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Summary 

Tripartite motif family proteins (TRIMs) are a wide family of E3 ligases involved in the control of 

several cellular processes such as intracellular signaling, innate immunity, transcription, cell cycle 

regulation and carcinogenesis. In recent years, some members of this family have been found to have a 

role in autophagy.  

The central theme of this thesis is the role of two TRIM proteins in selective autophagy. I joined 

this project born from a screen of 22 different TRIM proteins using the double-tag assay, which 

represented the 11 TRIM family subgroups. The goal of this screen was to identify candidates with a 

potential role in autophagy, alleging that their presence in the lysosome linked them somehow with the 

autophagy process. From our screen, TRIM27 and TRIM32 were identified as new potential autophagic 

substrates, and we decided to further investigate their role in autophagy.  

We found that TRIM27 has an effect in starvation-induced autophagy and associates with core 

autophagy proteins and the autophagy receptors p62/SQSTM1 and NBR1. Furthermore, TRIM27 

interacts directly with and ubiquitylates p62/SQSTM1. We established TRIM27 KO cells, which 

showed high expression levels of the lysosomal protein LAMP2 and formation of big LAMP2 rings in 

the cytosol.. TRIM27 is proposed to act as an oncogene. In line with this, we identify TRIM27 mRNA 

levels to be strongly upregulated in cancer tissue from breast cancer patients. Intriguingly, we found the 

protein level of TRIM27 in various breast cancer cell lines to be inversely correlated with LAMP2 and 

LC3B expression. This suggests a potential role of TRIM27 in autophagy in certain types of breast 

cancer.  

We also examined the autophagic role of TRIM32, including two mutant variants of TRIM32 

that are associated with Limb-Girdle-Muscular-Dystrophy 2H (LGMD2H) or Bardet-Biedl-Syndrome 

11 (BBS11), respectively. First, we found that TRIM32 is directed to autophagic degradation by 

p62/SQSTM1, but also act as a regulator of p62/SQSTM1 autophagic activity. This formed a feedback 

loop that was controlled by the direct interaction and ubiquitylation of p62/SQSTM1 by TRIM32. 

Interestingly, the TRIM32 mutant implicated in the muscular dystrophy disease LGMD2H failed to 

ubiquitylate p62/SQSTM1. Next, we further studied the role of TRIM32 towards the other proteins in 

the SLRfamily of autophagy receptors. We found that TRIM32 interacts and ubiquitylates the autophagy 

receptor NDP52, stabilizes the phosphorylated form of the autophagy regulator TBK1 and facilitates 

mitophagy. Lastly, we studied how TRIM32 auto-ubiquitylation regulates its activity and stability. We 

found that TRIM32 contains a PEST sequence, which exposure seems to be regulated by ubiquitylation 

and acetylation. This was a novel finding since to date, no PEST sequence has been identified in TRIM 

proteins. Taken together, these findings highlight the pivotal role of TRIM27 and TRIM32 as regulators 

of selective autophagy. 
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“En resumen: toda obra grande es el fruto de la paciencia y de la perseverancia, combinadas 

con una atención orientada tenazmente durante meses y aun años hacia un objeto particular.” 

“In summary, all great work is the fruit of patience and perseverance, combined with tenacious 

concentration on a subject over a period of months or years.”  

 

 

Reglas y consejos sobre investigación científica,1899 

Santiago Ramón y Cajal 
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Introduction 

Planet earth can be a hostile place, where organisms of all sorts are in a constant fight for 

survival. Evolution has provided cells the ability to improve the quality of those survival 

mechanisms, arriving to very high complex networks that work coordinately to try to ensure 

the continuity of the species. At a cellular level, eukaryote cells have developed a high degree 

of complexity in order to maintain homeostasis.  

 

Introduction to the Ubiquitin/Proteasome (UPS) system 

Synthesis and clearance of functional proteins regulate their availability within the cell, 

adapting the protein pool to the cellular needs. Thus, protein degradation is a crucial element in 

the maintenance of cellular homeostasis. In addition to the level, also the functionality of 

cellular proteins are continuously checked. For this purpose, the cell has several mechanism 

that work together to ensure the quality and functionality of the synthetized proteins. The 

protein quality control system of the cell monitors the complete life cycle of a protein at the 

different steps of its synthesis, acting as a surveillance mechanism (Pohl and Dikic 2019). From 

the very first stages of protein translation, there are cellular components in charge of controlling 

the quality of mRNA and their nascent protein products, so in case of mistakes they do not 

continue further of the synthesis chain (Dikic 2017). Furthermore, chaperons help on the protein 

folding process, as well as detecting misfolded proteins and send them for degradations if the 

efforts for correct folding fails (Saibil 2013). The cell is in constant battle in order to maintain 

its homeostasis, which leads to a constant control of protein concentration, as well as 

remodeling, repair or elimination of those proteins that became damaged. If the cell is not able 

to degrade those proteins at a certain moment, they can also be sequestered in special 

compartments until the cell is able to proceed to their degradation (Sontag, Samant, and 

Frydman 2017) . Such a crucial process for the cell’s well-being is tightly regulated in a spatially 

and timely manner through two main systems: the ubiquitin-proteasome system (UPS) and the 

lysosomal-mediated proteolysis (hereafter autophagy) (Figure 1). Around 80-90% of proteins 

are degraded through the UPS system whereas the remaining 10-20% are degraded by the 

lysosomal-mediated proteolysis. In general, small short-lived proteins are the main substrates 

for the proteasome, while long-lived proteins and bigger structures such as protein aggregates 

or whole organelles are mainly degraded by autophagy (Kleiger and Mayor 2014; Ding et al. 
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2014). However, these two systems are highly interconnected, thus, different degradation 

patterns can be observed depending on the cellular conditions.  

 

 

 

 

 

 

 

 

 

 

 

The ubiquitin-proteasome system consists in a well-defined network of components 

which act together to tag proteins for degradation. The main tag is a 76 amino acid globular 

protein called ubiquitin (Yu and Matouschek 2017). Targeted proteins are conjugated to 

ubiquitin by the mediation of three sequential reactions (Figure 2). The first reaction is the 

activation of ubiquitin by E1 enzymes, which is the only step of the process that requires ATP. 

The second members of the cascade are E2 enzymes, which conjugate ubiquitin for its delivery 

to the next step. The third and last reaction is mediated by E3 ligases that make possible the 

binding of the activated ubiquitin to the target molecule (Oh, Akopian, and Rape 2018). 

According to current knowledge, in the human genome there are two E1 enzymes genes, 40 E2 

genes and around 600 E3 ligase genes (Celebi et al. 2020) . Thus, while E1 and E2 enzymes are 

highly conserved and in most cases do not present much specificity, whereas E3 ligases are in 

charge of recognizing the substrate, which makes them the main regulator of ubiquitylation.  

 

Figure 1. Protein quality control of eukaryotic cells.  Chaperones facilitate the folding of nascent polypeptides and refolding 

of misfolded proteins. The UPS degrades both misfolded/damaged proteins and excess native proteins in the cell. The 

autophagy-lysosomal pathway removes protein aggregates formed by the misfolded proteins that have escaped from the 

surveillance of chaperones and the UPS. (X. Wang and Su 2010) 

 



- 3 - 

 

 

Figure 2. Enzymatic reaction of ubiquitylation. For activation of the ubiquitylation process, E1 enzyme makes a thioester 

bond with the ubiquitin molecule, and the required energy is supplied by the hydrolysis of ATP. In the conjugation step, the 

ubiquitin on the E1 enzyme is transferred to the E2 enzyme. Finally, the substrate–E3 enzyme bond is involved, and the C-

terminal of the ubiquitin molecule makes a covalent bond with the substrate. (Celebi et al. 2020) 

 

Ubiquitylation consists in the covalent binding of an ubiquitin molecule to a protein. 

The most common type of ubiquitylation is called canonical ubiquitylation and is defined by 

the formation of an isopetide bond between a lysine residue of the target protein and the C-

terminal glycine 76 of an ubiquitin molecule (mono- ubiquitylation) (Kleiger and Mayor 2014). 

Other molecules of ubiquitin can then be attached to that mono-ubiquitin in eight potential sites: 

M1, K6, K11, K27, K29, K33, K48 and K63, which originate different linkages of polyubiquitin 

chains (poly- ubiquitylation). In addition, there may exist branched linkage types (Dikic 2017), 

and other ubiquitin-like proteins may also be conjugated to ubiquitin, such is the case of SUMO 

or NEDD8 molecules (Swatek and Komander 2016). Overall, this provides a wide range of 

combinations referred as “ubiquitin code” that is essential in directing the cellular fate of the 

ubiquitylated protein. Ubiquitin as a post-translational modification (PTM) that plays a role in 

many cellular processes such as DNA repair response, cell cycle regulation, autophagy, cellular 

differentiation and cell-mediated immunity (Yu and Matouschek 2017; Kwon and Ciechanover 

2017). 

The established ubiquitin modification shown to label proteins for degradation by the 

UPS is the addition of K48-linked chains. Ubiquitylated proteins tagged for degradation by the 

UPS are transported to the 26S proteasome, more commonly called “the proteasome” (Figure 

3). The 26S proteasome is a barrel-shaped proteolytic organelle formed by the 20S central 

catalytic complex and two 19S complexes that function as a lid (Bard et al. 2018). The 

degradation and recycling of proteins occurs in the 20S central subunit, whereas the 19S 
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complexes regulate the binding to cargo-loaded shuttling proteins, deubiquitylate the substrates 

and channel them into the inner core of the proteasome (Budenholzer et al. 2017).  

 

 

 

 

 

 

 

 

 

Ubiquitylation: A full world beyond protein degradation 

In the beginning, ubiquitin was identified merely as a tag for degradation, however in the last 

decades evidences have shown that ubiquitin has other important roles beyond tagging a protein 

for degradation in the proteasome. Ubiquitylation is a reversible modification that shows a high 

level of specificity, this makes the ubiquitin-dependent signaling very rapid and dynamic (Jia 

Liu et al. 2015). Therefore, it is not surprising that ubiquitylation as a signaling mechanism is 

involved in numerous cellular processes that require a quick switch. Among those processes 

can be found chromatin architecture, gene-specific transcription, DNA repair, protein quality 

control at the translational level, protein transport, control of signal transduction and cellular 

defense against pathogens (Oh, Akopian, and Rape 2018). 

Histones can be modified by the addition of one or more molecules of ubiquitin. 

Depending on the type of linkage, the outcome can lead to different consequences in controlling 

gene expression, DNA methylation or DNA repair (Meas and Mao 2015). Interestingly, de-

ubiquitinases (DUBs) work doing the opposite roles of E3 ligases, removing ubiquitin from 

previously ubiquitylated proteins (Wilkinson 2009). At first, it was thought that the only role 

of the dynamic between E3 ligases and DUBs was merely counteract each other’s actions. 

However, it has been shown that these two enzymes acting in direct opposition can generate a 

more complex signaling output. An example of this mechanism has been shown during the 

Figure 3. Structure of proteasome and degradation of ubiquitylated substrates. The 26S proteasome has a multicomplex 

structure that is composed of a 19S regulatory units and a 20S catalytic core unit. In the 19S regulatory complex, the 

ubiquitinated proteins are unfolded, and ubiquitin tags are separated from the protein by deubiquitinase enzymes. 

Consequently, the unfolded polypeptide chain is delivered to the 20S catalytic core complex where they are degraded into 

small peptides. (Celebi et al. 2020) 
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process of mitophagy (autophagy of mitochondria), when an activation of the E3 ligase 

PARKIN and an inhibition of the counteracting USP30 take place simultaneously. This leads 

to a rapid tagging of defective mitochondria with a dense ubiquitin signal that will lead to its 

prompt degradation. (Cunningham et al. 2015) Therefore, it is not uncommon to find E3 ligases 

and DUBs forming part of the same complexes, which highlights the importance of reversibility 

in ubiquitin signaling (Harrigan et al. 2018).  

Ubiquitin signaling is also able to act as a quality control at the translational level. E3 

ligases are present next to the ribosomes to ensure the quality of the proteins being synthesized 

(Grumati and Dikic 2018). There are proteins that are attached to ribosomes such as E3 listerin, 

which binds stalled ribosomes (Shao, Von der Malsburg, and Hegde 2013). In addition, there 

are E3 ligases that cooperate with chaperones that detect misfolded or mislocalized proteins, or 

by the binding of an E3 ligase to a degron (degenerated motif of a misfolded polypeptide) 

(Davey and Morgan 2016). All these mechanism will lead the low quality proteins to 

degradation before they accumulate and disturb the homeostasis of the cell. Once the proteins 

are correctly synthesized, ubiquitin-signaling also contributes to control their transport and 

delivery to their programmed destination. Ubiquitylation is a modification that can show high 

spatial precision, which can impose directionality onto signaling cascades. A good example of 

the effect of ubiquitylation in protein trafficking is the internalization of EGFR for its 

inactivation (Levkowitz et al. 1998). Ubiquitin has also a crucial role in the defense of the cell 

against pathogens. Both bacteria and viruses have developed mechanism to highjack the 

ubiquitylation system in order to not be detected and proceed to infection (Zong et al. 2021). 

 

Autophagy: The phagophore’s turn 

The term and idea of autophagy came to life by a Belgium scientist called Christian de Duve, 

who firstly described lysosomes as a new cellular organelle, and later on the degradation of 

cytoplasmic material in these lytic compartments. He defined this process as autophagy, which 

means self-eating in Greek (Ohsumi 2014). However, the lack of methodology to continue the 

research in the role of autophagy and its mechanistic lead to a delay in the field. In the late 

1990, many new methods in molecular biology made possible to decipher the insights of this 

degradation pathway. In the last 20 years, there has been an outbreak of discoveries and 

knowledge surrounding autophagy. Starting with the discovery of the autophagy related 

proteins by Yoshinori Ohsimi, which lead him to a Nobel Prize in Medicine in 2016, to the 
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description of the LC3-interactiong region (LIR) motif and autophagy receptors (Kirkin 2020; 

Zimmermann et al. 2016; Johansen and Lamark 2020). All these achievements have allowed us 

to understand better, how the cell maintains its homeostasis through a very complex equilibrium 

between synthesis and degradation.  

Even though the concept of autophagy is simple, cytoplasmic material delivered to the 

lysosomes for its degradation, the way and reasons why that cytoplasmic material ends up in 

the lytic compartment is much more complex and still to date not fully understood. There are 

three described types of autophagy: microautophagy, chaperon-mediated autophagy (CMA), 

and macroautophagy (Figure 4).  

 

Figure 4. Types of autophagy. There are three types of autophagy: macroautophagy, microautophagy, and chaperone-

mediated autophagy. Macroautophagy is a type of autophagy that delivers cellular contents to the lysosome via the formation 

of double-membrane structures called autophagosomes, which then fuse with lysosomes. Microautophagy facilitates the direct 

uptake and breakdown of cytosolic cargo by lysosomes. Chaperone-mediated autophagy refers to the chaperone-dependent 

targeting of specific cytosolic proteins to lysosomes for proteolysis. (Ho et al. 2019) 

 

Microautophagy is defined by the sequestration of cytoplasmic material directly into the 

lysosome or endosomes through an invagination of the membrane that eventually pitches off 

into the lumen (Li, Li, and Bao 2012; Mejlvang et al. 2018). During CMA, which only happens 

in mammals, proteins that expose a pentapeptide signature motif (KFERQ) are recognized by 

heat shock 70 kDa protein 8 (HSPA8/HSC70), which in turn binds to the lysosomal-associated 

membrane protein LAMP 2A (LAMP2A) that translocates the protein directly into the 

lysosome (Kaushik and Cuervo 2018). By definition, CMA is a selective mechanism, and 

microautophagy can also be defined as selective until a certain extent, since it seems that the 



- 7 - 

 

cell selects which proteins are going to be delivered to the lysosome. The best-characterized 

autophagy pathway is macroautophagy, which is commonly called autophagy. The main feature 

of this form of autophagy is the engulfment of cellular material by a double-membrane structure 

called phagophore. The phagophore then is transported through microtubules and eventually 

fused with lysosomes, which will degrade the delivered substrates through the action of 

lysosomal hydrolases. This process can be non-selective, the so-called bulk-autophagy, or 

selective, which is called selective autophagy. At first, it was thought that macroautophagy was 

merely a response for nutrient depravation, which leaded to the degradation of any cellular 

material accessible in the cell in order to provide molecular building blocks while no nutrients 

were available. However, growing evidences show that not only this form of autophagy can be 

highly selective, but that there are many stimuli that can activate this cellular mechanism (L 

Galluzzi et al. 2017). 

The main steps of the autophagic pathways are initiation, nucleation of the phagophore, 

membrane expansion/elongation, maturation and fusion (Figure 5). The proteins involved in 

the regulation of autophagy are called ATG proteins (autophagy-related genes). Despite the fact 

that there are more than 40 of those ATG proteins, which all play a role in autophagy, there are 

17 conserved ATG proteins that are essential and sufficient to make the autophagic process 

possible. This subset of essential ATG is called the “core autophagy machinery”.  These ATG 

proteins are recruited to the site of autophagosome formation and act in a sequential manner in 

order to fully form a closed autophagosome that will eventually fuse with a lysosome for the 

degradation of its content (Melia, Lystad, and Simonsen 2020). The ATG proteins were firstly 

described in yeast. However, autophagy seems to be a conserved mechanism among eukaryotes, 

therefore, many ATG present in yeast have their counterparts in mammals (Reggiori and 

Klionsky 2013). As expected, a higher degree of complexity is added to higher eukaryotes, 

adding new regulators and mediators to this process.  

The autophagy process starts at the Endoplasmatic Reticumul (ER) by the unbedding of 

a cup shaped-membrane leading to the formation of a pre-autophagosome or omegasome 

(Hurley and Young 2017). Under normal conditions, autophagy is mainly controlled by nutrient 

availability and the metabolic needs of the cell. The status of threonine-serine kinase ULK1 is 

the main determinant of autophagy activation, due to its position as the most upstream kinase 

within the autophagy core machinery. The two main regulators of this kinase are AMP-activated 

protein kinase (AMPK) and mTORC1, which directly phosphorylate ULK1. On one side, 

AMPK activity positively regulates autophagy, whereas mTORC1 inhibits autophagy under 
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nutrient-rich conditions (Alers et al. 2012). Starvation and rapamycin treatment are sufficient 

to activate autophagy via mTORC1, which has been reported to have a regulatory role not only 

in initiation of autophagy but also in nucleation, elongation and fusion of autophagosome to 

lysosomes (Dossou and Basu 2019). Starvation induced autophagy is initiated by the activation 

of ULK1 via mTORC1 inhibition, which leads to the phosphorylation of ULK1. The ULK1 

complex formed by ULK1/2, ATG13, FIP200 and ATG101 is rapidly recruited to this 

developing membrane. Next, the class III lipid kinase complex I formed VPS34, VPS15, 

ATG14 and Beclin 1, is recruited. Beclin 1 is then phosphorylated by ULK1, which leads to 

Beclin 1 transforming phosphoatidylinositol-2-phosphate into phosphatidylinositol-3-

phosphatase (PtdIns3P) (Russell et al. 2013). The increasing of the levels of PtdIns3P in the 

pre-autophagosome leads to the recruitment of WD-repeat protein interacting with 

phosphoinositides (WIPI) proteins. There are four members of this family (from WIPI1 to 

WIPI4), which act as a bridge between PdIns3P production and ATG8 proteins lipidation 

(Proikas-Cezanne et al. 2015). The ATG8 family in mammals consists of at least 6 proteins 

(LC3A, B, and C, GABARAP, GABARAP-L1 and L2), all of which hereafter referred as ATG8 

proteins. Pro-LC3 is the LC3 fresh form coming from translation, which is cleaved by ATG4 

and deacetylated by SIRT proteins, forming LC3-I. Then WIPI2 recruits the ATG12-ATG5-

ATG16L complex, which catalyzes the conjugation of LC3-II into the expanding autophagy 

membrane. The lipidation of LC3 molecules and elongation of the membrane leads to the 

closure of the autophagosome, which then becomes a mature autophagosome. This 

autophagosome can either fuse with late endosomes to form amphisomes, which later fuse with 

lyososmes, or directly fuse with a lysosome. The fusion product of an autophahosome and a 

lysosome is called autolysosome. The supply of lipids to form this autophagosome is mediated 

by ATG9, through ATG9 vesicles, which come from membrane reservoirs like Golgi apparatus 

(Matoba et al. 2020; Gómez‑Sánchez et al. 2018). This autophagosome will be transported via 

microtube tracks towards the lysosomes, which are commonly found in the perinuclear region 

of the cell (Johnson et al. 2016). This transport is possible thank to small GTPase Rab7, which 

links autophagosome to microtubule motors through FYVE and coiled-coil domain containing 

1 (FYCO1) (Pankiv, Alemu, et al. 2010). There are other proteins involved in the transport of 

autophagosome along the microtubules, however, their mechanism is still poorly understood. 

Once in close proximity, the autophagosomes fuse with a lysosome via a Rab GTPases, which 

localize in specific membranes and recruit tethering complexes that act as bridges to bring the 

autophagosome and lysosomes together. On the other side, these tethering complexes help 

membrane-tethering complexes and soluble N-ethylmaleimide-sensitive factor attachment 
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protein receptors, commonly known as SNAREs proteins, to physically drive the fusion of 

opposing lipid bilayers (Nair and Klionsky 2011). Once the fusion has taken place, the cargo 

delivered to the lysosome will be degraded (Nakamura and Yoshimori 2017).  Despite the exact 

mechanism of which autophagosome formation and who contributes to this process is not fully 

understood, it is becoming clear that all intracellular compartment contribute in different 

degrees. 

 

Figure 5. Overview of selective autophagy in mammalian cells. The main steps of autophagy are initiation, nucleation, 

expansion cargo recruitment, closure, maturation and cargo degradation.  

 

In this context, autophagy is shown to be non-selective, trying to degrade any available 

cytosolic molecules to obtain nutrients. However, autophagy has also been shown to behave in 

a selective manner, regulating the degradation of big cellular structures such as organelles, 

nuclear components, the proteasome, protein aggregates or invading pathogens. In this context, 

autophagy has a much more complex role than being a response to scarcity, and depending on 

the stresses that the cell has to face, it works as a powerful cytoprotective mechanism 

(Zaffagnini and Martens 2016).  
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Selective autophagy: Entering the world of LIRs 

In contrast to bulk-autophagy, selective autophagy can have different substrates that are 

selected for degradation under certain conditions, which vary depending on the stress or stimuli 

that the cell receives (Lamark, Svenning, and Johansen 2017). In the last years, there has been 

an outbreak surrounding this type of autophagy (Kirkin 2020). Selective autophagy is classified 

into “-phagies”, describing the organelle or structure that is targeted for degradation: for 

example, pexophagy is the autophagic degradation of peroxisomes (Germain and Kim 2020), 

ER-phagy refers to the autophagic degradation of the ER (Nakatogawa and Ohsumi 2020), 

mitophagy involves autophagy of mitochondria (Swerdlow and Wilkins 2020), aggrephagy 

refers to the degradation of protein aggregates (Lamark and Johansen 2012), and so forth. The 

list of types of autophagy is growing and it is likely to expand even further in the years to come 

(Kirkin and Rogov 2019). The main interaction to control selective autophagy is by the 

interaction of ATG8s with LC3-interacting motifs, the so-called LIRs (Birgisdottir, Lamark, 

and Johansen 2013). The core consensus sequence of a LIR is [W/F/Y]xx[L/I/V], where 

negatively charged amino acids are commonly found in the middle of the sequence (x) (Birna 

Birgisdottir et al. 2019; Lamark, Svenning, and Johansen 2017). The LIR motif forms an 

extended B-sheet positioned in a crevice formed by the N-terminal arm and the ubiquitin-like 

domain of the ATG8.  The LIR is bound to hydrophobic pockets HP1 and HP2 in the ATG8s 

(Birgisdottir, Lamark, and Johansen 2013; Sora et al. 2020). The LIRs that follow this definite 

pattern are called canonical LIR motifs, which is the case for the majority of found functional 

LIRs. However, non-canonical LIRs have also been described, which interestingly show more 

restricted binding preference relative to ATG8 family members (Rogov et al. 2014). 

Intriguingly, it seems that LIRs-containing proteins can bind other elements of the autophagic 

core machinery through their LIR motifs than ATG8 proteins, as is the case of the binding of 

ATG19 to ATG5 via its LIR motif, forming an axis with the ATG12-ATG5-ATG16 complex. 

The binding of ATG19 to either ATG5 or ATG8 through its LIR motif seems to be mutually 

exclusive, suggesting a hierarchy of binding events that might ensure the directionality of 

reactions in the process of autophagosome formation (Fracchiolla, Sawa-Makarska, and 

Martenshttps 2017). This novel finding adds another function to LIRs, which seems to be 

beyond their binding of ATG8s. 

ATG8 proteins act as adaptors or scaffold for recruitment of LIR-containing proteins to 

both surfaces of the growing phagophore (Johansen and Lamark 2020). This way they serve 

four main functions in autophagy: First, they act as membrane scaffolding of LIR-containing 
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core autophagy components of the ULK1/2 complex, class III PI3K complex I, the ATG4B 

protease processing ATG8s (Rasmussen et al. 2017), and ATG12-ATG5 to the rim and outer 

surface of the phagophore. Secondly, there is a LIR-dependent attachment of Selective 

autophagy receptors (SARs) to the inner surface of the pagophore. Third, help in the fusion of 

autophagosome and fourth assisting transport of autophagosomes to the lysosomes. 

Interestingly, ATG8 are not necessary for autophagosome formation, but essential for 

autophagosome-lysosome fusion. Their removal causes smaller autophagosomes, as well as 

slower initiation of the formation of those, leading to a very inefficient autophagic flux (T. N. 

Nguyen et al. 2016). Among the human ATG8 proteins, LC3s seem to be highly involved in 

elongation of the phagophore membrane, whereas the GABARAP subfamily is essential for 

autophagosome maturation (Jacquet et al. 2020). It is still not clear what the exact role of the 

different ATG8s are. They seem to add redundancy to the system, since there are cargos that 

can be recognized by more than one receptor. However, there are receptors that show a 

preference for certain members of the ATG8 proteins. This is the case of NDP52, which show 

a much stronger binding towards LC3C (von Muhlinen et al. 2012). The preference of receptors 

to different forms of ATG8s proteins suggests that the diversity adds both redundancy and 

specificity to the autophagic process (Wirth et al. 2019).  

Intriguingly, it seems that LIRs-containing proteins can bind other elements of the 

autophagic core machinery through their LIR motifs than ATG8 proteins, adding additional 

functionality to LIRs. It has been suggested that this is a way to ensure the directionality of 

reactions. In addition, ATG8 can also bind other proteins through their non-LIR motif. A decade 

ago a study suggested a possible interaction between a large range of protein interacting with 

ATG8 independently of their LIR docking site (LDS) (Behrends et al. 2010), however, there 

are still only a few examples describing such an interaction. The recently described ubiquitin-

binding motif (UIM) shows a LIR-independent interaction of the ATG8 proteins through the 

UIM-docking side (UDS). These two biding surfaces are well separated, which enable 

simultaneous biding. This was observed in Arabidopsis, where ATG8 binds RPN10 through on 

the UDS and DSK2 through its LDS (Marshall et al. 2019).  
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Autophagy receptors: The big guardians 

How the cell selects the cargo to be degraded and in which conditions that happens leads to a 

very complex network of pathways that work together to maintain the homoeostasis of the cell. 

The big guardians of this process are the so-called autophagy receptors (SARs) (Johansen and 

Lamark 2020). Not all act at the same time or in the same conditions. They show a certain 

degree of redundancy, helping resolving emergencies for the cell even in the absence of one or 

more SARs. The most known autophagy receptors are: p62/SQSTM1, NBR1, TAX1BP1, 

Optineurin and NDP52 (Calcoco2), which all together are called SLRs (SQSTM1-like 

receptors) (Fig X). However, in the past years there has been an increase in the number of 

proteins that can also act as autophagy receptors, such as TRIM family proteins (see sections 

bellow) or organelle-bound receptors (Jia et al. 2018) (Zaffagnini and Martens 2016). This 

suggest that the cell has many resources to ensure the proper clearance of damaged elements.  

 

Figure 6. Domain architecture of selective autophagy cargo receptors SLRs. The sequestosome-1-like receptors (SLRs) 

constitute of p62, NBR1, NDP52, TAX1BP1 and OPTN (optineurin) in mammals. (Birgisdottir et al., 2013) 

 

The SLRs are typically degraded in the lysosome, where they end up after binding the 

cargo and forming autophagosome, or by being imbedded directly to the lysosome by 

microautophagy (Mejlvang et al. 2018). Some of them such Optineurin can also be degraded 

by the proteasome (Wild et al. 2011). The description of the SLRs and their mechanistic have 

helped establishing the characteristics that are needed to qualify as an autophagy receptor. The 

essential characteristics of a bona fide autophagic receptor are: first, SARs have a LIR motif 

that binds to the ATG8s lipidated to the inner surface of the phagophore. Secondly, they are 

able to bind the cargo directly or through ha labelling protein such ubiquitin, and third they are 

degraded together with their cargo (Lamark, Svenning, and Johansen 2017). 
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P62: the pioneer 

The most well-known and firstly discovered autophagy receptor is called p62/SQSTM1 (Atg19 

in yeast) (Bjørkøy et al. 2005). The p62 domain architecture consists in an N-terminal headed 

by self-interacting PB1 domain, followed by ZZ-type zinc finger domain (ZZ), two nuclear 

localization signals (NLS), a nuclear export signal (NS), a LIR motif, and a KEAP1-interacting 

region (KIR) (Lamark, Svenning, and Johansen 2017) (Figure 7). In the C-terminal shows an 

ubiquitin associated UBA domain (Pankiv et al. 2007; Pankiv, Lamark, et al. 2010). The PB1 

domain mediates p62 polymerization and binds other PB1-domain containing proteins, while 

the UBA domain binds the ubiquitylated substrates, showing preference for K63-linked 

polyubiquitin chains (Lamark et al. 2003).  

 

Figure 7. Domains of p62. P62 is a 440 amino acid protein containing a PB1 domain (PB1), a ZZ-type zink finger domain 

(ZZ), two nuclear localization signals 1 and 2 (NLS1 and NLS2), a nuclear export signal (NES), an LC3- interacting region 

(LIR), a Keap interacting region (KIR), and an ubiquitin-associated domain (UBA). (Birgisdottir, Lamark, and Johansen 2013) 

 

Even though p62 commonly binds ubiquitylated substrates and leads them to 

degradation, this bona fide autophagy receptor can also bring to degradation non- ubiquitylated 

cargos (Lamark, Svenning, and Johansen 2017). The regulation of p62 occurs both in the 

transcriptional and translational level. NRF2 is an important regulator of p62 levels, and its 

translocation to the nucleus leads to a rapid increase in the levels of p62 transcription 

(Katsuragi, Ichimura, and Komatsu 2016). Post-transcriptional modifications (PTMs) are the 

main responsible of p62 regulation after its transcription, which form a complex network of 

modifications that control the functionality of this autophagy receptor. Among those PTMs are 

found phosphorylation and ubiquitylation (Lamark, Svenning, and Johansen 2017). A strong 

recruitment of p62 occurs when the cell faces high levels of oxidative stress or a high 

accumulation of protein aggregates (Cohen-Kaplan et al. 2016). The homopolydimerization of 

p62, via its PB1 domain, leads to long polymeric chains forming helical filaments (Jakobi et al. 

2020). These polymeric chains mixed with ubiquitin chains often undergoing phase separation, 

leading to the formation of droples. This condensates form a network surrounding the selected 

cargo (Sun et al. 2018).  
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Besides p62 pivotal role in autophagy, this autophagic receptor has several roles in 

several cellular signaling pathways involved in cellular survival and growth. The roles of p62 

have been found to be important in a variety of cancers (Ning and Wang 2018). The over 

expression of p62 has been described in many studies, and elevated levels of p62 expression is 

associated with poor prognosis (Ruan et al. 2018). Selective autophagy is one of the 

mechanisms through which p62 dysregulation leads to advantageous growth for cancer cells 

(D. Nguyen et al. 2019). P62 also activates pro-survival signaling and gene expression, as well 

as stabilization of a set of pro-metastatic mRNAs (Ségal-Bendirdjian et al. 2014).  

 

NDP52: The pathogens’ enemy 

Another well-known SLR is NDP52, which is also called Calcoco2 (calcium binding and 

coiled-coil domain 2) (Von Muhlinen et al. 2010). This autophagy receptor is a member of the 

nuclear dots (NDs) and it is formed by a  SKICH domain at the amino terminus, followed by a 

LIR motif, a coiled-coil domain in the central region, and a Ubiquitin binding zinc finger (UBZ) 

in the carboxyl terminus (T. Fu et al. 2018; Fan et al. 2020) (Figure 8). The finger motifs contain 

the binding domain for ubiquitin, mediating the important role of this receptor in ubiquitin-

mediated protein degradation (Xie et al. 2015).  

 

Figure 8. Structure of NDP52. NDP52 contains 446 amino acid, including the domains of SKICH, LC3-interaction region 

(LIR), COILED-COIL (CC), and UBZ. UBZ domain interacts with Ub, identifies and binds autophagy substrates. LIR domain 

interacts with LC3 and assists substrate anchoring to autophagosome membranes. From (Birna Birgisdottir et al. 2019)  

 

NDP52 is tightly linked to innate immunity and has a crucial role in the degradation of 

invading pathogens (xenophagy) (Von Muhlinen et al. 2010). On one side, NDP52 targets 

bacteria to the nascent autophagosome by binding ubiquitin coated bacteria and ATG8 through 

its LIR motif, leading to the delivery of the tagged bacteria to the forming autophagosome (von 

Muhlinen et al. 2012). On the other side, NDP52 promotes autophagosome maturation by 

interacting with ATG8 through a distinct LC3-interacting region and the motor protein 

MYOSIN VI (Verlhac, Viret, and Faure 2015). NDP52 recognizes and targets ubiquitin coated 

Salmonella for degradation by binding via its SKICH domain the adaptor proteins Nap1 and 

Sintbad, which recruit TBK1 (Thurston et al. 2009). At the same time, TBK1 regulates the 
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autophagic functions of NDP52 by phosphorylating its SKICH domain (Heo et al. 2015). 

Moreover, NDP52 forms a trimeric complex with FIP200 and NAP1, which promotes the 

progression of antibacterial autophagy (Ravenhill et al. 2019). Furthermore, NDP52 interacts 

with Galectin-8 (Gal8), a cytosolic lectin that acts as a danger receptor, binding host glycans 

exposed on damaged Salmonella-containg vacuoles. NDP52 contains a Galectin-8 interacting 

region between the coiled-coil and UBZ domains. Therefore Gal8 activates NDP52-mediated 

xenophagy by detecting complex glycans that are not commonly present in the cellular cytosol, 

acting as a monitor of endo-lysosomal integrity (Thurston et al. 2012).  

Another important role of NDP52 is the mediation of clearance of mitochondria 

(mitophagy) (Vainshtein and Grumati 2020). It has been shown that NDP52 is recruited to the 

mitochondria by the internal mitochondrial protein PTEN-induced kinas 1, commonly known 

as PINK1 (Lazarou et al. 2015). Once there, NDP52 associates with the ULK1 complex by its 

interaction with FIP200 (Ravenhill et al. 2019), interaction that is necessary for NDP52-induced 

mitophagy (Shi et al. 2020). The association of NDP52 with FIP200 is facilitated by TBK1, 

which is able to induce autophagy in the absence of LC3 (Vargas et al. 2019). In this context, 

the ULK1 complex activation mediated by NDP52 is independent of AMPK and mTOR 

activity. 

Moreover, NDP52 mediates the degradation of other proteins involved in miRNA 

regulation, genomic stability and immune signaling. NDP52 mediates the degradation of 

retrotransposon RNA, DICER and protein argonaute 2 (Ago2) in the miRNA level (Gibbings 

et al. 2012). NDP52 sends to degradation the retrotransposon RNA, acting as a physiological 

buffer against genetic variegation (Guo et al. 2014). Furthermore, NDP52 deals with the 

degradation of mitochondrial antiviral signaling protein (MAVS), involved in Type I Inteferon 

signaling. (S. Jin et al. 2017). Another contribution of NDP52 to the regulation of the immune 

response is by mediating the degradation of the signaling adaptor protein TUR domain 

containing adaptor molecule 1 (TRIF) and Myeloid differentiation primary response protein 

MyD88 (MyD88), which are both implicated in Toll-like receptor (TLR) signaling (Inomata et 

al. 2012). Mutations found in NDP52 have been linked to Crohn disease, characterized by a 

chronic inflammation of the gastrointestinal tract. In this disease, NDP52 has been suggested 

to have a role in controlling NFKB signaling downstream of the toll-like receptor pathway, 

which is crucial in inflammatory signaling (Till et al. 2013).  

 



- 16 - 

 

Mitophagy: recycling big energy factories 

Mitochondria are double-membrane organelles that constantly supply the cell with energy in 

form of ATP by the oxidation of fatty acids and pyruvate in the electron transport chain 

(Raimundo et al. 2017). Mitochondria have a bacterial origin, and even though the exact origin 

is unknown, it is clear that at some point in time an eukaryote cell integrated a bacterium as an 

organelle, stablishing a relationship of endosymbiosis (Zachar and Gergely Boza 2020). 

Through the years, mitochondria has not become only the powerhouse of the cell, but it has also 

developed an essential role in many other cellular functions such as production of reactive 

species (ROS), apoptosis, necrosis, autophagy, stress regulation, production of lipids and 

carbohydrates, Ca2+ storage and innate immunity (Murphy 2009; Nieminen 2003; Lorenzo 

Galluzzi et al. 2012).  

Mitochondria are exposed to constant threats to their integrity and functionality, 

especially from the oxidative stress coming from the electron transport chain and production of 

ROS (Lorenzo Galluzzi et al. 2012). The protection of the fitness of this organelle is formed by 

a sophisticated system that acts both at the mitochondrial and cellular level. The mitochondria’s 

first response to stress is through the action of antioxidants, DNA repair, protein folding and 

degradation (Scheibye-Knudsen et al. 2015). Moreover, fusion and fission of mitochondria also 

contribute to dilute and segregate damaged mitochondria respectively, acting as another layer 

of quality control (Eisner, Picard, and Hajnóczky 2018). On the other side, the autophagy 

machinery is able to target damaged mitochondria and lead them to degradation in the 

lysosomes. This process of engulfment and removal of mitochondria is called mitophagy, which 

acts as an important quality control of mitochondria at a cellular level (Wilkins et al. 2021). 

However, it is important to acknowledge that mitophagy is not limited to the removal of 

damaged mitochondria. This mechanism of selective autophagy is actually a natural mechanism 

that the cell has to control the amount of mitochondria that is present in the cytosol (Onishi et 

al. 2021). A good example of this mechanism under normal conditions is the removal of 

mitochondria on erythrocytes during their maturation (Mortensen et al. 2010). As the main 

responsible of transporting oxygen along the human body, erythrocytes have to get rid of the 

mitochondria they contain during their maturation process, so oxygen can be exclusively 

transported instead of partially consumed by the electron transport chain of mitochondria.  

Mitophagy in yeast occurs through a protein present in the mitochondrial outer 

membrane (OMM) called ATG32, which acts as a mitophagy-specific autophagy receptor 
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(Okamoto, Kondo-Okamoto, and Ohsumi 2009). Upon nitrogen starvation or stationary growth, 

the expression of ATG32 is induced at the transcriptional level, which leads to higher level of 

this ATG protein in the OMM. Then, ATG32 binds ATG11, which works as an adaptor protein 

for selective types of autophagy, recruiting other ATG proteins that will promote 

autophagosome formation (Kanki et al. 2009). ATG32’s activity seems to be regulated via 

different modifications and actions of regulators, diversifying the control of this mechanism.  

In mammals, mitophagy seems to be a more sophisticated process and the signals that 

activate it are different to the ones in yeast (Madruga, Maestro, and Martínez 2021). Among 

the stressors that lead to activation of mitophagy, disruption of mitochondrial membrane 

potential seems to be one of the most potent triggers (S. M. Jin and Youle 2013). A proton-

selective ionophore, called CCCP, causes mitochondrial depolarization and accumulation of 

mitophagy receptors on the OMM (Figure 9). Because of its powerful effect on mitochondria, 

CCCP is one of the most widely used activators of mitophagy in vitro (Yoo and Jung 2018). 

The recognition of target mitochondria to be degraded occurs through two main mechanism in 

mammals, by the direct interaction of LC3 with its receptors and by LC3 adapters, which can 

occur in an ubiquitylation-dependent and independent manner (Swerdlow and Wilkins 2020). 

There are several receptors 

suggested to mediate the 

elimination of mitochondrial 

under both physiological and 

pathological conditions. Among 

those receptors are BNIP3 and 

NIX, FUNDC1, BCL2L13 

(mammalian functional 

counterpart of yeast ATG32), 

and FKBP8 (Bhujabal et al. 

2017) (Figure 10). 

 

 

Figure 9. Mitophagy produced by depolarization of mitochondria. From (Jia Liu et al. 2019) Mitophagy can be divided 

into Parkin-dependent or independent pathways. Under normal conditions, PINK1 localizes to mitochondria and is 

translocated to the mitochondrial inner membrane (MIM), where it is cleaved and subsequently degraded. However, when 

mitochondria become depolarized, PINK1 accumulates at the outer mitochondrial membrane (OMM) and recruits Parkin. 

Activated Parkin leads to the ubiquitination of substrates and the recruitment of autophagy receptors to initiate mitophagy. In 

addition, Parkin-independent mitophagy includes receptor-mediated and ubiquitin ligase-mediated mitophagy.  
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PTEN-induced putative kinase 1 (PINK1) and Parkin form an essential axis for the 

control of induction and control of mitophagy. Under normal conditions, PINK1 is continuously 

being degraded by the proteasome. A damage in the mitochondria, such membrane 

depolarization, reduced the cleavage of PINK, which consequently accumulates in the 

mitochondrial outer membrane (OMM). The accumulated PINK1 become them 

autophosphorylated and activated, consequently phosphorylating ubiquitin and leading to 

recruitment of Parkin. As an E3 ligase, Parkin poly ubiquitylates its substrates and leads them 

to degradation. The degradation of such substrates eventually induces mitochondrial fission and 

mitophagy (Geisler et al. 2010). The SLRs, which in the case of mitochondria act as adapters, 

are recruited to the K63-linked polyubiquitylated substrates on the mitochondria. Then those 

SLRs recruit the necessary machinery for autophagosome formation surrounding those 

mitochondria and bring them to degradation. The two most important SLRs implicated in 

ubiquitin dependent mitophagy are OPTN and NDP52 (Lazarou et al. 2015). The kinase Tank-

binding kinase 1 (TBK1) becomes activated by OPTN and promotes mitophagy through the 

phosphorylation of OPTN and NDP52. Interestingly, PINK1 is also able to recruit OPTN and 

NDP52 independently of the action of Parkin (Lazarou et al. 2015). Damaged mitochondria can 

also be recognized by autophagy receptors in an ubiquitin-independent manner. This is the case 

of the recruitment of p62 by mitochondrial protein CHDH (choline dehydrogenase), leading to 

the formation of the CHDH-p62-LC3 complex, which promotes mitophagy (Park et al. 2014). 

Moreover, there are also mitochondrial proteins such as BNIP3, NIX and FUNDC1, that can 

act as receptors (Onishi et al. 2021) (Figure 10). FK506-bidning protein 8 (FKBP8) is located 

in the OMM and leads to mitophagy by its interaction with LC3A. An additional point of 

regulation of mitophagy by FKBP8 is its localization. This mitochondrial protein migrates to 

the ER under stress conditions, and the inability to do so leads to an activation of mitophagy 

(Bhujabal et al. 2017). 

