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Abstract

The ice-albedo feedback is associated with the nonlinearity in the climate system, due to the sud-
den change in albedo between ice-free and ice-covered surfaces. This nonlinearity can potentially
cause abrupt and dramatic shifts in the climate, referred to as tipping points. It is also believed that
this mechanism has contributed significantly to the precipitous losses of Arctic sea ice, which have
outpaced the projections of most climate models.

This feedback mechanism has been studied since at least the nineteenth century, and it has had
a major role in climate science ever since. The tipping points that result from this mechanism has
changed the way we view the history of the Earth with the introduction of, among other things, the
snowball Earth hypothesis.

In this thesis we will introduce land area to a diffusive Energy Balance Model, and study these
critical transitions. We will also test for Early Warning signals for these tipping points.
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Chapter 1

Introduction

In the 1960s and 1970s, mathematical modeling of the climate received renewed interest due to
the concern over anthropogenic climate change. The evolution of high-speed computers and the
development of numerical weather prediction models meant that we could start to simulate the
Earth’s complex climate. Today our computers are far better and can handle much more complex
models and calculations than computers from the 70s. However, to make progress with the com-
plex climate models, the simpler members of the model hierarchy must be thoroughly analyzed [1].

These simple models, as well as geological findings, showed that Earth’s climate had gone through
several dramatic shifts, like the great oxidation when the level of oxygen in the atmosphere sud-
denly and irreversibly went from a state of 10−5 times the current level of oxygen to one with 1 to
10% of the current level [2]. They also showed that the Earths climate has transitioned to and from
a climate state called snowball Earth. In this thesis, we will use a diffusive energy balance model
introduced by Gerald North [3] and explore some of these dramatic shifts of the Earths climate.

This model has been used to study, among other things, the small ice-cap instability. Therefore
it assumes a planet entirely covered in water. This thesis will add more realism to the model by
introducing land surface and exploring how this influences abrupt transitions caused by the ice-
albedo feedback. We will then focus on the transitions to and from snowball Earth and see if we
can observe early warning signals for these transitions.

This thesis will focus on three climate science concepts, which will be explained in more detail
later in a later chapter, but they will be introduced briefly here.
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1.1 The Energy Balance Model

The models referred to as Energy Balance Climate models (EBMs) are at the lower end of the
model hierarchy, meaning they are more simplistic than other climate models. They are con-
ceptually simple1 because they are based on a single equation. The temperature change is only
dependent on the energy absorbed by the Earth versus the energy radiated from Earth. If Earth
absorbs more than it disperses, the Earth gets warmer and vice versa.

1.2 Tipping points

A tipping point (TP) is a threshold where a small change can push a system into a different state.
It can be thought of as a child going down a slide; there is a point at which it is too late for the
child to stop from sliding down. At this point, the child travels inevitably towards a different state.
It ends up at the bottom.

Early studies of potentially irreversible TPs focused on the transition to the Snowball Earth state[4][5].
This transition is one of the focuses of this thesis. In recent years, researchers have focused on an-
swering whether external causes or internal mechanisms cause climate fluctuations and transitions
between different states. External causes may be variations in the Earth’s orbit, and internal causes
can be changes in the time scale of atmospheric or oceanic feedback.

1.3 Early Warning Signals

TPs can have dramatic consequences, and even though they may be inevitable in some cases, we
want to predict when or if this might happen. This is our motivation for searching for EWS. There
are several methods that can be used for detecting EWS that will be discussed further. In this thesis
we will focus on the following methods:

Slow recovery from perturbations as a system approaches a TP; the potential well gets shallower
and wider. This means that the system can oscillate slower in the well, leading to slower recovery
time.

1Though they may be conceptually simple, the mathematical methods for solving can be very complex
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Increase in variance when the well gets wider, the system may move further from the stable state.

Increase in autocorrelation as the system recovers more slowly.

1.4 Outline

Chapter 2 introduces Energy Balance models. This chapter aims to explain how they work and
what we can learn from them.

Chapter 3 describes the model used in this thesis.

Chapter 4 introduces the concept of tipping points and discusses tipping points in Earth’s climate.

Chapter 5 introduces the model parameters used in this thesis and then shows the results from the
different cases explored, using the model from chapter 3.

Chapter 6 discusses methods for observing Early Warning Signals for tipping points and the va-
lidity of these methods.

Chapter 7 applies Early Warning Signals to some of the results from chapter 5.

Chapter 8 discusses the results from chapter 4 and 7.

Chapter 9 summarises the findings in this thesis and discusses their implications and some ideas
about further work.
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Chapter 2

Energy Balance Models

This chapter aims to explain how an Energy Balance Model works. It does so by using a simple
example to introduce some of the climate phenomena explored in this thesis.

2.1 Simple Energy Balance Model

EBMs were introduced by Budyko [6], and Sellers [7] independently. They describe the balance
of the Earth’s energy budget. The simplest of these models depict the change in global temperature
as the incoming and outgoing radiation energy flux:

c
dT
dt

= Ein−Eout , (2.1)

where c is the heat capacity, which dictates the response time of the temperature T . Equation 2.1
says that the change in temperature is proportional to the difference of absorbed and radiated en-
ergy.

The term Ein is the energy absorbed by the Earth from the sun. However, not all the incoming
energy is absorbed by the Earth and turned into heat. About 30% of the incoming solar radiation
is reflected back into space [8]. The proportion of incoming radiation that is reflected is called the
albedo, and the proportion absorbed by the Earth is called co-albedo. Ein can be defined as the
co-albedo times the amount of radiation reaching Earth’s surface:

Ein = (1−α(T ))Q (2.2)
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Here 1−α(T ) is the co-albedo, T is the global mean temperature, and Q = 342Wm−2 is a fraction
of the solar constant. As a heuristic model we let

α(T ) = 0.5−0.2 · tanh
(

T −265
10

)
(2.3)

This is a smooth function that makes the albedo 0.7 under really cold conditions (Earth covered
with ice and snow), and 0.3 under really warm conditions (ice-free Earth).

Like the Sun, the Earth emits electromagnetic radiation. This radiation is dependent on the temper-
ature of the Earth. Using Stefan-Boltzmanns law and assuming that the Earth radiates as a black
body, Eout can be written as

Eout = σT 4 (2.4)

where σ is Stefan’s constant σ = 5.67 ·10−8WM−2K−4.

Greenhouse gasses affect the the quantity Eout but not Ein. This needs to be accounted for in
even the simplest models. Reducing the expression for Eout by a factor ε , can (in a very simplistic
way) model the greenhouse effect:

Eout = εσT 4 (2.5)

Equation 2.1 becomes

c
dT
dt

= (1−α(T ))Q− εσT 4 (2.6)

This model is a zero-dimensional EBM, which means that the model is only dependent on one
scaler variable, namely the temperature T . Even though it is a very simple model, it can be used to
illustrate some interesting concepts.

2.1.1 Earth’s Equilibria

When the incoming and outgoing radiation are equal we are at an equilibrium state. Using the
expressions for Ein and Eout we have the following equation for energy balance:

(1−α(T ))Q = εσT 4 (2.7)

Plotting Ein and Eout together shows something very interesting.
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Figure 2.1: Ein vs Eout shows that the Earths climate system can have multiple equilibria.

Figure 2.1 shows the Ein as a thick solid curve, and Eout as the dotted line. The three points of
intersection corresponds to the three equilibrium states: T ∗1 ≈ 235K, T ∗2 ≈ 265K and T ∗3 ≈ 285K.
The temperature T ∗3 corresponds roughly to the current climate, and T ∗1 to a snowball-Earth cli-
mate. The temperature T ∗2 , however, is an unstable solution, which cannot persist and will never
be observed.

If the climate system is in the equilibrium state at T ∗2 , and the temperature increases slightly, the
right hand side of equation 2.6 becomes positive. If the temperature decreases slightly, the right
hand side of 2.6 becomes negative. This means that a small perturbation in T will cause a run-
away effect that would force the climate system away from the equilibrium state T ∗2 . An unstable
equilibrium can be thought of as a pencil balancing on its tip. The pencil is perfectly still, but a
small gust of wind can cause it to fall over.

2.2 The Snowball-Earth Hypothesis

Snowball Earth is a state where the entire Earth is covered in ice and snow, making it look like a
giant snowball. The EBM discussed above suggests this is a stable equilibrium point for Earth’s
climate. In fact, our planet may have been entirely covered in ice and snow, perhaps multiple times.

