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Abstract

In this thesis, methods to support high level situation awareness in ship navigators
through appropriate automation are investigated. Situation awareness relates to the
perception of the environment (level 1), comprehension of the situation (level 2),
and projection of future dynamics (level 3). Ship navigators likely conduct men-
tal simulations of future ship traffic (Ievel 3 projections), that facilitate proactive
collision avoidance actions. Such actions may include minor speed and/or heading
alterations that can prevent future close-encounter situations from arising, enhanc-
ing the overall safety of maritime operations.

Currently, there is limited automation support for level 3 projections, where the
most common approaches utilize linear predictions based on constant speed and
course values. Such approaches, however, are not capable of predicting more com-
plex ship behavior. Ship navigators likely facilitate such predictions by developing
models for level 3 situation awareness through experience. It is, therefore, sug-
gested in this thesis to develop methods that emulate the development of high level
human situation awareness. This is facilitated by leveraging machine learning,
where navigational experience is artificially represented by historical AIS data.

First, methods are developed to emulate human situation awareness by developing
categorization functions. In this manner, historical ship behavior is categorized to
reflect distinct patterns. To facilitate this, machine learning is leveraged to gener-
ate meaningful representations of historical AIS trajectories, and discover clusters
of specific behavior. Second, methods are developed to facilitate pattern matching
of an observed trajectory segment to clusters of historical ship behavior. Finally,
the research in this thesis presents methods to predict future ship behavior with
respect to a given cluster. Such predictions are, furthermore, on a scale intended
to support proactive collision avoidance actions.

Two main approaches are used to facilitate these functions. The first utilizes
eigendecomposition-based approaches via locally extracted AIS trajectory seg-
ments. Anomaly detection is also facilitated via this approach in support of the
outlined functions. The second utilizes deep learning-based approaches applied
to regionally extracted trajectories. Both approaches are found to be successful
in discovering clusters of specific ship behavior in relevant data sets, classifying
a trajectory segment to a given cluster or clusters, as well as predicting the fu-
ture behavior. Furthermore, the local ship behavior techniques can be trained to
facilitate live predictions. The deep learning-based techniques, however, require
significantly more training time. These models will, therefore, need to be pre-
trained. Once trained, however, the deep learning models will facilitate almost
instantaneous predictions.
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Chapter 1

Introduction

This chapter provides an overview of the research in this thesis. First, the moti-
vation and background of the study are presented. Next, the research objectives
and scope of the thesis are introduced. The main research contributions are then
outlined. Subsequently, the included publications are presented and briefly sum-
marized. Finally, an outline of the remainder of the thesis is presented.

1.1 Motivation and Background

Modern technologies are advancing at a rapid pace, with developments in artificial
intelligence, computational power and communications technologies permeating
virtually every industry. Technologies e.g. image and speech recognition, that pre-
viously were inconceivable, are now commonplace on hand-held devices. Many
of these developments are largely due to the success of recent advances in machine
learning.

Machine learning is a sub-field of artificial intelligence, where computers are able
to learn from data without being explicitly programmed. In this manner, the algo-
rithms emulate human behavior, and their ability to learn from experience. In re-
cent years, most of the advances in machine learning have been in a field known as
deep learning (Goodfellow et al., 2016). Deep learning leverages artificial neural
networks, that initially were designed to model brain functions. Machine learning
techniques are data-driven, in that the model parameters are optimized by learning
from the data.

Due to the ubiquity of data from various sensors, such data-driven techniques have
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gained interest across a wide variety of domains, with the potential to enable safer
and more efficient operations in many industries. Hermann et al. (2016) argued that
the next industrial revolution, a so-called digital revolution, is taking place, known
as Industry 4.0. The maritime sector is among such industries, where the shipping
industry has identified the potential of utilizing recent technological developments
to optimize its operations. This technological revolution in shipping is similarly
being referred to as Shipping 4.0 (Rgdseth et al., 2015).

In recent years, the concept of autonomy (Krogmann, 1999) has become more
and more prevalent, with autonomous cars (Chan, 2017) among the most highly
researched topics. These developments are in a large part facilitated by recent de-
velopments in machine learning. Similarly, machine learning is viewed as a main
facilitator of autonomous ship operations. One of the primary objectives for au-
tonomous ships is to replace the functions of the navigator. The Officers on Watch
(OOW) are essential on conventional vessels, and facilitate crucial functions e.g.
collision avoidance and path planning. Some aspects of navigation can also be
executed under autopilot type systems. Control algorithms to facilitate autopilot
functions have existed for many years, with the first automatic ship steering mech-
anism developed already in 1911 (Fossen, 2000).

However, the OOW rely on their degree of situation awareness (Endsley & Jones,
2012), developed through experience, to navigate in a safe and efficient manner,
even when autopilots are utilized. Situation awareness can be thought of as "Being
aware of what is happening around you and understanding what that information
means to you now and in the future" (Endsley & Jones, 2012). Situation awareness
is further split into three levels. Level 1 situation awareness relates to the per-
ception of the surroundings (e.g. ship traffic). Level 2 situation awareness entails
comprehension of the situation, e.g. the importance of the situation with respect
to the integrity of an operation. Level 3 is the highest level of situation awareness,
and relates to the projection of the future status, e.g. via simulation of future dy-
namics. To facilitate safe and efficient autonomous operations, technology must
be developed to emulate such human situation awareness.

Enhanced Situation Awareness

It is claimed that about 75%-96% of maritime accidents can be attributed to hu-
man error (Rothblum, 2000). As a result, autonomous ship functions are argued to
minimize error due to human involvement. It is further suggested that autonomous
functions can serve as a decision support system to improve the safety and effi-
ciency of maritime operations until fully autonomous vessels are derived. Auton-
omy in shipping has been divided into four levels, developed by the International
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Maritime Organization (IMO)(IMO, 2020), where the first level aims to provide
such decision support:

1. Ship with automated processes and decision support: Seafarers are on board
to operate and control shipboard systems and functions. Some operations
may be automated and at times be unsupervised but with seafarers on board
ready to take control.

2. Remotely controlled ship with seafarers on board: The ship is controlled
and operated from another location. Seafarers are available on board to take
control and to operate the shipboard systems and functions.

3. Remotely controlled ship without seafarers on board: The ship is controlled
and operated from another location. There are no seafarers on board.

4. Fully autonomous ship: The operating system of the ship is able to make
decisions and determine actions by itself.

However, many challenges may arise when involving automation to support human
decision making (Endsley, 2017). It many cases, it has been shown that automation
can result in new failure modes that compound the risk associated with various op-
erations when interacting with humans (Bainbridge, 1983; Strauch, 2017). Endsley
(2017) has further argued that instead of designing automation systems to support
decision making, systems should developed to support situation awareness. As
such, technology developed to facilitate situation awareness in autonomous ves-
sels can also be used to provide enhanced situation awareness to ship navigators.

Situation awareness is a key facilitator of collision avoidance actions. The dy-
namic obstacles presented by other vessels likely constitute a significant challenge
to most OOW, where their situation awareness must constantly be updated to main-
tain safe operations. This is supported by interviews with navigators in Sharma et
al. (2019), where multiple aspects of ship traffic were outlined as important to fa-
cilitate situation awareness. To support navigational situation awareness, recent
developments of automation functions have focused on supporting the perception
of elements in the environment via existing technologies, e.g. computer vision.
Endsley & Jones (2012), however, argued that the best way to support human
performance is by supporting high levels of situation awareness, e.g. level 3 pro-
jections of the future states of a system.

Ship navigators likely utilize level 3 projections to simulate future ship traffic and
evaluate the likelihood of close-encounter situations. In this manner, proactive col-
lision avoidance maneuvers can be implemented to prevent such situations from
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arising. Such proactive measures may for instance include minor speed or heading
alterations. However, such actions must comply with relevant rules and regulations
e.g. the COLREGs (Convention on the International Regulations for Preventing
Collisions at Sea) (Cockcroft & Lameijer, 2011). Currently, the most common
technique employed to support such predictions is a linear extrapolation of a tra-
jectory based on the current speed and course over ground. However, in many
cases, the assumption that the vessel will maintain constant speed and course over
ground will not be valid, especially in regions of complex traffic e.g. inland water-
ways and around ports. Linear predictions are, therefore, not sufficient to support
level 3 situation awareness in many cases.

Ship navigators likely conduct such simulations of the future based on their experi-
ence with historical ship behavior in the region, or based on experience with similar
situations. Such experience likely facilitates higher levels of situation awareness
(Endsley & Jones, 2012). Endsley & Garland (2000b) argued that expert operators
rely on their ability to predict future system dynamics, and that this ability is the
mark of a skilled expert. If a navigator has a high level of situation awareness,
they likely possess internal models capable of conducting complex predictions of
ship behavior. Technology to support autonomous vessels should, therefore, be
developed to provide navigational expertise that facilitates such predictions. Such
automation could, in turn, support high levels of situation awareness in ship navi-
gators, especially in cases where the navigator is inexperienced.

Designing automation to support level 3 situation awareness, however, is not eas-
ily achieved. First, navigational experience must be artificially represented. Such
experience largely relates to historical ship behavior, where it is assumed that the
future behavior of a selected vessel will be similar to that of the past behavior
of similar vessels. One approach to facilitate this may be to leverage historical
Automatic Identification System (AIS) data. The historical AIS data for a given
region outlines the historical ship behavior. As such, navigational experience can
be artificially represented in historical AIS data sets. However, high levels of situa-
tion awareness require the development of models that can predict future behavior
based on past behavior. To emulate this, it is suggested to leverage data-driven
techniques, specifically machine learning, to facilitate enhanced maritime situa-
tion awareness.

1.2 Research Objectives

The main objective of this thesis is to enhance the safety of maritime transporta-
tion by utilizing recent developments in data driven techniques, while supporting

4



1.2. Research Objectives

the further requirements for autonomous ship navigation. To facilitate this, it is
suggested to identify methods to support level 3 situation awareness for ship navi-
gators. If ship navigators are able to predict future ship traffic accurately, proactive
collision avoidance measures can be taken to prevent potential close-encounter sit-
uations from arising, thereby enhancing the safety of maritime operations. It is,
therefore, suggested to investigate emulating the development of human situation
awareness by applying machine learning techniques to historical AIS data sets. If
effective, this should yield models capable of predicting future ship trajectories.
Such projections can be utilized by navigators, or future autonomous vessels, to
minimize the risk of future close-encounter situations. As such, they will provide
a form of enhanced maritime situation awareness. The following research objec-
tives (RO) are formulated to support these developments:

RO1 Leverage machine learning to provide methods to support maritime situation
awareness.

RO2 Leverage historical AIS data to provide methods to support level 3 maritime
situation awareness by artificially serving as navigational experience.

RO3 Develop methods to emulate the development of high level maritime situa-
tion awareness in humans by:

(i) Developing methods to categorize ship behavior.

(ii) Developing methods to facilitate behavior models for predicting future
ship behavior.

(iii) Developing methods to facilitate pattern matching of observed ship
behavior.

Scope of Work

The scope of the work in this thesis is constrained to methods to support level 3
maritime situation awareness. Maritime situation awareness is further constrained
to relate to the situation awareness of ship navigators. The applicability of such
situation awareness is also limited to collision avoidance. Furthermore, the scope
is limited to two-vessel encounter situations. However, it can be expanded to a
multi-vessel encounter situations. Historical AIS data will also provide the basis
for all studies. As such, weather parameters will not be considered in this work.
However, it is expected that the AIS data are based on ship navigator decisions that
may have been influenced by prevailing weather conditions. Finally, this thesis
aims solely to provide predictions to ship navigators. As such, risk evaluation
metrics are not considered as part of the scope.
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1.3 Research Contributions

In line with the main objective of the thesis, the research outcome provides meth-
ods to enhance the safety of maritime transportation. In focusing on level 3 sit-
uation awareness, methods are developed to support ship behavior prediction by
leveraging historical AIS data in conjunction with machine learning. As such, the
general contributions can be considered to be frameworks that facilitate level 3
situation awareness projections of ship behavior. However, the following research
contributions (RC) are considered to be provided by the research, that together
comprise such frameworks:

RC1 Methods to generate representations of historical ship behavior

RC2 Methods to cluster historical ship behavior

RC3 Methods to classify a novel ship trajectory to a cluster of historical behavior
RC4 Methods to predict future ship behavior

RCS Methods to identify anomalous ship behavior

1.4 Appended Papers

The publications included in this thesis are listed below. The papers are presented
in the following order to improve the readability of the thesis.

(I) Murray, B., Perera, L. P. (2021). Ship Behavior Prediction via Trajectory
Extraction-Based Clustering for Maritime Situation Awareness. Submitted
and in First Revision for Publication in Journal of Ocean Engineering and
Science.

(I) Murray, B., Perera, L. P. (2020). A Dual Linear Autoencoder Approach
for Vessel Trajectory Prediction Using Historical AIS Data. In Ocean Engi-
neering, 209, 107478. https://doi.org/10.1016/j.oceaneng.2020.107478

(IITI) Murray, B., Perera, L. P. (2020). Unsupervised Trajectory Anomaly Detec-
tion for Situation Awareness in Maritime Navigation. In Proceedings of the
39th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE 2020). ASME. https://doi.org/10.1115/O0MAE2020-18281
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(IV) Murray, B., Perera, L. P. (2021). Deep Representation Learning-Based
Vessel Trajectory Clustering for Situation Awareness in Ship Navigation.
Accepted for Publication in Developments in Maritime Technology and En-
gineering. Proceedings of the 5th International Conference on Maritime
Technology and Engineering (MARTECH 2020). Taylor and Francis.

(V) Murray, B., Perera, L. P. (2021). An AIS-Based Deep Learning Framework
for Regional Ship Behavior Prediction. Submitted and in First Revision for
Publication in Journal of Reliability Engineering and System Safety. Special
Issue on Safety of Maritime Transportation Systems.

Papers Published by the Author but Not Included in Thesis

* Murray, B, Perera, L. P. (2018). A Data-Driven Approach to Vessel Trajec-
tory Prediction for Safe Autonomous Ship Operations. 2018 13th Interna-
tional Conference on Digital Information Management (ICDIM), 240-247.
IEEE. https://doi.org/10.1109/ICDIM.2018.8847003

* Murray, B., Perera, L. P. (2019). An AIS-Based Multiple Trajectory Predic-
tion Approach for Collision Avoidance in Future Vessels. Proceedings of the

38th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE 2019). https://doi.org/10.1115/OMAE2019-95963

* Perera, L. P., Murray, B. (2019). Situation Awareness of Autonomous Ship
Navigation in a Mixed Environment Under Advanced Ship Predictor. Pro-
ceedings of the 38th International Conference on Ocean, Offshore and Arc-
tic Engineering (OMAE 2019). https://doi.org/10.1115/OMAE2019-95571

Brief Summary of Appended Papers

In Paper I, a method to leverage historical AIS data to cluster specific ship behav-
ior based on locally extracted data is developed. Using these clusters of specific
behavior, the future trajectory of a selected vessel can be predicted. Paper II builds
upon the work in Paper I by introducing a dual linear autoencoder approach to fa-
cilitate trajectory predictions to support level 3 maritime situation awareness. The
work in Paper III develops a method to facilitate anomaly detection in support of
the methods in Paper I and Paper II. Paper IV investigates leveraging deep learn-
ing to facilitate clustering of regionally extracted historical AIS trajectories. Paper
V builds upon this work by introducing a deep learning framework for trajectory
clustering, classification and prediction.
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1.5 Outline of The Thesis

In Part I, the methodology and context of the thesis are presented. Chapter 2 dis-
cusses maritime situation awareness, outlining the context and motivation for the
developed methods. Chapter 3 introduces relevant machine learning techniques
that can be leveraged to emulate high level human situation awareness through
historical AIS data.

Part II presents the research outcome. Chapter 4 presents a summary of the
appended papers. Chapter 5 then provides a discussion of the research, with con-
cluding remarks and suggestions for further work in Chapter 6.

The included papers are appended in Part III.



Part I

Methodology and Context



10



Chapter 2

Maritime Situation Awareness

In order to facilitate safe maritime operations, ship navigators must have an ad-
equate of degree of what is known as situation awareness. Situation awareness
provides the basis for risk mitigation actions e.g. collision avoidance. In this chap-
ter, maritime situation awareness is discussed, as well as how automation can be
utilized to enhance the situation awareness of ship navigators.

In the first section, the theory of situation awareness is presented. The section
presents relevant literature to provide a basis for understanding the mechanisms
of situation awareness. To best emulate human situation awareness, such develop-
ment mechanisms must be understood. Autonomy, and how automation functions
can best support human performance are also discussed. It is argued that automa-
tion should be designed to support the situation awareness of operators.

In the next section, situation awareness in ship navigation is discussed. Relevant
information requirements for the three levels of situation awareness are presented,
along with existing automation technology to support the respective levels. It is
argued that limited support for level 3 situation awareness currently exists.

Proactive collision avoidance is then discussed in light of level 3 situation aware-
ness projections. Applications for a long-range trajectory prediction facilitated
by automation are presented, as well as how any proactive collision avoidance
measures based on such predictions must adhere to existing rules and regulations.
Finally, existing approaches that may facilitate such level 3 predictions are dis-
cussed.

11



Chapter 2. Maritime Situation Awareness

Situation Awareness

Perception of | Comprehension | Projection of
Elements in | of Current Future Situation IDecision Performance
Current Situation of Action

State of
Environment

Situation
Level 1 Level 2 Level 3

Figure 2.1: Model of situation awareness adapted from Endsley (1995).

2.1 Theory of Situation Awareness

The term situation awareness dates back to World War I, where its importance was
identified in the pilot community (Endsley & Garland, 2000a). The term has since
then been adopted in a wide variety of domains in which operators can enhance
their performance through high levels of situation awareness. Such domains in-
clude education, driving, train dispatching and power plant operations (Endsley &
Jones, 2012). A formal definition of situation awareness was outlined in Endsley
(1988a) as:

"The perception of of the elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projection of their status in
the near future"

In a more general sense, situation awareness can be thought of as "Being aware of
what is happening around you and understanding what that information means to
you now and in the future" (Endsley & Jones, 2012). Such situation awareness is
utilized to achieve some form of goal or objective. A model of situation awareness
in dynamic decision making is illustrated in Fig. 2.1. The figure illustrates how the
state of the environment provides the basis for situation awareness. This then leads
to a decision, and a subsequent action in line with the objective of the operator.

Endsley (1995) decomposed situation awareness into three levels:

1. Perception of the elements in the environment
2. Comprehension of the current situation

3. Projection of the future status

These levels increase in complexity with level 1 the most basic, and 3 the most
advanced. Furthermore, the levels are iterative and feed into one another, i.e. level
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3 situation awareness requires level 2 which again requires level 1, as illustrated in
Fig. 2.1. Situation awareness will be discussed in light of Endsley’s model in this
thesis.

Once situation awareness is achieved, a decision can be made, and a subsequent
action implemented. Situation awareness can be viewed as an internal model of the
operator, where a representation of the environment is generated via this internal
model. This internal representation can then subsequently be utilized to make a
decision. Situation awareness is, therefore, separate from the decision making
process, as shown in Fig. 2.1. Operators should always make the best decision
possible given their skills and level of situation awareness. However, incorrect
decisions occur, that may result in high risk situations and accidents e.g. ship
collisions.

