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Abstract Integrated structural, geochemical, and geochronological investigations were conducted on
metasedimentary rocks in the eclogite-bearing Tsdkkok Lens of the Seve Nappe Complex (Scandinavian
Caledonides) to resolve its exhumation history. Three deformation events are defined. D1 is likely related to
the prograde to peak-metamorphic stages, represented by a locally preserved S1. D2 resulted in vertical
shortening and is defined by a pervasive S2 and cm-/m-scale F2 closed folds. D2 terminated with Scandian
thrusting, which emplaced the overlying K6li Nappe Complex. D3 records NE-SW shortening and
constitutes m-/km-scale F3 open folds that deformed the Tsékkok Lens and K&li Nappe Complex together.
In situ white mica *°Ar/*’Ar geochronology was conducted on select metasedimentary samples possessing
S1 or S2 to resolve the timing of exhumation. Postdecompression cooling of the Tsdkkok Lens is best
recorded by samples containing S1 or S2 that yield homogeneous white mica chemistry and “OAr/*Ar dates.
The timing of cooling is resolved to 477.2 + 4.1 Ma (S1) and 475.3 + 3.5 Ma (S2). Vertical shortening of
the lens during exhumation may have proceeded until 458.1 + 9.0 Ma. Later-stage deformation during
Scandian thrusting penetrated the Tsidkkok Lens at 429.9 + 9.0 Ma, or younger. This resulted in noncoaxial
deformation of the metasedimentary rocks, producing heterogeneous white mica chemistry and partially
reset the older *°Ar/**Ar cooling record. Temperatures for deformation are resolved to the upper
greenschist-lower amphibolite facies. Altogether, the Tsidkkok Lens records rapid exhumation from
eclogite-facies conditions to midcrustal depths or shallower, followed by emplacement of the overlying Koli
Nappe Complex.

1. Introduction

Since the discovery of continental crust subduction to ultrahigh pressure (UHP) conditions (e.g.,
Chopin, 1984; Smith, 1984), the mechanisms for exhumation of the subducted crust have been the subject
of significant discussion (e.g., Andersen et al., 1991; Chemenda et al., 1995; Chopin, 2003; Ernst et al., 1997;
Froitzheim et al., 2003; Hacker & Gerya, 2013; Liou et al., 2004; Majka et al., 2014; Platt, 1993; Warren, 2013).
One important realization of the discussion is that exhumation is initially driven by buoyancy forces arising
from the juxtaposition of continental crust against the mantle. This can result in plate velocity-scale (up to
1-2 cm/yr) exhumation from UHP depths to crustal levels (e.g., Rubatto & Hermann, 2001). As the material
arrives at middle crustal levels, buoyancy forces acting on the exhuming continental crust become
dampened and other mechanisms such as extrusion, shear traction or extension are required for the final
exhumation stages (Carswell et al., 2003; Parrish et al., 2006; Rubatto & Hermann, 2001; Terry et al., 2000;
Warren, 2013).

The application of geochronological tools, such as white mica “°Ar/*’Ar geochronology, is crucial for
understanding dynamic exhumation of UHP continental rocks. White mica is typically a major phase
within metasedimentary lithologies of continental affinity, and often defines, or is genetically associated
with, tectonic structures that facilitates exhumation. In recent years, there have been significant advance-
ments for “°Ar/*’Ar geochronology with regard to our understanding of *°Ar diffusion mechanisms and
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Figure 1. Simplified tectonostratigraphic map of the Scandinavian Caledonides in southern Norrbotten, Sweden, based on a map by Thelander (2009). The white
rectangle in the inset map demarcates the approximate location of the field area with respect to Sweden and Norway. The black box indicates the location of
Figure 2. The village of Kvikkjokk is labeled as a reference point for the field area. Abbreviation: SNC, Seve Nappe complex.

an increase in sensitivity and mass resolution in instrumental analyses. Some studies have demonstrated
that diffusion of “°Ar from white mica can be dependent on crustal pressure conditions in addition to
temperature (Harrison et al., 2009; Warren et al., 2012). Therefore, OAr diffusion in white micas in
UHP rocks may close at temperatures up to 500°C. Furthermore, *’Ar loss from white micas can be
driven by recrystallization/neocrystallization during deformation occurring at pressure and temperature
conditions that is not conducive for thermally activated diffusive loss (i.e., below the closure temperature;
e.g., Cosca et al., 2011; Cossette et al., 2015; Egli et al., 2017; Kellett et al., 2016; Kramar et al., 2001;
Mulch & Cosca, 2004; Schneider et al., 2019). Application of in situ OAr/*PAr geochronology enables
the structures of deformed rocks to be directly dated, allowing the possibility to decode cooling and
deformation processes during incipient to late stage exhumation of UHP rocks. Therefore, combining in
situ white mica “°Ar/*’Ar geochronology with detailed structural analyses can reveal powerful
information about both the exhumation and deformation history of UHP continental rocks.

Our approach combines macrostructural and microstructural investigations with in situ white mica **Ar/*’Ar
and electron microprobe (EMP) analyses to the high-pressure (HP) Tsékkok Lens in the Seve Nappe Complex
(SNC) of the Scandinavian Caledonides (Figures 1 and 2). The SNC provides a >1,000-km orogen-parallel
record of continental rocks that were subducted to, and exhumed from, UHP conditions (e.g., Andréasson &
Gee, 1988; Brueckner & van Roermund, 2004; Bukata et al., 2018; Gee et al., 2013; Jandk et al., 2013;
Klonowska et al., 2014, 2016, 2017; Majka et al., 2014; Petrik et al., 2019; Stephens & van Roermund, 1984;
van Roermund, 1985, 1989). The exposure and rock record of the SNC thus provides an excellent natural labora-
tory for developing geodynamic models for the subduction-exhumation cycle of continental crust along the
length of a continental collisional zone. Understanding the structural style, timing, and rates of exhumation
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Figure 2. (a) Tectonostratigraphic map of the Tsdkkok Lens and the overlying Koli Nappe complex and corresponding legend, based on the maps of
Kullerud (1987) and Snilsberg (1987). Yellow diamonds indicate the locations of samples collected from the western and central domains. Dashed boxes
represent the locations shown in Figure 4. (b) Simplified map showing the bulk architecture and main structural trends of the Tsdkkok Lens and K&li Nappe
complex. (c) Geological cross sections (marked as solid black lines in Figure 2a) through the Tsdkkok Lens and overlying Koli Nappe complex. The cross sections
illustrate the reorientation of D1 and D2 structures by F3 folds and the combined folding of the Tsékkok Lens within the Ko6li Nappe complex.

Representative sample locations (yellow diamonds) are plotted within the A-A’ cross section for some of the samples obtained from S1 and S2 in the western and

central domains. No vertical exaggeration is depicted in the cross sections. 'Refer to the geological background section for descriptions of the upper and lower unit
siliciclastic sequences.
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for the Tsidkkok Lens is critical for development of geodynamic models of the SNC, which has implications for
the evolution of the Scandinavian Caledonides. The results reported here elucidate a protracted exhumation
history from eclogite-facies conditions to shallow-crustal levels. This provides the basis for further studies of
other tectonic lenses that are tectonostratigraphically correlated (the UHP Vaimok and amphibolite-facies
Sarek lenses; Figure 1). The collective results can then be synthesized with respect to other key UHP localities
along strike of the SNC, such as the Kebnekaise mountain region to the northeast (e.g., Andréasson et al., 2018)
and the Jdmtland localities to the southwest (e.g., Brueckner & van Roermund, 2004; Jandk et al., 2013;
Klonowska et al., 2014, 2016, 2017; Majka et al., 2014), to contribute to the development of geodynamic models
for the subduction-exhumation process of continental crust.