An ice-covered Earth would reflect a large proportion of incoming solar radiation back into space.
Only a small fraction of the energy would be absorbed; hence the climate will be very insensitive
to variations in incoming radiation from the sun. This feedback mechanism makes snowball Earth
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very stable, and a large event would be needed to escape from the locked-in state. One such event
may have been one or more large volcanic eruptions [9]. Such eruptions would increase the amount
of CO2 in the atmosphere, increasing the greenhouse effect and resulting in the Earth heating up.

The paper by Yves Goddéris et al. [10] summarizes three scenarios that have been suggested
and numerically tested to explain how and why the Earth transitioned to a snowball-Earth state.
All of these scenarios rely on large drops in the partial pressure in greenhouse gasses.

The snowball Earth bifurcation can be simulated by EBMs (as shown above) and simple Gen-
eral Circulation Models (GCM). However, according to Paulsen et al. [11] a fully coupled GCM
is not able to produce ice at the equator. Even though some of the models disagree as to whether
the Earth has ever been in a snowball-Earth state, there is some geological evidence that the Earth
was in this state in the Neoproterozoic era, more than 500 million years ago [12]. This evidence
is one of the many reasons why an EBM was used in this thesis instead of the far more complex
GCMs and Earth System Models (ESMs). These complex models are fairly reliable for our current
climate, but they fall short when simulating an entirely different climate state.

2.3 Other Models

EBMs are not the only models used to study the climate, but they are the simplest. EBMs are
entirely built on the principle in equation 2.1. This simplicity put some restrictions on EBMs. For
instance, it is impossible to use an EBM to predict changes in atmospheric and oceanic circula-
tion. For cases like this, it is better to use an ESM that seeks to simulate all relevant aspects of
the Earth’s climate. They use physical, chemical, and biological processes to achieve this level
of detail. The sophistication level allows them to represent human influence on the climate better
than both EBMs and GCMs. GCMs are between EBMs and ESMs in the model hierarchy and use
physical processes in the atmosphere and ocean to model Earth’s climate. Therefore ESMs have
the atmospheric and oceanic components of a GCM, but they include other factors of the Earths
climate as well.

Even though EBMs are excellent tools for modeling the climate, they have limitations. For one,
EBMs work best for the surface-temperature field. Trying to include the rest of the atmosphere
into the model introduces a host of new mechanics and complexity to the model.
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One might think to add all the known mechanics and factors of the climate system to a single
”perfect” model. However, apart from such a models computational cost, there is another problem:
As new physical processes are introduced to a model, even more parameters have to be introduced
and calibrated. This process may lead to a problem known by statisticians as overfitting or overtun-
ing. Overfitting will arise when parameter selection does not correctly account for the observations
and model structural uncertainties. Then, tuning may become an error compensation rather than a
model calibration.

Simple EBMs are always highly idealized, but can give us some insight into the dominant fea-
tures of our very complex climate system.

Using EBMs has two major benefits:

• Relatively short run-time

• Changes in results can easily be traced back to the change made

Both of these benefits result from the models simplicity and allow studying particular processes in
the climate. These results can be used to help the development of more complex models that are
more costly to run.
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Chapter 3

The Diffusive Energy Balance Model

This chapter will introduce the model used to produce the results for this thesis. It will also explain
how the model had to be changed to include land area in a model that initially assumed an Earth
entirely covered by water.

3.1 Norths Model

The EBM summarised in the article by North [3] is described by a single partial differential equa-
tion:

c
∂T
∂ t

=−A−BT +αS+D∇
2T +F (3.1)

where −A−BT is the top-of-atmosphere outgoing longwave radiation, αS is the incoming radia-
tion multiplied with the co-albedo (the absorbed radiation from the sun), D∇2T is the transport of
heat, and F is additional forcing.

Like the model shown in Chapter 2, this model has incoming and outgoing radiation. However, the
transport of heat adds another level of realism and complexity to the model.

3.1.1 Outgoing Longwave Radiation

A linear representation of the top-of-the-atmosphere outgoing longwave radiation was suggested
by Budyko [6]:

−A−BT
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The two parameters, A and B, can be fitted to observed data. A typical value for B is 1.9−2C−1[13],
and a typical value for A 211Wm−2[13].

3.1.2 Solar Radiation

Incoming solar radiation S is constant in longitude but not in latitude. Consequently, S only de-
pends on x. Following the article by North [14] we use

S(x) = 1+S2P2(x)

where S2 is a parameter and P2(x) is the second Legendre polynomial describing how the incoming
solar radiation per unit area is higher at the equator and gets lower towards the poles. This effect
is due to the angle of the area relative to the sun. When viewed from the Sun, an area close to
the poles will appear smaller than the same area at the Equator. This is due to the curvature of the
Earth, which also means that less radiation will hit an area closer to the poles.

Another consequence of the Earths curvature is that radiation will go through more of the at-
mosphere before hitting an area close to the poles. More of the radiation will be either reflected or
absorbed by the atmosphere, reducing the amount of absorbed radiation at the surface.

3.1.3 Co-Albedo

In reality, a lot of the incoming radiation is absorbed by clouds and water vapor. However, in this
thesis’s idealized models, we ignore clouds and let all radiation reach the surface. The co-albedo
is therefore only dependent on if the incoming radiation reaches ice, land, or sea.

In this model, ice is simply implemented as a change in co-albedo in areas cold enough to form
ice. This differs from certain other models, such as the model used by Wagner and Eisenman
[15], which is a somewhat complex model. In their paper [15] they calculate both ice area and ice
volume.

3.1.4 Heat Transport

The diffusive term in the article by North[14] assumed only northward transport of heat. This
assumption is valid if there is spherical symmetry, for example a water-covered planet. With the
introduction of land, the planet is no longer symmetrical, and heat transport in all directions must
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be considered. For a sphere, the heat transport is

D∇
2T = D

[
1
r

∂ 2

∂ r2 (rT )+
1

r2 sinθ

∂

∂θ

(
sinθ

∂T
∂θ

)
+

1
r2 sin2

θ

∂ 2T
∂ϕ2

]
(3.2)

where T is the surface temperature and D is a thermal diffusion coefficient. The temperature T is
measured at sea level, which is at a constant radius. Therefore the temperature will not be depen-
dent on the radius.

By defining x = cosθ with latitude θ , and y = ϕ with longitude ϕ , and using finite differences, the
heat transport becomes

(3.3)
D
[(

xi

∆x
+

1− x2
i

∆x2

)
Ti−1, j − 2

(
1− x2

i
∆x2

)
Ti, j

+

(
− xi

∆x
+

1− x2
i

∆x2

)
Ti+1, j +

(
1

1− x2
i

)
Ti, j+1 − 2Ti, j + Ti, j−1

∆y2

]
Here i is the latitudinal position, j is the longitudinal position, ∆x = 1/n and ∆y = 2π/m. We
let n denote the number of grid cells in latitudinal direction and m is the number of grid cells in
longitudinal direction.
In this thesis the thermal diffusion coefficient is dependent on space, this is due to the difference
of the thermal diffucivity of land and ocean.

In reality, heat transport happens through many different phenomena, but primarily due to Hadley
circulation and ocean currents.
If the sea-ice and glaciers melt due to global warming, these ocean currents could weaken and they
may disappear. Caesar et al. [16] found evidence for a weakening of the Atlantic Meridional Over-
turning Circulation by about 3±1 sverdrups (about 15%). This weakening was a feature predicted
by climate models in response to rising CO2 levels. Even though it cannot be ruled out entirely,
they concluded natural variations was not the cause of this weakening, but rather a rise in CO2

levels.

3.2 Modeling the Earth

For this model to work, we need a map of the Earth. Mathematica has a function that gives the
elevation of a point above sea level. This function was used to classify each grid cell as land or
ocean.
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Figure 3.1: Map of the Earth used in this thesis, blue means ocean and yellow means land

3.2.1 Area of the grid cells

The map of the Earth used in this thesis is like many other maps, a plane. However, as cartographers
know, it is impossible to map a sphere onto a plane while keeping the proportions correct. Areas
close to the poles appear bigger on the map than they are. To get the area of the grid cells to be the
correct size we used

A =
π

180
R2|sinθ1− sinθ2|·|ϕ1−ϕ2|

12



Chapter 4

Tipping Points

In this chapter, we will explain some of the mathematical theory of tipping points.

4.1 Bifurcation Theory

A bifurcation in climate dynamics is often referred to as a tipping point. A TP is when a physical
parameter crosses a threshold that changes the system to a new state that differs considerably from
the previous.
The nonlinear differential equations

Ṫ = f (T,λ ) (4.1)

where T : t 7→ T(t) ∈ Rn and λ ∈ Rn has equilibrium solutions T∗. These solutions can be found
(as was done in Chapter 2) by solving the equation

f (T,λ ) = 0 (4.2)

Consider the following scalar ordinary differential equation with a cubic nonlinearity

ẋ = µ + x− x3 (4.3)

Here, the equation f (µ,x) = 0 has two solutions for µ = ±µ∗, these results are summarised in
Figure 4.1.

