ration samples, the increase occurred later, starting
at 30 min and continuing up to 240 min, however
not reaching the same maximum as in the plasma
separation samples (Fig. 7A, right panel).

The terminal C5b-9 complement complex (TCC)
was measured to assess endpoint complement activa-
tion. In the controls and in the C5 reconstituted sam-
ples, there was a 15-fold increase in TCC during
plasma separation (CTR-PS, C5DR-PS: Fig. 7B, left
panel), and as expected there was no TCC formation
in the C5D sample consistent with the lack of C5
(C5D-PS: Fig. 7B, left panel). Similarly, in the no-
plasma separation samples, there was a 10-fold TCC
increase in the CTR sample and a 20-fold increase in
the C5DR sample, while there was no TCC forma-
tion in the C5D sample (Fig. 7B, right panel).

DISCUSSION

We have previously shown that individuals deficient
of C5, nature’s own knock-outs, can be used as a
robust model for exploring the role of C5 in differ-
ent experimental settings (14). In the present study,
using C5D blood compared to controls in an

ex vivo model of plasma separation, we demon-
strate that CD11b expression was C5 dependent
both for granulocytes and monocytes supporting
previous published observations. Formation of
granulocyte–platelet conjugates was to some extent
C5-dependent. Monocyte–platelet conjugates, how-
ever, were C5-independent. These findings under-
score the importance of the complement system in
leukocyte activation during extra-corporeal treat-
ments involving surface activation.

Expression of CD11b on leukocytes

Our finding that CD11b expression on granulocytes
is C5-dependent in our model of ex vivo plasma
separation is supported by previous studies. Rinder
et al. showed that C5aR1 blockade significantly
decreased CD11b up-regulation on granulocytes
and that anti-human C5 antibody blocks CD11b
up-regulation on granulocytes in an ex vivo model
with simulated extracorporeal circulation (18, 19),
and it has also been demonstrated that blocking the
C5aR1 in a model with PVC tubing counteracted
the CD11b expression on granulocytes (7). Our
group has previously demonstrated that CD11b
expression on granulocytes in a Neisseria meningi-
tides model using blood from a C5-deficient donor
only occurred after reconstitution of C5, also indi-
cating the importance of C5 in CD11b expression
on granulocytes (14) and Bergseth et al. showed

Fig. 7. Complement activation. Complement activation products C3bc (A) and TCC (B) from baseline (T0) through
240 min (T240) expressed as median and range in the C5D, C5DR, and CTR samples in the plasma separation blood
samples (PS) and in the no-plasma separation blood samples (NPS).
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that C5 deficiency decreased CD11b expression on
granulocytes in a model with C5-deficient and C5
reconstituted blood in PVC tubes (6).

Our findings also indicate that CD11b expression
on monocytes in the plasma separation samples is
C5-dependent. This is also partly in accordance
with former studies. Rinder et al. found that anti-
C5a only trended toward blocking CD11b expres-
sion on monocytes (19). We have previously shown
that CD11b expression on monocytes to some
extent was dependent on C5 in a model using
C5aR1 antagonist for blocking C5 effect on mono-
cytes in a PVC tubing model (7), and Bergseth
et al. found that lack of C5 decreased monocyte
CD11b expression in a PVC tubing model, using
C5D-deficient blood reconstituted with C5 (6). Rin-
der et al. also demonstrated that CD11b expression
on monocytes can be reduced by down-regulating
both classical and alternative C3/C5 convertases
using the complement activation blocker (CAB-2;
CD46–CD55 conjugate). Thus, blocking formation
of C3 cleavage products points to C3a and proba-
bly other C3 fragments as additional candidates
possibly able to facilitate up-regulation of CD11b
expression on monocytes (20). This indicates that
biocompatibility between different materials cannot
be readily compared, and that every material and
model has to be evaluated separately. The main dif-
ference between our study and others is the pres-
ence of the plasma separation column and the
blood and plasma flow rates. Since plasma separa-
tion involves shear stress and shear force, this could
also affect CD11b expression.

Formation of leukocyte–platelet conjugates

Formation of leukocyte–platelet conjugates is rec-
ognized as a component of inflammation in many
circumstances, and conjugate formation can be
induced by artificial surfaces and thus seen as a
marker of bioincompatibility (21, 22). In an in vitro
model of artificial-surface-induced inflammation
using monoclonal antibodies and small peptides as
complement inhibitors, we have previously shown
that conjugate formation is mediated by activation
of complement and the formation of C5a, which
also up-regulates CD11b on leukocytes (7).

In the present study, formation of granulocyte–
platelet conjugates increased fairly equal in the
C5DR-PS and C5D-PS samples until T15. From
T15 to T30, there was a 2.5-fold increase in granu-
locyte–platelet conjugate formation in the C5DR-
PS sample compared to the C5D-PS sample. In the
CTR-PS sample, there was a 4-fold increase in
granulocyte–platelet conjugate formation. Other
studies have shown increase in formation of

granulocyte–platelet conjugates in models including
PVC tubing and a membrane oxygenation device
and at the same time also shown that granulocyte–
platelet conjugate formation can be reduced either
by blocking C5aR1 or by blocking cleavage of C5
(7, 19).

We found an increase in monocyte–platelet con-
jugate formation in the plasma separation samples
in our study, and this increase appeared to be C5-
independent. Previous studies have indicated C5
dependence to a certain degree in the formation of
monocyte–platelet conjugate formation (6, 7, 19).

