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Introduction

An increased monitoring of pathogens and infectious dis-
eases in the marine environment has been reported, with 
factors such as climate change and anthropogenic activi-
ties contributing to the exposure of species to pathogens 
and impact of diseases (Harvell et al. 1999; Burek et al. 
2008). Marine mammals are sentinel species, providing 
early warning about potential threats (Bossart 2011). The 
stressors that these marine species are exposed to, such 
as persistent organic pollutants that may impair immune 
responses (Desforges et al. 2016) or the presence and 
prevalence of potential pathogens (Lloyd-Smith et al. 
2007), are of major concern. Such factors could affect 
population dynamics with crucial biological implications; 
disease outbreaks and mass mortalities can trigger loss of 

biodiversity (Daszak et al. 2000). Additionally, some of 
these infectious agents might be transmissible between 
animals and humans and represent a threat to public 
health (Tryland 2017).

The Southern Ocean is a remote and vulnerable 
environment, hosting large seal populations. However, 
increasing human encroachment coupled with intro-
duced animal species and global warming might expose 
immunologically naïve animals to new infectious agents 
(Edwards et al. 1998; Frenot et al. 2005). It is still unclear 
whether infectious agents present in pinniped species in 
other and more studied oceans are present in the Southern 
Ocean, with only a few reports addressing the presence 
of various pathogens in Southern Ocean seals, includ-
ing human pathogens (Palmgren et al. 2000; Hernán-
dez et al. 2007; García-Peña et al. 2010). However, some 

Abstract

Knowledge of the health status and potential effect of disease outbreaks 
among Southern Ocean fauna may be decisive for its conservation. We 
assessed the exposure and infection of Antarctic fur seals (Arctocephalus gazella, 
AFS) and Southern elephant seals (Mirounga leonine, SES) to parapoxvirus, 
Phocid alphaherpesvirus-1 (PhHV-1), smooth Brucella spp. and Toxoplasma gon-
dii. AFS (n = 65) serum and swab samples, and SES (n = 13) serum samples 
from the sub-Antarctic island of Bouvetøya (54°25’S, 03°22’E) were collected 
during two austral summers (2014/15, 2017/18). Three polymerase chain 
reaction (PCR) tests amplifying the DNA polymerase, B2L and GIF parapoxvi-
rus genomic regions were performed, investigating DNA from mucosal swab 
samples. The glycoprotein B gene was targeted to detect PhHV-1 viral DNA. 
Sera were assayed for T. gondii and smooth Brucella spp. antibodies with indi-
rect enzyme-linked immunosorbent assays. Parapoxvirus PCR amplicons of 
the expected size were generated in two of the 29 AFS pups (nasal swabs, 
2014/15), targeting the B2L (n = 2) and DNA polymerase (n = 1) genes, 
whereas the GIF PCR did not amplify target sequences. The PCR amplicons 
were sequenced and blasted in GenBank, revealing highest similarity with a 
seal parapoxvirus, confirming the presence of the virus in AFS for the first 
time. No PhHV-1 amplicons were generated, and antibodies against T. gondii 
or smooth Brucella spp. were not detected. Our data indicate that these seals 
are host for parapoxvirus but are neither exposed to smooth Brucella spp. nor 
T. gondii. Evidence of PhHV-1 shedding was not detected.
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recent studies have identified viruses associated with 
this marine fauna (Varsani et al. 2017; Crane et al. 2018; 
Smeele et al. 2018), contributing to a better understand-
ing of diseases in seals.

Members of the genus Parapoxvirus are large, envel-
oped, double-stranded DNA viruses that cause cutaneous 
and mucosal lesions in seals (Tryland 2011). Parapoxvirus 
has been detected in Phocidae, Otariidae and Odobeni-
dae. Grey seal parapox virus 1 has been recently suggested 
as a member of the Parapoxvirus genus (Günther et al. 
2017), along with several other parapoxviruses asso-
ciated with a range of seal species (Becher et al. 2002; 
Nollens, Gulland, Jacobson et al. 2006). Infections in pin-
nipeds are characterized by firm, raised, single or multi-
ple, proliferative nodules on the neck, head, flippers and 
mucosa that may ulcerate (Müller et al. 2003). Transmis-
sion takes place through contact with dermal abrasions 
or contaminated crusts (Tryland 2011). The virus can be 
transmitted from pinnipeds to humans, developing nod-
ular abrasions as those reported with other parapoxvirus 
infections (Hicks & Worthy 1987; Clark et al. 2005). The 
detection of a parapoxvirus from a Weddell seal (Leptony-
chotes weddellii) in Queen Maud Land (Tryland et al. 2005) 
is the only evidence to date confirming the presence of 
this virus among Southern Ocean pinnipeds.