13
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Figure 4.1: Bifurcation diagram with hysteresis loop, black solid lines are stable solution and
dashed green is unstable

A bifurcation diagram shows the plot of fixed points x∗ against the bifurcation parameter µ . If
the system starts with a large value of µ , the system will be some place on the top solid curve. If
µ starts to decrease, the system will ”slide” along the solid curve. Once µ passes the value −µ∗,
the system will not slide along the dotted line. It will ”fall” (transition very quickly) as depicted
by the left arrow, to the other equilibrium state, and start ”sliding” along the bottom solid line.
At this point, a small change in is not enough to make the system ”jump” back up. µ must exceed
the value µ∗ where it follows the other arrow to the other equilibrium solution. These ”falls” and
”jumps” are called tipping points, and the curves form a hysteresis loop.

Often in climate dynamics, the bifurcation parameter µ will be a forcing. Forcings are exter-
nal factors that drive the system. Such factors may be volcanic eruptions, changes in the Earths
orbit around the sun, or human-induced factors like changes in atmospheric composition and land
use. The number of different forcings is one of the many reasons why the Earths climate is such a
complex system.

Bifurcations can only take place in nonlinear systems. The amount of absorbed incoming radi-
ation of the Earth is in the Norths model (and the model shown in chapter 2) dependent on the
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co-albedo. The co-albedo depends on the temperature. This dependence gives rise to a nonlinear
term in equation 3.1.

4.2 Tipping Points in Open systems

Peter Ashwin et al. [17]. suggest three categories of tipping effects

• ”B-tipping”, in which the output from an open system changes abruptly or qualitatively
owing to a bifurcation of a quasi-static attractor

• ”N-tipping”, in which noisy fluctuations result in the system departing from a neighborhood
of quasi-static attractor

• ”R-tipping”, in which the system fails to track a continuously quasi-static attractor

According to this classification, the classical fold bifurcation (saddle-node bifurcation) falls in the
B-tipping category. In realistic models, tipping effect may be due to a combination of the three
mechanisms.

4.3 The Earths Tipping Points

Many parts of the Earth’s climate can potentially undergo abrupt transitions due to climate change.
Scientists are especially concerned over the potential tipping of the Arctic sea-ice cover and the
Greenland ice sheet, due to the impact these changes will have on the climate system [18].
If one component of the Earths system undergoes an abrupt transition, it can cause other critical
thresholds to be crossed. For example, if the Arctic sea-ice cover is lost, the amplified warming
of the Earth can cause a drought in the Amazon rainforest. This drought can cause the Amazon
region to transition to an alternative ecological state, where a savanna replaces the rainforest. The
rainforest loss would increase atmospheric CO2 levels and further accelerate warming of the Earth.
A scenario of this type is called an Earth system tipping cascade.

Given the TPs found by Budyko [6] and the transition to and from the ice age, we suspect the
tipping points of the global average temperature to have the following shape:
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Figure 4.2: Expected temperature profile from forcing

This is very similar to the bifurcation diagram shown in Figure 4.1, but it has two hysteresis
loops. We think that this is a transition to and from an ice-age state. This temperature profile will
result in melting and forming of ice, which we suspect also will form two hysteresis loops. This
bifurcation diagram does not show the unstable solution like Figure 4.1 as it will not be observed.
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Chapter 5

Results

In this thesis we analyze the non-linear diffusive energy balance model, and by linearly varying
the forcing we study three cases:

• Case 1: Starting from a climate just a little colder than our current climate, we transition to
a climate much warmer than ours. Then, we reverse the forcing and cool the Earth back to
the starting point

• Case 2: The same as case 2, but we cool the Earth past the starting point and transition to
a snowball-Earth state. We then reverse the forcing and warm the Earth back to the starting
point

• Case 3: The same as case 2, but assuming that Earth is an aquaplanet (no land and is entirely
covered by water/ice).

In the next sections we will first discuss parameter values, and then present the results from these
cases, as well as the spatial sensitivity of this model when close to a TP.

5.1 Model Parameters

Before running the model we will justify the values of some of the parameters. Table 5.1 shows the
values of the parameters for all the results in this thesis. In the literature, the diffucivity D varies
between 0.4 and 0.6[19, 20]. Therefore D was chosen to be within these values.

From North [1] we obtain a value for the coefficient S2, and in North [3] we find values of land
co-albedo αl , ice co-albedo αi, and the the incoming solar radiation Q. Sea co-albedo was chosen
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Symbol Description Value
Dl Diffucivity on land or ice (Wm−2K−1) 0.5125
Ds Diffucivity in the ocean (Wm−2K−1) 0.5
A Out going longwave radiation at T = 0 (Wm−2) 200
B Temperature depedent outgoing longwave radi-

ation (Wm−2)
1/0.22

c Heat capacity 1
S2 -0.482
αl Land co-albedo 0.7
αi Ice co-albedo 0.38
αs Sea co-albedo 0.8
Q Amount of solar energy floating into the Earths

surface (Wm2)
334.4

Tcl Temperature at which ice is formed on land (C◦) -3
Tco Temperature at which ice is formed on the

ocean (C◦)
-5

F Radiative forcing (Wm−2) Varies

Table 5.1: Parameter values used in the model experiments

to be a little bit higher than land co-albedo, and fitted to obtain the best result. The heat capacity c

only changes the response time of the temperature and was normalized to unity. This implies that
time is measured in units inversely proportional to the average heat capacity of the climate system.

I also note that the temperature values (in ◦C) are unrealistic for most of the model experiments
in this thesis. The reason for this is that the model is simple and disregards several important feed-
back mechanisms. Consequently, in the figures, I have chosen to label the temperature and forcing
axes with ”arbitrary units” (a.u.). When I refer to a model state being close to the current climate,
I mean that the extent of the Arctic sea ice is comparable with current satellite observations.

5.2 Forcing the system

The first model experiments explored the response of a climate close to our own, and the possible
”paths” that the global average temperature can take in response to a increase or decrease in forcing.

The experiment starts with a cold climate that is close to tipping to snowball Earth, but still sta-
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ble, and then slowly increasing the forcing linearly to warm it towards current conditions. As this
happens, there is an abrupt transition from an ice-age-like state to the current small-ice-cap state.

After the warming is complete, we can linearly decrease the forcing and bring the temperature
down.
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Figure 5.1: Global average temperature response to forcing without transitioning to snowball Earth

As the climate cools it takes a new trajectory in phase space and enters a ice-age-like state
through an hysteresis (Figure 5.1).

In Figure 5.2 we observe the same as in Figure 5.1, as well as transitions to and from snowball
Earth state.
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Figure 5.2: Global average temperature response to forcing within our current climate state, and
forcing to and from Snowball Earth, with land. Red: From close to TP to warm. Blue: From warm
climate to Snowball Earth. Black:From Snowball Earth to warm climate. With land

5.2.1 Ice Area

We can calculate whether or not there is ice in a grid cell by checking if the temperature in the grid
cell is lower or higher than the temperature at which ice is formed. Summing the areas of all the
grid cells that had ice formation we obtain the extent of ice on the planet. This was done for each
time step to get the plot of how the ice area on the Earth responds to a linear forcing.
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Figure 5.3: Ice area response to forcing without transitioning to snowball Earth
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Figure 5.4: Ice area response to forcing within our current climate state, and forcing to and from
Snowball Earth. Red: From close to TP to warm. Blue: From warm climate to Snowball Earth.
Black: From Snowball Earth to warm climate.

The y-axis shows the number of grid cells with ice, with ”zero” meaning there is no ice on the
planet surface and 2701 meaning that every grid cell is covered with ice.
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5.3 Forcing the system without land

After removing land in the model (planet entirely covered in water/sea ice) we have spherical sym-
metry. This means that heat transport does not happen along the latitudes. The results of running
the same model without land is summarized in Figure 5.5 and 5.6
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Figure 5.5: Global average temperature response to forcing within our current climate state, and
forcing to and from Snowball Earth when the Earth is an aquaplanet. Red:From close to TP to
warm. Blue: From warm climate to Snowball Earth. Black: From Snowball Earth to warm climate.
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5.3.1 Ice Area

20 40 60 80 100
F (a.u.)

500

1000

1500

2000

2500

Ice Area (a.u.)

Figure 5.6: Ice area response to forcing within our current climate state, and forcing to and from
Snowball Earth when the Earth is an aquaplanet. Red: From close to TP to warm. Blue: From
warm climate to Snowball Earth. Black: From Snowball Earth to warm climate.

