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HyperKvasir, a comprehensive 
multi-class image and video dataset 
for gastrointestinal endoscopy
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Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse 
and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and 
tedious process to manually label training data. These constraints make it difficult to develop systems 
for automatic analysis, like detecting disease or other lesions. In this respect, this article presents 
HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data 
is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly 
labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 
videos, and represents anatomical landmarks as well as pathological and normal findings. The total 
number of images and video frames together is around 1 million. Initial experiments demonstrate the 
potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir 
dataset can play a valuable role in developing better algorithms and computer-assisted examination 
systems not only for gastro- and colonoscopy, but also for other fields in medicine.

Background & Summary
The human gastrointestinal (GI) tract is subject to numerous different abnormal mucosal findings ranging from 
minor annoyances to highly lethal diseases. For example, according to the International Agency for Research 
on Cancer (https://gco.iarc.fr/today/fact-sheets-cancers), the specialized cancer agency of the World Health 
Organization (WHO), GI cancer globally accounts for about 3.5 million new cases each year. These cancer types 
usually have combined mortality of about 63% and 2.2 million deaths per year1–3.

Endoscopy is currently the gold-standard procedure for examining the GI tract, but its effectiveness is con-
siderably limited by the variation in operator performance4–6. This causes, for example, an average 20% polyp 
miss-rate in the colon7. Thus, improved endoscopic performances, high-quality clinical examinations, and sys-
tematic screening are significant factors to prevent GI disease-related morbidity and deaths. The recent rise of 
artificial intelligence (AI)-enabled support systems has shown promise in giving healthcare professionals the 
tools needed to provide quality care at a large scale8,9. The core of an efficient AI-based system is the combination 
of quality data and algorithms which teach a model to solve real-world problems like detecting pre-cancerous 
lesions or cancers in images. Today’s AI-based systems are predominantly using a subfield of AI called machine 
learning (ML), which usually requires training on thousands of data samples to perform well on any given task. 
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However, health data is often sparse and hard to obtain due to legal constraints and structural problems in data 
collection. Nevertheless, an increasing number of promising AI solutions aimed for diagnostics in endoscopy10–17 
are being developed. The datasets used for these systems, like CVC18,19 and the ASU-Mayo polyp database20, are 
rather small in the context of ML research. In other non-medical ML areas, datasets such as ImageNet21 consists 
of 14 million images. Table 1 gives an overview of all, to the best of our knowledge, existing datasets of images and 
videos from the human GI tract. As can be observed, they are rather small, and often limited to polyps. Several of 
these have also lately become unavailable.

The images and videos in HyperKvasir were collected prospectively from routine clinical examinations per-
formed at a Norwegian hospital from 2008 to 2016. We retrieved the images from the Picsara image documenta-
tion database (CSAM, Norway), a plug-in to the electronic medical record system, in 2016. As a first step, 4,000 of 
these images were labeled into eight different classes by medical experts and published as the Kvasir dataset22. The 
dataset was later extended to 8,000 images. Using Kvasir, researchers all over the world have started developing 
different ML models and AI systems for GI endoscopy23–38. Moreover, the Kvasir dataset has been used to organ-
ize international competitions, i.e., the Medico Task at MediaEval in 201739 and 201840 and the ACM Multimedia 
2019 BioMedia Grand Challenge41.

Based on the lessons learned from publishing the Kvasir dataset and organizing competitions, it became clear that 
one of the biggest challenges in medical AI is still data availability. Data is hard to retrieve from the health care systems, 
approvals from medical committees are hard to get, medical experts have limited time, and there are no efficient tools 
to label such data. Therefore, with HyperKvasir, we significantly increase both the amount of labeled medical data for 
supervised learning and also release a large amount of unlabeled data. The new dataset contains 110,079 images and 
374 videos from various GI examinations, resulting in 1 million images and frames in total. Regarding the value of 
unlabeled data, recent work in the ML community has shown remarkable improvements to tackle the challenge of 
lack of data. Instead of learning from a large set of annotated data, algorithms can now learn from sparsely labeled and 
unlabeled data. This technique is known as semi-supervised learning and has lately been successfully applied in differ-
ent medical image analyses42. Examples of semi-supervised learning are self-learning43,44 and neural graph learning45, 
which both make use of unlabeled data in addition to a small number of labeled data to extract additional informa-
tion43,44,46. We believe these new algorithms might be the development needed to make AI even more useful for med-
ical applications. The unlabeled data of HyperKvasir is intended to be used in medical and technical communities to 
explore semi-supervised and unsupervised methods, and users of the data might even consider employing their own 
local experts to provide labels . Subsequently, in addition to the data description, we provide a baseline analysis using 
the labeled classes of the dataset and feasible future research directions for researchers interested in using the dataset.

