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Abstract

We find necessary and sufficient conditions for the foliation defined by
level sets of a function f(x1,...,2Zn) to be totally geodesic in a torsion-free
connection and apply them to find the conditions for d-webs of hyper-
surfaces to be geodesic, and in the case of flat connections, for d-webs
(d > n+ 1) of hypersurfaces to be hyperplanar webs. These conditions
are systems of generalized Euler equations, and for flat connections we
give an explicit construction of their solutions.

1 Introduction

In this paper we study necessary and sufficient conditions for the foliation de-
fined by level sets of a function to be totally geodesic in a torsion-free connection
on a manifold and find necessary and sufficient conditions for webs of hyper-
surfaces to be geodesic. These conditions has the form of a second-order PDE
system for web functions. The system has an infinite pseudogroup of symme-
tries and the factorization of the system with respect to the pseudogroup leads
us to a first-order PDE system. In the planar case (cf. [I]), the system coincides
with the classical Euler equation and therefore can be solved in a constructive
way. We provide a method to solve the system in arbitrary dimension and flat
connection.

2 Geodesic Foliations and Flex Equations

Let M™ be a smooth manifold of dimension n. Let vector fields 9, ..., d,, form
a basis in the tangent bundle, and let w!',..,w™ be the dual basis. Then

05,051 = 0%
k
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for some functions ¢; € C> (M), and
dw® + Z cfjwi Aw! =0.
i<j

Let V be a linear connection in the tangent bundle, and let Ffj be the Christoffel
symbols of second type. Then

Vi (0)) = Y T,
k

def
where V; = Va,, and

Vi (wk) = — fojwj.
J
In [I] we proved the following result.

Theorem 1 The foliation defined by the level sets of a function f(x1,...,2Tn)
is totally geodesic in a torsion-free connection V if and only if the function f
satisfies the following system of PDEs:

0i (fi) _ 9i(f) + 95 (fi) 9 (fi) :Z<F;_€ fr | i_(lﬂz_f_JrFk) i )

fifi L A T Y} 7 fifs
(1)

of
8$i '

foralli<j,i,j=1,...,n; here f; =

We call such a system a flex system.

Note that conditions () can be used to obtain necessary and sufficient con-
ditions for a d-web formed by the level sets of the functions fu(z1,...,z,),a =
1,...,d, to be a geodesic d-web, i.e., to have the leaves of all its foliations to
be totally geodesic: one should apply conditions () to the all web functions
fa,a=1,....d,

2.1 Geodesic Webs on Manifolds of Constant Curvature
In what follows, we shall use the following definition.
Definition 2 We call by (Flex f);; the following function:

(Flex f)ij = f7 fis — 2fif3 fis + I fii

of
8171'

?f

where 1,7 =1,...,n, f; = 10T
10T

and fij =

It is easy to see that (Flex f);; = (Flex f);;, and (Flex f);; = 0.



Proposition 3 Let (R™, g) be a manifold of constant curvature with the metric

tensor
dzi + ...+ dz?

1+ k@22 + .. +a2)7

where Kk is a constant. Then the level sets of a function f(x1, ..., x,) are geodesics
of the metric g if and only if the function f satisfies the following PDE system:

g:

2 2+ 2
(Flex f)i; = 1_‘_:(50][_’_ f+ Zxkfk (2)

for all i, ;.

Proof. To prove formula (@), first note that the components of the metric
tensor g are

gii = b%, gij =0, i# 3,

where
1

T 1t k@i .+l

It follows that B -
9 =95 97 =0, i#].
We compute I‘Zk using the classical formula

1 Ogqii . Ogi;  0gij
[ i 99
i = 2g (814 + ozt oz! (3)

and get

TF = 2kapb, k # 05 Dl = —2ka:b; T =0, 0,5 # k, i # j;
Fﬁj = —2kx;b, i # j; F —2Kkx:b, 1 #£ j.
Substituting these values of F;k into the right-hand side of formula (), we

get formula ([2). =
Note that if n = 2, then PDE system (2]) reduces to the single equation

Ii(xlfl +$2f2) (f12 +f22)
1+ k (2} 4+ 23)

2
Flex f =

)

where Flex f = (Flex f)i2
This formula coincides with the corresponding formula in [IJ.
We rewrite formula (2] as follows:

(Fflfj_ f;] 2I€b Z .’L‘kfk (4)

The left-hand side of equation (@) does not depend on ¢ and j. Thus we have



(Flex f)” (Flex f)kl

R+ R+R

for any 4, j, k, and [.
It follows that if
(Flex f)i; =0 (5)

for some fized i and j, then (@) holds for any i and j.
In other words, one has the following result.