2. Geological Setting

The Scandinavian Caledonides record the closure of the Iapetus ocean, culminating in continental collision
of Baltica with Laurentia (e.g., Gee et al., 2008). The Caledonides are generally divided into (para-)auto-
chthonous Baltican basement, which is overlain by the Lower, Middle, Upper, and then Uppermost
Allochthons (e.g., Gee et al., 1985; Stephens et al., 1985), although the some oversimplifications of these divi-
sions have been questioned (Corfu et al., 2014). Of these allochthons, UHP rocks are prominent in the SNC
of the Middle Allochthon (e.g., Gee et al., 2013, 2020). The SNC comprises metasedimentary and metaig-
neous rocks that represent the extended passive margin of Baltica (e.g., Andréasson et al., 1992; Jakob
et al., 2019; Kjoll et al., 2019). These rocks were subducted to mantle depths beneath a volcanic arc of
Tapetus affinity during Caledonian orogenesis (e.g., Andréasson, 1987; Brueckner & van Roermund, 2004;
Bukata et al., 2018; Gee, 1975; Janak et al., 2013; Klonowska et al., 2014, 2016, 2017; Kullerud et al., 1990;
Majka et al., 2014; Petrik et al., 2019; Santallier, 1988; Stephens & van Roermund, 1984).

A key SNC locality of UHP continental rocks resides in southern Norrbotten, Sweden (Figure 1). This SNC
locality is traditionally subdivided into three tectonic mega-lenses (Zachrisson & Stephens, 1984): the
eclogite-facies Vaimok Lens, the amphibolite-facies Sarek Lens, and the eclogite-facies Tsidkkok Lens
(Figure 1). The Tsdkkok Lens is further divided into two lithostratigraphic subunits, the lower and upper
Tsékkok units (Kullerud, 1987; Snilsberg, 1987; Figures 2a and 2b). The lower unit is predominantly com-
posed of well-foliated quartzofeldspathic gneiss with a lesser abundance of (garnet-)white mica schists,
whereas the upper unit is more heterogeneous in nature with marbles, calcareous schists, and (garnet-)white
mica schists (Kullerud, 1987). Eclogite bodies in the Tsikkok Lens range in length from a few cm up to
~100 m and are typically concordantly elongated with the main, regional foliation. These bodies are hosted
within both the siliciclastic and carbonaceous metasediments and can be found within both the upper and
lower units of the Tsidkkok Lens, although they are more abundant in the upper unit where they are fre-
quently localized in discrete horizons (Figure 2c). Locally, some eclogites preserve pillow basalt textures
(Kullerud et al., 1990). The mixture of continentally derived rocks, marbles, and the intrusions of the mafic
bodies into the metasediments as well as submarine volcanism had led to the interpretation that the Tsidkkok
Lens represents a hyper-extended portion of the Baltican passive margin, bordering the Iapetus Ocean (Kjoll
et al., 2019; Kullerud et al., 1990).

Peak metamorphic conditions of the Tsidkkok Lens eclogites were constrained by garnet-clinopyroxene
geothermobarometry, which yielded a minimum pressure of 14.9 kbar and a temperature of 610 + 90°C
(Stephens & van Roermund, 1984). A more recent investigation has updated the P-T estimates to ~22 kbar
and ~590°C (Bukata et al., 2020). Peak conditions were then followed by an exhumation pathway that
was initially defined by nearly isothermal decompression (Kullerud, 1987). The conditions for retrogressive
metamorphism and development of an exhumation-related foliation in the metasedimentary rocks are
broadly constrained from ~10 kbar and ~500°C, down to ~6 kbar and ~400°C (Snilsberg, 1987). Mork
et al. (1988) pioneered the first geochronological study of the Tsikkok Lens obtaining a garnet-omphacite-
whole rock Sm-Nd isochron date of 505 + 18 Ma (20), interpreted to represent the age of eclogite-facies
metamorphism. More recently, isotope dilution thermal ionization mass spectrometry U-Pb geochronology
of zircon obtained from one eclogite exposure in the Tsdkkok Lens obtained a younger date of481.9 + 1.1 Ma
(20; Root & Corfu, 2012), which was also interpreted to reflect the timing of eclogite-facies metamorphism.
Root and Corfu (2012) regarded the discrepancy between the two studies to reflect disequilibrium of the
Sm-Nd system in the sample dated by Merk et al. (1988). Exhumation from peak conditions was dated via
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Table 1

Summary of the Rock Samples, Locations,

Geochronological Analyses

Associated Deformation Structures, and the Results of Electron Microprobe and White Mica “Ar/Ar

D2 coaxial/ White mica “Oar/*°Ar “Oar/*°Ar age
Sample Rock type Coordinates® Notable structures noncoaxial compositions date ranges populations (+20)
S1
TS17-15B  Metapsammite  67°05'21.46"N  N/A N/A XMs: 0.35-0.41  circa 485-469 Ma 489.8 + 8.6 Ma;
16°37'50.86"E XCel: 0.51-0.56 477.2 + 4.1 Ma;
TS17-27 Metapelite 67°08’55.14"N  F2 folds; weak S2 Coaxial XMs: 0.59-0.67  circa 487-459 Ma 458.1 + 9.0 Ma
16°45'24.94"E foliation development XCel: 0.15-0.25
TS17-30  Metapelite 67°08'39.61"N  Symmetrical F2 folds and Coaxial N/A circa 494-448 Ma
16°44'54.65"E strain shadows around garnet
TS17-33B  Metapelite 67°08'20.76"N  Symmetrical F2 folds Coaxial XMs: 0.45-0.49  circa 496-476 Ma
16°44'59.35"E XCel: 0.39-0.43
S2
TS17-06B Metapsammite  67°07'0.26"N  Anastomosing shear bands Coaxial and XMs: 0.43-0.49  circa 487-471 Ma  495.8 + 8.8 Ma;
16°36'19.18"E noncoaxial ~ XCel: 0.25-0.29 475.3 + 3.5 Ma;
TS17-12 Metapsammite 67°05'1.09”"N  Anastomosing shear bands; Noncoaxial XMs: 0.48-0.62  circa 494-424 Ma 446.3 + 6.3 Ma;
16°37'33.41"E asymmetrically transposed XCel: 0.11-0.38 429.6 + 12.0 Ma
relic S1
TS17-15A°  Metapsammite  67°05'21.46”"N  Mica fish, asymmetrically Noncoaxial XMs: 0.50-0.68  circa 505-426 Ma
16°37'50.86"E transposed relic S1 XCel: 0.14-0.34
TS17-17 Metapelite 67°06'3.63"N  Symmetrical strain shadows Coaxial XMs: 0.50-0.56  circa 494-471 Ma
16°36'29.35"E around garnet XCel: 0.24-0.28
TS17-51A Metapsammite  67°08’8.01”N  Mica fish Noncoaxial XMs: 0.54-0.64  circa 480-439 Ma

16°46'58.36"E

XCel: 0.11-0.28

Using WGS geographic coordinate system. °Age populations calculated using the Gaussian deconvolution method.

“OAr/*Ar step heating of hornblende and white mica (Dallmeyer & Stephens, 1991), yielding dates of
464.7 + 1.3 and 463.2 + 6.3 Ma, and 468.4 + 0.9 and 448.2 + 1.6 Ma (20), respectively. These dates were
interpreted as cooling during protracted exhumation of the Tsidkkok Lens through moderate temperatures
(500-300°C).