 

Figure 10. Most studied Mitophagy receptors. FUNDC1, BNIP3, NIX mammalian autophagy receptors and ATG32, 

receptor in charge of mitophagy in yeast.  
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The regulation of the amount and fitness of such an important organelle as the 

mitochondria is crucial for the well-being of the cell, therefore it is not surprising that a 

dysfunction in mitophagy is linked to many pathological conditions. Mitophagy seems to be 

implicated in several diseases, including Parkinson’s disease, Alzheimer’s disease, 

Huntington’s disease, Amyotrophic lateral sclerosis (ALS), cancer, cardiovascular diseases and 

atherosclerosis. (Rottenberg and Hoek 2021)  

 

The lysosomes and LAMPs: at the acidic edge 

The lysosomes are cellular organelles that constitute the main degradative compartment of the 

cell (Davidson and Vander Heiden 2017). However, it has been reported that lysosomes are 

involved in several cellular processes besides degradation of the delivered cellular material such 

as cholesterol homeostasis, plasma membrane repair, bone and tissue remodeling, defense 

against pathogens, cell death and cell signaling (Saftig and Klumperman 2009). The substrates 

are delivered to the lysosome via endocytosis, phagocytosis or autophagy (Tancini et al. 2020). 

There are two essential groups of proteins in lysosomes: soluble lysosomal hydrolases and 

integral lysosomal membrane proteins (LMPs). Lysosomal hydrolases are delivered to the 

lysosomes from the Golgi and require a pH between 4.5-5.5 to become active, which allows the 

cell to be protected from the action of those hydrolases in unwanted locations (Parenti, Medina, 

and Ballabio 2021). The acidic pH of the lumen of lysosomes is achieved and maintained by an 

H+-ATPase (Johnson et al. 2016). LMPs are mainly found in the lysosomal limiting membrane, 

where they perform diverse functions, including acidification of the lysosomal lumen, protein 

import from the cytosol, membrane fusion and transport of degradation products to the 

cytoplasm (Saftig and Klumperman 2009). Some of the most abundant LMPs are the lysosome 

associated membrane proteins (LAMPs), which are glycosylated proteins commonly found in 

the membrane of the lysosomes. There are 5 different types of LAMPs, which are unequally 

expressed along tissues, suggesting a diversification of functions. The most abundant and best 

studied are LAMP-1 and LAMP-2 (Alessandrini, Pezzè, and Ciribilli 2017). These two LAMPs 

present a similar length and 37% amino acid sequence homology. Their structure consists in a 

highly glycosylated luminal region, a transmembrane region and a short C-terminal cytosolic 

domain. LAMP-1 or LAMP-2 deficient mice are viable and fertile, which suggest that they 

might have similar functions or those functions partially overlap (E.-L. Eskelinen 2006). 
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Whereas LAMP-1 presents only one transcript, LAMP-2 has three different splicing isoforms: 

LAMP-2A, LAMP-2B, and LAMP-2C. Mutations in LAMP-2 lead to Danon disease, a 

multisystem disorder that presents skeletal myopathy, cognitive defects and visual problems 

(Rowland et al. 2016). However, recent findings point towards LAMP-2B as the main 

responsible of this disease (Myerowitz, Puertollano, and Raben 2021). LAMP-2A is one of the 

essential components of CMA, taking the selected proteins into the lysosome for degradation 

(Kaushik and Cuervo 2018). LAMP-2B is involved in macroautophagy, mediating the 

autophagosome-lysosome fusion, through its binding to ATG14 and VAMP8 (Chi et al. 2018). 

LAMP-2C acts as an inhibitor of CMA and mediates the autophagy of nucleic acids by binding 

RNA and DNA (Fujiwara et al. 2015). Due to the difference in expression among different cell 

types and not a high degree of homology among them, it seems clear that LAMPs have 

diversified their functions to fulfill different needs in different tissues (Alessandrini, Pezzè, and 

Ciribilli 2017).  

Lysosomes have a crucial role in cellular homeostasis, and the dysfunction of this 

organelle is involved in several diseases. Defects in genes encoding lysosomal proteins lead to 

lysosomal storage diseases (Platt 2018). Moreover, the impairment of lysosomal function has 

also been reported in other more common pathologies, including inflammatory and 

autoimmune disorders, cancer, neurodegenerative diseases and metabolic diseases (Reddy 

Bonam, Wang, and Muller 2019). 

Even though they LAMP2 is a widely used lyosomal marker, its mechanism of action 

and its implication in cancer is still poorly understood. LAMP2 plays a role in the support of 

early cancer progression, helping cancer cells surviving in acidic enviroments (Mogami et al. 

2013). Moreover, LAMP2 is highly expressed in poorly expressed in several cancer, where 

reduced expression of LAMP2 has been associated with a loss of migration and invasion 

capabilities (Koukourakis et al. 2015). LAMP2A isoform has shown increased expression in 

breast tumor tissue, and its inhibition results in sensitibilization of tumor cells to radioation and 

doxorubicin therapy (Saha 2012). 

 

Crosstalk of UPS and autophagy 

For many years and due to the lack of research in autophagy, the degradation pathways of UPS 

and autophagy were perceived as two separate cellular mechanisms that acted in parallel of 

each other without interacting. UPS was in charged of small short-lived proteins mainly for 
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mediating cellular responses through protein pool control, whereas autophagy was responsible 

for the degradation of large and long-lived proteins or organelles (Ji and Kwon 2017). 

Proteasomal degradation took place in the cytosol, whereas degradation via autophagy took 

place in the lysosomes. Furthermore, proteasomal degradation associated with degradation of 

proteins, providing temporal control of proteins such as cell cycle regulators (Kravtsova-

Ivantsiv and Ciechanover 2012). On the contrary, autophagy was perceived merely as a cellular 

response to starvation. However, it is becoming more clear that these two pathways are not only 

linked by several common players, but also stablish a network of crosstalk and cooperation 

(Nam et al. 2017).  

The most relevant common denominator shared by UPS and autophagy is the molecule 

of ubiquitin. The current model defends that the nature of poly-ubiquitin chains determines the 

mode of degradation. UPS has a preference for K48-linked chains, while autophagy has a 

predilection for K63-linked chains, organelles and mono-ubiquitylated substrates (Grice and 

Nathan 2016). Sharing such an essential player in both pathways and due to their pivotal role 

in maintaining cellular homeostasis, it is imperative that these two degradation mechanism 

crosstalk and regulate each other. Autophagy is activated when the proteasome is already 

working at full capacity. However, the proteasome seems not to be able to take over when 

autophagy is inhibited, due to the proteasomes limitations in the size of the proteins is able to 

degrade (Wurzer et al. 2015). One of the suggested regulators of this phenomenon is the master 

tumor repressor p53, which upon UPS inhibition, accumulates, leading to an activation of 

AMPK and inhibition of mTOR1 (Horn and Vousden 2007). UPS and autophagy have another 

point of interplay in the degradation of the proteasome, a type of autophagy called proteaphagy 

(Enenkel et al. 2020). Interestingly, certain conditions, such as muscle atrophy in fasting 

requires both mechanisms (J. Zhao et al. 2007), indicating the complementary relationship 

between the two degradation pathways. Hence, these two mechanism of degradation have a 

compensatory and complementary relationship, ensuring in most cases a win in the battle for 

homeostasis.  

TRIM proteins, as E3 ligases, are linked to the UPS. Growing evidences show their 

crucial role in autophagy (Michael A Mandell, Saha, and Thompson 2020). Thus, they also 

become common denominators of both pathways. TRIM proteins have a great contribution in 

misfolded proteins clearance, facilitating their degradation through both the UPS and autophagy 

(Boise et al. 2020), which I will go in further detail in the section dedicated to TRIM proteins 

in autophagy. Moreover, TRIM proteins not only act as E3, ligases. TRIM27 or TRIM19, which 
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both have SUMOylation ligase activity, which may also regulate the degradation of proteins 

(Chu and Yang 2011).  

 

Phase separation: a new layer of complexity and regulation 

The primer idea of an organelle is a structure surrounded by a double-membrane. However, this 

idea has been left behind by the discovery of biomolecular condensates in a cellular context 

(Dignon, Best, and Mittal 2020). The formation of these membraneless organelles by liquid-

liquid phase separation (LLPS) adds another layer of complexity and dynamism to many 

cellular processes. Phase separation involves demixing of a homogenous liquid solution of 

macromolecules into two phases that coexist, a dense phase that is enriched and a dilute phase 

that is depleted for specific macromolecules (Boeynaems et al. 2018). This phase allows rapid 

and dynamic exchange of components of the condensate with the surrounding environment. 

The viability of these phase separates is possible due to multivalent interactions that often 

include folded globular domains, intrinsically disordered proteins (IDPs) or intrinsically 

disordered regions (IDR) and/or RNA or DNA scaffolds (Yoshizawa et al. 2020). Among all 

those elements, they can be categorized into two groups depending on their role in the formation 

of phase separates: stickers and spacers. Stickers are those macromolecules that engage in 

reversible non-covalent intra or intermolecular interactions, leading to physical crosslinks, thus, 

they “stick” to another macromolecule. On the contrary, spacers are found between stickers, 

and even though they are not directly involved in the crosslink, they can influence the assembly 

of linked molecules (Choi, Holehouse, and Pappu 2020). Even though the better known is the 

liquid-liquid phase separation, membraneless organelles can be in the form of different phase 

separations such hydro-gel or liquid-solid separation. This seem to be the case of p62 bodies in 

the liver cell line huh-1, where p62 forms gel-like droplets, which work as platform for 

autophagosome formation (Kageyama et al. 2020). 

The membraneless compartments can be found both in the cytosol and the nucleus. The 

presence of the so-called bodies have been known for years, but a lack of methodology to 

analyze them made it difficult to fully describe their nature. Arising evidences suggest that 

nuclear structures such as promyelocytic leukemia (PML) bodies, Cajal bodies, SUMO bodies, 

NEAT bodies, histone locus bodies, or the mitotic spindle are indeed biomolecular condensates 

that participate in nuclear organization and regulation (Zimber, Nguyen, and Gespach 2004). 

Promyelocytic leukemia (PML) bodies are present in the nucleus, where they have an important 
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role in the regulation of chromatin dynamics (Corpet et al. 2020), and in the cytoplasm, 

commonly linked to the ER and mitochondria (Carracedo, Ito, and Pandolfi 2011). PML bodies 

undergo phase separation, stablishing a dynamic network between their components 

(Yoshizawa et al. 2020). Interestingly, the major mediator of the structure of these bodies is 

TRIM19, which also known as PML. TRIM19 has ubiquitin and SUMO E3 ligase activity that 

contribute to the formation and maintenance of their structures by the interaction with 

scaffolding proteins (Corpet et al. 2020).  

Since this is a spontaneous reaction, the question of how the cell is able to control phase 

separation of cellular components rapidly arises. It has been reported that PTMs such as 

phosphorylation, ubiquitylation, arginine methylation and sumoylation can act as cellular 

switches controlling phase separation (Hofweber and Dormann 2019; Owen and Shewmaker 

2019). Interestingly, many proteins commonly involved in phase separation show in their 

sequence many residues targeted by PTMs. Another control point of phase separations seems 

to be controlling the concentration and distribution of the elements participating in the process. 

Thus, the cell is able to shuttle phase separation prone elements in and out of the nucleus or 

other cellular compartments to control the formation of the biomolecular condesate 

(Boeynaems et al. 2018). 

 

The role of ubiquitin in phase-separation: The infrastructure of the cross-

talkers 

Liquid-liquid phase separation (LLPS) has emerges as an additional player in the 

spatiotemporal regulation of quality control in the cell. This control mechanism seems to be for 

several structures ubiquitin dependent (Lei, Wu, and Winklhofer 2020). LLPS provides a 

transient and dynamic compartmentalization of several cellular processes, such as autophagy 

(Banani et al. 2017). The autophagic receptor p62 plays a key role in protein quality control. 

Growing evidences show that p62 is able to perform this function undergoing phase separation. 

Polymerization of p62 increases its affinity to polyubiquitin-linked cargo and LC3B, while 

dimeric p62 shuttles ubiquitylated proteins to the proteasome (Wurzer et al. 2015). 

Additionally, mono-ubiquitin of p62 has been observed to inhibit phase separation, likely due 

to its interference in the binding of the UBA domain with the cargo. Inhibition or impairment 

of the proteasome leads to a lower abundance of mono-ubiquitin, and in consequence a higher 

number of ubiquitylated substrates (Berkamp, Mostafavi, and Sachse 2020). In this context, 
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p62 is called by those ubiquitylated substrates, which promotes p62 condensation and 

subsequent autophagosomal degradation (Figure 11). In the past years, it has been suggested 

that p62 also undergos a further step of phase separation, forming a gel-like structure 

(Kageyama et al. 2021). However, this theory is still in its initial stages. 

 

 

 

 

 

 

 

 

 

This ability to quickly form these condensates provides an efficient way of sequestering and 

processing cellular material destined to be degraded.  Hence, ubiquitin seems to be not only the 

major common denominator between UPS and autophagy, but it also controls the compensatory 

mechanisms between these two pathways.  

 

TRIMs: a family of E3 ligases 

Tripartite motif family proteins (TRIMs) are a wide family of proteins involved in the control 

of several cellular processes such as intracellular signaling, innate immunity, transcription, cell 

cycle regulation, autophagy and carcinogenesis (Boise et al. 2020; M A Mandell et al. 2014; 

Watanabe and Hatakeyama 2017). To date, there are more than 80 distinct protein members in 

the TRIM family. The vast majority of those TRIMs present E3 ligase activity since they 

contain a RING finger-domain, with a few exceptions such as TRIM16 or TRIM20, which lack 

this domain but still has the ubiquitin binding activity (Michael A Mandell, Saha, and 

Thompson 2020). Individual TRIM proteins have also showed functions of SUMOlyation and 

NEDDylation of themselves or their interacting partners (Chu and Yang 2011; Noguchi et al. 

Figure 11. Poly-ubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Polyubiquitin chain-

induced p62 phase separation drives autophagic cargo segregation. p62 proteins form oligomers through the PB1 domain 

(green part) and bind ubiquitin through the UBA domain (yellow part). Both domains facilitate multivalent interactions. When 

protein concentrations reach a threshold, liquid–liquid phase separation occurs to form p62 bodies. Other client proteins, such 

as LC3 and Keap1, are also recruited to p62 bodies. p62 bodies are then degraded by autophagy. cation–piFrom (Sun et al. 

2020) 
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2011). Those TRIMs defined as E3 ligases are characterized by the presence of tripartite motif 

RBCC domain. The RBCC domain contains in the N-terminal one RING-finger domain, one 

or two B-boxes (B1/B2) and a coiled-coil (CC) domain (Reymond et al. 2001). The B-box 

together with the coiled-coil domain mediate protein-protein interactions. The coiled-coil 

domain is the responsible of TRIM hetero- and homodimerization, crucial for many TRIM 

proteins that require dimerization to be catalytically active (Koliopoulos et al. 2016). In 

addition, most TRIMs also present domains at the C-terminus, which gives them specificity for 

their target proteins (Ikeda and Inoue 2012). Based on the composition of the C-terminus 

domain and domain organization, TRIMs can be classified in 12 subfamilies (I-XI). (Figure 12) 

The C-terminus domains present in TRIM proteins are: COS domain, fibronectin type III repeat 

(FNIII), SPRY domain, PRY domain, PHD domain, bromodomain (BROMO), filamin-type IG 

domain (FIL), NHL domain, Meprin and TRAF-homology domain (MATH), ADP-ribosylation 

factor family domain (ARF), transmembrane region (TM) and acid-rich (Watanabe and 

Hatakeyama 2017; Michael A Mandell, Saha, and Thompson 2020). 

 

Figure 12. Generic structure of Tripartite motif (TRIM) proteins and subfamilies. (Michael A Mandell, Saha, and 

Thompson 2020)  

 

TRIMs expression is found down or upregulated in numerous cancers (Shigetsugu 

Hatakeyama 2011). In general, a significant decrease of TRIM expression suggests a tumor 

suppressive role, whereas a significant overexpression suggest an oncogenic role. To date, the 

TRIMs that have been associated to cancer are TRIMs 11, 14, 24, 25 ,27, 28, 29, 33, 37, 44, 

and 59 (Michael A Mandell, Saha, and Thompson 2020). This list is likely to grow in the 

following years, and the general rule of thumb of the effect by decreased/increased expression 

might change overtime if more versatile roles of TRIM in cancer are discovered.  

Over the years, there has been found an association of TRIM genes with chromosomal 

translocations, leading many times to the contribution to oncogenesis. One of the most known 

is the translocation between TRIM19 gene (PML) on chromosome 15 and the retinoic acid 

receptor alpha (RARα) gene located on chromosome 17 (Cambiaghi et al. 2012). This 

ACID 
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translocation is associated with acute promylocytic leukemia, and acts by repressing genes 

associated with retinoic acid signaling (Corpet et al. 2020). Moreover, the RET genes on 

chromosome 10 has been found in translocations with several TRIM genes, including TRIM24, 

TRIM27 and TRIM33 (Crawford, Johnston, and Irvine 2018). TRIM24 has been found 

translocated with RET gene in papillary thyroid cancer (Santoro and Carlomagno 2013), with 

BRAF gene in melanoma (Hutchinson et al. 2013) and lung cancer (Nakaoku et al. 2014), and 

with FGFR1 gene in myeloproliferative syndrome (Belloni et al. 2005). All these fusion 

proteins lead to the upregulation of activity of the RET, BRAF or FGFR1 kinases, resulting in 

the activation of multiple pro-survival signaling. The fusion of these genes with TRIM proteins 

lead to a gain-of-function that has profound effects in oncogenesis.  

Some TRIMs are involved in the regulation of pathways seminal to cancer stemness, 

including STAT signaling, AKT signaling, NANG-Sox2-Oct3/4 networks, and pathways 

related to epithelial mesenchymal transition (EMT). (reviewed by (Jaworska et al. 2020)), 

suggesting a TRIM-dependent contribution to cancer stemness. TRIM28 is reported to maintain 

Oct-3/4-Sox-NANOG expression in breast cancer cells (Czerwińska, Mazurek, and 

Wiznerowicz 2017), whereas TRIM24 enhances STATS3-mediate transcriptional activation, 

leading to cancer stemness in glioblastoma (Lv et al. 2017). In addition, TRIM14, TRIM24 and 

TRIM27 have been reported to mediate AKT signaling, enhancing EMT (Eberhardt et al. 2020).  

In contrast, TRIM16 has been found to be a negative regulator of stemness in breast (Yao, J. 

Xu, T. Tian, T. Fu, X. Wang, W. 2016) and ovarian cancer cells (H. Tan et al. 2017). A deeper 

description, as well as more TRIMs involved in stem cells cell-renewal abilities is likely to arise 

in the following years. Autophagy plays a pivotal role in cancer stemness through its 

contribution in cellular homeostasis and longevity (Chang 2020). Autophagic regulation is a 

very prominent feature of TRIMs, so it would be unsurprising that the effect of this family of 

proteins on autophagy lead to effects in cancer stemness.  

The tumor suppressor protein p53 has a central role in the regulation of genomic stability 

by inducing cell cycle arrest and apoptosis if extensive cellular DNA damage occurs (Horn and 

Vousden 2007). The interaction between TRIM proteins and p53 has been extensively 

described (reviewed in). TRIMs 11, 21, 24, 25, 28, 29, 31, 32, 39, and 59 are found to negatively 

regulate p53 by directly ubiquitinating p53, leading to its proteasomal degradation in the 

cytoplasm.  

Breast cancer is the most common malignancy in women worldwide, and it is curable 

in the 70-80% of the cases if it is diagnosed in its early stages (Harbeck et al. 2019). To date, 
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there are 15 TRIM proteins associated to breast cancer. The expression of TRIMs 13, 21 and 

62 was found decreased, whereas the expression of TRIMs 11, 24, 37, 44 and 59 was found 

increased (Michael A Mandell, Saha, and Thompson 2020). Decreased levels of TRIM13 

expression was associated with worse distance metastasis free survival, diseases specific 

survival, metastatic relapse free survival ad relapse free survival (W. X. Chen et al. 2019). The 

decreased expression of TRIM21 correlates with poor overall survival in breast cancer patients 

(Vicenzi et al. 2019). Up-regulation of TRIM11 has been suggested to act through 

AKT/GLUT1 signaling pathway in breast cancer (Song et al. 2019), while up-regulation of 

TRIM24 and TRIM37 have been linked to histone modifications in breast cancer (Tsai et al. 

2010; Bhatnagar et al. 2014). Elevated levels of TRIM32 and TRIM44 were associated with 

effects in the NFKB pathway in breast cancer (Kawabata et al. 2017; T. T. Zhao et al. 2018). 

Moreover, TRIM59 is found up-regulated in metastatic breast cancer, where it is observed to 

mediate the p62-selective degradation of tumor suppressor PDCD10 (P. Tan et al. 2018), 

highlighting the role of a TRIM protein acting on autophagy in breast cancer.  

 

TRIMS in autophagy: the newcomers 

TRIM proteins play several roles in autophagy, acting at different levels of regulation both as 

regulators and effectors (Michael A Mandell, Saha, and Thompson 2020) (Figure 13). Some 

TRIMs regulate autophagy at the mRNA levels by affecting the transcription of autophagy 

genes. Good examples of this phenomenon is TRIM59, which negatively regulate the 

expression of Becn1 mRNA or TRIM37, which acts as a suppressor of autophagy by inhibiting 

the activation and nuclear translocation of the pro-autophagy transcription factor TFEB (W. 

Wang et al. 2018; Han et al. 2018). In addition, TRIM16 promotes the expression of p62 by 

driving Nrf2 activation under conditions of oxidative stress (Kumar Jena et al. 2018). Other 

TRIMs can act as transcriptional regulators, as is the case of TRIM28. This TRIM is also known 

as KAP1 and represses the expression of miRNAs that target autophagy factors such as ULK1, 

Becn1 and Atg12 (Czerwińska, Mazurek, and Wiznerowicz 2017). Interestingly, TRIM65 

promotes autophagy by preventing miRNA-based down-regulation of ATG7 (X. Pan et al. 

2019).  

Certain TRIM proteins seem to be involved in the regulation of autophagy through the 

regulation of upstream signals such as mTOR and AMPK pathways, as well as STING/TAK1 

pathway. TRIM37 interacts directly with mTOR complex components and promotes assembly 
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of active mTOR complexes to the lyososome. Interestingly, TRIM37 deficient cells show high 

rates of autophagy flux, becoming “autophagy addicted”, leading to cell death if autophagy is 

inhibited (W. Wang et al. 2018). TRIM proteins also regulate AMPK and its ability to induce 

autophagy. TRIM28 ubiquitylates the AMPKα1 subunit, leading it to degradation, thus 

repressing autophagy. Pro-cancer kinase TAK1 is involved in the regulation of AMPK activity. 

Interestingly, TRIMs 5 and 8 activate this kinase, whereas TRIM38 inhibits it (Pertel et al. 

2011; Hu et al. 2014). On the other hand, another essential pathway for the control of autophagy 

is STING-TBK1 signaling axis. Several TRIMs are involved in the regulation of these pathways 

through interaction of different players of this pathway. STING is found in the ER membrane 

in an inactive state, and it becomes activated in response to cytosolic DNA detection, that leads 

to the recruitment of TBK1. The activation of the STING-TBK1 complex re-localizes to the 

ER-intermediate compartment and activates transcription factor IRF3 (Kimura et al. 2015). 

TRIM56 and TRIM32 catalyze the formation of K63-linked polyubiquin chain of STING 

(Tsuchida et al. 2010; Wu et al. 2020). TRIM27 promotes the proteasomal degradation of TBK1 

(Zheng et al. 2015). TRIM23 is a unique TRIM that contains an ARF domain, which interacts 

with TBK1 and is implicated in TRIM23-mediated autophagy (Sparrer et al. 2017).  It is likely 

that more TRIMs are able to regulate autophagy by acting on TBK1. In addition, TRIM16 has 

an important role in lysophagy through its binding to Galectin-3. Upon invasion of 

mycobacterium, the vacuoles that contain them (endosomes and eventually lysosomes) can 

experience membrane damage, which can eventually release the invading bacteria into the 

cytosol. Galectin-3 detects the glycans exposed by the damaged membrane, which presence is 

unusual in the cytosol. Then Galectin-3 recruits TRIM16, which in turn serves as a platform for 

autophagic initiation factors (Chauhan et al. 2016).  

Some TRIMs are able to directly interact with the conserved core autophagy machinery, 

thus modulating autophagy. Some TRIMs, such as TRIM5α, 6, 16, 17, 20, 22, 49 and 55, act 

as a platform through the assembling of ULK1 and Beclin 1. This regulatory complex has been 

name TRIMosome, which regulates selective autophagy (Nicely reviewed in (Kimura et al. 

2015)). TRIM 5α, 6, 17, 22 and 49 interact with ULK1 and Beclin 1. TRIM5α also interacts 

with ATG14L1 and AMBRA1, which are both interactors of the Beclin 1 complex . Other 

TRIMs that interact with ULK1 and/ or Beclin 1 complexes are TRIM 13, 16, 20, 21, 28, 32, 

and 50. In general, the action of these TRIMs lead to an induction of autophagy. However, there 

are TRIMs such TRIM17 that interacts with ULK1 and Beclin 1 and inhibits autophagosome 

formation (Michael A. Mandell et al. 2016). TRIM 6, 16, and 20 also form protein complexes 
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with ATG16L1, and TRIM5α co-immunoprecipitates with ATG5, however, their effect of 

ATG8 lipidation and autophagosome membrane elongation has not been elucidated yet. 

Interestingly, there are some TRIMs that are able to modulate autophagy through its non-E3 

ligase activity. A good example is TRIM20, which lacks a RING domain but can still assemble 

active autophagy initiation complexes. TRIM28 is able to SUMOylate Hvps34, enhancing the 

PI3 kinase activity of Beclin 1 complex (Czerwińska, Mazurek, and Wiznerowicz 2017). In 

addition, TRIM32 promotes the activity of ULK1 complex through the generation of unattached 

K63-linked poly-ubiquitin chains (Di Rienzo, Piacentini, and Fimia 2019). It would not be 

surprising that other TRIMs can modulate autophagy through their SUMO or NEEDylation 

activities, as well as interaction with the autophagy machinery that does not require their E3 

ligase action.  

 

Figure 13. Roles of TRIM proteins in autophagy to date. Schematic of different steps/stages of the autophagy pathway by 

TRIM proteins (top). Summary of TRIM actions in autophagy (bottom). ♠ Symbol indicates proteins with reported cancer 

relevance. (Rottenberg and Hoek 2021) 
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The vast majority of TRIMs contain a RING domain that acts as an E3 ligase, therefore, 

the idea that TRIMs tag substrates for being recognized by autophagy receptors is one of the 

first one that comes to mind. However, such TRIM-mediated autophagy has not been well-

described yet. A study suggested that TRIM21 ubiquitylates kinase IKKβ, facilitating its 

degradation by autophagy (Niida, Tanaka, and Kamitani 2010). Some TRIMs actually seem to 

act as autophagy receptors themselves, binding the substrate while recruiting the autophagic 

machinery (Kimura, Mandell, and Deretic 2016). TRIM5 acts as an autophagy receptor during 

viral infection. TRIM5α contains two LIR motifs that directly binds ATG8 proteins, while it 

has a SPRY domain in its C-terminal that can bind the autophagic substrates (Michael A 

Mandell et al. 2015). There are other TRIMs that are able to bind ATG8s (Rienzo et al. 2020). 

It is likely that more TRIMs can act as autophagy receptors themselves upon certain stress or 

stimuli that the cells face. Typically, autophagy receptors end being degraded in the lysosomes 

together with their targeted proteins (Johansen and Lamark 2020). To date, several TRIMs has 

been reported to be degraded by autophagy (found in lyosomes): TRIM 5α, 13, 16, 20, 21, 23, 

27, 31, 32, 45, 50, and 56 (Nicely reviewed in (S Hatakeyama 2017) and (Michael A Mandell, 

Saha, and Thompson 2020)).  

Due to its multifunctional nature, the mechanisms that the cells have to control p62 

action is tightly regulated and are not completely elucidated. In the last years, TRIM proteins 

have emerged as key regulators of p62. Many TRIMs have been shown to interact with p62 or 

to colocalize with p62 in cellular structures (Reviewed in Michael A Mandell et al., 2020). One 

of the main functions of p62 is the organization and sequestration of ubiquitylated proteins into 

cytoplasmic punctate structures called p62 bodies, which have liquid droplet-like properties. It 

is suggested that these structures may act as a platform for p62-mediated signaling, 

concentrating and leading cellular waste to degradation (Zaffagnini et al. 2018). To date, 14 

TRIMs have been linked to the regulation of the formation and clearance of these structures. A 

subgroup formed by TRIM 5, 16, 17, 32, 50, 52, and 58 seem to increase the abundance of p62 

bodies, whereas TRIM 14, 19, 21, 22, 25, 65, and 76 have the opposite effect (Kimura, Mandell, 

and Deretic 2016; J. A. Pan et al. 2016; Kumar Jena et al. 2018; Kehl et al. 2019; Overå et al. 

2019). In contrast, TRIM16 is required for the formation of p62 bodies in the same 

circumstances (Kumar Jena et al. 2018). TRIMs have also been suggested to modulate p62 

activity via the control of its phosphorylation status (Michael A Mandell, Saha, and Thompson 

2020). Another mechanism TRIM proteins have to control p62 dynamics is by their action on 
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Nrf2.  TRIM21 negative regulates Nrf2-directed cytoprotective antioxidant response of p62 

(Bartolini et al. 2018). 

All these examples of the regulation of autophagy by TRIM proteins show the high 

specificity of this family of E3 ligases. Interestingly, no TRIM homologs have been identified 

in yeast, which is well-studied autophagy model organism. Thus, TRIM proteins might add 

complexity to the mammalian autophagy system, being able to regulate more specific 

degradation processes (Michael A Mandell, Saha, and Thompson 2020). 

 

TRIM27 and its known roles 

TRIM27 is an E3 ligase also known as Ret finger protein (RFP protein), which was firstly 

described as a fusion protein with the tyrosine kinase domain of the c-RET proto-oncogene 

originated by DNA rearrangement (Hasegawa et al. 1996). This 58-kDa protein is part of the 

largest subclass on the TRIM protein family of proteins, class-IV. TRIM27 can be found both 

in the cytoplasm and the nucleus of the cells, depending on the cell type (G. Tezel et al. 1999). 

TRIM27 expression is found in all human tissues, however, it is significantly higher in male 

germ cells (Zhuang et al. 2016). TRIM27 structure consists in a N-terminal formed by a RING 

domain, that confers the E3 ligase activity as well as SUMOylation (Chu and Yang 2011), 

followed by a B-box and a coiled-coil domain, which are in charge of oligomerization. In the 

C-terminal TRIM27 contains a PRY followed by an SPRY domain (Figure 14). TRIM27 

contains in the coiled-coil region a nuclear export (NES) sequence that allows shuttling between 

the nucleus and the cytoplasm (Harbers et al. 2001).  

 

Figure 14. TRIM27 structure. A RING-finger domain, a B-box, two coiled-coil domains, a LIR motif in between the coiled 

coil domains, followed by a PRY and SPRY domains in its C-terminal form TRIM27. 

 

TRIM27 is involved in the regulation of several cellular processes such as immunity, 

apoptosis, cell growth, proliferation, transcriptional regulation, tumorigenesis and endosomal 
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recycling (Nie et al. 2016; Zoumpoulidou et al. 2012; Y. Liu et al. 2014; Zhuang et al. 2016). 

TRIM27 is reported to have several roles in host defense against pathogens. TRIM27 acts as a 

host restriction factor during mycobacterial infection, enhancing immune-inflammatory 

response and cell apoptosis (J Wang et al. 2016). Interestingly, TRIM27 is found downregulated 

in mycobacterium tuberculosis (Mtb) patients compared to latent and healthy subjects, 

suggesting that TRIM27 might play a role in response to Mtb infection (Y. Chen et al. 2017). 

In addition, TRIM27 has been identified as a degradation target of Herpes Simple Virus 1 ICP0 

(Conwell et al. 2015), and together with USP7 negatively modulates antiviral type I Interferon 

(INF) signaling (Cai et al. 2018). Additionally, TRIM27 is linked to the regulation of NfKB 

pathway by mediating the degradation of nucleotide-binding oligomerization domain-

containing protein 2 (NOD2) (Zurek et al. 2012).  TRIM27 plays a role in endosomal recycling 

when it is in complex with USP7 and MAGE-L2. This complex regulates the activity of the 

WASH/retromer-mediated endosomal recycling through its ubiquitylation status (Hao et al. 

2015).  

TRIM27 has been identified as an oncogene, highly expressed in various cancer types 

such as breast cancer (Xing et al. 2020). TRIM27 promotes proliferation mainly through its 

nuclear function, participating in transcriptional regulation complexes (Horio et al. 2012; 

Iwakoshi et al. 2012; Tsukamoto et al. 2009; G. G. Tezel et al. 2009; Nie et al. 2016; H. X. 

Zhang et al. 2018; Y. Zhang et al. 2018). It has also been proposed to be involved in cell 

migration and invasion (Y. Zhang et al. 2018). TRIM27 acts as a transcription repressor through 

interactions with myocardin related transcription factor B (MRTFB) (Kato et al. 2014), 

retinoblastoma susceptibility gene (RB1) (Zoumpoulidou et al. 2012), and enhanced of 

polycomb (EPC) (Shimono et al. 2000). TRIM27 also mediates the IL-6-induced activation of 

STAT3 via a retromer-dependent pathway, leading to inflammation associated cancer 

development (H. X. Zhang et al. 2018). Moreover, a recent study suggests that TRIM27 plays 

a role in the Hippo-BIRC5 axis in gastric cancer, a crucial pathway in regulating tissue 

homeostasis and organ growth (Y. Yao et al. 2020).  

TRIM27 is involved in the regulation of apoptosis via ubiquitylation of PTEN, which 

inhibits its phosphorylation activity and does not allow the PTEN-dependent activation of 

TRAIL expression (Lee et al. 2013). PI3K/AKT pathway plays an important role in cancer 

progression through its involvement in cellular metabolism. (Q. Wang, Chen, and Hay 2017) 

Growing evidences show that TRIM27 regulates the action of this pathway through different 

mechanisms. On one side, TRIM27 has been shown to activate p-AKT in colorectal cancer (Y. 
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Zhang et al. 2018). In addition, TRIM27 controls PTEN activity, which suppresses the 

activation of AKT via PTEN on esophageal squamous cell carcinoma (ESCC) (L. Ma et al. 

2019). Furthermore, PTEN/AKT axis has been shown as a target in suppressing glycolysis 

activity in cancer cells under hypoxic conditions (F. Chen et al. 2015), which represents a link 

between TRIM27 and glycolysis metabolism.  

TRIM27 has been associated with several human diseases such as Parkinson’s disease 

(Y. Liu et al. 2014), immune disorders and cancer (Watanabe and Hatakeyama 2017). TRIM27 

expression levels have been found upregulated in a variety of human cancers, including breast, 

endometrial, lung and colon cancer (Xing et al. 2020; Tsukamoto et al. 2009; S. Liu et al. 2020; 

Zoumpoulidou et al. 2012). Altogether, the important role of TRIM27 in cancer development 

and metastasis seems evident, however, the mechanistic through which TRIM27 acts is not 

fully elucidated yet.  

 

TRIM32 and TRIM32-related diseases 

TRIM32 is a part of the TRIM family proteins subgroup C-VII. This group is characterized by 

the presence of NHL (NCL-1, HT2A and LIN-41) motifs in its C-terminal (Figure 15). TRIM32 

contains six NHL repeats, which mediate protein-protein interaction (Slack and Ruvkun 1998).  

Of note, NHL domains have a positively charged top surface, which is able to bind RNA 

(Loedige et al. 2013). This suggests that TRIM-NHL family play a role as miRNA regulators 

(Tocchini and Ciosk 2015). The B-box and the RING domain cooperate to specify TRIM32 

subcellular localization (Lazzari and Meroni 2016). Additionally, the B-box of TRIM32 is 

responsible for its oligomerization, which is necessary for its catalytic activity (Koliopoulos et 

al. 2016). TRIM32 undergoes auto-ubiquitylation in presence of E2 enzymes belonging to the 

D and E subfamilies (Napolitano et al. 2011). Due to the ability of TRIM32 to work with several 

UBE2 enzymes, its catalytic activity leads to several possibilities of ubiquitin chains on the 

substrates. TRIM32 is able to tag both K48, mainly implicated in proteasomal degradation 

(Grice and Nathan 2016), and K63, which is strongly implicated in immune signaling and 

autophagy (Erpapazoglou, Walker, and Haguenauer-Tsapis 2014). Hence, TRIM32 leads the 

ubiquitylated proteins to different fates. 
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Figure 15. TRIM32 structure and diseases-related mutations. TRIM32 is formed by the RBCC motif characteristic of the 

TRIM protein family, followed by 6 NHL domains. A point mutation in the B-box (P130S) causes BBS11, and the six marked 

mutations of the NHL cause LGMD2H. From (Lazzari and Meroni 2016) 

 

TRIM32 expression is detectable in all cells of the body, with high expression levels in 

the brain and heart (Frosk et al. 2002). Among the identified substrates of TRIM32, there are 

many muscular-relevant proteins such as actin, α-actinin, desmin, tropomyosin, suggesting that 

TRIM32 has an important role in muscle homestosasis (Cohen et al., 2009; Kudryashova et al., 

2005). Other TRIM32 substrates are cell cycle regulators such as c-Myc, MYCN and p53 

(Lazzari and Meroni 2016). In addition other proteins that become substrates of TRIM32 are 

the cytoplasmic enzyme NDRG2 (Mokhonova et al. 2015), the RARα nuclear receptor (Sato et 

al. 2011), the PB1 viral RNA polymerase and the innate immunity adaptor STING (J. Zhang et 

al. 2012).  

As mentioned, TRIM32 has a large number of substrates that are tagged for protein 

degradation, therefore it comes as no surprise that the impairment of the degradation of some 

of those substrates leads to several human pathologies. E3 ligases play an essential role in 

muscular physiology, especially in muscular atrophy (Sandri 2013). Genetic mutations in the 

NHL domains of TRIM32 cause the muscle disorder Limb Girdle Muscular 4 Dystrophy 2H 

(LGMD2H), which is associated with impaired auto-oligomerization and self-ubiquitylation, 

and reduced TRIM32 expression level (Zhao et al., 2019, Locke et al., 2009). TRIM32 is 

associated with this muscular disease through seven mutations in the NHL domain: D487N, 

R394H, V591M, D588del, T520TfsX13, L535SfsX21 and I590LfsX38 (Figure 15). LGMD2H 

caused by TRIM32 mutations is a form of autosomal recessive muscular dystrophy. LGMD2H 

patients present a wide range of symptoms, ranging from no apparent muscular impairment to 

severe muscle weakness (Lazzari et al. 2019). Conversely, a missense-mutation (P130S) in the 

B-Box domain results in the disease Bardet-Biedl syndrome 11 (BBS11), which has a 
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pleiotropic phenotype (Chiang et al., 2006). BBS11 is characterized by obesity, retinal 

degradation, genito-urinary tract malformations, and cognitive impairment (Chiang et al. 2006). 

Interestingly, BBS11 patients do not show any muscle alterations, highlighting the functionality 

differences between the B-box and NHL domains of TRIM32. A mouse TRIM32 model created 

by (Kudryashova et al. 2009) found that muscular dystrophy caused by TRIM32 mutations 

involves both neurogenic and myogenic characteristics. This same group produced a Knock-In 

(KI) mouse model with the LGMD2H mutation D487N. Interestingly, this mutation destabilizes 

the protein, which leads to its degradation, resulting in the same phenotype as TRIM32 mice 

(Kudryashova et al. 2011). Further studies by this group with the TRIM32 null mice showed 

that even though TRIM32 plays a key role in muscle regrowth after atrophy, it is not necessary 

to trigger muscle atrophy (Kudryashova, Kramerova, and Spencer 2012). Even though the 

pathological mechanism of TRIM32 that leads to LGMD2H is still unclear, several studies 

suggest that the loss of E3 ligase activity and/or interaction properties of TRIM32 are involved 

in the pathogenesis of this disease.  

Several proteins involved in tumorgenesis are found among TRIM32 substrates (Lazzari 

and Meroni 2016). Depending on the context and the targeted protein, TRIM32 acts as an 

oncogene or a tumor suppressor. TRIM32 expression has been found increased in colorectal 

cancer, lung cancer, hepatocellular carcinoma and head and neck squamous cell carcinoma 

(Lazzari and Meroni 2016; T. T. Zhao et al. 2018; Ju Liu et al. 2014). On one side, TRIM32 

regulates p-53-mediated cellular stress responses. In response to stress, the tumor suppressor 

p53 induces the expression of TRIM32. Consequently, TRIM32 interacts and sends p53 to 

degradation, creating a feedback loop that regulates the activity of p53 (Ju Liu et al. 2014). 

Moreover, TRIM32 is responsible for the degradation of tumor suppressor Abl interactor 2 

(Abi2), promoting cell proliferation, transformation and metastasis (Kano et al. 2008). 

Additionally, TRIM32 has been shown to positively mediate TNF-induced apoptosis via 

proteasomal degradation of the anti-apoptotic factor XIAP (Ryu et al. 2011). TRIM32 also 

regulates UVB-induced keratinocyte apoptosis through induction of NFkB by the degradation 

of its inhibitor Piasy (Albor et al. 2006). Furthermore, TRIM32 supports MYCN degradation, 

promoting asymmetric cell division in neuroblastoma cells (Izumi and Kaneko 2014). A recent 

study found that TRIM32 interacts and degrades the transcription factor Gli1, which is involved 

in sonic hedgejog (SHH) signaling (M. Wang et al. 2020). This pathway is involved in 

neurogenesis during development and its dysregulation often leads to tumorgenesis. In this 
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context, TRIM32 acts as a tumor suppressor. All these roles of TRIM32 in different cellular 

pathways show its prominent implication in cancer development. 

Moreover, it has also been shown that TRIM32 activates ULK1 via the autophagy 

cofactor AMBRA 1, facilitating autophagy in muscle cells upon atrophy induction (Di Rienzo, 

Piacentini, and Fimia 2019). Importantly, the LGMD2H disease mutant of TRIM32 was unable 

to associate with ULK1 and induce autophagy (Di Rienzo, Piacentini, and Fimia 2019). These 

findings suggest that TRIM32 is involved in the regulation of autophagy in muscle cells. 
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Aim of the study 

This project was born from a screen of 22 different TRIM proteins using the double-tag assay, 

which represented the 11 TRIM family subgroups. The goal of this screen was to identify 

candidates with a potential role in autophagy, alleging that their presence in the lysosome liked 

them somehow with the autophagy process. Previous studies have already recognized some 

TRIM proteins as regulators and receptors in selective autophagy. Our hypothesis was that 

within the 80 members of the TRIM family, there are additional TRIM proteins that are 

degraded by autophagy and might potentially function as autophagy receptors or regulators. 

From the screen, TRIM27, TRIM32 and TRIM45 were identified as new potential autophagic 

substrates. We decided to further investigate the roles of TRIM27 and TRIM32 in autophagy, 

to try to test our hypothesis. 

The following aims were defined to test this hypothesis: 

1. Identify if these TRIM proteins are autophagy substrates 

2. Identify which part of the core autophagy machinery is mediating their autophagic 

degradation 

3. Identify if these TRIM proteins have characteristics as autophagy receptors 

4. Identify if these TRIM proteins have any specific role in autophagy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 38 - 

 

Summary of papers  

 

Paper I 

TRIM27 is an autophagy substrate implicated in autophagy induction and regulation of 

LAMP2 

Garcia, J.G., Overå, K.S., Bhujabal, Z., Knutsen, E., Evjen, G., Lamark, T., Johansen, T., 

Sjøttem, E. 

Manuscript 

In this study, we investigated the role of TRIM27 in autophagy. Firstly, we identified TRIM27 

as an autophagic substrate, which degradation was depended on ATG7 and the SLRs family of 

autophagy receptors. We mapped a LIR domain in its coiled coil region with specificity towards 

LC3C and GABARAP. Establishment of HEK293 FlpIn TRIM27 KO cells showed that 

TRIM27 has an effect in starvation-induced autophagy. Reconstitution of the TRIM27 KO cells 

with EGFP-TRIM27 showed that TRIM27 associates with core autophagy proteins and the 

SLRs p62 and NBR1. Furthermore, TRIM27 interacts directly with and ubiquitylates p62. 