When investigating accidents involving human operators, incorrect decisions are
often attributed to human error. Studies in various domains have shown that nearly
90% of human error is due to poor situation awareness (Endsley, 1995). As a re-
sult, it can be argued that humans do not necessarily make bad decisions in some
situations, but rather misunderstand the situation. Situation awareness in this man-
ner supports better decision making in humans.

2.1.1 Mental Modeling

It is theorized that operators actively make use of what are known as mental mod-
els to facilitate situation awareness (Sarter & Woods, 1991; Endsley, 1995). It has
been argued that such mental models are key enablers of level 2 and level 3 sit-
uation awareness (Endsley & Jones, 2012). This section outlines key aspects of
mental modeling, and its importance in achieving high levels of situation aware-
ness. By investigating how human situation awareness is developed, it may be
possible to emulate the development mechanisms in automation technology.

Working Memory

Once a human operator has perceived the elements in the environment (level 1
situation awareness), the information must be added to their working memory.
Working memory provides the basis to process information pertaining to the cur-
rent situation. Using the knowledge stored in their working memory, an operator is
able to comprehend the current situation (i.e. level 2 situation awareness). Further-
more, projections of future states (i.e level 3 situation awareness), and subsequent
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decisions, are made in working memory. Wickens et al. (1984) argued that predict-
ing the future states of systems imposes a heavy load on working memory. This is
argued to be due its responsibility for maintaining control over current and future
states, as well as appropriate actions with respect to the future conditions. As a
result, the working memory of an operator can easily be overloaded, constituting
a potential bottleneck for situation awareness.

Schemata and Mental Models

Long-term memory is utilized by operators to ameliorate the challenges associ-
ated with the limited capacity of working memory. It has been argued that op-
erators employ a component of long-term memory known as schemata to assist
in achieving situation awareness (Rasmussen & Rouse, 1981; Braune & Trollip,
1982). Such schemata are frameworks that provide a basis for human understand-
ing of information relating to complex system states and functions (Bartlett, 1932;
Mayer, 1983). They can, therefore, be viewed as a compressed version of previous
situations, where the most important details are encoded in a long-term memory
bank. This encoding is structured in a framework to best describe the relevant ele-
ment or situation. For instance, a schema of a ship would likely comprise the most
import ship components. Similarly, a schema of a ship route will likely contain the
most important details of the route. Such schemata are frameworks for observed
situations, where the details of the framework are filled in based on current obser-
vations of the operator. In this manner, an operator does not need to retain as much
information in working memory, as relevant schemata can be accessed and utilized
to comprehend the situation.

Schemata are closely related to the concept of mental models. Mental models
were defined in Rouse & Morris (1985) as "Mechanisms whereby humans are able
to generate descriptions of system purpose and form, explanations of system func-
tioning and observed system states, and predictions of future states". It was argued
that experts develop mental models that are able to generate abstract codes from
the true representations. Mental models can, therefore, be thought of as complex
schemata utilized by operators to model system behavior (Endsley, 1995).

Pattern Matching

Pattern matching is an important aspect of mental models. When exposed to a situ-
ation, an operator will attempt to match stored schemata in their long-term memory
to the observed situation. Schemata in this sense represent prototypical situations,
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where operators recognize similar characteristics in the current situation. Endsley
(1995) argued that the key to using mental models to achieve situation awareness
lies in the ability to identify key features in the environment that map to key fea-
tures in the schema, i.e. pattern matching. This allows for high level situation
awareness without loading working memory.

Humans are highly skilled in pattern matching, and can classify a situation to a
schema virtually instantaneously. Once the relevant schema is identified, an oper-
ator can use the mental model to direct their attention to key elements in the envi-
ronment, as well as comprehend the situation and predict the future future states.
Development of such models, however, requires experience. It is self evident that
novice operators will not perform as well as expert, ie. experienced, operators. As
operators are exposed to recurrent situations, they will discover recurrent causal
relationships and components. Endsley (1995) argued that this forms the basis for
early schema and model development in novice operators.

Model Development

A detailed outline of the development of mental models was described in Holland
et al. (1986). An overview of model development is illustrated in Fig. 2.2. The
authors argued that the first step in model development is learning to categorize in-
put. In this manner, individuals learn categorization functions that map real world
inputs to a representation category. Such categories can be thought of as being
analogous to schemata. As individuals become more experienced, they begin rec-
ognize common characteristics between various situations or objects, i.e. patterns,
and categorize them. Future situations or objects can then be classified to one of
these categories via pattern matching.

The second step of model development is argued in Holland et al. (1986) to be the
development of transition functions that model how objects or situations vary over
time. Each category will, therefore, have its own behavior model. Such mental
models are refined by comparing the predictions of the models to real life observa-
tions. With experience, individuals progressively refine model predictions against
observations. It is argued that in this process, a higher number of categories are
generated. This increase can be attributed to larger categories with general behav-
ior being split into smaller categories with more specific behavior. Such specific
categorizations allow the operator to develop more detailed models relating to the
specific behavior of that category, enhancing their ability to predict future states
with a high degree of precision.

The development of mental models can, therefore, be argued to be viewed as three-
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Figure 2.2: Development of mental models.

fold. First, individuals develop categories of experiences. This is analogous to a
clustering of past situations, where similar situations will be grouped together in
the same cluster. Second, classification functions are developed to classify novel
situations to one of the existing clusters. Third, models are developed to describe
the behavior in each cluster. These facilitate level 2 and level 3 situation awareness
(comprehension and prediction). When applying such mental models, an operator
will observe a novel situation and classify it to one of the existing categories. Us-
ing the relevant behavior model, they are able to comprehend the novel situation
as well as predict future behavior without loading working memory.

Situation Models

It is clear that mental models are powerful tools that facilitate situation awareness.
Figure 2.3 illustrates the relationship between mental models and situation models.
A situation model can be thought of as the current state of the mental model (Ends-
ley & Garland, 2000b), i.e. the schema is filled in with relevant details pertaining to
the current situation. Pattern matching is utilized to select the appropriate schema,
and associated behavior model, that matches the situation. The mental model will
then direct the attention of the operator to critical aspects of the environment. Such
models also aid in integrating relevant elements to facilitate comprehension of the
situation (level 2 situation awareness). Furthermore, the selected behavior model
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Figure 2.3: Role of mental models adapted from Endsley & Garland (2000b).

will model the dynamic behavior of the situation. In this manner, the model can
be used to predict future dynamics, i.e. projection (level 3 situation awareness).
Via computational algorithms, such models towards predicting situation dynam-
ics may be replicated, facilitating high level situation awareness to autonomous
systems.

2.1.2 Autonomy

Autonomous capabilities are being developed at an increasing rate with the pur-
pose of reducing the workload of human operators as well as increasing the level
of safety associated with the systems in many domains. These include the mar-
itime, automotive and aviation industries (Endsley, 2017). Most relevant research
related to autonomy has historically focused on automation. Recently, however,
the term autonomy has become more prevalent, and the terms are often conflated.

Endsley (2017) discussed the work in Krogmann (1999), that argued that auton-
omy differs from automation in that autonomous systems are designed to function
independently for large periods of time without the ability for external intervention.
Furthermore, autonomous systems were argued to leverage intelligent algorithms

17



Chapter 2. Maritime Situation Awareness

that are capable of learning and adapting to unforeseen and dynamic situations.
Automation, however, was argued to rely on logic-based programming, making it
less flexible in the face of uncertainty. In this sense, autonomous systems can deal
with situations that were not explicitly pre-programmed, rendering them more in-
telligent. Autonomy can, therefore, be viewed as an evolution of automation that
historically has been more limited with respect to its capabilities (Hancock, 2017).

Autonomy is driving technology development in many cases, e.g. technology to
support autonomous ships. It is assumed, however, that fully autonomous ship
operations will not be common for some time. Semi-autonomous operations in-
volving human operators are argued to be the most prominent form of autonomy
in many domains (Endsley, 2017). Such semi-autonomous operations may for in-
stance include remote-controlled operations, or operations where the ship is navi-
gating autonomously, but being monitored closely by human operators. Endsley &
Jones (2012) developed a taxonomy of various levels of automation, ranging from
manual control to full automation.

Decision Support

One of the levels of automation in the taxonomy of Endsley & Jones (2012) related
to systems that could provide decision support functions. This is a common argu-
ment made for the development of autonomous technology, as it can be argued to
additionally function as a decision support system to human operators. According
to the outlined taxonomy, decision support implies a computer generating recom-
mended options for the human to choose between, whilst also allowing the human
to override the system and input their own choice. The premise of such a system
is that intelligent automation functions can improve human decision making by
advising operators on what to do in various situations, especially in cases where
the operator has limited experience (Endsley & Jones, 2012).

However, utilizing automation for decision support has been found to be prob-
lematic in many studies as discussed in Endsley (2017). One issue related to
automation-based decision support was argued to be a decision-biasing effect (Cro-
coll & Coury, 1990; Sarter & Schroeder, 2001; Lorenz et al., 2002; Reichenbach
etal., 2011; Endsley & Jones, 2012). In this case, the automation may recommend
a course of action that significantly biases the decision of the operator. In cases
in which the automation is correct, such systems are shown to assist in correct
decision making. However, in cases where the decision is incorrect, human opera-
tors have been found to perform worse than they would have without any support
(Layton et al., 1994; Olson & Sarter, 1999). This effect has been found to be in-
tensified in cases where the system is considered to be very reliable (Metzger &
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Parasuraman, 2005; Rovira et al., 2007). Furthermore, it has been found that de-
cisions are slowed when using decision support systems as operators require extra
time to compare decisions output by the system to their own understanding of the
situation (Endsley & Kris, 1994; Madhavan & Wiegmann, 2005). Many of these
studies have focused on aircraft pilots. It can be argued that ship navigators and
aircraft pilots share many similarities, and as such the research is transferable to
some extent.

Situation Awareness Support

As opposed to providing direct decision support, it has been argued that automa-
tion can be beneficial in improving human performance through supporting situa-
tion awareness (Endsley & Jones, 2012). Situation awareness support is presented
as a lower level of automation than decision support in the taxonomy from End-
sley & Jones (2012). With respect to level 1 situation awareness, automation can
provide methods to collect and present relevant information to the user. Further-
more, systems can be designed to integrate information to support comprehension
and projection (level 2 and level 3). In this manner, the operator is still highly in-
volved in the decision making process, reducing the aforementioned issues related
to automation designed to provide decision support. Endsley (2017) argued further
that automation should be designed to support situation awareness as studies have
shown that such systems can significantly reduce the workload of the user, as well
as enhance situation awareness and performance with little negative effects (End-
sley, 1988b; Sarter & Schroeder, 2001; Onnasch et al., 2014; Endsley & Jones,
2012).

2.2 Situation Awareness in Ship Navigation

As discussed in Sec. 2.1.2, automation functions should be developed to support
situation awareness. Situation awareness is predicated upon the relevant goal or
objective of the operator. The primary objective of a ship navigator is to navigate
the vessel to its destination in a safe and efficient manner. The integrity of the
operation must be maintained at all times, as well as adherence to relevant rules and
regulations. It can be argued that one of the main challenges facing navigators in
achieving this goal is effective collision avoidance. Collision avoidance is defined
in Huang et al. (2020) as a process in which one ship departs from its planned
trajectory to avoid a potential undesired physical contact with another ship at given
point in the future. In this context, the ship under control is defined as the own ship.
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The dynamic obstacles represented by other ships are known as target ships.

Sharma et al. (2019) investigated the situation awareness information requirements
of ship navigators. The results of the study indicated that information relating to
ship traffic was essential in achieving all three levels of situation awareness. The
findings support the argument that situation awareness in ship navigation supports
collision avoidance decisions and actions. Other challenges, e.g. grounding, do ex-
ist, but the dynamic obstacles inherent in target ships navigating in close proximity
to the own ship can be argued to constitute significant challenges for navigators
with respect to situation awareness requirements. As a result, maritime situation
awareness will be discussed in the context of collision avoidance for the case of
ship navigation.

Enhancing the situation awareness of the OOW to facilitate effective collision
avoidance is a classic research topic (Huang et al., 2020), with a myriad of tech-
nologies developed to support navigators. Recently, research into autonomous sys-
tems to replace human functions has gained much attention. Autonomous ships
will need to achieve their own level of situation awareness to conduct effective
collision avoidance maneuvers. As such, technology should be developed that can
emulate human behavior (Perera, 2020). It is additionally argued that the technol-
ogy developed to facilitate situation awareness for autonomous ships can benefit
manned vessels (Huang et al., 2020). Such automation technologies should en-
hance the situation awareness of navigators, compared to the degree of situation
awareness achievable without such tools. In this section, navigational situation
awareness requirements are discussed, as well as relevant automation to support
maritime situation awareness.

2.2.1 Level 1 Situation Awareness

Information Requirements

The case of ship navigation fits well into the architecture illustrated in Fig. 2.1. The
state of the environment in this domain relates to the current environmental condi-
tions e.g. wave height, tide, wind speed, current speed and their relative directions.
Furthermore, visibility, under-keel clearance, local geography, and fairway geome-
try constitute crucial environmental elements for a navigator’s situation awareness.
Such environmental conditions will, for instance, influence the maneuverability of
the vessel, and need to be taken into consideration by the navigator. These envi-
ronmental conditions can be viewed as quasi-static, as they are dynamic with time,
but are near constant with respect to the horizon of a navigator’s decision making,
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and should, therefore, generally be easily predicted in time.

Dynamic obstacles, however, also exist in ship navigation. These primarily relate
to the surrounding maritime traffic. The current position of other vessels in the
region, as well as their course over ground and speed over ground, provide critical
information to the navigator to facilitate situation awareness. Sharma et al. (2019)
identified information pertaining to ship traffic and obstacles as necessary elements
to achieve level 1 situation awareness, where the location and number of targets
were outlined as important. Such dynamic obstacles are likely to pose a signifi-
cant challenge to a navigator, as they must be capable of implementing effective
collision avoidance actions to maintain the integrity of the operation. Adequate
perception of such obstacles is, therefore, important in ship navigation. The per-
ception of all such environmental conditions constitutes level 1 situation awareness
in Fig 2.1.

Automation Support

Much of the technological development towards aiding maritime situation aware-
ness has focused on supporting level 1 situation awareness for navigators. In order
to perceive the relevant targets, navigators rely heavily on visual observation, in
addition to the navigational tools available to them. Such tools include radar facil-
itated by ARPA (Automatic Radar Plotting Aid), conning display, AIS and ECDIS
(Electronic Chart Display and Information System). Perera & Guedes Soares
(2015) argued that the best navigational tools should be available to navigators
to support them in identifying relevant obstacles.

There has recently been a significant amount of research conducted on technology
to facilitate level 1 situation awareness to autonomous vessels through electro-
optical sensors e.g. stereo cameras, RADAR (Radio Detection and Ranging) and
LIDAR (Light Detection and Ranging) (Yang et al., 2017; Prasad et al., 2017;
Bloisi et al., 2017; Cane & Ferryman, 2018). Computer vision techniques that
leverage machine learning have been shown to be able to detect and classify var-
ious obstacles, thereby facilitating level 1 situation awareness. Within the auto-
motive industry, these techniques are viewed as an enabler for autonomous cars.
Techniques e.g. semantic segmentation (Treml et al., 2016), that classify pixels as
belonging to various classes (e.g. road, side walk, pedestrian, car etc.), facilitate
an awareness with respect to the surroundings of the autonomous car. Many of
the techniques developed towards autonomous cars are also integrated into sup-
port systems for drivers e.g. obstacle detection. Similarly, technology towards
autonomous shipping can be utilized to support navigators via information presen-
tation.
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2.2.2 Level 2 Situation Awareness

Information Requirements

Level 2 situation awareness requires that all relevant elements in the current situa-
tion have been perceived, i.e. sufficient level 1 situation awareness. Based on this
awareness, a navigator can comprehend the current situation, and the implications
it has for the safety of the vessel. Sharma et al. (2019) found that that the deviation
between the ideal and current system states, as well as impact of events on navi-
gation were necessary to achieve level 2 situation awareness. Among the relevant
information required for level 2 situation awareness, the study identified the cur-
rent separation between the own ship and target ships, as well as the distance to the
nearest obstacles as relevant information requirements. Furthermore, the impact of
traffic conditions, ship maneuvers, alteration of course and speed were identified.
With respect to collision avoidance, it can be argued that the current risk of colli-
sion is evaluated at this level. Parameters relating to the Closest Point of Approach
(CPA), e.g. the Time to Closest Point of Approach (TCPA) and Distance at Closest
Point of Approach (DCPA), have generally been utilized to evaluate the collision
risk (Huang et al., 2018). The navigator should, therefore, have enough knowledge
and experience to evaluate the current collision risk given their perception of the
situation under the respective parameters within a reasonable time frame.

Automation Support

Automation support with respect to level 2 situation awareness involves evaluating
the current collision risk. The ARPA facilitates DCPA and TCPA calculations, and
can be considered to be the most common tool to support level 2 situation aware-
ness with respect to collision avoidance. Furthermore, AIS information integrated
into the ECDIS provides the navigator with an overview of the traffic congestion as
well as the region available for maneuvering. Such evaluations can also be thought
of as being the domain of level 3 situation awareness (projection). The transition
with respect to collision avoidance is, however, slightly fuzzy in this case. The
current situation can be argued to be comprised of the current collision situation
given the relative speed and course over ground of the own ship and target ships.
As such, level 2 situation awareness is assumed to not predict future maneuvers.
Such predictions are considered to be the domain of level 3 situation awareness in
this study.
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2.2.3 Level 3 Situation Awareness

Information Requirements

The highest level of situation awareness in Endsley’s model is level 3. Naviga-
tors that are able to achieve level 3 situation awareness are able to forecast future
events and dynamics. This ability likely allows navigators to make timely deci-
sions to minimize the risk of collision. Endsley & Garland (2000b) argued that
experienced operators rely heavily on their ability to predict the future. This argu-
ment is likely valid for the case of the maritime domain as well, where experienced
ship navigators are more likely able to predict future ship behavior accurately, and
can leverage this ability to conduct proactive measures to reduce collision risk.

In a collision avoidance setting, level 3 situation awareness primarily entails pre-
dicting the future trajectory of target ships, in addition to the future trajectory of
the own ship. Based on these predictions, the future risk of collision can be eval-
vated. This is supported by the results found in Sharma et al. (2019), in which
navigators identified the projected position of the own ship, the projected move-
ment of target ships, and traffic density as relevant information to achieve level 3
situation awareness.

Automation Support

Currently, there is limited automation support for level 3 situation awareness with
respect to collision avoidance actions. Automation on board vessels that calcu-
late the DCPA and TCPA utilize linear predictions of the future trajectory of target
vessels based on their current speed and course. The speed and course through wa-
ter are calculated via the ARPA, whereas the the values over ground are reported
via AIS. In cases where the TCPA is low enough, such linear predictions will be
meaningful, as the collision risk will be high if no alterations are made. Addition-
ally, in open waters, such predictions may be accurate. However, with respect to
inland waterways and near ports, the ship traffic will likely be far more complex
and congested.