The Tsikkok Lens is tectonically overlain by the Koli Nappe Complex (KNC) of the Upper Allochthon
(Figure 1). Generally, the KNC in Norrbotten comprises metamorphosed sediments and volcanic and intru-
sive rocks (Pedersen et al., 1991; Stephens, 1980, 2020; Stephens et al., 1985). Collectively, this package of
rocks represents the relics of the Iapetus Ocean beneath which the SNC was subducted (Gee et al., 2013;
Stephens, 1988) during closure of the ocean basin that culminated in continental collision between Baltica
and Laurentia (Gee et al., 2008; Stephens et al., 1985).

3. Methodology

Fieldwork was conducted in the western and central domains of the Tsdkkok Lens to investigate the macro-
scale to mesoscale structures of the lens and to obtain measurements for resolving the structural evolution.
Our measurements were supplemented by those of Kullerud (1987) and Snilsberg (1987). Multiple samples
of structures of different generations were obtained across the western and central domains of the lens,
and these samples were utilized for detailed microstructural investigation. Of these, nine key samples were
chosen for in situ white mica *°Ar/*Ar geochronology to resolve the tectonic evolution of the lens
(Figure 2 and Table 1). Glass-mounted, polished thick sections (~500 um) were prepared from the nine key
samples. The selected areas of interest on the thick sections were photographed using back-scattered electron
(BSE) imaging and X-ray mapped for major elements (Si, Al, Mg, Fe, and K) using wavelength-dispersive
spectrometry (WDS) on an EMP. After imaging was completed, the thick sections were gently repolished
to remove the carbon coating prior to irradiation and dating. Eight of the nine samples were chosen for quan-
titative EMP WDS spot analyses on polished ~30-pm thin sections that “mirrored” the thick sections, to avoid
volatilization of elements (e.g., K) in the white micas from the “OAr/*°Ar thick sections. These WDS spot ana-
lyses targeted white micas with the same structural positions that were chosen for “°Ar/*°Ar geochronology.
The WDS analyses were located in the central portions of the grains, away from the white mica grain bound-
aries to avoid geochemical effects of white mica replacement by biotite or chlorite. The WDS X-ray mapping
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of the thick sections and WDS spot analyses on the thin sections were conducted using a JEOL JXA8230 EMP
at AGH University of Science and Technology (Krakéw, Poland). The EMP was operated using an accelerat-
ing voltage of 15 kV and a beam current of 50 nA, with a 5-um spot size for WDS analyses.

In situ “°Ar/*Ar analytical work was performed at the University of Manitoba (Winnipeg, Canada) using a
multicollector Thermo Fisher Scientific ARGUS VI mass spectrometer, linked to a stainless steel Thermo
Fisher Scientific extraction/purification line and Photon Machines (Analyte Excite) 193-nm laser. The tech-
nical details of the *’Ar/3’Ar methods are available in the supporting information Text S1. Depending on the
shape of the white mica grain, a raster size of 100 X 100 um or 50 X 200 um was used. Pit depths were esti-
mated to be ~50 um. Both the BSE images and the X-ray elements maps were used to target structural areas
of interest for in situ *°Ar/**Ar analyses and for quality control of the laser spot placement. Analytical targets
were placed using X-ray mapped regions or areas identified from BSE imaging. The locations of the in situ
“OAr/*Ar analyses were targeted in the centers of grains to avoid possible chemical zoning of the white
micas due to biotite or chlorite replacement.

4. Results
4.1. Macrostructural Analysis

The architecture of the NE-SW trending Tsidkkok Lens is interpreted to be the result of the superposition of
three deformation events (D1, D2, and D3; Figures 2b and 2c). Structures associated with D1 deformation
are typically preserved in the microscale to mesoscale (i.e., thin section to outcrop scale), whereas D2 and
D3 structures are readily observed from the mesoscale to macroscale (i.e., outcrop to regional scale). The inter-
nal architecture of the Tsdkkok Lens is predominantly defined by D2 structures in addition to subordinate D1
and D3 structures (Figures 2b and 2c). However, the general architecture of the lens is governed by a km-scale,
asymmetric Z-folding associated with D3 deformation (Figures 2b and 2c), which deformed the KNC-Tsédkkok
and Tsidkkok-Sarek thrust boundaries. Microscale to macroscale structural analysis has been conducted
using outcrop observations in the western and central domains of Tsédkkok Lens and published maps.

D1 deformation is represented as an S1 foliation that is locally preserved in carbonaceous and siliciclastic
metasedimentary rocks in both western and central domains of the Tsidkkok Lens (Figures 2c and 3a-3c).
In the carbonaceous metasediments, the foliation is defined by silica-rich laminae, whereas in the siliciclas-
tic metasediments it is defined by quartz-rich layering and the alignment of white micas. S1 is best preserved
as microlithons within S2 (Figure 3b) or in areas with abundant eclogite bodies. In eclogite-rich areas, the S1
either shows no indications of D2 deformation overprint (Figure 3c) or is folded by F2 (Figures 3a and 3b).
No lineations nor kinematic indicators have been found associated with S1.

In both the western and central domains, D2 structures are defined by S2 and closed to isoclinal folds (F2;
Figures 2b, 2c, and 3). S2 is the dominant foliation of the Tsékkok Lens and trends parallel to the bulk archi-
tecture (Figure 2b). Similar to S1, S2 is predominantly defined by subordinate silica-rich layering within the
carbonaceous metasediments and by the alignment of white micas and quartz banding in siliciclastic meta-
sediments. Where preserved on the mesoscale, S1 is observed to be oriented at a high angle to S2 (Figures 3b
and 3c). In one instance in the western domain, an outcrop of vertical S1 (TS17-15B) is flanked by two eclo-
gite bodies and is located a few tens of meters downslope from an exposure of the subhorizontal S2 (TS17-
15A; Figure 3c). In low-strain D2 zones, the preserved S1 is folded on the cm- to m-scale by closed F2 and
is observed to be transposed into S2 (Figures 3a and 3b). Some outcrops that preserve S1 folded by F2 also
exhibit a weak development of S2 parallel to the axial planes of F2 (Figure 3a). In high-strain D2 zones,
S2 has completely overprinted S1. Isoclinal folds are common in D2 high-strain zones with axial planes par-
allel to S2 (Figure 3d). A strong white mica L2 stretching lineation is also present, trending WNW-ESE
(Figure 4). Structures indicative of noncoaxial deformation are readily observed in the high-strain zones.
Mesoscale sheath folds are common in high-strain zones (e.g., Snilsberg, 1987). Flanking folds associated
with rotated slip planes are also locally observed (Figure 3e). These structures provide a top to east sense
of shear during D2 deformation.

The S2 foliation is observed to be deflected around eclogite bodies that are hosted in the metasediments. The
amphibolitized margins of the eclogite bodies also record a foliation that is concordant with S2 and are often
infolded with F2 (Figure 3f). These F2 folds are typically cm- to m-scale closed folds possibly representing
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Figure 3. Field photographs of key outcrops illustrating the progressive evolution of structures for the Tsdkkok Lens. (a, b) Folding of S1 by F2 in both a)
metapelites of the central domain and (b) metapsammites of the western domain. In (a), the white arrow denotes the sample location of TS17-27.