Methods
The image and video data were collected using standard endoscopy equipment from Olympus (Olympus Europe, 
Germany) and Pentax (Pentax Medical Europe, Germany) at the Department of Gastroenterology, Bærum 
Hospital, Vestre Viken Hospital Trust, Norway. Vestre Viken provides health care services to 490,000 people, of 
which 189,000 are covered by Bærum hospital. Parts of the collected data were annotated with class labels and 
segmentation masks. The annotations were done by at least one experienced gastroenterologist from Bærum 

Dataset Findings Size Availability

CVC-35618 Polyps 356 images† by request●

CVC-ClinicDB19 (also named CVC-612) Polyps 612 images† open academic

CVC-VideoClinicDB18 (also named CVC-12k) Polyps 11954 images† by request●

CVC-ColonDB62 Polyps 380 images†ψ by request●

Endoscopy Artifact detection 201963 Endoscopic Artifacts 5,138 images open academic

ASU-Mayo polyp database20 Polyps 18,781 images† by request●

ETIS-Larib Polyp DB64 Polyps 196 images† open academic

KID65◊ Angiectasia, bleeding, inflammations, polyps 2371 images and 47 videos open academic●

GIANA 201766◊ Polyps & Angiodysplasia 3462 images and 38 videos by request

GIANA 201867,68◊ Polyps & Small bowel lesions 8262 images and 38 videos by request

GASTROLAB69 GI lesions Some 100s of images and 
few videos open academic♣

WEO Clinical Endoscopy Atlas70 GI lesions 152 images by request♣

GI Lesions in Regular Colonoscopy Data Set71 GI lesions 76 images† by request

Atlas of Gastrointestinal Endoscope72 GI lesions 1295 images unknown●

El salvador atlas of gastrointestinal
video endoscopy73 GI lesions 5071 video clips open academic♣

Kvasir22
Polyps, esophagitis, ulcerative colitis, Z-line, 
pylorus, cecum, dyed polyp, dyed resection 
margins, stool

8000 images open academic

Kvasir-SEG49 Polyps 1000 images† open academic

Nerthus74 Stool - categorization of bowel cleanliness 21 videos open academic

Table 1.  An overview of existing GI datasets. †Including ground truth segmentation masks. ◊Video capsule 
endoscopy. ●Not available anymore. ψContour. ♣Not really a dataset usable for machine learning. It is more a 
medical atlas or database for education with a several low-quality samples of various findings in the GI tract.
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hospital, the Cancer Registry of Norway or Karolinska University Hospital in Sweden, and one or more experi-
enced persons working in the medical field such as a junior doctor or Ph.D. student. Though several physicians 
have assessed each labeled data record of the dataset, there is a chance that some of the assessments might be 
biased by the well-known observer variation, particularly regarding subtle changes like low-grade reflux eso-
phagitis and ulcerative colitis. Such discrepancies have been demonstrated in previous studies47,48. To tackle this 
further, we decided to combine some of the findings that are prone to bias into one class (details about the classes 
and combinations can be found in the data records descriptions). Finally, a large number of unlabeled images are 
provided.

The study was approved by Norwegian Privacy Data Protection Authority and exempted from patient consent 
because the data were fully anonymous. All metadata was removed, and all files renamed to randomly generated 
file names before the internal IT department at Bærum hospital exported the files from a central server. The study 
was exempted from approval from the Regional Committee for Medical and Health Research Ethics - South East 
Norway since the collection of the data did not interfere with the care given to the patient. Since the data is anon-
ymous, the dataset is publicly shareable based on Norwegian and General Data Protection Regulation (GDPR) 
laws. Apart from this, the data has not been pre-processed or augmented in any way.

Class labels per image.  The method for labeling images can be split into three distinct steps. First, experi-
enced gastroenterologists involved in the project decided which classes should be included in the labeling pro-
cess, based on medical relevance and the data collected. The selected classes were described in detail by medical 
experts. Second, two junior doctors or Ph.D. students working in the field annotated a subset of the images to 
the provided classes. Once this pre-labeling step was done, the medical experts checked the labels and adjusted 
when necessary. Cases where no consent could be found were discarded and replaced with new images from the 
dataset. The first dataset we created consisted of 4,000 images from eight classes22. This was later extended to 8,000 
images for the same eight classes. For HyperKvasir, the dataset is further extended to 10,662 images and 23 classes. 
In total, HyperKvasir contains 110,079 images (10,662 labeled and 99,417 unlabeled images) from the GI tract.

Segmentation masks per image.  HyperKvasir includes images with corresponding segmentation masks 
and bounding boxes for 1,000 images from the polyp class. To create the segmentation masks, we uploaded 1,000 
polyp images to the Labelbox platform (https://www.labelbox.com/). Labelbox is a tool that allows pixel-accurate 
labeling of image regions. First, a junior doctor and a Ph.D. student pre-segmented the 1,000 images. A gastroen-
terologist subsequently went trough all images verifying and correcting the pre-labeled segmentation masks. A 
detailed description of the annotation process and an example use-case of the dataset can be found in49,50.