In an excerpt from an interview conducted in Sharma et al. (2019), it was stated that
level 3 situation awareness entailed "If there is any traffic nearby. If somebody’s
going to come, or if I'm going to meet someone at some point”. This indicates
a more long-term trajectory prediction, that is not easily facilitated by a linear
prediction in complex waterways. Navigators likely rely on their experience and
mental models to conduct such predictions. With more experience, especially with
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respect to local traffic patterns, it is likely that navigators will be able to conduct
such predictions more accurately, allowing them to take proactive measures to
minimize the risk of future encounter situations. Advanced automation systems to
conduct accurate predictions are, however, not available yet.

2.3 Proactive Collision Avoidance

Collision avoidance is a thoroughly studied topic, with a variety of methods sug-
gested to evaluate collision risk, and facilitate effective collision avoidance (Tam
et al., 2009; Goerlandt et al., 2015; Huang et al., 2020). The IMO outlined rules
and regulations regarding collision avoidance in the COLREGs. These rules are of
general applicability to all ocean-going vessels, where local regulations may come
in addition.

Endsley & Jones (2012) argued that the ability to project the possible future states
of a system (level 3 situation awareness) was a critical skill in many domains. For
instance, it allows operators to create contingency plans, and supports proactive
decision making. Proactive collision avoidance actions are likely based on level
3 projections as discussed in Sec. 2.2.3. If effective, such actions have the po-
tential to increase the safety associated with ship navigation, as navigators can be
made aware of potential collision situations far in advance, and take early action to
prevent them from arising. However, any such actions must comply with the COL-
REGs. A thorough guide to the COLREGs can be found in Cockcroft & Lameijer
(2011). In this section, the process of collision risk assessment and avoidance are
discussed in light of the COLREGs and level 3 situation awareness-based proactive
measures.

2.3.1 Vessel Encounter Situation

Collision risk is addressed in Rule 7 of the COLREGS, where it is outlined that
when two vessels in sight of each-other approach one another with no apparent
alteration of compass bearing, this entails a risk of collision. If collision risk is
deemed to exist between two vessels, they are considered to be in an encounter
situation. In such a case, one vessel will be designated the give-way vessel and
one the stand-on vessel.
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Collision Risk Assessment

In practice, the most common collision risk evaluation techniques are based on the
CPA. The CPA is an estimate of the closest position of an approaching ship. Two
indicators are primarily used with respect to the CPA, the distance (DCPA) and
time (TCPA). When these indicators are smaller than predetermined thresholds,
risk of collision is deemed to exist (Huang et al., 2018). Fujii & Tanaka (1971)
and Goodwin (1975) also introduced the concept of the ship domain, where an
infringement of a safety region surrounding the own ship or target ship indicates a
risk of collision.

Figure 2.4 illustrates a flow chart of collision risk evaluation from Tam & Bucknall
(2010). Initially, the planned navigation path of the own ship is discretized at a
regular interval. The future trajectory of the target ship is then predicted using
a linear extrapolation of the initial velocity vector (i.e. linear prediction using
constant speed and course over ground). For each time point, the CPA is evaluated.
If there is an encounter situation, a safety zone relating to the ship domain may be
evaluated. If the own ship position infringes upon the safety zone of the target
vessel, a risk of collision is deemed to exist. If not, no risk of collision is deemed
to exist. This process repeats for all time steps in the prediction. Furthermore, if
vessels are moving in parabolic type trajectories, the collision risk predictions may
be further complicated.

Give-way Vessel

Rule 16 of the COLREGs outlines the action by a give-way vessel. The give-
way vessel is that which is directed to keep out the way of another vessel as far
as possible. The vessel designated as the give-way vessel will vary based on the
situation. Early and substantial action should be taken by the vessel to keep well
clear. Rule 8 of the COLREGS outlines the action to avoid collision. It states that
any alteration of course or speed should be large enough to be readily apparent
to any other vessel. As a result, minor alterations of heading or speed are not
permitted once collision risk is deemed to exist.

Stand-on Vessel

Rule 17 of the COLREGS addresses the action by the stand-on vessel. It is stated
that when one of two vessels is required to keep out of the way (give-way vessel),
the other shall maintain their course and speed (stand-on vessel). As such, no ac-
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Figure 2.4: Flow chart of collision risk evaluation adapted from Tam & Bucknall (2010). Collision
risk is evaluated from the perspective of the own ship with respect to a target ship.

tions are permitted by the stand-on vessel once risk of collision is deemed to exist.
The stand-on vessel may, however, take action to avoid collision when it becomes
apparent that the give-way vessel is not taking proper action in compliance with
the rules. Rule 17 also states that when the stand-on vessel finds herself so close
to collision that it cannot be avoided by the give-way vessel’s action alone, the
stand-on vessel is required to take such action as to avoid collision.
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Figure 2.5: Collision situation stages adapted from Cockcroft & Lameijer (2011). A crossing situ-
ation in open seas is used for illustration, with permissible actions by the stand-on vessel.

Collision Situation Stages

A general collision situation was summarized in four stages in Cockcroft & Lamei-
jer (2011), illustrated in Fig. 2.5.

1. At long range, before risk of collision is deemed to exist, both vessels are
free to take any action.

2. Once risk of collision begins to apply, the give-way vessel must take early
and substantial action to pass at a safe distance. The stand-on vessel must
maintain their heading and speed.

3. If the give-way vessel does not take timely and substantial action, the stand-
on vessel is permitted to avoid collision by their maneuver alone, but is
required to signal their intentions to do so. Such a maneuver should not alter
their course to port (as per the COLREGS).

4. When a collision cannot be avoided by the give-way vessel alone, the stand-
on vessel is required to take any such action that will best avoid collision.
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2.3.2 Long-Range Trajectory Prediction

Level 3 situation awareness projections are likely conducted by navigators to pre-
dict if encounter situations will arise, as argued in Sec. 2.2.3. Given a mental
model that is able to accurately conduct a long-range prediction of the future tra-
jectory of a target ship, the OOW can determine if risk of collision may exist at
some point in the future. Proactive collision avoidance measures can be enacted
to minimize the risk of an encounter situation from arising. Such actions may in-
clude minor speed or heading alterations that prevent the future trajectories of both
vessels from intersecting. However, in a collision situation, such actions must be
substantial if the vessel is the give-way vessel (Rule 8), such that it is clear to the
stand-on vessel that collision avoidance actions are being taken. Minor alterations
of course and speed are, therefore, only permitted in stage 1 in Fig. 2.5. Further-
more, the stand-on vessel is required to maintain their course and speed once risk
of collision is deemed to exist. Any proactive collision avoidance measures that
make use of level 3 situation awareness should, therefore, be enacted in stage 1 for
the stand-on vessel as well. In this subsection, examples of applications of such
long-range predictions based on level 3 situation awareness are presented. Finally,
automation support that facilitates such long-range predictions is suggested.

Applications

Traffic Congestion One application of long-range predictions of ship behavior
is to estimate future traffic congestion. By avoiding situations with a large num-
ber of vessels in close proximity, the OOW will minimize the risk of close-range
encounter situations. Furthermore, the room to maneuver will likely be reduced
in such situations, further compounding the level of risk. Based on a projection
of the future traffic, the OOW can make proactive decisions with respect to when
they will arrive at various points along the planned route. In this manner, situations
with high congestion can be avoided.

Crossing Situation Crossing situations are high risk situations with respect to
the potential for collision. A crossing situation is illustrated in Fig. 2.5. If such
a close-encounter situation can be predicted far in advance, the own ship can take
proactive measures to avoid the situation. By conducting minor speed or course
over ground alterations for instance, the OOW can prevent a crossing situation
from arising. Such actions must be conducted in stage 1 in Fig. 2.5.
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(a) Overtaking situation. (b) Head-on situation.

Figure 2.6: Examples of encounter situations.

Rule 15 of the COLREGs governs crossing situations, where it is stated that in
such a situation, the vessel which has the other on their starboard side must keep
out of the way of the other. However, in bending fairways, vessels may come into
a crossing situation. In this case, each vessel must comply with Rule 9d of the
COLREGs, which requires vessels to keep as near as possible to the outer limit
which lies on her starboard side (Cockcroft & Lameijer, 2011). In such a case,
proactive collision avoidance actions will not be necessary.

Overtaking Situation Rule 13 of the COLREGs governs overtaking situations.
It is stated that any vessel overtaking another shall keep out of the way of the
vessel being overtaken. Fig. 2.6a illustrates an overtaking situation. Using a long-
range prediction, the OOW can plan the most optimal point to overtake another
vessel. Such a maneuver should be conducted such that a safe distance can be be
maintained. As such, regions with constricted maneuverability should be avoided.

Head-on Situation In Rule 14 of the COLREGs it is stated that when two vessels
meet on reciprocal, or nearly reciprocal courses, such that risk of collision exists,
they are deemed to be in a head-on situation. This is illustrated in Fig. 2.6b In
such a case, Rule 14 requires that both vessels alter their course to starboard such
as to pass each other on the port side. The OOW can utilize a long-term projection
of ship traffic to determine the risk of meeting other vessels in a head-on situation,
and plan such that the risk of such situations is minimized. For instance, the OOW
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can plan to pass another vessel in a region with adequate maneuverability such as
to minimize the risk of a head-on situation.

Automation Support

Endsley & Jones (2012) argued that the best way to supp t human performance is
to support a high level of of situation awareness, e.g. the ability to project the pos-
sible future states of a system (level 3 situation awareness). However, it has been
argued that some operators are just not good at conducting mental simulations of
the future. This may be due to poor mental models, lack of attention, or memory
limitations (Endsley, 1995). To support decision making, Endsley & Jones (2012)
argued that systems should support human-system symbiosis. One method was
outlined as developing systems that supported situation awareness through calcu-
lations of level 3 projections. As such, projections of the future are calculated
by an automation system, and presented to the user. To support level 3 situation
awareness in ship navigation, it is suggested to develop automation tools to project
the future behavior of other ships. If an automation system could be developed
to facilitate predictions supporting level 3 situation awareness, proactive collision
avoidance actions could be taken to prevent encounter situations from arising, e.g.
minor speed or heading alterations.

Whether the own ship is the give-way or stand-on vessel, proactive collision avoid-
ance actions must take place during stage 1 of a collision situation as per Fig. 2.5.
The distances at which the various stages will apply however, will vary consider-
ably (Cockcroft & Lameijer, 2011). This may be due to the size, speed and ma-
neuverability of the vessels, as well as local environmental conditions e.g. fairway
geography and metocean conditions. According to Cockcroft & Lameijer (2011),
it is suggested that the outer limit of stage 2 (i.e. when risk is deemed to exist)
is 5-8 nautical miles. This condition is for the open sea, where ships are assumed
to have near linear trajectories (i.e. constant course and speed). Assuming a con-
servative average speed of 15 kn for ships in the open sea, this corresponds to a
TCPA of approximately 20-32 minutes. In more complex waterways, this value
will likely be lower. It is also unlikely that navigators conduct mental simulations
of ship traffic more than 30 minutes into the future when evaluating proactive colli-
sion avoidance measures, due to the uncertainty of future ship behavior. Therefore,
it is suggested that automation should support ship behavior predictions up to 30
minutes into the future.
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2.4 Ship Behavior Prediction

Perera & Murray (2019) introduced the concept of an advanced ship predictor to
support situation awareness in future autonomous vessels. In this architecture, two
levels of ship behavior predictors were suggested; a local scale predictor and a
global scale predictor. It was argued that local scale predictions should support
collision avoidance in close-range encounter situations. Techniques to facilitate
such predictions e.g. Perera et al. (2012); Perera (2017b); Eriksen et al. (2018)
can improve the accuracy of ship behavior predictions during collision avoidance
maneuvers at close range, enhancing the situation awareness of the navigator. Such
methods, however accurate for short periods, cannot predict trajectory changes due
to future maneuvers (Lefevre et al., 2014).

Long-range predictions to support level 3 situation awareness must take into ac-
count potential vessel maneuvers. One method to facilitate such predictions is to
utilize historical traffic patterns. Given the assumption that the future behavior of
a selected vessel will be similar to that of past behavior in the same region, one
can infer the future ship trajectory. Historical AIS data provide insight into his-
torical ship behavior that can be leveraged for such predictions. Various studies
have utilized AIS data for vessel trajectory predictions. Ristic et al. (2008); Maz-
zarella et al. (2015) utilized a particle filters to facilitate trajectory predictions, and
Pallotta et al. (2014); Millefiori et al. (2016); Uney et al. (2019) investigated using
the Ornstein-Uhlenbeck stochastic process. These techniques, however, focus on
predictions in the order of hours. As a result, they support general maritime traffic
forecasting more than level 3 situation awareness-based proactive collision avoid-
ance actions. Deep learning techniques, e.g. Forti et al. (2020), have also been
investigated, where the methods were should to outperform Ornstein-Uhlenbeck
approaches. Other methods e.g. Hexeberg et al. (2017); Dalsnes et al. (2018) uti-
lized nearest-neighbor techniques, focused on aiding collision avoidance actions
for autonomous ships. Rong et al. (2019) also developed a probabilistic approach
on a scale relevant for collision avoidance using a Gaussian process model.

Some approaches, e.g. Pallotta et al. (2013, 2014); Mazzarella et al. (2015), apply
a threefold technique to facilitate predictions. First, historical AIS trajectories are
clustered into route patterns. Second, a novel trajectory is classified to one of these
routes. Finally, a prediction is conducted along the route. Parallels can be drawn to
the development of mental models discussed in Sec. 2.1.1. With experience, op-
erators develop categorization functions that group similar situations together (i.e.
trajectory clustering). Via pattern matching, a novel situation is classified to one
of these groups (i.e. classification). Using the model pertaining to that category,
future dynamics can be simulated (i.e. prediction). The experience of a navigator
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relates to previously observed ship behavior for a given region. Artificially, this
experience can be represented by historical AIS data.
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Machine Learning

In this chapter, machine learning techniques to facilitate categorization, pattern
matching and prediction using historical AIS data are presented. In the first sec-
tion, machine learning for enhanced maritime situation awareness is introduced,
as well as the general approach facilitated by the contributions in the appended pa-
pers. The next section presents the historical AIS data set. The subsequent section
outlines relevant dimensionality reduction techniques that consist of eigendecomp-
osition-based approaches. These facilitate meaningful representations of the his-
torical data. Next, methods utilized to cluster representations of historical ship
trajectories are introduced. Anomaly detection is then briefly discussed in the fol-
lowing section. Finally, deep learning-based techniques are presented to generate
meaningful representations of the historical data, as well as predict future behavior.

3.1 Machine Learning for Enhanced Maritime Situation
Awareness

This thesis builds upon the previous work in the field leveraging historical AIS data
to facilitate trajectory predictions. However, the developed methods in this study
aim specifically to facilitate level 3 situation awareness projections that may aid in
proactive collision avoidance. To achieve this, it is suggested to emulate high level
situation awareness in humans through machine learning.

Nature has been the inspiration for developments in many fields e.g. robotics and
artificial intelligence. This thesis aims to leverage machine learning, a sub-field
of artificial intelligence, to support level 3 maritime situation awareness. Machine
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learning allows models to learn from data without being explicitly programmed.
Further, it is found that machine learning techniques mirror the manner in which it
is theorized that humans develop situation awareness.

In general, machine learning is separated into supervised and unsupervised learn-
ing. Unsupervised learning relates to techniques where labels are not available for
the data. In such a case, it is of interest to discover the underlying structure in the
data, e.g. natural groupings. Such groups can be thought to represent various cate-
gories, or classes, of data. Discovering such groupings is referred to as clustering,
where each category is a cluster. Parallels can be drawn to how humans develop
mental models that employ categorization functions. As a result, clustering tech-
niques are suggested to emulate such aspects of human situation awareness.

In supervised learning, the labels for the data are available. Such techniques can
again be considered to be applied in either classification or regression applications.
Classification entails pattern matching to a given category or class. If unavail-
able, such class labels can be estimated via unsupervised learning techniques. As
outlined in 2.1.1, humans are theorized to utilize such pattern matching between
observed situations and a number of developed categories or schemata. In this
manner, machine learning techniques can be utilized to facilitate these functions.
Regression applications can also be viewed as synonymous to the behavior models
developed by humans. These models are used to predict future dynamics pertain-
ing to a given category. In this case, the labels relate to the output of the regression
model.

Such clustering, classification and prediction functions are developed through ex-
perience in human ship navigators. To artificially represent this experience, it is
suggested to investigate applying machine learning methods to historical ship be-
havior data, available in historical AIS databases. However, such historical tra-
jectories are high dimensional, and may degrade the performance of various al-
gorithms. In many cases, it is useful to generate representations of the data, and
thereby reduce the dimensionality. As discussed in 2.1.1, it is theorized that hu-
mans also generate such internal representations of situations that are then further
processed.

General Approach for Trajectory Prediction

To facilitate level 3 situation awareness, the developed methods aim to support
long-range trajectory predictions for a selected vessel up to 30 minutes into the
future. In general, the following basic steps are employed to facilitate such predic-
tions:
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1. Extract relevant historical AIS trajectory segments.
Generate representations of the trajectory segments.
Cluster the trajectory representations.

Classify a selected vessel to one (or multiple) cluster(s).

A

Predict the future 30 minute trajectory with respect to the ship behavior in
the relevant cluster(s).

By clustering the data into groupings of historical ship behavior, models can be
created for the specific behavior in each cluster in a similar manner to the develop-
ment of mental models. In many cases, the extracted historical ship behavior may
diverge significantly. As such, the performance of a prediction model trained on
all underlying data may be degraded. Trajectory predictions aimed to support level
3 situation awareness for proactive collision avoidance should, however, be as ac-
curate as possible. Hence, by employing models of specific behavior, predictions
of enhanced fidelity should be facilitated.

This is supported by the arguments made in Sec. 2.1.1, where it was suggested
that operators are able to generate a higher number of categories (see Fig. 2.2)
with more experience. The behavior models related to these specific categories
should yield more accurate predictions of the future than categories of more gen-
eral behavior.

The following sections describe the tools employed to facilitate these functions via
machine learning and historical AIS data. The methods are validated by experi-
mentation through simulation. By extracting training and test sets from the histor-
ical data, the models can be trained on the training data, and validated against the
test set.

3.2 Historical AIS Data

The IMO, through the Safety of Life at Sea (SOLAS) convention, requires all
vessels with a displacement over 500 tonnes in domestic waters, vessels over
300 tonnes in international waters, as well as all passenger vessels, to carry AIS
transponders (Lee et al., 2019). The AIS was introduced to compliment RADAR-
based observations by transmitting ship positions determined locally, e.g. via the
Global Navigation Satellite System (GNSS). In this manner, the positions of ships
that are not in sight, or subject to RADAR shadow, can be determined. Such infor-
mation supports situation awareness and collision avoidance actions.
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Table 3.1: AIS data.

Static Dynamic Voyage Related

MMSI Navigational status | Draught

Call-sign Latitude position Hazardous cargo

Name Longitude position | Destination

IMO number Timestamp Estimated time of arrival
Length Course over ground

Beam Speed over ground

Ship type Heading

Location of antenna | Rate of turn

AIS messages are transmitted via radio transponders using the VHF (Very High
Frequency) band to other vessels in the vicinity, as well as shore-based base sta-
tions. Satellite AIS (S-AIS) is also becoming more prevalent, where AIS sig-
nals can be received by satellites during a pass, and transmitted to ground stations
(Carson-Jackson, 2012). Each AIS message is comprised of ship-related informa-
tion that include static, dynamic and voyage-related information. An overview of
included information can be found in Table 3.1. AIS messages are stored in histor-
ical AIS databases, that can be accessed for later use. By plotting such historical
messages as a function of time, historical ship behavior can be observed. Histori-
cal AIS data have been utilized for a variety of applications in the maritime domain
(Tu et al., 2017).