Interestingly, the TRIM27 KO cells displayed high levels of LAMP2 expression, forming big 

LAMP rings in the cytosol of the cells. TRIM27 is described as an oncogene, and we found 

TRIM27 mRNA levels to be strongly upregulated in cancer tissue from breast cancer patients, 

as well and in various breast cancer cell lines. Intriguingly, TRIM27 expression seems to be 

inversely correlated with LAMP2 and LC3B expression in the analyzed cell lines, linking 

TRIM27 to the regulation of autophagy in breast cancer cell lines Thus, these cell lines are 

potentially a model system to identify the roles of TRIM27 in autophagy in breast cancer and 

its implication in the pathology of this cancer. 

 

Paper II 

TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is 

targeted to autophagic degradation by p62/SQSTM1. 

Overå, K.S., Garcia, J.G., Bhujabal, Z., Jain, A., Øvervatn, A., Larsen, K.B., Deretic, V., 

Johansen, T., Lamark, T., and Sjøttem, E. (2019). 

J. Cell Science. PMID 31828304. 

In this first study on TRIM32, we identified TRIM32 as an autophagic substrate. TRIM32 

degradation was mediated the Sequestrome-like receptor p62 in an ATG7 dependent pathway. 

We showthat TRIM32 directly interacts and ubiquitylates p62on lysine residues involved in the 
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regulation of p62 activity. This forms a feedback loop between TRIM32 and p62. Interestingly, 

the TRIM32 mutant implicated in the muscular dystrophy disease LGMD2H was not able to 

undergo autophagic degradation and failed to ubiquitylate p62. In contrast, the BBS11 disease 

mutant strongly facilitated p62 ubiquitylation, sequestration and degradation. These findings 

pointed to a dual role of TRIM32 in autophagy, as a cargo and a regulator of p62. Notably, the 

LGMD2H mutation phenotype suggests thatdysfunctional TRIM32-mediated regulation of p62 

may represent one of the pathological mechanisms of this disease.  

 

Paper III 

TRIM32 – a putative regulator of NDP52 mediated selective autophagy 

Garcia, J.G., Bhujabal, Z., Overå, K.S., Sjøttem, E. 

Manuscript  

In paper III, we further studied the role of TRIM32 towards the other SLRs, which we identified 

in paper II as putative mediatorss of TRIM32 degradation by autophagy. In this study, we show 

that TRIM32 downregulates the protein levels of all SLR proteins. Focusing on NDP52, we 

show that TRIM32 interacts directly with and ubiquitylates NDP52. On the other side, NDP52 

was able to direct autophagic degradation of TRIM32. NDP52 is important for recruiting ULK1 

and the autophagic machinery to damaged mitochondria. We show that reintroduction of 

TRIM32 in TRIM32 KO cells leads to ULK1 stabilisation, and increased phosphorylation of 

the autophagic regulator TBK1. Conversely, the LGMD2H mutated version of TRIM32 does 

not affect NDP52 and ULK1 expression, or facilitate TBK1 autophosphorylation.  Finally, we 

show that mitophagy is impaired in TRIM32 KO cells compared to normal cells and TRIM32 

KO cells reconstituted with TRIM32. Thus, TRIM32 seems to be a regulator of NDP52, ULK1 

and TBK1, which together may facilitate selective degradation of mitochondria.   

 

Paper IV 

Generation of the short TRIM32 isoform is regulated by Lys 247 acetylation and a PEST 

sequence 

Garcia-Garcia J., Overå, K.S., Khan, W., Sjøttem, E.  

PLOS One. In revision. 

In paper IV, derived from our findings in paper II, we studied how TRIM32 auto-ubiquitylation 

regulates its activity and stability. TRIM32 has two variants, a full-length protein and a 

truncated protein. However, the mechanism regulating these two isoforms is poorly understood.  

In this third study, we found that TRIM32 contains a PEST sequence located in the unstructured 
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region between the coiled coil domain and the NHL repeats. This PEST sequence directs the 

cleavage of TRIM32, resulting in a cleaved protein similar to the short isoform. Furthermore, 

we found that the exposure of this PEST sequence seems to be regulated by ubiquitylation and 

acetylation of the lysines K50, K247 and K401. The produced short isoform is catalytic 

inactive, suggesting a dominant negative role. This was a novel finding since to date, no PEST 

sequence had been identified in TRIM proteins.  
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Discussion 

The central theme of this thesis is the role of two TRIM proteins in selective autophagy. I joined 

this project born from a screen of 22 different TRIM proteins using the double-tag assay, which 

represented the 11 TRIM family subgroups. The goal of this screen was to identify candidates 

with a potential role in autophagy, alleging that their presence in the lysosome linked them 

somehow with the autophagy process. The knowledge surrounding the role of TRIM proteins 

in autophagy has increased in the recent years. TRIM proteins show several links to autophagy, 

and one of them is the function as autophagy receptors. Previous studies have already 

recognized TRIM5α, TRIM13, TRIM16, TRIM20, TRIM21 and TRIM63 as regulators and 

receptors in selective autophagy (Kimura, Mandell, and Deretic 2016). From our screen, 

TRIM27, TRIM32 and TRIM45 were identified as new potential autophagic substrates. We 

decided to further investigate the roles of TRIM27 and TRIM32 in autophagy, and our findings 

are presented in the following papers. In paper I, we investigated the role of TRIM27 in 

autophagy, finding that TRIM27 has an effect in starvation-induced autophagy and associates 

with core autophagy proteins and the SLRs p62 and NBR1. Furthermore, TRIM27 interacts and 

ubiquitylates p62/SQSTM1 (hereafter p62). TRIM27 KO cells show high levels of LAMP2 

expression, forming big LAMP rings in the cytosol of the cells. Furthermore, we found TRIM27 

mRNA levels to be strongly upregulated in cancer tissue from breast cancer patients, as well 

and in various breast cancer cell lines. Intriguingly, TRIM27 expression seems to be inversely 

correlated with LAMP2 expression in the analyzed cell lines. In paper II, we examined the 

autophagic role of TRIM32 including two TRIM32 mutations associated with two different 

diseases. In this first study on TRIM32, we found that TRIM32 is directed to autophagic 

degradation by p62, but also a regulator of p62 autophagic activity. This formed feedback loop 

was controlled by the direct interaction and ubiquitylation of p62 by TRIM32. Interestingly, the 

TRIM32 mutant implicated in the muscular dystrophy disease LGMD2H failed to ubiquitylate 

p62. In paper III, we further studied the role of TRIM32 towards the other SLRs. In this study, 

we found that TRIM32 interacts and ubiquitylates the autophagy receptor NDP52, stabilizes 

the phosphorylated form of TBK1 and facilitates mitophagy. In paper IV, derivate from our 

findings in paper II, we studied how TRIM32 auto-ubiquitylation regulates its activity and 

stability. In this third study, we found that TRIM32 contains a PEST sequence, which exposure 

seems to be regulated by ubiquitylation and acetylation of the lysines K50, K247 and K401. 

This was a novel finding since to date, no PEST sequence had been identified in TRIM proteins. 
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Taken together, these findings highlight the pivotal role of TRIM proteins as regulators of 

autophagy. 

 

Exploring the role of TRIM27 in autophagy 

We hypothesized that the presence of TRIM27 in the lysosomes using the double-tag assay 

could be an indicative of this TRIM protein playing a role in regulation of autophagy. TRIM27 

is part of the same subclass as TRIM5α, a well-recognized TRIM that acts as an autophagy 

receptor upon viral infection (Keown et al. 2018). We could not help but wonder if TRIM27 

might act in a similar manner. In an attempt to answer this question, we tried to further 

investigate how TRIM27 ended up in the lysosomes. Flow cytometry assays using HEK293 

FlpIn cells with inducible expression of EGFP-TRIM27 (Larsen et al. 2010) showed that 

TRIM27 could be degraded by both the proteasomal and the autophagic pathway, having the 

proteasome as the main degradation pathway both under normal and starved conditions (data 

not shown). Many TRIM proteins have a role and interact with the autophagy machinery under 

very specific circumstances, such as oxidative stress or invasion of pathogens (Kumar Jena et 

al. 2018; Sparrer et al. 2017). Therefore, TRIM27 might not have an active role in basal 

conditions, but it is plausible that another type of stimuli leads to the activation of TRIM27 

autophagic function, thus ending up in the lysosomes. In this study, we show that TRIM27 

autophagic degradation is mediated by the SLRs family of autophagy receptors in an ATG7 

dependent pathway, pointing to selective autophagy being responsible for TRIM27 

degradation.  

It is recently shown that the only transmembrane autophagy protein ATG9 plays an important 

role in the nucleation of the autophagosome (Sawa-Makarska et al. 2020). ATG9 vesicles 

traffics from Golgi to endosomes in a ULK1-dependent manner under stress conditions (Young 

et al. 2006), and ULK1 phosphorylation regulates trafficking of ATG9 under autophagy-

inducing conditions (Zhou et al. 2017). In this work, we show that depletion of ATG9 leads to 

increased levels of TRIM27. Further, TRIM27 seems to be modified in the ATG9 KO cells, 

resulting in a slower migrating band visualized by Western blotting. Moreover, certain EGFP-

TRIM27 bodies co-localized with ATG9 in the reconstituted HEK293 FlpIn EGFP-TRIM27 

cell line. Interestingly, the autophagy receptors p62 and NBR1 also displayed increased protein 

levels in the ATG9 KO cells, and occurred as slower migration bands on the Western blot gels. 

This clearly points to TRIM27 as an autophagy substrate similarly as NBR1 and p62. In 

contrast, the autophagy receptor NDP52 did not display aberrant mobility in the ATG9 KO cell 
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extract, even if its protein level were slightly increased. Protein levels of lipidated LC3B were 

decreased in the ATG9 KO cells. This is in line with recent reports describing that ATG9 

vesicles recruit the autophagy machinery and establish membrane contact sites with membrane 

donor compartments. ATG2 mediates transfer of lipids from donor membrane to the 

autophagosome formation sites, leading to PIP3 formation and ATG8 lipidation. Hence, 

lipidation of LC3 is dependent on ATG9 vesicles (Sawa-Makarska et al. 2020). Interestingly, 

we observed decreased levels of LC3B dots in the HEK293 FlpIn TRIM27 KO cell lines, 

indicative of reduced LC3B lipidation in these cells. Seeing that some autophagy related 

proteins such as the autophagy receptors p62 and NBR1 are modified upon ATG9 depletion, 

raise the question if ATG9 vesicles contain more than lipids. There is the possibility that ATG9 

vesicles contain protein modifiers such as phosphatases or de-ubiquitinases (DUBs), which are 

able to modify TRIM27, p62 or NBR1. The impairment in the delivery of those modifiers could 

explain the slower migrating bands we have observed. Another plausible scenario is that ATG9 

depletion inhibits the degradation of certain autophagy-related proteins and consequently they 

accumulate. This accumulation of non-degraded proteins may recruit E3 ligases and kinases 

that modify them. The role that ATG9 plays in promoting these changes in TRIM27, p62 and 

NBR1 is a question that would be interesting to address in future experiments. 

In this study, we found that TRIM7 interacts with p62 in vitro and co-precipitates and co-

localizes with p62 in cells. However, interaction of TRIM27 with NDP52 was only seen by 

GST-pull down assays, which does not represent the real environment of the cell. However, we 

also observed that NDP52 mediated TRIM27 degradation in Penta KO cells reconstituted with 

NDP52. These results suggest that NDP52 may have a connection with TRIM27. NDP52 is a 

big player in xenophagy, detecting invading pathogens and bringing them do degradation 

(Verlhac, Viret, and Faure 2015). NDP52 interacts specifically with LC3C via a so-called CLIR 

motif, and this interaction was proposed to be crucial for innate immunity since cells lacking 

either protein was not able to protect their cytoplasm against Salmonella (von Muhlinen et al. 

2012). We found that TRIM27 contains a LIR motif in between its coiled-coil domain. 

Intriguingly, our results show that the TRIM27 LIR motif also has a preference for LC3C. This 

may suggest, even though very preliminary, a potential collaboration of TRIM27 and NDP52, 

linked to LC3C by their LIR motifs. Previous studies on TRIM27 highlight its strong ties to 

immune signaling regulation (Conwell et al. 2015; Zurek et al. 2012; J Wang et al. 2016). 

Therefore, these findings may suggest that TRIM27 represents a link between innate immunity 

and selective autophagy.  
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In pursuance of getting a better understanding on the role of TRIM27 in selective autophagy, 

we produced a TRIM27 knock-out cell line in HEK293 FlpIn T-Rex cells with CRISPR-Cas9 

technology (Ran et al. 2013), and re-constituted it with EGFP-TRIM27 and EGFP only. EGFP-

TRIM27 was very efficiently expressed in the reconstituted cells, hence we used only 100 ng 

of Tetracycline or Doxycycline to obtain an expression level close to the endogenous expression 

level of TRIM27. EGFP-TRIM27 seems to be very prone to aggregation, a characteristic we 

did not observe for f.ex.TRIM32 which expression was re-constituted in HEK293 FlpIn 

TRIM32 KO cells. . This fact suggested that TRIM27 overexpression produces high levels of 

ubiquitin, leading to high aggregation. This matter has been a big concern for us over the 

development of this project, since autophagy is responsible for clearing ubiquitylated protein 

aggregates in the cell (Lamark and Johansen 2012). The HEK293 FlpIn cell line, TRIM27 KO 

and reconstituted cell lines stained with different antibodies detecting autophagy related 

proteins shed some light on this concern. On one side, TRIM27 co-localized with members of 

the autophagy initiation complex, such as ATG9, ATG13 and ULK1. Moreover, we also found 

co-localization with the autophagy receptors p62 and NBR1. This raised the question if this co-

localization happened to be unspecific and due to the TRIM27 aggregation tendency. For that, 

we also stained with antibodies against various marker proteins such as LC3B 

(autophagosome), GM130 (Golgi),Calreticulin (ER), FK2 (Ubiquitin) and UPS7 (recognized 

TRIM27 interactor). Interestingly, TRIM27 did not co-localize with LC3B more than in a few 

dots, suggesting that not all autophagy-related proteins were present in the TRIM27 aggregates. 

Furthermore, TRIM27 was not found in proximity to the Golgi marker GM130 and the ER 

marker Calreticulin, which was in line with the literature on the cytoplasmic and nuclear 

localization of TRIM27 (Harbers et al. 2001). In addition, TRIM27 did co-localize with UPS7, 

which is a well-known interaction partner, as well as ubiquitin (Zaman et al. 2013). These two 

positive controls indicated that the localization of reconstituted EGFP-TRIM27 is close to the 

localization of endogenous TRIM27. Unfortunately, this could not be verified by 

immunostaining of endogenous TRIM27, since we could not find any TRIM27 antibody that 

worked in immunostaining. 

Importantly, our MS analysis of immunoprecipitated EGFP-TRIM27 identified co-precipitation 

of several autophagy related proteins, among them ATG7, TBK1, LAMP2, p62, NBR1, NDP52 

and TAX1BP1. The association of TRIM27 structures with all SLRs further supported our 

hypothesis that the SLRs mediate TRIM27 degradation. Likewise, the co-precipitation of 

TRIM27 with ATG7 and LAMP2 also highlighted a link between TRIM27 and autophagy. 



- 45 - 

 

Previously, TRIM27 in shown to induce TBK1 degradation via K48-linked ubiquitylation at 

Lys251 and Lys372 promoted by Siglec1 in interferon type I mediated antiviral innate immune 

response (Zheng et al. 2015). This supports our finding of TBK1 as one of the potential TRIM27 

interactors in the MS analysis. However, we were not able to detect any effect of TRIM27 on 

TBK1 levels, in neither basal nor starved conditions. This can be explained by the fact that 

TRIM27 mediated degradation of TBK1 only happens upon stimulation of the antiviral immune 

system. However, we observed that TRIM27 protein levels in HeLa TBK1 KO cells were 

stabilized compared to normal HeLa cells (data not shown). This may suggest that TBK1 

regulates the protein levels of TRIM27. Due to the pivotal role of TBK1 in autophagy, this is a 

novel finding that would be worth exploring further. 

Surprisingly, we identified LAMP2 as a TRIM27 interaction partner. LAMP2 is a highly 

glycosylated protein decorating the luminal surface of lysosomal membranes (E. L. Eskelinen, 

Tanaka, and Saftig 2003). It is an important regulator of maturation of autophagosomes, and 

LAMP2 deficiencies leads to accumulation of autophagosomes (Saftig, Beertsen, and Eskelinen 

2008). Depletion of TRIM27 either by genetic KO, or by TRIM27 siRNA treatments, resulted 

in accumulation of LAMP2 protein levels, and the formation of large LAMP2 rings in HEK293 

FlpIn cells. The large LAMP2 rings were often localized in the perinuclear region, in close 

proximity with TRIM27 bodies and mitochondria. Whether LAMP2 accumulation as such leads 

to formation of large lysosomes, or whether these large LAMP2 rings indicate that TRIM27 is 

implicated in the regulation of lysosome biogenesis, is an interesting question to address in 

further studies. However, we clearly show that TRIM27 deficiency results in accumulation of 

LAMP2. This accumulation can be due to impaired degradation of LAMP2 in TRIM27 KO 

cells, since TRIM27 is an E3 ligase that directs proteins to degradation by ubiquitylation. 

Alternatively, it can be due to increased expression of LAMP2 at the transcriptional level.  

TRIM27 has been proposed as a oncogene promoting cell proliferation (Zurek et al. 2012), as 

well as cell migration by activating EMT (Y. Zhang et al. 2018). In this study, HEK293 FlpIn 

TRIM27 KO cells showed an enhanced proliferation rate compared to normal HEK293 FlpIn 

cells. This is partially in contradiction with the general literature, proposing that TRIM27 

facilitates cell proliferation (Y. Yao et al. 2020; Zoumpoulidou et al. 2012; Y. Ma et al. 2016). 

This may suggest that the effect of TRIM27 on cell proliferation is dependent on the specific 

cancer cell type. On the contrary, the migration capacity of HEK293 FlpIn TRIM27 KO cells 

was decreased compared to normal HEK293 FlpIn cells or the TRIM27 KO cells reconstituted 

with EGFP-TRIM27. This is in line with other studies studies suggesting a role of TRIM27 in 
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EMT (Y. Zhang et al. 2018). Therefore, the reconstituted HEK293 FlpIn TRIM27 KO EGFP-

TRIM27 cells seem to be a realiable source that mimic the function of endogenous TRIM27.  

Interestingly, we found LAMP2 expression to be upregulated in the breast cancer cell lines 

displaying  no or very low expression levels of TRIM27. This correlates well with our analyses 

in HEK293 cells, suggesting that loss of TRIM27 leads to enhanced LAMP2 expression. 

LAMP2 plays a role in the support of early cancer progression, helping cancer cells surviving 

in acidic enviroments (Mogami et al. 2013). LAMP2 is highly expressed in several cancers, 

where reduced expression of LAMP2 has been associated with a loss of migration and invasion 

capabilities (Koukourakis et al. 2015). LAMP2A isoform has shown increased expression in 

breast tumor tissue, and its inhibition results in sensitation of tumor cells to radioation and 

doxorubicin therapy (Saha 2012). Autophagy helps cancer cells to survive under nutrient and 

oxygen stress (Filomeni, De Zio, and Cecconi 2015). TRIM27 seems to facilitate starvation 

induced autophagy. Hence, this can be one mechanism that TRIM27 uses to facilitate growth 

of cancer cells. Collectively, these results point to TRIM27 as a putative regulator of autophagy, 

and that one of its oncogenic features is to facilitate the autophagy process in cancer cells. 

Moveover, breast cancer cell lines with various expression levels of TRIM27 represent 

promising model systems for further revealing the molecular mechanisms of TRIM27 in 

autophagy and cancer. 

 

TRIM32 as an autophagic substrate and its role in autophagy 

After identifying the presence of TRIM32 in the lysosome both under normal and starvation 

conditions, the first question that raised was how it ended up in the lytic compartment. In order 

to answer this broad question, we firstly investigated who was in charge of the degradation of 

TRIM32. BafA1 and MG-132 are widely used lysosomal and proteasomal inhibitors 

respectively. The effect of these two inhibitors on the levels of TRIM32 showed that both 

pathways mediate the degradation of TRIM32. Proteasomal degradation of TRIM32 showed to 

be the main degradative pathway under normal conditions, whereas autophagy was equally 

implicated in the degradation of TRIM32 under starving conditions. These results suggest a 

potential link of TRIM32 in autophagy. Later we found that the degradation of TRIM32 was 

dependent on ATG7 and the SLRs. The main SLRs responsible for bringing TRIM32 to the 

lysosomes were the autophagy receptors, p62 and NDP52. Moreover, we found a direct 

interaction and ubiquitylation of those SLRs by TRIM32. Moreover, we show that NBR1 seems 

also to mediate TRIM32 autophagy degradation, however, we have not proven any interaction. 
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It has been reported that TRIM32 interacts with the autophagy receptor TAX1BP1 (Yang et al. 

2017). However, our results did not show a TAX1BP1-dependent degradation of TRIM32 (data 

not shown), meaning that TAX1BP1 is associated with TRIM32 but does not mediate its 

degradation by autophagy. This difference might be due to this interaction being cell-type 

specific, in our study we used Hela cells, while Yang et al. 2017 used HEK293 cells. 

Nonetheless, we cannot exclude OPTN and TAXBP1 as potential mediators of TRIM32 

autophagic degradation just yet, since we used an over-expression system and more 

experiments are needed to rule them out. 

The lipidation of LC3-I to LC3-II is a widely used autophagy marker, using the number of LC3-

II in the cell as the number of autophagosomes formed (Yoshii and Mizushima 2017). Another 

commonly used marker to evaluate autophagy is p62, which binds LC3 and is degraded in the 

lysosome (Pankiv et al. 2007). Our results showed co-localization of TRIM32 with LC3B and 

p62. TRIM32 ablation showed a reduction of the formation of p62 dots compared to TRIM32 

WT. Of note, the inhibition of autophagosome degradation also increases the amount of LC3-

II and p62 (Bjørkøy et al. 2005; Tanida et al. 2005). Thus, the amount of LC3-II and p62 in the 

cell might not accurately represent the degradation of autophagosomes, since it does not allow 

us to distinguish if the observed effect is due to the induction of autophagy or its inhibition. 

Moreover, it has been shown that LC3B-II is also localized in non-autophagic structures not 

associated with the lysosome, commonly due to overexpression of the protein by transient 

transfection or the formation of aggregates (Kuma, Matsui, and Mizushima 2007). To try to 

answer this question, we analyzed the protein levels of both the SLRs and LCB in TRIM32 KO 

cells. The cells lacking TRIM32 display higher expression of all SLRs (p62, NBR1, NDP52, 

Optineurin and TAX1BP1), and this effect is recovered when reconstituting with myc-

TRIM32WT. We analyzed the mRNA levels of these SLRs in the TRIM32 KO, which shows no 

change on the transcriptional level of the SLRs, meaning that the changes in the expression of 

the SLRs are due to TRIM32 effects on their degradation rather than their synthesis. Moreover, 

the analysis of the expression of the SLRs and LC3 on TRIM32 KO cells in starvation 

conditions followed by a treatment with BafA1 and MG132 did not show a difference between 

TRIM32 KO and WT, suggesting that TRIM32 ablation does not have an effect on global 

autophagy. Of note, in paper II we show that reintroducing NDP52 or NBR1 in Penta KO cells 

facilitates TRIM32 degradation. This suggest that at least to date, three SLRs mediate 

autophagic degradation of TRIM32, and that their action seems to be independent of each other. 
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Taken together, these results suggests that TRIM32 autophagic degradation is mediated by 

selective autophagy. 

We observed co-localization of LC3 and TRIM32, thus we wondered if TRIM32 could work 

as an autophagy receptor itself. In order to try to answer this question, we evaluated the 

interaction between TRIM32 and the six human ATG8s. Our results showed affinity of TRIM32 

towards LC3A, LC3C, GABARAP and GABARAP-L1, while displaying a weak affinity 

towards LC3B and GABARAP-L2. Our inability finding a LIR motif within TRIM32 by the 

use of different strategies lead us to think that the interaction of TRIM32 and the mentioned 

ATG8s was mediated in a non-LIR dependent manner. The autophagy protein RPN10 of 

Arabidopsis contains a UIM-docking site (UDS) that is able to bind ATG8s proteins (Marshall 

et al. 2019). In the case of TRIM32, where we did not find a UIM motif either, the interaction 

with ATG8s does not seem to be mediated by one linear motif. Instead, it is likely that this 

interaction is carried out through several regions of TRIM32. Nevertheless, this interaction 

could be interesting to investigate further to see whether it has a role in autophagy. Importantly, 

ATG8s have roles outside autophagy (Lorenzo Galluzzi and Green 2019), therefore, it is 

plausible that TRIM32 and ATG8s might cooperate together in a non-LIR fashion to perform 

a function that is not related to autophagy. 

 

TRIM32 and TRIM32-related diseases on p62  

To continue to investigate the association between TRIM32 and p62, we analyzed the 

interaction between these two proteins. Our results showed that TRIM32 interacts with p62 

both in vitro and in cells. However, the absence of p62 still leaded to TRIM32 RedOnly dots, 

meaning that p62 is not the only SLR in charge of TRIM32 degradation. Importantly, TRIM32 

KO showed lower levels and an impaired turnover of p62, which were recovered by re-

introduction of myc-TRIM32. In paper II, we show how TRIM32 ubiquitylates p62, and that 

ubiquitylation is lost upon TRIM32 ablation or by the use of the deubiquitinase USP2. 

Catalytically inactive TRIM32C44S also showed the inability to ubiquitylate p62, indicating that 

TRIM32 E3 ligase activity is in charge of mediating this ubiquitylation reaction.  

Genetic mutations in the NHL domains of TRIM32 cause the muscle disorder Limb Girdle 

Muscular Dystrophy 2H (LGMD2H), whereas a missense-mutation (P130S) in the B-Box 

domain results in the disease Bardet-Biedl syndrome 11 (BBS11) (Chiang et al., 2006). These 

two diseases, despite being affected by mutations on the same gene, lead to two completely 
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different phenotypes. LGMD2H is associated with different degrees of muscle atrophy (Zhao 

et al., 2019, Locke et al., 2009), whereas BBS11 has a pleiotropic phenotype that shows no 

effects in muscular homeostasis (Chiang et al., 2006). TRIM32 is associated with this muscular 

disease through seven mutations in the NHL domain (Saccone et al. 2008; Cossée et al. 2009), 

however in this study we have focused on the most common, D487N mutation. In order to 

investigate if these mutations had an effect on the degradation of TRIM32 by autophagy, we 

reconstituted TRIM32 KO cells with both mutants TRIM32D487N and TRIMP130S. The 

LGMD2H mutant show a very similar phenotype to the one observed in TRIM32 KO cells, 

characterized by the inability to ubiquitintate p62. Interestingly, TRIM32 D487N is able to bind 

to p62, but does not shows any catalytically activity. As expected, TRIM32 D487N is not able to 

auto-ubiquitylate itself either, due to its catalytically inactive form. These findings are in line 

with previous studies, where a Knock In mouse model with the LGMD2H mutation D487N 

shows the same phenotype as the TRIM32 null mice due to the destabilization of the protein 

and subsequent degradation (Kudryashova et al. 2011). On the contrary, the BBS11 mutant 

shows the opposite effect. TRIM32P130S is not only able to successfully ubiquitylate p62, but it 

shows a higher association with the autophagy receptor. Moreover, TRIM32P130S also displays 

a higher TRIM32 RedOnly dot formation upon starvation in comparison to TRIM32WT, 

suggesting that this mutation in the B-Box may lead to higher autophagic degradation of 

TRIM32.  

TRIM32 requieres oligomerization to be catalytically active, which is provided by its RING 

domain. The B-Box helps in the oligomerization but it has been shown dispensable (Lazzari et 

al. 2019). Other TRIM proteins have been reported that their B-Box can confer E3 ligase 

activity, such is the case of TRIM16 (Bell et al. 2012). However, a recent study showed that 

this does not seem to be the case of TRIM32 (Lazzari et al. 2019). In the case of TRIM16, this 

E3 ligase lacks a RING domain but contain two B-Boxes, one of them being structurally similar 

to a RING domain, and the dimerization of both may resemble to an actual RING domain, thus 

conferring E3 ligase catalytic activity (Bell et al. 2012). This does not apply to TRIM32 due to 

their differences in structure, where TRIM32 only contains one B-Box, which does not 

resemble to a RING domain. The RING domain of TRIM32 is necessary for association with 

E2 enzymes, whereas the B-Box is not (Napolitano et al. 2011). However, we cannot rule out 

that the B-Box might determine the topology of the ubiquitin chain together with E2. It has 

been shown that deletion of the B-Box in TRIM32 and point mutations C100/C103A leads to a 

slightly higher efficiency in the building of polyubiquitin chains activity due to the closer 
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proximity of the RING and NHL domains. This suggests that the B-Box might acts as a spacer 

for modulating TRIM32 processivity (Lazzari et al. 2019). Both the RING domain and B-Box 

mediate TRIM32 localization. The absence of the RING domain leads to larger aggregates 

dispersed throughout the cytoplasm, while ablation of the B-Box, leads to less 

aggregates/cytoplasmic bodies. Interestingly, these RINGless or B-Boxless mutants retain the 

ability to self-associate (Lazzari et al. 2019). This suggest that these two domains might mediate 

TRIM32 subcellular localization by the interaction with other proteins, ultimately controlling 

TRIM32 enzymatic activity since it is a way to regulate the availability of active TRIM32 in 

cells. 

The phenotype of BBS11 has little similarity to the one from LGMD2H. The B-Box of TRIM32 

mediates TRIM32 localization, eventually regulating its availability within the cell and 

therefore its function. Moreover, TRIM32 B-Box might be a regulator of the RING domain 

catalytic activity by bringing the enzymatic pocket closer to its substrate, which could explain 

why in our results, P130S shows a higher localization of TRIM32 with p62 (its substrate) and 

thus, it shows a higher turnover of p62 and a stronger tendency to form TRIM32 RedOnly dots. 

The symptoms observed in BBS11 patients might be a consequence of the higher efficiency on 

E3 ligase activity by this point mutation, and its modulation of its localization, eventually 

impeding or dysregulating the binding of TRIM32 to some of its substrates, which are involved 

in many cellular processes, leading to a multisystem phenotype. 

P62 is commonly organized in flexible polymers where its PB1 domain constitute a helical 

scaffold. These scaffolds form filaments that are able to bind LC3 and the addition of long 

ubiquitin chains induces disassembly and shortening of these filaments (Ciuffa et al. 2015). 

Therefore, it is suggested that p62 forms a highly structured but flexible assembly that provides 

a large molecular scaffold for the nascent autophagosome, while being able to accommodate 

the selected cargo (Jakobi et al. 2020). Interestingly, dimerization and ubiquitylation of p62 are 

incompatible with each other due to the occlusion of the ubiquitin binding sites when dimerized 

(Isogai et al. 2011). E2 enzymes are in charge of transporting the activated ubiquitin to the E3 

ligases, which bind the ubiquitin to the substrate. Nevertheless, E2 enzymes are also able to 

directly ubiquitylate, which might be a way for the cell to have even more diversity in the 

control of the pattern of ubiquitylation (Stewart et al. 2016). To date, the two E2 enzymes 

UBE2D2 and UBE2D3 have been reported to be able to interact and mediate p62 ubiquitylation. 

The interaction between the E2 enzymes and p62 occurs via the EIR region of p62, which results 

in ubiquitylation at nine lysine residues, which among those we can find K157 and K295 (Peng 
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et al. 2017). This poly-ubiquitylation of p62 relieves the inhibition of the UBA domain in the 

p62 dimer, allowing binding and tethering of ubiquitylated cargo to the ATG8s conjugated to 

the phagophore (Peng et al. 2017). In an attempt to identify the exacts sides where TRIM32 

ubiquitylates p62, we performed an MS analysis with both the TRIM32WT and the TRIM32 

disease mutants TRIM32D487N and TRIM32P130S. The TRIMD478N mutant was used as a negative 

control, since it is not able to ubiquitylate p62. Our results showed that p62 was potentially 

ubiquitylated on two lysines, K157 and K295. Unfortunately, we were unable to map the exact 

lysines that TRIM32 was able to ubiquitylate in cells, indicating that TRIM32 might ubiquinate 

p62 in several sites. It would be worth continuing the mapping to find the sites of TRIM32-

mediated ubiquitylation of p62. Nonetheless, we did get some interesting observations. Our 

results showed TRIM32 mono-ubiquitylate p62, potentially on several residues. This mono-

ubiquitylation seems to enhance p62 body formation and p62-mediated autophagy. 

Interestingly, TRIM32D478N was not able to carry out the mono-ubiquitylation of p62, however 

still shows interaction with p62. This is in line with other studies were this mutant of TRIM32 

failed to promote mono-ubiquitylation but still bond dysbindin and its respective E2 enzyme 

(Locke et al. 2009). TRIM32 has been shown to interact with ULK1 and Piasy, however, this 

interaction is inhibited by TRIM32D478N (Albor et al. 2006; Di Rienzo, Piacentini, and Fimia 

2019). Therefore, the binding site of TRIM32 and p62 is in a different localization than the one 

between TRIM32 and either ULK1 or Piasy. Among TRIM32 targets, there are many proteins 

involved in muscle function regulation. The fact that TRIM32D478N, which causes LGMD2H, 

is able to interact with the substrate but not attach an ubiquitin molecule to it might partially 

lead to the pathology of this disease. The clear phenotype difference between these two diseases 

suggests the pivotal role of NHL domains in muscle tissue. NHL domains are in charge of 

protein-protein interaction, thus mutations on those may lead to an effect on the ability to 

ubiquitylate its substrates and/or auto-ubiquitylation. Interestingly, mutations in NHL domains 

(D478N) lead to an impairment of TRIM32 catalytic activity, suggesting that NHL domain may 

also partially regulate this function.  

 

TRIM32, NDP52 and mitophagy 

In paper II we show that the degradation of TRIM32 is mediated by p62, but the reconstitution 

of Penta KO cells with p62 does not completely recover TRIM32WT levels of RedOnly dots. 

This leads us to think that other SLRs are involved in TRIM32 autophagic degradation. In paper 

III we show that NDP52 also mediates the autophagic degradation of TRIM32. We also show 
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the interaction between NDP52 and TRIM32 both in vitro and in cells. Moreover, NDP52 levels 

considerable decrease in TRIM32 KO cells, while its trascription levels are unaffected, 

suggesting that TRIM32 contributes to autophagic degradation of this receptor. As the case of 

p62, TRIM32 is also able to ubiquitylate NDP52. Interestingly, both TRIM32WT and the disease 

mutants TRIM32PS130S and TRIM32D487N equally bind NDP52 in vitro and all co-localized with 

NDP52 in certain dots under normal conditions. Conversely, inhibition of lysosomes by BafA1 

produced the accumulation of NDP52 dots. In this context, the co-localizaiton of NDP52 with 

TRIM32D487N is much lower compared to TRIM32WT and TRIM32PS130S. These results suggest 

that the NDP52 interaction with TRIM32 is independent of TRIM32 catalytic activity. 

NDP52 has an important role in the clearance of mitochondria (Vainshtein and Grumati 2020), 

where it is recruited by PINK1 (Lazarou et al. 2015). Then, NDP52 associates with the ULK1 

complex by its interaction with FIP200 (Ravenhill et al. 2019). NDP52-induced mitophagy 

requires the interaction of NDP52 and FIP200, since this interaction promotes FIP200 

membrane binding capacity (Shi et al. 2020). Interestingly, TBK1 is able to induce autophagy 

in the absence of LC3 (Vargas et al. 2019). We then wondered if TRIM32 might affect the 

ability of NDP52 to induce mitophagy. For this purpose, we used the double-tag assay on the  

transmembrane region of the mitochondria protein OMP25 (OMP25TM) (mCherry-EGFP-

OMP25TM) as a way to monitor mitophagy, while overexpressing the mitophagy receptor 

FKBP8 together with its corresponding ATG8 protein and LC3A (Bhujabal et al. 2017). Our 

results show that TRIM32 ablation reduces the levels of mitophagy compared to HEK293 FlpIn 

cells, and reintroduction of myc-TRIM32 completely restores the mitophagy activity. 

Intriguingly, we found ULK1 expression to be upregulated in HEK293 FlpIn TRIM32 KO cells 

reconstituted with myc-TRIM32WT compared to TRIM32 KO cells. The BBS11 disease mutant 

TRIM32PS130S displays a similar ULK1 expression level as TRIM32WT, whereas TRIM32D487 

resembles to the TRIM32 KO cells. At this point we wonder if TRIM32 ubiquitylates ULK1, 

however, our results do not show a difference on the ubiquitylation status of ULK1 either in the 

TRIM32 KO cells, or reconstituted with TRIM32 both wildtype and mutants. These results 

suggest that TRIM32 promotes higher levels of ULK1 and this effect depends on TRIM32 E3 

ligase activity, but TRIM32 does not mediate the ubiquitylation of ULK1. These results are in 

line with another study that found that ULK1 is not a direct substrate of TRIM32 (Di Rienzo, 

Piacentini, and Fimia 2019).  

TBK1 kinase plays a dual role in the initiation of mitophagy. This kinase facilitates the 

interaction of NDP52 and FIP200, a member of the ULK1 complex. Meanwhile, TBK1 
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associates with the autophagy receptors OPTN, NDP52 and p62, which will recruit the core 

autophagy machinery and proceed to the formation of the autophagosome. TBK1 becomes 

activated by the ubiquitin chain binding of OPTN, and in response TBK1 phosphorilates OPTN 

in the position S177, which promotes OPTN ATG8 recruitment, and in position S473 and S513, 

which promotes ubiquitin chain binding, TBK1 activation and OPTN retention and efficient 

mitophagy in vivo (Heo et al. 2015). This creates a self-reinforcing positive feedback 

mechanism to ensure efficient mitophagy. TBK1 enrichment of the mitochondrial membrane 

induces the autophosphorylation of TBK1 in position S172. HEK293 FlpIn TRIM32 KO cells 

show low levels of S172 phosphorylated TBK1, and reconstitution of the KO cells with 

TRIM32WT, TRIM32PS130S or TRIM32D487N lead to increased levels of phosphorylation. This 

suggest that TRIM32 effect on TBK1 phosphotylation in position S172 is not mediated by its 

catalytic activity.  

To sum up, TRIM32 seems to induce NDP52-mediated autophagy. In this context, the ULK1 

complex activation mediated by NDP52 is independent of AMPK and mTOR activity. A 

previous study shows TRIM32 localized to the mitochondria, further supporting the possibility 

of TRIM32 playing a role in mediating or regulation mitophagy (J. Zhang et al. 2012). 

Moreover, TRIM32 interacts with AMBRA1, a mitophagic receptor and a positive regulator of 

ULK1 activity. It has been reported that AMBRA1 promotes mitophagy by the action of the E3 

ligase HUWE1 that acts as an inducing factor (Strappazzon et al. 2020). Moreover, AMBRA1 

is able to promote mitophagy in a PINK1/PARKIN- dependent and independent manner (Van 

Humbeeck, Cornelissen, and Vandenberghe 2011). It would be interesting to further investigate 

the regulation of both ULK1 and TBK1 by TRIM32 in relation to autophagy. AMBRA1 could 

be one possible mediator of this regulation. It would also be worth exploring if TRIM32 

interacts and has a similar effect in other autophagic receptors. We have described the direct 

effect that TRIM32 has on p62. Interestingly, this autophagic receptor is also able to mediate 

mitophagy (Geisler et al. 2010), therefore, we cannot rule out the possibility that TRIM32 has 

also a regulatory effect on p62-mediated mitophagy. Of note, NDP52 shows a preference for 

LC3C (von Muhlinen et al. 2012). In paper I we show the high affinity that TRIM32 presents 

for LC3C, an interaction that seem to be non-LIR dependent. The fact that these two proteins 

show a preference for LC3C could be a hint of a possible regulation of the autophagosome 

formation by the action of TRIM32 and NDP52 towards LC3C during mitophagy. 
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TRIM32 short isoform and its regulation 

There are two variants of TRIM32 protein in humans. The main variant, and the one that we 

have described in paper I and II, is a 653 amino acid protein. Meanwhile, the second variant is 

formed by only 172 animo acid and lacks the NHL-repeats and the unstructured region between 

RCC and the NHL-domain (ensemble.org and Uniprot.org Q13049). In paper I and II, we show 

insights on the function of the long variant of TRIM32 and its role in selective autophagy. 

TRIM32 requires auto-ubiquitylation and oligomerization to become catalytically active (Overå 

et al. 2019). However, how this auto-ubiquitylation takes places is not fully understood yet. In 

order to try to answer this question, we perfomed a Mass spectrometry analysis (MS) of 

TRIM32WT, TRIM32D487N, TRIM32P130S to identify which lysine residues in TRIM32 are 

targeted for auto-ubiquitylation. By the comparison of both TRIM32WT and TRIM32P130S, 

which are both catalytically active, to the catalytically inactive TRIM32D487N, we obtained 

several hints. One on side, TRIM32D487N did not display any ubiquitylated lysine, which was 

expected from results shown in our previous study (Overå et al. 2019). On the other side, 

TRIM32WT and TRIM32P130S shown two ubiquitylated peptides in K50 and K401. Additionally, 

peptides with acetylation on lysine K247 were identified in the TRIM32 disease mutants’ 

precipitates. From these results, we decided to produce plasmids containing mutations of the 

identified lysines to arginine and analyze their behavior. Peculiarly, the double mutation EGFP-

TRIM32K247R/K401R resulted in a partially cleaved protein (mix of cleaved and non-cleaved 

protein), while the triple mutation EGFP-TRIM32K50R/K247R/K401R leaded to a complete cleavage 

of TRIM32. The size of this protein was around 20 kDa (excluding the tag), which resembles 

to the short variant of TRIM32. Intriguingly, this cleaved protein is more prompt to form 

aggregates near the Golgi, while the full-length TRIM32 isoform is located throughout the 

cytoplasm as previously described in other studies (Kawaguchi et al. 2017). The short TRIM32 

variant should be transcribed with a 3’ UTR, which is not recognized so far. Therefore, this 

short isoform might be the results of post-translational modifications on the long-length 

TRIM32 variant, which is something that occurs in other proteins (Jianhui Wang et al. 2012). 

In an attempt to complete this puzzle, and since the use of the deubiquitinase USP2 did not 

produced any cleavage in TRIM32, we wondered if acetylation on position K247 could be the 

trigger for this short form of TRIM32. The replacement of the described lysines to glumatine 

(Q) in order to mimic acetylation, acetylation mimicking in position K247 completely inhibited 

the cleavage. This restored long-length TRIM32 by K247 acetylation displayed a similar 

localization as the previously analyzed TRIM32WT. To check if autophagy degradation of 

TRIM32 was affected by these PTM on the lysine residues K50, K247 and K401, we performed 
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a double-tag assay on the various TRIM32 lysine mutation constructs. This assay showed that 

the cleaved protein and TRIM32K50R/K247Q/K401R were not able to form any RedOnly dots. The 

mCherry-EYFP-TRIM32K247R/K401R and mCherry-EYFP-TRIM32K247Q constructs formed 

RedOnly dots, but to a lesser extent than mCherry-EYFP-TRIM32WT. This suggests that 

PTMs on the lysine residues K50, K247 and K401 regulate autophagic degradation of TRIM32, 

and all of them are needed for normal degradation of TRIM32 by autophagy. Thus, the 

acetylation of TRIM32 on its position K247 seems to be play a pivotal role on its stability. Then 

we wondered if TRIM32 encodes specific sequences that are exposed to proteolytic cleavage, 

such as PEST sequences. By the use of the PEST perdiction tool from EMBOSS, we obtained 

a putative PEST sequence located between amino acid 248 and 270 of TRIM32. Intriguingly, 

this sequence is located accurately adjacent to lysine K247. A partial ablation of this PEST 

sequence in TRIM32K50R/K247R/K401R lead to an inhibition of the cleavage, while not 

compromising the stability of TRIM32 in TRIM32WT. The TRIM32K50R/K247R/K401R, which is 

cleaved, and TRIM32K50R/K247Q/K401R, which is full-length, do not display auto-ubiquitylation 

activity. While, TRIM32WT with a partial deleted PEST sequence and the TRIM32K247Q are 

both able to auto-ubiquitylate. As we demonstrated in paper II, TRIM32 degradation is 

mediated by both proteasomal and lysosomal pathways. We did try to pinpoint the pathway 

implicated in PEST-mediated cleavage of TRIM32, however, we did not find it. Taken together, 

this shows the importance of lysines K50, K247 and K401 on TRIM32 activity, since the lack 

of them leads to a catalytic inactive form of TRIM32. It also highlights the critical role that 

acetylation plays as a post-transcriptional modification, since in the case of TRIM32 we suspect 

that acetylation prevents the exposure of the PEST sequence to proteolytic enzymes. It would 

be interesting to investigate how this cleavage of TRIM32 to produce a short isoform occurs, 

as well as its function in a cellular context.  
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Methodological considerations 

In order to assess of the role of TRIM32 and TRIM27 in selective autophagy we have performed 

several molecular biology methods, which can be found in the materials and methods section 

of each paper. Here I discuss the limitations of some of these techniques, as well as the strategies 

we have used to trouble-shoot and minimize the impact of the flaws of each method.  