Theorem 4 Let W be a geodesic d-web on the manifold (R™, g) given by web-
functions {f*, ..., f*} such that (f,?)2 + (fla)2 #0 foralla=1,..,d and k,l =
1,2...,n. Assume that the intersections of W with the planes (x;,, x;,) , for given
19 and jo, are linear planar d-webs. Then the intersection of W with arbitrary
planes (x;,x;) are linear webs too.

2.2 Geodesic Webs on Hypersurfaces in R”

Proposition 5 Let (M, g) C R"™ be a hypersurface defined by an equation x,, =
u (21, ..., Tn_1) with the induced metric g and the Levi-Civita connection V.
Then the foliation defined by the level sets of a function f (x1, ..., xn—1) is totally
geodesic in the connection V if and only if the function f satisfies the following
system of PDFEs:

UL f1 4+ oo+ Un—1fn-1

Fl i =
(Flex £ T+ud 4. +u

(fPuii — 2fifjui; + fPug;).  (6)

Proof. To prove formula (), note that the metric induced by a surface
T =u(T1,...,Tp_1) 8

n—1 n—1
g=ds*= Z(l +ul)das + 2 Z wiujde;de;.
k=1 i,j=1(i%5)

Thus the metric tensor g has the following matrix:

2
14wy UL UL o UL Upp—1
UoU7 1+ u% o U Upy—1
(9i5) =
1442
Uq Up—-1U2 ... n—1>



and the inverse tensor ¢~ ! has the matrix

n—1
Z(l + Ui) —UuUi1uU2 [P —U1Up—1
k=2
n—1
i 1 —UU1 Z (1 + ui) [P —U2Unp—1
(9") = 1 k=1(k#2)
1+ (1+uf)
k=1 n—2
— U1 UL —Up_1U2 . Z(l + ui)
k=1

Computing I‘j—k by formula (@), we find that

UkUsz

k _
FZ] — n_1 .
14> (1+uf)

k=1

Applying these formulas to the right-hand side of (), we get formula (6). m
We rewrite equation (@) in the form

(Flex f)z] - u1f1 + ...+ unfn
fPuis = 2fifjuwig + fRuz; 1+uf4 .+l

(7)

It follows that the left-hand side of (@) does not depend on i and j, i.e., we

have
(Flex f)lj _ (Flex f)kl
i = 2fifyuig + frujy  fPuk — 2k frum + fRun

for any i, j, k and [. This means that if

(Flex f)z; =0
for some fized i and j, then
(Flex f)kl =0

for any k and l.
In other words, we have a result similar to the result in Theorem [4

Theorem 6 Let W be a geodesic d-web on the hypersurface (M,g) given by
web functions {fl, ....,fd} such that (fja) wii — 28 fuig + (fza)2 uj; # 0, for
all a = 1,....d and k,1 = 1,2...,n. Assume that the intersections of W with
the planes (zi,,xj,), for given iy and jo, are linear planar d-webs. Then the
intersection of W with arbitrary planes (x;,x;) are linear webs too.




3 Hyperplanar Webs

In this section we consider hyperplanar geodesic webs in R™ endowed with a
flat linear connection V.

In what follows, we shall use coordinates x1, ..., x, in which the Christoffel
symbols ', of V vanish.

The following theorem gives us a criterion for a web of hypersurfaces to be
hyperplanar.

Theorem 7 Suppose that a d-web of hypersurfaces, d > n + 1, is given locally
by web functions fo(x1,...,2n),a =1,...,d. Then the web is hyperplanar if and
only if the web functions satisfy the following PDE system:

(Flex f)st =0, (8)
forall s<t=1,...n.

Proof. For the proof, one should apply Theorem 1 to all foliations of the

web. ®
In order to integrate the above PDEs system, we introduce the functions
Ay = L, s=1,..,n—1,
ferl
and the vector fields
X, = 0 —ASL, s=1,.,n—1
0xs 0Ts41
Then the system can be written as
Xs (At) - O,
where s,t=1,..,n — 1.
Note that
[XS, Xt] — 0

if the function f is a solution of ().

Hence, the vector fields X7, ..., X;,_1 generate a completely integrable (n — 1)-
dimensional distribution, and the functions A, ..., A,,_1 are the first integrals
of this distribution.