Studies have, however, shown that AIS messages are error prone, and may, there-
fore, not always be reliable (Harati-Mokhtari et al., 2007). Such errors include
input errors e.g. navigation status, destination and estimated time of arrival. It has
also been found that ship type, length and beam information are often erroneous.
The accuracy of dynamic data will also depend on the accuracy of the equipment
utilized, and may vary. As a result, one must keep in mind that use of AIS data
may involve inherent error. Such anomalous data may, however, also be detected
and recovered via techniques based on data analytics (Perera, 2017a).

As discussed, it is suggested in this study to utilize historical AIS data to facilitate
long-range trajectory predictions to support level 3 situation awareness. An advan-
tage of utilizing historical AIS data is that validation is inherent in the data set. By
extracting test trajectories from the data, prediction algorithms can trained on the
remainder of the data, and validated against the test trajectories. The data set uti-
lized in this study was provided by the Norwegian Coastal Administration. All AIS
data available for a region surrounding the city of Tromsg, Norway from January
1%, 2017 to January 1%, 2018, were utilized. This corresponded to approximately
15 million AIS messages.
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3.3 Eigendecomposition-Based Dimensionality Reduction

Dimensionality reduction facilitates the generation of low-dimensional representa-
tions of the input data. Such representations may, for instance, be more conducive
to clustering algorithms. In some cases, this may be due to issues related to the
curse of dimensionality (Bellman, 1961) for high dimensional data. In this study,
dimensionality reduction is utilized to facilitate representations of historical AIS
trajectories. The methods in this section are relevant for Papers I, II and II1.

3.3.1 Principle Component Analysis

One of the most common methods of dimensionality reduction is the Karhunen-
Loéve (KL) transform (Karhunen, 1946), often referred to as Principle Component
Analysis (PCA). PCA is a form of unsupervised learning, where the purpose is to
transform data with correlated features into uncorrelated components. Such un-
correlated features may support the performance of subsequent machine learning
algorithms. Given a data vector x € IR?, where d is the dimensionality, the mean,
U (3.1), and covariance, X (3.2), can be determined.

p=E[x| (3.1)

L=E[x-p)(x—p)] (32)

The eigenvectors and eigenvalues of the covariance matrix can then be calculated.
Eq. (3.3) shows the relationship between ¥ and matrix E, which consists of the
eigenvectors of £. A is the diagonal matrix of the eigenvalues corresponding to
each eigenvector.

Y = EAE’ (3.3)

The covariance matrix describes the variation in the data set. By investigating its
eigenvectors, one is able to identify the directions in which the data has the greatest
variation. By projecting the data onto the space spanned by the eigenvectors of the
covariance matrix, an uncorrelated data set can be attained. This is achieved via
the KL-transform in Eq. (3.4), where y is the uncorrelated feature vector.
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The degree of variation is determined by the magnitude of the corresponding eigen-
values. If one orders the eigenvectors in E based on the magnitude of their cor-
responding eigenvalues, the top eigenvectors will constitute the principal compo-
nents of the data. If one projects onto the subspace spanned by the top / compo-
nents, where / < d, one will retain most of the information in the data set, whilst
also reducing the dimensionality. Such techniques are often used for visualization,
where high dimensional data sets can be visualized based on the projection of the
data onto the subspace spanned by the top principle components.

3.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (Fisher, 1936) is a form of supervised learn-
ing that generates features with optimal separation between C different classes,
each class is denoted c. Utilizing such features should, therefore, support the per-
formance of classification. To achieve this, the scatter of the data is investigated.
S (3.5) is the mixture scatter matrix of the data, comprised of the within-class
scatter matrix S,, and the between-class scatter matrix Sy, .

Sn=Sw+Ss (3.5

S, (3.6) describes the scatter within each class. In this sense, it describes how
compact each class is. S, (3.7) describes the scatter between all classes, i.e. how
spread out each class is relative to the global mean p, (3.8). The prior of each
class is denoted 7.

Cc
Sw=)Y mE (3.6)
c=1
C
Sb: Zﬂ0<“c_y‘g)(”c_y‘g)T (3.7)
c=1
Cc
“g: ZTCL‘”C (38)
c=1
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In a classification setting, it is desirable for the data in each class to be as compact
as possible. This can be achieved by minimizing the trace of S,,. Furthermore,
classification performance will be enhanced for data in which classes are spread
out. In this manner, the trace of S; should be maximized. This is achieved by
maximizing the class separability measure J; (3.9).

Js =Tr(S,,'Sy) (3.9)

LDA is facilitated via a transformation (3.10) that maximizes J; in the transformed
space.

y=ATx (3.10)

The optimal solution is found such that A = E, where E is the matrix of eigenvec-
tors of S, IS,,. The relationship is defined in (3.11), where A is the diagonal matrix
of corresponding eigenvalues. The transformation is defined in (3.12), where x is
projected onto the eigenvectors of S 'S,

S!S, = EAE’ (3.11)

y=E"x (3.12)

LDA may also inherently reduce the dimensionality, as Sj, is of rank C — 1. S, 'S,
is, therefore, also of rank C — 1. Hence, there will be C — 1 non-zero eigenvalues,
and y € IRY where d = C — 1. The dimensionality can also be further reduced, as in
PCA, using d < C — 1 eigenvectors. However, optimality with respect to J; is only
preserved such that d = C — 1. For further details see Theodoridis & Koutroumbas
(2009).

3.4 Clustering

Clustering is a form of unsupervised learning that strives to discover the underly-
ing structure in the data, and group similar data points together. In this manner,
clustering can be thought of a method to categorize data based on some similarity
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measure. As such, clustering techniques emulate the development of categoriza-
tion functions that support high levels of situation awareness in humans. This sec-
tions will present relevant clustering techniques used in this study. First, Gaussian
Mixture Models are presented, where clustering is facilitated via the Expectation
Maximization algorithm. This approach is relevant for the work in Papers I, II and
III. The Hierarchical Density-Based Clustering of Applications with Noise algo-
rithm is then introduced, relevant for the work in Papers IV and V.

3.4.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) (Reynolds et al., 2000) can be utilized to
model the underlying Probability Density Function (PDF) of a data set in (3.13).
It is assumed that the data is comprised of a mixture of M Gaussian distributions,
each with a mean y,,, covariance X,,, and prior probability 7,,. The PDF of model
m is given in Eq. (3.14), where d is the dimensionality of the data.

M
p(x) =Y TuA (X1, Em) (3.13)
m=1
1 1 Ty-1
J‘/ X 7Zm = (7§(X7um) zm (X*ﬂm)) 14

The class membership vector, v; € RM is introduced for the i"* data point, x;, in
(3.15). The class conditional probability is defined in (3.16).

1 ifk=m (3.15)
Vi = .
o 0 otherwise

p(xi’Vz’m = 1) ~ </V(I»lm,zm) (316)

Assuming independence, the joint probability p(x;,v;;0®) is given in (3.17). The
most likely mixture model that fits N data points is found by maximizing the log-
likelihood (LL) in (3.18) with respect to the model parameters ©.

M
p(x,vi:0) = [ [ p(Xi|Vim = 1:@) p(viy = 1)]" (3.17)

m=1
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M
(Vimlog(p(Xi|Vim = 1;0)) + Viulog(my,)) (3.18)

Mz

i=1m=1

Expectation Maximization Algorithm

GMM clustering via the Expectation Maximization (EM) algorithm (Dempster et
al., 1977) is a parametric clustering technique. The goal of the clustering algorithm
is to assign class membership to all data points, and in this manner cluster the data.
To facilitate this, the log-likelihood (3.18) is maximized via the EM algorithm. The
algorithm alternates between evaluating the expected class membership of data
points given the current GMM (expectation step), and the maximization of model
parameters given the updated class membership (maximization step). By repeating
this process iteratively, it has been shown that the algorithm may converge to a
local optimum (Wu, 1983).

Prior to applying the EM-algorithm, the number of underlying models, M, must be
input. Model parameters will then be initialized for all distributions in the GMM.
A common initialization method is to initialize all the means, U,,, as randomly
chosen data points. Furthermore, the the covariance for each Gaussian is set to
the identity matrix, ¥,, = I, and the prior probabilities set equal, 7,,, = % Once all
models are initialized, the expectation step is conducted by evaluating the expected
class membership (v;,) in (3.19).

p(Xi|Vim = 1;0)m,,
Yo p(xilvi = 1,0)m

(Vim) = (3.19)

The underlying data belonging to each distribution have, therefore, changed, and
the model parameters must be updated based on the updated class membership
parameters in the maximization step. This is conducted by maximizing the log-
likelihood (3.18). The estimated parameters for each model in the GMM are cal-
culated in (3.20)-(3.22).

o XY (Vim)Xi
o me i) (3.20)
a Z?]:l<vim>
ol im m)\ A2 — By T
i= 1<Vtm>
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4 — Lici{Vin) (3.22)
N

The EM algorithm then repeats iteratively until a stopping criteria is met. This
iterative process allows the GMM to adapt to the underlying data, such that the
most likely PDF can be estimated. A common stopping criteria it to evaluate the
log-likelihood (3.18), where convergence may indicate an optimal solution. Alter-
natively, convergence with respect to model parameters can be evaluated. Conver-
gence, however, may be a challenge when utilizing the EM-algorithm. One tech-
nique to avoid divergence is to utilize a number of random starts, where different
initializations of the GMM are utilized. For each initialization, the EM-algorithm
is run for a number of iterations. The initialization with the highest log-likelihood
is selected, and run for further iterations until convergence.

Bayesian Information Criterion

In many cases, the number of classes may not be known. As a result, the GMM
is inherently constrained by the input parameter, M. However, techniques exist
to estimate the most likely number of clusters. One method is to evaluate the
Bayesian Information Criterion (BIC) (3.23) (Schwarz et al., 1978). LL(®) is the
log-likelihood at the optimum, K the number of free parameters in the GMM, and
N the number of data points.

BIC = —2LL(®) + Kin(N) (3.23)

The BIC can be thought of as a measure of the log-likelihood and complexity of
the model. Hence, the model with the highest log-likelihood and least complexity
should be chosen. By varying the value of M, the BIC of multiple GMMs can be
calculated. The most likely GMM is that with the lowest BIC value.

3.4.2 Hierarchical Density-Based Clustering of Applications with Noise

The Hierarchical Density-Based Clustering of Applications with Noise (HDB-
SCAN) algorithm (Campello et al., 2013) is a non-parametric clustering technique.
The algorithm is an extension of the Density-Based Clustering of Applications
with Noise (DBSCAN) algorithm (Ester et al., 1996). Such an approach can be
advantageous compared to parametric methods as they are capable of identifying
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clusters of varying density and shape. Furthermore, the algorithm is capable of
discovering the most likely number of clusters automatically.

The algorithm calculates local density estimates based on core distance measures.
The core distance of each point, D, is defined as the distance to the k'h-nearest
neighbor, and indicates the density of the neighborhood. HDBSCAN then calcu-
lates the mutual reachability distance, D,,, between two points X; and x; in (3.24).

Dm(X,',Xj) = max (DC(X,'), DC(Xj), HX,‘ —Xj|’2> (324)

HDBSCAN subsequently constructs a minimum spanning tree based on the mu-
tual reachability distance, which is converted into a hierarchy of connected com-
ponents. A minimum cluster size is input by the user as a hyper-parameter. Any
clusters that are below the minimum cluster size are filtered out. The most stable
remaining clusters in the hierarchy are then selected. However, no cluster that is a
descendant of a previously selected cluster in the hierarchy may be chosen. Any
data points not belonging to the selected clusters are defined as noise. For further
details on the algorithm, see Campello et al. (2013).

3.5 Anomaly Detection

Anomaly detection (Chandola et al., 2009) is a widely researched field. One ap-
plication of anomaly detection in the maritime domain is to detect anomalous ship
behavior (Riveiro et al., 2018). Anomaly detection is generally parametric or non-
parametric. In this thesis, parametric anomaly detection based on fitted Gaussian
distributions (3.14) is applied to clusters of historical ship trajectories.

As such, a Gaussian distribution is fit to representations of the historical trajecto-
ries, where the most common behavior will lie close to the mean of the distribution.
Abnormal ship behavior should, therefore, lie far from the mean. By evaluating the
standard deviation contours of the distribution, anomalies can be detected based on
thresholding. In this sense, any data points within the contours are defined as nor-
mal behavior, and any outside are defined as anomalies.
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3.6 Deep Learning

Deep learning is a sub-field of machine learning that has gained much attention
in recent years due to its state-of-the-art performance in a variety of domains e.g.
computer vision (Voulodimos et al., 2018) and natural language processing (Cho
et al., 2014). Deep learning leverages artificial neural networks that are optimized
via the back-propagation algorithm (Rumelhart et al., 1986). This optimization
is often referred to as training, where a loss function is evaluated, and the errors
back-propagated through the network to calculate the gradients. Gradient descent
is then applied to update the model parameters. Some of the most popular methods
include AdaGrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015). In this
manner, the network is able to learn the model parameters that minimize the loss
function.

The training is run over a number of iterations, where predictions are compared to
the labels. Once the loss has converged, the training is stopped. Such recurrent
comparisons of predictions to labels is mirrored in the manner in which humans
develop high level situation awareness. In the case of humans, however, predic-
tions are validated against observations, and recurrently updated based on new
experience. For the case of deep learning, such experience is facilitated by data.
The amount of experience a human has should enhance their predictive abilities.
The same applies to deep learning, where a model trained on few data points will
not perform well. As a result, deep learning requires large amounts of data. For
the purpose of this study, is was found that historical AIS data provides a data set
of sufficient size to support such techniques. In this section, selected deep learning
techniques relevant for supporting level 3 situation awareness are presented. These
are relevant for Paper II, IV and V.

3.6.1 Multi-Layer Perceptron

A feed forward neural network, or Multi-Layer Perceptron (MLP), is the the most
basic form of deep learning. In essence, an MLP is a mathematical function that
maps the input to some output, via a number of hidden representations. Such
hidden representations are learned during the training of the network, and aid in
achieving the desired output. This is facilitated by connected neurons, where each
neuron is a perceptron.

The McColloch-Pitts neuron (McCulloch & Pitts, 1943) was developed to imitate
brain functions, specifically the firing of neurons. This was further developed in the
perceptron (Rosenblatt, 1958). The perceptron utilized in modern neural networks
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applies a set of weights, w, to an input vector, X, and takes the sum along with a
bias term b. This is then run through an activation function, a, which generates the
output, o. The operation is calculated in (3.25), illustrated in Fig. 3.1.

o=a(w'x+b) (3.25)

By stacking multiple perceptions, a layer of perceptrons is created. An MLP uti-
lizes multiple layers, where the output of each is the input to the next. This is the
basis for a neural network that consists of fully connected neurons, i.e. percep-
trons. As such, MLP layers are often referred to as fully connected layers. An
MLP is illustrated in Fig. 3.2.
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By utilizing multiple layers, the network can be made deeper. For each layer, the
network conducts a transformation of the data to a hidden representation. Non-
linear activation functions are often used to introduce non-linearity to the network.
Common activation functions include the Sigmoid (3.26) and Tanh (3.27) activa-
tion functions. More recently, the Rectified Linear Unit (ReLU) (3.28) (Nair &
Hinton, 2010) has become popular due to its ability to allow gradients to flow
more effectively in deep networks.

1
= 3.26
als) = 1 (326)
e —e S

= 3.27
als) = S5 (3.27)

0 ifs<0
a(s) = - 3.28
(s) {s ifs>0 ( )

3.6.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are designed to pro-
cess sequences, and are, therefore, ideal for processing time series data e.g. AIS
trajectories. RNNs are able to incorporate temporal dependencies, and can in this
sense be thought of as having a form of memory. RNNs learn what information
is important to retain, and what to forget with respect to achieving a specific goal.
They can be viewed as an unfolded computational graph, where the same operation
is applied at all time steps. In this sense, the operation is recurrent.

Given a time series X = {Xo,Xj,...,Xz}, an RNN processes each input state x; se-
quentially. The memory of the network is incorporated in the network through a
hidden state h,. The recurrent operation, f, is calculated in (3.29), where the previ-
ous hidden state h,_; and current input state X, are processed using the same RNN
cell. As a result, the RNN parameters, ®, are shared across all operations. The
operation outputs the current hidden state h,, which is fed to the next step. This
is illustrated in Fig. 3.3, with the recurrent operation in red. In this manner, all
relevant past information is stored in the hidden state, and passed further down the
network.

h; = f(htflaxt;(a) (3.29)
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Figure 3.3: RNN. Figure from Paper V.

The standard RNN operates in the forward direction. In this manner, temporal
dependencies will only be calculated from the past towards the future. Schuster
& Paliwal (1997) introduced the bidirectional RNN, which processes sequences in
both the forward, and backward directions concurrently. In this manner, the past is
viewed as dependent on the future. In the case of AIS data, past behavior may be
affected by future maneuvers (e.g. reducing speed before changing course), and
may, therefore, add information to better describe the trajectories. Furthermore,
the outlined architecture is only one layer. In Graves et al. (2013) it was found
that increasing the depth of an RNN increased the performance. Such multi-layer
RNNss are referred to as stacked RNNs, in that multiple RNNs are stacked on top
on one another. Each feeds into the next as illustrated in Fig. 3.4.

P P P P
whi_ = —h;_{— — h; — —hiig..
whi_y= ~h_~ — hi — ~hiss..
whg_y™ —~hi_ 1™ — hi ~hess ..

Xt-1 Xt Xt+1

Figure 3.4: P-layer stacked RNN. Each layer is denoted /. Figure from Paper V.
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Figure 3.5: Gated Recurrent Unit architecture. Figure from Paper I'V.

Gated Recurrent Unit

The original architecture of the RNN, however, struggles to learn long-term de-
pendencies in the data due to the challenge of vanishing gradients during back-
propagation (Bengio et al., 1994). As a result, more advanced architectures have
been developed to ameliorate this issue. It was found that introducing gates to al-
low, or restrict the flow of data aided the ability of the networks to learn long-term
dependencies. Such architectures include the Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997), and the more recent Gated Recurrent Unit
(GRU) (Cho et al., 2014; Chung et al., 2014).

The GRU is closely related to the popular LSTM architecture, but reduces the
number of learned parameters. Hence, the training time of the GRU is reduced
compared to the LSTM. The GRU architecture is illustrated in Fig. 3.5, where one
GRU cell is visualized. As such, the internal mechanisms of the cells in Fig. 3.3
and Fig. 3.4, can be thought of as consisting of GRUs.