A neurotropic alphaherpesvirus, Phocid alphaherpesvi-
rus-1 (PhHV-1), was first recorded after a disease outbreak 
among harbour seals (Phoca vitulina) in a Dutch rehabil-
itation centre (Osterhaus et al. 1985). Fatal generalized 
infections are prone in neonates causing hepatitis and 
adrenal necrosis (Borst et al. 1986; Gulland et al. 1997). 
In the Southern Ocean, neutralizing antibodies against 
alphaherpesvirus was first documented in 1991, when all 
25 investigated Weddell seals and all three crabeater seals 
(Lobodon carcinophagus) were tested seropositive (Harder 
et al. 1991). This was further supported by serological 
prevalence in Weddell seals (72%; Stenvers et al. 1992). 
Tryland et al. (2012) detected antibodies against PhHV-1 
in Weddell seals (100%), AFS (Arctocephalus gazella, 57%), 
crabeater seals (44%) and Ross seals (Ommatophoca ros-
sii, 15%). Some alphaherpesviruses are shown to cross 
species barriers and infect humans; however, there are 
no indications that PhHV-1 represents a zoonotic threat 
(Tischer & Osterrider 2010).

The Gram-negative bacteria Brucella spp. infects ecto-
thermic and endothermic animals, including humans 
(Godfroid 2002; Eisenberg et al. 2012). A recent study 
by Whatmore et al. (2017) identified seven Brucella ST 
in seals: ST24, ST25, ST51, ST52, ST53, ST54 and ST27. 
ST27 has been identified in and associated with repro-
ductive pathology in California sea lion (Zalophus cal-
ifornianus; Sidor et al. 2008; Goldstein et al. 2009), and 
even though the zoonotic potential of the marine Brucella 

is unclear (Larsen et al. 2013; Nymo et al. 2016), ST27 
has been associated with spinal osteomyelitis and neu-
robrucellosis in humans (Sohn et al. 2003; McDonald 
et al. 2006; Whatmore et al. 2008). Retamal et al. (2000) 
showed the first indication of these bacteria in the South-
ern Ocean when detecting five seropositive AFS (31%) 
and a seropositive Weddell seal (100%). Subsequent 
studies also detected anti-Brucella antibodies in AFS (8%; 
Abalos et al. 2009), Weddell seals (37%), crabeater seals 
(11%) and a Ross seal (5%) (Tryland et al. 2012), and in 
SES (4%; Mirounga leonina; Jensen et al. 2013).

Toxoplasma gondii is an obligate intracellular protozoan 
suspected to be an opportunistic parasite in immunocom-
promised individuals (Mazzariol et al. 2012). Toxoplasma 
gondii oocysts, which may remain viable in seawater for 
extended periods of time (Lindsay & Dubey 2009), can 
infect marine mammals through surface runoff and sew-
age discharge (Miller et al. 2002). Serological investiga-
tions carried out on seals from the Southern Ocean have 
demonstrated seroprevalence of 18% and 6% in Weddell 
seals and SES, respectively (Jensen et al. 2012), and in 
SES (77%), Weddell seals (42%), AFS (2%) and in one 
out of two crabeater seals (Rengifo-Herrera et al. 2012). 
Humans can be infected with T. gondii from seals by con-
suming undercooked marine mammal meat (Tryland 
2017).