S1 = 240/55°NW; S2 = subvertical striking 10-190°. The light blue arrows in Figures 3a and 3d-3h points to hammers that are used for scale. In (c), F2 is preserved
in low-strain domains, whereas high-strain domains are defined by the horizons of the S2 (bottom). S2 = 222/29°NW. (c) An outcrop of interlayed metapsammites
and marbles in the western domain showing the vertical S1 (TS17-15B shown by a white arrow; S1 = 085/69°S) that is bounded on both sides by eclogite
boudins. Upslope from this site are outcrops of shallowly dipping S2 (TS17-15A; S2 = 169/32°W), demonstrating the perpendicular relationship between the two
orientations. (d) Metapsammite outcrop showing F2 drag folds within a high D2 strain outcrop (TS17-12 shown by a white arrow) in the western domain

(S2 = 231/24°NW; F2 axial plane = 280/20°N). (e) F2 flanking folds distorting S2 around a rotated slip plane, with the orientation providing a top to east sense of
shear. (f) Marbles folded together with the amphibolitized margin of an eclogite body. Folds are classified as F2 and may represent quarter structures
developed around the rigid eclogite body. It is unclear if the slight fold of the F2 axial plane is due to F3 folding or later-staged distortions of F2 during progressive
D2 deformation. (g) Phyllonitic rocks associated with the tectonic contact between the Tsédkkok Lens and the overlying K6li Nappe complex in the western
domain (S2 = 190/22°W). (h) F3 folds within a metapsammite outcrop that have refolded F2 in the central domain of the Tsdkkok Lens, representing the final
stage of deformation (F3 axial plane = 207/22°NW). Light blue arrows indicate where hammers are used for scale.
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Figure 4. Simplified tectonostratigraphic maps annotated with planar and linear structural data and associated lower hemisphere stereonets for the western
domain (top) and the central domain (bottom) of the Tsdkkok Lens. Data points are compiled from this studyl, Kullerud (1987)2, and Snilsberg (1987)3.
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quarter structures developed around a rigid eclogite body (Fossen et al., 2018). However, the infolded meta-
sedimentary rocks and amphibolitized margins were only partially exposed, preventing complete observa-
tion of the contact. The eclogite bodies that were not subjected to amphibolitization do not exhibit any
foliation nor folding. The thrust contact between the Tsidkkok Lens and overlying KNC is characterized
by greenschist-facies phyllonites and high-strain marbles (Figure 3g). The penetrative foliation of the thrust
zone is parallel with S2 defined in the Tsidkkok Lens (e.g., Stephens et al., 1985).

D3 deformation is defined by F3, open antiformal and synformal folds that are both at the km-scale
(Figures 2b and 2c) and m-scale (Figure 3h). The NE-SW central domain represents a steeply dipping to over-
turned limb of an open F3 synform-antiform pair (Figure 2c). The m-scale folds are abundant within the cen-
tral domain where they refold mesoscale F2 structures (Figure 3h). F3 are not as clearly recognized within
the western domain. A local, weak S3 foliation development was reported by Kullerud (1987), but no such
foliation was observed during this study.

F3 folding of the Tsdkkok Lens transposed structures relating to both D1 and D2 deformation events
(Figures 2b, 2c, and 3h). In the western limb, S1 is generally observed to be subvertical, whereas S2 is
observed to be dipping ~20-30° to the NW (Figures 2c and 4). Within the central domain (the overturned
limb of the F3 synform-antiform pair) F3 folding reoriented S1 and S2, such that S1 is observed to be mod-
erately dipping (Figures 2c and 4). S2 shows a large dispersion in orientations largely due to the abundance
of eclogite bodies, around which S2 is deflected, as well as the pervasive F3 folding in the central domain
(Figure 4). As a result, both elements of a moderately NW dipping and nearly subvertical S2 are present.
In both domains, a perpendicular relationship between S1 and S2 is recognizable. The orientations of F2 axes
and the L2 stretching lineations do not differ as dramatically from the western to the central domain
(Figure 4). In the western domain, they are generally oriented WSW-ENE. In the central domain, they are
oriented with a WNW-ESE trend and still predominantly plunge toward the west (Figure 4). F3 fold axes
are also generally parallel to the F2 fold axes and L2. However, the F3 folds have refolded the F2 axial planes,
defining Type-3 refold structures (Ramsay, 1967). The axial planes of F2 in the western domain are often
oriented subvertically (parallel with S2), whereas the F3 axial planes are subvertical. In the central domain,
the opposite orientations are predominantly recognized with subvertical F2 axial planes and subhorizontal
F3 axial planes (Figures 3h and 4).

4.2. Microstructural Analysis

Nine strategically chosen samples from the upper and lower units of the Tsékkok Lens were characterized
for petrographic and microstructural features. The samples were primarily targeted based on their specific
structures (Figure 5 and Table 1): relic S1 (TS17-15B), S1 folded by F2 (TS17 to TS1727, TS17-30, and
TS17-33B), and S2 (TS17-06B, TS17-12, TS17-15A, TS17-17, and TS17-51A). The samples are broadly categor-
ized either as metapsammites (e.g., quartzofeldspathic gneisses; TS17-06B, TS17-12, TS17-15A, TS17-15B,
and TS17-51A) or metapelites (e.g., calcareous and noncalcareous white mica schists, TS17-17, TS17-27,
TS17-30, and TS17-33B). The metapsammites are generally quartz-dominated with relatively minor white
mica #+ calcite, plagioclase, clinozoisite, garnet, apatite, or zircon. The foliations in the metapsammites are
predominantly defined by quartz bands separated by thin (10-50 pum) to thick (0.4-3 mm) continuous layers
of white mica. Metapelitic rocks are dominated by foliation-defining white mica with relatively minor
quartz + plagioclase, clinozoisite, garnet, apatite, zircon, allanite, or monazite. Where monazite is found
in S1 (TS17-27), the crystals are large (up to 300-um diameter) and do not show signs of retrogression.
The samples containing S2 preserve small (up to 20-um diameter) relics of monazite that are mantled by apa-
tite, allanite, and clinozoisite, demonstrating retrogression of monazite (e.g., Janots et al., 2007; Spear, 2010).
Localized, partial replacement of white mica by either biotite or chlorite is observed in all of the samples.
Some biotite and chlorite are also present as individual crystals, although these comprise a minor (<10%)
fraction of the total mica population.

Investigation of the microstructures associated with S1 and S2 reveals variations in the strain characteristics
among the samples. One sample (TS17-15B) obtained from between two eclogite bodies (Figure 3c) is char-
acterized by S1 that is not overprinted by D2 deformation. However, three more samples that contain S1
(TS17-27, TS17-30, and TS17-33B) are folded by F2. Among these samples, plagioclase porphyroblasts are
present, either found as rounded (TS17-33B; Figure 5a) or as elongated agglomerations of smaller crystals
(Figures 5b and 5c). The rounded porphyroblasts include white micas that are concordant with S1 folded
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Figure 5. Photomicrographs of key metasedimentary rock microstructures. (a) Unstrained plagioclase porphyroblast overprinting the apex of F2. White mica
inclusions record both orientations of the folded S1 culminating in the fold apex. (b) S1 in Sample TS17-27 folded by F2. The plagioclase porphyroblast
exhibits undulose extinction and subgrain formation, which preserves prefolded S1. Recrystallized plagioclase grain boundaries are pinned against the white
micas of the prefolded S1. A weak S2 axial planar foliation is developed perpendicular to the prefolded S1. (c) Magnified image of the plagioclase porphyroblast
preserving S1 seen in photomicrograph (b). White arrows mark the locations where the plagioclase subgrains are pinned against white mica inclusions. (d) S2
within low-strain polymineralic lenses in Sample TS17-06B. Preservation of small pockets of S1 perpendicular to S2, which are not transposed into S2. (e)
Symmetrical strain shadow around garnet porphyroblast in Sample TS17-17. The garnet is partially decomposed to chlorite, which also partially infills the strain
shadows. Elongate allanite (after monazite) is observed parallel to the S2 foliation. (f) S2 and C2 shear bands in Sample TS17-12. White mica crystals are
concordant to the shear bands and are deformed. The plagioclase porphyroblast includes white mica inclusions that are parallel to S2. The boundaries of the
plagioclase show undulose extinction and subgrain development, with grain boundaries pinned again the white mica inclusions. (g) White mica fish bundle
deformed along S2 in Sample TS17-51A. The mica fish bundle provides a top to east sense of shear. (h) Sigmoidal plagioclase porphyroclast in a high-strain S2
domain from Sample TS17-06B. Shear bands are parallel to S2. Inclusions forming an S-shaped trail are outlined. Abbreviations: Aln, allanite; Bt, biotite; Chl,
chlorite; Czo, clinozoisite; Grt, garnet; Pl, plagioclase; Qz, quartz; Wm, white mica; XPL, cross-polarized light; PPL, plane-polarized light.
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by F2 and are moderately strained with development of subgrain boundaries and minor moderate undulose
extinction. In contrast, the elongated porphyroblasts preserve significant undulose extinction and pervasive
subgrain boundary development (Figure 5c). Many of the small, individual plagioclase boundaries are
observed to be pinned against white mica. These white micas are generally aligned with white mica found
within the hinges of F2 and are perpendicular to an incipient S2, where present (TS17-27; Figure 5b).