Moreover, the definition of the functions A, shows that

also.
As a result, we get that

As=,(f), s=1,...,n—1,



for some functions ®,.
In these terms, we get the following system of equations for f:

of _ of _
0z, D, (f Brory’ s=1,..,n—1,
or 6f af
8xs :\Ils (f)a—xn, 321,...,71—1, (9)

where ¥,, 1 = ®,,_1, and
\Ils = q)nfl"'(l)s

fors=1,.....,n—2.
This system is a sequence of the Euler-type equations and therefore can be
integrated. Keeping in mind that a solution of the single Euler-type equation

of _ 9f
Ors oxy,

s (f)
is given by the implicit equation

f:uo(xn+\lls(f)xs)a

where ug(z,) is an initial condition, when z, = 0, and ¥, is an arbitrary
nonvanishing function, we get solutions f of system (8) in the form:

f:u0($n+‘lln71(f)xnfl+"'+\Ijl(f)xl)a

where ug(z,) is an initial condition, when x; = -+ = 2,1 = 0, and U, are
arbitrary nonvanishing functions.
Thus, we have proved the following result.

Theorem 8 Web functions of hyperplanar webs have the form
f=uo(@n+ Vo1 (f)p—1+-+¥1(f)21), (10)

where ug(xy) are initial conditions, when x1 = -+ = xp,—1 = 0, and Uy are
arbitrary nonvanishing functions.

Example 9 Assume that n = 3, fi(x1,x2,23) = 1, fo(x1,22,23) = 29,

f3(x1, 2, 23) = x3, and take ug = x3, Vi(f1) = f1, Ua(fs) = f1 in [TD).
Then we get the hyperplanar 4-web with the remaining web function

To — 1+ \/(,TQ — 1)2 — 45[:11:3
2$1 '

fa=

It follows that the level surfaces fy = C of this function are defined by the
equation
:Z?l(CQZEl — CIQ +x3 + C) = 0,



i.e., they form a one-parameter family of 2-planes
021'1 —Cxy+23+C=0.

Differentiating the last equation with respect to C' and excluding C, we find that
the envelope of this family is defined by the equation

(.IQ)Q — 4$1I3 - 2172 + 1=0.
Therefore, the envelope is the second-degree cone.

Example 10 Assume that n = 3, fi(x1,22,23) = x1, fa(x1,22,23) = w2,
fa(x1, 2, 23) = w3, and take ug = w3, V1(fs) = 1,Wa(f1) = f7 in (Id). Then
we get the linear 4-web with the remaining web function

(1:|:\/1—4172(171—|—173)>2
fa= :

2{E2

The level surfaces fy = C? of this function are defined by the equation
xa(z1 + C?xo + 13 — C)=0,
i.e., they form a one-parameter family of 2-planes
x1 4+ C%x9 + 25 — C = 0.

Differentiating the last equation with respect to C and excluding C, we find that
the envelope of this family is defined by the equation

4{E1$2 + 4$2I3 —1=0.
Therefore, the envelope is the hyperbolic cylinder.

In the next example no one foliation of a web W3 coincides with a foliation
of coordinate lines, i.e., all three web functions are unknown.

Example 11 Assume that n = 3 and take

(i) uor =3, V1(f1) = f7, P2(f1) = fu;

(ii) woz = 3, V1(f2) = 1, V2(f2) = f3;

(iif) woz = 23, Vi(f3) = fa, Wa(fs) = 15

(iv) woa = 3, W1(f1) = Wa(fa) = f4

in (Id). Then we get the linear 4-web with the web functions

To — 1+ \/(IQ — 1)2 —4{E1$3

fl - 2$1 ’
2
14 /1 —4dxo(z1 + x3)
J2= 5
T2



(see Examples[q and[I0) and

1+ /1 —daq(z2 + x3)
25[:1

f3:( )25

fa=

1—$1—I2'

Z3

It follows that the leaves of the foliation X1 are tangent 2-planes to the
second-degree cone
(1'2)2 —4xix3 — 2220 +1=0

(¢f. Example [ and [I0), the leaves of the foliation Xo and X3 are tangent
2-planes to the hyperbolic cylinders

4x1xo + 4x003 — 1 = 0 and 4dx1xo + 42123 —1 =0

(¢f. Ezxample [I0), and the leaves of the foliation X4 are 2-planes of the one-
parameter family of parallel 2-planes

Cry+Cxo+ 23 =1,

where C' is an arbitrary constant.
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