Despite its geographical isolation, the Norwegian Sub-
antarctic island of Bouvetøya (54°25′S, 03°22′E), in the 
Atlantic Ocean south of the Antarctic Circumpolar Cur-
rent (Fig. 1), represents a crucial contact point between 
the Antarctic ecosystem and ecosystems in other geo-
graphical regions. This small land of 49 km2 is home to 
SES, AFS, brown skuas (Catharacta antarctica lonnbergi) 
and Southern giant petrels (Macronectes giganteus), as 
well as macaroni (Eudyptes chrysolophus) and chinstrap 
penguins (Pygoscelis antarcticus; Huyser 2001). Some of 
these animals carry out long-range seasonal migrations 
(Boyd et al. 2002; Hindell et al. 2016). Being in contact 
with different waters, food chains and ecosystems, they 
are potential hosts and vectors for a variety of infectious 
agents. SES breed and moult in small numbers on Bou-
vetøya, while the AFS population on this island represents 
the second largest breeding colony (Kirkman et al. 2001; 
Hofmeyr et al. 2005), gathering in dense concentrations 
and sharing a terrestrial breeding ground at Nyrøysa with 
various other animal species (Fig. 1). This close contact 
during breeding, combined with poor hygienic condi-
tions, increases the potential of cross-species transmission 
of infectious agents. A previous study conducted on this 
island did not detect antibodies against T. gondii or Brucella 
spp. in 68 and 64 AFS serum samples, respectively, but 
found 42 (57%) alphaherpesvirus seropositive individu-
als (Tryland et al. 2012).
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The aim of this study was to evaluate the exposure 
and infection of AFS and SES that breed on Bouvetøya to 
selected pathogens. The selection of pathogens was based 
on their presence in other investigated seal populations, 
their zoonotic potential and their possible implications for 
population demography.

Materials and methods

Sampling

Serum and mucosal membrane swab samples were col-
lected from seals on Bouvetøya as part of a research effort 
on the foraging and reproductive ecology of Southern 
Ocean seals conducted by the Norwegian Polar Insti-
tute (Norwegian Food Safety Authority, permit number 
12411). Serum and mucosal swab samples from AFS 
(n = 65) and serum samples from SES (n = 13) were col-
lected over two austral summers (2014/15 and 2017/18; 
Table 1). The sampling was conducted at Nyrøysa, a plat-
form of land approximately 2 km long and 500 m wide 
on the west side of the island (Fig. 1).

Adult (>1 year) SES and male AFS were immobilized 
with 1 mg/kg of Zoletil vetÒ (tiletamine HCl + zolazepam 
HCl; Virbac AH Inc.), administrated remotely using a dart 

gun (Paxarms). Adult female AFS were captured using 
a Fuhrman flex net and sedated with isoflurane derived 
through a portable anaesthetic system (Advanced Anaes-
thesia Specialists), initially inducted at 5% and main-
tained at 0.5–1.5%. Offspring of the year was captured by 
hand and manually restrained.

For SES, blood was collected from the extradural 
intravertebral vein in blood tubes with sodium-heparin 
(BD Vacutainer®) using a 72-mm spinal tap needle. For 
AFS, blood was taken from the interdigital vein from 
the hind flippers using a hypodermic 18-gauge 45 mm 
needle mounted on a 5-ml syringe and transferred into 
blood tubes with sodium-heparin. Technical challenges 
prevented the centrifugation of serum in the field; full 
blood was stored at -20 °C. Before analyses, the blood 
tubes were thawed and centrifuged (5 min, 3000 rpm). 
One ml aliquots of the supernatant were obtained and 
stored at -20 °C until analyses.

Cotton swabs (Applimed SA) were rubbed against 
the nostrils and conjunctival mucosae of AFS and placed 
into sterile cryotubes with 800 μl of Eagle’s minimum 
essential medium with antibiotics (final concentrations 
of 100  IU/ml of penicillin, 100 μg/ml of streptomycin, 
50 μg/ml of gentamicin and 2.5 μg/ml amphotericin B). 
Samples were stored at -80 °C until analyses.

Fig. 1 Map of Bouvetøya (54°25′S, 03°22′E) and its location in the Southern Ocean (inset). Nyrøysa, the breeding ground where the animals were sampled, 

is highlighted on the map. (Map: Norwegian Polar Institute.)
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PCR

DNA was extracted from the swab samples using a 
Maxwell® 16 Buccal Swab LEV DNA Purification Kit 
(Promega) according to the guidelines provided by the 
manufacturer. DNA quality was assessed using the 
Nanodrop 2000 spectrophotometer (Thermo Fisher Sci-
entific™). Samples were considered acceptable if the 
A260/280 ratio was higher than 1.7. The PCRs were run 
in a Perkin Elmer GeneAmp® PCR System 9700.