Samples containing S2 contain both coaxial and noncoaxial structures. The samples with coaxial structures
(TS17-06B and TS17-17) predominantly contain nontransposed relic S1 (TS17-06B; Figure 5d) or symmetri-
cal strain shadows that surround partially chloritized garnet porphyroblasts (TS17-17; Figure 5d) as well as
chlorite pseudomorphs after garnet (sometimes containing garnet remnants; TS17-30). In some samples,
noncoaxial structures are observed (TS17-06B, TS17-12, TS17-15A, and TS17-51A), which are locally
observed to overprint coaxial structures (e.g., TS17-06B). These structures typically comprise anastomosing
pm-scale C2 shear bands defined by white mica or chlorite. The anastomosing nature of the shear bands
defines polymineralic lenses (up to 1 cm thick) that are dominated by quartz and also contain white mica
and plagioclase. Internally in these lenses, white mica tends to be coarser and significantly less deformed
(Figure 5d) than the white micas associated with the shear bands (Figure 5f). Bundles of white mica adjacent
to the shear bands are deformed and deflected concordantly with the shear band trajectories (TS17-12;
Figure 5f). More localized shear band development creating mica fish structures can also be observed within
some samples (TS17-15A and TS17-51A). These mica fish structures display a top to east sense of shear
(Figure 5g). Pockets of S1 are locally observed to be deflected and asymmetrically transposed into the domi-
nant S2 (TS17-12 and TS17-15A).

In plagioclase-bearing samples that are characterized by noncoaxial structures, the plagioclase can either be
found within high-strain horizons (TS17-06B; Figure 5h) or in the polymineralic lenses that are defined by
the anastomosing shear bands (TS17-12; Figure 5e). Plagioclase in the high-strain horizons are deformed
along um-scale C2 shear bands with a sigmoidal structure akin to mica-fish (Figure 5h). Internally, these
grains exhibit undulose extinction and subgrain development. Plagioclase in polymineralic lenses are elon-
gated parallel to S2 and contain aligned inclusions of white micas that are also parallel to S2. The plagio-
clases are relatively strain free with the exception of the grain margins that show undulose extinction,
subgrain development, pinning structures against white mica, and localized lamellar twinning.

4.3. White Mica Geochemistry

Following the method of Coggon and Holland (2002), the results of the white mica WDS spot analyses were
recalculated to nine mica endmember compositions (Table S1). For the calculations, the content of ferric
iron in the white mica grains was considered to be 0. The results show a large range in both the muscovite
(Xms) and celadonite (Xcel = Xmgcel + Xrecer) endmembers that range between 0.35-0.68 and 0.08-0.56,
respectively (Figures 6 and 7 and Table S1). The results show an increasing paragonite endmember compo-
nent (Xp,) that ranges from 0.00-0.32 with increasing Xy;s. A component of the phlogopite endmember
(Xppy) is also present, up to 0.15 Xpy,;. There are significant intrasample differences with regards to the ranges
in Xy and X, which can be readily observed in the qualitative X-ray major element maps (Figures 6 and
7). Two samples of S1 show a small scatter of Xyt 0.35-0.41 and Xce = 0.51-0.56 (TS17-15B) and
Xms = 0.45-0.49 and X = 0.39-0.43 (TS17-33B), whereas one more sample of S1 shows a moderate disper-
sion of Xpgs = 0.59-0.67 and Xce; = 0.15-0.25 (TS17-27). The samples containing coaxial S2 exhibits clusters
of Xps = 0.43-0.49 and Xce = 0.25-0.29 (TS17-06B) and Xy = 0.50-0.56 and Xcey = 0.24-0.28 (TS17-17). In
contrast, the three samples containing noncoaxial S2 exhibit large scatter of Xy = 0.48-0.62 and
Xcel = 0.11-0.38 (TS17-12), Xpps = 0.50-0.68 and Xce = 0.14-0.34 (TS17-15A), and Xps = 0.54-0.64 and
Xcel = 0.11-0.28 (TS17-51A).

4.4. White Mica Geochronology

A total of 55 in situ ultraviolet (UV) laser spot dates was obtained from nine samples (Table S2). The analyses
all contain radiogenic “OAr (*Ar*) values >97%, with the exception of a value of 89.3% from Sample
TS17-06B and 94.6% from Sample TS17-17. No significantly high Cl/K ratios were observed for any analyses.
The Ca/K ratios range from 0.00 to 1.09, indicating the presence of a Ca-bearing phase in some of the
analyses. However, there are is no systematic correlation between the Ca/K ratios and the reported
“OAr/*Ar dates, indicating that contamination of the analyses was negligible.
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Figure 6. Qualitative electron microprobe X- ray chemlcal maps of Al (top) and quantitative wavelength-dispersive
spectroscopy geochemical results (Xcep) with “°Ar/*Ar dates (bottom) for samples containing S1. The chemical maps
were used for dating and depict white micas that were analyzed for “°Ar/*°Ar geochronology. One representative
chemical map is presented for each sample, categorized based on the mlcrostructures Mmerals other than white mica in
the maps were masked using XMapTools v. 2.6.4 (Lanari et al., 2014). The individual *°Ar/*°Ar dates (+10 uncertainties)
are plotted for each sample below the quantitative geochemical data, with the exception of Sample TS17-30, for

which no geochemical data were obtamed The analyzed samples are classified according to their mlcrostructures The
timing of eclogite facies metamorphism (Root & Corfu, 2012) and the timing of Scandian thrusting (Andreasson

et al., 2018; Bender et al., 2019; Dallmeyer, 1990; Dallmeyer & Gee, 1988; Grimmer et al., 2015; Majka et al., 2012;
Svenningsen, 2000) are shown by the horizontal dashed line and horizontal gray bar, respectively.
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Figure 7. Qualitative electron microprobe X-ray chemical maps of Al (top) and quantitative wavelength-dispersive
spectroscopy geochemical results (X¢e)) with 4OAr/*Ar dates (bottom) for samgles containing S2. The chemical
maps were used for dating and depict white micas that were analyzed for “OAr/*Ar geochronology. Two representative
maps are presented for samples containing coaxial S2 and noncoaxial S2. Minerals other than white mica in the maps
were masked using XMapTools v. 2.6.4 (Lanari et al., 2014). The individual 40Ar/*%Ar dates (10 uncertainties) are
plotted for each sample below the quantitative geochemical data. The samples are classified according to their
microstructures. The timing of eclogite facies metamorphism !(Root & Corfu, 2012) and the timing of Scandian thrusting
2(Andréasson et al., 2018; Bender et al., 2019; Dallmeyer, 1990; Dallmeyer & Gee, 1988; Grimmer et al., 2015; Majka
et al., 2012; Svenningsen, 2000) are shown by the horizontal dashed line and horizontal gray bar, respectively.
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Figure 8. Histograms (blue bars), cumulative Gaussian curve plot (curved black lines), and Gaussian deconvolution ages
of the *°Ar/*Ar dates for samples containing S1 (left) and S2 (right) microstructures. The reported age populations (two
uncertainties) are represented by the vertical gray bars. Age populations are interpreted to represent extraneous ~ Ar
(dotted lines), cooling age of the Tsidkkok Lens (solid lines) or (partial) resetting of the cooling record due to
recrystallization/neocrystallization via deformation (dashed lines).