The difference in result from other studies
regarding formation of leukocyte–platelet conju-
gates indicates that the plasma separation column
and the blood bag or the model as a whole can
mediate conjugate formation also through mecha-
nisms other than complement C5a generation and
CD11b expression on leukocytes. Previous studies
have pointed out the ability of shear stress and
shear force in blood circulating circuits both ex vivo
and in vivo to activate cellular components of the
blood (23–25). Gutensohn et al. described, in a
model of platelet apheresis, interaction between pla-
telets and monocytes simultaneously as up-regula-
tion of P-selectin and CD63 was observed on
platelets (26). At the same time, activated platelets
binding CD41a+ leukocytes forming conjugates was
observed. Importantly, they noticed that most of
the binding between the platelets and leukocytes
happened during the first 5 min of circulation. This
was also the case in our study with regard to the
monocyte–platelet conjugate formation in the
plasma separation samples.

The plasma separation column used in the cur-
rent study has been described to mediate comple-
ment activation, but not to activate cellular
components of the blood (27). By measuring C3,
C3a and C5a in models with different types of
lipoprotein apheresis and in lone plasmapheresis
models, other studies have also concluded that the
plasmapheresis column activates complement (5,
28). Taken together, these findings indicate that
shear stress and shear force also mediate conjugate
formation through mechanisms other than C5 acti-
vation.

Platelets and leukocytes

Activation, adherence, and clotting of platelets are
recognized as bioincompatibility in artificial devices.
Primary activation of platelets and secondary acti-
vation as a result of activation of the coagulation
and immune systems have been discussed as possi-
ble mechanisms (2, 3). In our study, there was a
marked reduction in platelets in the plasma
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separation samples compared to the no-plasma sep-
aration samples, but the reduction was not C5-
dependent. The observation of C5 independence is
not in alignment with earlier studies stating that
inhibiting C5 did preserve the platelet count in a
cardiopulmonary bypass model (18). On the other
hand, it is clearly demonstrated that platelets bind
vigorously to PVC used in the tubing in our model
(29, 30). Shear stress and shear forces can activate
platelets enhancing adhesion of platelets to bioma-
terials (31, 32). Platelet agglutination was also
clearly shown in blood smear taken from the
plasma separation samples at T240. This is proba-
bly part of the explanation for the observed platelet
reduction in the plasma separation samples in our
study, despite the use of lepirudin as an anticoagu-
lant. The plasma separation column used in our
study is not yet known to interact with the platelets
(27). The leukocyte count remained stable and
unchanged in all samples in our study despite for-
mation of conjugates and the change in platelet
count in the plasma separation samples, indicating
that leukocytes did not adhere to the plasma filtra-
tion column or the tubing.

Plasma proteins

We observed a reduction in circulating plasma pro-
teins (albumin, immunoglobulins, and C4) in the
plasma separation samples independent of C5. When
blood interacts with foreign material, the first step in
the bio-incompatibility cascade is that a layer of
plasma proteins binds to the surface (33). These pro-
teins, bound to the material, undergo conforma-
tional changes making the proteins able to activate
inflammatory cascade and network systems (34). In
the no-plasma separation samples, there were no or
only marginal changes in protein concentration, con-
sistent with the different biomaterials in the blood
bag and in the plasma separation system and the dif-
ferent mode of contact between blood and plasma
circulating in the plasma separation column causing
shear stress with increased binding of protein to the
biomaterial. Thus, testing of bio-incompatibility for
any material should take place under the same con-
ditions as the biomaterials are supposed to be used
in clinical practice.

Complement activation

Generation of C3bc is formed by C3 cleavage irre-
spective of which initial pathway(s) that are activated
(35). A model for activation of complement on artifi-
cial surfaces has been suggested by several authors
(2, 36, 37). Put together, it is possible for both classi-
cal, lectin, and alternative pathway to activate the

amplification loop of complement and secondly lead
to the generation of the terminal complement com-
plex. In accordance with this, we observed an
increase in C3bc in our study, whereas the lack of C5
as expected prevented the generation of TCC in the
C5-deficient samples. When C5D blood was reconsti-
tuted with purified C5, we observed an enhanced
activation reflected by increased TCC formation
compared to the controls also in the no-plasma sepa-
ration control sample. The most likely explanation
for this is the fact that purified proteins may undergo
changes in configuration enhancing their biologic
effects, in addition to the inherent risk of contamina-
tion. We have experienced this with the purified C5
in our laboratory (non-published observations) and
it has been described that different forms of C5b
have different potency in generating TCC (38). Our
data indicate that the purified C5 might have
increased capacity to generate TCC.

CONCLUSION

In an ex vivo model of plasma separation, the up-
regulation of leukocyte CD11b was C5 dependent
both on granulocytes and monocytes. The results
also indicate a possible C5 dependency of granulo-
cyte–platelet conjugate formation. Platelet count
was reduced during plasma separation, whereas the
leukocyte count was unchanged. Further improving
biocompatibility and reducing complement activa-
tion by materials used in routine plasma separation
could prove to be of clinical benefit.

We acknowledge that the findings are not new as
such and our results are based on a small sample size
and conclusions should be drawn with care; how-
ever, previous studies in the field have used inhibi-
tors of the complement system, such as purified or
monoclonal antibodies or smaller peptides. Such
experimental approaches always carry the risk of
contamination and cross reaction. To our knowl-
edge, our study is the first using blood from a C5-
deficient individual to investigate complement acti-
vation in a model with plasma separation, and in
our opinion this model adds important information
even if confirming previous findings. Furthermore,
although C5 deficiency is extremely rare, the increas-
ing clinical use of inhibitors of C5 (e.g. eculizumab)
emphasizes the importance of studying mechanisms
related to complement activation in more depth.
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