Specific primers were used to amplify the parapoxvi-
rus B2L genomic region (Inoshima et al. 2000) as well as 
the GIF gene, encoding a protein inhibiting the granu-
locyte macrophage colony stimulating factor and inter-
leukin-2 (Klein & Tryland 2005). Water was used as a 
non-template control. DNA extracted from a goat kid 
(Capra hircus) with contagious ecthyma, and verified Orf 
virus infection (Norwegian Veterinary Institute, Tromsø, 
Norway) was used as a positive control. Samples yielding 
amplicons with the B2L or GIF PCR protocols were tested 
for the presence of the parapoxvirus DNA polymerase 
gene. The PCR was carried out as described previously 
(Bracht et al. 2006), but with an increased anneal-
ing temperature (65 °C). Water was used as non-tem-
plate control. DNA extracted from an Atlantic harbour 
seal with a verified parapoxvirus infection (M. Garron, 
National Oceanic and Atmospheric Administration, 
Washington, DC) was used as positive control.

To detect PhHV-1 viral DNA, the genomic region 
encoding for glycoprotein B was targeted (Goldstein et al. 
2004). An initial incubation (94 °C, 4 min) was followed 
by 25 cycles of denaturation (94 °C, 30 s), annealing 
(54 °C, 30 s) and extension (72 °C, 50 s). Water was used 
as non-template control and PhHV-1 DNA from a har-
bour seal isolate as a positive control (Frey et al. 1989).

Gel electrophoresis and sequencing

Ten μl of the PCR products were separated by electro-
phoresis in a 1% agarose gel (Life Technologies) in a 1 × 

TBE buffer (0.04 M Trisborate, 1.0 mM EDTA) contain-
ing 0.0005% GelRed, with a separation time of 1.5 h at 
110 V. The bands were visualized under ultraviolet light 
and photographed using a gel documentation system 
(Bio-Rad Laboratories). ExoSAP-ITTM (Amersham Phar-
macia Biotech) was used to purify the relevant ampli-
cons. Following the clean-up, The Big Dye® Terminator 
v3.1 Cycle Sequencing protocol (Applied Biosystems) 
was performed. Three microlitres of the purified PCR 
products was mixed with 3 µl Ready Reaction Premix, 
2 µl sequencing buffer, 1 µl of each primer and 11 µl 
dH

2
O. The mixture was subsequently thermal cycled as 

described previously (Klein & Tryland 2005). The PCR 
amplicons generated were sequenced (UiT The Arctic 
University of Norway), and similarity with available Gen-
Bank sequences was compared.

Phylogenetic analyses

The phylogenetic relationship for the B2L and DNA poly-
merase gene was inferred using the Tamura 3-parameter 
model and maximum likelihood method (Tamura 1992). 
The bootstrap consensus trees inferred from 1000 rep-
licates are taken to represent the evolutionary history 
of the taxa analysed. Branches corresponding to parti-
tions reproduced in less than 50% bootstrap replicates 
are collapsed (Felsenstein 1985). Initial tree(s) for the 
heuristic search were obtained automatically by apply-
ing Neighbor-Join and BioNJ algorithms to a matrix of 
pairwise distances estimated using the maximum com-
posite likelihood approach, and then selecting the topol-
ogy with superior log likelihood value. The rate variation 
model allowed for some sites to be evolutionarily invari-
able ([+I], 59.69% sites for DNA polymerase). Trees 
were drawn to scale, with branch lengths measured 
in the number of substitutions per site. These analyses 
involved 14 (B2L) and 17 (DNA polymerase) nucleotide 
sequences. Codon positions included were 1st + 2nd + 
3rd + noncoding. There was a total of 529 (B2L) and 
355 (DNA polymerase) positions in the final data sets. 

Table 1  Sampling periods and number of samples taken from AFS (Arctocephalus gazella) and SES (Mirounga leonine) from Bouvetøya. Some animals 

were sampled for blood and nasal/ocular swabs, while others were sampled for either blood or swabs.

Seal species Blood samples Nasal and ocular swabs

2014/15 2017/18 2014/15 2017/18

Femalea Male Pup Female Maleb Pup Female Pup Female Pup

AFS 17 – 17 11 8 4 36 39 28 17

SES – – – 7 6 – – – – –

aMothers of the pups are included within the “Female group”. bBlood samples from males were taken only during the 2017/18 sampling period.
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Evolutionary analyses were conducted using MEGA X 
software (Kumar et al. 2018).