5.4 Spatial Sensitivity

When Earth’s climate is close to a tipping point to (or from) Snowball Earth, some areas are more
sensitive to temperature change than other. This means that some areas need a larger tempera-
ture change to cause the climate to undergo a state transition. We can perturb the temperature of
(relatively) small areas of the planet surface and observe if the entire climate tips. By gradually
increasing the size of the perturbation, we can see how sensitive the areas are.

Since the area of the grid cells at the equator are larger than the grid cells near the poles, we
need to factor in the area of the grid cells. Therefore the perturbations are on the form

Fp = Tp
Ai

maxA
(5.1)

where Ai is the area of the grid cell and maxA is the area of the biggest grid cell. In this thesis, the
planet surface was partitioned into 2701 grid cells, meaning the average area for each grid cell is
189000 km2.
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To obtain a state close to the TP to (or from) Snowball Earth we force the system towards the
bifurcation point and stop right before it tips over (also checking that the system is still at a stable
solution). Then we perturb the grid cells to see if the climate tips over.

Figure 5.7: Spatial sensitivity when close to tipping from Snowball Earth. Blue is the least sensi-
tive, and white is the most sensitive
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Figure 5.8: Spatial sensitivity when close to tipping towards Snowball Earth. Blue is the most
sensitive, and white is the least sensitive
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Chapter 6

Early-Warning Signals

Tipping points have potentially significant consequences in many different areas, such as in the
financial market, the climate system, and even in psychology [21]. In all of these areas, it is
obviously useful to know if a system is a approaching a tipping point.
In this chapter, we will explain what happens as a system approaches a tipping point, and how
scientists can detect early warning signals.

6.1 Critical Slow Down

As a dynamical system approaches a bifurcation it is expected to go through critical slow down
(CSD): A perturbation or disturbance of a system close to a critical transition will slowly decay
back to equilibrium.

CSD can have a number of measurable effects in observational time series. The two most com-
monly discussed are the increase in variance and the increase in autocorrelation. A number of
studies suggest that an increase in autocorrelation is sufficient evidence for EWS [15], though
this has been disputed in other studies [22]. The variance can be observed due to a amplification
of stochastic fluctuations around the dynamical equilibrium, and the autocorrelation is related to
slower response times to stochastic perturbations.

26



6.1.1 Example of CSD

Marten Scheffer et al. [23] uses an example to show why critical slow down occurs.
Consider the following simple dynamical system, where a and b are parameters, and γ is a positive
scaling factor:

dx
dt

= γ(x−a)(x−b) (6.1)

This system has two equilibria: x1 = a and x2 = b. One of these is stable, and the other is unstable.
Assuming that x1 is the stable fixed point, we make a perturbation:

x = x1 + ε

d(x1 + ε)

dt
= f (x1 + ε) (6.2)

where f (x) is the right hand side of equation 6.1. Using a first-order Taylor expansion to linearize
we obtain

d(x1 + ε)

dt
≈ f (x1)+

∂ f
∂x

∣∣∣∣
x1

ε (6.3)

which simplifies to

f (x1) =
dε

dt
= f (x1)+

∂ f
∂x

∣∣∣∣
x1

ε ⇒ dε

dt
= λε (6.4)

with eigenvalues λ1 and λ2, where

λ1 =
∂ f
∂x

∣∣∣∣
a
=−γ(b−a) (6.5)

and for the other fixed point:

λ2 =
∂ f
∂x

∣∣∣∣
b
= γ(b−a) (6.6)

From this, it is easy to see that when b = a, the recovery rates λ1 and λ2 are both zero and the
perturbation will not recover. As the system moves away from the bifurcation we can see that the
recovery rate in this model is linearly dependent on the size of the basin of attraction, namely b−a.
This is a very simplistic model, and for more realistic models this is not necessarily true, but the
relation is often nearly linear [24].
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Figure 6.1: (a) The state is far from bifurcation and the basin of attraction is large. This leads to
relatively high recovery rate from perturbations. (b) The state is closer to the bifurcation, and the
basin of attraction shrinks. The rate of recovery from perturbation is lower

6.1.2 Increased variance and autocorrelation due to CSD

Scheffer et al. [23] also show why CSD can lead to increased variance and autcorrelation.
Consider an autoregressive model of order 1 (AR(1)) on the form

yn+1 = αyn +σεn (6.7)

where yn is the deviation of the state variable from the equilibrium, σ is the standard deviation and
εn is a random number from a standard normal distribution. The autocorrelation is

α = eλ∂ t (6.8)

where ∂ t is the time period.
The expectation of an AR(1) process yn+1 = c+αyn +σεn is

E(yn+1) = E(c)+αE(yn)+E(σεn)⇒ µ =
c

a−α
(6.9)

For c = 0, the mean equals zero and the variance is

Var(yn+1) = E(yn)
2−µ

2 =
σ2

1−α2 (6.10)
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Equation 6.8 shows that when λ approaches zero, the autocorrelation tends to one. Because λ

approaches zero as the system approaches a bifurcation, a rise in autocorrelation is a valid early
warning signal. As the autocorrelation approaches one, the variance tends to infinity. The AR(1)
process is the stochastic version of the linearization of the dynamical system. Of course, the
linearization is invalid at the bifurcation point, and the variance will remain bounded.

6.2 Other EWS

When a system is close to a TP, we may also have an increase in asymmetry of fluctuations. This
asymmetry can lead to skewness [23]. Unlike the increase in variance and autocorrelation, this is
not a consequence of CSD, but due to another property of fold bifurcations (Figure 4.1). In the
vicinity of an unstable point, the rates of change are lower. This leads to the system spending more
time at the unstable region between two potential wells, referred to as the saddle.

Another phenomenon that can be observed is flickering. This is when the stochastic forcing can
make the system jump back and forth between two attractors. This happens as a response to a
relatively strong noise [25].

6.3 Validity of Early Warning Signals

Even though increasing variance and autocorrelation has been considered a potential indicator of
CSD in numerous studies, the exact conditions under which CSD can be deduced from observa-
tional time series, are disputed in some recent studies. Some studies demonstrate missed alarms,
where an impending critical transition has not been predicted [26], and false alarms, where a crit-
ical transition is predicted but never happened [27]. This may be due to a data set ill-suited for
CSD detection, or it can be a result of conceptually misunderstanding how CSD is linked to the
dynamics of a system.

Bathiany et al. [28] found that EWS for accelerated sea-ice is limited, and their results show
that the relaxation time is unrelated to the existence of a tipping point. In some instances, de-
creasing response times can be explained by other physical processes. For example, a decreased
response time during summer sea-ice loss can be caused by thinning of the sea-ice leading to a
more efficient heat conduction.
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Timothy Lenton [29] suggests two reasons for missed alarms; the first is high noise level. If
the noise level is too high, the internal variability of the system is high, and the system can exit its
current state before a bifurcation point is reached.
The second reason is if the forcing changes too fast. Existing theory generally assumes a very
gradual change in system parameters.
Human activities are forcing certain slow parts of the climate system faster than their internal dy-
namics allow them to respond. This means that we may not get any warning signals ahead of
certain bifurcations in our climate system.

The theory of EWS is based on a very simple example. This may be another problem with the
way we currently detect EWS; that they only work for very simplistic models.
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Chapter 7

Early-Warning Signals in The Diffusive
Energy Balance Model

In this section we will use the concepts explained in Chapter 6 to look for EWS in the model
analyzed in this thesis. This means first adding noise to the forcing, and then calculating the
change in variance and autocorrelation as the forcing increases or decreases.

7.1 Adding noise to the model

Even though noisy fluctuations can be sufficient to cause a system to undergo an abrupt transition,
the noise will usually have to be very strong in order to push the system out of a stable state.

When noise is added to our model we get a combination of a B- and N-tipping, i.e., a noisy
linear forcing which forces the system close to a tipping point. The noise may cause the system to
tip over earlier or later compared to the case with just a linear forcing. Adding noise to the model
changes the partial differential equation we are solving from 3.1 to

c
∂T
∂ t

=−A−BT +αS+D∇
2T +F +N(t) (7.1)

where N is the noise.

The noise added to the the forcing is white noise, created by randomly selecting from a normal
distribution N (0,σ), where σ can be adjusted to increase the noise level.

Introducing noise to the model makes it more realistic. The real-world forcing does is not as
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shown in Chapter 4. Chaotic weather systems cause fluctuations that force the climate system in a
nosy manner.