Twenty-four analyses were performed on white micas that define S1 (Figure 6) in Samples TS17-15B (unde-
formed S1) and TS17-27, TS17-30, and TS17-33B (S1 folded by F2). Thirty-one analyses were also conducted
on white mica-defining S2 (Figure 7) in Samples TS17-06B, TS17-12, TS17-15A, TS17-17, and TS17-51A. The
collective results of the four samples of S1 provided a range of dates from 496.0 + 5.8 to 448.3 + 6.6 Ma (10).
Two of the samples (TS17-15B and TS17-33B) show “°Ar/*’Ar dates grouped between 496.0 + 5.8 and
469.2 + 7.3 Ma (n = 12), whereas the other two samples (TS17-27 and TS17-30) are more scattered from
493.7 + 7.0 to 448.3 + 6.6 Ma (n = 12). The results of the analyses performed on the five samples of S2 yield
dates from 505.0 & 6.6 to 423.8 + 5.7 Ma (10). Two of the samples are defined by coaxial structures (TS17-06B
and TS17-17) and yielded dates between 493.6 + 6.9 and 471.3 + 8.9 Ma (n = 12). Three of the samples con-
tained noncoaxial structures. Of these, two (TS17-12 and TS17-15A) provide a range of dates from 505.0 + 6.6
to 423.8 + 5.7 Ma (n = 11) and the third sample (TS17-51A) shows a bimodal distribution of 479.7 + 6.0 to
470.9 + 6.4 Ma (n = 5), and 449.1 + 5.0 to 438.7 + 5.4 Ma (n = 3).

Due to the distribution of dates, the collective data sets for S1- and S2-bearing samples was further evaluated
using the Gaussian deconvolution function in Isoplot v.4.15 (Ludwig, 2012; Figure 8). The methodology for
evaluating potential populations was adopted from Sambridge and Compston (1994). The uncertainties of
the populations were assessed following the approach in Barnes et al. (2020), and it was determined that
the uncertainties assigned by the Gaussian deconvolution evaluation account for both of the reported uncer-
tainty of each *°Ar/*’Ar date, and the scatter of the data set. The resulting populations (+-2¢ uncertainties)
for the S1 samples are 489.8 + 8.6, 477.2 + 4.1, and 458.1 + 9.0 Ma (Figure 8). The samples of S2 yield popu-
lations of 495.8 + 8.8, 475.3 & 3.5, 446.3 & 6.3, and 429.6 + 12.0 Ma (Figure 8). To confirm that the method of
grouping samples defined by S1 versus S2 did not bias the results, the Gaussian deconvolution was also
applied to the collective dates of all nine samples, as well as the multiple grouping based on further subdivi-
sion of structures (i.e., grouped S1, S1 folded by F2, coaxial S2, and noncoaxial S2). Both of the approaches
provide comparable results to the results reported above (supporting information Text S2). Therefore, the
different populations are not controlled by the statistical evaluation of the structural groupings but rather
by “°Ar diffusion reflecting the conditions in which the dated structures formed.

5. Discussion

5.1. Deformation History

Three phases of deformation in the Tsdkkok Lens have been identified that record the subduction to exhu-
mation cycle during the Caledonian Orogeny. The D1 event is interpreted to record prograde to peak meta-
morphism of the Tsédkkok Lens. The D2 event, which is pervasive throughout the Tsikkok Lens, provides the
record of exhumation. The early D2 structures represent coaxial strain and vertical shortening. D2
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predominantly occurred within amphibolite-facies to perhaps greenschist-facies conditions. This is evinced
by the amphibolitized margins of eclogite bodies that are concordant with the surrounding S2. On the micro-
scale, retrogression of monazite to apatite, allanite, and clinozoisite coronas aligned with S2 is typical for
amphibole- to greenschist-facies conditions (Janots et al., 2007; Kosminska et al., 2020; Spear, 2010), which
is also supported by retrogression of garnet to chlorite. Temperatures of deformation can be semiquantita-
tively constrained by the crystal plastic deformation of plagioclase (i.e., undulatory extinction and subgrain
rotation recrystallization) observed in multiple samples (i.e., TS17-06B, TS17-12, TS17-27, and TS17-30).
These deformation mechanisms have been determined to operate at temperatures of 450°C and higher
(Rosenberg & Stiinitz, 2003; Rybacki & Dresen, 2000; Wintsch & Yi, 2002), supporting the mesoscale and
microscale observations for amphibolite-facies conditions of D2.

Textural relationships indicate that coaxial deformation was overprinted by noncoaxial deformation (i.e.,
anastomosing shear bands overprinting the relatively undeformed S2 in TS17-06B and TS17-12) that shows
a general top to east sense of shear. The noncoaxial stage of deformation is interpreted to reflect Scandian
thrusting that is responsible for foreland-directed nappe emplacement (Figures 1 and 2). Scandian thrusting
occurred in response to continental collision recorded from circa 435 Ma (Andréasson et al., 2018; Bender
et al., 2019; Dallmeyer, 1990; Dallmeyer & Gee, 1988; Grimmer et al., 2015; Majka et al., 2012;
Svenningsen, 2000). Provided that the foliation of the Scandian thrust is concordant with S2, we postulate
that Scandian thrusting demarcates the final stage of D2 deformation in the Tsidkkok Lens. Phyllonites
and plastically deformed calcite marbles in the Scandian thrust zone indicate that deformation occurred
in a minimum of greenschist-facies conditions (Busch & van der Pluijm, 1995; Rutter, 1976;
Vernon, 1981). Altogether, the entire set of D2 structures and associated paragenetic assemblages show that
D2 deformation operated during retrogression from eclogite-facies conditions (>14 kbar and ~630°C;
Kullerud, 1987; Stephens & van Roermund, 1984) to greenschist-facies conditions.

The D3 event comprises broad-scale open folds (F3) that refolded F2 and reoriented both S1 and S2
(Figures 2 and 9). Overall, this event produced NE-SW directed shortening. The KNC was folded together
with the Tsdkkok Lens, indicating that NE-SW shortening during D3 deformation occurred after Scandian
thrusting in upper crustal conditions. However, the P-T conditions cannot be constrained as no foliation
mineral paragenesis nor microstructures associated with D3 have been recognized. The relative timing of
folding (i.e., after Scandian thrusting) is also recognized in the Staloluokta Window (Stelen, 1988), northwest
of the field area (Figure 1), and in the Béangondive and Fjillfjillet windows (Stephens, 1977, 1982;
Zachrisson, 1969), ~200-275 km further to the southwest in Visterbotten.