 

Double tag assay 

A double-tag assay is characterized by tagging a desired protein with fluorescence tags, such 

as EGFP and mCherry, in order to be able to follow up its presence in the different 

compartments of the cell, particularly discriminating between the lysosomes and the cytosol. 

The GFP tag is acid- sensitive while the mCherry tag is acid-insensitive. The GFP tag becomes 

unstable and degraded in the lysosomes, leading to RedOnly dots (Hundeshagen et al. 2011). 

In our study, we used this assay to investigate if TRIM32 and TRIM27 were substrates for 

autophagic degradation. We also used this method to monitor the degradation dynamics of p62 

in TRIM32 KO cells, as a way to monitor autophagic flux. This assay is a very useful tool to 

investigate if the tagged proteins are localized in the lysosome, since the presence of these 

proteins in the lytic compartment suggests that they may be degraded by the autophagy 

pathway. However, this tool has main setbacks. One is that it require over-expression of the 

protein under study, another is that  the tag might affect the tagged proteins functionality or 

their ability to undergo autophagic degradation. Therefore, the observed puncta structures might 

not mimic endogenous protein. Hence, double-tag assays were only used as an initial screening 

method in our system, and the interesting findings investigated further by other methods.  

 

In vitro GST pull down essay 

GST-pulldown assay was used as a screening tool for identifying the interaction between 

TRIM27 and TRIM32 with members of the ATG8 proteins, as well as the autophagic receptors 

p62 and NDP52. This in vitro method is a suitable for examining direct interaction and estimate 

the extent of the affinity between the studied proteins. However, the accuracy of the results 

obtained in this assay are questionable. The fact that it is performed in vitro leads to an artificial 

environment far from the one found in cells. Both false positive and false negatives can be 

generated, leading to physiologically irrelevant data. In cells, proteins are folded and undergo 
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post-translational modification that produce a functional protein as a final product. In vitro 

translation can produce incorrect folding due to the lack of machinery necessary for this 

purpose. This might lead to incorrectly folded proteins, which leads to a false positive or 

negative that is physiologically irrelevant. In addition, proteins showing interaction in vitro may 

never encounter each other inside the cell due to their localization, which can also lead to a false 

positive. On the contrary, the proteins that require a post-translational modification to interact 

with others might show a negative result, leading to a false negative. In this study, in vitro GST 

pulldown was used in combination with methods performed in cells, such as 

immunoprecipitation and immunostaining, proving the interaction at a cellular level. 

 

CRISPR/Cas9 technology 

The CRISPR/Cas9 techonology was used in this study to generate TRIM27 and TRIM32 KO 

cell lines. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats and 

are part of the microbial adaptive immune system (Ran et al. 2013). First, we produced specific 

guide RNA sequences targeting the gene of interest early in exon 1 by using bioinformatics 

tools from Feng Zhang group (Ran et al. 2013), and cloned them into a plasmid expressing 

Cas9. The enzyme Cas9 cuts double-stranded DNA after recognition of the protospacer 

adjacent motif (PAM) sequence and binding of guide RNA with its specific target gene 

sequence (in our case TRIM27 and TRIM32 respectively). Then mammalian DNA repair 

system non-homologous end joining (NHEJ) or homology directed repair (HDR) repair the 

DNA, likely leading to a missing of the targeted gene. The guide RNA is normally around 20 

nucleotides long. There is the possibility that the guide RNA binds non-targeted genes, leading 

to off-target effects (Y. Fu et al. 2013). Off-target mutations may cause genomic instability and 

disruption of otherwise normal genes. In order to identify if the phenotype in due to knock out 

of the gene of interest, or an off-target effect, several methods can be used: A) validation of the 

phenotype in more than one KO clone. B) re-introduction of the KO gene into the KO clone 

and verify that the phenotype is reversed to WT, C) sequence the genome of the KO cells, either 

by complete genome sequencing or sequence the regions of the genome that have closest 

similarity to the guide RNA, which are more exposed to off-target effects. In the case of 

TRIM32 KO, we verified them by A and C. However, in the case of TRIM27 KO, we only 

managed to obtain one reliable KO clone, thus only verifying by C. We did obtain an alternative 

KO that showed possible off-target effects. This KO cell seemed displayed a proteolytic activity 

leading to cut of GFP-tagged proteins, showing a diffuse GFP signal, which really compromised 
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the reliability of the results. We tried to solve this throwback by additionally using siRNA to 

prove that the observed effect was due to the KO or KD of TRIM27. The results obtained by 

either reconstituting the TRIM27 KO cells as well as the use of siRNA show similar results, 

giving us confidence that the results obtained were a product of the effect of TRIM27 and not 

off-side effects produced by the technology.   

 

 

Stable cell lines 

The FlpIn T-REX system was used to generate cell lines that stably express TRIM27 and 

TRIM32 and its mutants. The T-Rex system consists in the use of the regulatory element from 

E. Coli Tn10-encoded tetracycline (Tet) resistance operon (Hillen and Berens 1994). The 

tetracycline regulation in the T-Rex system is based on the binding of tetracycline to the Tet 

repression and de-repression of the promoter controlling expression of the gene of interest (F. 

Yao et al. 1998). Even though desired, an induced expression by this system that leads to the 

same expression levels as the endogenous protein is rare. The promoter used in the FlpIn system 

is thepowerful CMV promoter, which activity might not resemble to the endogenous promoter 

for TRIM27 and TRIM32. This is a very delicate issue in the case of the study of autophagy, 

since excessive amounts of proteins condensate in the cytoplasm can active this process in an 

unspecific manner. This was our biggest concern in the case of TRIM27, which was easily 

overexpressed when induced with tetracycline. We troubleshoot this issue by performing 

tetracyclinetitration, leading to induction with very low concentration of tetracycline. In the 

HEK293 FlpIn TRIM32 Kos cells we failed to generate reconstituted cell-lines via the FlpIn 

system.. In a second attempt to re-constitute the TRIM32 KO cells, we decided to use 

Lentivirus, which was finally successful. The expression of TRIM27 and TRIM32 was never 

exactly as the endogenous levels, however, we believe that our results are a reflection of the 

role of these two TRIM proteins in the cell.  

 

Transfections and ubiquitin assays 

Transient transfection is a powerful and fast method to analyze the localization and activity of 

proteins in the cell without the need of producing stable expressing cell lines. However, the 

temporality and abundance of the studied protein might not be mimicking the real cellular 

environment. In all papers in this study, we perform the transfection of a variety of plasmids to 
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cells mentioned in the materials and methods section of each paper. Even though being a fast 

and simple method, the big flaw is the effect of over-expression of proteins. Similar to the 

concerns of the double-tag assay, the plasmids commonly contain a tag attached to the studied 

protein that can interfere with the functionality of the protein. Moreover, overexpression of a 

protein can lead to false interactions and localizations that do not represent the endogenous 

behavior of the protein. We started performing ubiquitylation assays co-expressing tagged 

ubiquitin together with p62. However, we noticed that the use of ubiquitin alone induced 

ubiquitylation of p62. This is in line with previous studies, which showed that overexpression 

of ubiquitin activated autophagy in a p62-dependent fashion (Peng et al. 2017). Moreover, in 

the case of the overexpression of p62, high amounts of this protein has shown to form 

aggregates (Pankiv et al. 2007), an effect that can be incorrectly attributed to the knock-out of 

the TRIM proteins, when in reality is an off-side effect due to p62 nature.  

 

Western Blotting as a quantitative method 

In our study, the detection and measurement of protein variations in the cell was measured 

mainly through Western blot. This well-described method has been used for many years in the 

biology and biochemistry fields (Mahmood and Yang 2012). Even though this method shows 

a very high sensitivity and it is able to measure very low protein concentrations, using it as a 

quantitative method has its risks for several reasons. Western blotting is a multi-step method 

were all steps are crucial for proper results. This means that many mistakes can happen along 

the process. The loading of an equal protein concentration is considered a key factor to ensure 

reliability. Transfer can be done unequally along the membrane, so a good loading shown in a 

housekeeping gene does not ensure reliability. This is why in our study we have always used 

Ponceau to check the quality of the transfer of proteins from the gel to the membrane. In 

addition, housekeeping genes such as PCNA, Actin or GAPDH have been used as loading 

controls. The  high concentrations of these housekeeping genes in comparison to the proteins 

we want to analyzed is also worth raising doubts. The detection of some proteins, for example 

TRIM27 and TRIM32, require a high protein loading to ensure being visible when developing 

the membrane. However, the amount of housekeeping proteins in those samples are in general 

high, which could potentially lead to misleading loading appreciation due to overexposure. 

Therefore, in our experiments we have always tried to keep the loading to the minimum in order 

to minimize this effect. 
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Use of antibodies in immunoblotting, immunoprecipitation and confocal microscopy 

Throughout this study, we have made an extensive use of antibodies for the experiments 

involving immunoblotting, immunoprecipitation and immunostaining. Antibodies are an 

essential tool in biomedical research, which in most cases with high specificity towards their 

targets. Broadly used antibodies, such as the one for p62, show a high degree of specificity and 

are reliable sources for analyzing the dynamics of the targeted proteins. However, some 

antibodies might bind to other proteins, leading to unspecific signal. This has been a challenge 

for us, since the TRIM27 antibody, even though showing specificity towards TRIM27, also 

bind an unidentified protein present in the serum of the cellular growing media. We made this 

early discovery when we saw a higher and thick band only in full medium treated cells 

compared to the ones treated with HBSS. Moreover, TRIM27 antibody did not work properly 

on immunostaining. We solved this problem using stable cell lines. 

In addition, we used immunoprecipitation for analyzing the association of TRIM27 and 

TRIM32 with other proteins. Mass spectrometry is a powerful tool to identify possible 

interaction partners, however, the immoprecipitation procedure might not reflect the real 

situation inside the cell. The preparation of the samples involve the lysis of the cells prior to 

incubating them with the GFP/MYC-trap. This leads to an artificial environment where cells 

that do not interact in normal conditions might co-precipitate together due to their proximity.  
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ABSTRACT 

Cells use autophagy, an evolutionary conserved catabolic process, to maintain proper 

homeostasis. Defects in autophagy have been associated with cancer, where it modulates cell 

resistance or sensitivity to therapy, in addition to affecting the migration and invasion 

capabilities of tumor cells. The tripartite motif-containing 27 (TRIM27) protein is highly 

expressed in various cancers including breast cancer, shown to be involved in a multitude of 

processes such as cell proliferation, transcriptional repression, apoptosis, STAT3 activation, 

inhibition of NF-kB activation, and innate immune response. Here we identify TRIM27 as an 

autophagic substrate, depending on ATG7 and the sequestosome-like receptors for its 

lysosomal degradation. We mapped a LIR motif within its coiled-coil regions, with highest 

specificity towards LC3C. TRIM27 forms small cytoplasmic bodies that colocalizes with early 

autophagy proteins, and with the autophagy receptors p62/SQSTM1 and NBR1. Ablation of 

TRIM27 in HEK293 FlpIn cells reduced the starvation induced autophagy response, and 

resulted in increased levels of the lysosomal protein LAMP2. The increased LAMP2 expression 

resulted in enhanced formation of large, perinuclear lysosomes. TRIM27 is recognized as an 

oncogene, and mRNA expression profiling confirmed that TRIM27 is significantly upregulated 

in breast cancer tissue compared to normal tissue. Importantly, TRIM27 expression levels 

seemed to be inversely correlated with LAMP2 and LC3B expression levels in various breast 

cancer cell lines. These results point to TRIM27 as a regulator of autophagy in cancer cells, 

providing one of the oncogenic mechanisms of TRIM27. 

 

 

 

 

 

 

 

 

 



 
 

INTRODUCTION 

Synthesis and clearance of functional proteins regulate their availability within the cell, 

adapting the protein pool to the cellular needs. Thus, protein degradation is a crucial element in 

the maintenance of cellular homeostasis. Such an important process is tightly regulated in a 

spatially and timely manner through two main systems: the ubiquitin-proteasome system (UPS) 

and the lysosomal-mediated proteolysis (hereafter autophagy) (Dikic 2017).  

The main tag for degradation is a globular protein of 76 amino acids called ubiquitin. 

Targeted proteins are conjugated to ubiquitin by the mediation of three sequential reactions. 

The first reaction is the activation of ubiquitin by E1 enzymes. The second reaction consists in 

the conjugation of ubiquitin to E2 enzymes for its delivery to the next step. The third and last 

reaction is mediated by E3 ligases that make possible the binding of the activated ubiquitin with 

the target molecule. While E1 and E2 are highly conserved and do not present much specificity, 

E3 ligases are in charge of recognizing the substrate, which makes them the main regulator of 

the pattern of ubiquitylation (Kleiger and Mayor 2014). Ubiquitin is a common denominator 

for both UPS and autophagy that work coordinately to create an efficient proteolytic network 

(Ji and Kwon 2017). In the beginning, ubiquitin was identified as a simple tag for protein 

degradation. However, in the last decades, evidences have shown the important role of 

ubiquitylation as a posttranslational modification in many cellular processes such as DNA 

repair response, cell cycle regulation, autophagy, cellular differentiation and cell-mediated 

immunity (Swatek and Komander 2016; Kwon and Ciechanover 2017; Yu and Matouschek 

2017). 

Tripartite motif family proteins (TRIMs) are a wide family of proteins involved in the 

control of several cellular processes such as intracellular signaling, innate immunity, 

transcription, autophagy and carcinogenesis. To date, there are more than 80 distinct protein 

members in the TRIM family (Watanabe and Hatakeyama 2017). The vast majority of those 

TRIMs present E3 ligase activity since they contain a RING finger-domain. Those TRIMs 

defined as E3 ligases are characterized by the presence of tripartite motif RBCC domain. The 

RBCC domain contains in the N-terminal a RING-finger domain, one or two B-boxes (B1/B2) 

and a coiled-coil (CC) domain. In addition, most TRIMs also present domains at the C-

terminus, which gives them specificity for their target proteins (Esposito, Koliopoulos, and 

Rittinger 2017). TRIM proteins play several roles in autophagy, both as regulators and effectors. 

Some TRIMs, such as TRIM5α, 6, 16, 17, 20, 22, 49 and 55, act as a platform through the 

assembling of ULK1 and Beclin1. This regulatory complex has been name TRIMosome, which 



 
 

regulates selective autophagy (M A Mandell et al. 2014). Other TRIMs, such as TRIM5α can 

also act as autophagy receptors of specific targets (Michael A Mandell et al. 2015). Moreover, 

some TRIMs regulate autophagy through their interaction with p62/SQSTM1 (hereafter 

p62/SQSTM1). This interaction often take place under certain cellular conditions, such as 

TRIM13 during ER stress. This shows the high specificity of this family of E3 ligases. No 

TRIM homologs have been identified in yeast, which is a well-studied autophagy model 

organism. Thus, TRIM proteins might add complexity to the mammalian autophagy system, 

being able to regulate more specific degradation processes.  

TRIM27 is an E3 ligase also known as Ret finger protein (RFP protein), which was 

firstly described as a fusion protein with the tyrosine kinase domain of the c-RET proto-

oncogene originated by DNA rearrangement (Cao et al. 1996). This 58-kDa protein can be 

found in both the cytoplasm and the nucleus of the cells, depending on the cell type (G. Tezel 

et al. 1999). TRIM27 is involved in the regulation of several cellular processes such as 

immunity, apoptosis, cell growth, proliferation and endosomal recycling (Nie et al. 2016; 

Zoumpoulidou et al. 2012; Liu et al. 2014; Zhuang et al. 2016). TRIM27 is reported to have 

several roles in host defense against pathogens. It acts as a host restriction factor during 

mycobacterial infection, enhancing immune-inflammatory response and cell apoptosis (Nie et 

al. 2016). In addition, TRIM27 has been identified as a degradation target of Herpes Simple 

Virus 1 ICP0 (Conwell et al. 2015), and together with USP7 negatively modulates antiviral type 

I interferon signaling (Cai et al. 2018). Moreover, TRIM27 plays a role in endosomal recycling 

when it is in complex with USP7 and MAGE-L2. This complex regulates the activity of the 

WASH/retromer-mediated endosomal recycling through its ubiquitylation status (Hao et al. 

2015). TRIM27 is identified as an oncogene, highly expressed in various cancer types such as 

breast cancer. TRIM27 promotes proliferation mainly through its nuclear function, participating 

in transcriptional regulation complexes (Horio et al. 2012; Iwakoshi et al. 2012; Tsukamoto et 

al. 2009; G. G. Tezel et al. 2009; H. X. Zhang et al. 2018; Cai et al. 2018) It is also shown to 

promote cell migration and invasion (Y. Zhang et al. 2018). However, whether TRIM27 plays 

a role in autophagy in cancer cells still need to be fully elucidated.  

Here we show that TRIM27 is a cargo for the sequestosome-like receptors 

p62/SQSTM1 and NDP52, directing it for lysosomal degradation. A LIR motif with specificity 

towards LC3C was identified in its coiled-coil region. However, TRIM27 did not seem to act 

as an autophagy receptor itself. TRIM27 is localized in specific structures in the cytoplasm, 

often together with early autophagy proteins such as ATG9, ATG13 and ULK1, and the 



 
 

autophagy receptors p62/SQSTM1 and NBR1. Knock out of TRIM27 in HEK293 FlpIn cells 

reduced the starvation induced autophagy response, and resulted in increased expression of 

LAMP2 and formation of large LAMP2 rings. Moreover, LAMP2 was identified as an 

interaction partner of TRIM27.  

In line with previous studies, our bioinformatics analysis show that TRIM27 expression 

is upregulated in breast cancer tissues. Interestingly, the expression of TRIM27 varies 

substantially in cells representing different breast cancer subtypes, and its expression level 

seemed to be inversely correlated with the expression of LAMP2 and LC3B. Altogether, these 

results suggest that TRIM27 may regulate the autophagy process in certain cancer cell lines. 

 

MATERIALS AND METHODS 

Antibodies and reagents. 

The following primary antibodies were used: rabbit polyclonal antibody for TRIM27 

(Proteintech, #122205-1-AP)(1:1000); rabbit polyclonal anti-GFP (Abcam, ab290)(1:5000); 

rabbit polyclonal anti-LC3B (Sigma, L7543)(1:1000 for WB, 1:500 for IF); LAMP2(Santa 

Cruz Sc-18822, 1:1000 for WB, 1:500 for IF), ATG13 (Cell signaling 13468S, 1:100 for IF), 

ULK1 (Cell signaling 8054, 1:100 for IF), GM130 (Abcam Ab 53649, 1:500 for IF), USP7 

(Biosite A300-033A, 1:200 for IF), NBR1 (Santa Cruz Sc-130380, 1:1000 for WB, 1:200 for 

IF), TOM20 (Santa Cruz Sc-11415, 1:500 for IF), FK2 (AH Diagnostics BML-PW8810-0100, 

1:1000 for WB, 1:500 for IF); mouse monoclonal anti-p62/SQSTM1 lck ligand (BD Biosciences, 

610833)(1:2000) and guinea pig polyclonal anti-p62/SQSTM1 (Progen, GP62/SQSTM1-

C)(1:2000); mouse monoclonal anti-PCNA (DAKO, M0879)(1:1000). The following 

secondary antibodies were used: Horseradish-peroxidase (HRP)-conjugated goat anti-rabbit 

IgG (BD Biosciences, 554021)(1:2000); HRP-conjugated goat anti-mouse Ig (BD Biosciences, 

554002)(1:2000); and HRP-conjugated anti-Biotin antibody (Cell Signalling, #7075)(1:2000). 

The following fluorescent secondary antibodies were used: Alexa Fluor® 488-conjugated goat 

anti-mouse IgG (Life Technologies, A-11029)(1:1000); Alexa Fluor® 555-conjugated goat 

anti-rabbit IgG (Life Technologies, A-11008)(1:5000); Alexa Fluor® 555-conjugated goat anti-

mouse IgG (Life Technologies, A-21424)(1:1000); Alexa Fluor® 647-conjugated goat anti-

guinea pig IgG (Life Technologies, A-21450)(1:1000). The reagents used were Bafilomycin 

A1 (Sigma, B1793); MG132 (Sigma, C2759); Tetracycline (Sigma, #87128); Hanks Balanced 

salt solution (Sigma, H8264).  

 



 
 

Construction of Plasmids  

All plasmids used in this study are listed in Table 1. Plasmids were made by use of the Gateway 

recombination system (ThermoFisher). Gateway LR reactions were performed as described in 

the instruction manual. Point mutations were carried out using the Site-directed-mutagenesis 

kit from STRATAGENE. Primers for establishment of LIR mutated TRIM27W184A/F186A/L189A 5’-

GAAGATTGTTGCGGAGGCTGAGCAGGCGTATCACTCCTTA-3’ were ordered from ThermoFisher. All 

plasmids were verified by restriction enzyme digestion and DNA sequencing (BigDye, Applied 

Biosystems, 4337455).  

 

Table 1: Plasmids used in this study 

 

pDONR221 TRIM27 

 

Harvard HsCD00042999 

pDest mCherry-EYFP TRIM27 (Overå et al. 2019) 

pDest EGFP-C1 (Lamark et al. 2003) 

pDest EGFP-TRIM27 This study 

pDest Myc-TRIM27  This study 

pDest Myc-TRIM27 W184A/F186A/L189A This study 

pDest Myc-p62/SQSTM1 

pDestMyc-NDP52 

pDest Myc 

pDest15 LC3A 

pDest15 LC3B 

pDest LC3C 

(Lamark et al., 2003) 

(Abudu et al., 2019) 

(Lamark et al. 2003) 

(Pankiv et al. 2007) 

(Pankiv et al. 2007) 

(Alemu et al. 2012) 

pDest GABARAP (Pankiv et al. 2007) 

pDest GABARAP L1 

pDest GABARAP L2 

(Pankiv et al. 2007) 

(Pankiv et al. 2007) 

pSPCas9(BB)-2A-GFP (PX458) (Ran et al. 2013) Addgene#48138 

pDest EGFP FlpIn FRT/TO 

pDest EGFP FlpIn TRIM27 

(Alemu et al. 2012) 

This study 

 

 

 

 

Cell culture and transfections  

HeLa (ATCC, CCL2), Hek293 (ATCC, CRL-1573) and Hek293 T-Rex (ThermoFisher, R714-

07) cells were cultured in Dulbecco’s modified eagle’s medium (DMEM) (Sigma, D6046) with 



 
 

10% fetal bovine serum and 1% streptomycin-penicillin (Sigma, P4333). Hek FlpIn T-Rex cells 

with integrated EGFP-TRIM27 were grown in the same medium with additional selection 

marker antibiotics, 200µg/ml Hygromycin B (Invitrogen, #10687010) and 7,5 µg/ml Blasticidin 

(Gibco, A1113903). The breast cancer cell lines HS578, MDA-MD-231, and MCF7 were 

cultured in DMEM medium. The breast cancer cell lines BT549, T47D, MDA-MD-468, 

BT474, HCC1569 and SKBR3 were cultured in RPMI-1640 medium. Sub-confluent cells were 

transfected using TransIT-LT1 (Mirus, MIR2300) or Metafectene Pro (Biontex, T040) 

following the manufacturer’s instructions. All cell lines were routinely tested for mycoplasma 

contamination. 

 

Recombinant protein production and GST pulldown analysis 

GST or GST-tagged proteins were expressed in Escherichia coli strain SoluBL21 (Genlantis, 

#C700200). Protein expression was induced by treating overnight bacterial culture with 

50µg/ml Isopropyl β-D-1-thiogalactopyranoside (IPTG). GST or GST fusion proteins were 

purified and immobilized on Glutathione-Sepharose 4 Fast Flow beads (GE Healtcare, 17-

5132-01). Myc-tagged proteins were in vitro translated using the TNT T7 reticulocyte Lysate 

system (Promega, #14610) in the presence of 35S-methionine. In vitro translated protein or total 

cell lysate was pre-incubated with 10µl glutathione sepharose beads and 100µl of NETN buffer 

(50mM Tris pH 8.0; 150mM NaCl; 1 mM EDTA; 0.5% Nonidet P-40) with cOmplete Mini 

EDTA-free protease inhibitor mixture tablets (Roche Applied Science, 11836170001) for 1hr 

at 4°C to reduce unspecific binding. Pre-incubated lysate was then incubated with the 

immobilized GST fusion protein for 2hrs at 4°C. Beads were washed five times with NETN 

buffer, boiled with 2xSDS gel loading buffer (125mM Tris pH 7.5; 4% SDS; 0.04% 

bromphenol blue; 8% sucrose; 100mM dithiolthreitol) and subjected to SDS-PAGE. Gels were 

stained with Coomassie Brilliant Blue R-250 Dye (Thermofisher scientific, #20278) to 

visualize GST fusion proteins and then vacuum-dried. Signals from 35S-labelled proteins were 

detected by a Fujifilm bioimaging analyzer BAS-5000 (Fujifilm).  

 

Peptide Array 

TRIM27 peptide arrays were synthesized on cellulose membranes using MultiPrep peptide 

synthesizer (INTAVIS Bioanalytical Instruments AG, Germany). Membranes were blocked 

with 5% non-fat dry milk in TBST and peptide interactions were tested with GST and GST-

GABARAP by overlaying the membrane with 1 g/ml of recombinant proteins and incubation 



 
 

for 2 h at room temperature. Bound proteins were visualized with HRP-conjugated anti-GST 

antibody. 

 

Western Blotting 

Cells were seeded in 6 well dishes and treated as indicated. Cells were lysed in 1xSDS buffer 

(50mM Tris pH 7.4; 2% SDS; 10% Glycerol) supplemented with 200mM dithiothreitol (DTT, 

Sigma, #D0632) and heated at 100°C for 10 minutes. Protein concentration was measured using 

the Pierce BCA Protein Assay Kit (Thermofisher Scientific, #23227). Equal amounts of protein 

were resolved by SDS-PAGE and transferred to nitrocellulose membrane (Sigma, 

GE10600003). The membrane was stained with Ponceau S (Sigma, P3504), blocked with 5% 

non-fat dry milk in 1% TBS-T (0.2M Tris pH 8; 1.5M NaCl and 0.05% Tween20 (Sigma, 

P9416)) and then incubated with indicated primary antibodies for 24h. The membrane was 

washed three times for 10 minutes each with TBS-T followed by incubation with secondary 

antibody for 1h. The membrane was washed three times for 10 minutes and analyzed by 

enhanced chemiluminescence using the ImageQuant LAS 4000 (GE Lifescience).  

 

Immunostaining and Fluorescence confocal microscopy 

Subconfluent cells grown in 24-well plates on coverslips (VWR, #631-0150) coated with 

Fibronectin (Sigma, F1141) and treated as indicated. They were fixed in 4% paraformaldehyde 

for 20 min. The cells were then permeabilized with methanol at RT for 5min, blocked in 5% 

goat serum/PBS or 5%BSA/PBS and incubated at room temperature with a specific primary 

antibody followed by Alexa Fluor 488, 555 or 647 conjugated secondary antibody and DAPI. 

Confocal images were obtained using a 63x/NA1.4 oil immersion objective on an LSM780 

(Zeiss). Quantification of cells containing red only dots in the double tagged screen, or large 

LAMP2 rings, was done manually in three independent experiments. 

 

Generation of TRIM27 knock out in HEK293 FlpIn cell lines 

To generate knock out cells for TRIM27, the CRISPR/Cas9 system was exploited as described 

by (Ran et al. 2013). The Guide RNA sequence 5’-CTTTACCAGTTGGGTCACGT-3’ was ligated into 

the vector pSpCas9(BB)-2A-GFP (PX458) (Addgene, #48138) using BbsI restriction sites. 

Subconfluent Hek293 FlpIn T-Rex cells were transfected with the targeting plasmid using 

Metafectene Pro (Biontex, T020). EGFP-positive cells were sorted by FACS and plated into 

96-wells plates three days post transfection. Single colonies were expanded up to 12-well plates 



 
 

and KO validated by immunoblotting. Confirmed KO clones were further screened by genomic 

sequencing. The targeted genomic regions were amplified by PCR using the primers 5’-

CCGGAGAGAGCGCCGGAGAGTTG-3’ and 5’-CAAGGTGAGGGCGCGGATCCGGGAG-3’ and the resulting 

PCR products ligated into the pGEM-T-EASy vector (Promega, A3600). Sequencing were 

conducted for at least 3 clones for each PCR product. 

 

Generation of tetracycline inducible HEK293 FlpIn cell lines 

Stable cell lines were generated using the FlpIn T-Rex system (Thermofisher, R71407). 

TRIM27 cDNA was transferred to the inducible FlpIn expression vector pDest-EGFP-Flp-In 

by GATEWAY cloning. FlpIn T-Rex cells were then cotransfected with the TRIM27 FlpIn 

expression vector and the FlpIn recombinase vector pOG44 in the ratio of 1:3. Cells were 

selected by treatment with 200µg/ml Hygromycin B (Invitrogen, #10687010) and 7,5 µg ml-1 

Blasticidin (Gibco, A1113903), and protein expression verified by induction with Tetracycline 

(Sigma, #87128). 

 

Cell proliferation assay  

The cell lines HEK293 T-Rex FlpIn, HEK293 T-Rex FlpIn TRIM27 KO, HEK293 T-Rex FlpIn 

TRIM27 KO + TRIM27 WT and HEK293 T-Rex FlpIn TRIM27 KO + GFP were harvested 

with trypsin and seeded into 12-well plates at a density of 100.000 cells per well. Afterwards, 

cells were incubated in IncuCyte (Essen BioScience, Ann Arbor, MI, USA) at 10x 

magnification and images were taken in the phase and green channels every 24h. Images were 

analyzed by Incucyte S3 Live-cell analysis system. The assays were performed in triplicate. 

 

Migration assay  

The cell lines HEK293 T-Rex FlpIn, HEK293 T-Rex FlpIn TRIM27 KO, HEK293 T-Rex FlpIn 

TRIM27 KO + TRIM27 WT and HEK293 T-Rex FlpIn TRIM27 KO + GFP were harvested 

with trypsin and seeded into 96-well Image-Lock Microplate (Essen BioScience, Ann Arbor, 

MI, USA) at a density of 8.000 cells per well. Twenty-four hours after seeding, a scratch wound 

was made by using the Incucyte 96-well WoundMaker tool (Essen BioScience, Ann Arbor, MI, 

USA) according to the manufacturer’s instructions. Cells were incubated at 37 °C with CO2 in 

the Incucyte (Essen BioScience, Ann Arbor, MI, USA) at 10x magnification and pictures were 

taken in the phase and green channels every 15h (for figure presentation, quantification ever 24 

hours is shown). Images were analyzed by Incucyte S3 Live-cell analysis system. The assay 

was repeated independently two times. 



 
 

Bioinformatics 

For the analysis of TRIM27 expression in normal versus tumor, two publically available breast 

cancer datasets, PRJNA399721 and PRJNA172761, were downloaded from the Sequence Read 

Archive (SRA). PRJNA399721 consist of 22 primary invasive breast cancer carcinoma 

expressing estrogen receptors and their paired adjacent mammary healthy tissues. Libraries 

were prepared using the TruSeq® Stranded Total RNA kit and Ribo-Zero rRNA Removal kit 

(Illumina) and sequencing was performed by strand-specific RNA sequencing on a Illumina 

HiSeq. PRJNA172761 consist of 53 primary breast cancers and 6 normal breast samples from 

mammoplasty patients. Single-end Illumina-based RNA-sequencing was performed, using both 

29 bp reads (on 29 tumor samples) and 100 bp reads (on 24 tumor samples and 6 normals).  

The CLC Genomic workbench (v8.5.1) was used for analyzing the RNA-Seq data. Raw reads 

were trimmed for quality (Quality limit = 0.05) and adaptor (Illumina TruSeq LT and HT 

adaptor or Illumina 1.5 Small RNA). Trimmed reads were mapped to GRCh38 with Ensembl 

annotation v84, using either strand specific mapping (PRJNA399721) or non-strand specific 

mapping (PRJNA172761), (Mismatch cost = 2, Insertion cost = 3, Deletion cost = 3, Length 

fraction = 0.9, Similarity fraction = 0.8). Only uniquely mapped reads were included in gene 

quantification. Reads per million (RPM) normalization was utilized, and gene counts were log2 

transformed. Graphpad prism was used for making illustrations and statistical analysis. A paired 

t-test was used for the comparison of paired tumor versus normal samples, while a non-paired 

t-test was used for the calculation of normal versus tumor samples.  

Statistics 

All experiments were repeated at least three times, unless otherwise specified. Error bars 

represent the s.d. or s.e.m. as indicated in Figure legends. Replicates were not pooled for 

statistical analyses.  

 

 

 

 

 

 



 
 

RESULTS  

Autophagic degradation of TRIM27 is dependent on ATG7 and the Sequestosome-Like 

receptors. 

In a qualitative screen in HeLa cells using the double tag mCherry-EYFP fused to 22 various 

members of the TRIM family of ubiquitin E3 ligases, we identified TRIM27 as a potential target 

for autophagic degradation (Figure 1A) (Overå et al. 2019). Both under normal and starved 

conditions, RedOnly puncta could be observed in the mCherry-EYFP-TRIM27 expressing cells 

(Figure 1A), with a slightly increased induction of RedOnly puncta upon starvation (Figure 

1B). To pinpoint the autophagy pathway implicated in TRIM27 degradation, the mCherry-

EYFP-TRIM27 double tag assay was performed in ATG7 KO cell lines. We were not able to 

observe any RedOnly dots in the transfected ATG7 KO cell lines (Figure 1A,B). Previously, 

we have shown that autophagic degradation of TRIM32 is mediated by selective autophagy 

involving the Sequestosome-Like-Receptors (SLRs) (Overå et al. 2019). To investigate if also 

TRIM27 is degraded by selective autophagy mediated by the SLRs, the mCherry-EYFP-

TRIM27 double tag assay was applied on a cell line knocked out for the five SLRs 

p62/SQSTM1, NBR1, NDP52, Optineurin and Tax1BP1 (pentaKO) (Lazarou et al. 2015). No 

RedOnly dots of mCherry-EYFP-TRIM27 could be observed neither under normal nor starved 

conditions (Figure 1A,B). Together, these results indicate that autophagic degradation of 

TRIM27 is mediated by selective autophagy. 

To measure whether p62/SQSTM1 is sufficient to direct TRIM27 to autophagic 

degradation, we applied the mCherry-EYFP-TRIM27 double tag assay on the HeLa penta KO 

cell line reconstituted with EGFP-p62/SQSTM1 (Figure 1A,B) (Overå et al. 2019). 

Reintroduction of EGFP-p62/SQSTM1 facilitated formation of mCherry-EYFP-TRIM27 

RedOnly dots, but not to the same extent as the wild type cells (Figure 1A-B). Similar results 

were obtained by reintroduction of EGFP-NDP52 (Figure 1A,B). Thus, both SLRs were able 

to direct autophagic degradation of mCherry-EYFP-TRIM27. To sum up, here we suggest that 

TRIM27 is a cargo for selective autophagy, and its dependence on the SLRs for autophagic 

degradation indicates that it does not act as an autophagy receptor itself. 

In order to determine if endogenous TRIM27 is degraded by autophagy, we analyzed 

the TRIM27 protein levels in HeLa ATG9 KO cells (kindly provided by Y. Abudu, 

unpublished). ATG9 vesicles are required for nucleation of the autophagic isolation membrane, 

and hence ablation of ATG9 will block the autophagy process (Orsi et al. 2012). Notably, 

TRIM27 seems to be stabilized and modified in the ATG9 KOs cells. The slower migrating 

TRIM27 band suggests that ATG9 and inhibition of autophagy has an impact on TRIM27 



 
 

expression (Fig 1C,D). The autophagy receptors p62/SQSTM1 and NBR1 also display 

migration differences in HeLa ATG9 KO cells compared to normal HeLa cells (Fig 1C). This 

further suggests that there is a link between TRIM27 and the autophagy receptors.  

 

TRIM27 has a LIR with specificity towards LC3C. 

TRIM27 belongs to the same TRIM family subclass as TRIM5α retroviral restriction factor 

acting during the early post entry stages of the retroviral life cycle to block infection by a broad 

range of retroviruses, disrupting reverse transcription and integration  (Sawyer et al. 2005). 

Trim5α was reported to act as a selective autophagy receptor, targeting a restricted virus to the 

autophagosome for degradation (Michael A Mandell et al. 2015). It was demonstrated that 

TRIM5α interacts directly with ATG8 proteins via a LIR motif. Later, the LC3 interacting 

region in TRIM5α was proposed to be located in a helical region within the coiled-coil region, 

including the residues D192, W196 and E203 (Keown et al. 2018). The similarity of TRIM5α 

and TRIM27 prompted us to apply a peptide array to identify putative ATG8 interacting regions 

in TRIM27. In this assay, various 20 amino acid long peptides covering the complete region of 

TRIM27 were spotted on filter paper and probed against GST-GABARAP proteins expressed 

and purified from E. coli. The spot blot identified a putative LIR located within the W184-

F186-L189 region of TRIM27 (Figure 2A). To verify this putative LIR motif, we established 

the TRIM27W184A/F186A/L189A mutant and compared its ability to bind the ATG8s with the binding 

ability of wild type TRIM27 in a GST-pulldown assay using GST-ATG8 proteins expressed 

and purified from E. coli, and TRIM27 proteins produced by in vitro translation. Figure 2B 

shows that wild type TRIM27 has high affinity for  LC3C, binds with lower affinity to 

GABARAP and GABARAPL1, and very weakly or not at all to LC3A, LC3B and 

GABARAPL2. 

Introduction of the W184A/F186A/L189A mutations in TRIM27 resulted in strong 

reduction of the LC3C binding, and some reduction in the binding to GABARAP and 

GABARAPL1 (Figure 2B). This suggests that TRIM27 contains a LIR with highest specificity 

against LC3C, located close to or within its coiled-coil region. The specificity for LC3C and 

partially GABARAP was further verified by GST-pulldown assay using cell extracts from the 

HEK293 FlpIn EGFP-TRIM27 cell line (Figure 2C). To sum up, here we show that TRIM27 

contains a LIR motif with high specificity towards LC3C. The TRIM27 LIR displays strong 

similarity to the LIR2 of TRIM5α (Figure 2D). 

 



 
 

TRIM27 forms cytoplasmic puncta that co-localizes with proteins implicated in the 

autophagy process 

To further address if TRIM27 may impact the autophagy process, we established a HEK293 

FlpIn TRIM27 KO cell line by CRISPR/Cas9 (Ran et al. 2013), reconstituted cell line with 

tetracycline inducible expression of EGFP-TRIM27, and a HEK293 FlpIn TRIM27 KO cell 

line with inducible expression of EGFP as control cell line (Figure S1A-C). The expression 

level of EGFP-TRIM27 in the reconstituted TRIM27 KO cell line was close to the endogenous 

level (Figure S1D), and localized to certain dots/aggregates in the cytoplasm, in addition to a 

few nuclear dots (Figure S1E). This is in line with the reported localization of endogenous 

TRIM27 (proteinatlas.org). Next, we compared the proliferation and migration potential of the 

HEK293 FlpIn TRIM27 KO cells with the reconstituted TRIM27 KO cell lines (Figure S1F). 

The HEK293 FlpIn TRIM27 KO cell line displays an enhanced proliferation rate compared to 

the HEK293 FlpIn TRIM27 KO cell line reconstituted with EGFP-TRIM27 (Figure S1F, left 

graph). This suggests that TRIM27 expression may inhibit cell proliferation in HEK293 FlpIn 

cells. Conversely, the migration rate of the TRIM27 KO cells was reduced compared to the 

HEK293 FlpIn cells, while reintroduction of EGFP-TRIM27 restored the migration rate (Figure 

S1F, right graph). Thus, in HEK293 FlpIn cells TRIM27 seems to facilitate cell migration but 

not cell proliferation. This is in line with previous studies showing that TRIM27 facilitates cell 

migration and invasion (H. X. Zhang et al. 2018), and may have a role in Epithelial to 

Mesenchymal transition in cancer cells. 

Since the expression level of induced EGFP-TRIM27 in the HEK293 FlpIn TRIM27 

KO cells is similar to the endogenous TRIM27 expression levels (Figure S1D), the 

physiological effect of the reconstituted EGFP-TRIM27 may be close to the effect of 

endogenous protein.  

Next, we analyzed whether TRIM27 is localized to autophagic structures in the cell. For 

this purpose, we performed immunostaining of autophagy related proteins in the HEK293 FlpIn 

TRIM27 KO EGFP-TRIM27 cells. EGFP-TRIM27 formed several cytoplasmic puncta in 

addition to a few nuclear puncta, and in some cells EGFP-TRIM27 formed larger structures 

(Figure 3). TRIM27 does not seem to co-localize with GM130 (Golgi marker) and calreticulin 

(ER marker), suggesting that TRIM27 is not present or migrates to the Golgi or the ER (Figure 

S2A). 

EGFP-TRIM27 co-localizes strongly with the autophagy receptors p62/SQSTM1 and 

NBR1 (Fig 3). This supports the finding that TRIM27 is a substrate for selective autophagy. 



 
 

Moreover, TRIM27 co-localizes in multiple dots with the autophagy proteins ATG9, ATG13, 

and ULK1 (Fig 3). Together these results suggest that TRIM27 is associated with autophagy 

structures, and hence is a potential regulator of the autophagy process. As controls of the EGFP-

TRIM27 localization pattern, we stained the HEK293 FlpIn TRIM27 KO EGFP-TRIM27 cells 

with antibodies against USP7 and ubiquition (FK2). TRIM27 forms a complex with USP7 that 

is in charge of the regulation of Tumor necrosis factor alpha induced apoptosis, and together 

with USP7 and MAGE2, this complex regulates the protein levels of WASH that is involved in 

vesicles trafficking (Cai et al. 2018; Zaman et al. 2013). In accordance with this, we see that 

USP7 is present in certain EGFP-TRIM27 dots (Fig 3). Also several of the EGFP-TRIM27 dots 

are recognized by the ubiquitin antibody (FK2) (Fig 3). Thus, reconstituted EGFP-TRIM27 

localization seems to represent the localization pattern of endogenous TRIM27, suggesting that 

TRIM27 associates with autophagic structures in the cytoplasm. 

 

TRIM27 is associated with several proteins involved in the autophagy process. 

To further assess the potential role of TRIM27 in autophagy, we applied mass spectrometry 

(MS) analysis to identify whether autophagy-related proteins co-precipitated with EGFP-

TRIM27 immunoprecipitated from the reconstituted HEK293 FlpIn TRIM27 KO cells. The 

HEK293 FlpIn TRIM27 KO cells reconstituted with EGFP only were used as a control to 

discard possible unspecific binding with the EGFP-tag. The MS data identified that TRIM27 

co-precipitates the autophagy receptors p62/SQSTM1, NBR1, CALCOCO2 (NDP52) and 

TAX1BP1 (Fig 4A). This supports that TRIM27 is a substrate for selective autophagy. 