Descriptions per video.  To get the labels per video, we uploaded the video data to a video annotation plat-
form provided by Augere Medical AS (Oslo, Norway). Each video was analyzed and labeled by an experienced 
gastroenterologist. The class labels selected by the gastroenterologist were representing the main finding in the 
video as accurately as possible. For example, if the video contained footage of a polyp, the label for that video 
would be polyp. Additionally, there are examples of multiple findings in the same video. If so, these and more 
detailed descriptions are included in the video-labeling.csv file.

Data Records
The full HyperKvasir51 dataset, with all its images, videos and metadata, is available from the Open Science 
Framework (OSF) via the link https://doi.org/10.17605/OSF.IO/MH9SJ. The dataset is also available at https://
datasets.simula.no/hyper-kvasir. HyperKvasir is open access and licensed under a Creative Commons Attribution 
4.0 International (CC BY 4.0). In total, the dataset consists of four main data records. The records are labeled 
images, segmented images, unlabeled images, and labeled videos. All the various labeled classes are shown in 
Fig. 1, i.e., 16 classes from the upper GI tract (Fig. 1a) and 24 classes from the lower GI tract (Fig. 1b). The dataset 
has a size of circa 66.4GB (not including metadata files and segmentation masks), 32.5GB for videos and 33.9GB 
for images. An overview of all data records in the dataset is given in Table 2. Some of the images and videos con-
tain a picture in picture (green thumbnail in the lower left corner) which represents the Olympus ScopeGuideTM 
(Olympus Europe, Germany), used by the endoscopist to get a topographic view of the colon. Details about image 
and video resolutions and video frame rates can be found in the Figs. 2 and 3. The following subsections provide 
additional details for each data record.

Labeled images.  In total, the dataset contains 10,662 labeled images stored using the JPEG format, where 
Fig. 4 shows the 23 different classes representing the labeled images and the number of images in each class. A 
CSV file is provided (image-labels.csv) giving the mapping between the image (file name) and the labeling for 
each image. These classes are structured according to location in the GI tract and the type of finding as shown in 
Fig. 5. We defined four main categories of findings where the first and the third are found both in the upper an 
lower GI tract:

•	 Anatomical landmarks: Anatomical landmarks are characteristics of the GI tract used for orientation dur-
ing endoscopic procedures. Furthermore, they are used to confirm a complete extent of the examination. 
Landmarks exist both in the upper GI tract (esophagus, stomach and duodenum) and in the lower GI tract 
(terminal ileum, colon and rectum). However, in the small bowel, there are no specific landmarks to be used 
for topographical localization of a lesion.

•	 Quality of mucosal views: Complete visualization of all the mucosa is crucial not to overlook pathological 
findings. In the colon, there exist a classification for the quality of the mucosal vizualisation, the Boston Bowel 
Preparation Scale (BBPS)52.

https://doi.org/10.1038/s41597-020-00622-y
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•	 Pathological findings: All parts of the gastrointestinal tract can be affected by abnormalities or findings 
due to disease. Most pathological findings can be seen as more or less obvious changes in the intestinal wall 
mucosa. These findings are classified according to the Minimal Standard Terminology, defined by the World 
Endoscopy Organization53.

•	 Therapeutic interventions: When a lesion or pathological finding is detected, a therapeutic intervention is 
frequently required to treat the condition, e.g., lifting and resecting a polyp, dilation of a stenosis or injection 
of a bleeding ulcer.

Each class and the images belonging to it is stored in the corresponding folder of the category it belongs to. For 
example, the ’polyp’ folder in the category pathological findings in the lower GI tract contains all polyp images, 

Fig. 1  Image examples of the various labeled classes for images and/or videos.

Data Record # Files Description Size (MB)

Labeled images 10,662 images 23 classes of findings 3,960

Segmented Images 1,000 images Segmentation masks 
for polyp findings 57

Unlabeled Images 99,417 images Unlabeled 29,940

Videos 374 videos 30 different classes 32,539

Table 2.  Overview of the data records in the HyperKvasir dataset.
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Fig. 2  Resolution of the 110,079 images in HyperKvasir.
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the ’barrett’s’ folder in the category pathological findings in the upper GI tract contains all images of Barrett’s 
esophagus, etc. As observed in Fig. 2, the number of images per class are not balanced, which is a general chal-
lenge in the medical field due to the fact that some findings occur more often than others. This adds an additional 
challenge for researchers, since methods applied to the data should also be able to learn from a small amount of 
training data. Below, we detail each class further.

Upper Gastrointestinal tract.  The upper GI tract examined by endoscopy includes the esophagus, stomach, and 
duodenum. Below, we give a description of the various classes of findings found here.

As seen in Fig. 5, we have labeled three classes of anatomical landmarks in the upper GI tract. The normal 
Z-line is the anatomical junction between the squamous epithelium of the esophagus and columnar epithelium 
of the stomach. A normal Z-line is located at the same level as the gastroesophageal junction. Retroflex stomach 
means that the endoscope is retroflexed, looking back to visualize the cardia and fundus in the upper parts of the 
stomach. The pylorus is the anatomical junction between the stomach and duodenal bulb, and a sphincter regu-
lating the emptying process of the stomach into the duodenum.