For each model experiment we made 10 independent runs. The model experiments were set up
the same way as described in case 2 in Chapter 4. The results are summarized in Figures 7.1, 7.2,
7.3, and 7.4.
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Figure 7.1: Global average temperature response to noisy forcing to and from Snowball Earth
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Figure 7.2: Ice area response to noisy forcing to and from Snowball Earth
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Figure 7.3: Global average temperature response to noisy forcing to and from Snowball Earth
without land
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Figure 7.4: Ice area response to noisy forcing to and from Snowball Earth wihout land

This was not done exclusively for Case 1, as it would be included in Case 2.
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7.2 Variance and lag-1 correlation

Using the ideas from Chapter 6, we can calculate whether or not there where any warning signals
in the runs shown above. Methods for calculating variance and autocorrelation are shown in Ap-
pendix B. The variance and autocorrelation were only calculated up until the noisy runs reached
the bifurcation point. After the run bifurcates the data is not usable for EWS analysis.

The red lines in the plots are linear regressions of the data points in each plot.
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Figure 7.5: Variance of noisy forcing until bifurcation with land
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(a) Variance in temperature when
forcing towards snowball Earth, no land
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Figure 7.6: Variance of noisy forcing until bifurcation without land

The variance in ice area when forcing the system out of snowball Earth was zero, meaning
there was no difference in the run without noise and runs with noise. This is because in snowball
Earth, the entire Earth is covered in ice, and in this model a small perturbation is not enough to
melt some of the ice. The only point the perturbation is able to melt some ice, is at the bifurcation
point.
Something similar to this happens when we look at the ice area when the system is forced from
a warm state towards snowball Earth. When the forcing is very high, and there is no ice on the
surface, the noise is not enough to spontaneously form ice.

When the variance is zero, it is not possible to calculate the autocorrelation. Therefore the au-
rocorrelation in ice area when forcing from snowball Earth is not included.
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Figure 7.7: ACF of noisy forcing until bifurcation
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Chapter 8

Discussion and Analysis

This chapter will elaborate on the results from Chapter 5 and 7.

8.1 The Tipping Points

The tipping points studied in this thesis are in reality very complex phenomena, but the model used
is relatively simple. Even though the model produced the two hysteresis loops, it is not sufficient
by any means. When the Earth’s climate transitions from the snowball state to our current state,
it should be able to transition to a climate where there is still ice present on the Earth as shown
in Figure 4.2. However, as seen in Figure 5.2 and 5.4, it transitioned directly to a climate warmer
than ours and without ice.

We suspect that adding a realistic formation and melting of ice, and couple the model to a deep
ocean may help in slowing down this tipping.
In reality the ice does not suddenly disappear when the temperature reaches a given temperature
threshold, but that starts the melting process. This would slow down the change in albedo, and
therefore also the ice-albedo feedback.
Adding deep ocean to the model would give more realistic values of the thermal inertia of the cli-
mate model.

Even though the forcings and temperature used in this thesis are arbitrary units, we can still com-
pare Figure 5.2 and 5.5. The transition from snowball Earth happened at a greater forcing for the
run without land than the run with land. This is the same with the transition to snowball Earth.
Meaning that the inclusion of land area in this model ”shifts” the temperature profile to the left,
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relative to the forcing.

8.2 Earth hysteresis loops

The only thing that has changed between Figure 5.2 and 5.5 was the removal of land masses. How-
ever, there is a noticeable difference in the hysteresis loops of the two plots. This is evidence that
land masses play a big part in forming the second hysteresis loop, between our current climate and
one which is warmer and with less ice.

With global warming, the sudden increase in temperatures shown in Figure 5.1 is very interest-
ing. In this model, the jump in temperature happens at the same time as a sudden loss of ice shown
in 5.3. The jump in temperature and the loss of ice go hand-in-hand.

Comparing the temperature profiles and their respective ice area profiles, shows a direct link be-
tween the two. When the temperature profile had two hysteresis loops, so did the ice area profile,
giving an ice area bifurcation. This co-dependency between the ice area and temperature makes
the recent loss of Arctic sea-ice even more pertinent.

In the article by Rose and Marshall [20] they found that adding a more complex representation
of heat transport resulted in additional bifurcations in the small ice cap instability. We did not
observe additional bifurcations with more complex heat transfer alone, but with land area we saw
a second hysteresis loop.

8.3 Early warning signals

For most of the cases studied in this thesis, there was some increase in variance as the system
approached the tipping point. However, the autocorrelation was not as reliable. Due to there only
being 10 realisations in our ensembles, there may not be enough data to draw strong conclusions.
Nevertheless we get an idea of the trends. The only time series which saw an increase in both
variance and autocorrelation was in ice area when forcing the system away from snowball Earth.
This means that this was the only TP in which EWS were detected; the rest are missed alarms.

The second hysteresis loop that occurs when land is included, could be a reason for the missed
alarms for the transitions to snowball Earth. Because this is a small TP, the variance and autocorre-
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lation can be affected by the small loop that occurs. This cannot be completely ruled out as a cause,
but given that we did not observe EWS for the same TP when there was no land, it is unlikely.

As mentioned earlier, one of the reasons for missed alarms could be high noise levels. To ac-
count for this, we tested for EWS with different values for the noise level σ (in intervals of 0.5
from 1 to 10). EWS where not observed for any of these values for σ . The rate change in the
forcing was also varied.

This leads us to believe that the more complex heat transport may be the cause of these missed
alarms.

8.4 Spatial Sensitivity

Figure 5.7 was as we expected it to be. When the planet is entirely covered in ice, the co-albedo
is constant. This means that the spatial temperature is only dependent on the incoming radiation
from the sun and the transport of heat.
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(a) Mean temperature of longitude lines of the
Earth in Snowball state
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Figure 8.1: Temperature response of the Earth to different forcing in Snowball state

The profile of the temperature is the same as long as the climate is in snowball state. As forcing
increases or decreases, this curve will just move up and down. This is shown in Figure 8.1, where
x is the longitudinal coordinate with x = 0 being the North pole and x = 37 being the South pole.
If the temperature of the equator is increased just slightly, this can lead to a melting of the ice,
changing the albedo of this area. This will lead to more energy being absorbed, warming the Earth
even more. This will cause a positive feedback effect where ice melting can cause even more ice
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to melt. For this to happen at the poles, we need a stronger perturbation than at the equator, since
the poles are colder than the equator.

For the transition from snowball Earth we found that the equator is the most sensitive, but it is
not always that simple. From Figure 5.7 we see that areas with land masses are more sensitive. It
might be this way because ice forms first on land, since the temperature required to form ice on
land is higher than in the oceans. The ice-formation will change the albedo and cool the planet
even further. Once again, causing a postive feedback loop.

Ideally when looking at spatial sensitivity we want high spatial resolution. This means that the
areas perturbed are smaller and the graphics of the result are better. If the areas perturbed become
smaller, the size of perturbing must be larger to yield the same effect. This, and the amount of
iterations needed to perturb the entire surface of Earth, is very computationally costly. Therefore,
the spatial resolution we show here is not very high, but it gives an idea of the spatial sensitivity of
the Earth when it is close to a TP.
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Chapter 9

Concluding remarks

9.1 Summary

We have shown that including land area is necessary for the global average temperature to have two
hysteresis loops in a diffusive EBM. Surprisingly, the transition from snowball Earth ”jumped” to
a warmer climate than expected. Nonetheless, this is an interesting result.

We where not able to confidently detect EWS in the cases we tested. One of the reasons for
this could be the low number of realizations in our ensembles. It could also be that the model is
more complex than the standard models used to demonstrate EWS.

The spatial sensitivity of the Earth when close to a TP showed that generally, the Equator is the
most sensitive part. This result was as expected, but still very interesting.

9.2 Further work

Even though the model is dependent on time, the timescale has not been a focus in this thesis. It
would be very fascinating to explore how fast these transitions happen, and to see if the introduc-
tion of land has changed the speed of the transitions. In this respect, it would also be interesting to
couple the model to a deep ocean to get realistic values of the thermal inertia of the climate system.

It would also be very interesting to calculate the spatial sensitivity with higher resolution.