To regulate the flow of information, the GRU utilizes a reset gate, r;, (3.30) and
update gate, u,, (3.31). These gates learn what information should be passed on
to the next cell, i.e. what should be remembered. The parameters in each gate
are comprised of weight matrices, W, and bias vectors, b. They can, therefore, be
thought of as two fully connected layers that operate on the input, x,, and previous
hidden state, h,_1, respectively. The sum of the outputs are run through Sigmoid
activation functions (3.26), denoted ¢ . As a result, the output will be constricted
between values of 0 and 1. A value of 1 entails an open gate, and 0 a closed gate.
Hence, the flow of information can be regulated by applying the Hadamard product
of r; and u, with the respective inputs.
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Iy = G(erXt +by + Wy b+ br) (3.30)

w = G(quxt + by + Wphy 1 + bhu) (331)

In (3.32), a new candidate vector, n; is calculated. The current hidden state, h,,
is calculated in (3.33). As such, all the relevant information of the past sequence
is stored in the hidden state, and passed on to the next cell. (3.29), can therefore
be substituted with (3.33) when utilizing a GRU. A prediction at each state, y;,
can also be calculated via a fully connected layer in (3.34). For a more detailed
explanation of the GRU, see Cho et al. (2014); Chung et al. (2014)

n; = tanh(W,X; + by, +1, © (Wishi—1 +bpy,)) (3.32)
h[:(l_ut)®h1_1+ut®nt (333)
Y: = Whyht + bhy (3.34)

3.6.3 Autoencoders

The objective of many deep learning architectures is often classification or regres-
sion. However, deep learning can also be applied in an unsupervised manner. In
this case, deep learning facilitates meaningful representations of the data. Such
representations may reveal the underlying structure of the data, that may not be
readily apparent in the input space. Furthermore, the dimensionality of the data
may be high, constituting a challenge for standard clustering algorithms. Hence,
low dimensional representations should be generated. One method to facilitate
such representations is via autoencoder architectures.

Linear Autoencoder

The simplest form of an autoencoder is an MLP (Bourlard & Kamp, 1988), illus-
trated in Fig. 3.6. An autoencoder is comprised of two parts: an encoder (3.35),
and a decoder (3.36).

49



Chapter 3. Machine Learning

f(x) h IW)

Q00000+
QOO
000000~

Figure 3.6: Linear autoencoder. The encoder is illustrated in green, and the decoder in orange.
Figure adapted from Paper II.

h = f(x) (3.35)
% =g(h) (3.36)

The encoder produces the code, h, which is a representation of the input space.
The decoder then reconstructs the input from the code. One method to facilitate
meaningful representations of the data is to utilize an undercomplete autoencoder
structure (Goodfellow et al., 2016). This entails that the code, h, has a lower
dimensionality than the input space, as illustrated in Fig. 3.6. As a result, this im-
plies a compression of the data, i.e. dimensionality reduction. If the autoencoder is
trained using the reconstruction loss, the encoder will learn to generate meaningful
representations of the data, that preserve as much mutual information between the
code and input space as possible.

MLPs generally have non-linear activation functions. However, if one does not
utilize such activation functions, the encoder and decoder will simply be linear
transformations of the data, i.e a linear autoencoder. If one considers a 2-layer
linear autoencoder as illustrated in Fig. 3.6, the encoder can be defined according
to (3.37), and the decoder according to (3.38). (3.39) calculates the mean squared
error loss, J. By training the network with this loss function, the minimum recon-
struction has been shown to be found such that A = W, where the columns of W
span the orthonormal basis spanned by the eigenvectors of the covariance matrix of
the data, and ¢ =  (Goodfellow et al., 2016). The encoder is, therefore, analogous
to PCA in this case, where (3.37) is equal to the KL-transform in (3.4).

h=W/'(x—pu) (3.37)
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Figure 3.7: Recurrent autoencoder. The encoder is illustrated in green, and the decoder in orange.
Figure from Paper I'V.
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= Ah+c (3.38)
J=E[|[x—&|]] (3.39)

Recurrent Autoencoder

Sequence to sequence models (Sutskever et al., 2014) are one of the most popular
forms of RNNs, and form the basis for many natural language processing tasks e.g.
translation (Cho et al., 2014). For such tasks, an input sequence, e.g. a sentence
in English, is run through an encoder RNN. A decoder RNN then predicts a target
sequence, e.g. the corresponding sentence in Spanish. By applying this encoder-
decoder architecture to reconstruct the input instead of a target sequence, the model
functions as a Recurrent Autoencoder (RAE) (Srivastava et al., 2015).

An RAE architecture is illustrated in Fig. 3.7. The encoder is capable of processing
variable length time series, e.g. AIS trajectories, and compressing them into a fixed
size vector, h;, 1.e. the final hidden state in the encoder network. The decoder
network takes hy, and must reconstruct the input from this vector sequentially,
where the the next state is estimated according to (3.34).

The network must learn to retain as much mutual information as possible between
the input sequence and its compressed representation, h; . Utilizing such an archi-
tecture, sequences of variable length can be encoded to equally sized representa-
tions of lower dimensionality. To reconstruct the input as accurately as possible,
similar data points will be grouped more closely in the representation space. Such
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learned representations should, therefore, provide a better foundation for a subse-
quent clustering algorithm.

Variational Recurrent Autoencoder

The Variational Autoencoder (VAE) (Kingma & Welling, 2014; Rezende et al.,
2014) is a probabilistic approach to the autoencoder, that assumes that data are
generated from a continuous latent variable, z. The encoder side of the VAE pro-
duces a distribution over the latent variable via g4 (z|x). This function is further
assumed to be a multivariate Gaussian with a diagonal covariance in (3.40). The
decoder, pg(x|z), reconstructs x from z.

qo(2[x) ~ A (., 670) (3.40)

Standard autoencoders that are trained using the reconstruction loss, will strive to
optimally utilize the code space. As a result, this often leads to it being sparsely
populated (Spinner et al., 2018). Such sparse representations may not be conducive
to clustering algorithms. One of the advantages of utilizing a VAE compared to a
standard autoencoder, is that it encourages the latent variables to become normally
distributed. As a result, more compact groupings of data are encouraged, limiting
the chaos in the latent space. Such representations will likely provide a better basis
for a clustering algorithm.

Fabius & van Amersfoort (2015) introduced the Variational Recurrent Autoen-
coder (VRAE), where the encoder and decoder are approximated by RNNSs, illus-
trated in Fig. 3.8. The output of the encoder RNN is the final hidden state h;.
This encodes the entire input sequence. Subsequently, the mean u, and standard
deviation o, in (3.40) are estimated using fully connected layers in (3.41) and
(3.42).

1. =Wyh, +b, (3.41)

The latent variable, z, is then sampled from the Gaussian distribution in (3.40).
However, back-propagation is not possible through such a sampling operation. As
a result, the re-parametrization trick is utilized in (3.43). € is sampled from a
Gaussian distribution such that &€ ~ .47(0,I). In this manner, gradients can flow
freely irrespective of the sampling operation.
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Figure 3.8: Variational recurrent autoencoder. The encoder is illustrated in green, and the decoder
in orange. Figure adapted from Paper I'V.

1= +0,0¢ (3.43)

As for the standard RAE, the decoder RNN takes a hidden state as input. This
initial hidden state, h;,, is estimated using a fully connected layer in (3.44). The
decoder then reconstructs the input as for a standard RAE.

h;, = tanh(W_,z+b.p) (3.44)

The network is optimized by maximizing a variational lower bound on the log-
likelihood. This is facilitated via the loss function, J, in (3.45). The first term
can be maximized by minimizing the the reconstruction loss, e.g. via the mean
squared error (3.39). The second term is the negative Kullback-Leibler divergence
(Dk1) between the encoder, g4 (z|x), and the prior pg(z). It is further assumed that
the prior is normally distributed according to pg(z) ~ .4 (0,I). By minimizing
the Kullback-Leibler divergence, one maximizes the second term. As such, the
network is encouraged to learn compact groupings of data in the latent space. For
further details on the VAE and VRAE, see Kingma & Welling (2014); Rezende et
al. (2014); Fabius & van Amersfoort (2015).

1(0,9:x,2) = By g, z)x) [log(po (x[2))] — Dk1(q4 (2[X) || pe (2)) (3.45)
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Chapter 4

Summary of Research

In this chapter, the included publications are summarized. The papers are pre-
sented in an order that reflects the progression of the research. In the fist section,
papers that facilitate local ship behavior prediction are presented. Here Paper I, 11
and III are summarized. These approaches aim to facilitate live predictions based
on locally extracted trajectory segments. The next section presents the work on
applying deep learning techniques to facilitate regional ship behavior prediction.
Paper 1V, and V are summarized in this section. To improve the readability of this
thesis, figures have been included from the appended papers. For further details
on the figures, please see the referenced papers.

4.1 Local Ship Behavior Prediction

In this section, methods supported by locally extracted trajectories are investigated.
This entails that historical AIS trajectories are extracted relative to the current posi-
tion, course over ground, and speed over ground of a selected vessel. The duration
of these trajectories is defined based on the desired prediction horizon, which in
this thesis is suggested to be 30 minutes, as discussed in Sec. 2.3.2. As such, the
extracted future 30 minute trajectories of similar historical vessels are assumed to
represent the distribution of possible future behavior for the selected vessel. The
trajectories contain the spatial data, as well as the course over ground and speed
over ground data.

Such local methods, however, must be conducted live, as the trajectories are ex-
tracted based on the current state of the selected vessel. As such, pre-trained mod-
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els cannot be utilized, as the data used to train the models vary for each predic-
tion. Efficient methods must, therefore, be utilized. As a result, machine learning
techniques using eigenvector-based approaches are investigated in the following
papers.

Paper I - Ship Behavior Prediction via Trajectory Extraction-Based
Clustering for Maritime Situation Awareness

Paper I presents an approach to ship behavior prediction via trajectory extraction-
based clustering. The objective of the paper is to cluster historical AIS trajectory
segments via low-dimensional representations. Using these clusters, the future
ship trajectory is predicted after classification to one of the clusters. As such, this
paper addresses RO1, RO2 and RO3, with the primary contribution towards RO3
(i). The research objectives are repeated below to improve the readability of the
thesis:

RO1 Leverage machine learning to provide methods to support maritime situation
awareness.

RO2 Leverage historical AIS data to provide methods to support level 3 maritime
situation awareness by artificially serving as navigational experience.

RO3 Develop methods to emulate the development of high level maritime situa-
tion awareness in humans by:

(i) Developing methods to categorize ship behavior.

(ii) Developing methods to facilitate behavior models for predicting future
ship behavior.

(iii) Developing methods to facilitate pattern matching of observed ship
behavior.

An initial version of this paper was presented in Murray & Perera (2019). Mur-
ray & Perera (2019) extended the work in Murray & Perera (2018), where it was
found that extracting a subset of historical AIS data, relative to the current state
of a selected vessel, enhanced the accuracy of a data-driven trajectory prediction
technique developed in Hexeberg et al. (2017). Both methods were found in Mur-
ray & Perera (2018) to have superior performance to the constant velocity method
commonly used in collision avoidance settings. However, the performance was
degraded in cases where the underlying data diverged (e.g. multiple ship routes).
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Figure 4.1: The extracted trajectories (top left) and clusters of trajectories (top right), along with the
classified cluster (bottom left) and predicted future trajectory (bottom right). Figures from Paper I.

The method in Paper I extracts relevant historical AIS trajectory segments to repre-
sent the possible future 30 minute behavior of a selected vessel. Low dimensional
representations of the extracted trajectory segments are then generated using the
KL-transform. Gaussian Mixture Models are then employed to cluster the tra-
jectory representations. The approach was found to be successful in discovering
clusters of specific ship behavior. Additionally, the resultant clusters were found to
be physically meaningful, where they appeared to represent ship routes, as well as
speed clusters within various routes. By clustering 30 minute trajectory segments,
clusters of specific behavior are discovered. If the trajectories for an entire region
were utilized, such specific behavior would likely be ignored, resulting in larger
clusters of more general behavior. Elements of the method are illustrated in Fig.
4.1.

Next, the method extracts the past 10 minutes of historical trajectory behavior
relative to the current state of the vessel. Labels for each trajectory segment are
available from the clustering of their corresponding future 30 minute trajectory
segments. Linear Discriminant Analysis is them employed to generate representa-
tions of the past trajectories with optimal separation between classes. It is further
assumed that the past 10 minutes of the selected vessel are available, and this
trajectory is projected via Linear Discriminant Analysis onto the same subspace.
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The selected vessel is then classified to one of the clusters of ship behavior in this
subspace.

Finally, a trajectory prediction is facilitated by applying the Single Point Neighbor
Search Method (Hexeberg et al., 2017) to the subset of data in the cluster. The
results show good performance, with a median error of approximately 4 % of the
distance traveled for a 30 minute prediction, given accurate classification. The
results, therefore, indicate that identifying clusters of specific behavior can aid in
enhancing the performance of ship trajectory predictions.

Contributions by the Author

¢ The author conceived the ideas.

The author developed the methodology.

The author developed the implementation and ran all experiments.

* The author wrote the first draft of the manuscript.

Paper II - A Dual Linear Autoencoder Approach for Vessel Trajectory
Prediction Using Historical AIS Data

Paper II builds upon the work in Paper I. A similar clustering and classification
technique as in Paper I is applied, but the trajectory prediction is facilitated via a
novel dual linear autoencoder approach. As such, this paper primarily contributes
to RO3 (ii), but in so doing addresses RO1 and RO2. This approach is closely tied
to the trajectory extraction and clustering techniques, as they provide the founda-
tion for the prediction approach.

The methodology starts in a similar manner to Paper I, where relevant trajectory
segments of the future 30 minute, and past 10 minute ship behavior in the AIS data
set are extracted. The future trajectory segments are then clustered, and a selected
vessel classified to one of the clusters in a similar manner to Paper L.

The trajectory prediction is facilitated by two linear autoencoders. A forward au-
toencoder is trained on the extracted future 30 minute trajectories in the relevant
cluster. By encoding the data, a distribution of the ship behavior in the cluster is
generated in the code-space. The future trajectory, therefore, should also belong to
this distribution. As such, the decoder can be utilized to generate a new trajectory
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Figure 4.2: Examples of encounter situations.

by sampling from this distribution and decoding it. This is illustrated in Fig. 4.2a
in green.

However, the latent representation of the future trajectory of the selected vessel
is unknown. It is, therefore, estimated using the backward autoencoder. In the
same manner as the forward autoencoder, the backward autoencoder is trained on
the past 10 minute trajectory segments. This is illustrated in Fig. 4.2a in orange.
Assuming that the past 10 minute trajectory of the selected vessel is available,
it is encoded via the backward autoencoder, illustrated in red in Fig. 4.2a. A
similarity measure is then evaluated between the representations generated by the
autoencoder of the training data (i.e. the past trajectory segments in the cluster),
and the representation of the selected vessel.

The similarity measure is utilized to estimate a distribution in the latent space of
the forward autoencoder. By sampling from this distribution, the decoder generates
novel trajectories that belong to the distribution. As such, a distribution of possi-
ble future trajectories is created. Uncertainty measures with respect to the future
position can then be estimated based on the distribution of the future trajectories.
This is illustrated for a test case in Fig. 4.2b.

The results showed superior performance to those in Paper II, with a median error
of 1.6 % of the distance traveled for a prediction horizon of 30 minutes. Further-
more, the uncertainty measures were able to capture the true position the vessel
in most cases. As the predictions are intended to be conducted live, the running
time of the method was also investigated. On a standard laptop, it was found that
the sum of the clustering, classification and prediction phases took less than four
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seconds for all cases, with most lying between one and two seconds. This was
considered acceptable for the purpose of the study.

Contributions by the Author

¢ The author conceived the ideas.

The author developed the methodology.

The author developed the implementation and ran all experiments.

* The author wrote the first draft of the manuscript.

Paper III - Unsupervised Trajectory Anomaly Detection for Situation
Awareness in Maritime Navigation

The approaches in Paper I and Paper II identify clusters of ship behavior. Tra-
jectory predictions are then facilitated by modeling the specific behavior in the
relevant cluster. However, anomalies may degrade the performance. As a result,
it is of interest to identify anomalous ship behavior, and make the user aware of
the anomaly, and the possible degradation of the model with respect to predicting
the future behavior of the vessel. Furthermore, the existence of anomalous tra-
jectories in the training data will likely degrade the performance of the prediction
methods. It is, therefore, of interest to identify and remove such anomalies from
the historical AIS data via machine learning.

Paper III contributes towards RO1 and RO2. It is likely that humans also identify
anomalous behavior when attaining situation awareness. In this manner, the paper
contributes towards RO3 (iii), where future anomalies can be identified via pattern
matching.

Paper III presents a method that utilizes Gaussian Mixture Model clustering to
model the behavior of extracted trajectories. The trajectory extraction is facili-
tated in the same manner as in Paper I and Paper II. Each cluster represents a
mode of ship behavior. By utilizing the distributions from the Gaussian Mixture
Model, clusters of anomalous behavior can be identified directly in an intermedi-
ate anomaly detection stage. The remaining clusters should, therefore, describe
normal behavior. This step is illustrated in Fig. 4.3.

Within each of the clusters of normal behavior, however, there exist local anoma-
lies. These are discovered via three different approaches: top eigenvector analy-
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Figure 4.3: Intermediate anomaly detection and removal. Figures from Paper III.

sis, bottom eigenvector analysis and Mahalanobis distance analysis. The top and
bottom eigenvector-based approaches project the trajectory segments onto the sub-
space spanned by the corresponding eigenvectors of the covariance matrix of the
data in each cluster. Gaussian distributions are then fit to the projections, and
anomaly detection is facilitated via thresholding based on the standard deviation
contours.

The components of the trajectories that contributed to anomaly classification were
also investigated, as it was found that the two approaches identified different anomaly
modes. The top eigenvectors describe the greatest variation in the data. As such,
it was found that these eigenvectors focused on sections of the trajectories that fell
outside the densest regions, as well as ships that had higher speeds than normal.
The bottom eigenvectors, however, describe the least variation in the data, and fo-
cused on irregular sub-trajectory segments. Finally, the Mahalanobis distance was
investigated, where a combination of anomalies from the top and bottom eigenvec-
tor analysis were identified. Overall, the methods were successful in identifying
various modes of anomalous ship behavior.

Contributions by the Author

* The author conceived the ideas along with the second author.

The author developed the methodology.

The author developed the implementation and ran all experiments.

* The author wrote the first draft of the manuscript.
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4.2 Regional Ship Behavior Prediction

In this section, methods supported by regional ship behavior prediction are inves-
tigated. As opposed to the previous section, these models operate on trajectories
for an entire region, and not on locally extracted trajectory segments. In this man-
ner, models can be pre-trained for various regions using the outlined methods. An
operator can then load the model for a given region to facilitate predictions.

Given that such an approach involves pre-trained models, and not run live, deep
learning approaches were investigated. Due to the sequential nature of the histori-
cal AIS trajectories, recurrent architectures were investigated for use.

Paper IV - Deep Representation Learning-Based Vessel Trajectory Clus-
tering for Situation Awareness in Ship Navigation

Paper IV investigates how deep representation learning can be leveraged to facili-
tate regional trajectory clustering. As such, the primary contribution of the paper
is towards RO3 (i). It additionally contributes towards RO1 and RO2.

In this study, a Recurrent Autoencoder and f3-Variational Recurrent Autoencoder
were investigated to generate meaningful representations of the trajectories in a
region. The historical AIS trajectories are multivariate time series containing the
position, course over ground and speed over ground data at each time step. Fur-
thermore, the trajectories are of variable length.

Recurrent Autoencoder architectures are capable of compressing the trajectories
to fixed size vectors, irrespective of the length. As such, trajectories of various
lengths can be clustered via such latent representations. The study found that both
the Recurrent Autoencoder and -Variational Recurrent Autoencoder were suc-
cessful in generating meaningful representations of the AIS trajectories, where the
underlying structure of the data was revealed. The results indicated, however, that
the B-Variational Autoencoder generated more compact groupings of data.