All the following classes are defined as pathological findings in the upper GI tract. Reflux esophagitis is an 
inflammation mostly affecting the lower third of the esophagus, near the Z-line. Reflux esophagitis can be graded 
according to the Los Angeles (LA) classification54. The esophagitis LA classification is defined into four classes as 
(A) mucosal breaks shorter than 5mm, without continuity across mucosal folds where subtle changes can be diffi-
cult to differentiate from a normal Z-line; (B) mucosal breaks longer than 5mm that does not extend between the 

Fig. 3  Statistics of the 374 videos in HyperKvasir.

Fig. 4  The number of images in the various HyperKvasir labeled image classes according to the file folders.
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tops of two mucosal folds; (C) one (or more) mucosal break that is continuous between the tops of two or more 
mucosal folds, but which involves less than 75% of the circumference; and (D) one (or more) mucosal break that 
is continuous between the tops of two or more mucosal folds and involves more than 75% of the circumference. 
We have split esophagitis into two classes because there exists an important observer variation in the assessment 
of low grade esophagitis47. The two classes are esophagitis A and esophagitis B-D. This binary classification of 
the images makes it possible to assess whether mis-classification between normality and esophagitis only concern 
grade A. Barrett’s esophagus represents a metaplastic transformation of the squamous epithelium of the esopha-
gus into a gastric like columnar epithelium. Barrett’s esophagus is considered a premalignant condition, meaning 
it might develop into cancer. Biopsies showing the presence of specialized intestinal metaplasia confirms the diag-
nosis. Barrett’s esophagus can be graded according to the Prague classification, describing the circumferential and 
longitudinal extension of the disease55. We have split the images of Barrett’s esophagus into two classes. Barrett’s 
long-segment and Barrett’s, short-segment esophagus where a short segment is characterized by a longitudinal 
extension of less than 3 cm55.

Lower gastrointestinal tract.  The lower GI tract examined by colonoscopy includes the terminal ileum (last part 
of the small bowel), the colon and the rectum (the large bowel). Below, we describe the classes of the lower GI 
tract in the dataset.

We have labeled three classes of anatomical landmarks in the lower GI tract. The ileum is the distal 2/3 of 
the small bowel, recognized by visible intestinal villi. Endoscopically, the ileum cannot be distinguished from 
other parts of the small bowel. During colonoscopy, the distal 5–20 cm of the ileum, named terminal ileum, 
can be reached and examined. The visualization of the terminal ileum confirms complete colonoscopy. Cecum 
is the proximal end of the large bowel and is characterized by the visualization of the appendiceal orifice and the 
ileo-cecal valve. Complete examination of the whole colon can only be confirmed if the medial wall of the cecum 
has been visualized, that is the area between the appendiceal orifice and the ileo-cecal valve. The most distal part 
of the rectum is one of the blind zones of the colon. Therefore, the endoscope is retroflexed in the rectum to vis-
ualize the dentate line and the circumference of the proximal orifice of the anal canal, which is called retroflex 
rectum.

The quality of the mucosal views is a key quality indicator and should always be evaluated because a clean 
bowel is essential to detect pathological findings. In this respect, the degree of bowel cleansing during a colonos-
copy is described by the Boston Bowel Preparation Scale (BBPS)56. BBPS consists of four different degrees which 
are: (BBPS 0) unprepared colon segment with no mucosa seen due to solid stool that cannot be cleared; (BBPS 
1) portions of the mucosa of the colon segment seen, but other areas of the colon segment not well seen due to 
staining, residual stool and/or opaque liquid; (BBPS 2) minor amount of small fragments of stool and/or opaque 
liquid, but mucosa of colon segment seen well; and (BBPS 3) entire mucosa of colon segment seen well with no 
residual fragments of stool or opaque liquid. The bowel cleansing is deemed adequate if the BBPS score is 2 or 3 
in all three segments of the colon after flushing. Therefore, we have labeled our images into the two BBPS 0-1 and 
BBPS 2-3 classes where class 0–1 represents inadequate bowel preparations, and the class 2–3 represents adequate 
bowel preparation. Moreover, a frequent finding in persons above the age of 50 years are pockets in the colon wall 
called diverticula and if numerous called diverticulosis. Sometimes stool is impacted in these diverticula and may 
increase the risk of diverticulitis. In the dataset, this is presented in the impacted stool class.