5.2. Postdecompression Cooling of the Tsikkok Lens

Both samples of S1 and S2 structures investigated in this study yield “OAr/*Ar populations that are slightly
older (489.8 + 8.6 and 495.8 + 8.8 Ma) and slightly younger (477.2 + 4.1 and 475.3 + 3.5 Ma) than the timing
of eclogite-facies metamorphism (481.9 + 1.2 Ma; Root & Corfu, 2012). The P-T estimates for these rocks of
~22 kbar and ~590°C (Bukata et al., 2020) for eclogite-facies conditions should have been conducive for ther-
mal diffusion of “°Ar out of the mica (Harrison et al., 2009; Warren, Hanke, & Kelley, 2012). Additionally,
overprinting of S1 by D2 structures would have provided a means to obscure a previous 4OAr/*°Ar record.
However, the existence of these few, older dates likely suggests the presence of extraneous 4OAr in both
S1- and S2-defining white micas. This is possibly due to incomplete degassing of “°Ar* or the incorporation
of excess *°Ar during recrystallization/neocrystallization of the white micas coinciding with transposition of
S1into S2 (McDonald et al., 2018; Warren et al., 2011, 2012). Unfortunately, an inverse isochron of this oldest
data set does not reveal any additional information due to the tight clustering of highly radiogenic data.

The second oldest populations of 477.2 + 4.1 and 475.3 + 3.5 Ma (S1 and S2, respectively) originate from
eight of the nine samples. However, this record is best preserved in four samples that do not yield dates
younger than circa 469 Ma: the undeformed S1 (TS17-15B), S1 that is folded by F2 with plagioclase porphyr-
oblasts overgrowing the folds (TS17-33B), and two S2 samples with coaxial structures (TS17-06B and TS17-
17). The variety of these structures demonstrates that there is no correlation between (micro)structures and
the **Ar/*Ar dates in these rocks. These four samples also exhibit homogeneous mica chemistry that corre-
lates well with the relatively uniform distribution of “’Ar/*’Ar dates. The homogeneity of major elements
suggests that the sequence of structures formed in temperature conditions that were suitable for
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Figure 9. Schematic representation of the structural and temporal evolution for the Tsidkkok Lens during exhumation from eclogite-facies conditions. (a) Vertical
shortening during the incipient stages of D2 defined by F2 folding of S1 and development of S2. This stage of D2 is predominantly characterized by coaxial
strain. S1 is best preserved proximal to the eclogite bodies. The marked samples yield 40Ar/3Ar white mica ages that record exhumation and cooling through the
white mica “°Ar closure temperature in the Tsdkkok Lens at 477.2 + 4.1 Ma (S1) or 475.3 + 3.5 Ma (S2). b) Protracted vertical shortening of the Tsidkkok Lens
recorded by late-stage F2 of the S1 in eclogite-rich horizons. The “Oar/*Ar dates for these folded samples exhibit partial resetting suggesting that localized F2
folding occurred in pressure and temperature conditions that were too low for thermally activated diffusion of 40Ar. The timing of late-stage F2 is tentatively
resolved to 458.1 + 9.0 Ma. (c) Noncoaxial deformation represented by C2 shear zones, associated drag folding of S2, possible quarter structures around rigid
eclogite bodies and anastomosing um-scale shear bands that disrupt S2. The timing of noncoaxial deformation is resolved to 429.6 + 12.0 Ma, which
corresponds to the timing of overthrusting of the Ko6li Nappe complex. The marked samples yield 4OAr/*Ar white mica ages that record possible partial to total
resetting of the cooling ages, as a result of recrystallization/neocrystallization of the white micas via noncoaxial D2 deformation. 1(Andréasson et al., 2018;
Bender et al., 2019; Dallmeyer, 1990; Dallmeyer & Gee, 1988; Grimmer et al., 2015; Majka et al., 2012; Svenningsen, 2000). The timing of overthrusting of the Sarek
Lens by the Tsidkkok Lens is not resolved. (d) The D3 stage is represented by shallow crustal km- to m-scale F3 folding of the Tsidkkok Lens, together with

the overlying Koli Nappe complex and the underlying Sarek Lens. The km-scale F3 folds control the bulk architecture of the Tsdékkok Lens and reoriented both the
D1 and D2 structures.
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reequilibration of major elements, which has previously been estimated to occur at >500°C (Dempster, 1992;
Giorgis et al., 2000).

The lack of structural correlation, in combination with temperature estimates for retrogressive metamorph-
ism, deformation, and chemical equilibration during early D2, suggests that the circa 477- to 475-Ma popu-
lations record closure of *°Ar diffusion during cooling of the Tsikkok Lens. However, the exhumation
pathway of the Tsdkkok Lens is initially defined by nearly isothermal decompression, subsequently followed
by nearly isobaric cooling (Kullerud, 1987). Decompression is proposed to decrease retentivity of “°Ar in
white mica (Harrison et al., 2009; Warren, Hanke, & Kelley, 2012) indicating that the circa 477- to 475-Ma
populations should not record the initial decompression history but instead record the nearly isobaric cool-
ing segment of the P-T pathway. Based on the estimated pressure of isobaric cooling (Kullerud, 1987), and
the various parameters outlined in Warren, Hanke, and Kelley (2012), the argon closure temperature is sug-
gested to be in the range of 400-500°C, slightly cooler than the estimated temperatures for early D2. This
reaffirms that the coaxial structures related to early D2 formed along the decompression pathway prior to
cooling.

5.3. Partial Resetting of the Cooling Record Due to Deformation

Five samples provide a scatter of “°Ar/*’Ar dates. Two samples containing S1 folded by F2 (TS17-27 and
TS17-30) preserve “°Ar/*>°Ar dates that contributed to the circa 477- to 475-Ma age population and also con-
tain younger dates that define a population at 458.1 + 9.0 Ma. The three samples containing S2 and noncoax-
ial structures also document cooling but are dominated by a younger dispersion of dates that define
populations of 446.3 + 6.3 and 429.6 + 12.0 Ma. Dispersed “°Ar/>’Ar dates may be the result of the incorpora-
tion of extraneous “°Ar (Giorgis et al., 2000; Uunk et al., 2018), retrogressive reactions causing partial A0
loss and resetting of 40Ar/3Ar dates (Allaz et al., 2011), or incomplete removal of 40Ar from the grain via, for
example, recrystallization during deformation (Cossette et al., 2015; Kellett et al., 2016; Kramar et al., 2001;
Mulch & Cosca, 2004; Uunk et al., 2018). As these samples yield dates that are younger than the dominant
record of cooling (section 5.2), the presence of extraneous *°Ar is not a likely option. We do not interpret that
the effects of retrogressive reactions are the cause of partial “’Ar loss as our dating methodology endeavored
avoid any effects of retrogressive replacement of white mica by biotite or chlorite. Instead, we interpret the
microstructural evidence recorded within the Tsdkkok Lens metasediments to support partial “OAr loss dur-
ing the later stages of D2. The white mica-defining D2 structures in these samples also show dispersion in the
endmember compositions, indicating that the conditions for deformation were too low to allow for reequili-
bration of major elements in the white micas during noncoaxial deformation (Dempster, 1992; Giorgis
et al., 2000). Decreasing pressure conditions is suggested by the lower X values from values of the non-
coaxial samples, compared to the coaxially deformed D1 and D2 samples.

The F2 folding of S1 is best preserved in areas that have abundant eclogite bodies. The localized preservation
of these structures was likely controlled by the spatial distribution of rigid eclogite bodies that protected adja-
cent S1 from transposition into S2 (Figure 3c). However, a noncontemporaneous history of F2 is evident
from samples of the same structural classification provide different “°Ar/*’Ar records (i.e., TS17-33B vs.
TS17-27 and TS17-30). The noncontemporaneous F2 history is supported by the observed microstructures
in plagioclase porphyroblasts (Figures 5a—5c). White mica inclusions in plagioclase porphyroblasts that over-
grew D2 structures (i.e., TS17-12 and TS17-33B) suggest that plagioclase grew during decompression from
HP conditions and thus can be compared relative to the timing of deformation events. Based on the textural
relationships of S1 and S2, and white mica inclusions in plagioclase, the porphyroblasts either overgrew F2
(TS17-33B; Figure 5a) or crystallized prior to F2 (TS17-27 and TS17-30; Figures 5b and 5c). The plagioclase in
the latter case is highly strained, exhibiting strong evidence for (sub)grain boundary development. Such
microstructures indicate temperatures during deformation were >450°C (Rosenberg & Stiinitz, 2003). The
circa 458-Ma population produced by the two partially reset samples indicates that vertical shortening con-
tinued in the Tsdkkok Lens until that time, or later.