To cluster the trajectories, the Hierarchical Density-Based Spatial Clustering of
Applications with Noise algorithm was applied to the latent representations gener-
ated by the autoencoders. The technique was successful in identifying an unspec-
ified number of clusters of variable shape and size that parametric methods, e.g.
Gaussian Mixture Models, would likely not have been able to identify due to the
constraints of the parametric descriptions. The clusters were visualized on a map,
and appeared to be physically meaningful, as seen in Fig. 4.4. However, the re-
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Figure 4.4: Regional trajectory clustering. Figures from Paper IV.

sults indicated the the B-Variational Autoencoder was capable of generating more
compact representations than the standard Recurrent Autoencoder, supporting the
clustering technique.

Contributions by the Author

¢ The author conceived the ideas.

The author developed the methodology.

The author developed the implementation and ran all experiments.

* The author wrote the first draft of the manuscript.

Paper V - An AIS-Based Deep Learning Framework for Regional Ship
Behavior Prediction

Paper V builds upon the work in Paper IV to develop a deep learning framework
for regional ship behavior prediction. As such, it contributes to RO1, RO2 and
RO3 (i). Furthermore, it contributes especially to RO3 (ii) and RO?3 (iii).

In this study, an approach similar to that in Paper I and Paper II is applied. First,
trajectory representations are generated and clustered, where each cluster repre-
sents a mode of specific ship behavior. Subsequently, a selected vessel is classified
to one of the clusters. A local model for the specific behavior in the cluster is then
utilized to predict the future trajectory of the vessel.
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Figure 4.5: Relevant trajectory clusters (left), and resultant predictions (right) for a test case. Figures
from Paper V.

The methodology is separated into two primary modules: the clustering and pre-
diction modules. In the clustering module, a bidirectional, stacked Variational
Recurrent Autoencoder is trained on the historical AIS trajectories for a region.
The representations generated by running a forward pass of the encoder allow for
the underlying structure to be revealed. The Hierarchical Density-Based Spatial
Clustering of Applications with Noise algorithm was then applied to cluster the
representations. In this manner, clusters of ship behavior were identified.

The prediction module is comprised of two sub-modules: the classification and lo-
cal behavior modules. The classification module is responsible for classifying the
trajectory of a selected vessel to one of the clusters, and the local behavior mod-
ule for predicting the future behavior in a specific cluster. The prediction module
utilizes a sequence-to-sequence model with attention to facilitate the predictions.
A local behavior model is trained for each cluster present in the data set. As such,
there are as many local behavior models as there are clusters.

When conducting a prediction, a selected vessel is classified to one of the clusters,
and the corresponding model predicts the future trajectory. However, an uncer-
tainty measure is introduced in the classification module. Instead of outputting
one single cluster, a distribution over all clusters, i.e. classes, is generated. The
framework, therefore, identifies the most likely clusters the vessel belongs to. Us-
ing the corresponding local behavior models for these clusters, multiple possible
future trajectories are generated. A test case is illustrated in Fig. 4.5. The frame-
work was applied to a test region with good results. Once trained, the framework
is capable of predicting a future trajectory in under a second.

Contributions by the Author

¢ The author conceived the ideas.
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* The author developed the methodology.
* The author developed the implementation and ran all experiments.

* The author wrote the first draft of the manuscript.

4.3 Research Contributions

To improve the readability of this thesis, the research presented in this chapter is
consolidated in five research contributions, as introduced in Sec. 1.3:

RC1 Methods to generate representations of historical ship behavior

RC2 Methods to cluster historical ship behavior

RC3 Methods to classify a novel ship trajectory to a cluster of historical behavior
RC4 Methods to predict future ship behavior

RC5 Methods to identify anomalous ship behavior

The contributions of the various papers to these are summarized in Table 4.1. The
level of contribution is indicated by using the "+" symbol, where "+++" indicates
the highest contribution, and blank limited to no contribution. Paper III is the
only paper that directly contributes to RC5. However, the methods developed in
Paper IV and Paper V can indirectly be utilized to facilitate anomaly detection via
HDBSCAN, but are not addressed in the studies. As such, they were assigned a
minor contribution towards RC5. Furthermore, papers which leverage techniques
introduced in other papers are assigned minor contributions.

Table 4.1: Paper contributions.

Paper I | Paper II | Paper III | Paper IV | Paper V
RC1 +++ ++ ++ +++ ++
RC2 +++ + + +++ ++
RC3 +++ + +++
RC4 ++ +++ +++
RCS +++ + +
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Chapter 5

Discussion

In this chapter, a discussion of the research outcome is presented. In the first
section, the connection between the research contributions and objectives is dis-
cussed. The following section provides a general discussion of the research in
light of the research objectives. In the first subsection, the facilitation of level 3
situation awareness is discussed along with relevant limitations. Subsequently, the
use of historical AIS data is discussed along with limitations of the data. Next,
machine learning, and how it was leveraged to emulate high level situation aware-
ness of ship navigators, is discussed. Limitations are also presented. In the final
subsection, possible applications of the research are discussed.

5.1 Contributions to Research Objectives

In this section, the contributions outlined in Sec. 4.3 are related to the research
objectives of the study. The relative contributions are presented in Tab. 5.1, and
discussed in greater depth in the following subsections.

Table 5.1: Contributions to research objectives.

RO1 | RO2 | RO3 (i) | RO3 (ii) | RO3 (iii)
RC1 | ++ ++ +++ + +
RC2 | ++ ++ +++
RC3 | ++ ++ +++
RC4 | ++ ++ +++
RCS | ++ ++ ++
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RO1

Leverage machine learning to provide methods to support maritime situation aware-
ness.

This thesis found that machine learning can be leveraged to support all levels of
situation awareness. However, it was discovered that less focus in the research
community has been on leveraging machine learning for level 3 situation aware-
ness. The research in this thesis has, therefore, focused on methods that aid in
providing level 3 situation awareness to ship navigators.

All the contributions presented in Sec. 4.3 consist of methods that leverage ma-
chine learning. As such, Tab. 5.1 shows that all research contributions address
ROI1.

RO2

Leverage historical ALS data to provide methods to support level 3 maritime situ-
ation awareness by artificially serving as navigational experience.

This thesis found that historical AIS data can be leveraged to support level 3 mar-
itime situation awareness. The data was found to successfully serve as an artifi-
cial form of navigational experience when leveraged in conjunction with machine
learning methods. AIS data were the basis for all the methods developed in the
research papers. As a result, all contributions in Sec. 4.3 address RO2, as outlined
in Tab. 5.1.

RO3

Develop methods to emulate the development of high level maritime situation
awareness in humans by:

(i) Developing methods to categorize ship behavior.

To emulate human situation awareness, methods were developed to categorize
ship behavior by first generating representations of historical AIS data, and sub-
sequently clustering these representations. As such, RO3 (i) is addressed by RC1,
which provides methods to generate representations of historical behavior, and
RC2, which provides methods to cluster historical ship behavior.
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(ii) Developing methods to facilitate behavior models for predicting future ship
behavior.

In a similar manner to the development of human situation awareness, this thesis
aimed to develop methods to predict future ship behavior through behavior models
that relate to a specific category of ship behavior. RC4 addresses this objective by
providing methods to predict future ship behavior. Furthermore, representations of
the trajectories are leveraged to facilitate such predictions in some cases. As such,
RC1 addresses this objective to some extent.

(iii) Developing methods to facilitate pattern matching of observed ship behavior.

To predict ship behavior, the relevant category must be identified. This is facilitated
via pattern matching. RC3 directly addresses this objective by providing methods
to classify a novel ship trajectory to a cluster of ship behavior. Furthermore, RC5
addresses this objective by providing methods to identify anomalous ship behavior.
In this manner, a novel trajectory is identified as not belonging to any given pattern,
i.e. category of ship behavior. RC1 also addresses this objective to some extent, as
representations of AIS trajectories are leveraged to facilitate these functions.

5.2 General Discussion

In this section, a general discussion of the research outcome, in light of the research
objectives, is presented.

5.2.1 Level 3 Situation Awareness Support

It is suggested that long-range trajectory predictions should support level 3 situa-
tion awareness. The results of this thesis indicate that by leveraging historical AIS
data through machine learning, this can be achieved. In some cases, these predic-
tions will likely exceed the capabilities of human navigators, especially those with
limited experience.

Paper I showed that recent data-driven trajectory prediction techniques could be
enhanced through decomposing the historical ship behavior into clusters of spe-
cific behavior. Paper II then improved upon these results with a novel trajectory
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prediction approach that improved the accuracy of the predictions, as well as pro-
vided methods to estimate the uncertainty.

Deep learning techniques were also shown to be effective through a regional ship
behavior prediction approach. These techniques also provide methods to decom-
pose historical ship traffic into clusters of ship behavior, as well as predict future
behavior accurately. If accurate, the developed methods in this thesis should aid
navigators in conducting proactive collision avoidance measures, thereby enhanc-
ing the safety of maritime operations by avoiding close-range encounter situations.

Limitations

In cases where the automation system is incorrect, e.g. classification to an incor-
rect cluster of behavior, a situation awareness support system based on the methods
in this thesis may have adverse effects. Such adverse effects may involve biasing
effects as discussed in Sec. 2.1.2. The navigator must, therefore, constantly moni-
tor the collision risk according to standard techniques, as in 2.3.1. The long-range
predictions should only act as an outer layer that can prevent collision risk from
arising. They should not replace classical techniques of collision avoidance once
collision risk arises, triggering the applicability of the COLREGs.

Additionally, the methods developed in this thesis only present methods to facil-
itate trajectory predictions, and do not address how this should be presented to a
navigator. As discussed in Sec. 2.1.2, situation awareness support, and not de-
cision support, should be provided. As a result, it can be argued that alternative
decisions should not be presented to the navigator. Endsley & Jones (2012) argued
that the best way to support human performance is to support a high level of sit-
uation awareness. Hence, the estimated future trajectory and relevant parameters
should be presented to the navigator.

Furthermore, the developed methods do not address how to handle cases in which
both vessels in a two-vessel encounter situation apply a long-range trajectory pre-
diction via the developed techniques. In such a case, both vessels may conduct
proactive collision avoidance measures, rendering the trajectory predictions futile.
This may, in turn, result in high risk situations that the algorithms are unable to
foresee. Methods should, therefore, be developed to handle such situations.
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5.2.2 Historical AIS Data

The findings in this thesis indicate that historical AIS data can be effectively uti-
lized to infer the future trajectory of a selected vessel based on the past trajectories
of similar vessels in the region. To facilitate this, machine learning methods were
leveraged, where historical data were used to artificially represent navigational ex-
perience.

Historical AIS data from the region surrounding the city of Tromsg, Norway from
the 1% of January, 2017 to the 1% of January 2018 were utilized. Using the AIS
data set, there are innumerable test cases upon which the methods can be tested
and validated against. The data in this region involve fairly complex ship traffic in
inland waterways and around ports. As such, the region can be considered a good
test case for the developed machine learning techniques, as opposed to regions
characterized by more linear behavior.

The results indicate that leveraging AIS data facilitates long-range trajectory pre-
dictions that are not easily achieved via conventional techniques. Furthermore,
the research indicates that AIS data can be leveraged to facilitate level 3 situa-
tion awareness projections with a level of accuracy useful for proactive collision
avoidance. As such, it appears that AIS data is effective in artificially representing
navigational experience for this purpose. The data were also conducive to the in-
vestigated deep learning approaches, due to the large size of the data set necessary
for such techniques to be effective.

Limitations

The data set investigated in this thesis represents one year of historical AIS data.
Ship behavior may change over time, and the methods should, therefore, be trained
on updated data to best reflect the ship traffic in the region. Furthermore, the
developed techniques have not been tested on other geographical regions. The
models are also data-driven, and will not function in regions with no historical data.
Regions with sparse data will likely also have degraded performance. Nonetheless,
it can be argued that the investigated region includes a variety of complex behavior
to evaluate the general performance of the methods.

Additionally, the data do not contain weather related parameters e.g. wind speed,
wind direction, significant wave height, current direction, current speed and tidal
data. Such parameters will likely have a significant impact on ship navigation, and
should be included to enhance the performance of the prediction techniques. Many
of the discovered clusters of ship behavior may in fact be due to various weather
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conditions, and the inclusion of such data may, therefore, also aid in classification.

Furthermore, inherent errors in the data set, e.g. erroneous ship type, may degrade
the methods. For instance, in Paper V, the ship type was used to aid in classifica-
tion. If the ship types were considered to be discrete categories, such erroneous
data could significantly degrade the performance of the classification. However, by
embedding the ship types in Paper V, vector representations are learned, and used
to evaluate the similarity between categories. It is likely that the learned embed-
dings of incorrectly labeled ships are close to the learned embeddings of the true
labels in such cases, aiding the overall performance. Nonetheless, if entirely incor-
rect labels are applied (e.g. fishing vessel instead of cargo ship), the performance
of the method will likely be degraded.

5.2.3 Machine Learning and Human Situation Awareness

As discussed in Sec. 2.1.1, it is suggested that humans develop mental models
based on experience to facilitate situation awareness. It was argued that humans
learn to categorize similar experiences together, and develop transition functions
to model the future dynamics of the relevant system (i.e. behavior models). Fur-
thermore, they are theorized to employ pattern matching to classify situations to
one of these categories. In this thesis, it was found that machine learning could be
applied to emulate the development of human situation awareness with respect to
level 3 situation awareness. Machine learning techniques provide methods to:

* Generate meaningful representations of ship behavior.
* Cluster ship behavior (i.e. categorization).
* Predict future ship behavior (i.e. transition functions/behavior models).

* Classify observed ship behavior (i.e. pattern matching).

It was argued in Sec. 2.1.1 that humans generate abstract representations of sit-
uations, akin to the representations generated via dimensionality reduction and
autoencoder approaches in machine learning. The results of this study have found
that machine learning is effective in generating such representations. For the case
of eigendecomposition-based dimensionality reduction, these representations are
more easily interpreted. However, in the case of the investigated deep learning ap-
proaches, the representations are more abstract. The deep learning models learn to
generate meaningful representations via multiple transformations of the data, that
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can be more powerful than eigendecomposition-based techniques. Overall, the re-
sults indicate that machine learning a powerful tool to generate representations of
historical ship behavior.

Clustering of historical behavior can also be considered analogous to human cat-
egorization of experiences. In this manner, the techniques employed to facilitate
clustering of historical AIS trajectories emulate the manner in which humans cate-
gorize situations. In ship navigation, it is likely that navigators learn to categorize
specific ship behavior based on experience. Furthermore, navigators likely classify
the observed partial trajectory of a target vessel to one of the developed categories.
Once a classification is conducted, the corresponding behavior model is employed
to predict the future trajectory.

It was suggested in Sec. 2.1.1 that with more experience, operators develop a
higher number of categories. In this sense, the behavior models in each category
are able to model more specific behavior, resulting in more accurate predictions.
As such, human development processes support the assertion in this thesis that
generating prediction models with respect to specific behavior should enhance the
accuracy.

However, the accuracy of such predictions will to a given extent rely on classifica-
tion to the correct category and associated behavior model. In certain cases, how-
ever, the clusters (i.e. categories) may overlap, making classification challenging.
Such categories will, however, likely have similar behavior models, resulting in
good accuracy despite an incorrect classification. Humans likely apply such func-
tions via pattern matching, and may also in certain cases match a situation to the
incorrect schema. Similarly, if the schemata overlap to a certain extent, this may
result in good accuracy despite incorrect classification. Nonetheless, classification
accuracy should aid the performance of the predictions, where identifying specific
behavior should enhance the fidelity of the predictions.

Limitations

Machine learning models are only as accurate as the data they are trained on. As
such, if the behavior of a selected vessel does not match that of the historical
behavior, the accuracy of the methods will likely be degraded. The models will
also likely be biased towards the most commonly observed behavior.

Furthermore, tuning hyper-parameters in deep learning can be decisive for the per-
formance. In this study, it is suggested to train deep learning models for specific
regions of ship behavior. As such, the optimal hyper-parameters will vary.
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5.2.4 Possible Applications

The methods developed in this thesis have been presented in the context of pro-
viding situation awareness to human navigators. However, the methods are also
applicable for autonomous vessels. Given that autonomous vessels will require a
form of situation awareness to facilitate collision avoidance, the techniques devel-
oped can be applied in the same way.

Autonomous vessels will rely on the ability to conduct effective collision avoid-
ance maneuvers in close-range encounter situations. This entails that all systems
must be operating at nominal levels, or a collision may occur. By preemptively
predicting potential close-range encounter situations, such situations can be pre-
vented by conducting proactive collision avoidance maneuvers. This also gives
the autonomous vessel more time to conduct maneuvers before a critical situation
arises, and enhances the overall safety of autonomous ship operations.

Furthermore, Vessel Traffic Service (VTS) centers can benefit from the developed
methods. By estimating the future ship traffic in the region, they may be able to
identify future hot spots that pose a higher risk of collision, and advise ships based
on this. Close-encounter situations can also be predicted, and ships advised to
preemptively avoid such situations.
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Concluding Remarks

This chapter presents the concluding remarks of the study. In the first section, the
conclusions are outlined. Further work is then suggested in the next section.

6.1 Conclusions

The main objective of this study was to develop methods that can improve the
safety of maritime transportation through enhanced maritime situation awareness.
To facilitate this, it was suggested to leverage recent developments in machine
learning and autonomous ship technology. Specifically, it was suggested to pro-
vide methods to aid level 3 situation awareness in ship navigation. Level 3 projec-
tions are likely used by ship navigators to simulate future ship traffic, and can be
utilized for proactive collision avoidance measures. In this manner, future close-
range encounter situations can be avoided, enhancing the overall safety of maritime
operations. However, such actions must adhere to the COLREGs. As a result, de-
veloping methods to facilitate long-range trajectory predictions up to 30 minutes
into the future were suggested to support such actions.

Inspired by the success of nature-inspired techniques, e.g. machine learning, it was
suggested to emulate the manner in which humans develop high levels of situation
awareness. Machine learning approaches were found to provide techniques that fa-
cilitate many of the same mechanisms, e.g. representation generation, clustering,
pattern matching and prediction. However, maritime situation awareness is devel-
oped in humans through experience, where navigators likely predict future ship
behavior based on the past behavior of similar vessels in the region. As a result,
it was suggested to artificially represent navigational experience through historical
ship behavior present in historical AIS data sets.
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By leveraging machine learning and historical AIS data to emulate high level sit-
uation awareness in humans, this thesis has shown the feasibility of long-range
ship behavior predictions. By decomposing historical ship behavior, categories of
specific ship behavior can be discovered. The findings indicate that this facilitates
accurate ship trajectory predictions. These predictions, if accurate, should support
level 3 situation awareness in navigators.

Using eigenvector-based approaches, local trajectory segments can be extracted to
represent the possible future behavior of a vessel for a specific prediction horizon.
These methods can provide accurate predictions, and are relatively computation-
ally efficient. As such, these techniques can be applied to facilitate live predictions.
Furthermore, the methods can be applied to any region, as they extract the relevant
data in an unsupervised manner, and do not require any input parameters.