Serology

A protein A/G iELISA, validated to detect smooth Bru-
cella spp. antibodies in seals, was performed as previously 
described (Nymo et al. 2013).

The ID Screen Toxoplasmosis Indirect Multi-spe-
cies ELISA kit (IDvet) was used to test the presence of 
anti-T. gondii antibodies following the manufacturer’s 
instructions.

Results

Parapoxvirus PCR amplicons of the expected size were 
generated from DNA samples obtained from the nasal 
swabs of two AFS pups (2014/15), wherein fragments of 
B2L were detected in both samples and DNA polymerase 
in one sample (Table 2). The GIF PCR did not amplify 
target sequences. Amplicon sequences were submitted 
to GenBank (NCBI). The two generated B2L sequences 
had 99% (pup 15; accession number MK908011) and 
88% (pup 5; accession number MK908012), respec-
tively, sequence identity with a California sea lion para-
poxvirus-2 (DQ273137.1). The PCR targeting the DNA 
polymerase gene (pup 5, accession number MK910261) 
had the highest nucleotide similarity (98%) with a 
parapoxvirus isolated from a spotted seal (Phoca largha; 
AY780678.1). None of the three parapoxvirus PCRs gen-
erated relevant amplicons from the ocular swabs.

The phylogenetic analyses of the sequences generated 
from the B2L genomic region (Fig. 2a) of the two cases 
revealed that the generated parapoxvirus sequences were 
grouped with parapoxvirus sequences from other seal 
species, differentiating them from other parapoxviruses, 
such as Orf virus (sheep). Similarly, the phylogenetic 

analyses based on the DNA polymerase sequence showed 
that the parapoxvirus sequences generated from AFS 
resembled parapoxviruses from seals more than Orf 
virus (sheep) and Bovine popular stomatitis virus (cattle; 
Fig. 2b).

PhHV-1 amplicons were not generated from any of the 
swabs. All serum samples were below the iELISA cut-off 
detecting Brucella spp. Similarly, no samples were classi-
fied as T. gondii-seropositive (Table 2).

Discussion

Parapoxvirus

The phylogenetic analyses of the PCR amplicons gener-
ated showed that two individuals included in this study 
had parapoxvirus-specific DNA on their nasal mucosa. We 
thus report the first verified case of parapoxvirus infection 
in AFS and the second case documented among Southern 
Ocean pinnipeds (Tryland et al. 2005). The AFS samples 
clustered phylogenetically well together with other pin-
niped isolates for the two genes that generated amplicons 
(B2L, DNA polymerase); the node branch likelihood had 
a value of 100 (B2L, Fig. 2a), and the branch likelihood 
at the separation point between pinniped parapoxvirus 
and other parapoxviruses was 95 (DNA polymerase, Fig. 
2b). This suggests a well-supported node and separation 
point for these specific genomic regions, and that the AFS 
parapoxvirus belongs to the tentative seal parapoxvirus 
species (Nollens, Gulland, Jacobson et al. 2006). In gen-
eral, and for both genes, parapoxvirus from Phocidae was 
more closely related to each other than to parapoxvirus 
in Otariidae, which might indicate differences in host sus-
ceptibility. For the B2L phylogeny, AFS parapoxvirus was 
most closely related to a California sea lion parapoxvi-
rus-2 (DQ273137.1). Even though the distribution areas 
of these two host species do not overlap, indirect contact 
and occasional transmission of the pathogen might have 

Table 2  Detection of DNA specific for parapoxvirus and PhHV-1 in nasal and ocular swab samples, together with serological results, investigating for spe-

cific antibodies against smooth Brucella spp. and Toxoplasma gondii in AFS (Arctocephalus gazella) and SES (Mirounga leonina). Results are presented 

as number positives/number tested (percentage prevalence).