Additionally, we identified the autophagy protein ATG7, the autophagy regulator TBK1, and 

the lysosomal protein LAMP2 as putative interaction partners of TRIM27, supporting our 

findings that TRIM27 co-localizes with autophagy structures in the cell (Fig 3). To verify these 

interactions further, we performed Western blotting against selected proteins from the MS 

screen, on immunoprecipitated EGFP-TRIM27 extracts from the reconstituted HEK293 FlpIn 

TRIM27 KO cells As displayed in Figure 4B, the autophagy receptors p62/SQSTM1 and NBR1 

are associated with EGFP-TRIM27, although the NBR1 interaction seems weak. To test 

whether the interaction with p62/SQSTM1 were directly, a GST-pulldown assay with GST-

p62/SQSTM1 expressed and purified from E. coli was incubated with in-vitro translated 

TRIM27 (Figure 4C). This assay was also performed with GST-NDP52, which displayed a very 

weak interaction with TRIM27 (Figure 4C). Clearly, TRIM27 seems to interact directly with 

the autophagy receptor p62/SQSTM1. To elucidate whether TRIM27 has the ability to 



 
 

ubiquitylate p62/SQSTM1, we transfected myc-p62/SQSTM1 expression plasmids into the 

HEK293 FlpIn TRIM27 KO EGFP-TRIM27 cell lines. Ubiquitylation of myc-p62/SQSTM1 

was detected by immunoprecipitation of myc-p62/SQSTM1 and Western Blotting using an 

antibody recognizing ubiquitin (Figure 4D). EGFP-TRIM27 expression leads to a slower 

migrating myc-p62/SQSTM1 band that are detected by the ubiquitin antibody, indicating that 

TRIM27 ubiquitylates p62/SQSTM1. This was further supported by Western blotting of 

endogenous p62/SQSTM1 in HEK293 FlpIn TRIM27 KO cells and the TRIM27 KO cells 

reconstituted with EGFP-TRIM27. Our results display a slower migrating band of endogenous 

p62/SQSTM1 in cells expressing EGFP-TRIM27 (Figure S2B). 

Notably, the immunoprecipitation also verified association of TRIM27 with LAMP2 

(Figure 4B). Previous reports has linked TRIM27 to subcellular membrane systems, as a 

MAGE2-USP7-TRIM27 complex regulates the retromer at sorting endosomes (Hao et al. 

2015). The interaction of TRIM27 with LAMP2 may suggest a role for TRIM27 in lysosomal 

pathways, such as autophagy. 

 

TRIM27 facilitates starvation-induced autophagy 

Next we set out to analyze whether TRIM27 may impact the autophagy process. It is well 

recognized that p62/SQSTM1 and LC3B co-localizes in certain cytoplasmic dots indicative of 

autophagosomes in HEK293 cells, and that the number of dots increases upon starvation due to 

induction of autophagy. Starvation induced autophagy is initiated by activation of ULK1, 

leading to phosphorylation of the ULK1 complex members ATG13 and FIP200 (Dossou and 

Basu 2019). Subsequently, the BECLIN1 complex including the VPS34 lipid kinase is activated 

and produces a pool of phosphatidylinositol 3-phosphate (PtdIns(3)P) at membrane sites where 

formation of the omegasome takes place. Generation of PtdIns(3)P facilitates recruitment of 

WIPI2 (WD-repeat PtdIns(3)P effector protein) which can be observed as specific starvation 

induced WIPI2 dots by immunostaining. WIPI2 recruits LC3B via the LC3 conjugation system 

to the forming omegasome (Melia, Lystad, and Simonsen 2020). Co-staining of p62/SQSTM1 

and LC3B in the TRIM27 KO cells under normal and starved conditions, indicated that 

starvation induced initiation of the autophagy process was affected by TRIM27 ablation (Figure 

5A,B). In the HEK293 FlpIn cell line, p62/SQSTM1 and LC3B co-localized in certain 

cytoplasmic dots in the cells cultured in normal medium, and the number of such dots increased 

by changing the medium with HBSS for 2 hours. In contrast, in HEK293 FlpIn TRIM27 KO 

cells, the number of p62/SQSTM1 dots did not show an increase upon starvation. Moreover, 



 
 

the number of LC3B dots decreased upon starvation in the HEK293 FlpIn TRIM27 KO cells. 

In line with this, the number of WIPI2 dots in the HEK293 FlpIn cells increased upon starvation, 

while this increase could not be observed in the HEK293 FlpIn TRIM27 KO cells (Figure5C,D). 

Thus, the starvation induced initiation of autophagy seems to be impaired in the TRIM27 KO 

cells, suggesting that TRIM27 facilitates the induction of autophagy upon starvation.  

 

Depletion of TRIM27 leads to increased LAMP2 levels and formation of large LAMP2 

rings in HEK293 FlpIn cells.  

TRIM proteins interacting with the core autophagy machinery have been already  identified (T 

Kimura et al. 2015; T Kimura, Mandell, and Deretic 2016; Tomonori Kimura et al. 2017; M A 

Mandell et al. 2014), and recently we showed that TRIM32 binds to p62/SQSTM1 and the 

ATG8s in vitro, and co-localizes with p62/SQSTM1 and LC3B in specific puncta in cell 

cytoplasm (Overå et al. 2019). TRIM27 is an ubiquitin E3 ligase that can direct other proteins 

for degradation. In order to assess whether TRIM27 and its interaction with autophagy-

associated proteins lead to their degradation, we analyzed the protein levels of p62/SQSTM1, 

NBR1, LC3B, ATG9, LAMIN-B1 (used as nuclear control) and LAMP2 (used as a cytoplasmic 

control) in the cytoplasmic and nuclear fractions of HEK293 FlpIn, TRIM27 KO and TRIM27 

reconstituted with EGFP-TRIM27 (Figure 6A). Surprisingly, the level of LAMP2 seems to 

increase strongly in the HEK293 TRIM27 KO cell line compared to the HEK293 FlpIn cells, 

while the levels of the other autophagy proteins remain the same in all cells (Figure 6A).  

Normal LAMP2 expression was fully recovered in the reconstituted HEK293 FlpIn EGFP-

TRIM27 cells (Figure 6A,B). Similar increase in LAMP2 level were seen in HEK293 FlpIn 

cells treated with TRIM27 siRNA (Figure 7C). To further assess this effect of TRIM27 on 

LAMP2 levels, we immunostained the HEK293 FlpIn TRIM27 KO cells, HEK293 FlpIn 

TRIM27 KO EGFP-TRIM27 and HEK293 FlpIn cells treated with TRIM27 siRNA with 

LAMP2 antibodies. Whereas HEK293 FlpIn cells and HEK293 FlpIn TRIM27 KO cells 

reconstituted with EGFP-TRIM27 cells showed similar LAMP2 staining, a large proportion of 

the HEK293 FlpIn TRIM27 KO cells and HEK293 FlpIn TRIM27 KD cells displayed large 

LAMP2 rings (Figure 6D) often localized in the perinuclear region and close to the EGFP-

TRIM27 bodies and the mitochondria (Figure 6E). Together these results indicate that TRIM27 

associates with LAMP2 and may have a role in the regulation of the cellular levels of LAMP2.  

 



 
 

 

TRIM27 and LAMP2 expression is inversely correlated in breast cancer cell lines. 

 

Our results suggest that TRIM27 is an autophagy substrate and has a role in the regulation of 

starvation induced autophagy. TRIM27 is described as an oncogene, and high expression of 

TRIM27 is associated with increased invasion and migration of cancer cells (H. X. Zhang et al. 

2018). It is well recognized that autophagy is an important process for the survival and growth 

of cancer cells (Hatakeyama 2017; Koukourakis et al. 2015; Alessandrini, Pezzè, and Ciribilli 

2017). Upregulated TRIM27 expression has been associated with breast cancer and 

mechanistically this has been linked to its nuclear role implicated in Estrogen Receptor 

transcription complexes (G. G. Tezel et al. 2009). In order to investigate if TRIM27 expression 

is associated with autophagy activity in breast cancer, we first analysed the TRIM27 mRNA 

expression in tumor tissue and normal tissue from two different patient cohorts (Figure 7A). In 

both cohorts, TRIM27 mRNA was significantly upregulated in the cancer tissues compared to 

normal tissue. Next, the amount of TRIM27 and LC3B proteins in various breast cancer cell 

lines representing various breast cancer subtypes were analysed by Western blotting (Figure 

7B). The TRIM27 expression level varies substantially within the the various cell lines, with 

high expression in the luminal cell lines MCF7 and T47D, and in the basal-like cell ine MDA-

MD-468. Moreover, in the MDA-MD-468 cells, the TRIM27 protein migrates slower 

suggesting that it may represent a TRIM27 fusion protein, or a TRIM27 protein highly modified 

by post-translational modifications. TRIM27-RET fusions are described in several cancers, 

however has not been detected in breast cancer (Hameed et al. 2009). In contrast, in the trippel-

negative MDA-MD-231 and BT549 cell lines,  no TRIM27 expression could be detected. 

Interestingly, LC3B was highly expressed in the triple-negative breast cancer cell lines, while 

it was low in luminal and Her2 positive cell lines. Hence, the expression of TRIM27 and LC3B 

seems to be inversely correlated in the breast cancer cells. Moveover, LAMP2 expression is 

upregulated in the breast cancer cell lines displaying no or very low expression levels of 

TRIM27. This correlates well with our analyses in HEK293 cells, suggesting that loss of 

TRIM27 leads to enhanced LAMP2 expression. Collectively, these results point to TRIM27 as 

a putative regulator of autophagy, and that one of its oncogenic features is to facilitate the 

autophagy process in cancer cells. Moveover, breast cancer cell lines with various expression 

levels of TRIM27 represent promising model systems for further revealing the molecular 

mechanisms of TRIM27 in autophagy and cancer. 

  



 
 

DISCUSSION 

This study originated from a double-tag assay of various TRIM proteins, in order to identify 

TRIMs that were localized inside the lysosomes (Overå et al. 2019). Our hypothesis was that 

TRIMs that are directed to degradation in the lysosome, may have a role in regulation of the 

autophagy process. We observed that mCherry-EYFP-TRIM27 formed several RedOnly puncta 

both in normal conditions and upon starvation. In this work, we show that degradation of 

TRIM27 can happen via autophagic pathways, and that the core autophagy protein ATG7 and 

the SLRs family of autophagy receptors are required for this degradation. This indicates that 

TRIM27 is degraded via selective autophagy.   

It is recently shown that the only transmembrane autophagy protein ATG9 plays an 

important role in the nucleation of the autophagosome (Sawa-Makarska et al. 2020). ATG9 

vesicles traffics from Golgi to endosomes in a ULK1-dependent manner under stress conditions 

(Young et al. 2006), and ULK1 phosphorylation regulates trafficking of ATG9 under 

autophagy-inducing conditions (Zhou et al. 2017). In this work, we show that depletion of 

ATG9 leads to increased levels of TRIM27. TRIM27 seems to be modified in the ATG9 KO 

cells, resulting in a slower migrating band visualized by Western blotting. Moreover, certain 

EGFP-TRIM27 bodies co-localized with ATG9 in the reconstituted HEK293 FlpIn EGFP-

TRIM27 cell line. In addition, the autophagy receptors p62/SQSTM1 and NBR1 displayed 

increased protein levels in the ATG9 KO cells, and occurred as slower migration bands on the 

Western blot gels. This clearly points to TRIM27 as an autophagy substrate similarly as NBR1 

and p62/SQSTM1. In contrast, the autophagy receptor NDP52 did not display aberrant mobility 

in the ATG9 KO cell extract, even if its protein level were slightly increased. Protein levels of 

lipidated LC3B were decreased in the ATG9 KO cells. This is in line with recent reports 

describing that ATG9 vesicles recruit the autophagy machinery and establish membrane contact 

sites with membrane donor compartments. ATG2 mediates transfer of lipids from donor 

membrane to the autophagosome formation sites, leading to PIP3 formation and ATG8 

lipidation. Hence, lipidation of LC3 is dependent on ATG9 vesicles (Sawa-Makarska et al. 

2020). Interestingly, we observed decreased levels of LC3B dots in the HEK293 FlpIn TRIM27 

KO cell lines, indicative of reduced LC3B lipidation in these cells. Moreover, in the breast 

cancer cell lines, we observed an inverse correlation between TRIM27 expression and the 

amount of lipidated LC3B. This may suggest that TRIM27 is implicated in the ATG9 regulated 

pathway for autophagosome formation. 



 
 

Mass spectrometry analyses revealed that several proteins linked to autophagy 

associates with EGFP-TRIM27 precipitated from the reconstituted HEK293 FlpIn cells, further 

suggesting a role for TRIM27 in autophagy. Among the autophagy receptors, p62/SQSTM1 

seemed to be the one that associated strongest with TRIM27. Similarly as we have previously 

shown for TRIM32 (Overå et al., 2019), co-expression of TRIM27 and p62/SQSTM1 in the 

HEK293 FlpIn TRIM27 KO cells led to ubiquitylation of p62/SQSTM1. Moreover, enhanced 

ubiquitylation of endogenous p62/SQSTM1 could be detected in HEK293 FlpIn TRIM27 KO 

cells reconstituted with EGFP-TRIM27, compared to HEK293 FlpIn TRIM27 KO cells. 

Induction of EGFP-TRIM27 expression in the HEK293 FlpIn TRIM27 KO cells also lead to 

strong accumulation of p62/SQSTM1 in the EGFP-TRIM27 cytoplasmic bodies. This may be 

due to a strong interaction between TRIM27 and p62/SQSTM1, or it may be caused by strong 

ubiquitylation of certain TRIM27 bodies as detected by immunostaining with the ubiquitin 

antibody FK2. P62/SQSTM1 binds strongly to ubiquitin (Bjørkøy et al. 2005). This aggregation 

of p62/SQSTM1 in TRIM27 bodies thus may lead to the ubiquitylation of p62/SQSTM1 

detected on Western blots.  

Surprisingly, we identified LAMP2 as a TRIM27 interaction partner. LAMP2 is a highly 

glycosylated protein decorating the luminal surface of lysosomal membranes (Eskelinen, 

Tanaka, and Saftig 2003). It is an important regulator of maturation of autophagosomes, and 

LAMP2 deficiences leads to accumulation of autophagosomes (Saftig et al., 2008). Ablation of 

TRIM27 either by genetic KO, or by TRIM27 siRNA treatments, resulted in accumulation of 

LAMP2 protein levels, and the formation of large LAMP2 rings in HEK293 FlpIn cells. The 

large LAMP2 rings were often localized in the perinuclear region, in close proximity with 

TRIM27 bodies and mitochondria. Whether LAMP2 accumulation as such leads to formation 

of large lysosomes, or whether these large LAMP2 rings indicate that TRIM27 is implicated in 

the regulation of lysosome biogenesis, is an interesting question to address in further studies. 

However, we clearly show that TRIM27 deficiency result in accumulation of LAMP2. This 

accumulation can be due to impaired degradation of LAMP2 in TRIM27 KO cells, since 

TRIM27 is an E3 ligase that directs proteins to degradation by ubiquitylation. Alternatively, it 

can also be due to increased expression of LAMP2 at the transcriptional level, since TRIM27 

also have a nuclear role.  

TRIM27 was originally identified as a gene involved in the oncogenic rearrangements 

with the RET proto-oncogene (Hasegawa et al. 1996). Later it is shown that TRIM27 is highly 

expressed in various cancers including breast, endometrial, ovarian, lung, colon and colorectal 



 
 

cancer, and colitis and colitis-associated carcinogenesis (Ma et al. 2016; Zoumpoulidou et al. 

2012). In these studies TRIM27 has been proposed as a oncogene promoting cell proliferation, 

and the mechanisms have been connected to its nuclear function participating in transcriptional 

regulation complexes (Zurek et al. 2012). The proliferation and migration studies in the 

HEK293 FlpIn TRIM27 KO cells suggest that TRIM27 facilitates cell migration,, which is in 

line with a recent study showning TRIM27 to activate epithelial-mesencymal transition in 

colorectal cancer  and to promote anchorage-independent growth  of various cell lines (Y. 

Zhang et al. 2018). 

Breast cancer is the most frequent malignancy in women and is a heterogeneous disease 

on the molecular level (Harbeck et al. 2019). In our results, TRIM27 mRNA expression in 

tumor tissue and normal tissue from two different patient cohorts was significantly upregulated 

in the cancer tissues compared to normal tissue. Moreover, the TRIM27 expression level varies 

substantially within the the various breast cancer cell lines. LAMP2 expression is upregulated 

in the breast cancer cell lines displaying  no or very low expression levels of TRIM27. This 

correlates well with our analyses in HEK293 cells, suggesting that loss of TRIM27 leads to 

enhanced LAMP2 expression. LAMP2 plays a role in the support of early cancer progression, 

helping cancer cells surviving in acidic enviroments (Mogami et al. 2013). LAMP2 is highly 

expressed in several cancers, where reduced expression of LAMP2 has been associated with a 

loss of migration and invasion capabilities (Koukourakis et al. 2015). LAMP2A isoform has 

shown increased expression in breast tumor tissue, and its inhibition reuslts in sensitation of 

tumor cells to radioation and doxorubicin therapy (Saha 2012). Autophagy helps cancer cells 

to survive under nutrient and oxygen stress (Filomeni, De Zio, and Cecconi 2015). TRIM27 

seems to facilitate starvation induced autophagy. Hence, this can be one mechanism that 

TRIM27 uses to facilitate growth of cancer cells. Collectively, these results point to TRIM27 

as a putative regulator of autophagy, and that one of its oncogenic features is to facilitate the 

autophagy process in cancer cells. Moveover, breast cancer cell lines with various expression 

levels of TRIM27 represent promising model systems for further revealing the molecular 

mechanisms of TRIM27 in autophagy and cancer. 
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FIGURE LEGENDS 

Figure 1. Autophagic degradation of TRIM27 is dependent on ATG7, ATG9 and the 

Sequestosome-Like receptors. A) Normal HeLa cells and cells that were genetically knocked 

out for ATG7, the 5 autophagy receptors p62/SQSTM1, NBR1, NDP52, Optineurin and 

Tax1BP1 (pentaKO), pentaKO cells with reintroduced GFP-p62/SQSTM1 or pentaKO cells 

with reintroduced GFP-NDP52 as indicated to the right, were transfected with mCherry-EYFP-

TRIM27 expression plasmids. One-day post transfection half of the cells were treated with 

HBSS for 2 hours (SM), before all cells were fixated, stained with DAPI and imaged using a 

Zeiss780 confocal microscope. FM: Full medium, SM: HBSS 2hrs. Scale bar (10 μm). B) The 

graphs represent the amount of Yellow dots and RedOnly dots in the mCherry-EYFP-TRIM27 

transfected cells shown with representative images in (A). The graphs are representative for 3 

independent experiments. Normal (FM) and starved (HBSS 2hrs) (SM) conditions. C) Western 

blot analysis of endogenous TRIM27 in HeLa ATG9 KO cells in normal medium (FM) or 

treated with HBSS (SM) for 4 hours. D) Quantitation of Western blot analysis as displayed in  

(C). The graph represents the average of three independent experiments with standard 

deviations. *: p < 0.05 using student T-test; n.s.: p>0.05 using student T-test. 

 

Figure 2. TRIM27 interacts with ATG8s and has a LIR with specificity towards LC3C. 

A) Schematic representation of the domain architecture of TRIM27 with RING, B-box, Coiled-

Coil (CC), LIR, and PRY/SPRY domains indicated. Peptide array with 20-mers spanning the 

complete region of TRIM27 to define the peptides of TRIM27 able to interact with recombinant 

GST-GABARAP. The peptide walk was done with steps of three amino acid from one spot to 



 
 

the next. The peptide arrays were probed with 1μg/ml GST-GABARAP for 2 h, and binding to 

GST-GABARAP was detected with anti-GST antibodies. The identified putative LIR is 

highlighted by stars and shadowed background in the amino acid sequence. B) GST-pulldown 

assay using 35S-labeled Myc-TRIM27 or 35S-labeled Myc- TRIM27W184A/F186A/L189A and 

recombinant GST and GST-ATG8 proteins. The amount of Myc-TRIM27 or Myc- 

TRIM27W184A/F186A/L189A bound to the various ATG8 proteins was detected by autoradiography. 

The graph represents the average binding compared to input from three independent 

experiments. C) GST-pulldown assay using cell extracts from HEK293 FlpIn EGFP-TRIM27 

cells and GST or GST-ATG8 proteins as indicated, immobilized on Glutathione Sepharose 

beads. EGFP-TRIM27 was detected using an anti-GFP antibody. GST proteins were visualized 

by Ponceau staining. D) Sequence alignment of LIR in TRIM27 and LIR2 in TRIM5α. The 

LIRs are indicated by shadowed background, and the residues important for TRIM5α LIR2 

interaction with the ATG8s are highlighted in red. 

 

Figure 3: TRIM27 co-localizes with core autophagy proteins and SLRs. Representative 

images of HEK293 FlpIn TRIM27 KO EGFP-TRIM27 cells fixed and stained with antibodies 

for p62/SQSTM1, NBR1, ATG9A, ATG13, ULK1, USP7 and FK2 (Ubiquitin). Images were 

obtained using a ZEISS780 confocal laser scanning microscope, and the co-localization 

monitored using the ZEN software. Scale bar (10 μm), on inserts (2 μm). Arrows indicate 

colocalisation between EGFP-TRIM27 and the indicated proteins. 

 

Figure 4: TRIM27 associates withthe SLR family of autophagy receptors and core 

autophagy proteins. A) Results from Mass Spectometry (MS) from GFP trap using HEK293 

FlpIn TRIM27 KO reconstituted with EGFP and EGFP-TRIM27 cells. The list represents 

proteins that precipitated with EGFP-TRIM27 induced in the HEK293 FlpIn TRIM27 KO cells, 

and not with induced EGFP. The experiment was performed in triplicate.. B) HEK293 FlpIn 

TRIM27 KO reconstituted with EGFP and EGFP-TRIM27 cells were harvested and incubated 

overnight with GFP trap. The cell extracts were then analyzed by Western blot to detect 

p62/SQSTM1, NBR1, LAMP2, GFP and TRIM27. C) GST-pulldown assays using 35S-labeled 

Myc-TRIM27 and recombinant GST, GST-p62/SQSTM1 or GST-NDP52 immobilized on 

Glutathione Sepharose beads.  D) HEK293 FlpIn TRIM27 KO cells were transfected with 

EGFP-TRIM27 or EGFP and myc-62/SQSTM1. Then cell extracts were incubated overnight 

with Myc-trap. Input and IP were analyzed by Western blot using Myc and Ubiquitin (FK2) 

antibodies. The * indicate ubiquitylated p62/SQSTM1.  



 
 

 

Figure 5: Depletion of TRIM27 impairs starvation induced autophagy. A) Representative 

images of HEK293 FlpIn and HEK293 FlpIn TRIM27 KO cells in full media (FM) or starved 

with HBSS (2 hrs) (SM) fixed and stained with antibodies for LC3B and p62/SQSTM1. Images 

were obtained using a ZEISS780 confocal laser scanning microscope. Scale bar (10 μm), on 

inserts (2 μm).. B) The graphs display the quantitation of p62/SQSTM1 dots (upper panel) and 

LC3B dots (lower panel) in the HEK293 FlpIn TRIM27 KO cell line and the HEK293 FlpIn 

wild type cell line under normal and starved (HBSS 2hrs) conditions using the Volocity 

software (PerkinElmer). Each graph represents the average of three independent experiments 

with standard deviations, each including around 100 cells per condition. *: p < 0.05 using 

student T-test; n.s.: p>0.05 using student T-test. 

C) Representative images of HEK293 FlpIn and HEK293 FlpIn TRIM27 KO cells in full media 

(FM) or starved with HBSS (2 hrs) (SM) fixed and stained with antibodies for WIPI2. Images 

were obtained using a ZEISS780 confocal laser scanning microscope Scale bar (10 μm), on 

inserts (2 μm). D) The graph displays the quantitation of WIPI2 dots in the HEK293 FlpIn 

TRIM27 KO cell line and the HEK293 FlpIn wild type cell line under normal and starved 

(HBSS 2hrs) conditions using the Volocity software (PerkinElmer). Each graph represents the 

average of three independent experiments with standard deviations, each including around 100 

cells per condition. *: p < 0.05 using student T-test; n.s.: p>0.05 using student T-test. 

 

 

Figure 6: TRIM27 KO and KD increase LAMP2 levels and promotes the formation of big 

LAMP2 rings in HEK293 FlpIn cells. A) Western blot analyses of the nuclear and 

cytoplasmic fractions of HEK293 FlpIn, HEK293 FlpIn TRIM27 KO and HEK293 FlpIn 

reconstituted with EGFP-TRIM27 cell lines. LAMP2 antibody and LAMIN B1 antibody were 

used as cytoplasmic and nuclear controls, respectively. The * indicates an unspecific band 

detected by the TRIM27 antibody. B) Upper panels shows Western blot analyses of extracts 

from HEK293 FlpIn, HEK293 FlpIn TRIM27 KO and HEK293 FlpIn EGFP-TRIM27 cells 

incubated in full media (FM) or starved with HBSS 4 hrs (SM). The * indicate an unspecific 

band detected by the TRIM27 antibody. The graph in the lower panel shows average band 

intensities with standard deviations quantitated using ImageJ (Fiji) from three independent 

experiments. **: p < 0.005 using student T-test;  *: p < 0.05 using student T-test; n.s.: p>0.05 

using student T-test. C) Upper panels shows Western blot analyses of extracts from HEK293 

FlpIn cells treated with Control siRNA or TRIM27 siRNA, incubated in full media (FM) or 



 
 

starved with HBSS 4 hrs (SM). The graph in the lower panel shows average band intensities 

with standard deviations quantitated using ImageJ (Fiji) from three independent experiments. 

*: p < 0.05 using student T-test; n.s.: p>0.05 using student T-test. D) Representative images of 

HEK293 FlpIn, HEK293 FlpIn TRIM27 KO, HEK293 FlpIn reconstituted with EGFP-TRIM27 

and HEK293 FlpIn transfected with TRIM27 siRNA immunostained with LAMP2 antiodies 

(red). The nucleus is visualized by DAPI (blue). Images were obtained using a ZEISS780 

confocal laser scanning microscope. Scale bar (10 μm).. The graph represents the average 

amount (%) of cells containing large LAMP2 rings for each of the cell lines represented by the 

images. The quantitations were performed manually in two independent experimens, each 

containing 50 cells per condition. E) Representative image of HEK293 FlpIn reconstituted with 

EGFP-TRIM27 immunostained with antibodies against LAMP2 and TOM20. Images were 

obtained using an AiryScan 880 microscope. Scale bar (10 μm), on insert (5 μm). 

 

Figure 7: TRIM27 is highly expressed in breast cancer tissues and inversely correlated 

with LAMP2 and LC3B expression in various breast cancer cell lines. A) Graphs 

representing the TRIM27 mRNA (log2) expression levels in breast cancer tissues compared to 

normal tissues. The left graph represents average TRIM27 mRNA expression in breast cancer 

tissue compared to normal tissue in the same patients (n=23). The right graph represents average 

TRIM27 mRNA expression in tissue from healthy individuals (n=5) compared to average 

TRIM27 mRNA expression in breast cancer tissue from patients (n=53). B) Western blot 

analysis of endogenous TRIM27, LC3B, p62/SQSTM1 and LAMP2 in cell extracts from nine 

different breast cancer cell lines representing different breast cancer subtypes. The blot is 

representative of three independent experiments.  

 

Supplementary Figure 1: TRIM27 localizes to cytoplasmic bodies and facilitates cell 

migration of HEK 293T FlpIn cells. A) DNA sequences encompassing the target sequence 

employed in the CRISPR/Cas9 mediated strategy generation TRIM27 KO cell line. The lower 

part show the DNA sequences of the PCR products obtained from the genomic loci targeted by 

CRISPR/Cas9. B) Western blot analysis of HEK293 FlpIn cells and the TRIM27 KO cells, 

showing KO of TRIM27. The * indicates an unspecific band detected by the TRIM27 antibody. 

C) Western blot analysis of HEK293 FlpIn TRIM27 KO cells reconstituted with tetracycline 

inducible expression of EGFP or EGFP-TRIM27. Expression of EGFP and EGFP was detected 

by an anti-GFP antibody. Tetracyclin (100 ng) were added where indicated above the blot. D) 

Western blot analysis comparing expression of endogenous TRIM27 in the HEK293 FlpIn cells 



 
 

and tetracycline (100 ng) induced expression of EGFP-TRIM27 in the reconstituted HEK293 

FlpIn TRIM27 KO cell lines. The proteins were detected using an anti-TRIM27 antibody. The 

* indicate an unspecific band detected by the TRIM27 antibody. E) Representative images of 

EGFP-TRIM27 expressed in the reconstituted HEK293 FlpIn TRIM27 KO cell lines, upon 

normal (FM) and starved (SM) (HBSS 2 hrs) conditions. Images were obtained using a 

ZEISS780 confocal laser scanning microscope.Scale bar (10 μm). F) Proliferation (left graph) 

and migration (right graph) curves of HEK293 FlpIn, HEK293 FlpIn TRIM27 KO, and 

HEK293 FlpIn TRIM27 KO reconstituted with EGFP-TRIM27. The graphs were obtained 

using the IncuCyte® S3 Live-Cell Analysis System (Sartorius). Error bars indicate s.d. of 

independent experiments (n=3 for Proliferation, n=2 for migration). 

 

Supplementary Figure 2: A) Representative images of HEK293 FlpIn TRIM27 KO cells 

reconstituted with EGFP-TRIM27fixed and stained with antibodies for GM130 orCalreticulin 

as indicated. Images were obtained using a ZEISS780 confocal laser scanning microscope. 

Scale bar (10 μm), on inserts (2 μm). B) Western blot analysis showing that a fraction of 

p62/SQSTM1 is ubiquitylated in HEK293 FlpIn TRIM27 KO cells that are reconstituted with 

EGFP-TRIM27 compared to HEK293 FlpIn TRIM27 KO cells both in full media (FM) or when 

starved with HBSS (2 hrs) (SM) for 4h.  
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TRIM32, but not its muscular dystrophy-associated mutant,
positively regulates and is targeted to autophagic degradation
by p62/SQSTM1
Katrine Stange Overå1, Juncal Garcia-Garcia1, Zambarlal Bhujabal1, Ashish Jain1,*, Aud Øvervatn1,
Kenneth Bowitz Larsen1, Vojo Deretic2,3, Terje Johansen1, Trond Lamark1 and Eva Sjøttem1,‡

ABSTRACT
The tripartite motif (TRIM) proteins constitute a family of ubiquitin
E3 ligases involved in a multitude of cellular processes, including
protein homeostasis and autophagy. TRIM32 is characterized by
six protein–protein interaction domains termed NHL, various point
mutations in which are associated with limb-girdle-muscular
dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an
autophagy substrate. Lysosomal degradation of TRIM32 was
dependent on ATG7 and blocked by knockout of the five autophagy
receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known
as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation
by selective autophagy. p62 directed TRIM32 to lysosomal
degradation, while TRIM32 mono-ubiquitylated p62 on lysine
residues involved in regulation of p62 activity. Loss of TRIM32
impaired p62 sequestration, while reintroduction of TRIM32 facilitated
p62 dot formation and its autophagic degradation. A TRIM32LGMD2H

disease mutant was unable to undergo autophagic degradation and
to mono-ubiquitylate p62, and its reintroduction into the TRIM32-
knockout cells did not affect p62 dot formation. In light of the important
roles of autophagy and p62 in muscle cell proteostasis, our results
point towards impaired TRIM32-mediated regulation of p62 activity as
a pathological mechanisms in LGMD2H.

KEY WORDS: TRIM32, p62/SQSTM1, LGMD2H, Autophagy, BBS11,
Ubiquitylation

INTRODUCTION
Protein quality control is crucial for cellular health, especially in
tissues containing long-lived cells like the muscles and nervous
system. Dysfunctional quality control leads to protein aggregation
and development of diseases with increasing prevalence related to age
(Dikic and Elazar, 2018). The two most important biological
machineries controlling protein degradation are autophagy and the
ubiquitin-proteasome system (UPS), where protein ubiquitylation
mediated by E3 ubiquitin ligases provide substrate specificity. Based

on their structural properties, E3 ubiquitin ligases are classified as
RING, HECT or RBR ligases (Morreale and Walden, 2016). TRIM
family proteins belong to the RING E3s, which constitute the most-
abundant family of ubiquitin ligases (Hatakeyama, 2017). TRIMs are
characterized by the highly conserved RING finger–B-box–coiled-
coil domains at their N-termini, generally constituting their E3 ligase
and oligomerization activity. Human TRIM family proteins comprise
82members that are classified into 12 different subfamilies according
to the domain structure of their C-terminal region (Fig. 1A). They
have important functions in development, differentiation, immune
responses and carcinogenesis (reviewed in Hatakeyama, 2017).
Furthermore, certain TRIM proteins act as regulators of autophagy
activity (Pizon et al., 2013; Tomar et al., 2012) and as autophagy
receptors (Chauhan et al., 2016; Kimura et al., 2015, 2016; Mandell
et al., 2016, 2014). TRIM32 is characterized by six repeats of NHL
(NCL-1, HT2A and LIN-41) motifs in its C-terminus, which are
thought to mediate protein–protein interactions (Slack and Ruvkun,
1998). TRIM32 is expressed throughout the body, but with high
expression levels in the brain and heart (Frosk et al., 2002). The
biological roles of TRIM32 are multi-faceted, impacting muscle
physiology, cancer and immunity. This is reflected in the many
substrates reported to be targeted by its E3 ligase activity, such as the
muscular relevant proteins actin, α-actinin, desmin, tropomysin and
dysbindin, the cell cycle regulators c-Myc, MYCN and p53, and the
innate immunity adaptor STING (also known as TMEM173)
(reviewed in Lazzari and Meroni, 2016). The finding that mutations
in the NHL domains of TRIM32 can lead to the hereditary muscular
disease limb-girdle muscular dystrophy 2H (LGMD2H), identified
TRIM32 as an important player in muscular physiology (Frosk et al.,
2002).Whether the pathogenic effect of LGMD2H is due to a role for
TRIM32 in muscle atrophy (Cohen et al., 2012) or more in muscle
homeostasis and regrowth after atrophy (Kudryashova et al., 2012,
2005; Nicklas et al., 2012; Servián-Morilla et al., 2019) is not well
understood. However, it has been shown that the LGMD2Hmutations
lead to impaired self-oligomerization and auto-ubiquitylation, and
reduced TRIM32 expression level (Albor et al., 2006; Kudryashova
et al., 2011; Locke et al., 2009; Servián-Morilla et al., 2019).
Moreover, recent work analyzing muscle biopsies and primary
myoblasts from LGMD2H patients, described reduced proliferation
and differentiation capacity, diminished satellite cell pool, and
enhanced senescence and autophagy activity (Servián-Morilla et al.,
2019). In addition, another very recent publication reported that
TRIM32 is important for induction of autophagy in atrophic muscle
cells, while the LGMD2Hmutant was unable to activate autophagy in
these cells (Di Rienzo et al., 2019). All mutations associated with
LGMD2H are either deletions or point mutations located in the
NHL domains, while a point mutation in the B-box of TRIM32 is
associated with a completely unrelated disease, multisystemic disorderReceived 15 July 2019; Accepted 28 October 2019
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Bardet–Biedl syndrome 11 (BBS11) (Chiang et al., 2006). The
pathogenic mechanism for the disease is not understood.
Autophagy is a cellular renovation system that uses lysosome-

mediated pathways to degrade and recycle almost any type of cell
content (Mizushima and Komatsu, 2011). Autophagy is described to
act both as a non-selective bulk degradation pathway, and as a
selective elimination of components such as aberrant protein
aggregates, RNA bodies, lipid droplets, unwanted organelles and
invading pathogens in a process termed selective autophagy (reviewed
in Rogov et al., 2014). Selective autophagy provides quality control of
cellular components, degrading damaged and harmful material during
normal cellular conditions. When cells are stressed by hypoxia,
ischemia, starvation or infection, selective autophagy is stimulated and
specifically targets excess or toxic structures (Johansen and Lamark,
2011; Rogov et al., 2014). This allows the cell to adapt to the
unfavorable conditions. Autophagy receptors are instrumental in the
process. They bind specifically to the cargo and to ATG8 family
proteins (such as LC3B, also known as MAP1LC3B) at the forming
autophagosome, directing the cargo for degradation in the lysosome.
The first selective autophagy receptor to be identified was p62, also
known as sequestosome-1 (SQSTM1) (Bjørkøy et al., 2005).
Ubiquitin labeling is one of the signals for cargo degradation via
selective types of autophagy. Ubiquitylated protein aggregates
containing autophagy receptors are evident in a range of human
diseases. p62 contains a C-terminal ubiquitin-binding domain (UBA),
a LC3-interacting region (LIR) and an N-terminal Phox and Bem1
(PB1) domain with an oligomerization property (Pankiv et al., 2007).
The oligomerization activity of p62 is important for sequestering its
cargo and for scaffolding phagophore membrane development
(Bjørkøy et al., 2005; Itakura and Mizushima, 2011), described as a

p62-mediated phase separation process dependent on ubiquitin (Sun
et al., 2018; Zaffagnini et al., 2018). Recent studies have revealed that
the autophagy activity of p62 itself is regulated by ubiquitylation
(Heath et al., 2016; Jongsma et al., 2016; Lee et al., 2017; Pan et al.,
2016; Peng et al., 2017). The UBA domain of unmodified p62 has a
strong tendency to form an intermolecular dimer that spatially
occludes ubiquitin binding (Isogai et al., 2011; Long et al., 2010).
Ubiquitylation of several residues both inside and outside the UBA
domain is reported to enhance the ubiquitin-binding activity and
autophagy activity of p62 (Lee et al., 2017; Peng et al., 2017).
Interestingly, several studies implicate p62 as an important player of
protein homeostasis in muscle cells (Arndt et al., 2010; Lee et al.,
2018; Rodriguez-Muela et al., 2018). Furthermore, proper regulation
of autophagy is fundamental for muscle homeostasis, and
dysregulation of autophagy has a pathogenic role in several forms
of muscle diseases (Jiao and Demontis, 2017).

By employing a fluorescence-based double-tag screen of 22
TRIM proteins representing each of the TRIM subfamilies, we
identified TRIM32 as a potential autophagy cargo protein.
Interaction analysis in vitro and in cells revealed direct interaction
and colocalization of TRIM32 and p62, while autophagy assays
showed that p62 was able to mediate autophagic degradation of
TRIM32. Conversely, ubiquitylation assays and proteomic analysis
identified p62 as a TRIM32 substrate. TRIM32 mediated mono-
ubiquitylation of p62 at residues previously shown to be important
for the ubiquitin-binding activity of p62. By establishment of
TRIM32-knockout (KO) and reconstituted cells, we show that
TRIM32 facilitates p62 sequestration and autophagic degradation.
Introduction of the LGMD2H disease mutation in TRIM32 inhibited
its autophagic degradation, and also its ability to regulate p62

Fig. 1. TRIM proteins from various subclasses are degraded in the lysosome. (A) Subclasses and domain organization of the 22 TRIM proteins
analyzed in the double-tag screen. The ability of each mCherry–EYFP–TRIM protein to form RedOnly structures is indicated by ND (no RedOnly structures
detected),+(<10 RedOnly structures in cells with fluorescent puncta), ++ (many RedOnly structures in cells with fluorescent puncta). R, Ring finger B1/B2: Bbox1/
Bbox2; CC, Coiled coil. (B) Confocal images of mCherry–EYFP-tagged TRIM proteins representing each of the categories ND, + and ++. HeLa cells were
transfected with mCherry–EYFP-tagged TRIM22, TRIM31 or TRIM32 1 day before fixation and imaged using a Zeiss780 confocal microscope and the Zen
software. Blue, DAPI staining. Scale bars: 10 µm.
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activity. In contrast, introduction of the BBS11 mutation in TRIM32
strongly facilitated p62 sequestration and degradation. Our results
demonstrate a dual role for TRIM32 in autophagy, acting both as a
substrate and as a positive regulator of p62. Importantly, the
inactivity of the TRIM32 LGMD2H mutant points toward
dysfunctional TRIM32 mediated regulation of p62 as a
pathological mechanism in LGMD2H.

RESULTS
TRIM proteins from various subclasses are degraded in
the lysosome
Recent studies have shown that certainTRIMproteins are implicated in
the autophagy process, as regulators and as receptors in selective
autophagy (reviewed in Di Rienzo et al., 2019; Hatakeyama, 2017;
Kimura et al., 2017, 2016; van Gent et al., 2018). Furthermore, a few
TRIM proteins seemingly are degraded by autophagy themselves,
including TRIM50 (Fusco et al., 2012), TRIM30 (Choi et al., 2015)
and TRIM5α (Mandell et al., 2016). Here, we employed the double-
fluorescence-tag strategy (Pankiv et al., 2007) to identify TRIM
proteins that could be degraded by autophagy, and hence that are
potential as autophagy regulators and receptors. A total of 22 different
TRIM proteins, representing 11 subclasses of the TRIM family, were
fused to the double fluorescence tag mCherry–EYFP and expressed in
HeLa cells. Since EYFP is unstable in acidic milieus with a pH below
6, while mCherry is stable, double-tagged proteins will only have red
florescence when they are sequestered in the lysosome (denoted
‘RedOnly’ structures), which has a pH of ∼4.7. At 24 h after
transfection, the cells were exposed to normal medium or were starved
for 2 h in Hanks’ balanced salt solution (HBSS), before fixation and
confocal microscopy imaging. To verify that the RedOnly structures
represented lysosomal compartments, we analyzed, in parallel, cells
treated with the lysosomal inhibitor Bafilomycin A1 (BafA1) for 4 h
before fixation. BafA1 impairs the acidification of the lysosomes, and
hence the quenching of EYFP localized in the lysosome. As presented
in Fig. 1, 13 of the 22 TRIM proteins tested formed some RedOnly
structures. Nine of these have previously been linked to autophagy,
namely, TRIM20 and TRIM21 (Kimura et al., 2015), TRIM50 (Fusco
et al., 2012), TRIM23 (Sparrer et al., 2017), TRIM13 (Tomar et al.,
2012), TRIM31 (Ra et al., 2016), TRIM5α (Mandell et al., 2014),
TRIM32 (Di Rienzo et al., 2019; Yang et al., 2017) and TRIM16
(Chauhan et al., 2016;Kimura et al., 2017). Theobservation that not all
TRIM proteins form RedOnly structures may indicate that this is not a
general trait of the conserved N-terminal RING finger–B-box–coiled-
coil domains, or that degradation of certain TRIMs by autophagy is
dependent on factors not present in HeLa cells. Furthermore, RedOnly
structures were detected among TRIMs from many different
subclasses (Fig. 1A), suggesting that it is not dependent on any
specific domains in the C-terminal. However, four of the six TRIM
proteins that gave a substantial amount of RedOnly structures both in
normal medium and upon starvation conditions contain a SPRY
domain in their very C-terminal end. Three of these, TRIM5α,
TRIM16 and TRIM20, have been previously identified as autophagy
receptors (Chauhan et al., 2016; Kimura et al., 2017; Mandell et al.,
2014) and hence confirm our screening strategy. mCherry–EYFP–
TRIM32 displayed a strong and reproducible formation of RedOnly
dots in both normal and starved conditions (Fig. 1B). Interestingly,
TRIM32 is reported to interactwith the autophagy receptorTAX1BP1,
and thereby mediate autophagic degradation of the TLR3/4 adaptor
protein TRIF (Yang et al., 2017) and a recent report suggests
autophagic degradation of the TRIM32 LGMD2H disease mutants
(Servián-Morilla et al., 2019). However, whether TRIM32 is a
substrate for autophagic degradation is unresolved.

TRIM32 interacts and colocalizes with the autophagy
marker proteins LC3B and p62
The double tag assay clearly indicated lysosomal degradation of
exogenous TRIM32. In order to determine whether endogenous
TRIM32 is degraded via lysosomal pathways or via the proteasome,
the lysosomal inhibitor BafA1 and the proteasomal inhibitor MG132
were applied on HEK293 cells grown in full medium or starved in
HBSS for 4 h. The protein levels of endogenous TRIM32 during the
various conditions was analyzed by western blotting and the band
intensities quantitated and correlated to the level of PCNA (Fig. 2A).
Treatment with the lysosomal inhibitor and the proteasomal inhibitor
increased the amount of TRIM32 to a similar degree under starvation
conditions, while the proteasomal pathway seems to be most
important under normal cellular conditions. The increase of the
LC3B II band (representing lipidated LC3B) upon BafA1 treatment,
and the phosphorylation status of the mTOR-regulated translation
initiation factor 4E (p4E-BP1) verified that the cells responded as
expected to the lysosomal inhibitor and to the starvation medium.
These data suggest that TRIM32 is degraded via the proteasomal and
lysosomal pathways to a similar extent during starvation conditions,
while the proteasomal pathway is dominant under normal conditions.