Deep learning approaches have also proved to be powerful in generating mean-
ingful representations of data. Via recurrent autoencoder approaches, it has been
shown that deep learning can be utilized to discover the underlying structure of a
set of historical AIS trajectories. Furthermore, by applying clustering algorithms
to these representations, effective trajectory clustering can be facilitated. When
applied to a cluster of ship behavior, deep learning was also found to be effective
in predicting the future behavior of a selected vessel via a sequence-to-sequence
model using attention. Once trained on a region of historical data, the developed
deep learning framework can predict future ship behavior very efficiently.

Overall, this thesis has provided methods to support level 3 situation awareness.
However, these methods must be implemented appropriately when supporting ship
navigators. Future autonomous vessels may also benefit from the developed meth-
ods, as they will need to artificially achieve high level situation awareness. If
successful, the developed methods can aid in improving the safety of future au-
tonomous ship operations. Until autonomous ship operations are commonplace,
however, autonomous ship technology will likely be used primarily as an aid to
human navigators.

6.2 Suggestions for Further Work

While there has been much focus on utilizing AIS data for various tasks e.g. tra-
jectory prediction in recent years, few studies focus on aiding proactive collision
avoidance through level 3 situation awareness projections. As such, further work
should support such objectives. The following extensions to the work are, there-
fore, suggested:
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Enhance the AIS data set by including relevant metocean parameters. By in-
cluding such parameters, the predictive capabilities of the machine learning-
based approaches should be enhanced.

Develop methods to estimate the uncertainty of the predicted trajectories via
deep learning approaches. One method may be to extend the work in Paper
V by utilizing Monte Carlo Dropout as a Bayesian approximation (Gal &
Ghahramani, 2016) in the output layer of the decoder.

Investigate methods to facilitate automatic hyper-parameter tuning in the
deep learning frameworks.

Investigate alternative classification techniques in greater depth to improve
classification accuracy.

Investigate alternative prediction techniques in conjunction with the devel-
oped clustering and classification methods in greater depth.

Research should be conducted on how to present such long-range trajectory
predictions to navigators in an effective manner, including methods to eval-
uate the risk of future close-encounter situations based on such predictions.

This thesis focuses on two-vessel encounter situations. Situations in which
both vessels conduct proactive collision avoidance measures should be eval-
uated, as such situations may alter the future risk picture due to predictions
not taking into account the proactive measures. Measures to ameliorate such
issues should be addressed. Furthermore, multi-vessel encounter situations
should be investigated, and how to leverage level 3 situation awareness pro-
jections effectively in such situations.

Long-range prediction techniques should also be integrated with short-range
predictions to facilitate more comprehensive predictor technology, as sug-
gested in Perera & Murray (2019).

This thesis suggests that long-range ship trajectory predictions should en-
hance the situation awareness of ship navigators based on relevant literature,
but has not validated this assertion. As such, the situation awareness of nav-
igators should be measured, both with and without a system that facilitates
long-range trajectory predictions based on the techniques in this thesis. One
approach may be via ship bridge simulators, where experienced and inexpe-
rienced navigators are invited to participate, e.g. as in Pedersen et al. (2003).
Relevant measurement methods should be applied to compare their perfor-
mance, as well as measure their situation awareness, such as those outlined
in Endsley & Jones (2012).
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ABSTRACT

This study presents a method in which historical AIS data are used to predict the future trajectory of
a selected vessel. This is facilitated via a system intelligence-based approach. This system intelli-
gence can subsequently be utilized to provide enhanced situation awareness to navigators and future
autonomous ships, such that collisions can more effectively be avoided. By evaluating the historical
behavior of ships in a given geographical region, the method applies machine learning techniques to
extrapolate commonalities in relevant trajectory segments. These commonalities represent historical
ship behavior modes that correspond to the possible future behavior of the selected vessel. Subse-
quently, the selected vessel is classified to a behavior mode, and a trajectory with respect to this mode
is predicted. This is achieved via an initial clustering technique and subsequent trajectory extraction.
The extracted trajectories are then compressed using the Karhunen-Loéve transform, and clustered
using a Gaussian Mixture Model. The approach in this study differs form others in that trajectories
are not clustered for an entire region, but generated to only correspond the duration of a desired pre-
diction horizon. As such, the extracted trajectories provide a much better basis for clustering relevant
historical ship behavior modes. A selected vessel can then be classified to one of these modes using
its observed behavior. Trajectory predictions are facilitated using an enhanced subset of data that
likely correspond to the future behavior of the selected vessel. The method yields promising results,
with high classification accuracy and low prediction error. However, vessels with abnormal behavior

degrade the results in some situations, and have also been discussed in this study.
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1. Introduction

Technological advances are permeating almost every in-
dustry. Artificial intelligence, increased computational power
and wireless communication capabilities have the potential
to allow for disruptive innovations that can change business
models drastically. Many argue that there is a digital rev-
olution underway and are calling it Industry 4.0 (Hermann
et al., 2016). If one looks to the automotive industry for in-
stance, significant innovations related to autonomous cars
are being developed at an exponential rate. Autonomous
cars are already being tested in general traffic areas and there
are claims that mass production could be possible by 2021
(Chan, 2017).

Similarly, it can be argued that shipping is currently on
its way into a fourth technical revolution, Shipping 4.0 (Rgd-
seth et al., 2015). The first revolution in shipping can be
argued to be the transition from sail to steam in at the turn
of the 19" century, the second from steam to diesel around
1910, and the third came with the introduction of automated
systems made possible through the advent of computers around
1970. Like the car industry, the shipping industry is looking
to autonomy as a possible disruptive element. The shipping
industry has, however, historically been considered conser-
vative, with innovations being implemented at a slower rate
than in similar industries. As such, technologies associated
with autonomous ships are not as developed as those for
autonomous cars. Nonetheless, many companies are work-
ing on the development of autonomous ships. The first au-

tonomous ships, e.g. Yara Birkeland, are planned to be launched

in 2020 and fully autonomous by 2022 (Yara, 2019). It can
be argued that if the required technologies are available, au-
tonomous ships will be safer and more efficient than con-
ventional vessels, and that because of this fact they should
be adopted by the industry (Levander, 2017). For this to oc-
cur, however, autonomous ships must be proven to operate at
a level of safety comparable to, or better than, conventional
manned vessels.

1.1. Maritime Situation Awareness

For autonomous ships to be introduced into commercial
shipping lanes, effective collision avoidance systems (Perera
et al., 2015) must be in place to ensure that the autonomous
operations have the required level of safety. Given that the
vessels are unmanned, an autonomous ship must be able to
make decisions based on its understanding of its surround-
ings, i.e. its own situation awareness. Situation awareness
is defined as "being aware of what is happening around you
and understanding what that information means to you now
and in the future" (Endsley et al., 2003) and is separated into
three levels (Endsley, 1995):

1. Perception of the elements in the current situation
2. Comprehension of the current situation
3. Projection of the future status

For an autonomous vessel, situation awareness will pri-
marily entail obstacle detection and prediction of close-range

encounter situations. Other vessels are the most common ob-
stacle an autonomous ship will encounter and are referred to
as target vessels in an encounter situation. The autonomous
vessel in this case is referred to as the own ship. Such situa-
tions will require collision avoidance maneuvers.

1.1.1. Perception of Elements in The Current Situation

To effectively conduct collision avoidance maneuvers with
respect to target vessels, an own ship will need to be able to
first detect the target vessel and evaluate relevant parame-
ters such as its position, course over ground and speed over
ground. This can be considered as the first level of situation
awareness. An autonomous ship must, therefore, first define
its current state, where all obstacles and their current states
are known. In order to perceive the relevant obstacles, an au-
tonomous ship must be able to observe them. Since there is
no navigator on-board, collision avoidance technologies will
rely heavily on the sensor suite available on-board the vessel,
as they must in essence replace the eyes of the navigator. An
advanced obstacle detection and tracking system which uti-
lizes sensor fusion to enhance detection capabilities should
be utilized. Relevant sensors will likely include radar and
electro-optical sensors (Prasad et al., 2017). Some exam-
ples include RADAR, LIDAR, stereo cameras and infra-red
cameras.

1.1.2. Comprehension of The Current Situation

Based on its current state, the own ship must be capa-
ble of evaluating the risk of collision. If the risk of collision
is identified as high, the own ship must conduct a collision
avoidance maneuver that adheres to the COLREGS as out-
lined in Perera et al. (2010). This corresponds to level two
of Endsley’s situation awareness, where the ship must now
make sense of its current state, and the immediate implica-
tions it has for the safety of the operation. Fujii and Tanaka
(1971) and Goodwin (1975) introduced the concept of the
ship domain, where a safety region around a relevant vessel
is introduced to indicate the collision risk. A thorough re-
view of collision avoidance methods can be found in Tam
et al. (2009). These methods are designed with respect to
ships in close-range encounters, where the collision risk is
high enough to require collision avoidance maneuvers.

1.1.3. Projection of The Future Status

Level three of situation awareness addresses the projec-
tion of the future state of the vessel. In a collision avoidance
setting, this entails predicting both the future states of the
own ship as well as the future states of target vessels. Previ-
ous studies relating to collision avoidance techniques entail
predicting the future state of a target vessel via calculations
using constant course and speed values. Based on this, colli-
sion risk parameters relating to the closest point of approach
(CPA) such as the distance (DCPA) and time (TCPA) can
be determined, and necessary collision avoidance maneuvers
conducted on this basis.

Ships have a slow response time when control actions
are sent to change the speed or course over ground. Cars for
instance can make changes almost instantaneously, depend-
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ing on their speed. The inertia forces of a ship are, however,
much higher, and resultant collision avoidance maneuvers
will take much longer to conduct. Therefore, it is desirable
to predict the risk of collision as far as possible in advance.
This entails predicting the future trajectories of both the own
ship and target vessels accurately. Methods such as Perera
etal. (2011) where a fuzzy logic based decision making sys-
tem for collision avoidance was introduced, and Yang et al.
(2019), where parallel trajectory planning was proposed for
autonomous collision avoidance, can improve the ability of
an autonomous vessel to make decisions. Additionally, work
on more advanced prediction algorithms, e.g. Perera et al.
(2012), where extended Kalman filters were utilized to esti-
mate ship trajectories, can enhance the situation awareness
of autonomous vessels to aid in effective collision avoidance.
However, predictions under such methods are only useful up
to rather short prediction horizons (order of seconds to min-
utes). These methods are useful in the case of a close-range
encounter situation, when the own ship must make decisions
based on input from the sensor system and plan an effective
collision avoidance maneuver. This however entails that the
own ship already is in imminent danger.

This study suggests an approach in which the trajectory
of a target vessel is predicted far in advance, such that a
close-range encounter situation is prevented from occurring
in the first place. The idea is that with an enhanced level
of situation awareness, an autonomous vessel can predict its
own future states, as well as those for relevant target ves-
sels, for a period up to 30 minutes into the future. Based on
this level of situation awareness, intelligent decisions can be
made to identify possible future close-range encounter situ-
ations and optimally implement simple predictive collision
avoidance strategies. Examples of such strategies could in-
clude minor speed or course alterations such that the future
trajectory of the own ship is altered. This is unfortunately not
straight forward. It can be assumed that the majority of ves-
sels will be manned in the foreseeable future. As such, the
behavior of potential target vessels is highly unpredictable
for an autonomous agent. Such a strategy therefore requires
a system intelligence based approach to maritime situation
awareness.

1.2. System Intelligence Based Ship Trajectory
Prediction

Data from the Automatic Identification System (AIS) pro-
vide a powerful dataset upon which analytics can be con-
ducted. Historical AIS data provide insight into historical
ship behavior that can be used to gain insight into patterns in
maritime traffic. A myriad of ship parameters are recorded in
the stored ship trajectories, including positional data, speed
over ground values, and course over ground values for vari-
ous time instances. AIS data provide an ideal dataset upon
which machine learning techniques can be applied to yield
insight into patterns for subsequent use in maritime traffic
analysis. Machine learning is a very powerful field, where
insight can be extracted from data for a variety of purposes.
Examples in the maritime field include Xu et al. (2020), where

an optimal truncated least square support vector was utilized
to estimate parameters for nonlinear maneuvering models,
and Shen et al. (2019) where deep reinforcement learning
was used to facilitate automatic collision avoidance.

This study suggests to provide future vessels with a de-
gree of system intelligence, facilitated by historical knowl-
edge that is extrapolated via machine learning techniques
from AIS data. Using the historical knowledge available,
such system intelligence will provide predictions of vessel
trajectories, allowing for subsequent collision risk assess-
ment. The purpose is to enhance the safety of both future
autonomous ship operations, but also as a level of decision
support to conventional vessels. This section presents rele-
vant related work, and subsequently introduces the contribu-
tions of this study.

1.2.1. Related Work

An increasing amount of research is being conducted on
methods to utilize AIS data. Zhang et al. (2017) for in-
stance analyzed AIS data to gain insight into the demand and
spatial-temporal dynamics of ship traffic around ports. Addi-
tionally, Liu et al. (2019) used AIS data to evaluate regional
collision risk and Wen et al. (2020) utilized AIS data to au-
tomatically generate ship routes. Tu et al. (2017) provides
a comprehensive review of methods to exploit AIS data for
maritime navigation. Most work in the field has previously
focused on predicting vessel trajectory patterns and general
traffic behavior e.g. Gunnar Aarsather and Moan (2009).
Identifying anomalous behavior based on general vessel pat-
terns e.g. Laxhammar et al. (2009) has also been of focus.
These methods are useful for general behavior analysis, but
are of limited use with respect to aiding in collision avoid-
ance.

Of most interest in a collision avoidance setting is the
work done on utilizing AIS data to predict the future trajec-
tory of a vessel. The idea is to infer the future trajectory of a
vessel based on the historical behavior of vessels in the same
region stored in the historical AIS data. Ristic et al. (2008)
presents a method to predict the future motion of a vessel uti-
lizing a particle filter approach, but the accuracy is limited
for use in collision avoidance. Pallotta et al. (2013) presents
the TREAD (Traffic Route Extraction and Anomaly Detec-
tion) methodology to cluster all trajectories in a defined re-
gion in an unsupervised manner, and subsequently classify
a selected vessel to one of the clusters, each representing a
traffic route for the purpose of anomaly detection. Pallotta
et al. (2014) subsequently utilized the TREAD methodology
to identify traffic routes, classify a vessel to a route, and pre-
dict the vessel position along this route using the Ornstein-
Uhlenbeck stochastic process. The TREAD technique, how-
ever, clusters waypoints, entry points, and stationary points
such that the data for the entire region is utilized to differen-
tiate between the vessels. As such, there can be significant
discrepancies between sub-paths for trajectories belonging
to the same class. This is of limited importance for long-
term predictions (order of hours), and the the method us-
ing the Ornstein-Uhlenbeck stochastic process is effective
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in such cases. The method’s mean and variance functions
do not change over time, however, which can be considered
a strict assumption for real applications. Short-term predic-
tions (order 5-30 minutes) of high accuracy and resolution,
however, are arguably of more interest for collision avoid-
ance purposes. For such predictions, the method will not be
as effective. Mazzarella et al. (2015) also presents a predic-
tion method using a Bayesian network based algorithm with
a particle filter for prediction horizons in the order of hours,
but also has limited efficacy in short-term trajectory predic-
tions relevant for collision avoidance purposes.

Hexeberg et al. (2017) presents an AIS-based approach
to predict short-term vessel trajectories. The method utilizes
a single point neighbor search method to predict a vessel
trajectory based on the underlying AIS data. The method,
however, is unable to handle branching, and Dalsnes et al.
(2018) expands on this work to provide multiple predictions
via a prediction tree where samples are drawn from close
neighbors in the underlying data. Predictions in this manner
allow for a probability estimate to be evaluated for the fu-
ture position for a given time horizon, and is facilitated via
Gaussian mixture models. As opposed to previous meth-
ods, these methods do not utilize clustering to identify traf-
fic routes. All predictions are based on the AIS data in the
neighborhoods of predicted states. As such, these methods
do not take into consideration the relationship between data
points. Future states are predicted iteratively from an initial
state based on the AIS data in the neighborhood of a pre-
dicted position. This data however may include data points
that have no relationship to the initial or previous predicted
states, and as such will degrade the accuracy. Rong et al.
(2019) also presents an approach using a Gaussian Process
model where a probabilistic trajectory prediction method is
outlined which, in addition to predicting the future positions
of a vessel, also describes the uncertainty of the predicted
position. The method, however, is only evaluated with highly
regular ship routes and offers no method to identify multiple
possible future routes the vessel may follow and classify it
to one.

1.2.2. Contribution

In this study, a method to provide system intelligence to
future autonomous ships is suggested for the purpose of en-
hanced situation awareness. The method is facilitated by ex-
ploiting historical AIS data via machine learning techniques
to predict the future trajectory of a vessel based on its ini-
tial state. The method provides short-term trajectory predic-
tions (order 5-30 minutes) that can provide a basis for colli-
sion risk assessments. In this manner, possible close-range
encounter situations can be avoided and the overall safety
associated with autonomous operations can be increased.

The method presented in this study bases itself on a sim-
ilar structure to that of previous techniques, in that trajec-
tories are first clustered, a selected vessel is classified to a
given cluster of trajectories, and a subsequent trajectory pre-
diction is determined. However, this method is designed to
aid in short-term trajectory predictions. As such, an alterna-

tive approach is suggested where an initial clustering tech-
nique is utilized to extract a subset of data from a historical
AIS dataset centered about the initial vessel state. This clus-
ter contains AIS data that has a high degree of similarity to
the initial state of the selected vessel. Using this initial clus-
ter, all unique future, i.e. forward, trajectories starting are
extracted from the cluster. The length of these is defined by
the desired prediction time horizon. These trajectories rep-
resent all future paths of ships that had similar states to the
initial state of the selected vessel. This dataset will there-
fore only contain data that are relevant with respect to the
initial vessel state, and will retain the relationship between
data points.

The exacted forward trajectories represent the possible
future behavior of the selected vessel for a given prediction
horizon. It is of interest in this study to identify all pos-
sible trajectory modes of the historical ship behavior, such
that a high fidelity trajectory prediction can be conducted to
support collision avoidance. Identifying such modes can be
facilitated by clustering the forward trajectories. It is only of
interest to differentiate between different possible modes for
the duration of the desired prediction horizon. As such, clus-
tering the extracted forward trajectories will provide a bet-
ter basis for relevant route identification compared to other
methods where entire trajectories for regions are considered.

A clustering technique is suggested based on all rele-
vant data in each unique extracted forward trajectory. Di-
mensionality reduction via the Karhunen-Loéve transform is
first conducted in order to compress the trajectories, whilst
retaining the most important information relevant for differ-
entiating the ship behavior. Such dimensionality reduction is
necessary to allow for effective clustering. Clustering is then
facilitated via unsupervised Gaussian Mixture Modeling. A
selected vessel is then classified to a cluster based on its past
behavior. This is achieved backward trajectory extraction,
and optimally generating features for class separation using
Linear Discriminant Analysis. Finally, a trajectory predic-
tion is conducted with respect to the trajectory data in the
cluster of historical ship behavior.