For the three noncoaxially deformed samples, it is difficult to ascribe geological meaning to the circa 446-Ma
population as they represent partial resetting of the older cooling history. However, the circa 430-Ma
population is in agreement with the general timing of Scandian thrusting from circa 435 Ma (Andréasson
et al., 2018; Bender et al., 2019; Dallmeyer, 1990; Dallmeyer & Gee, 1988; Grimmer et al., 2015;
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Majka et al., 2012; Svenningsen, 2000). The circa 430-Ma population is therefore interpreted as a maximum
age for Scandian deformation that penetrated the Tsdkkok Lens.

5.4. Possible Exhumation Mechanisms for the Tsikkok Lens

The results of this study provide a detailed structural and geochronological evolution of the Tsdkkok Lens
during exhumation from eclogite-facies conditions (Figure 9). Although based on few samples, it is sug-
gested that initial decompression is characterized by vertical shortening and coaxial deformation, a phenom-
enon for HP localities in the well-studied Western Gneiss Region (Andersen et al., 1994; Engvik &
Andersen, 2000; Foreman et al., 2005; Krabbendam & Wain, 1997). The *°Ar/**Ar dates record the timing
of nearly isobaric cooling (477.2 + 4.1 to 475.3 + 3.5 Ma) after decompression from eclogite-facies conditions
(Figure 8). The pressure recorded for S2 development is as shallow as 6 kbar (Snilsberg, 1987). This suggests
that the rocks of the Tsdkkok Lens exhumed to midcrustal depths from eclogite-facies conditions in
~5-7 Myr It is also plausible that the Tsidkkok Lens rocks reached shallower levels before the Silurian, which
are not recorded by S2. Surface exposure of HP rocks in the Silurian is readily observed in the Hoyvik Group
in southwestern Norway (Andersen et al., 1998; Brekke & Solberg, 1987), as well as the Vestgotabreen
Complex in western Svalbard (Armstrong et al., 1986; Ohta et al., 1983). For the latter locality, cooling at
476 + 2 Ma indicates that exhumation was coeval with the Tsdkkok Lens (Barnes et al., 2020).

Peak pressures for the Tsikkok Lens have recently been resolved to ~22 kbar (Bukata et al., 2020). Although
overpressures of up to 20% have been modeled for subducting rocks (Burg & Gerya, 2005; Li et al., 2010), we
approximate the maximum exhumation rate for the Tsidkkok Lens by assuming no overpressure through the
peak and exhumation stages (e.g., Burov & Yamato, 2008) and that the lens cooled in shallow-crustal condi-
tions ~5 Myr after peak conditions. This results in an average exhumation rate up to ~1.2 cm/yr before cool-
ing, which is well within the rates of exhumation for other UHP localities worldwide. For example, the UHP
Dora Maira rocks record exhumation rates up to 3.4 cm/yr, assuming that the rocks were not overpressured
(Rubatto & Hermann, 2001). Exhumation at such rates is promoted by buoyancy of the subducted crustal
rock, which is effective until midcrustal depths (e.g., Baldwin et al., 2004; Carswell et al., 2003;
Ernst, 2001; Ernst et al., 1997; Glodny et al.,, 2005; Hacker, 2007; Parrish et al., 2006; Rubatto &
Hermann, 2001; Smye et al., 2011; Terry et al., 2000). Indeed, the Tsidkkok Lens is dominated by siliciclastic
and carbonaceous metasedimentary rocks, providing an overall buoyant rock assemblage. The
short-duration (<10 Myr) for exhumation of the Tsidkkok Lens suggests exhumation during active subduc-
tion rather than reversal of the subduction zone (e.g., Warren, 2013) prior to continental collision. This is
in direct contrast to the slower exhumation of the much larger Western Gneiss Region (e.g., Hacker &
Gerya, 2013; Kylander-Clark et al., 2012; Warren, 2013) that possibly occurred due to eduction of the lower
plate during continental collision (Andersen et al., 1991; Bottrill et al., 2014; Butler et al., 2015). Therefore,
while the Tsdkkok Lens and the rocks of the Western Gneiss Region may share some similarities, they
require different tectonic regimes to explain their exhumation histories. The HP Tsdkkok Lens may have
been exhumed due to divergent motions of the lower plate (e.g., slab-rollback; Brun & Faccenna, 2008) or
by upper plate divergence from the lower plate (e.g., Froitzheim et al., 2003; Liao et al., 2018; Majka
et al., 2014). Such mechanisms may be applicable for the Tsédkkok Lens but require a more regional investi-
gation to determine a best fit model.

Noncoaxial D2 associated with subsequent Scandian collision penetrated the Tsdkkok Lens and overprinted
the older S2 coaxial fabrics. Tectonic burial is implied by overthrusting of the KNC. Although the data set
presented here does not confirm such tectonics, postcollisional exhumation of the SNC in Norrbotten would
require significant erosion and possibly extensional faulting during or after tectonic burial. Models suggest
that postcollisional extensional faulting was responsible for unroofing the HP rocks, which is well documen-
ted in the southwestern Scandinavian Caledonides, particularly for the Western Gneiss Region (e.g.,
Andersen et al., 1991; Fossen, 2010; Hacker et al., 2010). Extensional faults have not been directly described
for southern Norrbotten, but they are recognized ~100-150 km to the north in the Ofoten-Troms region
(Coker et al., 1995; Fossen & Rykkelid, 1992). Additionally, the F3 folding of the KNC-SNC package exhibits
similar style and vergence as those documented in the Western Gneiss Region, which has been described as
the latest stage for postcollisional exhumation (Chauvet & Séranne, 1994). Therefore, the extensional fault-
ing in regions proximal to the Tsidkkok Lens, and postcollisional F3 folding of the SNC suggests that the lat-
est stage of exhumation followed a similar tectonic evolution as in the Western Gneiss Region.
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6. Conclusions

The history of subduction and subsequent exhumation to shallow crustal levels can be distinguished by three
distinct deformation events. D1 is preserved as a relic S1, which is locally folded by F2 and transposed by S2
that together defines the second event, D2. The second deformation stage is associated with vertical short-
ening and subsequent broad top to east sense of shear. Overall, D2 represents exhumation of the Tsdkkok
Lens from eclogite-facies conditions in the Early Ordovician to greenschist-facies during Scandian thrusting
due to continental collision between Laurentia and Baltica in the Silurian. Results of “°Ar/**Ar geochrono-
logical analysis of white micas-defining D1 structures and coaxial D2 structures record cooling (477.2 + 4.1
to 475.3 + 3.5 Ma) after rapid, nearly isothermal decompression of the Tsdkkok Lens. Postcooling F2 folding
suggests that vertical shortening may have occurred (tentatively until 458.1 + 9.0 Ma). Late-stage noncoaxial
D2 locally reworked some of the previous structures and record deformation that penetrated the Tsikkok
Lens during Scandian thrusting (429.6 + 12.0 Ma), which (partially) reset the previous record of cooling.
Increased heterogeneity of the white mica chemistry is positively correlated with resetting of the “°Ar/
*9Ar dates. Final exhumation of the Tsikkok Lens was likely governed by post-Scandian extensional faulting
and erosion. The D3 event that is manifested as F3 folding resulted in NE-SW shortening of the KNC-SNC
assembly and may reflect the final stage of exhumation.
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