Seal species (classified by age, class and sex) Parapoxvirusa Brucella spp. PhHV-1b Toxoplasma gondii

AFS: adult females 0/34 (0) 0/28 (0) 0/64 0/28 (0)

AFS: adult males not tested 0/8 (0) not tested 0/8 (0)

AFS: pups 2/29 (7) 0/21 (0) 0/56 0/21 (0)

AFS (total) 2/63 (3) 0/57 (0) 0/120 0/57 (0)

SES: adult females not tested 0/6(0) not tested 0/6 (0)

SES: adult males not tested 0/7(0) not tested 0/7(0)

SES (total) not tested 0/13(0) not tested 0/13(0)

aNasal swabs. bNasal and ocular swabs.
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occurred. Further, it has been hypothesized that pinniped 
parapoxvirus can infect multiple pinniped host species 
from the same phylogenetic family (Nollens, Gulland, 
Jacobson et al. 2006).

Parapoxvirus has been suggested to be prevalent in 
pinnipeds in the Northern Hemisphere after the detec-
tion of virus-specific antibodies in several seal species 
(10–40%) from north-western Europe, North America 
and Siberia (Osterhaus et al. 1994) and in 693 (91%) 
free ranging California sea lions (Nollens, Gulland, 
Hernández et al. 2006). This contrasts with the appar-
ently low presence of the virus in the Southern Ocean 

(Tryland et al. 2005). There is limited knowledge regard-
ing parapoxvirus transmission patterns among wild 
seals and whether this pathogen is endemic in South-
ern Ocean pinnipeds. Bouvetøya is a protected nature 
reserve where activities, sewage disposal and traffic are 
strictly regulated. The island is sporadically visited for 
a few months during scientific expeditions, making it 
unlikely that human disturbances facilitate the emer-
gence of infectious diseases in this area. After the breed-
ing season, female AFS disperse widely in the Southern 
Ocean, travelling long distances beyond their normal 
range and interacting with different wildlife species, 

Fig. 2 (a) Phylogenetic comparison of the parapoxvirus sequences of the putative viral envelope gene B2L generated from nasal mucosal swab samples 

of two AFS (Arctocephalus gazella) pups, with similar sequences from NCBI. (b) Comparison of the sequences obtained from the DNA polymerase gene 

from one AFS pup with other parapoxvirus sequences (NCBI). The phylogenetic trees with the highest log likelihood are displayed. Numbers next to the 

branches are bootstrap values (1000 replicates) describing the reliability for each clade in percent.
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oceans and ecosystems (Boyd et al. 2002; Arthur et al. 
2017). Consequently, AFS vagrants could have acquired 
the virus when in contact with other environments and 
introduced it to Bouvetøya.

Seal parapoxvirus in this study was documented in 
two pups, whereas parapoxvirus-specific DNA was not 
recorded in their respective mothers, indicating that 
weanlings might be exposed to the virus within their 
first weeks of life (Nollens, Gulland, Hernández et al. 
2006). Parapoxviruses are opportunistic, often infecting 
and causing disease in stressed or otherwise immuno-
suppressed individuals. Nutritional stress in combina-
tion with insufficient protection by maternal antibodies 
could have influenced the susceptibility of the two pups 
to parapoxvirus infection (Müller et al. 2003; Tryland 
et al. 2005).

Even though our findings evidence that the animals 
were harbouring the infection at the moment of sam-
pling, we have, from this study, no indication that para-
poxvirus infection causes a high mortality rate among 
the investigated population. In other wild pinniped pop-
ulations, however, parapoxvirus infections are consid-
ered more common but still not representing a major 
threat (Nollens, Gulland, Hernández et al. 2006). In 
contrast, infections in captivity may pose a major risk, 
where captured-induced stress and changes of environ-
ment and nutrition may initiate disease outbreaks and 
facilitate transmission (Hicks & Worthy 1987; Müller 
et al. 2003). Feeding and respiratory functions can be 
impaired when nodules develop in the oral cavity or 
nostrils, which together with secondary bacterial infec-
tions, can be fatal (Tryland 2011). Animal handlers 
should be aware of the zoonotic potential of this patho-
gen (Tryland 2017).

PhHV-1

Based on the previously detected prevalence of anti-her-
pesvirus antibodies in AFS (57%) and other Antarctic 
seal species, using virus neutralization test and PhHV-1 
as antigen (Tryland et al. 2012), we expected to be able 
to detect herpesvirus shedding with the PCR screening 
of mucosal swab samples from AFS. The negative results 
may be due to the small fraction of the population tested, 
or the selected primers were in fact not able to detect the 
herpesvirus circulating in these seal populations.