Fig. 5  The various image classes structured under position and type, also the structure of the stored images.
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The following classes are defined as pathological findings in the lower GI tract. Ulcerative colitis is a chronic 
inflammatory bowel disease often debuting in the twenties. The degree and extent of the disease is determined by 
colonoscopy and can be classified according to the Mayo Score57. The Mayo Score for ulcerative colitis is defined: 
(Score 0) inactive, where the mucosa only has normal vascular patterns; (Score 1) mild with erythema, decreased 
vascular pattern, mild friability; (Score 2) moderate with erythema, absent vascular pattern, mild friability, ero-
sions; and (Score 3) severe with spontaneous bleeding and ulcerations. For ulcerative colitis, we provide six differ-
ent labeled classes, both the Mayo Score classes (Ulcerative colitis 1/2/3) and some classes in-between where it is 
difficult to determine the exact class and because previous studies have shown important observer variation in the 
assessment of the degree of inflammation (Ulcerative colitis 0-1/1-2/2-3)48. Polyps are most frequently neoplas-
tic lesions of the large bowel. They have mainly three different shapes; protruding in the lumen, flat or excavated 
according to the Paris Classification58. Their size vary from 1 mm to several cm. The prevalence increases with 
age. The most common types of polyps are premalignant and can transform into cancer. Thus, it is important to 
discover polyps and remove the suspicious polyps during endoscopy. Hemorrhoids are pathologically swollen 
veins in the anus or lower rectum. When present in the rectum, they are called internal hemorrhoids, and when 
found in the anus, they are called external hemorrhoids.

Finally, therapeutic interventions show treatments of detected pathological findings. It includes for example 
lifting and removal of neoplastic tissue (polyps) and injection therapy of bleeding ulcer. The dyed lifted polyps 
class contains images of polyps lifted with submucosal injection using a solution containing indigo carmine. This 
is done prior to polyp resection for better diagnosis and easier resection. The dye is recognized by the blue color 
underneath the polyp. After resection of dyed polyps with a snare, the resection margins and site appears blue 
due to the indigo carmine solution. Images of these type of resection margin are presented in the dyed resection 
margins class.

Segmented images.  For the set of segmented images, we provide the original image, a segmentation mask 
and a bounding box for 1,000 images from the polyp class. In the mask, the pixels depicting polyp tissue, the 
region of interest, are represented by the foreground (white mask), while the background (in black) does not con-
tain polyp pixels. The bounding box is defined as the outermost pixels of the found polyp. For this segmentation 
set, we have two folders, one for images and one for masks, each containing 1,000 JPEG-compressed images. The 
bounding boxes for the corresponding images are stored in a JavaScript Object Notation (JSON) file. The image 
and its corresponding mask have the same filename. The images and files are stored in the segmented images 
folder. It is important to point out that the images of polyp class from the Kvasir dataset had duplicates in the 
images folder. These duplicates were replaced by high-quality polyp images from the colon and segmented.

Unlabeled images.  In total, the dataset contains 99,417 unlabeled images. The unlabeled images can be 
found in the unlabeled folder which is a subfolder in the image folder, together with the other labeled image 
folders. In addition to the unlabeled image files, we also provide the extracted global features and possible unsu-
pervised clustering assignments in the HyperKvasir Github repository as Attribute-Relation File Format (ARFF) 
files. ARFF files can be opened and processed using, for example, the WEKA machine learning library, or they can 
easily be converted into Comma-Separated Values (CSV) files.

Labeled videos.  The labeled videos are recorded for clinical purposes and thus represent daily practice. In 
total, 374 videos are provided in the dataset, which correspond to 9.78 hours of videos and 889,372 video frames 
that can be converted to images if needed. In total, an experienced gastroenterologist have identified 30 classes 
of findings, and Fig. 6 shows how many videos we have identified for each class. The class describes the video as a 
whole using the main finding, but additionally, many videos include more than one category and several classes 
where, for example, a single video can contain polyps, dyed lifted polyps and dyed resection margins. The video 
file format is Audio Video Interleave (AVI), and they are stored in the folder called labeled videos. As seen in 
Fig. 7, the videos are further organized and stored according to either upper or lower GI tract and then the four 
main categories as for the labeled images described above. In addition to the video files, a CSV file is provided 
(video-labels.csv) containing the videos’ videoID and labeling. Here, the VideoID contains the corresponding 
video file name, and the labeling includes the upper or lower location, the category and the class with some 
detailed descriptions of the video. Below, we describe the new classes per category for the in total 60 videos from 
the upper GI tract and the 60 videos from the lower GI tract.