In conclusion, we where able to produce two hysteresis curves, but as explained above, the transi-
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tion from snowball Earth was not as we expected. It would be interesting to explore this in more
detail.
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Appendix A

Implementation of model

A.1 Heat transport on a sphere

The temperature change on a sphere by heat transport is

c
∂T
∂ t

= D∇
2T

where the Laplace operator ∇2 is defined as

∇
2 f =

1
r

∂ 2

∂ r2 (r f )+
1

r2 sinθ

∂

∂θ

(
sinθ

∂ f
∂θ

)
+

1
r2 sin2

θ

∂ 2 f
∂ϕ2

Here f is a random function, r is the radius of the sphere, θ is the angle of the latitude and ϕ is the
longitudinal angle. Inserting this into the transport equation, we get

D∇
2T = D

[
1
r

∂ 2

∂ r2 (rT )+
1

r2 sinθ

∂

∂θ

(
sinθ

∂T
∂θ

)
+

1
r2 sin2

θ

∂ 2T
∂ϕ2

]
(A.1)

T is the temperature at sea-level and D is the thermal diffusion coefficient. We also define x= cosθ

Because we are only looking at the shell of the Earth, there are no changes in r. Therefore ∂ 2

∂ r2 = 0.
We also assume symmetry in longitudinal direction for now, there are no changes in ϕ .Therefore
∂ 2

∂ϕ2 = 0.
For simplicity we also scale the earth so that r = 1. Equation A.1 then becomes

D∇
2T = D

[
1

sinθ

∂

∂θ

(
sinθ

∂T
∂θ

)]
(A.2)
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We start by looking at
1

sinθ

∂

∂θ

(
sinθ

∂T
∂θ

)
Using the product rule, we get

∂ 2T
∂θ 2 +

cosθ

sinθ

∂T
∂θ

By the chain rule, we have

∂T
∂θ

=
∂x
∂θ

∂T
∂x

=
∂

∂θ
(cosθ)

∂T
∂x

=−sinθ
∂T
∂x

∂ 2T
∂θ 2 =

∂ 2T
∂x2

(
∂x
∂θ

)2

+
∂T
∂x

∂ 2x
∂θ 2 =

∂ 2T
∂x2 sin2

θ − cosθ
∂T
∂x

This means that the right hand side of equation A.2 is now

D
[

sin2
θ

∂ 2T
∂x2 − cosθ

∂T
∂x
− sinθ

cosθ

sinθ

∂T
∂x

]

D
[

sin2
θ

∂ 2T
∂x2 −2cosθ

∂T
∂x

]
Now we can use x = cosθ which means that sinθ =

√
1− x2.

D∇
2T = D

[
−2x

dT
dx

+(1− x2)
d2T
dx2

]
(A.3)

Now we discretize x, we choose a uniform grid xi,0 ≤ i ≤ n with spacing ∆x = 1/n such that
xi =−1+2i∆x. The reason for defining xi in such a way, is to have xi ∈ [−1,1] This means that T
is now T (xi, t)

We can approximate ∂Ti
∂xi

and ∂ 2Ti
∂x2

i
using centered difference. The first order derivative is then

∂Ti

∂xi
≈ Ti+1−Ti−1

2∆x

and the second-order derivative is

∂ 2Ti

∂x2
i
≈ Ti+1−2Ti +Ti−1

∆x2
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The right hand side of equation A.3 is then

D
[
−xi

Ti+1−Ti−1

∆x
+(1− x2

i )
Ti+1−2Ti +Ti−1

∆x2

]

D
[(

xi

∆x
+

1− x2
i

∆x2

)
Ti−1−2

(
1− x2

i
∆x2

)
Ti +

(
− xi

∆x
+

1− x2
i

∆x2

)
Ti+1

]
We now look at heat transport along the longitudinal direction, therefore ∂ 2

∂ϕ2 6= 0 we have

D∇
2T = D

[
1

sinθ

∂

∂θ

(
sinθ

∂T
∂θ

)
+

1
sin2

θ

∂ 2T
∂ϕ2

]
(A.4)

So we need to take a look at
1

sin2
θ

∂ 2T
∂ϕ2 (A.5)

We start by defining y = ϕ , the we simply have

1
1− x2

∂ 2T
∂y2

Now we discretize y, we choose a uniform grid y j,0 ≤ j ≤ 2π with spacing ∆y = 1/m such that
y j = 2π∆y. The reason for defining y j in such a way, is to have it go around the equator and come

back to the same point it started at. We can approximate ∂ 2Tj

∂y2
j

using centered difference.

∂ 2Tj

∂y2
j
≈

Tj+1−2Tj +Tj−1

∆y2

Then equation A.4 becomes

(A.6)D
[(

xi

∆x
+

1− x2
i

∆x2

)
Ti−1, j − 2

(
1− x2

i
∆x2

)
Ti, j

+

(
− xi

∆x
+

1− x2
i

∆x2

)
Ti+1, j +

(
1

1− x2
i

)
Ti, j+1 − 2Ti, j + Ti, j−1

∆y2

]
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A.2 Area of a grid cell

The area between a line of lattitude and the North Pole is

A = 2π ·R ·h (A.7)

where R is the radius og the Earth an h is the perpendicular distance plane containing the line of
latitude to the pole.

h = R(1− sin lat)

Inserting this into A.7 gives us
A = 2π ·R2(1− sinθ) (A.8)

The area between to lines of latitude is therefore

A = 2π ·R2|sinθ1− sinθ2| (A.9)

The area of a latitude longitude rectangle is proportional to the difference in longitudes. Therefore
the area we seek is

A = 2π ·R2|sinθ1− sinθ2||ϕ1−ϕ2|/360

A =
π

180
·R2|sinθ1− sinθ2||ϕ1−ϕ2| (A.10)

Using that θ =
√

1− xi and ϕ = yi this equation becomes

Ai, j =
π

180
R2|
√

1− x2
i −
√

1− x2
i+1|·|y j− y j+1|
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Appendix B

Calculating σ 2 and ρ

The variance σ2 is simply the square of the ensemble member subtracted from the run without
noise.

σ
2 =

1
N

N−1

∑
i=0

(Xi− X̄)2 (B.1)

where N is the ensemble size, Xi is the ensemble member and X̄ is the run without noise.

Autocorrelation function ρ is the correlation between two lag 1 offset windows of the time se-
ries.

ρ =
1

N−1

j−1

∑
j=1

(X j,i,1−µ)(X j,i,2−µ)

σ2 (B.2)

where X j,i,1 = [x j,i+1, . . . ,x j,i+p], X j,i,2 = [x j,i, . . . ,x j,i+p−1], x j is the ensemble member j, p is
the length of the window and µ is the mean.
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Appendix C

Mathematica code
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Importing a map of the Earth

δ = 5;
data = GeoElevationData[

GeoPosition[Table[{lat, lon}, {lat, -90, 90, δ}, {lon, 0, 360, δ}]]];
data2 = Map[UnitStep[#[[1]]] &, Flatten[data]];
data2 = Partition[data2, Dimensions[data][[2]]];

(*For aquaplanet run this cell*)
(*data2={};
Do[
data2=Append[data2,0]
,{i,0,2701}];
data2=Partition[data2,m];*)

Defining parameters
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n = Dimensions[data2][[1]] - 1;
m = Dimensions[data2][[2]];
A = 200.;

B = 1  0.22;

d = 0.38;
s2 = -0.482;
b0 = 0.38;
a0 = 0.697;
a2 = -0.0779;
Q = 334.4;
cc = 1;
q = 10;

US = 1 + Tanh[q #]  2 & ;

d = 0.5 + 0.0125 * Flatten[data2];

M = (n + 1) * m;
Δx = 1. / n;

x = Table-1. + 2 i  n, {i, 0, n};

S = Table[1 + s2 * LegendreP[2, x], {m}];

F = TableSign-1. + 2 i  n, {i, 0, n};

F = Flatten[Transpose[Table[F, {m}]]];
F2 = Table[1, {i, 0, n}];
F2 = Flatten[Transpose[Table[F2, {m}]]];
x = Flatten[Transpose[Table[x, {m}]]];
Δy = N[2 π / m];

y = TableN2 π i  m, {i, 0, m - 1};

S = Flatten[Transpose[S]];

R = 0.7 * Flatten[data2] + 0.8 * 1 - Flatten[data2]^2;

Tc = -3 * Flatten[data2] + (-5) * 1 - Flatten[data2]^2;

a = x / Δx + 1 - x^2  Δx^2;

b = -2 1 - x^2  Δx^2;

c = -x / Δx + 1 - x^2  Δx^2;

plus1[tall_] := 

If[Mod[tall, m] ⩵ 0,
Return[tall - (m - 1)];,
Return[tall + 1];

];



minus1[tall_] := 

If[Mod[tall - 1, m] ⩵ 0,
Return[tall + (m - 1)];,
Return[tall - 1];

];



Calculating the Area of  each grid cell
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Areal
Δ1 = 1;
imax = Dimensions[data2][[1]];
jmax = Dimensions[data2][[2]];

A1 = Table

AbsSqrt1 - i - Δ1 * Δx^2 - Sqrt1 - i + Δ1 * Δx^2, i, 1, imax  2;

A2 = Reverse[A1];
A3 = Join[A1, A2];

A3 = A3  Max[A3];