Several TRIM proteins are reported to interact with core
components of the autophagy machinery, and to function as
autophagy receptors and regulators of autophagosome formation
(Kimura et al., 2015, 2016; Mandell et al., 2016, 2014). We applied
in vitroGST-pulldown assays to determine whether TRIM32 has the
ability to bind directly to the ATG8 family proteins. Fig. 2B shows
that TRIM32 binds to LC3A (MAP1LC3A), LC3C (MAP1LC3C),
GABARAP and GABARAP-L1, and weakly to LC3B and
GABARAP-L2. However, we were not able to find any candidate
LC3-interacting regions (LIRs) in TRIM32 with bioinformatic tools,
and GST-pulldown assays with the N-terminal part of TRIM32
(the RING finger–B-box–coiled-coil domains) and the C-terminal
part (NHL-domains) both displayed binding to GST–LC3B and
GST–GABARAP (Fig. S1A). Further attempts to identify LIRs in
TRIM32 did not give any consistent results (data not shown). We
next tried to identify whether the interaction between TRIM32 and
the ATG8 protein family was mediated by the newly characterized
ubiquitin-interacting motif (UIM) docking site (Marshall et al.,
2019). However, we were not able to identify a UIM motif in
TRIM32. This suggests that TRIM32 can interact directly with
ATG8 proteins in a non-LIR- and non-UIM-dependent way,
suggesting that other or more complex interfaces are involved.

To further investigate the lysosomal degradation of the TRIM32
mutants, Flp-In T-Rex 293 cell lines with tetracycline-inducible
expression of EGFP–TRIM32P130S and EGFP–TRIM32D487N were
established (Fig. S1B). In accordance with previous reports,
TRIM32 is normally a cytoplasmic protein forming distinct
perinuclear bodies or aggregates (Fig. 2C; Fig. S1B) (Locke et al.,
2009). Furthermore, western blots of the expressed EGFP fusion
proteins revealed a slower-migrating form of EGFP–TRIM32 and
the BBS11 mutant EGFP–TRIM32P130S, but not the LMGD2H
mutant EGFP–TRIM32D487N (Fig. S1B). Co-staining the FlpIn
EGFP–TRIM32 cells with antibodies against the autophagy marker
protein LC3B and the autophagy receptor protein p62 showed that
certain TRIM32 bodies colocalized with LC3B-positive p62
bodies (Fig. 2C). This indicates that a subpopulation of the
TRIM32 bodies represent autophagosomes. Such bodies were
observed both in full medium and in starvation conditions. To
further evaluate whether TRIM32 interacts with p62 in cells, the
DuoLink proximity ligation assay was employed to detect close
colocalization of EGFP–TRIM32 and endogenous p62 in the Flp-In
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EGFP–TRIM32 cell line. The DuoLink assay revealed close to 30
distinct spots per cell (Fig. 2D). Together, these data show that
TRIM32 is recruited to LC3B-positive p62 bodies, and is stabilized
by treating cells with the lysosomal inhibitor BafA1. This strongly
indicates that a subpopulation of TRIM32 proteins is degraded by
autophagy.

Seven various mutations in the NHL repeat region of TRIM32
are associated with the recessive muscular dystrophy disease
LGMD2H, with the TRIM32D487N mutation being the most
common (Fig. 2E) (Frosk et al., 2002), while a point mutation in
the B-Box2, TRIM32P130S, leads to the pleiotropic disorder
BBS11 (Fig. 2E) (Chiang et al., 2006). We applied the in vitro

Fig. 2. See next page for legend.
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GST-pulldown assay to verify the direct interaction between p62
and wild-type TRIM32 and its two disease mutants. p62 expressed
in E.coli and immobilized on glutathione beads was added to
in-vitro-translated Myc–TRIM32WT, Myc–TRIM32P130S or Myc–
TRIM32D487N. The amount of bound proteins was analyzed by
SDS-PAGE (Fig. 2E). Wild-type TRIM32 and both its disease
mutants bound weakly to p62. The interaction between TRIM32
and p62 in cells was further confirmed by GST-pulldown assays
using cell extracts from HEK293 cell lines expressing EGFP-tagged
wild-type TRIM32 and its disease mutants (Fig. 2F), and by
co-immunoprecipitation of endogenous p62 (Fig. S1D).
The PB1 domain and the UBA domain of p62 is important for p62

oligomerization and for binding to ubiquitylated proteins (Bjørkøy
et al., 2005; Lee et al., 2017). In order to identify whether the PB1
domain or the UBA domain of p62 is implicated in the interaction
with TRIM32, we performed GST-pulldown assays using p62 PB1
and UBA deletion constructs fused to GST and cell extracts from
cells expressing exogenous EGFP–TRIM32. We found that deletion
of the UBA domain or the PB1 domain did not affect the interaction
with TRIM32, indicating that the interaction is not mediated by
ubiquitin (Fig. 2G). These results show that TRIM32 binds directly
to the autophagy receptor p62, and this interaction is not impaired by
the LGMD2H and BBS11 disease mutations.

TRIM32 is targeted to autophagic degradation by p62
Next, we evaluated whether the lysosomal degradation of TRIM32
is mediated by macroautophagy. For this purpose, we applied the
mCherry–EYFP–TRIM32 double-tag assay in the autophagy-
deficient ATG7-KO cells (Mejlvang et al., 2018). ATG7 is an
ubiquitin E1-like activating enzyme that is essential for assembly
and function of the ubiquitin-like conjugation systems (Nakatogawa
et al., 2009). mCherry–EYFP–TRIM32 did not form any RedOnly
dots in the ATG7-KO cells (Fig. 3A,C). Furthermore, degradation of
endogenous TRIM32 was not stabilized by BafA1 treatment in
ATG7-KO cells (Fig. 3B). This clearly indicates that lysosomal
degradation of TRIM32 is mediated by the macroautophagy
pathway. Next question was whether TRIM32 is degraded by
selective autophagy. To this end, the degradation of TRIM32 was
assayed in a cell line lacking the five autophagy receptors p62,
NBR1, NDP52, TAX1BP1 and OPTN (denoted the ‘pentaKO’)
(Lazarou et al., 2015). Only a few cells with mCherry–EYFP–
TRIM32 RedOnly dots were observed in pentaKO cells grown
under normal and starvation conditions (Fig. 3A,C). This suggests
that TRIM32 is dependent on the autophagy receptors for efficient
degradation by autophagy, pointing towards degradation by
selective autophagy.

The interaction and colocalization of TRIM32with p62 prompted
us to analyze the degradation of TRIM32 in pentaKO cells
reconstituted with EGFP–p62. mCherry–EYFP–TRIM32 formed
several RedOnly dots both under normal and starvation conditions
in this cell line, indicating that p62 is able to mediate autophagic
degradation of TRIM32 (Fig. 3C,D). To evaluate if p62 is essential
for autophagic degradation of TRIM32, we employed the double tag
assay in a HEK293 FlpIn cell line knocked out for p62. The T-REx
HEK293 p62−/− cell line was established by CRISPR/Cas9 as
described in theMaterials andMethods section (Fig. S1C). Ablation
of p62 strongly reduced the number of RedOnly dots in the
mCherry–EYFP–TRIM32-transfected cells compared to wild-type
cells (Fig. 3C,D), but did not completely abolish lysosomal
degradation of mCherry–EYFP–TRIM32. This indicates that p62
can mediate autophagic degradation of TRIM32. However, other
autophagy receptors beside p62 may also be involved.

The LGMD2H disease mutant of TRIM32 is not degraded by
autophagy
To investigate whether the TRIM32P130S and TRIM32D487N disease
mutants were degraded by autophagy, they were fused to the
mCherry–EYFP double tag and transfected into HeLa cells.
Interestingly, we found that mCherry–EYFP–TRIM32P130S

displayed a strong ability to form RedOnly dots, especially under
starvation conditions (Fig. 4A). TRIM32D487N on the other hand,
wasmainly diffuse except from in some cells where it formed several
round dots distributed throughout the cell. However, none of these
dots were found to be RedOnly (Fig. 4A). Similar results were
obtained when we transfected the double-tag constructs into the
myoblast cell line C2C12 (Fig. S2A). Around 75% of the C2C12
cells expressingmCherry–EYFP–TRIM32WT andmCherry–EYFP–
TRIM32P130S contained RedOnly dots, compared to only 12% of the
C2C12 cells expressing mCherry–EYFP–TRIM32D487N. Moreover,
double-tag analyses in the C2C12 cells expressing the mutants
TRIM32R394H and TRIM32V591M, both of which arewithin theNHL
repeats region and are associated with LGMD2H, revealed that they
did not localize in acidic compartments (Fig. S2A). These results
clearly indicate that TRIM32 undergoes autophagic degradation in
muscle cells, and that this degradation is strongly inhibited by
mutations associated with LGMD2H.

Fig. 2. TRIM32 interacts and colocalizes with the autophagy marker
proteins LC3B and p62. (A) HEK293 FlpIn cells were treated with BafA1
(200 nM) or MG132 (10 µM) for 4 h in HBSS (starvation medium, SM) or full
medium (FM), before cell extracts were harvested in 1× SDS. 10 µg of the
various cell extracts were separated on SDS-PAGE gels and blotted against
the indicated antibodies. The bar graphs on top panel represent the mean±
s.e.m. relative band intensities estimated by ImageJ from three independent
experiments (n=3). *P<0.05, ***P<0.0005 (Student’s t-test). (B) GST-pulldown
assay using 35S-labeled Myc–TRIM32 and recombinant GST and GST–ATG8
proteins. The amount of Myc–TRIM32 bound to the various ATG8 proteins was
detected by autoradiography. The assay was repeated with similar results.
(C) HEK293 FlpIn EGFP-TRIM32 cells in full medium or starved in HBSS
(2 h) were fixed and stained with antibodies for LC3B and p62. Images were
obtained using a ZEISS780 confocal laser scanning microscope, and the
colocalization monitored using the ZEN software. Scale bars: 10 µm (main
images), 2 µm (magnifications). Intensity profiles along the indicated line are
shown to the right. (D) Representative images of the Flp-In EGFP-TRIM32
cells analyzed by the proximation ligation assay DuoLink using antibodies
against GFP and p62. The graph represents the mean±s.d. of colocalization
dots using the Volocity software, from three independent experiments. Each
experiment includes z-stack images of n=100 cells per condition. Scale bars:
10 µm. (E) The top panel shows a schematic of the TRIM32 domain
organization with the localization of the disease point mutations P130S and
D487N indicated. R, Ring finger; B2, Bbox2; CC, Coiled coil. The lower panels
show GST-pulldown assays using 35S-labeled Myc–TRIM32WT, Myc–
TRIM32P130S or Myc–TRIM32D487N and recombinant GST and GST–p62
immobilized on glutathione–Sepharose beads. Quantifications of the binding
of wild-type and mutant constructs to GST–p62 are presented as percentage
binding relative to input. The bars represent the mean±s.d. band intensities
compared to input as quantified using ImageJ of three independent
experiments. *P=0.025; n.s., not significant (Student’s t-test).
(F) GST-pulldown assay using cell extracts from FlpIn EGFP-TRIM32WT,
EGFP-TRIM32P130S or EGFP-TRIM32D487N cells and GST–p62 immobilized
on glutathione–Sepharose beads. EGFP–TRIM32 was detected using an
anti-GFP antibody. GST proteins were visualized by Ponceau staining.
Quantifications of the band intensities of the bound proteins compared to 5%
input are indicated below the blot. (G) GST-pulldown assays using cell extracts
from the FlpIn EGFP–TRIM32 cells and recombinant GST, GST-p62, or
various GST-p62 deletion constructs immobilized on glutathione–Sepharose
beads. Bound EGFP–TRIM32 was detected using anti-GFP antibody, while
the GST proteins were visualized by Ponceau staining. Quantifications of the
band intensities of the bound proteins compared to 5% input using ImageJ are
indicated below the blot.
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Fig. 3. TRIM32 is targeted to autophagic degradation by p62. (A) Normal HeLa cells and cells that were genetically knocked out for ATG7 or the five autophagy
receptors p62, NBR1, NDP52, OPTN or TAX1BP1 (pentaKO) as indicated, were transfected with mCherry–EYFP–TRIM32. At 1 day post transfection, half
of the cells were treated with HBSS for 2 h (starvation medium, SM) and half were maintained in full medium (FM), before all cells were fixed, stained with DAPI
and imaged using a Zeiss780 confocal microscope. Scale bars: 10 µm. (B)Western blot analysis of endogenous TRIM32 in wild-type HeLa cells and HeLa ATG7-
KO cells in normal medium (FM) in HBSS (SM), and treated or not with BafA1 (Baf) and MG132 (MG) for 4 h. The graph represents the mean±s.d. TRIM32 band
intensities from three independent experiments quantitated using ImageJ. P-values are obtained using Student’s t-test. n.s.=not significant (P-value>0.05).
PCNA represents the loading control, while p62 and LC3B are controls of autophagy flux. (C) The graphs represent the amount of mCherry-EYFP-TRIM32
transfected cells that contain RedOnly dots compared to the amount of cells that display mCherry-EYFP-TRIM32 dots (representative images shown in A and D)
under normal and starvation (HBSS 2 h) conditions. Each graph represents themean±s.e.m. of at least three independent experiments (n=25–50 cells). *P<0.05,
**P<0.005, ***P<0.0005, n.s., not significant (Student’s t-test). (D) PentaKO cells reconstituted with GFP–p62 (green dots) and HEK293 FlpIn cells genetically
knocked out for p62 as indicated to the right, were transfected and treated as described in A. Scale bars: 10 µm.
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Fig. 4. The LGMD2H disease mutant of TRIM32 is not degraded by autophagy. (A) HeLa cells were transfected with mCherry–EYFP–TRIM32WT,
mCherry–EYFP–TRIM32P130S or mCherry–EYFP–TRIM32D487N as indicated, kept in normal medium (full medium, FM) or starved with HBSS for 2 h (starvation
medium, SM) at 1 day post transfection and imaged bya Zeiss780 confocal microscope. The graphs to the right displaymanual quantification of RedOnly dots and
yellow dots in n=30 cells, and are representative of three independent experiments. Scale bars: 10 µm. (B) GFP fluorescence intensities (arbitrary units) of
EGFP–TRIM32WT, EGFP–TRIM32P130S and EGFP–TRIM32D487N asmeasured by flow cytometry 24 h after promoter shut off in full medium (FM) or HBSS for 6 h
(SM), supplemented with BafA1 2 µm (Baf) or MG132 20 µM (MG) as indicated. Bars show average mean±s.d. GFP intensity from three independent
experiments (n=10,000 cells). P-values are as indicated; n.s., not significant (Student’s t-test). (C) Representative images of the Flp-In EGFP-TRIM32 cells
analyzed by the proximation ligation assay DuoLink using antibodies against GFPand p62. The graph represents the mean±s.d. relative number of colocalization
dots with from three independent experiments. Each experiment includes z-stack images of n≈100 cells per condition, and was quantified using the Volocity
software. P-values are as indicated; n.s., not significant (Student’s t-test). Scale bars: 10 µm.
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Next, a flow-based reporter cell system (Larsen et al., 2010) was
applied on the HEK293 FlpIn EGFP–TRIM32 cell lines, to monitor
degradation of EGFP–TRIM32 and the two disease mutants under
normal conditions and starvation. Expression of EGFP–TRIM32 or
the disease mutants was induced by treatment with tetracycline for
24 h. Thereafter, the expression was shut off by tetracycline wash-
out. The cells were starved in HBSS for 6, 12 and 24 h, and the
degradation measured by flow cytometry using the mean GFP
intensity in the cell population as a read out. BafA1 was applied to
determine degradation by lysosomal pathways, while MG132 was
included to measure proteasomal degradation. In full medium,
EGFP–TRIM32 is stabilized to a similar extent by BafA1 and
MG132, implicating both autophagy and the proteasome system in
TRIM32 degradation under normal conditions (Fig. 4B). This is in
line with the data presented in Fig. 2A, showing that endogenous
TRIM32 is degraded both by autophagy and by the proteasome.
This shows that EGFP–TRIM32 inducibly expressed in FlpIn cell
lines is degraded similarly to the endogenous protein. Upon 6 h
starvation, EGFP–TRIM32 expression is reduced by 85% compared
to normal conditions. The degradation is inhibited both by BafA1
and MG132, pointing towards involvement of both autophagy and
the proteasomal system also under starved conditions. Similar
results were obtained when the starvation period was extended to 12
and 24 h (data not shown). However, the expression level of EGFP–
TRIM32 did not decline further, indicating that the expression of
TRIM32 is stabilized after 6 h starvation. Applying the flow reporter
assay on the BBS11 disease mutant EGFP–TRIM32P130S indicated
a higher rate of degradation compared to the wild-type protein, with
a 90% reduction in the expression after 6 h of starvation (Fig. 4B).
The LGMD2H disease mutant EGFP–TRIM32D487N, however, was
not stabilized by BafA1 treatment under either normal or starvation
conditions (Fig. 4B). The expression level of EGFP–TRIM32D487N

upon starvation is reduced by 50%, which indicates a dramatically
lower turnover than the wild-type protein and the BBS11 mutant.
Hence, as indicated by the double-tag assay in Fig. 4A, EGFP–
TRIM32D487N is not an autophagic substrate, suggesting that it
shows dependence on its oligomerization and/or auto-mono-
ubiquitylation abilities to be recognized as an autophagic
substrate. This is in contrast to a recent report showing BafA1-
mediated stabilization of a TRIM32 LGMD2H mutant in primary
myoblasts isolated from a patient (Servián-Morilla et al., 2019).
This discrepancy can be explained by a TRIM32V591M mutation in
this patient, while we have analyzed the TRIM32D487N mutation.
Since we found that TRIM32 colocalizes with p62 in punctate

structures, and that reintroduction of p62 into the pentaKO cells was
sufficient to direct TRIM32 to autophagic degradation, the next
question was whether EGFP–TRIM32D487N had lost its ability to
interact with endogenous p62. To this end, the Duolink proximation
ligation assay was performed on the FlpIn EGFP–TRIM32
wild-type and mutant cell lines (Fig. 4C). Importantly, EGFP–
TRIM32D487N colocalized with p62 to a similar extent as
EGFP–TRIM32WT. Hence, interaction with p62 is not sufficient
to target TRIM32 to autophagic degradation. Interestingly, the
BBS11 disease mutant interacted strongly with p62, forming around
twice as many dots in the Duolink assay as wild-type TRIM32
(Fig. 4C). This suggests that the P130S mutation in TRIM32 may
modulate the colocalization of TRIM32 and p62 in cells.

Wild-type TRIM32, but not the LGMD2H disease mutant,
mono-ubiquitylates p62
In order to investigate the role of TRIM32 in selective autophagy,
we established HEK293 FlpIn TRIM32-KO cell lines by CRISPR/

Cas9. Knockout of TRIM32 expression in the cell lines was verified
by western blotting (Fig. S2B) and genomic sequencing (Fig. S2C).
Measuring the proliferation curve of the TRIM32-KO cell lines
revealed that they had impaired proliferation compared to the
mother HEK293 FlpIn cell line (Fig. 2D). This is in line with the
reported roles of TRIM32 in tumorigenesis (Liu et al., 2014; Wang
et al., 2018; Yin et al., 2018; Zhao et al., 2018), and thus validates
the TRIM32-KO cell lines further.

Recent research connects the upregulation of TRIM proteins in
tumor cells to enhanced protein quality control and antioxidant
defense (Chen et al., 2017). p62 plays important roles both in
protein quality control and in antioxidant defense via NRF2 (also
known as NFE2L2) (Jain et al., 2010; Pankiv et al., 2007), and
ubiquitylation is an important signaling event in these processes.
Moreover, reports describing ubiquitin modifications of p62 as a
modulator of its activity are emerging (Heath et al., 2016; Jongsma
et al., 2016; Lee et al., 2017; Lin et al., 2017; Pan et al., 2016). This
prompted us to investigate whether TRIM32 has the ability to
ubiquitylate p62. Myc–p62 was immunoprecipitated from a
HEK293 p62-KO cell line co-expressing Myc–p62 and EGFP–
TRIM32. Western blotting revealed a slow-migrating band both for
Myc–p62 and EGFP–TRIM32 (Fig. 5A), indicative of mono-
ubiquitylation of both proteins. Whether these slower migrating
bands indeed represented ubiquitin modification was verified by
coexpressing the de-ubiquitylase USP2 (Fig. 5B). Expressing USP2
removed the slow-migrating band of both p62 and TRIM32.
Furthermore, such slower-migrating bands were not detected
when Myc–p62 was precipitated from HEK293 cells expressing
EGFP–TRIM32C44S (catalytic dead) or EGFP–TRIM32D487N (an
LGMD2H disease mutation). This indicates that TRIM32 mediates
mono-ubiquitylation of p62, and that this is impaired by mutations
in the NHL domains involved in the LGMD2H disease. Mutation in
the BBox2 (P130S, a BBS11 disease mutation), however, did not
affect mono-ubiquitylation of p62. Both K63- and K48-linked
ubiquitylation were responsible for the p62 modification to a similar
extent (Fig. 5C). Both wild-type and mutated forms of EGFP–
TRIM32 co-precipitated with Myc–p62, which is in line with the
GST-pulldown (Fig. 2) and Duolink assay (Fig. 4) results. Hence,
the disease mutations do not impair the p62–TRIM32 interaction
in cells. Similar ubiquitylation of p62 was obtained when
co-transfecting Myc–p62 and wild-type or P130S EGFP–TRIM32
constructs in the HEK293 FlpIn TRIM32-KO cells (Fig. 5C). Myc–
p62 also formed a high-molecular-mass band in the SDS gel when
co-transfected with the active forms of TRIM32 (Fig. 5D),
suggesting that TRIM32-mediated ubiquitylation of p62 leads to
the formation of stable p62 oligomers. To identify whether impaired
ubiquitylation of p62 is a general trait of LGMD2H disease
mutations, the recently described V591M mutant of TRIM32
(Di Rienzo et al., 2019) was co-transfected with Myc–p62 in the
HEK293 FlpIn TRIM32-KO cells (Fig. 5E). Introduction of the
V591M mutation strongly impaired the p62 ubiquitylation, clearly
pointing towards aberrant ubiquitylation of p62 as a general
phenotype of LGMD2H. Western blotting of the Myc–p62
precipitates using an antibody against mono-and poly-ubiquitin
(FK2) verified that p62 ubiquitylation was strongly reduced upon
introduction of the LGMD2H disease mutations D487N and
V591M (Fig. 5E).

Next, we undertook mass spectrometry (MS) analysis to identify
which lysine residues in p62 were modified by TRIM32.
MS analysis of Myc–p62 immunoprecipitated from HEK293
TRIM32-KO cells co-transfected with Myc–p62 and EGFP–
TRIM32, or the TRIM32 disease mutants EGFP–TRIM32P130S
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and EGFP–TRIM32D487N, revealed that co-expression of wild-type
TRIM32 and the BBS11 disease mutant lead to ubiquitylation of
p62 at two lysine residues, K157 and K295 (Fig. 5F,G). No lysine
residue was found to be ubiquitylated when the LGMD2H disease
mutant was co-expressed with p62. To verify ubiquitylation on
these two residues, we introduced K157R or K295R single
and double mutations into p62. However, these mutations did not
abolish TRIM32 mediated mono-ubiquitylation (Fig. S3A,B).

Mono-ubiquitylation of endogenous p62 under ubiquitin stress is
reported to occur on p62K157 and p62K295, together with p62K313 and
p62K420 (Peng et al., 2017); in that study, mono-ubiquitylation of
p62 at those residues was proposed to inhibit formation of inactive
p62 dimers with ‘closed’ UBA domains, and thereby promote p62–
polyubiquitin interactions and autophagy activity. Hence, next we
established a p62K157R/K295R/K420R triple mutant and subjected it to
TRIM32, but still TRIM32 was able to mediate ubiquitylation of

Fig. 5. TRIM32 wild-type, but not the LGMD2H disease mutant, mono-ubiquitylates p62. (A) Western blot of two independent experiments from lysates of
HEK293 p62-KO cells co-expressingMyc–p62 with EGFP–TRIM32. Myc–p62was immunoprecipitated (IP) using aMyc-trap and precipitated p62 detected using
an anti-Myc antibody. The EGFP–TRIM proteins were detected using an anti-GFP antibody. * indicates mono-ubiquitylated Myc–p62 and EGFP–TRIM32.
(B) Myc–p62 was co-expressed with EGFP–TRIM32 and HA–ubiquitin, and with mCherry–USP2, where indicated, in the HEK293 p62-KO cell line. Myc–p62 was
immunoprecipitated using a Myc-trap and precipitated p62 detected using an anti-Myc antibody. The EGFP–TRIM proteins were detected using an anti-GFP
antibody. * indicates mono-ubiquitylated Myc–p62 and EGFP–TRIM32. (C) Myc–p62 was co-transfected with HA–Ub-K48 or HA–Ub-K63 in the HEK293
EGFP–TRIM32WT, EGFP–TRIM32P130S and EGFP–TRIM32D487N cell lines and expression induced by tetracyclin (1 µM) for 24 h. Myc–p62 was
immunoprecipitated using a Myc-trap and precipitated p62 detected using an anti-Myc antibody. The EGFP–TRIM proteins were detected using an anti-GFP
antibody. * indicates mono-ubiquitylated p62 and mono-ubiquitylated EGFP–TRIM32. (D) Myc–p62 was co-transfected with EGFP–TRIM32WT, EGFP–
TRIM32P130S or EGFP–TRIM32D487N in the HEK293 TRIM32-KO (#1) cell line. Myc-p62 was immunoprecipitated using a Myc-trap and precipitated p62
detected using an anti-Myc antibody. The EGFP–TRIM proteins were detected using an anti-GFP antibody. * indicates mono-ubiquitylated p62 and a high-
molecular-mass form of p62. (E) Myc–p62 was co-transfected with EGFP–TRIM32WT, EGFP–TRIM32P130S, EGFP–TRIM32D487N, EGFP–TRIM32V591M, or
EGFP–TRIM32 and mCherry–USP2 in the HEK293 TRIM32-KO (#1) cell line. Myc–p62 was immunoprecipitated using a Myc-trap and precipitated p62
detected using an anti-Myc antibody. Ubiquitin modification of p62 was detected using an antibody recognizing mono- and poly-ubiquitin (FK2) (lower panels).
The EGFP–TRIM proteins were detected using an anti-GFP antibody. * indicates mono-ubiquitylated p62 and a high-molecular-mass p62. In all blots, EGFP
indicates a control plasmid expressing only EGFP. (F) Schematic of p62 domain organization with location of the two lysine residues mapped to be ubiquitylated
by TRIM32 indicated above. ZZ, Zinc finger; NLS, Nuclear localization signal; EIR, E2-interacting region; LIR, LC3-interacting region; KIR, Keap1-interacting
region; UBA, Ubiquitin-binding domain. (G) Sequence of the p62 peptides found to be ubiquitylated by TRIM32 by MS analyses.
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p62 (Fig. S3B). Neither did introduction of the single K165R or
K313R mutations, or the four mutations p62K157R/K295R/K313R/K420R

impair ubiquitylation (Fig. S3B). These results indicate that
TRIM32-mediated ubiquitylation of p62 may happen at several
lysine residues. Interestingly, introducing the D69A mutation in
p62, which impairs its ability to undergo oligomerization (Lamark
et al., 2003), abolished the TRIM32-mediated mono-ubiquitylation
(Fig. S3A,B). This indicates that TRIM32 recognize and ubiquitylate
oligomerized p62, but not monomeric p62 molecules.

TRIM32 enhances the formation and turnover of p62 dots
To assess the impact of TRIM32 on the early autophagy events, we
assayedWIPI-dot formation in the TRIM32-KO cell lines compared
to wild-type cells in normal and starvation conditions. The
TRIM32-KO cells did not display any strong effect on the
formation of WIPI dots upon starvation (Fig. S3C). However,
confocal analysis of p62 in the TRIM32-KO cells showed that the
ability of p62 to form dots was significantly reduced (Fig. 6A,B).
This suggests that TRIM32-mediated mono-ubiquitylation of p62
stimulates the formation of p62 dots and its autophagic activity, in
line with previous studies of the roles of p62 ubiquitylation
(Conway and Kirkin, 2017; Lee et al., 2017; Peng et al., 2017). In
order to verify this further, we reconstituted the TRIM32-KO cell
lines with stably expressing Myc–TRIM32WT, Myc–TRIM32P130S

and Myc–TRIM32D487N, and monitored the formation of p62 dots
under normal conditions and upon inhibition of autophagy activity
by BafA1 treatment (Fig. 6C–F). Conclusively, we found that
reintroduction of TRIM32 in the TRIM32-KO cell line strongly
facilitated the formation of p62 dots. The number of p62 dots
was enhanced upon BafA1 treatment, indicating that TRIM32
augments the autophagic degradation of p62. Importantly,
reconstitution with the TRIM32P130S mutant facilitated p62 dot
formation nearly as efficiently as TRIM32WT, while reconstitution
with the TRIM32D487N mutant had no effect on p62 dot formation
(Fig. 6F). This clearly indicates that the E3 ligase activity of
TRIM32 is important for its regulatory role on p62. Interestingly, in
the TRIM32-KO cells reconstituted with Myc–TRIM32, most cells
displayed a diffuse cytoplasmic localization of TRIM32 –with only
a few cells containing TRIM32 dots. This was in contrast to the
HEK293 FlpIn cells stably overexpressing EGFP–TRIM32. Here,
wild-type TRIM32 and the BBS11 disease mutant were found to
form cytoplasmic dots in most cells. The more diffuse localization
pattern in the reconstituted TRIM32-KO cells suggests that high
expression levels of TRIM32 leads to the formation of cytoplasmic
dots. However, the dot formation seems to be dependent on
TRIM32 ubiquitylation, since the catalytic dead TRIM32 and the
LGMD2H disease mutation were mainly diffuse. Importantly,
BafA1 treatment of the reconstituted TRIM32-KO cells resulted in
formation of several cytoplasmic dots in the cells expressing
wild-type Myc–TRIM32 and the BBS11 disease mutant. Myc–
TRIM32WT and Myc–TRIM32P130S colocalized with p62 and
LC3B in these dots (Fig. 6E). In addition, Myc–TRIM32D497N

formed large cytoplasmic dots in some cells. However, these did not
colocalize with p62 and LC3B (Fig. 6E). To conclude, our data
show that TRIM32 can act as a positive regulator of p62
sequestration and degradation. Concomitantly, TRIM32 itself is a
p62 cargo, and thus will be directed to degradation by an active p62.
This creates a negative-feedback loop in the TRIM32–p62
interaction pathway (Fig. 6G). Hence, TRIM32-mediated
ubiquitylation of p62 seems to regulate its autophagic activity,
and thereby cellular proteostasis. One mechanism for the
LGMD2H disease can thus be explained by diminished p62

mono-ubiquitylation and lower p62-mediated autophagy activity,
resulting in impaired proteostasis.

DISCUSSION
Owing to constant mechanical stress, striated muscle proteins are
particularly prone to wear and tear, and require several protein
quality-control mechanisms to coordinate protein turnover and
removal of damaged proteins. Among these, ubiquitin signaling
and the autophagy-lysosomal pathways are important players
(reviewed in Dong and Cui, 2018). Here, we identified the E3
ubiquitin ligase TRIM32 as a substrate for the autophagy receptor
p62, which targets TRIM32 for degradation by selective autophagy.
Interestingly, TRIM32 was identified as one of the proteins rapidly
degraded upon starvation together with the autophagy receptor
proteins and certain other proteins (Mejlvang et al., 2018). However,
the disease mutant of TRIM32 associated with LGMD2H was not
degraded by autophagy. Furthermore, we found TRIM32 to bind
directly to p62 and mediate mono-ubiquitylation on several lysine
residues, among them p62K157 and p62K295. In addition, the TRIM32
LGMD2H disease mutant D487N bound directly to p62. However,
TRIM32D487N did not mediate ubiquitylation of p62. Mono-
ubiquitylation of p62 is proposed to enhance its autophagy receptor
potential, which is critical for maintaining proteostasis during cellular
stress (Peng et al., 2017). We found the formation of p62 bodies to be
reduced in TRIM32-KO cells, while it was strongly facilitated when
TRIM32WT or TRIM32P130S was reintroduced into the knockout
cells. Importantly, the LGMD2H disease mutation was not able to
rescue p62 dot formation in the TRIM32-KO cells. Together, this
implicates TRIM32 as a positive regulator of p62-mediated selective
autophagy, and suggests that one mechanism for development of
LGMD2H in TRIM32D487N muscle cells is due to reduced p62
autophagy activity leading to dysregulated cellular proteostasis.

Several TRIM proteins have been shown to modulate the
selective autophagy process (Chauhan et al., 2016; Fusco et al.,
2018; Jena et al., 2018; Kimura et al., 2015, 2016; Mandell et al.,
2014), and during the completion of this paper Di Rienzo and
co-workers (2019) identified TRIM32 as a regulator of ULK1
activity in atrophic muscle cells. Similarly to ULK1, p62 activity
during selective autophagy is regulated by ubiquitylation. TRIM21
and NEDD4 are reported to mediate ubiquitylation of p62K7 leading
to suppressed protein sequestration and induced inclusion body
autophagy (Lin et al., 2017; Pan et al., 2016). The E3 ligase
RNF166 ubiquitylates p62 at K91 and K189, facilitating the role of
p62 in xenophagy (Heath et al., 2016), while RNF26 ubiquitylates
p62 within the UBA domain facilitating TOLLIP interaction and
vesicular cargo sorting (Jongsma et al., 2016). Keap1–Cullin3
poly-ubiquitylates p62K420 leading to diminished p62 sequestration
and degradation activity (Lee et al., 2017). The E2 conjugating
enzymes UBE2D2 and UBE2D3 are found to bind directly to p62
via the E2-interacting region (EIR) (Fig. 5E), and mediate mono-
ubiquitylation of p62 at several lysine residues, among them K157,
K295 and K420, upon ubiquitin stress signaling (Peng et al., 2017).
This mono-ubiquitylation is proposed to relieve the inhibition of the
UBA domain in the p62 UBA dimer, leading to enhanced binding
and tethering of ubiquitylated cargoes to ATG8 proteins conjugated
to the phagophore (Conway and Kirkin, 2017). Here, we mapped a
direct interaction between TRIM32 and p62 that was independent of
the PB1 domain and the UBA domain, similar to the p62 interaction
with Keap1–Cullin3. However, Keap1–Cullin3 poly-ubiquitylated
p62 at K420 in the UBA domain, while we found TRIM32
to mediate mono-ubiquitylation of p62 at K157 and K295. The
Keap1–Cullin3-mediated ubiquitylation of p62 increases p62
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inclusion body formation and subsequent degradation, which is
proposed to be a mechanism for Keap1 to release the antagonistic
role of p62 and thereby dampen the NRF2-mediated response to
oxidative stress (Lee et al., 2017). On the other hand, mono-
ubiquitylation of p62 at several residues, including K157, K295 and

K420, enhances p62 body formation and p62-mediated autophagy
activity. This is proposed to be critical for homeostasis during
various cellular stresses.

We show that introduction of the LGMD2H disease mutation in
TRIM32 makes it unable to mono-ubiquitylate p62. The D487N

Fig. 6. See next page for legend.
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mutation located in the evolutionarily conserved NHL region of
TRIM32 does not inhibit binding to p62. Previously, the LGMD2H
mutant is reported to have impaired oligomerization and E3 ligase
activity and to display a more diffuse cytoplasmic localization than
TRIM32 WT and TRIM32P130S that are enriched in puncta/
aggregates in most cells (Locke et al., 2009). Also, the LGMD2H
disease mutants seem to be less expressed in muscle tissues from
affected patients (Servián-Morilla et al., 2019). Apart from that, the
molecular mechanisms of TRIM32 mutants causing the LGMD2H
and BBS11 diseases are far from being understood. It is not known
if the self-mono-ubiquitylation is important for activation of
TRIM32. Our results suggest that this may be the case, and also
that this mono-ubiquitylation is important for degradation of
TRIM32 via selective autophagy. Several reports connect
TRIM32 ubiquitylation activity to substrates whose deregulation
might influence the onset and progression of muscular dystrophy,
including actin, tropomyosin, troponins, α-actinin, dysbindin and
c-Myc (reviewed in Tocchini and Ciosk, 2015). Interestingly, p62 is
strongly implicated in chaperone-assisted selective autophagy
(CASA), which is essential for muscle maintenance (Arndt et al.,
2010). Dysregulated CASA resulted in Z-disk disintegration and
progressive muscle weakness. Here, we found that the TRIM32
mutation implicated in muscle dystrophy is unable to ubiquitylate
p62 at lysine residues that are linked to p62-mediated substrate
sequestration and autophagy activity. Furthermore, TRIM32-KO
cells displayed a reduced capacity for p62 sequestration upon
cellular stress induced by starvation. Hence, LGMD2Hmutations in
TRIM32 lead to impaired substrate ubiquitylation and impaired
degradation via p62-mediated selective autophagy, both important
players in cellular proteostasis. These findings contribute to the
understanding of the pathological mechanisms of LMGD2H.

The TRIM32-mediated ubiquitylation site p62K157 is located in
the zinc-finger (ZZ) domain (Fig. 5E), and this lysine residue is
evolutionarily conserved from zebrafish to human. Recently the
small non-coding RNA molecule Vault RNA1-1 was found to bind
to the ZZ domain of p62 and thereby modulate its dimerization and
autophagy activity (Horos et al., 2019). Hence, post-translational
modifications in the ZZ domain could impact such interactions and
thereby p62-mediated autophagy activity. The p62K295 site lies at
the border of the EIR and of a previously predicted PEST sequence.
Thus, it can be speculated that this modification can regulate
interactions with ubiquitin E2 enzymes, but also have an impact on
p62 stability. The latter can thereby explain the reduced expression
level of p62 detected in muscle tissue isolated from LGMD2H
patients (Servián-Morilla et al., 2019).

In addition to being a positive regulator of p62 activity, this study
revealed that TRIM32 is a p62 substrate in selective autophagy
(Fig. 6G). TRIM32 first facilitates p62-mediated autophagy activity.
This, after a certain period, leads to a reduced TRIM32 expression
caused by p62-mediated degradation. Diminished TRIM32
expression will in turn lead to declined p62 activity, creating a
negative-feedback loop. This negative-feedback mechanismmay be
a potential target for therapeutic intervention.

MATERIALS AND METHODS
Antibodies and reagents
The following primary antibodies were used: rabbit polyclonal antibody
for TRIM32 (Proteintech, 10326-1-AP; 1:2000); rabbit polyclonal anti-GFP
(Abcam, ab290; 1:5000); mouse monoclonal Myc-Tag (9B11) [Cell
Signaling Technologies, #2276; 1:2000 for western blotting (WB), 1:200
for immunofluorescence (IF)]; rabbit polyclonal anti-LC3B (Sigma, L7543;
1:1000 for WB, 1:500 for IF); rabbit polyclonal antibody for phospho-
4E-BP1 (Cell Signaling Technologies, #9451; 1:1000); rabbit polyclonal
anti-actin (Sigma, A2066; 1:1000); mouse monoclonal anti-p62 lck ligand
(BD Biosciences, 610833; 1:2000); guinea pig polyclonal anti-p62 (Progen,
GP62-C; 1:2000); mouse monoclonal anti-ubiquitin (FK2) (BIOMOL,
PW8810, 1:1000) and mouse monoclonal anti-PCNA (DAKO, M0879;
1:1000). The following secondary antibodies were used: horseradish-
peroxidase (HRP)-conjugated goat anti-rabbit-IgG (BD Biosciences,
554021; 1:2000); HRP-conjugated goat anti-mouse-Ig (BD Biosciences,
554002; 1:2000); and HRP-conjugated anti-biotin antibody (Cell Signaling
Technologies, #7075; 1:2000). The following fluorescent secondary
antibodies were used: Alexa Fluor® 488-conjugated goat anti-mouse-IgG
(Life Technologies, A-11029; 1:1000); Alexa Fluor® 488-conjugated goat
anti-rabbit-IgG (Life Technologies, A-11008; 1:1000); Alexa Fluor® 555-
conjugated goat anti-rabbit-IgG (Life Technologies, A-11008; 1:5000);
Alexa Fluor® 555-conjugated goat anti-guinea-pig-IgG (Life Technologies,
A-21435; 1:1000); Alexa Fluor® 555-conjugated goat anti-mouse-IgG (Life
Technologies, A-21424; 1:1000); Alexa Fluor® 647-conjugated goat anti-
guinea pig IgG (Life Technologies, A-21450; 1:1000). The reagents used
were: BafA1 (Sigma, B1793); MG132 (Sigma, C2759); tetracycline
(Sigma, #87128); doxycycline (Sigma, D9891); and Hanks balanced salt
solution (Sigma, H8264).

Cell culture and transfections
HeLa (ATCC, CCL2), HEK293 (ATCC, CRL-1573) and Hek293 T-Rex
(Thermo Fisher Scientific, R714-07) cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Sigma, D6046) with 10% fetal bovine
serum and 1% streptomycin-penicillin (Sigma, P4333). Hek FlpIn T-Rex
cells with integrated TRIM32, TRIM32 C44S, TRIM32 P130S or TRIM32
D487N were grown in the same medium with additional selection
marker antibiotics, 200 µg/ml hygromycin B (Invitrogen, #10687010) and
7.5 µg/ml blasticidin (Gibco, A1113903). Sub-confluent cells were
transfected using TransIT-LT1 (Mirus, MIR2300) or Metafectene Pro
(Biontex, T040) following the manufacturer’s instructions. All cell lines
were routinely tested for mycoplasma contamination.

Fig. 6. TRIM32 enhances the formation and turnover of p62 dots.
(A) Immunostaining of endogenous p62 in HEK293 FlpIn cells and the two
TRIM32 KO clones under normal (FM) and starvation (SM) conditions
(HBSS 2 h). Scale bars: 10 µm. (B) Quantification of p62 dots in the two
TRIM32 KO clones and the HEK293 FlpIn wild type cell line under normal (FM)
and starvation (SM) (HBSS 2 h) conditions using the Volocity software
(PerkinElmer). Each graph represents the mean±s.d. of the relative number of
p62 dots per cell (normalized to the value for FM in wild-type cells). The results
are from three independent experiments each including ∼100 cells per
condition. P-values were obtained using Student’s t-test. (C) Immunostaining
of endogenous p62 in the TRIM32 KO (#1) cell line and TRIM32 KO (#1) cells
reconstituted with stable expression of Myc–TRIM32WT, Myc–TRIM32P130S or
Myc–TRIM32D487N as indicated. The cells are grown in FM with BafA1 (2 µM,
7 h). Scale bars: 10 µm. (D) Western blot showing the expression of
Myc–TRIM32, Myc–TRIM32P130S and Myc–TRIM32D487N in the reconstituted
HEK293 TRIM32-KO cell lines, grown in FM. * indicates mono-ubiquitylated
TRIM32. (E) Upper panels show immunostaining of Myc–TRIM32WT, p62 and
LC3B in the reconstituted HEK293 TRIM32-KO cells grown in normal medium
supplemented with BafA1 (2 µM) for 7 h. The circles exemplify colocalization of
all three proteins in BafA1 dots. The lower panels show merged images of
similar immunostainings in the TRIM32-KO cell line reconstituted with Myc–
TRIM32P130S or Myc–TRIM32D487N. Images were obtained using a ZEISS780
confocal laser scanning microscope, and the colocalization line plots to the
right obtained using the ZEN software. Scale bars: 10 µm. (F) Quantification of
p62 dots in the cell lines represented in C, under normal (FM) and normal plus
BafA1 (7 h) conditions, and starvation (SM) (HBSS 4 h) and starvation plus
BafA1 conditions. The graphs represent the mean±s.d. of the relative number
of p62 dots per cell (normalized to the value for FM in TRIM32-KO cells)
quantified using Volocity software (PerkinElmer). The results are from three
independent experiments each including n>100 cells per condition. *P<0.05,
**P<0.005, ***P<0.0005; n.s., not significant (Student’s t-test). (G) A model
depicting the roles of TRIM32 both as a p62 activator and a p62 substrate
in selective autophagy. ZZ, zinc finger; UBA, ubiquitin-binding domain;
Ub, Ubiquitin.
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Construction of plasmids
All plasmids used in this study are listed in Table S1. Plasmids were made by
conventional restriction enzyme-based cloning or by use of the Gateway
recombination system (Thermo Fisher Scientific). Gateway LR reactions
were performed as described in the instruction manual. Point mutation was
carried out using the site-directed-mutagenesis kit from Stratagene. PCR
and sequencing oligonucleotides (Table S2) were ordered from Thermo
Fisher Scientific. All plasmids were verified by restriction enzyme digestion
and DNA sequencing (BigDye, Applied Biosystems, 4337455). All TRIM
proteins were cloned into the pDest mCherry-EYFP (Bhujabal et al., 2017)
double tag vector.