Upper Gastrointestinal tract.  As seen in Fig. 7, we have many of the same classes for videos and for images, but 
since we have labeled all our videos, more classes are added for both the upper and lower GI-tract. In the upper 
GI tract, the three classes of anatomical landmarks (Z-line, Pylorus and Retroflex stomach) are described in the 
section for labeled images above. In the category of pathological findings, both Barrett’s esophagus and esophagi-
tis are also described above, but here we also added some new classes. The first is polyps where the description 
above of polyps in the colon is also valid for the upper GI-tract. In addition, five new classes not previously 
described are included. Mucosal ulcers are quite common in the upper GI tract. Ulcers are nearly always caused 
by Helicobacter pylori infection, ulcerogenic medication, or cancer. Ulcers are characterized according to the 
Forrest classification to predict the risk of bleeding59. Forrest I represents ongoing bleeding, Forrest II presents 
some signs of previous bleeding; and Forrest III does not show any sign of bleeding. The second class Gastric 
antral vascular ectasia (GAVE) represents dilated small superficial vessels in the mucosa of the gastric antrum. 
These lesions may cause chronic bleeding and subsequent anemia and are frequently treated by argon plasma 
coagulation (APC) to prevent further bleeding. Varices (dilated veins) in both the esofagus and the fundus of the 
stomach are most frequently caused by chronic liver diseases complicated with liver cirrhosis. The varices repre-
sent a major risk for severe bleeding. Cancer of the esophagus and the stomach are common findings in the upper 
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GI-tract. The last class gastric banding perforated shows a rare finding, which is the complication of previous 
gastric banding operation where the band perforates the wall of the stomach. The category of therapeutic interven-
tions are introduced for the Upper GI-tract especially because they are nearly always best illustrated by videos and 
can also serve important educational purposes. Since most of the therapeutic interventions are presented as sec-
ondary to a pathological finding we only include Endoscopic Retrograde Choleangio-Pancreatografi (ERCP) 
a procedure to treat gall-duct abnormalities as an independent class. However, other common therapeutic inter-
ventions such as the two thermal methods; APC and heatherprobe as well as injection therapy with adrenaline 
and application of hemospray to stop bleeding can be found under second findings in the csv file. In the category 
quality of mucosal view, we also added a footage showing reduced view due to opaque liquid in the stomach or air 
bubbles in the duodenum. Reduced view increases the risk of missing lesions. In opposite, optimal view demon-
strates excellent visualization of the duodenum.

Lower Gastrointestinal tract.  The videos from the lower GI tract illustrate mainly the same categories and classes 
as the labeled images. Nevertheless, they increase the diversity of the dataset. The category anatomical landmarks 
differs from the labeled images as it only contains the cecum class and does not include the classes of terminal 
ileum and retroflex rectum, only defined as second findings. The two categories pathological findings and thera-
peutic intervention also are a bit different compared to the labeled images. In the category pathological findings, 
we still have the above described polyps and hemorrhoids classes. However, all classes of ulcerative colitis are 
merged to colitis and also includes ischemic colitis and infectious colitis. The new class colorectal cancer, the 
second most deadly cancer worldwide60, was added. Colorectal cancer may present itself in different ways in the 
colon, from tiny lesions with a diameter of 1 cm to larger tumors obstructing the entire lumen of the bowel and 

Fig. 6  The number of videos in the various HyperKvasir labeled video classes according to the file folders.

Fig. 7  The various video classes structured under position and type, which is also the structure of the video 
folders.
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cover bowel segments of several centimeters. Moreover, parasites, a common finding of small worms moving 
around in the colon, are more often encountered in tropical areas. Stenosis is characterized by a narrow obstruc-
tion of the bowel caused either by inflammation or malignant diseases. Large neoplastic lesions like cancers 
are surgically resected and subsequently an anastomosis is made to restore normal bowel function. The anas-
tomosis can be visualized during follow-up colonoscopies. A feared complication after large bowel surgery is 
anastomotic leakage, potentially causing smaller or larger cavities of anastomotic leak especially in the rectum. 
The last decade mini-invasive endoscopic therapeutic interventions has to some extent replaced traditional and 
laparoscopic surgery regarding the treatment of large polyps and stenosis of the colon. The classes dyed lifted 
polyp and dyed resection margin are described under labeled images but videos improve the illustration of the 
technique. Three new classes are presented showing removal of polyps by simple snare resection or endoscopic 
mucosal resection (EMR). To prevent or stop bleeding after these resections, clip placement of metallic clips are 
illustrated. Self expanding stents are used to open and dilate either benign or malignant stenosis. Finally, in the 
quality of mucosal views category, we have removed the impacted stool class we have for images, and include only 
the above described BBPS 0-1 and BBPS 2-3 classes. Here, it is also worth noting that many of the videos in BBPS 
2-3 are perfectly clean (BBPS 3), i.e., as then described in the csv-file, these contain videos of normal mucosa (also 
marked as finding 2) which can be extracted in normal images or videos when needed.

Technical Validation
To demonstrate the technical quality of the dataset, we performed multiple experiments to provide some baseline 
metrics and to give some insight into the dataset’s statistical qualities. If the reader wants information about clas-
sification and segmentation approaches and experiments comparing state of the art methods using parts of this 
dataset, the reader is referred to other studies49.