Do[
A3[[i]] = A3[[i]] - 0.07777 * A3[[i]]
, {i, 1, 36, 1}]

A3 = Insert[A3, 1, 19];
ListPlot[A3]

Creating a list where temperature of grid cells can be entered

Tliste = Table[ToExpression[
StringJoin[StringJoin[ToString[T], ToString[i]], "[t]"]], {i, 1, M}];

Implementing the model

firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]], {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]], {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]]

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];

X = Table-1. + 2 i  n, {i, 0, n};

Y = Table2 π i  m, {i, 0, m - 1};

Setting a symmetric starting value of the temperatures, the starting temperature will define which 

of the stable states
the model will start in. 
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X = Table-1. + 2 i  n, {i, 0, n};

Y = Table2 π i  m, {i, 0, m - 1};

startliste = Table[ToExpression[
StringJoin[StringJoin[ToString[T], ToString[i]], "[0]"]], {i, 1, M}];

startverdier = Flatten5 + TableExp[-X[[ii]]^2] * 1 + 0.5 * Sin[Y[[jj]]],

{ii, 1, n + 1}, {jj, 1, m};

start = Table[startliste[[i]] == startverdier[[i]], {i, 1, M}];

Defining the forcing to change with time t, and creating a nested look that gives the temperature in 

each grid cell at each time step t. This forcing can be changed to get different forcing like negative 

or bigger forcing

Running the model

In this run we are forcing the system from the initial values to close to the tipping point towards 

snowball Earth

������ f = t;

������ firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];

������ Timing[
sol = NDSolve[Join[eqliste, start], Tliste, {t, 0, 6}];

]

������ {25.2937, Null}

������ løsning1 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 6, 1};

Starting form where the last run ended, we increase the forcing to warm up the Earth past the 

starting point

������ startfromtp = Table[startliste[[i]] ⩵ Last[løsning1][[i]], {i, 1, M}];
f = -6 + t;

4 ���  Master kode kopi.nb

52



������

firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + f, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + f, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + f

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];

������ Timing[
sol = NDSolve[Join[eqliste, startfromtp], Tliste, {t, 0, 66}];

]

������ {66.1439, Null}

������ løsning2 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 66, 1};

Starting from where the last run ended, we decrease the forcing to cool the Earth down to snowball 
Earth 

������ startfromwarm = Table[startliste[[i]] ⩵ Last[løsning2][[i]], {i, 1, M}];
f = -60 + t;

Master kode kopi.nb  ���5

53



������ firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];

������ Timing[
sol = NDSolve[Join[eqliste, startfromwarm], Tliste, {t, 0, 85}];

]

������ {95.3845, Null}

������ løsning3 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 85, 1};

Starting from where the last run ended, we increase the forcing to warm the Earth out of Snowball 
Earth

������ startfromcold = Table[startliste[[i]] ⩵ Last[løsning3][[i]], {i, 1, M}];
fwarming = -25 + t;

������ firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];
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������ Timing[
sol = NDSolve[Join[eqliste, startfromcold], Tliste, {t, 0, 85}];

]

������ {19.2968, Null}

������

løsning4 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 85, 1};

Creating lists of the average global temperature change with time in the runs above

gjennom = {};
Do[

mean = Mean[løsning2[[i]]];
gjennom = Append[gjennom, mean];
, {i, 1, Length[løsning2]}];

gjennom2 = {};
Do[

mean2 = Mean[løsning3[[i]]];
gjennom2 = Prepend[gjennom2, mean2];
, {i, 1, Length[løsning3]}];

gjennom3 = {};
Do[

mean3 = Mean[løsning4[[i]]];
gjennom3 = Append[gjennom3, mean3];
, {i, 1, Length[løsning4]}];

length = Length[gjennom2] - Length[gjennom];
Do[

gjennom = Prepend[gjennom, 0];
, {i, 1, Length[gjennom2] - Length[gjennom]}];

Calculating the Ice Area in each of the runs above
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ice = {};
icearea = {};
Do[

tempice = UnitStep[løsning2[[i, All]] + Tc];
ice = Append[ice, tempice];
, {i, 1, Length[løsning2]}];

Do[
icearea = Prepend[icearea, Total[ice[[i]]]];
, {i, 1, Length[løsning2]}];

ice1 = {};
icearea1 = {};

Do[
tempice1 = UnitStep[løsning3[[i, All]] + Tc];
ice1 = Append[ice1, tempice1];
, {i, 1, Length[løsning3]}];

Do[
icearea1 = Append[icearea1, Total[ice1[[i]]]];
, {i, 1, Length[løsning3]}];

ice2 = {};
icearea2 = {};

Do[
tempice2 = UnitStep[løsning4[[i, All]] + Tc];
ice2 = Append[ice2, tempice2];
, {i, 1, Length[løsning4]}];

Do[
icearea2 = Prepend[icearea2, Total[ice2[[i]]]];
, {i, 1, Length[løsning4]}];

Creating noisy run

Creating noise as a function of t

sigma = 7;
noise = Interpolation[

Table[{t, RandomReal[NormalDistribution[0, sigma]]}, {t, -1, 100}]];

Noisy forcing from warm state to snowball Earth, by running the above cell we get a new noise 

function and the noisy run can be done again.
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startfromwarm = Table[startliste[[i]] ⩵ Last[løsning2][[i]], {i, 1, M}];
f = -60 + t + noise[t];
firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] - f

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];
Timing[
sol = NDSolve[Join[eqliste, startfromwarm], Tliste, {t, 0, 100}];

]

løsning3 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 100, 1};

Noisy run from Snowball Earth to a warm state
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startfromcold = Table[startliste[[i]] ⩵ Last[løsning3][[i]], {i, 1, M}];
fwarming = -40 + t + noise[t];
firsteq =

Tablecc * D[Tliste[[i]], t] ⩵ d[[i]] * 2 * Tliste[[i + m]] - Tliste[[i]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming, {i, 1, m};

lasteq = Tablecc * D[Tliste[[i]], t] ⩵

d[[i]] * -2 * Tliste[[i]] - Tliste[[i - m]]  Δx +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming, {i, n * m + 1, n * m + m};

eqliste = Table

cc * D[Tliste[[i]], t] ⩵

d[[i]] * Simplify[a[[i]] * Tliste[[i - m]] + b[[i]] * Tliste[[i]] +

c[[i]] * Tliste[[i + m]]] + 1  Δy^2 * 1 - x[[i]]^2 *

Tliste[[plus1[i]]] - 2 Tliste[[i]] + Tliste[[minus1[i]]] +

Q S[[i]] * b0 * US[Tc[[i]] - Tliste[[i]]] + R[[i]] * US[Tliste[[i]] - Tc[[i]]] +

-A - B Tliste[[i]] + fwarming

, {i, m + 1, m * n};

eqliste = Join[firsteq, eqliste, lasteq];
Timing[
sol = NDSolve[Join[eqliste, startfromcold], Tliste, {t, 0, 110}];

]

løsning4 = TableEvaluate[Tliste /. sol] /. t → tt[[1]], {tt, 0, 110, 1};

Var and Autocorrrelation

The mathematical methods for this section can be found in appendix B in the thesis

A�er simulating a noisy run the variance of these runs can be calculated using the cell below, where 

Warmtosnowball is the run without noise

������ var11 = {};

Do

vartemp11 = 1  Length[EWSto1] * EWSto1[[i]] - Warmtosnowball[[i]]^2;

var11 = Append[var11, vartemp11];

, {i, 1, Length[EWSto1]};

var12 = {};

Do

vartemp12 = 1  Length[EWSto2] * EWSto2[[i]] - Warmtosnowball[[i]]^2;

var12 = Append[var12, vartemp12];

, {i, 1, Length[EWSto2]};

var13 = {};

Do

vartemp13 = 1  Length[EWSto3] * EWSto3[[i]] - Warmtosnowball[[i]]^2;

var13 = Append[var13, vartemp13];

, {i, 1, Length[EWSto3]};

var14 = {};

10 ���  Master kode kopi.nb

58



Do

vartemp14 = 1  Length[EWSto4] * EWSto4[[i]] - Warmtosnowball[[i]]^2;

var14 = Append[var14, vartemp14];

, {i, 1, Length[EWSto4]};

var15 = {};

Do

vartemp15 = 1  Length[EWSto5] * EWSto5[[i]] - Warmtosnowball[[i]]^2;

var15 = Append[var15, vartemp15];

, {i, 1, Length[EWSto5]};

var16 = {};

Do

vartemp16 = 1  Length[EWSto6] * EWSto6[[i]] - Warmtosnowball[[i]]^2;

var16 = Append[var16, vartemp16];