Recombinant protein production and GST-pulldown analysis
GST or GST-tagged proteins were expressed in Escherichia coli strain
SoluBL21 (Genlantis, #C700200). Protein expression was induced by
treating overnight bacterial culture with 50 µg/ml isopropyl β-D-1-
thiogalactopyranoside (IPTG). GST or GST fusion proteins were purified
and immobilized on glutathione–Sepharose 4 Fast Flow beads (GE Healtcare,
17-5132-01). Myc-tagged proteins were in vitro translated using the TNT T7
reticulocyte Lysate system (Promega, #14610) in the presence of
[35S]methionine. In vitro translated protein or total cell lysate was pre-
incubatedwith 10 µl glutathione–Sepharose beads and 100 µl ofNETNbuffer
(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA and 0.5% Nonidet
P-40) with cOmplete Mini EDTA-free protease inhibitor mixture tablets
(Roche Applied Science, 11836170001) for 1 h at 4°C to reduce unspecific
binding. Pre-incubated lysate was then incubated with the immobilized GST
fusion protein for 2 h at 4°C. Beads were washed five times with NETN
buffer, boiled with 2× SDS gel loading buffer (125 mMTris-HCl pH 7.5, 4%
SDS, 0.04%Bromophenol Blue, 8% sucrose and 100 mMdithiolthreitol) and
subjected to SDS-PAGE. Gels were stained with Coomassie Brilliant Blue
R-250 Dye (Thermo Fisher Scientific, #20278) to visualize GST fusion
proteins and then vacuum dried. Signals from 35S-labeled proteins were
detected with a Fujifilm bioimaging analyzer BAS-5000 (Fujifilm).

Immunoblotting and immunoprecipitation
Cells were seeded in 6-cm plates and treated as indicated. Cells were lysed in
1× SDS buffer (50 mM Tris-HCl pH 7.4, 2% SDS and 10% glycerol)
supplementedwith 200 mMdithiothreitol (DTT, Sigma, #D0632) and heated
at 100°C for 10 min. Protein concentration was measured using the Pierce
BCA protein assay kit (Thermo Fisher Scientific, #23227). Equal amounts of
protein were resolved by SDS-PAGE and transferred to nitrocellulose
membrane (Sigma, GE10600003). The membrane was stained with Ponceau
S (Sigma, P3504), blocked with 5% non-fat dry milk in 1% TBS-T [0.2 M
Tris-HCl pH 8, 1.5 M NaCl and 0.05% Tween 20 (Sigma, P9416)] and then
incubated with indicated primary antibodies for 24 h. The membrane was
washed three times for 10 min each with TBS-T followed by incubation with
secondary antibody for 1 h. The membrane was washed three times for
10 min and analyzed by enhanced chemiluminescence using the ImageQuant
LAS 4000 (GE Lifescience). For immunoprecipitation, cells were lysed in
modified radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris
pH 7.5; 150 mM NaCl; 1 mM EDTA; 1% NP40; 0.25% Triton-X-100)
supplemented with cOmplete Mini EDTA-free protease inhibitor cocktail
tablets (Roche, #11836170001) and phosphatase inhibitor cocktail (Merck
Millipore, #524625) by shaking at 4°C for 30 min. The cell lysate was
centrifuged at 10,000 g for 10 min. The resulting supernatant was incubated
with antibody to endogenous protein for endogenous immunoprecipitation or
with Myc-TRAP (Chromotek, yta-20) for cells stably expressing, or
transiently transfected, with Myc-tagged proteins. They were washed five
times in RIPA buffer before boiling in 2× SDS gel loading buffer. This was
followed by protein identification by immunoblotting as previously
described but on Immobilon-FL PVDF membrane (Millipore, IPFL00010),
blocked with Odyssey® blocking buffer (PBS) (LI-COR Biosciences,
#927-40000) and scanned on Odyssey CLx Imager (LI-COR).

Mass spectrometry
Cells were directly lysed in lysis buffer (Myc-TRAP®_A; Chromotek)
supplemented with cOmplete Mini EDTA-free protease inhibitor (Roche),

5 mM NAM (N-Arachidonylmaleimide; Sigma) and 10 mM NEM
(N-ethylmaleimide; Sigma). Immunoprecipitation of Myc-tagged proteins
was performed according to the supplier’s protocol (Chromotek). The
samples were fractionated by SDS-PAGE followed by SimplyBlue™
SafeStain (Thermo Fisher Scientific) staining. The lanes representing
proteins of molecular masses within 55–80 kDawere cut from the gel. In-gel
trypsin digestion was performed before analysis by high-performance liquid
chromatography–tandem mass spectrometry (HPLC-MS/MS). Gel pieces
were subjected to in-gel reduction, alkylation and tryptic digestion using
6 ng μl−1 trypsin (V511A; Promega). OMIX C18 tips (Varian) were used
for sample cleanup and concentration. Peptide mixtures containing 0.1%
formic acid were loaded onto a Thermo Fisher Scientific EASY-nLC1200
system. Samples were injected to a trap column (Acclaim PepMap
75 μm×2 cm, C18, 3 μm, 100 Å; Thermo Fisher Scientific) for desalting
before elution to the separation column (EASY-Spray column, C18, 2 μm,
100 Å, 50 μm, 50 cm; Thermo Fisher Scientific). Peptides were fractionated
using a 4–40% gradient of increasing amounts of 80% acetonitrile in water
over 60 min at a flow rate of 300 nl/min. The mobile phases contained 0.1%
formic acid. Separated peptides were analyzed using an Orbitrap Fusion
Lumos mass spectrometer. The mass spectrometer was operated in a data-
dependent mode with the precursor scan in the orbitrap over the range m/z
350–1500. The most-intense ions were selected for electron-transfer
dissociation (ETD) or collision-induced dissociation (CID) fragmentation
using 3 s between each master scan. Dynamic exclusion was set to 30 s. The
Orbitrap AGC target was set to 4E5, and the MS2 scans in the Ion Trap were
set to 1E4 with maximum injection times 50 and 100 ms, respectively.
Precursor ions with charge 3+ in them/z range 350–650 and 4+ or 5+ ions in
the m/z range 350–900 were fragmented with ETD. All ions with 6+ or
higher were also fragmented using ETD. The rest of the precursor ions were
fragmented using CID. Protein identification and post-translational
modification mapping was performed using the Proteome Discoverer 2.2
software (Thermo Fisher Scientific).

Immunostaining and fluorescence confocal microscopy
Subconfluent cells grown in 24-well plates on coverslips (VWR, #631-
0150) coated with fibronectin (Sigma, F1141) and treated as indicated. They
were fixed in 4% paraformaldehyde for 20 min to allow visualization of
acidic structures after the staining procedure. The cells were then
permeabilized with methanol at room temperature for 5 min, blocked in
5% goat serum in PBS or 5% BSA in PBS and incubated at room
temperature with a specific primary antibody followed by Alexa Fluor 488-,
555- or 647-conjugated secondary antibody and DAPI. Confocal images
were obtained using a 63× NA 1.4 oil immersion objective on an LSM780/
LSM800 system. Quantification of p62 dots were performed using the
Volocity software (Perkin Elmer) on 10 images per condition, in three
independent experiments. Each image contained 10–20 cells, and was
generated using the z-stack function in the ZEN software (Zeiss). The line-
profile tool in the ZEN software was exploited to plot colocalization of
EGFP–TRIM32 and immunostained p62 and LC3B. Quantification of cells
containing red only dots in the double-tagged screen was done manually by
two independent researchers in three independent experiments.

Generation of TRIM32- and p62-KO HEK293 FlpIn cell lines
To generate a knockout cell line for TRIM32, the CRISPR/Cas9 system was
exploited. The knockout was generated as described by Ran et al. (2013).
Guide RNAs (gRNA) as described in Table S2were annealed and ligated into
the vector pSpCas9(BB)-2A-GFP (PX458) (Addgene, #48138) using BbsI
restriction sites. Subconfluent Hek293 FlpIn T-Rex cells were transfected
with the targeting plasmids using Metafectene Pro (Biontex, T020). EGFP-
positive cells were sorted by FACS and plated into 96-well plates at 3 days
post transfection. Single colonies were expanded up to 12-well plates and
knockout validated by immunoblotting. Confirmed knockout clones were
further screened by genomic sequencing. The targeted genomic regions were
amplified by PCR using the primers TRIM32PCRfwand TRIM32PCRrv, or
p62 PCRfwand p62PCRrv (Table S2) and the resulting PCR products ligated
into the pGEM-T-EASy vector (Promega, A3600). Sequencing were
conducted for at least three clones for each PCR product.

13

RESEARCH ARTICLE Journal of Cell Science (2019) 132, jcs236596. doi:10.1242/jcs.236596

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

http://jcs.biologists.org/lookup/doi/10.1242/jcs.236596.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.236596.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.236596.supplemental
https://www.addgene.org/48138/
http://jcs.biologists.org/lookup/doi/10.1242/jcs.236596.supplemental


Reconstitution of TRIM32-KO cell lines
The TRIM32-KO cell lines were transduced using the lentiviral-based
GATEWAY destination vector pCDH-EF1a-Myc-IRES conferring
puromycine resistance. This vector enables constitutive expression of
Myc–TRIM32WT, Myc–TRIM320P130S or Myc–TRIM32D487N under
control of an EF1α promoter.

Generation of stable cell lines
Stable cell lines were generated using the FlpIn T-Rex system (Thermo
Fisher Scientific, R71407). cDNAs were PCR amplified and ligated into the
inducible FlpIn expression vector, pDest-EGFP-Flp-In (Alemu et al., 2012).
FlpIn T-Rex cells were then co-transfected with the cDNA-containing FlpIn
expression vector and the FlpIn recombinase vector pOG44 in the ratio of
1:3. Cells were selected by treatment with 200 µg/ml hygromycin B
(Invitrogen, #10687010) and 7.5 µg ml−1 blasticidin (Gibco, A1113903),
and protein expression verified by induction with tetracycline (Sigma,
#87128) or doxycycline (Sigma, D9891).

Flow cytometry
Hek293 FlpIn TRIM32WT, P130S and D487N cells in 12-well plates were
trypsinized (Sigma, T4049) and passed through cell strainer caps (BD
Biosciences, 352235) to obtain single-cell suspensions. Cells were analyzed
on a FACSAria cell sorter running FACSDiva software version 5.0 (BD
Biosciences) using the blue laser for excitation of GFP. GFP fluorescence
was collected through a 530/30 nm bandpass filter in the E detector. Data
was collected from a minimum of 10,000 singlet events per tube, and the
median GFP-A value was used for quantification. All bar graphs show the
mean±s.d. of the GFP-A median values from three independent
experiments.

Proximity ligation assay
Subconfluent HEK293 FlpIn EGFP-TRIM32 cells were fixed with 4%
paraformaldehyde. Colocalization of EGFP–TRIM32 and endogenous p62
was detected by performing a Duolink® PLA (Sigma; DUO92101)
according to the manufacturer’s protocol. The primary antibodies rabbit
polyclonal anti-GFP (1:2000, Abcam, ab290) and mouse monoclonal anti-
p62 lck ligand (1:200, BD Biosciences, 610833) were incubated at 4°C
overnight. The signals were detected using a 63× NA 1.4 oil immersion
objective on an LSM780 system. Quantification of dots was performed
using the Volocity software (Perkin Elmer) on 10 images per condition, in
three independent experiments. Each image contained 10–20 cells, and was
generated using the z-stack function in the ZEN software (Zeiss).

Cell proliferation assay
Hek FlpIn TRIM32 KO Clone #1, KO Clone #2 and FlpIn T-Rex control
cells were seeded with four different concentrations (2000, 4000, 6000 and
8000 cells) in 100 μl DMEM (Sigma, D6046) on E-Plate L16 PET readers
(ACEA Biosciences Inc, #2801185). xCELLigence® Real-Time Cell
Analysis (RTCA) (ACEA Biosciences) were used to measure the cell
proliferation over a time of 96 h with recording at 1 h intervals.

Statistics
All experiments were repeated at least three times, unless otherwise
specified. Error bars represent the s.d. or s.e.m. as indicated in figure
legends, and two-sided unpaired, homoscedastic Student’s t-tests were
performed to assess significant differences between populations. Replicates
were not pooled for statistical analyses. *P<0.05, **P<0.005 and
***P<0.0005; n.s. denotes not signififcant (P>0.05). Sample sizes are
denoted in the figure legends.
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ABSTRACT 

Several members of the tripartite motif (TRIM) family proteins are identified as regulators of 

autophagy. They associate with autophagy factors and serve as platforms for recruitment of 

activated ULK1 and BECLIN1, promoting phagophore formation and expansion. TRIM32 acts 

both as regulator and cargo of the autophagy receptor p62/SQSTM1, and is identified as an 

activator of ULK1 in atrophic muscle cells. Mutations in the C-terminal NHL domains of 

TRIM32 is linked to Limb-Girdle-Muscular-Dystrophy 2H, while a mutation in its BBox causes 

Bardet-Biedl-syndrome type 11. The autophagy receptor NDP52 is important for recruiting 

ULK1 and the autophagic machinery to damaged mitochondria. Here we show that TRIM32 is 

a potential cargo and a regulator of NDP52. TRIM32 mediates ubiquitylation of NDP52. 

Reintroduction of TRIM32 in TRIM32 KO cells leads to ULK1 stabilisation and increased 

TBK1 autophosphorylation. Conversely, the LGMD2H mutated version of TRIM32 does not 

affect NDP52 and ULK1 expression, or facilitate TBK1 autophosphorylation.  Moreover, our 

data show that mitophagy is impaired in TRIM32 KO cells compared to normal cells and 

TRIM32 KO cells reconstituted with TRIM32. Collectively, this study identify TRIM32 as a 

potential regulator of NDP52, ULK1 and TBK1, facilitating selective degradation of 

mitochondria.   

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

INTRODUCTION 

Selective autophagy is a catabolic process that plays an important role in the maintenance of 

cellular homeostasis. It identifies and recycles unwanted or dysfunctional components, such as 

protein aggregates, damaged mitochondria, ferritin and intracellular pathogens (Rogov et al., 

2014). In this way, selective autophagy protects from diseases such as cancer, 

neurodegeneration, and uncontrolled infections (Levine and Kroemer, 2019). Recent studies 

have revealed that selective autophagy is induced by cargo receptors that bind to their substrates 

and orchestrate the autophagy machinery to initiate phagophore assembly (Vargas et al., 2019, 

Turco et al., 2019, Agudo-Canalejo et al., 2020, Fujioka et al., 2020). The most extensive 

studied cargo receptors are the family of sequestosome-like-receptors (SLRs); sequestosome-1 

(p62/SQSTM1), nuclear dot protein 52 kDa (NDP52); neighbor of BRCA1 gene 1 (NBR1); 

Optineurin and Tax1-binding protein 1 (Tax1BP1) (Johansen and Lamark, 2011, Rogov et al., 

2014). The SLRs seem to have at least partly overlapping functions, in which they recognize 

ubiquitylated cargo via their ubiquitin binding domains, oligomerize and interacts directly with 

the autophagy machinery via FIP200 and the ATG8s (Khaminets et al., 2016, Turco et al., 

2019).  

One of the main cargo receptors of damaged mitochondria is NDP52, which is recruited 

to depolarized mitochondria by the ubiquitin ligase PINK1 (Lazarou et al., 2015). Tethering of 

NDP52 to the mitochondria leads to positioning of the autophagy initiation complex including 

FIP200 and ULK1 on the mitochondria (Vargas et al., 2019).  The process is facilitated by 

TBK1, and leads to activation of ULK1 and induction of mitophagy. A similar scenario takes 

place upon cellular infection of cytosol-invading bacteria (Ravenhill et al., 2019). Here, NDP52 

recognizes Galectin-8 on the damaged bacterial-containing vacuole. This leads to recruitment 

of ULK1 and TBK1 via the ULK1 complex subunit FIP200 and the TBK1 adaptor SINTBAD, 

which promotes phagophore formation and xenophagy 

Several members of the tripartite motif (TRIM) protein family of E3 ligases function as 

autophagy receptors, acting in precision autophagy (Kimura et al., 2015). They recruit the 

autophagy initiation complexes ULK1 and PI3Kc1 to their substrates to facilitate autophagic 

degradation (Mandell et al., 2014). TRIM proteins are characterized  by a RING-domain which 

constitutes the E3 ligase activity, one or two BBox domains, a coiled-coil domain and a variable 

C-terminal region (Reymond et al., 2001). The C-terminal domain of TRIM32 encompasses six 

NHL-repeats which are involved in dimerization and cargo recognition (Koliopoulos et al., 

2016). Genetic mutations in the NHL domains cause the muscle disorder Limb Girdle Muscular 
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Dystrophy 2H (LGMD2H), and is associated with impaired auto-oligomerization and self-

ubiquitylation, and reduced TRIM32 expression level (Zhao et al., 2019, Locke et al., 2009). A 

missense-mutation in the BBox domain results in the disease Bardet-Biedl syndrome 11 

(BBS11) which has a pleiotropic phenotype (Chiang et al., 2006). A recent study demonstrates 

that TRIM32 activates ULK1 and thereby facilitates autophagy in muscle cells upon atrophy 

induction (Di Rienzo et al., 2019). TRIM32 was linked to ULK1 via the autophagy cofactor 

AMBRA1. Importantly, the LGMD2H disease mutant of TRIM32 was unable to associate with 

ULK1 and induce autophagy. In another study, we show that TRIM32 mediates ubiquitylation 

of p62/SQSTM1, leading to enhanced p62/SQSTM1 sequestration and degradation (Overa et 

al., 2019). 

Here we show that TRIM32 downregulates the protein levels of all SLR proteins, 

without affecting their expression at the RNA level. Conversely, autophagic degradation of 

TRIM32 is dependent on the SLRs, and beside p62/SQSTM1 both NDP52 and NBR1 are able 

to direct TRIM32 to degradation in the lysosome. We reveal that TRIM32 interacts directly 

with and ubiquitylates NDP52. Furthermore, mitophagy induced by co-overexpression of 

FKBP8 and LC3A is significantly reduced in TRIM32 KO cells compared to normal HEK293 

cells. Reintroduction of myc-TRIM32 into the KO cells restored the mitophagy activity.  In line 

with this, TRIM32 enhances ULK1 stability and TBK1 autophosphorylation, both shown to 

facilitate NDP52 mediated mitophagy. 

 

MATERIALS AND METHODS 

Antibodies and reagents 

The following primary antibodies were used: rabbit polyclonal antibody for TRIM32 

(Proteintech, 10326-1-AP); rabbit polyclonal anti-GFP (Abcam, ab290); mouse monoclonal 

Myc-Tag (9B11) (Cell Signalling, #2276); rabbit polyclonal anti-LC3B (Sigma, L7543); rabbit 

polyclonal anti-Actin (Sigma, A2066); mouse monoclonal anti-p62 lck ligand (BD Biosciences, 

610833); rabbit polyclonal anti-CALCOCO2/NDP52 (Sigma, HPA023195); rabbit polyclonal 

anti-TAX1BP1 (Sigma, HPA024432); mouse monoclonal mono- and polyubiquitinylated 

conjugates FK2 (Enzo, BML-PW8810); rabbit monoclonal anti-ULK1 (D8H5) (Cell 

Signalling, #8054);  rabbit polyclonal anti-GABARAP (MBL, PM037); rabbit monoclonal anti-

TBK1 (Millipore, 108A429); rabbit monoclonal anti-Phsopho-TBK1/NAK (Cell Signalling, 

#5483); mouse monoclonal anti-NBR1 (Santa Cruz, sc-130380). The following secondary 
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antibodies were used: Horseradish-peroxidase (HRP)-conjugated goat anti-rabbit IgG (BD 

Biosciences, 554021); HRP-conjugated goat anti-mouse Ig (BD Biosciences, 554002); HRP-

conjugated anti-Biotin antibody (Cell Signalling, #7075); IRDye 800CW Goat anti-Rabbit IgG 

(Li-Cor, 925-32211); IRDye 680RD Goat anti-Mouse IgG (Li-Cor, 925-68070). The following 

fluorescent secondary antibodies were used: Alexa Fluor® 488-conjugated goat anti-mouse IgG 

(Life Technologies, A-11029); Alexa Fluor® 555-conjugated goat anti-rabbit IgG (Life 

Technologies, A-11008). The reagents used were Hanks Balanced salt solution (Sigma, 

H8264).  

Plasmids 

Plasmids used in this study are listed in Table 1.  

Table 1: Plasmids used in this study 

pDest Myc (Lamark et al., 2003) 

pDest Myc TRIM32 (Overå et al., 2019) 

pDest Myc TRIM32 D487N (Overå et al., 2019) 

pDest Myc TRIM32 P130S (Overå et al., 2019) 

pDest Myc NDP52 (Abudu et al., 2019) 

pDest mCherry-EYFP TRIM32 (Overå et al., 2019) 

pDest EGFP-C1 (Lamark et al., 2003) 

pDest EGFP TRIM32 (Overå et al., 2019) 

pDest EGFP TRIM32 D487N (Overå et al., 2019) 

pDest EGFP TRIM32 P130S (Overå et al., 2019) 

pDest EGFP ULK1 

pDest Myc FKBP8 

mCherry-EGFP-OMP25-TM 

pDest-3XFlag-LC3A 

(Alemu et al., 2012) 

(Bhujabal et al., 2017) 

(Wang et al., 2015) 

(Bhujabal et al., 2017) 

 

Cell culture and transfections 

HeLa (ATCC, CCL2), HEK293 (ATCC, CRL-1573), HEK293 FlpIn T-Rex (ThermoFisher, 

R714-07), HEK293 FlpIn TRIM32 KO (Overå et al., 2019); HEK293 FlpIn TRIM32 KO myc-

TRIM32WT (Overå et al., 2019) , HEK293 FlpIn TRIM32 KO myc-TRIM32P130S (Overå et al., 

2019), HEK293 FlpIn TRIM32 KO myc-TRIM32D487N (Overå et al., 2019), HeLa Penta KO 

(Lazarou et al., 2015), HeLa Penta KO EGFP-NDP52 and HeLa Penta KO EGFP-NBR1 cells 

were cultured in Dulbecco’s modified eagle’s medium (DMEM) (Sigma, D6046) with 10% 

fetal bovine serum and 1% streptomycin-penicillin (Sigma, P4333). Sub-confluent cells were 
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transfected using TransIT-LT1 (Mirus, MIR2300) or Metafectene Pro (Biontex, T040) 

following the manufacturer’s instructions.  

Recombinant protein production and GST pulldown analysis 

GST or GST-tagged proteins were expressed in Escherichia coli strain SoluBL21 (Genlantis, 

#C700200). Protein expression was induced by treating overnight bacterial culture with 

50µg/ml Isopropyl β-D-1-thiogalactopyranoside (IPTG). GST or GST fusion proteins were 

purified and immobilized on Glutathione-Sepharose 4 Fast Flow beads (GE Healtcare, 17-

5132-01). Myc-tagged proteins were in vitro translated using the TNT T7 reticulocyte Lysate 

system (Promega, #14610) in the presence of 35S-methionine. In vitro translated protein or total 

cell lysate was pre-incubated with 10µl glutathione sepharose beads and 100µl of NETN buffer 

(50mM Tris pH 8.0; 150mM NaCl; 1 mM EDTA; 0.5% Nonidet P-40) with cOmplete Mini 

EDTA-free protease inhibitor mixture tablets (1 tablet/10ml) (Roche Applied Science, 

11836170001) for 1hr at 4°C to reduce unspecific binding. Pre-incubated lysate was then 

incubated with the immobilized GST fusion protein for 2hrs at 4°C. Beads were washed five 

times with NETN buffer, boiled with 2xSDS gel loading buffer (125mM Tris pH 7.5; 4% SDS; 

0.04% bromphenol blue; 8% sucrose; 100mM dithiolthreitol) and subjected to SDS-PAGE. 

Gels were stained with Coomassie Brilliant Blue R-250 Dye (Thermofisher scientific, #20278) 

to visualize GST fusion proteins and then vacuum-dried. Signals from 35S-labelled proteins 

were detected by a Fujifilm bioimaging analyzer BAS-5000 (Fujifilm).  

Western Blotting 

Cells were seeded in 6 well dishes and treated as indicated. Cells were lysed in 1xSDS buffer 

(50mM Tris pH 7.4; 2% SDS; 10% Glycerol) supplemented with 200mM dithiothreitol (DTT, 

Sigma, #D0632) and heated at 100°C for 10 minutes. Protein concentration was measured using 

the Pierce BCA Protein Assay Kit (Thermofisher Scientific, #23227). Equal amounts of protein 

were resolved by SDS-PAGE and transferred to nitrocellulose membrane (Sigma, 

GE10600003). The membrane was stained with Ponceau S (Sigma, P3504), blocked with 5% 

non-fat dry milk in 1% TBS-T (0.2M Tris pH 8; 1.5M NaCl and 0.05% Tween20 (Sigma, 

P9416)) and then incubated with indicated primary antibodies for 24h. The membrane was 

washed three times for 10 minutes each with TBS-T followed by incubation with secondary 

antibody for 1h. The membrane was washed three times for 10 minutes and analyzed by 

enhanced chemiluminescence using the ImageQuant LAS 4000 (GE Lifescience).  
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Ubiquitylation Assay 

Subconfluent HEK293 FlpIn TRIM32 KO cells seeded in 6-well dishes were transiently co-

transfected with pDEST myc-NDP52 (500 ng) and pDEST EGFP-TRIM32WT (500 ng), pDEST 

EGFP-TRIM32P130S(500 ng), or pDEST EGFP-TRIM32D487N(500 ng) using Metafecten Pro 

(Biontex, T040). Subconfluent TRIM32 KO cells and reconstituted TRIM32 KO with Myc-

TRIM32 WT, Myc-TRIM32 P130S or Myc-TRIM32 D487N cells were transfected with 

pDEST EGFP-ULK1 (500 ng) using Metafectene Pro. One day post transfection, the cells were 

lysed in modified Radioimmunoprecipitation assay (RIPA) buffer (50mM Tris pH 7.5; 150mM 

NaCl; 1mM EDTA; 1% NP40; 0.25% Triton-X-100) supplemented with cOmplete Mini 

EDTA-free protease inhibitor cocktail tablets (Roche, #11836170001) and phosphatase 

inhibitor cocktail (Merck Millipore, #524625) by shaking at 4°C for 30 min. The cell lysate was 

centrifuged at 10.000 x g for 10 min. The resulting supernatant was incubated with Myc-TRAP 

(Chromotek, yta-20) or GFP-TRAP (Chromotek, gta-20). They were washed five times in RIPA 

buffer before boiling in 2X SDS gel loading buffer. This was followed by protein identification 

by immunoblotting as previously described but on Immobilon-FL PVDF membrane (Millipore, 

IPFL00010), blocked with Odyssey® blocking buffer (PBS) (LI-COR Biosciences, #927-

40000) and scanned on Odyssey CLx Imager (LI-COR).   

Immunostaining and Fluorescence confocal microscopy 

Subconfluent cells were grown on coverslips (VWR, #631-0150) coated with Fibronectin 

(Sigma, F1141) and treated as indicated. They were fixed in 4% formaldehyde for 20min at 

R.T., permeabilized with methanol at RT for 5min, blocked in 5% goat serum/PBS or 

5%BSA/PBS and incubated at room temperature with a specific primary antibody followed by 

Alexa Fluor 488 or 555 conjugated secondary antibody and DAPI. Confocal images were 

obtained using a 63x/NA1.4 oil immersion objective on an LSM780 system or LSM800 system 

and the ZEN software (Zeiss). Quantification of cells containing red only dots in the mCherry-

EYFP-double tag assay was done manually in three independent experiments. 

RT-PCR/QPCR 

Total RNA was extracted from HEK 293T FlpIn cells TRIM32 KO cells reconstituted with 

TRIM32 WT, TRIM32 P130S mutant and TRIM32 D487N mutant using the Gene Elute 

Mammalian Total RNA Miniprep kit (Sigma). The RNA quality was checked by 260/280 nm 

absorption using a NanoDrop 2000 spectrophotometer (Thermo Fisher scientific). First-strand 

cDNA was prepared using the High Capacity RNA-to-cDNA Kit according to the 
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manufacturer’s instruction. Amplification was performed with SYBR green kit FastStart 

Essential DNA Green Master (Roche) in a 20 μl reaction. Reactions were run with the following 

cycling parameters temperatures (58 degrees aneling temperature for Actin, GAPDH, NDP52 

and Optineurin and 60 for p62 and NBR1) and 45 cycles by Lightcycler 96 (Roche). All 

reactions were performed in triplicate. Relative expression levels were calculated after 

correction for the expression of Actin and GAPDH as an endogenous reference. The primer 

sequences used for p62 fw and reverse were 5’-ggagaagagcagctcacagcca-3’ and 5’-

ccttcagccctgtgggtccct-3’, NBR1 forward and reverse 5’-ggaagcagaagaagacctgagtg-3' and 5’-

ccagagtctgtgaggtcgtgag-3’, and NDP52 fw and reverse 5’-accatggaggagaccatcaa-3’ and  5’-

ttctggacggaattggaaag-3’, and standards (Actin and GAPDH) fw and reverse Actin 5’-

tgacggtcaggtcatcactatcggcaatga-3’ and 5’-ttgatcttcatggtgataggagcgagggca-3’, gapdh 5’-

ggcactgtcaaggctgaaaacg-3’ and 5’-ggagatgagatgataccacgcttag-3’. 

Mitophagy assay 

HEK293 FlpIn T-Rex cells, TRIM32 KO cells and TRIM32 KO cells reconstituted with Myc-

TRIM32 were seeded on fibronectin-coated coverslips two days before transient co-transfection 

with the plasmids mCherry-EGFP-OMP25-TM (100 ng), pDEST-3xFlag-LC3A (100 ng) and 

pDEST-myc-FKBP8 (100 ng) using the Trans-IT (Mirus) transfection reagent. One day post 

transfection, the cells were fixated in 4% Formaldehyde, 15 minutes at R.T., stained with DAPI 

(5 min). The cells were imaged using a Zeiss800 confocal microscope, and z-stack images of 

at least 100 cells per condition per experiment were manually quantitated for RedOnly stuctures 

using the ZEN software (Zeiss).   

Statistics 

All experiments were repeated at least three times, unless otherwise specified. Error bars 

represent the standard deviation, or standard error of the mean as indicated in the Figure 

legends. Two-sided unpaired, homoscedastic Student T-Tests, were performed to assess 

significant differences between populations. Replicates were not pooled for statistical analyses.  

 

RESULTS AND DISCUSSION 

Recently we showed that TRIM32 is an autophagy substrate (Overa et al., 2019). Its lysosomal 

degradation was mediated by selective autophagy, dependent on ATG7 and the sequestosome-

like receptors (SLRs). Reintroduction of p62/SQSTM1 in a cell line lacking the SLRs was 
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sufficient to direct autophagic degradation of TRIM32. However, knock out of p62/SQSTM1 

did not abolish lysosomal degradation of TRIM32, suggesting that other SLRs may direct 

TRIM32 to autophagic degradation. Furthermore, we identified TRIM32 as an activator of 

p62/SQSTM1, facilitation p62/SQSTM1 sequestration and degradation.  Here we set out to 

identify the effect of TRIM32 expression on the protein levels of other SLRs than 

p62/SQSTM1. Cell extracts from two different TRIM32 knock-out clones, KO#1 and KO#2 

(Overa et al., 2019), reconstituted with myc-TRIM32 wild type or the disease mutants 

TRIM32D487N and TRIM32P130S, were exposed to antibodies against the SLRs p62/SQSTM1, 

NBR1, NDP52 and TAX1BP1 (Fig. 1A).  Consistently, reintroduction of myc-TRIM32WT or 

myc-TRIM32P130S reduced the protein levels of the SLRs, suggesting that TRIM32 enhances 

SLR mediated selective autophagy (Fig. 1A, B). In contrast, reintroduction of the LGMD2H 

disease mutant form of TRIM32, TRIM32D487N, did not affect the protein levels of the SLRs. 

As shown previously (Frosk et al., 2002, Overa et al., 2019), TRIM32WT and TRIM32P130S 

contain ubiquitylation activity and are themselves degraded by autophagy. TRIM32D487N is not 

found to ubiquitylate itself or any target proteins, suggesting that mutations in the NHL-repeat 

region abolish its enzymatic activity and its ability to be degraded by autophagy. Western blot 

analyses of LC3B and Gabarap in the same cell extracts did not display a reproducible change 

of their protein level or lipidation (Fig. 1A). Moreover, exposure of the TRIM32 KO and the 

TRIM32 KO myc-TRIM32WT cell lines to starvation conditions, followed by additions of  the 

lysosome and proteasome inhibitors Bafilomycin A1 and MG132, respectively, showed that the 

autophagy flux is not  severe inhibited in the TRIM32 KO cells (Fig. S1). This is in line with 

previous data showing that TRIM32 does not display any prominent effect on global autophagy, 

but instead on SLR mediated selective autophagy (Overa et al., 2019). In order to investigate 

whether the TRIM32 induced reduction of SLR expression was due to reduced transcription of 

the SLR genes, we analysed RNA expression by QPCR of representative SLRs in the same cell 

lines (Fig. 1C). Comparing SLR RNA levels in the reconstituted cell lines with the SLR RNA 

levels in the TRIM32 KO#1 cell line revealed no significant change in RNA expression. 

Together, our results show that expression of catalytic active TRIM32 reduces the protein levels 

of the SLRs. For p62/SQSTM1 we have shown that this is due to TRIM32 mediated 

ubiquitylation of p62/SQSTM1 leading to enhanced p62/SQSTM1 autophagic activity. An 

interesting question to address is whether this is a general mechanism for all SLRs, pointing 

towards an important regulatory role of TRIM32 in selective autophagy. 



10 
 

 We have previously shown that autophagic degradation of TRIM32 is strongly inhibited 

in a HeLa pentaKO cell line (Lazarou et al., 2015) lacking expression of the five SLRs (Overa 

et al., 2019). To identify if any of the SLRs beside p62/SQSTM1 were able to direct autophagic 

degradation of TRIM32, we established pentaKO cell lines stably expressing each of the SLRs. 

Transfection of mCherry-EYFP-tagged TRIM32 into these cell lines revealed that 

reintroduction of NDP52 or NBR1 facilitated autophagic degradation of TRIM32 (Fig. 2). This 

suggests that each of the SLRs mediates autophagic degradation of TRIM32, and that they are 

independent of each other for facilitating this process. 

 The very consistent downregulation of NDP52 protein levels in the TRIM32 KO cells 

reconstituted with catalytic active TRIM32 (Fig. 1A), prompted us to investigate whether there 

is a direct interaction between TRIM32 and NDP52. GST-pulldown assays using immobilised 

GST-NDP52 or GST-p62/SQSTM1 expressed and purified from E. coli together with in vitro 

translated EGFP-TRIM32WT or the disease mutants EGFP-TRIM32P130S and EGFP-

TRIM32D487N, showed that there is a direct interaction between NDP52 and TRIM32 in vitro 

(Fig. 3A). The interaction is weak, but stronger than the previously reported interaction between 

TRIM32 and p62/SQSTM1 (Overa et al., 2019). Both TRIM32WT and the two disease mutants 

bound to NDP52, suggesting that the in vitro interaction is independent on the E3 ligase activity 

of TRIM32. Next, we applied immunofluorescence assays to determine if TRIM32 colocalizes 

with endogenous NDP52 in cells. TRIM32 KO cells, and TRIM32 KO cells reconstituted with 

myc-TRIM32WT or the disease mutants myc-TRIM32P130S and myc-TRIM32D487N, were grown 

in normal medium or normal medium supplemented with Bafilomycin A1, fixated and exposed 

to an NDP52 antibody (Fig. 3B). TRIM32WT and both disease mutants colocalised with NDP52 

in certain dots under normal conditions (Fig. 3B). Inhibition of the lysosome resulted in 

accumulation of larger NDP52 dots that colocalised with TRIM32WT and TRIM32P130S. 

However, the LGMD2H disease mutant TRIM32D487N, which displays augmented E3 ligase 

activity and is not a substrate for autophagic degradation, did not accumulate in larger NDP52 

dots upon BafA1 treatment. These results indicate that TRIM32, both WT and disease mutants, 

are enriched in certain NDP52 dots in cells under normal conditions. However, accumulation 

of TRIM32WT and TRIM32P130S but not TRIM32D487N in NDP52 dots upon lysosomal 

inhibition, suggest that NDP52 mediated lysosomal degradation of TRIM32 is dependent on 

the E3 ligase activity of TRIM32. We therefore went on to test if NDP52 is a TRIM32 substrate. 

Immunoprecipitation of myc-NDP52 co-expressed with EGFP-TRIM32 WT and disease 

mutants in TRIM32 KO cells, revealed several slow-migrating myc-NDP52 forms in the cells 
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expressing TRIM32WT or TRIM32P130S. In the precipitate from the TRIM32D487N expressing 

cells, no such slow migrating NDP52 forms was observed (Fig. 3C). To identify if these slow-

migrating NDP52 could represent mono and poly-ubiquitylation NDP52, the 

immonoprecipitates were blotted against an antibody recognising mono- and poly-ubiquitin 

(Fig. 3C, lower panels). Clearly, NDP52 immunoprecipitated from cells expressing the E3 

ligase active forms of TRIM32, TRIM32WT and TRIM32P130S, is modified by ubiquitin. On the 

other hand, NDP52 precipitated from the cells expressing the E3 ligase inhibited form of 

TRIM32, TRIM32D487N, is not recognised by the ubiquitin antibody. The upper panel in Figure 

3C show that TRIM32WT and TRIM32P130S co-precipitate very well NDP52, while the 

association between TRIM32D487N and NDP52 is weaker. Together, these data show that 

NDP52 interacts with TRIM32 in vitro and in cells, and that they colocalise in certain dots in 

cells. Furthermore, TRIM32 mediates ubiquitylation of NDP52, and this ubiquitylation seems 

to be important for regulation of NDP52 protein levels.  

 Recent reports have demonstrated that NDP52 plays an important role in selective 

degradation of depolarized mitochondria (mitophagy) (Lazarou et al., 2015, Vargas et al., 2019, 

Heo et al., 2015). Tethering of NDP52 to the mitochondria recruited the ULK1 complex via 

FIP200 interactions, and the authors suggested that this recruitment initiated autophagosome 

biogenesis directly on the mitochondria (Vargas et al., 2019). TRIM proteins are reported to 

control autophagy by modulating the activity of BECLIN1 and ULK1 (Mandell et al., 2014). 

Moreover, in atrophic muscle cells TRIM32 mediates induction of autophagy via ULK1 

activation. This activation of ULK1 requires TRIM32 E3 ligase activity, and is impaired in 

atrophic muscle cells expressing the LGMD2H disease mutant TRIM32D487N (Di Rienzo et al., 

2019). These reports prompted us to investigate whether ULK1 and TBK1 were aberrantly 

expressed in the HEK293 FlpIn TRIM32 KO and reconstituted cell lines.  Western Blot 

analyses of ULK1 expression levels in the TRIM32 KO cells, and TRIM32 KO cells 

reconstituted with myc-TRIM32WT, myc-TRIM32P130S or myc-TRIM32D487N, revealed that 

ULK1 is strongly stabilised in the cells expressing myc-TRIM32WT and myc-TRIM32P130S (Fig. 

4 A, B). In contrast, reintroduction of the LGMD2H disease mutant TRIM32D487N, did not affect 

ULK1 protein levels (Fig. 4 A, B).  K63-linked ubiquitylation of ULK1 stimulates its kinase 

activity (Nazio et al., 2013). To assess if TRIM32 mediated stabilization of ULK1 is due to 

ubiquitylation of ULK1, ULK1 was immunoprecipitated from HEK293 cells co-expressing 

TRIM32 and EGFP-ULK1. However, no increased ubiquitylation of ULK1 could be detected 

(Fig. 4C). This is in line with the work of Di Rienzo et al. (Di Rienzo et al., 2019), where they 
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found that ULK1 is not a direct substrate of TRIM32 in their system. Instead, they showed that 

ULK1 associated with unanchored K63-linked polyubiquitin chains synthesized by TRIM32 in 

an AMBRA1 dependent manner, and this binding to polyubiquitin chains stimulated ULK1 

activity, monitored as increased phosphorylation of VPS34(S249) and  BECLIN1 (S15). TBK1 

facilitates the association of NDP52 with the ULK1 complex on mitochondria leading to 

mitophagy, while a kinase-dead TBK1 does not (Vargas et al., 2019). Recruiting TBK1 to the 

mitochondria induced TBK1 S172 autophosphorylation. Furthermore, selective autophagy of 

cytosol-invading bacteria involves NDP52 meditated recruitment of the TBK1-SINTBAD and 

ULK1-FIP200 complexes to the bacteria containing vacuole, promoting phagophore formation 

(Ravenhill et al., 2019). Assessing the TBK1 S172 phosphorylation in the TRIM32 KO and 

reconstituted cell lines, revealed that the amount of S172 phosphorylated TBK1 is highly 

upregulated in the cells reconstituted with TRIM32 compared to the TRIM32 KO cells (Fig. 4 

D, E). Since TBK1 undergoes autophosphorylation at S172 when TBK1 is enriched at 

subcellular structures, this suggests that TRIM32 facilitates TBK1 recruitment and activation 

which is important for efficient mitophagy and xenophagy. 

Next question was if TRIM32 could facilitate mitophagy. For this purpose, we induced 

mitophagy in HEK293 FlpIn cells, and the TRIM32 KO and reconstituted cell line. Mitophagy 

induction was obtained by overexpression of FKBP8 and LC3A, and autophagic degradation 

of mitochondria measured using the double-tag mCherry-EGFP-OMP25TM (Bhujabal et al., 

2017) (Fig. 4F). In the HEK293 FlpIn cells, co-overexpression of FKBP8 and LC3A induced 

mitophagy in 10-12% of the cells (Fig. 4G). However, in the HEK293 FlpIn TRIM32 KO cells, 

the amount of cells undergoing mitophagy by FKBP8 and LC3A overexpression was reduced 

to 5%. Importantly, reintroduction of myc-TRIM32 in the TRIM32 KO cells restored the 

mitophagy activity (Fig. 4G). 

 To sum up, here we show that TRIM32 affect the protein expression levels of the SLRs. 

Focusing on autophagy receptor NDP52, we reveal that TRIM32 interacts with NDP52 and 

subjects it for ubiquitylation. NDP52 is an important receptor for mitophagy, and in congruence 

with this we find that mitophagy is downregulated in TRIM32 KO cells compared to normal 

HEK293 FlpIn cells and TRIM32 KO cells reconstituted with myc-TRIM32. Furthermore, 

ULK1 is stabilised and TBK1 autophosphorylation upregulated in cells expressing active 

TRIM32, but not in cells expressing the LGMD2H disease version of TRIM32 shown to have 

impaired E3 ligase activity (Fig. 4H).  An important question to address in future study is 
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whether the TRIM32 mediated ubiquitylation of NDP52 directly facilitates its role as a 

mitophagy and xenophagy receptor. 

 

FIGURE LEGENDS 

Figure 1: E3 ligase active TRIM32 downregulates the protein levels of the sequestosome-

like cargo receptors. A) Western blots showing the protein levels of the autophagy cargo 

receptors p62/SQSTM1, NBR1, NDP52 and TAX1BP1, and the autophagy marker proteins 

LC3B and GABARAP, in TRIM32 KO cells, and TRIM32 KO cells reconstituted with stable 

expression of myc-TRIM32WT, myc-TRIM32P130S, and myc-TRIM32D487N. Actin serves as 

loading control, and the blot against TRIM32 shows the expression levels of the various 

TRIM32 proteins in the reconstituted cells. A biotinylated molecular weight marker is shown 

to the left. B) Quantitation of the band intensities from three independent experiments as 

represented in A. The bar graphs represent the average band intensities normalized to the 

corresponding actin band from three independent experiments with s.e.m. The band intensities 

were quantitated by the use of ImageJ. *: p<0.05; ***: p<0.0005; n.s.: p>0.05;  C) RNA levels 

of the SLRs p62/SQSTM1, NBR1 and NDP52 in the reconstituted TRIM32WT, TRIM32P130S 

and TRIM32D487N expressing cell lines relative to the RNA levels in the TRIM32 KO cell line. 