Baseline for supervised image classification.  The presented dataset is suited for a variety of different 
tasks, one of which is image classification. As a preliminary step to evaluate how state-of-the-art methods perform 
on the labeled part of HyperKvasir, we performed a series of experiments based on methods that have previously 
achieved good results on GI tract image classification. The purpose of these experiments is merely to give exam-
ple baseline results to be used by future researches to compare and measure their results. In total, we ran five 
experiments using different methods. The methods were primarily selected from the best performing methods 
presented at the MediaEval Medico Task39,40. Each method is based on deep convolutional neural networks, which 
is currently state-of-the-art within image classification. Common for all experiments is that the images were 
resized to 224 × 224 before being fed into the networks. All networks are based on common architectures, slightly 
modified to accommodate our task of classifying 23 different classes of images. The specifics of each method is 
further explained below:

•	 Pre-Trained ResNet-50 is a TensorFlow implementation of the ResNet-50 architecture using ImageNet ini-
tialized weights. The network was trained in two steps. First, an initial training over 7 epochs, and then a 
fine-tuning step over 3 epochs which only trained the layers after the 100th index. Images were loaded using 
a batch size of 32, and the weights were optimized using Adam with a learning rate of 0.001.

•	 Pre-Trained ResNet-152 is a PyTorch implementation of the ResNet-152 architecture using ImageNet initial-
ized weights. The network was trained over 50 epochs using a batch size of 32, and optimized using Stochastic 
gradient descent (SGD) with a learning rate of 0.001. No fine-tuning was used for this method.

•	 Pre-Trained DenseNet-161 is a PyTorch implementation of the standard DenseNet-161 architecture using 
ImageNet initialized weights. The network was trained over 50 epochs using a batch size of 32, and optimized 
using SGD with a learning rate of 0.001. No fine-tuning was used for this method.

•	 Averaged ResNet-152 + DenseNet-16138,61 is an approach that combines the ResNet-152 and DenseNet-161 
approach by averaging the output of both models as the final prediction. Both models were trained simulta-
neously by backpropagating the averaged loss through both models. Overall, the networks were trained for 
50 epochs using a batch size of 32. SGD was used to optimize the weights with a learning rate of 0.001. Both 
the ResNet-152 and DenseNet-161 models were initialized using the best weights of the above Pre-Trained 
ResNet-152 and Pre-Trained DenseNet-161 implementations.

•	 ResNet-152 + DenseNet-161 + MLP38,61 is similar to the previous method using both ResNet-152 and 
DenseNet-161 to generate a prediction. However, instead of averaging the output of each model, this method 
uses a simple multilayer perceptron (MLP) to estimate the best way to average the output of each model. 
All networks were trained simultaneously over 50 epochs using a batch size of 32. The weights were opti-
mized using SGD with a learning rate of 0.001. Both the ResNet-152 and DenseNet-161 models were initial-
ized using the best weights of the above two implementations of Pre-Trained ResNet-152 and Pre-Trained 
DenseNet-161.

Each method was evaluated using standard classification metrics including the macro-averaged and 
micro-averaged F1-score, precision, and recall. Additionally, we calculated the Matthews correlation coefficient 
(MCC) for each experiment using the multi-class generalization which is also known as the RK. The results in 
Table 3 show that each method beats the random and majority class baseline by a large margin. However, the 
presented numbers also indicate that there is room for improvement. Looking at the confusion matrices in Fig. 8, 
we see that some classes are harder to identify than others. For example, there is a lot of confusion surrounding 
the difference between the grades of ulcerative colitis and esophagitis. Furthermore, there is also some confusion 
between specific classes such as dyed lifted polyps and dyed resection margins, and distinguishing Barrett’s from 
esophagitis or a normal Z-line. At least the confusion between classes of Z-line, esophagitis and Barrett’s esophagus 
is similar to the human variation in the assessment of these lesions. Thus, it is challenging to create a ground truth.
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Method

Macro Average Micro Average

Precision Recall F1-score Precision Recall F1-score MCC (RK)

Pre-Trained ResNet-50 0.589 0.536 0.530 0.839 0.839 0.839 0.826

Pre-Trained ResNet-152 0.639 0.605 0.606 0.906 0.906 0.906 0.898

Pre-Trained DensNet-161 0.640 0.616 0.619 0.907 0.907 0.907 0.899

Averaged ResNet-152 + DenseNet-161 0.633 0.615 0.617 0.910 0.910 0.910 0.902

ResNet-152 + DenseNet-161 + MLP 0.612 0.606 0.605 0.909 0.909 0.909 0.902

Random Guessing 0.044 0.038 0.034 0.044 0.044 0.044 0.000

Majority Class 0.004 0.043 0.008 0.108 0.108 0.108 N/A

Table 3.  Average results for the five tested classification approaches, i.e., average of the results for the two splits.