Seropositive Weddell and crabeater seals have been 
reported in the Weddell Sea and Queen Maud Land 
(Harder et al. 1991; Tryland et al. 2012), suggesting that 
alphaherpesviruses might be endemic in these species 
(Harder et al. 1991). Future studies with larger sample 
sizes from seals from Bouvetøya and the use of a combi-
nation of techniques, including PCRs with more generic 

primers, may elucidate if an alphaherpesvirus related to 
PhHV-1 is in fact circulating in these seal populations.

Brucella spp.

Anti-Brucella antibodies were not detected in the stud-
ied populations, which is in agreement with previous 
investigations (Tryland et al. 2012). Brucella spp. might be 
present in other areas of the Southern Ocean, as already 
suggested (Retamal et al. 2000; Jensen et al. 2013). How-
ever, attempts to isolate the bacterium have so far not 
succeeded in Southern Ocean pinnipeds (Abalos et al. 
2009; McFarlane 2009). The lack of anti-Brucella anti-
bodies in the present study could be due to a lack of 
exposure. Alternatively, animals with high susceptibility 
to Brucella spp. could have been infected and died. Addi-
tional work aiming at the isolation of the bacteria could 
help to determine the Brucella spp. infection dynamics in 
Southern Ocean seals.

Toxoplasma gondii

Our results, and the lack of previous indications of T. gon-
dii in seals from Bouvetøya, suggest that the parasite is 
absent or has a low prevalence in these populations (Try-
land et al. 2012). Our findings differ from earlier inves-
tigations, in which T. gondii antibodies were detected in 
Southern Ocean seals with agglutination tests (Jensen 
et al. 2012; Rengifo-Herrera et al. 2012). Nonetheless, 
the accuracy of these methods has been questioned, sug-
gesting that they might yield false positives in lipid-rich 
samples. ELISA is considered to be a more reliable test 
for Toxoplasma serological screening (Blanchet et al. 2014) 
and was used in our study.

This study provides evidence of parapoxvirus infec-
tion, but no indications of exposure to smooth Brucella 
spp. and T. gondii, of AFS and SES populations on Bou-
vetøya. Moreover, we were not able to detect an active 
shedding of alphaherpesvirus. Studies such as the one 
presented here represent data for only a small frac-
tion of the population, and in a narrow time window. 
More systematic monitoring, with larger sample sizes 
and longer time series, are required in order to draw 
firm conclusions about the health status of these pin-
nipeds and the impact of the seal pathogens that are 
present in the Southern Ocean. Numerous indications 
of infectious diseases have been reported in Arctic pin-
nipeds (Jensen et al. 2010; Scotter et al. 2019). A similar 
scenario is expected in the Southern Hemisphere if the 
human–wildlife interface increases (Daszak et al. 2001). 
Additionally, a rising sea-surface temperature due to 
global warming might facilitate pathogen survival and 
distribution and promote changes in nutritional status, 

http://dx.doi.org/10.33265/polar.v39.3841


Citation: Polar Research 2020, 39, 3841, http://dx.doi.org/10.33265/polar.v39.38418
(page number not for citation purpose)

Pathogen surveillance in Southern Ocean pinnipeds� S. Núñez-Egido et al.

predisposing marine mammals to infectious diseases 
(Burek et al. 2008). Further, immunotoxic contaminants 
may enhance the vulnerability of wildlife populations to 
infections, as organic pollutants and heavy metals may 
have immunosuppressive effects (Ross et al. 2002; Des-
forges et al. 2016). Since many of the pathogens are zoo-
notic, humans may also be impacted.

Conclusions

While testing a relatively small number of animals, 
during a short period of time, we detected exposure to 
parapoxvirus. The first finding of parapoxvirus infection 
in AFS shows that these animals can host the virus, and 
future attempts to isolate parapoxvirus on Bouvetøya 
may help us to understand the prevalence and epidemi-
ology of this virus. The lack of exposure of AFS to Brucella 
spp., T. gondii and alphaherpesvirus in this study indicates 
that these pathogens do not represent a major health 
threat for the local seal populations at this time. Further 
investigations, integrating climate change, immunotoxic 
contaminants and human activities, may clarify the con-
tribution of these factors to emerging infectious diseases 
in the Southern Ocean.
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