The graphs represent the average relative RNA levels with s.e.m. obtained by QPCR in three 

independent experiments, each performed in triplicate. 

 

Figure 2: The cargco receptors NDP52 and NBR1 direct TRIM32 to autophagic 

degradation. A) Normal HeLa cells and cells that were genetically knocked out for the 5 SLRs 

(pentaKO), or pentaKO cells reconstituted with stable expression of EGFP-NDP52 or EGFP-

NBR1 as indicated to the right, were transfected with mCherry-EYFP-TRIM32 expression 

plasmids. One day post transfection the cells were fixated, stained with DAPI and imaged using 

a Zeiss780 confocal microscope. Scale bar (10 m). B) Quantitation of the number of yellow 

dots and red-only dots in the cells transfected as described in A. The graphs display the average 

number of yellow and RedOnly dots with S.D. in cells with mCherry-EYFP-TRIM32 dots, 

obtained in three independent experiments. 
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Figure 3: TRIM32 associates with and ubiquitylates NDP52. A) GST-pulldown assays using 

35S-labeled Myc-TRIM32, Myc-TRIM32P130S, or Myc-TRIM32D487N and recombinant GST, 

GST-p62 and GST-NDP52 immobilized on Glutathione Sepharose beads. Quantifications of 

the binding of wild type and mutant constructs to the GST proteins are presented as percentage 

binding relative to the 5% input. The bars represent the average band intensities with s.d. 

quantitated using ImageJ, of three independent experiments. B) Representative images of 

HEK293 FlpIn TRIM32 KO cells, and the TRIM32 KO cells reconstituted with myc-

TRIM32WT, myc-TRIM32P130S or myc-TRIM32D487N cells in full media (FM) or full media 

added the lysosomal inhibitor Bafilomycin A1 (BafA1)  (4 hrs) fixed and stained with 

antibodies for NDP52. Images were obtained using a ZEISS780 confocal laser scanning 

microscope, and monitored using the ZEN software. Scale bar (10 m). C) Myc-NDP52 

expression plasmid was cotransfected with EGFP-TRIM32, EGFP-TRIM32P130S or EGFP-

TRIM32D487N expression constructs in the HEK293 FlpIn TRIM32 KO cell line. Myc-NDP52 

was immunoprecipitated using a myc-trap and precipitated NDP52 detected using an anti-myc 

antibody. The EGFP-TRIM proteins were detected using an anti-GFP antibody, and ubiquitin 

by using an FK2 antibody recognizing both mono-and poly-ubiquitin chains. * indicates 

ubiquitylated NDP52. 

 

Figure 4: TRIM32 stabilizes ULK1 and facilitates TBK1 phosphorylation and mitophagy. 

A) Western blots showing the protein levels of ULK1 in HEK293 FlpIn TRIM32 KO cells, and 

HEK293 FlpIn TRIM32 KO cells reconstituted with stable expression of myc-TRIM32WT, 

myc-TRIM32P130S, and myc-TRIM32D487N. Actin serves as loading control, and the blot against 

TRIM32 shows the expression levels of the various TRIM32 proteins in the reconstituted cells. 

A biotinylated molecular weight marker is shown to the left. B) Quantitation of the band 

intensities from three independent Western blots as represented in C. The bar graphs represent 

the average band intensities normalized to the corresponding actin band from three independent 

experiments with s.e.m. The band intensities were quantitated by the use of ImageJ. **: 

p<0.005; *: p<0.05; n.s.: p>0.05. C) EGFP-ULK1 expression plasmid was transfected into 

TRIM32KO cell lines reconstituted with myc-TRIM32, myc-TRIM32P130S or myc-

TRIM32D487N. EGFP-ULK1 was immunoprecipitated using a GFP-trap and precipitated EGFP-

ULK1 detected using an anti-GFP antibody. The myc-TRIM proteins were detected using an 

anti-myc antibody, and ubiquitin by using an FK2 antibody recognizing both mono-and poly-

ubiquitin chains. D) Western blots showing the protein levels of phosphorylated TBK1 and 
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TBK1 as indicated to the right, in TRIM32 KO cells, and TRIM32 KO cells reconstituted with 

stable expression of myc-TRIM32WT, myc-TRIM32P130S, and myc-TRIM32D487N. The extracts 

are from cells exposed to normal medium and cells starved in HBSS for two hours, as indicated 

above. Tubulin serves as loading control. E) Quantitation of the band intensities from three 

independent Western blots as represented in D. The bar graphs represent the average band 

intensities normalized to the corresponding tubulin band from three independent experiments 

with s.e.m. The band intensities were quantitated by the use of ImageJ. *: p<0.05; n.s.: p>0.05.   

F) HEK293 FlpIn cells, HEK293 TRIM32 KO cells, or HEK293 TRIM32 KO cells 

reconstituted with myc-TRIM32 were transiently transfected with expression plasmids for the 

mitochondria marker mCherry-EGFP-OMP25TM, 3xFlag LC3A and mitophagy receptor myc-

FKBP8. The appearance of RedOnly structures indicates acidified mitochondria. G) 

Quantitation of the cells represented in A displaying RedOnly dots indicative of mitophagy 

activity. The bars represent the average with s.e.m. of three independent experiments, each 

including > 100 cells per condition. *: p<0.05; n.s.: p>0.05. H) TRIM32 induces ubiquitylation 

of NDP52, enhances TBK1 phosphorylation and ULK1 expression that are important for 

phagophore formation on the mitochondria, and facilitates mitophagy. 

 

Supplementary Figure S1: Loss of TRIM32 does not impair autophagic degradation of 

the SLRs. A) Western blots showing the protein levels of the autophagy cargo receptors NBR1, 

TAX1BP1, p62/SQSTM1 and NDP52, and the autophagy marker protein LC3B, in TRIM32 

KO cells, and TRIM32 KO cells reconstituted with stable expression of myc-TRIM32WT. The 

cells were exposed to full medium (FM) or starvation medium (SM, HBSS 2 hrs), and treated 

with lysosomal inhibitor (Baf, 4 hrs) or proteasomal inhibitor (MG, 4 hrs) where indicated 

above. Actin serves as loading control, and the blot against TRIM32 shows the expression levels 

of the TRIM32 in the reconstituted cells. A biotinylated molecular weight marker is shown to 

the left. * indicate an unspecific band recognized by the TRIM32 antibody. 
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Abstract 

TRIM32 is an E3 ligase implicated in diverse biological pathways and pathologies such as muscular 

dystrophy and cancer. TRIM32 are expressed both as full-length proteins, and as a truncated protein. 

The mechanisms for regulating these isoforms are poorly understood.  Here we identify a PEST 

sequence in TRIM32 located in the unstructured region between the RING-BBox-CoiledCoil domains 

and the NHL repeats.  The PEST sequence directs cleavage of TRIM32, generating a truncated protein 

similarly to the short isoform. We map three lysine residues that regulate PEST mediated cleavage and 

auto-ubiquitylation activity of TRIM32. Mimicking acetylation of lysine K247 completely inhibits 

TRIM32 cleavage, while the lysines K50 and K401 are implicated in auto-ubiquitylation activity. We 

show that the short isoform of TRIM32 is catalytic inactive, suggesting a dominant negative role. These 

findings uncover that TRIM32 is regulated by post-translational modifications of three lysine residues, 

and a conserved PEST sequence. 
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Introduction 

Tripartite motif (TRIM) proteins have emerged as a large family of ubiquitin E3 ligases that are involved 

in a wide range of cellular processes such as development, differentiation, immunity and carcinogenesis 

[1]. As a member of the TRIM family, TRIM32 shows the common RBCC domain organization in its 

N-terminal, consisting of a “Really interesting New gene” (RING) domain, followed by one B-box 

domain, and a Coiled Coil (CC) region [2]. TRIM32 is characterized by six NHL repeats in its C-

terminus. The RING domain is essential for the E3 ligase activity, while the BBOX domain is necessary 

to modulate chain assembly rate of ubiquitin units. The CC domain assumes an α-helix structure that 

allows the formation of anti-parallel dimers [3]. To date, the NHL repeats are found to be involved in 

dimerization and cargo recognition [4]. TRIM32 oligomerization is a pre-requisite for its catalytic 

activity.  

TRIM32 has multiple target proteins involved in innate immunity, carcinogenesis and muscle 

physiology [5]. TRIM32 is linked to two different genetic diseases [4]. Mutations in the NHL domains 

result in the muscle disorders Limb Girdle Muscular Dystrophy 2H (LGMD2H) and Sarcotubular 

myopathy (STM). These mutants display impaired oligomerization and auto-ubiquitylation activity, as 

well as reduced overall TRIM32 expression. A missense mutation in the BBOX domain causes Bardet-

Biedl Syndrome 11 (BBS11), which has a pleiotropic phenotype [6].  TRIM32 can be degraded both by 

the proteasome and by selective autophagy, and auto-ubiquitylation activity is required for its autophagic 

degradation [7]. The autophagy receptor p62/SQSTM1 can direct ubiquitylated TRIM32 to autophagic 

degradation, but is at the same time a TRIM32 substrate, uncovering a role for TRIM32 in the regulation 

of selective autophagy.  

Post-translational modifications (PTMs) such as phosphorylation, acetylation, ubiquitylation 

and SUMOylation are essential for the function and fate of most proteins. The attachment of these small 

molecules can modulate greatly the properties of a protein, affecting its stability, function, intracellular 

distribution and interaction with other proteins [8]. Acetylation is the most common PTM, playing 

important roles in cell signaling, and in the regulation of protein localization, stability and functionality. 

The addition of the acetyl group from an Acetyl coenzyme A (Ac-CoA) can occur in two different 
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positions, in their Nα-termini of the amino acid or in the ε-amino group of a lysine amino acid. Lysine 

acetylation is a reversible modification that is tightly controlled by multiple acetyltransferases and 

deacetylases [9]. This repertoire of addition and removal of molecules allow the cell to control fast and 

efficiently the different changes in the environment. 

Ubiquitylation of proteins are implicated as a regulatory mechanism of many cellular processes. 

The addition of ubiquitin moieties is a reversible process that occur on lysine residues. Ubiquitin itself 

contains seven lysine residues that can be ubiquitylated, forming ubiquitin chains. This allows multiple 

combinations, which adds a high degree of complexity to this cellular regulation mechanism [10]. As 

acetylation, ubiquitylation processes are controlled by a balance between ubiquitin E3 ligases and de-

ubiquitin enzymes. 

A PEST sequence is a region rich in proline (P), glutamic acid (E), serine (S) and threonine (T). 

This sequence of amino acids acts as a proteolytic signal to control the rapid turnover of the protein [11]. 

Originally PEST sequences were attributed to short-lived proteins, but later PEST sequences are also 

identified in some long-lived proteins. Moreover, alternative functions have been linked to PEST 

domains, hence their function is not limited to proteolytic signaling [12]. PEST regions are generally 

unstructured and flexible, and the 26S Proteasome and other proteases such as calpains are in charge of 

the degradation of PEST containing proteins. PEST sequences can lead to constitutive degradation of 

the protein, but they can also behave as conditional degradation signals depending on the cellular needs 

[13].  

In this work we identify a PEST sequence in the unstructured region between the RBCC region 

and the NHL domains of the ubiquitin E3 ligase TRIM32. The PEST sequence directs cleavage of 

TRIM32, leading to a truncated TRIM32 protein lacking the C-terminal NHL-repeat, resembling 

isoform 3 of TRIM32. The existence of TRIM32 isoform 3 is experimental evidenced at protein level, 

but a corresponding transcript is not verified.  We uncover that PEST mediated cleavage of TRIM32 is 

regulated by post-translational modifications of three lysine residues, K50, K247 and K401. Mimicking 

acetylation on K247 completely protects TRIM32 from PEST mediated cleavage. K50 and K401 were 

found to be important for TRIM32 auto-ubiquitylation activity, which is reported to be necessary for its 

tetramerization and cytoplasmic body formation. This is the first time that a PEST sequence has been 
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described in a TRIM protein, as well as the regulation of a PEST sequence by acetylation of an adjacent 

lysine residue.  

 

Results 

PTMs of the lysine residues K50, K247 and K401 regulate TRIM32 

cleavage  

It is well recognized that TRIM32 has auto-ubiquitylation activity in addition to conventional ubiquitin-

protein ligase activity [14, 15]. Auto-ubiquitylation seems to regulate its expression level, E3 ligase 

activity and ability to form cytoplasmic bodies [7, 16-18].  We and others have shown that the missense 

mutation TRIM32D487N causing LGMD2H does not undergo auto-ubiquitylation [7, 18]. Auto-

ubiquitylated TRIM32 can be detected as a slower-migrating band on Western Blots, as indicated in Fig 

1A where the slower migrating band is detected approximately 10 kDa above the band of the catalytic 

active EGFP-TRIM32WT and EGFP-TRIM32P130S [7]. The EGFP-TRIM32D487N mutant which do not 

contain auto-ubiquitylation activity[7], does not display this slow migrating band.  Auto-ubiquitylation  

seems to be a prerequisite for the catalytic activity of TRIM32, as the LGMD2H mutant is unable to 

ubiquitylate the substrate protein p62/SQSTM1 [7]. Moreover, PKA mediated phosphorylation of 

TRIM32S651, which impairs its ability to undergo auto-ubiquitylation, leads to repression of its E3 ligase 

activity. The PKA phosphorylation was shown to be regulated by 14-3-3 protein binding to soluble 

TRIM32, trapping it in a soluble and functionally latent complex [17]. In an attempt to better understand 

the regulation of TRIM32, we started out to identify which lysine residues in TRIM32 are targeted by 

its auto-ubiquitylation activity. For this purpose we applied Mass Spectroscopy (MS) analyses of the 

catalytic inactive disease mutant myc-TRIM32D487N, and compared it to immunoprecipitated catalytic 

active myc-TRIM32WT and myc-TRIM32P130S. All proteins were stably expressed in the HEK293 FlpIn 

TRIM32 knock out cells described previously [7]. No lysine residues of the catalytic inactive 

TRIM32LGMD2H disease mutant were detected as ubiquitylated, while peptides with K50 and K401 

ubiquitylation were found in precipitates of the catalytic active enzymes myc-TRIM32WT and myc-
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TRIM32P130S (Figs 1B and 1C). However, peptides with acetylation of lysine K247 were identified in 

precipitates of the myc-TRIM32 disease mutants, but not in the TRIM32WT precipitates (Figs 1B and 

1C). In order to determine if these lysine residues are targets for TRIM32 auto-ubiquitylation activity, 

the constructs EGFP-TRIM32K50R, EGFP-TRIM32K247R, and EGFP-TRIM32K401R were established by 

site-directed mutagenesis and transiently transfected into a HEK293 FlpIn TRIM32 KO cells [7]. 

Western Blot analysis of the transfected proteins revealed that none of these single lysine to arginine 

mutations impaired auto-ubiquitylation activity of TRIM32 (S1 Fig 1A). Next, we introduced double 

and triple K to R mutations in EGFP-TRIM32, generating EGFP-TRIM32K247R/K401R, EGFP-

TRIM32K50R/K247R, EGFP-TRIM32K50R/K401R and EGFP-TRIM32K50R/K247R/K401R, respectively. These 

mutants along with EGFP-TRIM32WT, were transiently transfected into the TRIM32 KO cells and their 

auto-ubiquitylation activity investigated by Western blotting (Fig 1 D). Surprisingly, introduction of the 

double mutation EGFP-TRIM32K247R/K401R resulted in a partially cleaved protein (Fig 1D and Fig 1E, 

lane 3), while the triple EGFP-TRIM32K50R/K247R/K401R mutation resulted in a completely cleaved protein 

(Fig 1D and Fig 1E, lane 6). Co-transfection of the broad specificity de-ubiquitinase USP2 verified that 

the slower-migrating band on the Western blots are due to ubiquitylated TRIM32 (Fig 1D, Fig 1E and 

S1 Fig 1B). Since mutations in TRIM32 is associated with muscular dystrophy, similar experiment was 

performed in the myoblast C2C12 cell line. Introduction of the K247R/K401R and K50/K247R/K401R 

mutations were exposed to cleavage also in this cell line (Fig 1E). Moreover, the polyclonal TRIM32 

antibody displayed the same protein pattern on the Western blot as the GFP antibody, indicating that 

cleavage of EGFP-TRIM32K50R/K247R/K401R generates a stable N-terminal cleavage product of around 55 

kDa. In contrast, any C-terminal cleavage products can not be detected in the gel, suggesting that this 

part of TRIM32 is exposed to further degradation.   

  

Fig 1. PTMs of TRIM32K50, TRIM32K247 and TRIM32K401 regulate its cleavage. (A) Western blot 

analysis of cell extracts from HEK293 FlpIn cells with tetracycline inducible expression of EGFP-

TRIM32WT, the BBS11 associated mutant EGFP-TRIM32P130S, or the LGMD2H causing mutant EGFP-

TRIM32D487N shows auto-ubiquitylation activity of TRIM32WT and TRIM32P130S, but not the LGMD2H 

mutant. (B) Sequence of the TRIM32 peptides identified by MS to display PTMs on lysine residues that 
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differed between the TRIM32 proteins with auto-ubiquitylation activity (TRIM32WT and TRIM32P130S) 

and the LGMD2H disease variant lacking auto-ubiquitylation activity (TRIM32D487N). (C) Schematic of 

TRIM32 domain organization. The D487N mutation in the NHL repeats that is associated with 

LGMD2H and the P130S mutation in the BBox causing BBS11 are indicated above. The three lysine 

residues that are focused in this paper are indicated in red, while the PTMs of these residues identified 

by MS are indicated above. Ub: Ubiquitylation. Ac: acetylation (D) Western Blot analysis of HEK293 

FlpIn TRIM32 KO cells transiently transfected with expression plasmids for EGFP-TRIM32WT, the 

double mutants EGFP-TRIM32K247R/K401R, EGFP-TRIM32K50R/K247R, or EGFP-TRIM32K247R/K401R, or the 

triple mutant   EGFP-TRIM32K50R/K247R/K401R. The last lane represents cotransfection of EGFP-

TRIM32WT and mCherry-USP2 expression vectors. The bands representing EGFP-TRIM32, auto-

ubiquitylated EGFP-TRIM32, and cleaved EGFP-TRIM32 are indicated to the right. PCNA represents 

the loading control. (E) Western blot analysis of a similar experiment as in (D), except that the myoblast 

C2C12 cell line is used instead of the HEK293 FlpIn TRIM32 KO cell line, and the antibody used is an 

anti-TRIM32 antibody instead of an anti-GFP antibody. 

 

Acetylation of K247 is sufficient to inhibit cleavage of TRIM32  

According to ENSEMBL genome browser (ensemble.org) and UniProt protein database (uniprot.org) 

there are two variants of the TRIM32 protein in humans. The main variant (Uniprot.org Q13049) is a 

653 amino acid protein of 72 kDa. Additional, there is clear experimental evidence for the existence of 

a short 172 amino acid long variant of TRIM32 (Uniprot.org Q5JVY0) (Fig 2A). However, the existence 

of a transcript encoding the short protein variant is not validated, since a transcript with a 3’UTR is 

unrecognized so far (ensemble.org). The short isoform contains the N-terminal RBCC domains, but lack 

the NHL-repeats and the unstructured region between RBCC and the NHL-domain. The short isoform 

is around 20 kDa, and hence has a size very similar to the 55 kDa TRIM32 N-terminal cleavage product 

that we observed above (20 kDa plus the EGFP-tag of 32.7 kDa). This prompted us to ask whether the 

short TRIM32 protein may be generated by proteolytic cleavage of the long form, and if this cleavage 

could be regulated by post-translational modifications of the lysine residues identified above (K50, 
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K247, K401)(Fig 1C). De-ubiquitylation of TRIM32 by USP2 over-expression did not result in TRIM32 

cleavage (Fig 1D and Fig 1E). Therefore, we asked whether acetylation of the lysine residues K50, K247 

and K401 would affect TRIM32 cleavage. Each of these lysine residues were replaced by the acetylation 

mimicking amino acid glutamine (Q) in the EGFP-TRIM32K50R/K247R/K401R construct. The constructs were 

transfected into the HEK293 FlpIn TRIM32 KO cell line, and their expression monitored by Western 

blotting (Fig 2B). Clearly, introduction of the acetylation mimicking mutant at position K247 completely 

inhibited cleavage of TRIM32 (Fig 2B, lane 5), while the K50Q and K401Q mutations did not (Fig 2B, 

lanes 4 and 6). This suggests that acetylation of K247 in TRIM32 is implicated in regulation of TRIM32 

cleavage. The subcellular localization of the TRIM32 lysine mimicking mutants were examined by 

transient transfection of wild type EGFP-TRIM32 and the mutant constructs into HEK293 FlpIn 

TRIM32 KO cells. In line with previous reports, EGFP-TRIM32WT is enriched in small round 

cytoplasmic bodies in addition to diffuse cytoplasmic localization. Co-staining with the Golgi marker 

GM130 showed that many of the TRIM32 bodies localize close to the Golgi apparatus (Fig 2C). The 

EGFP-TRIM32 mutants that generate the cleaved TRIM32 product (TRIM32K50Q/k247R/K401R and 

TRIM32K50R/K247R/K401Q) formed mainly a few large bodies or aggregates localized in or close to the Golgi 

region. In contrast, the TRIM32K50R/K247Q/K401R mutant that inhibits TRIM32 cleavage, displays a 

subcellular localization very similar to the wild type protein (Fig 2C). Hence, the short TRIM32 protein 

seem to have a strong tendency to form large aggregates compared to full-length TRIM32 isoform. 

 

Fig 2. K247 acetylation inhibits TRIM32 cleavage and facilitates its subcellular distribution. (A) 

Western Blot analysis of HEK293 FlpIn TRIM32 KO cells transiently transfected with expression 

plasmids for EGFP-TRIM32WT, EGFP-TRIM32K50R/K247R/K401R, EGFP-TRIM32K50Q/K247R/K401R, 

TRIM32K50R/K247Q/K401R or EGFP-TRIM32K50R/K247R/K401Q. The bands representing EGFP-TRIM32 and 

cleaved EGFP-TRIM32 are indicated to the right. Ponceau staining of the membrane represents the 

loading control. (B) Confocal images of HEK293 FlpIn TRIM32 KO cells transiently transfected with 

expression plasmids for EGFP-TRIM32WT, EGFP-TRIM32K50R/K247R/K401R, EGFP-

TRIM32K50Q/K247R/K401R, TRIM32K50R/K247Q/K401R or EGFP-TRIM32K50R/K247R/K401Q, and immunostained 
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with anti-GM130 antibodies, a Golgi marker. The cell nuclei is visualized by DAPI staining. Scale bars: 

10 M. 

 

Autophagic degradation of TRIM32 is dependent on K50, K247 

and K401 modifications 

We have recently shown that TRIM32 is a substrate for selective autophagy [7]. Our next question was 

whether the short TRIM32 isoform is a target for selective autophagy. For this purpose, the double 

fluorescent tag mCherry-EYFP was cloned in front of the TRIM32 constructs TRIM32WT, 

TRIM32K247R/K401R, TRIM32K247Q, TRIM32K50R/K247Q/K401R, and TRIM32K50R/K247R/K401R and transiently 

transfected into the HEK293 FlpIn TRIM32 KO cells. Since EYFP is unstable in acidic environments 

while mCherry is stable, double-tagged TRIM32 constructs targeted to the lysosome will be visualized 

as RedOnly dots in the fluorescence microscope, while TRIM32 bodies in the cytoplasm will occur as 

yellow. The mCherry-EYFP-TRIM32K247R/K401R and mCherry-EYFP-TRIM32K247Q constructs formed 

RedOnly dots, but to a lesser extent than mCherry-EYFP-TRIM32WT (Fig 3). However, when all three 

lysine residues were substituted with Arginine, giving rise to the cleaved TRIM32 product, or when K50 

and K401 were substituted with arginine and K247 with glutamine, giving rise to a full length TRIM32 

product, no red only dots was observed in the transfected cells (Fig 3). This suggests that PTMs on the 

lysine residues K50, K247 and K401 regulate autophagic degradation of TRIM32.  

 

Fig 3. PTMs on TRIM32K50, TRIM32K247, TRIM32K401 regulate autophagic degradation of 

TRIM32. (A) Confocal images of mCherry-EYFP-TRIM32WT, mCherry-EYFP-TRIM32K247R/K401R, 

mCherry-EYFP-TRIM32K247Q, mCherry-EYFP-TRIM32K50R/K247Q/K401R or mCherry-EYFP-

TRIM32K50R/K247R/K401R transiently expressed in HEK293 FlpIn TRIM32 KO cells and exposed to normal 

or starved conditions.  Scale bars: 10 M. (B) The graphs represent the number of cells with RedOnly 

dots in the mCherry-EYFP-TRIM32 transfected cells shown with representative images in A. The 
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graphs represent the average of three independent experiments with s.d. (n>20 cells). **P< 0.005; 

***P<0.0005 (Student’s t-test). 

 

TRIM32 cleavage is directed by a PEST sequence  

The complete cleavage of the EGFP-TRIM32K50R/K247R/K401R construct prompted us to investigate 

whether TRIM32 encodes specific sequences that are exposed for proteolytic cleavage. Sequence 

analysis using the PEST prediction tool EMBOSS:epestfind (https://emboss.bioinformatics.nl/cgi-

bin/emboss/epestfind), identified a putative PEST sequence with PEST score 7.4 located from amino 

acid 248 to 270 (Fig 4A). The predicted PEST sequence is 100% conserved in mammals, and 

interestingly it is located adjacent to lysine K247 which acetylation inhibits TRIM32 cleavage. To 

examine if the predicted PEST sequence directs TRIM32 cleavage, specific glutamate and threonine 

residues within the PEST sequence were mutated to valine or isoleucine, respectively, in the EGFP-

TRIM32WT construct. Additionally, a partial deletion of the PEST sequence was introduced in EGFP-

TRIM32WT and EGFP-TRIM32K50R/K247R/K401R (Fig 4A). The PEST mutation and deletion constructs 

were transiently transfected into the HEK293 FlpIn TRIM32 KO cell line, and their expression 

monitored by Western blotting (Fig 4B). Clearly, partial deletion of the PEST sequence in the EGFP-

TRIM32K50R/K247R/K401R constructs completely inhibits TRIM32 cleavage (Fig 4B, lane 6). Partial 

deletion or mutation of the PEST sequence in wild type TRIM32 did not compromise TRIM32 

expression (Fig 4B, lanes 3 and 4). This identifies the 248-270 region of TRIM32 to be a PEST sequence 

that directs cleavage of TRIM32 that is unable to be modified on K50, K247 and K401. Clearly, 

mimicking of acetylation on lysine K247, which is localized adjacent to the PEST sequence, completely 

protects TRIM32 from the PEST directed cleavage (Fig 4B, last lane).  

 The cleaved TRIM32 protein contains the RBCC domains, and hence may have the ability to 

undergo auto-ubiquitylation and thereby gain catalytic activity. To examine this, the auto-ubiquitylation 

activity of the triple mutant TRIM32K50R/K247R/K401R was compared to the auto-ubiquitylation activity of 

TRIM32WT and TRIM32D487N, which is known to be catalytic inactive. Clearly, no auto-ubiquitylation 

activity was detected for the cleaved TRIM32 product (Fig 4C, lane 5). Auto-ubiquitylation activity of 
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TRIM32K50R/K247R/K401R with a partial deleted PEST sequence, and the acetylation mimicking mutant 

TRIM32K50R/K247Q/K401R were analyzed in parallel. Both these mutations inhibit cleavage of TRIM32 (Fig 

4C, lanes 6,7). Notably, none of these mutant forms of TRIM32 displayed auto-ubiquitylation activity. 

In contrast, TRIM32WT with a partial deleted PEST sequence (Fig 4C, lane 4) and the TRIM32K247Q 

construct (Fig 4B, last lane) both display auto-ubiquitylation activity.  

Together, these results show that the short isoform of TRIM32 can be generated by proteolytic 

cleavage directed by a PEST sequence located between the RBCC region and the NHL domains. 

Acetylation of K247 located adjacent to the PEST sequence, completely protects TRIM32 from PEST 

mediated cleavage. The short TRIM32 isoform and TRIM32 proteins containing K50, K247 and K401 

mutations are catalytic inactive, showing the importance of these lysines for TRIM32 activity.  

 

Fig 4. Acetylation of K247 protects TRIM32 from cleavage directed by the adjacent PEST 

sequence. (A) Schematic of TRIM32 domain organization with the three regulatory Lysine residues 

identified in this work indicated above, and the sequence of the mapped PEST sequ.ence indicated 

below. MutPEST and PEST display the modifications introduced to the predicted PEST sequence. (B) 

Western Blot analysis of cell extracts from HEK293 FlpIn TRIM32 KO cells transiently transfected 

with expression plasmids for EGFP-TRIM32WT, EGFP-TRIM32mutPEST, EGFP-TRIM32PEST, EGFP-

TRIM32K50R/K247R/K401R (3KR), TRIM32K50R/K247R/K401R/PEST (3KR PEST) or EGFP-TRIM32K247Q. The 

bands representing EGFP-TRIM32 are indicated to the right. The band representing cleaved EGFP-

TRIM32 is indicated to the right. Tubulin represents the loading control. (C) Western Blot analysis of 

cell extracts from HEK293 FlpIn TRIM32 KO cells transiently transfected with expression plasmids for 

EGFP-TRIM32WT, EGFP-TRIM32WT and mCherry-USP2, EGFP-TRIM32PEST, EGFP-

TRIM32K50R/K247R/K401R (3KR), TRIM32K50R/K247R/K401R/PEST (3KR PEST) or EGFP-

TRIM32K50R/247Q/K401R or EGFP-TRIM32D487N. The bands representing ubiquitylated EGFP-TRIM32, 

EGFP-TRIM32 and cleaved EGFP-TRIM32 are indicated to the right. Actin represents the loading 

control.  
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Discussion 

In this study we aimed at gaining insight in how TRIM32 auto-ubiquitylation regulates its activity and 

stability. TRIM32 is implicated in diverse biological and physiological processes such as muscle 

physiology, neuronal differentiation, immunity and cancer [5]. TRIM32 is reported to act both as an 

oncogene and as tumor suppressor, depending on the specific organ and cellular context [5]. TRIM32 

overexpression promotes cell proliferation, transforming activity, cell motility and prevents apoptosis 

[15, 19], but it is also shown to promote asymmetric cell division of neuroblastoma cells and to enhance 

TNF-induced apoptosis [20, 21]. Abnormal expression of TRIM32 has been demonstrated in various 

human cancer cells [22-26], and in the occipital lobe of Alzheimer’s disease patients [27]. Reduced 

TRIM32 expression in lung epithelial and tracheal cells increases their susceptibility to infection of 

influenza A virus [28]. Thus, regulating TRIM32 activity is of critical importance for healthy cell 

physiology.  

Our data reveal that TRIM32 contains a conserved PEST sequence located in the unstructured 

region between the N-terminal RBCC domains and the C-terminal NHL-domains. This is the first time 

a PEST sequence is identified in a TRIM protein. Inhibition of PTMs of the K50, K247 and K401 

residues by substitution of these lysine residues with arginine, resulted in exposure of the PEST to 

proteolytic enzymes, leading to TRIM32 cleavage. However, mimicking acetylation of K247 by 

glutamine substitution but keeping the K50R and K401R mutations, completely protected TRIM32 from 

proteolytic degradation. The acetylation also facilitated distribution of TRIM32 bodies throughout the 

cytoplasm, and protected it from autophagic degradation. Importantly, K247 is located immediately 

upstream of the PEST region. Thus, our data indicate that reversible acetylation of K247 regulates PEST 

mediated cleavage of TRIM32.  

 Research over the past decades have revealed that lysine  acetylation is a common mechanism 

for regulation of protein stability, and can regulate both proteasome-dependent and lysosome-dependent 

protein degradation (recently reviewed [29]). Acetylation mediated stabilization of proteins can be due 

to direct competition between acetylation and ubiquitylation of the same lysine residue, such as 

described for SMAD7 [30] and TRIM50 [31]. However, acetylation is also reported to promote protein 
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degradation by enhancing ubiquitylation leading to degradation in the proteasome [32, 33] or the 

lysosome [34, 35]. However, lysine acetylation regulating PEST mediated cleavage is to our knowledge 

not previously described, and hence presents a new mechanism for lysine acetylation mediating protein 

expression. Originally, PEST domains were identified in short living proteins [36], and later they are 

shown to function as an anchor site of E3 ubiquitin ligases required for ubiquitin dependent protein 

degradation [37, 38]. TRIM32 degradation can be mediated both via proteasomal and lysosomal 

pathways [7]. Here we applied inhibitors of the proteasome, the lysosome and the calpain proteases (data 

not shown), but we were not able to pinpoint which pathway is implicated in the PEST mediated 

cleavage of TRIM32. We may speculate that the K247 acetylation inhibits binding of proteolytic 

enzymes, since acetylation of proteins is a well known mechanism for inhibiting (or promoting) protein-

protein interactions [29]. 

TRIM32 activity is regulated by tetramerization via its coiled-coil domain [39]. Tetramerization 

leads to formation of RING domain dimers on each side of the two antiparallel TRIM32 dimers. RING 

domain dimerization is a common pre-requisite for E3 ligase activity of TRIM proteins [40, 41]. 

TRIM32 tetramerization induces auto-ubiquitylation, which seems to be necessary for its conventional 

ubiquitin ligase activity and formation of cytoplasmic bodies. The scaffold 14-3-3 protein binds TRIM32 

proteins phosphorylated at S651 in its very C-terminal end, and thereby inhibits TRIM32 tetramerization 

and cytoplasmic body formation [17]. HSP70, on the other hand, is reported to bind TRIM32 and 

promote formation of cytoplasmic bodies in an ATP-consuming process [42]. Apart from that, very little 

is known on how TRIM32 tetramerization and catalytic activity is regulated. The TRIM32LGMD2H disease 

mutants lack ubiquitylation activity and display a diffuse cytoplasmic localization [7, 18]. This is in line 

with the MS analysis of PTMs on the TRIM32LGMD2H mutant in this study, where no lysine residues 

were found to be ubiquitylated. However, lysine K247 in the mutant protein was found to be acetylated, 

indicating that TRIM32 acetylation is not dependent on tetramerization. Mutation of the lysine residues 

K50, K247 and K401 to arginine, lead to cleavage of TRIM32 generating an around 20 kDa protein 

containing the N-terminal RBCC domains. This cleavage product resemble the short TRIM32 isoform, 

suggesting that isoform 3 of TRIM32 are generated by proteolytic cleavage. This finding is supported 

by the lack of a transcript that corresponds to isoform 3 (ensembl.org). Mimicking acetylation of lysine 
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K247, but keeping the K50R and K401R mutations, protected TRIM32 from cleavage but did not restore 

its auto-ubiquitylation activity. This was in line with our MS results showing that the catalytic inactive 

TRIM32LGMD2H mutant can undergo K247 acetylation.  Mimicking acetylation of K50 or K401 did not 

protect TRIM32 from PEST mediated cleavage and our MS data indicated that these residues are targets 

for ubiquitylation and not acetylation. Our results indicate that these two lysine residues are important 

for auto-ubiquitylation activity, and hence the E3 ligase activity of TRIM32.  

Our study uncover that TRIM32 isoform 3 may be generated by PEST mediated cleavage of 

full-length TRIM32 isoform1/2, and that acetylation of lysine K247 localized adjacent to the PEST 

sequence protects TRIM32 isoform 1/2 from cleavage. We show that the short TRIM32 isoform is 

catalytic inactive, and hence may function as a dominant negative mutant regulating TRIM32 E3 ligase 

activity. Moreover, we find that auto-ubiquitylation activity of full-length TRIM32 is dependent on the 

lysine residues K50 and K401. K50 is located in the RING domain, and hence may directly affect the 

formation of a functional catalytic unit. K401 is located in the NHL repeats. Various mutations in the 

NHL repeats cause LGMD2H, and we have previously shown that TRIM32LGMD2H mutants are catalytic 

inactive [7].  

Identification of a functional PEST sequence in a TRIM family protein is a novel finding, and 

also that acetylation of a lysine residue adjacent to the PEST region regulates the exposure of the PEST. 

These findings may contribute to the understanding of cellular mechanisms leading to dysregulated 

TRIM32 expression observed in pathological conditions. 

 

Materials and Methods 

Antibodies  

The following primary antibodies were used: rabbit polyclonal antibody for TRIM32 (Proteintech, 

10326-1-AP); rabbit polyclonal anti-GFP (Abcam, ab290); rabbit polyclonal anti-Actin (Sigma, 

A2066); mouse monoclonal anti-PCNA (DAKO, M0879); rabbit monoclonal anti-GM130 (Abcam, 

#52649). The following secondary antibodies were used: Horseradish-peroxidase (HRP)-conjugated 

goat anti-rabbit IgG (BD 5 Biosciences, 554021); HRP-conjugated goat anti-mouse Ig (BD Biosciences, 
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554002); HRPconjugated anti-Biotin antibody (Cell Signalling, #7075), and Alexa FluorR 555-

conjugated goat anti-rabbit IgG (Life Technologies, A-11008).  

 

Cell culture and transfections 

HEK293 FlpIn T-Rex (ThermoFisher, R714-07), HEK293 FlpIn T-Rex TRIM32 KO [7], C2C12 

(ATCC® CRL-1772™) were cultured in Dulbecco’s modified eagle’s medium (DMEM) (Sigma, D6046) 

with 10% fetal bovine serum and 1% streptomycin-penicillin (Sigma, P4333). Sub-confluent cells in 6-

well plates were transfected using Metafectene Pro (Biontex, T040) following the manufacturer’s 

instructions.  

 

Immunostaining  

Subconfluent cells were grown on coverslips (VWR, #631-0150) coated with Fibronectin (Sigma, 

F1141). They were fixed in 4% formaldehyde for 20min at R.T., permeabilized with methanol at RT for 

5min, blocked in 5% goat serum/PBS or 5%BSA/PBS and incubated at room temperature with a specific 

primary antibody followed by Alexa Fluor 555 conjugated secondary antibody and DAPI. Confocal 

images were obtained using a 63x/NA1.4 oil immersion objective on an LSM780 system and the ZEN 

software (Zeiss). Quantification of cells containing red only dots in the mCherry- EYFP-double tag 

assay was done manually in three independent experiments, each including at least 30 cells.  

 

Plasmids 

All plasmids used in this study are listed in Table 1. Plasmids were made by conventional restriction 

enzyme based cloning or by use of the Gateway recombination system (ThermoFisher). Gateway LR 

reactions were performed as described in the instruction manual. Point mutations and deletion were 

carried out using the Site-directed-mutagenesis kit from STRATAGENE, using the primers described 

in Table 2. The oligonucleotides were ordered from ThermoFisher. All plasmids were verified by DNA 

sequencing (BigDye, Applied Biosystems, 4337455).  
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Table 1: Plasmids used in this study 

pDest EGFP TRIM32  [7] 

pDest EGFP TRIM32 D487N  [7] 

pDest EGFP TRIM32 P130S  [7] 

pDest EGFP TRIM32 K50R  This study 

pDest EGFP TRIM32 K247R  This study 

pDest EGFP TRIM32 K401R  This study 

pDest EGFP TRIM32 K247R/K401R  This study 

pDest EGFP TRIM32 K50R/K247R  This study 

pDest EGFP TRIM32 K50Q/K401R  This study 

pDest EGFP TRIM32 K50R/K247R/K401R  This study 

pDest EGFP TRIM32 K50Q/K247R/K401R  This study 

pDest EGFP TRIM32 K50R/K247Q/K401R  This study 

pDest EGFP TRIM32 K50R/K247R/K401Q  This study 

pDest EGFP TRIM32 ΔPEST  This study 

pDest EGFP TRIM32  K50R/K247R/K401R ΔPEST  This study 

pDest EGFP TRIM32 mutPEST  This study 

pDest EGFP TRIM32 K247Q  This study 

pDest mCherry USP2   This study 

pDest mCherry-EYFP-TRIM32  [7] 

pDest mCherry-EYFP-TRIM32 K247R/K401R  This study 

pDest mCherry-EYFP-TRIM32 K247Q  This study 

PDest mCherry-EYFP-TRIM32 K50R/K247Q/K401R  This study 

pDEST mCherry-EYFP-TRIM32 

K50R/K247R/K401R  

This study 

pDest EGFP-C1  [43] 

pDest mCherry-EYFP  [44] 
 

 

Table 2: Oligonucleotides used in this study 

TRIM32K50R 5’-TGCCGCCAGTGCCTGGAGCGCCTATTGGCCAGTAGCATC- 3’ 

TRIM32K247R 5’-TACTTCCTGGCCAAGATCCGCCAGGCAGATGTAGCACTA- 3’ 

TRIM32K401R 5’-ATACAAGTCTTTACCCGCCGCGGCTTTTTGAAGGAAATC- 3’ 

TRIM32K50Q 5’-TGCCGCCAGTGCCTGGAGCAGCTATTGGCCAGTAGCATC- 3’ 

TRIM32K247Q 5’-TACTTCCTGGCCAAGATCCAGCAGGCAGATGTAGCACTA- 3’ 

TRIM32K401Q 5’-ATACAAGTCTTTACCCGCCAAGGCTTTTTGAAGGAAATC- 3’ 

TRIM32ΔPEST 5’-AGGCAGATGTAGCACTACTGCTCACTGCCAGCTTGCCTCG -3’ 

TRIM32mutPEST 5’- CACTACTGGTGGTGATAGCTGATGTGGTGGTGCCAGAGCT- 3’ 

 

Western Blotting 

Cells were seeded in 6-well dishes and treated as indicated. Cells were lysed in 1xSDS buffer (50mM 

Tris pH 7.4; 2% SDS; 10% Glycerol) supplemented with 200mM dithiothreitol (Sigma, #D0632) and 

heated at 100°C for 10 minutes. The lysates were resolved by SDS-PAGE and transferred to 
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nitrocellulose membrane (Sigma, GE10600003). The membrane was stained with Ponceau S (Sigma, 

P3504), blocked with 5% non-fat dry milk in 1% TBS-T (0.2M Tris pH 8; 1.5M NaCl and 0.05% 

Tween20 (Sigma, P9416)) and then incubated with indicated primary antibodies for 24h. The membrane 

was washed three times for 10 minutes each with PBS-T followed by incubation with secondary 

antibody for 1h. The membrane was washed three times for 10 minutes and analyzed by enhanced 

chemiluminescence using the ImageQuant LAS 4000 (GE Lifescience). 

 

Statistics 

All experiments were repeated at least three times, unless otherwise specified. Error bars represent the 

standard deviation. Two-sided unpaired, homoscedastic Student T-Tests, were performed to assess 

significant differences between populations. Replicates were not pooled for statistical analyses. 
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Supporting Information 

S1 Fig 1. Inhibition of proteolytic enzymes does not stabilize the TRIM32K50R/K247R/K401R mutant or 

the TRIM32K247R/K401R mutant.  A. Western Blot analysis of HEK293 FlpIn TRIM32 KO cells 

transiently transfected with expression plasmids for TRIM32K50R/K247R/K401R, EGFP-TRIM32WT, or 

TRIM32K247R/K401R. The bands representing EGFP-TRIM32 are indicated to the right. The arrow 

indicates the band representing cleaved/partial degraded EGFP-TRIM32. The cells are treated with 

lysosomal inhibitor BafA1 (0.5 M), proteasomal inhibitor MG132 (5M), and calpain inhibitor E64D 

(5 g/ml) for 18 hours where indicated. Actin represents the loading control. B. Western Blot analysis 

of cell extracts from HEK293 FlpIn TRIM32 KO cells transiently co-transfected with expression 

plasmids for EGFP-TRIM32WT and mCherry-USP2, or EGFP-TRIM32WT and myc-HDAC6, or EGFP-

TRIM32WT and mCherry-USP2 and myc-HDAC6, as indicated above. The CBP/p300 inhibitor C646 

was added where indicated. The intensities of the TRIM32 bands relative to the intensities of the actin 

bands are indicated by the numbers below the blot. Actin represents the loading control. EV: Co-

transfection with empty vector. 
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