Fig. 8  Confusion matrices for Averaged ResNet-152 + DenseNet-161 and Pre-Trained DenseNet-161 
including both splits. These confusion matrices were selected based on their performance. Averaged ResNet-152 
+ DenseNet-161 achieved the best micro-averaged results while the Pre-Trained DenseNet-161 achieved the 
best macro-averaged result. The color codes represent the percentages of the total number of images within each 
class. The labeling of the classes is as follows: (A) Barrett’s; (B) bbps-0-1; (C) bbps-2-3; (D) dyed lifted polyps; 
(E) dyed resection margins; (F) hemorrhoids; (G) ileum; (H) impacted stool; (I) normal cecum; (J) normal 
pylorus; (K) normal Z-line; (L) oesophagitis-a; (M) oesophagitis-b-d; (N) polyp; (O) retroflex rectum; (P) 
retroflex stomach; (Q) short segment Barrett’s; (R) ulcerative colitis grade 0-1; (S) ulcerative colitis grade 1-2; 
(T) ulcerative colitis grade 2-3; (U) ulcerative colitis grade 1; (V) ulcerative colitis grade 2; (W) ulcerative colitis 
grade 3.
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Composition of unlabeled data.  In order to show the approximate composition of the unlabelled data, we 
present some initial experiments to analyze the provided data which do not have annotated labels from medical 
experts We used our pre-trained classification model to simply classify the unlabeled data to indicate how many 
of the labeled classes are in the unlabeled data and to get an overall idea about data distribution of the 99,417 
images. In particular, we used the best two classification models from the previous experiments, i.e., Pre-Trained 
DenseNet-161 and Averaged ResNet-152 + DenseNet-161 using split_0 and split_1 from the previous experi-
ment. The result are shown in Fig. 9. In the results, we can observe that a large number of predictions are assigned 
to the class normal pylorus, while a smaller number of predictions are assigned to the classes hemorrhoids and 
ulcerative colitis grade 1-2. However, these predictions are similar to that of the class-level accuracies of the ML 

Fig. 9  Unlabeled image data predictions for Averaged ResNet-152 + DenseNet-161 and Pre-Trained DenseNet-161.

https://doi.org/10.1038/s41597-020-00622-y


1 2Scientific Data |           (2020) 7:283  | https://doi.org/10.1038/s41597-020-00622-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

model on the labeled data. Therefore, we can assume that the classes which achieved a high number of correct 
predictions on the labeled images are also more accurate on the unlabeled data. In contrast, it is hard to make 
any conclusions on the labels which had a low number of predictions as the models are not accurate enough. For 
future work, researchers could go trough the classifications of the unlabeled data and, for example, create a larger 
labeled dataset or perform failure analysis to find out why classes were confused or miss-classified. The class labels 
created during this experiments are available in the GitHub repository.

Validation Summary
In the technical validation section, we provided baseline metrics and gave insight into the dataset’s statistical 
qualities to demonstrate it’s technical quality. With the large number of images available in HyperKvasir, we 
encourage other researchers to investigate and develop new and improved methods for the medical domain. 
This also includes an improved methodology for creating the ground truth in classes where there is a substantial 
inter-observer variation in the assessment, which might be used by other researchers to increase the number of 
labels and segmentations for the dataset.

Usage Notes
In our research on detecting, classifying, and segmenting normal and abnormal findings in the GI tract, we have 
collected, to the best of our knowledge, the largest and most diverse dataset. These data are made available as a 
resource to the research community enabling researchers not only to have the ability to research the detection or 
classification of various GI findings but also differentiate between severity of the findings.

In short, we have used the labeled data to research the classification and segmentation of GI findings using 
both computer vision and ML approaches to potentially be used in live and post-analysis of patient examinations. 
Areas of potential utilization are analysis, classification, segmentation, and retrieval of images and videos with 
particular findings or particular properties from the computer science area. The labeled data can also be used 
for teaching and training in medical education. Having expert gastroenterologists providing the ground truths 
over various findings, HyperKvasir provides a unique and diverse learning set for future clinicians. Moreover, the 
unlabeled data is well suited for semi-supervised and unsupervised methods, and, if even more ground truth data 
is needed, the users of the data can use their own local medical experts to provide the needed labels. Finally, the 
videos can in addition be used to simulate live endoscopies feeding the video into the system like it is captured 
directly from the endoscopes enable developers to do image classification.

The dataset includes a series of scripts and text files that aim to help researchers quickly get started using the 
dataset for standard ML tasks such as classification. These are available at the GitHub repository for the dataset: 
http://www.github.com/simula/hyper-kvasir. Moreover, we provide three official splits of the dataset that can be 
used for cross-validation experiments. Keeping splits consistent between methods helps maintain a fair compar-
ison of results. The scripts used to generate the plots, split data into different folds, and generate annotation files 
are included for reproducibility and transparency. These files may also be used to further experiment with the 
dataset. Finally, we include the files used to create our preliminary experiments.

There is currently a lot of research being performed in the field of GI image and video analysis, and we wel-
come and encourage future contributions in this area. This is not limited to using the dataset for comparisons and 
reproducibility of experiments, but also publishing and sharing new data in the future.

Code availability
In addition to releasing the data, we also make available the code used in the experiments. All code and additional 
data required for the experiments are available on GitHub at http://www.github.com/simula/hyper-kvasir.
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