, {i, 1, Length[EWSto6]};

var17 = {};

Do

vartemp17 = 1  Length[EWSto7] * EWSto7[[i]] - Warmtosnowball[[i]]^2;

var17 = Append[var17, vartemp17];

, {i, 1, Length[EWSto7]};

var18 = {};

Do

vartemp18 = 1  Length[EWSto8] * EWSto8[[i]] - Warmtosnowball[[i]]^2;

var18 = Append[var18, vartemp18];

, {i, 1, Length[EWSto8]};

var19 = {};

Do

vartemp19 = 1  Length[EWSto9] * EWSto9[[i]] - Warmtosnowball[[i]]^2;

var19 = Append[var19, vartemp19];

, {i, 1, Length[EWSto9]};

var110 = {};

Do

vartemp110 = 1  Length[EWSto10] * EWSto10[[i]] - Warmtosnowball[[i]]^2;

var110 = Append[var110, vartemp110];

, {i, 1, Length[EWSto10]};

������ var1plot = {};

������

Do

plot1temp = var11[[Length[var11] - i]] + var12[[Length[var12] - i]] +

var13[[Length[var13] - i]] + var14[[Length[var14] - i]] +

var15[[Length[var15] - i]] + var16[[Length[var16] - i]] +

var17[[Length[var17] - i]] + var18[[Length[var18] - i]] +

var19[[Length[var19] - i]] + var110[[Length[var110] - i]]  10;

var1plot = Prepend[var1plot, plot1temp];

, {i, 0, 65 - 1};
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������ model1 = LinearModelFit[var1plot, x, x]

������ pl1 = Plot[model1[x], {x, 0, 62}, PlotStyle → Red];

������ plvar1 = ListPlot[var1plot];

The autocorrelation of the noisy run with linear regressions:

������ acf[rekke_, τ_] :=

Mean[Drop[rekke - Mean[rekke], τ] * Drop[rekke - Mean[rekke], -τ]]  Variance[rekke]

������ gg11 = Fit[Transpose[{EWSto1, Range[Length[EWSto1]]}][[1 ;; Length[EWSto1]]],
{zz^2, zz, 1}, zz];

gg12 = Fit[Transpose[{EWSto2, Range[Length[EWSto2]]}][[1 ;; Length[EWSto2]]],
{zz^2, zz, 1}, zz];

gg13 = Fit[Transpose[{EWSto3, Range[Length[EWSto3]]}][[1 ;; Length[EWSto3]]],
{zz^2, zz, 1}, zz];

gg14 = Fit[Transpose[{EWSto4, Range[Length[EWSto4]]}][[1 ;; Length[EWSto4]]],
{zz^2, zz, 1}, zz];

gg15 = Fit[Transpose[{EWSto5, Range[Length[EWSto5]]}][[1 ;; Length[EWSto5]]],
{zz^2, zz, 1}, zz];

gg16 = Fit[Transpose[{EWSto6, Range[Length[EWSto6]]}][[1 ;; Length[EWSto6]]],
{zz^2, zz, 1}, zz];

gg17 = Fit[Transpose[{EWSto7, Range[Length[EWSto7]]}][[1 ;; Length[EWSto7]]],
{zz^2, zz, 1}, zz];

gg18 = Fit[Transpose[{EWSto8, Range[Length[EWSto8]]}][[1 ;; Length[EWSto8]]],
{zz^2, zz, 1}, zz];

gg19 = Fit[Transpose[{EWSto9, Range[Length[EWSto9]]}][[1 ;; Length[EWSto9]]],
{zz^2, zz, 1}, zz];

gg110 = Fit[Transpose[{EWSto10, Range[Length[EWSto10]]}][[
1 ;; Length[EWSto10]]], {zz^2, zz, 1}, zz];
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������ glatt11 = Table[Max[Flatten[Solve[gg11 ⩵ i, zz]][[All, 2]]], {i, 1, 61}];
glatt12 =

Table[Max[Flatten[Solve[gg12 ⩵ i, zz]][[All, 2]]], {i, 1, Length[EWSto2]}];
glatt13 = Table[Max[Flatten[Solve[gg13 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto3]}];
glatt14 = Table[Max[Flatten[Solve[gg14 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto4]}];
glatt15 = Table[Max[Flatten[Solve[gg15 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto5]}];
glatt16 = Table[Max[Flatten[Solve[gg16 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto6]}];
glatt17 = Table[Max[Flatten[Solve[gg17 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto7]}];
glatt18 = Table[Max[Flatten[Solve[gg18 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto8]}];
glatt19 = Table[Max[Flatten[Solve[gg19 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto9]}];
glatt110 = Table[Max[Flatten[Solve[gg110 ⩵ i, zz]][[All, 2]]],

{i, 1, Length[EWSto10]}];

������ y11 = EWSto1[[1 ;; Length[glatt11]]] - glatt11;
y12 = EWSto2[[1 ;; Length[glatt12]]] - glatt12;
y13 = EWSto3[[1 ;; Length[glatt13]]] - glatt13;
y14 = EWSto4[[1 ;; Length[glatt14]]] - glatt14;
y15 = EWSto5[[1 ;; Length[glatt15]]] - glatt15;
y16 = EWSto6[[1 ;; Length[glatt16]]] - glatt16;
y17 = EWSto7[[1 ;; Length[glatt17]]] - glatt17;
y18 = EWSto8[[1 ;; Length[glatt18]]] - glatt18;
y19 = EWSto9[[1 ;; Length[glatt19]]] - glatt19;
y110 = EWSto10[[1 ;; Length[glatt110]]] - glatt110;
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������ Δt = 11;

cor11 = Tablet, acfy11t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y11] - Δt  2;

cor12 = Tablet, acfy12t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y12] - Δt  2;

cor13 = Tablet, acfy13t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y13] - Δt  2;

cor14 = Tablet, acfy14t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y14] - Δt  2;

cor15 = Tablet, acfy15t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y15] - Δt  2;

cor16 = Tablet, acfy16t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y16] - Δt  2;

cor17 = Tablet, acfy17t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y17] - Δt  2;

cor18 = Tablet, acfy18t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y18] - Δt  2;

cor19 = Tablet, acfy19t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y19] - Δt  2;

cor110 = Tablet, acfy110t - Δt  2 ;; t + Δt  2, 1,

t, Δt  2 + 1, Length[y110] - Δt  2;

������

acf1 = {};

Do

acf1temp = cor11[[Length[cor11] - i, 2]] + cor12[[Length[cor12] - i, 2]] +

cor13[[Length[cor13] - i, 2]] + cor14[[Length[cor14] - i, 2]] +

cor15[[Length[cor15] - i, 2]] + cor16[[Length[cor16] - i, 2]] +

cor17[[Length[cor17] - i, 2]] + cor18[[Length[cor18] - i, 2]] +

cor19[[Length[cor19] - i, 2]] + cor110[[Length[cor110] - i, 2]]  10;

acf1 = Prepend[acf1, acf1temp];

, {i, 0, 49};

������ PL1 = ListPlot[acf1, PlotRange → All, Joined → True];
model1 = LinearModelFit[acf1, x, x]

model1[60] - model1[0]  model1[0]

PL2 = Plot[model1[x], {x, 0, Length[acf1]}, PlotStyle → Red];
Show[PL1, PL2]

Spatial sensitivity

A�er finding a stable solution (in this case it it called startclose) use the following cell to perturb it
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������ Timing

i = 10;
j = 20;
L = {};

Monitor

Do

center = {i, j};
Δ1 = 4;
Δ2 = 8;
u = 45;
pertsize = u * A3[[i]];
pert = Table[0, Length[startclose]];
pert = Partition[pert, Dimensions[data][[2]]];

pertcenter[[1]] - Δ1  2 ;; center[[1]] + Δ1  2, center[[2]] - Δ2  2 ;;

center[[2]] + Δ2  2 = pertcenter[[1]] - Δ1  2 ;; center[[1]] + Δ1  2,

center[[2]] - Δ2  2 ;; center[[2]] + Δ2  2 + pertsize;

pert = Flatten[pert];
startp = Table[

ToExpression[StringJoin[{ToString[startclose[[k]][[1]]], "==", ToString[
startclose[[k]][[2]] + pert[[k]]]}]], {k, 1, Length[startclose]}];

sol = NDSolve[Join[eqliste, startp], Tliste, {t, 0, 5}];

mean = MeanEvaluate[Tliste /. sol] /. t → 5[[1]];

L = Append[L, {i, j, mean}];

, {i, Δ1 + 1, imax - Δ1, Δ1}, {j, Δ2 + 1, jmax - Δ2, Δ2};

, {i, j};

Export["Desktop/Lc45.txt", L];
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