The method has enhanced performance as it can discover
the cluster of most similar ship behavior. This allows for pre-
dictions with a higher degree of fidelity than other methods
with respect to collision avoidance. This is effective for chal-
lenging regions with more complex traffic, i.e. multiple pos-
sible routes with various speeds. The trajectory prediction
also provides an increased level of accuracy given the rela-
tionship between data points in the underlying data. Similar
methods use techniques that introduce time invariance, such
as dynamic time warping. These result in effective cluster-
ing of trajectories of similar shapes for a given region, but
can not capture the relationship between when various be-
haviors are observed. Furthermore, clustering ship trajecto-
ries for entire regions will yield different results than cluster-
ing extracted trajectories for the desired prediction horizon,
as suggested in this study. The technique in this study will
provide a much better basis for differentiating relevant his-
torical ship behavior used to predict the future trajectory of
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a selected vessel. The method can also be applied in any ge-
ographical region, where the algorithm only requires access
to raw AIS data of sufficient density of the region of interest.

An initial version of this work was presented in Mur-
ray and Perera (2019). Furthermore, in Murray and Perera
(2020), a Dual Linear Autoencoder approach was introduced
to facilitate trajectory prediction, that utilized similar clus-
tering and classification regimes to those in this study. The
clustering and classification techniques utilized in Murray
and Perera (2020) were, however, not the focus of the study,
and, therefore, not addressed in detail. This study, therefore,
can be considered a parallel study, where the methods intro-
duced in Murray and Perera (2019) are expanded upon, and
addressed in detail.

2. Methodology

This section covers the methodology utilized to facilitate
trajectory predictions via the proposed system intelligence
approach. Given the current state of a target vessel, hereafter
referred to as a selected vessel, the method predicts its future
trajectory for a specified time horizon. The architecture of
the method can be split into three modules; the trajectory
clustering module, the trajectory classification module and
the trajectory prediction module.

The three modules operate sequentially, with each op-
erating on the output of the previous. In the first module,
i.e. the trajectory clustering module, the user inputs char-
acteristics of a selected vessel to the algorithm. The mod-
ule will then identify other vessels with similar character-
istics in the historical AIS dataset via an initial clustering
technique. A forward trajectory extraction operation is then
conducted, where the future trajectories of all the vessels in
the initial cluster are extracted. The extracted forward tra-
jectories are then clustered to identify groupings within the
data. Each resultant cluster represents a possible route, or
trajectory mode, the selected vessel may follow in the future.
Cluster labels for all the trajectories present in the dataset are
assigned, and can be utilized for further data analysis.

The objective of the second module is to determine which
of the possible future paths the selected vessel will follow.
This is achieved by first conducting a backward trajectory ex-
traction operation, with class labels corresponding to those
discovered in the clustering module. Comparing the past tra-
jectory of the selected vessel, i.e. the trajectory prior to point
provided to the algorithm as input, to the extracted backward
trajectories, one can classify the selected vessel to one of the
clusters discovered in the first module. This classification
provides the most likely future route, or mode, the selected
vessel will follow.

In the third module, a prediction of the future trajectory
of the selected vessel is conducted using a subset of data cor-
responding to all extracted forward trajectories the belong to
the same class, i.e. the same cluster. This yields a trajectory
prediction along the most likely future route. Each module
is addressed in detail in this section.

2.1. Trajectory Clustering Module

Machine learning can be split into two groups, super-
vised and unsupervised learning. Supervised learning deals
with techniques where class labels are available, and one
wishing to train an algorithm to correctly classify an unseen
data point to a given class. Unsupervised learning, however,
deals with data where the class labels are unavailable. In
such a case, it is desirable to discover underlying groupings,
or clusters, in the data. Clustering is, therefore, a form of
unsupervised learning. In this study, the class labels for the
extracted trajectories are unavailable, requiring the use of
unsupervised learning. As such, clustering is investigated
to discover groupings, or clusters, of historical ship trajecto-
ries that represent represent behavior modes that a selected
vessel may belong to. This section covers the methodology
utilized to cluster the historical trajectories.

2.1.1. Initial Clustering

The input to the algorithm is the initial state of a selected
vessel, and is defined in (1). This state can be thought of as
the current state of a target vessel whose future trajectory is
of interest to predict. The parameters can be acquired from
on board sensors e.g. radar, or from external sources e.g.
AlS.

So = [Xo’va)(()v UovTo] (€))]

It is of interest to identify similar vessels in the historical
AIS database, i.e. data points with a high degree of similar-
ity to sy. It can be argued that AIS data points similar to
so will have a higher probability of having similar trajecto-
ries than dissimilar data points. In essence, it is assumed
that ships that were in a similar geographical location, with
a similar course and speed over ground, will likely have be-
haved in a similar manner. In essence, the trajectories of
these vessels can be thought of as representing the distribu-
tion of the future behavior of the selected vessel. As such, it
is assumed that these trajectories can be used to estimate the
future behavior of the selected vessel. The discovery of such
similar vessels is achieved via the initial clustering technique
described in this section.

A matrix Z can be defined as the subset of AIS data
solely containing spatial data. The spatial data is converted
from longitude and latitude values to UTM coordinates (x, y)
prior to clustering. A rotational affine transformation can be
defined to rotate Z = [x,,y,1by 0 = yyto Z' =[x, y,].
This transformation is defined in 2.

7 =RZT )

Where x, € R, y, € R, x;, € R, y,, € R and R is the
rotation matrix defined as:

= (€©)

[cos(G)

— sin(0)
sin(6)

cos(6)
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Figure 2: Initial cluster C,

The new matrix Z will have a basis comprised of a vec-
tor in the direction of y, and one orthogonal to y,,. An initial
cluster Cy is then created using data in the space spanned by
these basis vectors in (4). This clustering operation results in
arectangular cluster C, with a height of 26 ; and width 26y,
centered about s, as illustrated in Fig. 2, which is adapted
from that presented in Murray and Perera (2019). The clus-
ter also only contains data points with similar y and v values
that were at a similar position to the selected vessel at some
previous time point. The rectangular shape of the cluster or-
thogonal to y should capture most vessels that have similar
trajectories to that of s;).

Co={a, €A (Ixy;=xz0|l S SwAlyzi—Y0l <65)
Axi—xol £ x5 AN lvi—vpl Svs)b (D)

2.1.2. Forward Trajectory Extraction

Based on the initial cluster Cy,, unique instances of ves-
sel trajectories are identified, given that multiple data points
in Cy may belong to the same trajectory. Once unique trajec-
tory instances have been identified, the nearest point of each
trajectory to s, in geographical space is defined as its initial
point. The forward trajectories of all instances are then ex-
tracted from this point and a period of time into the future
corresponding to the desired prediction horizon T),. An ad-
ditional time period, T}, is extracted to ensure sufficient data
density for the trajectory prediction module at the culmina-
tion of the prediction. The trajectories belonging to C, rep-
resent the possible behavior of the selected vessel, as their

initial points have a high degree of similarity to .S;,. In other
words, it is likely that the future trajectory of the selected
vessel will be similar to one of the trajectories in C,.

2.1.3. Trajectory Feature Generation

Assuming that the trajectories in C,, represent the distri-
bution of the possible future behavior of the selected vessel,
it is desirable to discriminate between the various possibili-
ties, i.e. discover groupings of behavior. In this sense, one
wishes to cluster the trajectories into classes of behavior. To
achieve this, each unique trajectory must be described by a
set of features. The term feature in this case refers to an in-
dividual measurable parameter that describes the trajectory.
Each trajectory is to be clustered in an unsupervised manner
based on these features. As such, a trajectory feature vector
is constructed comprising relevant parameters.

The first step in the generation of the feature vectors is
to linearly interpolate each trajectory at 30 second intervals.
This is done to generate higher density data, as well as pro-
vide a common time index with which the trajectories can
be compared. The initial point of each trajectory is defined
as Tj, i.e. time zero. Subsequent data points are therefore 30
seconds apart, starting at this point. In this manner, the tra-
jectories can be directly compared at the same time instance
from T},. Using the interpolated data, each trajectory feature
vector is constructed by flattening the matrix containing the
positional and speed data (x, y, v) of the trajectory. If each
trajectory is of length L, the resultant trajectory feature vec-
tor is defined as f € IR?*!. Utilizing the positional data, f
will incorporate the shape of the trajectory and the inherent
course alterations between data points. The speed of the ves-
sel along the trajectory will also be inherent in the positional
data. Nonetheless, the speed over ground values at each time
instance were deemed relevant to include to enhance the in-
formation stored in each vector.

As mentioned, the objective of the module is to clus-
ter the trajectories, and as such the respective feature vec-
tors should provide a basis for discriminating between the
classes of behavior. Generally including as much informa-
tion as possible, i.e. increasing the dimensionality of the fea-
ture vector, should enhance the discriminatory properties of
the dataset. This is true, but in a clustering setting one runs
into issues relating to the curse of dimensionality (Bellman,
1961).

Clustering is based on grouping data points via some dis-
tance measure. Points that are closer together are more likely
to be considered part of the same cluster. The curse of di-
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mensionality in relation to clustering is discussed in Stein-
bach et al. (2004), where it is pointed out that a fixed num-
ber of data points will become increasingly sparse as the di-
mensionality increases. Data points can in a sense be lost
in space as the dimensionality increases, as the distance be-
tween points with respect to a given dimension can be large.
As a result, clustering data using standard techniques in a
high dimensional space, will degrade the results, as the algo-
rithms are unable to find groupings in the data. One method
to ameliorate this effect is to reduce the dimensionality of
the data.

A common method for dimensionality reduction is the
the Karhunen-Loéve (KL) transform (Karhunen, 1946). The
purpose of the transform is to attain uncorrelated features
and is shown in (5). First, the set of all feature vectors is
centered such that all features have mean zero within the set.
Subsequently, the covariance matrix X of the set of all feature
vectors is calculated. Matrix E consists of the eigenvectors
of X, and A is the eigenvalue matrix, where the relationship
is shown in (6). (5) projects the feature vector f onto the
space spanned by the eigenvectors of the covariance matrix.
The covariance of the data inherently describes the correla-
tion among the respective parameters. As such, the eigen-
vectors of the covariance matrix will describe the directions
in which the data has the highest degree of variation orthog-
onal to each other.

x=E"f ®)

Where x € R3X! f € R3X! and E € R3L%3L

¥ = EAET (6)
Where = € R33L and A € R3LX3L

In a high dimensional space, however, many of the eigen-
vectors will describe very little variation in the data. The
KL-transform, therefore, projects f onto the subspace spanned
by the / eigenvectors with the / largest eigenvalues in (7).
This will inherently preserve the most important covariance
information in the data whilst reducing the dimensionality
to /. This may be abstract for the case of the trajectory fea-
ture vector, f, as each dimension represents a positional or
speed value at a given time instance. Take for instance the
case of a 30 minute prediction with five minutes added to
allow for sufficient data density. The dimensionality of f
will then be 210. The eigenvectors of X will point in the di-
rections within this 210-dimensional space where there is a
high degree of variation between the trajectories. As such,
it is difficult to gain a direct physical interpretation of the
eigenvectors, as the projection onto them represents a com-
bination of multiple parameters. By choosing the / largest
eigenvalues, one chooses the / directions where the variation
in the data is greatest. When projecting the feature vectors
onto the subspace spanned by the eigenvectors correspond-
ing to the largest eigenvalues, one is in fact generating new

features with a high degree of variation that can be used for
further analysis.

x=Ef )
Where x € R™¥! and E; € R*"¥!

In this study, the projection of f onto the eigenvectors
corresponding to the three largest eigenvalues was chosen
as a representation for each trajectory. Generally, the pro-
jection should retain at least 95 % of the variance in the
data. This is evaluated by investigating the sum of the cho-
sen eigenvalues over the sum of all eigenvalues (Hyvirinen,
2009). It was found that using the the eigenvectors corre-
sponding to the three largest eigenvalues fulfilled this re-
quirement when evaluating the results. Additionally, a three-
dimensional vector can easily be visualized when evaluating
the performance of the clustering algorithm.

2.1.4. Unsupervised Gaussian Mixture Model
Clustering

Using the reduced trajectory feature vectors generated
via the KL-transform, the trajectories can be clustered. De-
pending on s, the number of true clusters, i.e. classes, will
vary. As such, a flexible clustering algorithm is required that
can adapt to the data in each prediction. Unsupervised Gaus-
sian Mixture Model Clustering was chosen for use in this
study. A Gaussian Mixture Model (GMM) Reynolds et al.
(2000) is a flexible model that adapts to the underlying data.
GMMs assume that a set X of data points consists of a mix-
ture of M different Gaussian distributions. Each distribution
has its own mean vector u,,, covariance matrix X,, and prior
distribution x,,. As such, each distribution will describe that
particular class or cluster, i.e. class m. The class member-

ship parameter, z;, is introduced for each data point x; where:

1 ifk=m
0 otherwise

Zjy =

Where z; € RM*!

The class conditional probability is shown in (8). The

most likely model is estimated by maximizing the log-likelihood

with respect to the various model parameters.

p(X;lz;, = 1) ~ N(u,,, X)) 8)

The class membership of the trajectories is, however, un-
known. As such, the Expectation Maximization (EM) algo-
rithm is utilized to conduct the unsupervised GMM cluster-
ing. The GMM requires that a specified number of under-
lying models M is input. Based on this, the EM algorithm
initializes all model parameters. A common method is to ini-
tialize all u,, as randomly chosen data points, the priors as
T, = % and X, = I. This initialization is unlikely to model
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the underlying data correctly. As such, the algorithm con-
ducts what is known as the expectation step. In this step, the
expected class membership (z;,,) is evaluated in (9), based
on the current model parameters, ®. All data points will,
therefore, have updated class memberships based on the cur-
rent model parameters..

p(x;lz;, = 1, 09)x,
z/]:/; p(x;|zy = 1;@)my

The next step in the EM algorithm is known as the maxi-
mization step. In this step, the model parameters are updated
based on the new distribution resulting from the expectation
step. This is done by maximizing the log-likelihood with re-
spect to @. The estimated parameters in the maximization
step are calculated in (10), (11) and (12).

(Zim) = ®

N
Am — E,:]\; <Zim>xi (10)
Ziz1(Zim)
N _ o T
2,” _ 2,-:1<Zim>(xiN H)(X; — Hy) (an
Zi:l(zim>
N
i o= Zf=1<zim> (12)

" N

The EM algorithm now repeats, where the expected class
memberships are updated, and subsequently the model pa-
rameters. The algorithm is in a sense adapting to the data,
where the most likely distribution of the data is discovered.
This iterative process continues in a loop until a stopping
criteria is met. One common stopping criteria is the con-
vergence of the total log-likelihood. Alternatively, one can
terminate the algorithm if there is little to no change in the
model parameters, i.e. the parameters themselves converge.
The parameter convergence criteria was utilized in this study.
Often times, the EM algorithm can haves issues with con-
vergence, due to poor initialization. To avoid divergence
issues, a technique often known as "N random starts" was
utilized, where N different initializations are run for a num-
ber of iterations. The best run, i.e. the run with the greatest
log-likelihood score, is then chosen and run for further itera-
tions. The mixture model will, upon convergence, consist of
M distinct Gaussian distributions which describe the class
conditional probabilities, p(x|c,,), of the data, along with an
associated prior distribution, ,,. The posterior probability
p(c,,|x) can be found via Bayes Rule in (13) using the resul-
tant conditional probabilities and priors from the algorithm.

pleglx) = P Tn (13)
p(x)
PlenlX) > ple, )V j £ m,j = 1..M (14)

Clustering of the dataset is then conducted via Bayesian
classification, where each feature , x;, is classified to class
m according to (14). However, the number of underlying
classes M is as previously mentioned unknown. In order to
determine the most likely number of clusters, the Bayesian
Information Criterion (BIC) (Schwarz et al., 1978) defined
in (15), is utilized.

BIC = —2LL(®y) + K, In(N) (15)

For a GMM with M underlying distributions,

LL(®,,) is the total log-likelihood function computed at the
optimum, K, the number of free parameters in the mixture
model, and N the number of data points. The EM algorithm
can be run for various GMMs by altering M. By calculating
the BIC for each resultant GMM, the most likely GMM is
that with the lowest BIC. This is due to it having the highest
likelihood and least complexity. In this study, it was assumed
that there will be no more than 20 unique clusters in the tra-
jectory data, and the BIC was, therefore, evaluated for values
of M up to 20.

This process discovers the best GMM to fit the data and
provides the number of possible routes, or trajectory behav-
ior modes, a selected vessel may belong to. By classifying all
the extracted forward trajectories, class labels can assigned.
These labels are used for further analysis in the subsequent
modules.

2.2. Trajectory Classification Module

The trajectory clustering module has now clustered all
trajectories presentin C, to M classes. Each class represents
a group of trajectories that have a high degree of similarity.
As such, each class represents a possible future route, or be-
havior mode, the selected vessel may belong to. It is now
of interest to classify the selected vessel to the most likely
class of the M possibilities. In this sense, an estimate of the
distribution of the possible future behavior of the selected
vessel can be made. Using the data in the class of trajectory
behavior, a trajectory prediction can be made. This section
presents the method utilized to achieve such a classification.

2.2.1. Backward Trajectory Extraction

One possible method to conduct the aforementioned clas-
sification is to utilize the current vessel state, .S, and com-
pare them to the data points in C,. This, however, will have
limited predictive power, as the classification will be based
solely on one time instance of the selected vessel. An alter-
native approach is, therefore, suggested, where the previous
10 minutes of the selected vessel’s trajectory are be com-
pared to the previous 10 minutes of data for all trajectories
in Cy. This in a sense is the inverse of the forward trajec-
tory extraction process described in Sec. 2.1.3. Instead of
extracting the trajectories from T, and for instance 30 min-
utes into the future, the past trajectories are extracted from
the same initial point, i.e. from 7}y, and 10 minutes into the
past from that time instance. 10 minutes was chosen, as it
assumed that at least 10 minutes of behavior for the selected
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vessel should be available via the on board sensors of the
own ship, or via external sources e.g. AIS. The method is
otherwise identical to that described in Sec. 2.1.3. All the
backward trajectories extracted from C, will have the same
labels as those determined by the clustering technique in Sec.
2.1.4. As such, a labeled dataset is available that can be used
to classify the observed trajectory of selected vessel.

2.2.2. Optimal Feature Generation

Each backward trajectory feature is represented by the
flattening of the matrix containing all position and speed
over ground data in the same manner as the forward tra-
jectories in Sec. 2.1.3. This will result in a vector f &
R3X! In the case of a 10 minute trajectory this will be
a 60-dimensional space within which the classification must
take place. This can be a challenging task, as it is likely that
the features are quite similar, given that the vessels in C
generally will have similar trajectories for the past 10 min-
utes.

To improve the classification accuracy, Linear Discrim-
inant Analysis (LDA) (Fischer, 1936) is utilized. LDA pro-
vides a method to generate features with optimal separation
between classes in a supervised manner. Using the class
separability measure J3 in (16), one can optimize a trans-
formation such that features are generated to optimize class
separability.

J3 = trace(S;'S,,} (16

S,, is the mixture scatter matrix defined as S,, = S,, +
S), where S, is the within-class scatter matrix and S, the
between-class scatter matrix. S,, and S, are defined in (17)
and (19) respectively. S,, describes how compact the data
within each class is, whilst S, describes how spread out each
class is with respect to the global mean. In a classification
setting, one wishes to minimize the trace of S, i.e. data are
more compact within each class, and maximize the trace of
S, i.e. the classes are more spread out. This corresponds to
maximizing the class separation criterion J5.

M
S, = Z T a7
m=1
M
Ho= X Tk as)
m=1
M
Sp =" Ty — Ho)(Hyy — Ho)” (19)
m=1

It is desirable to find a transformation x = ATf such
that J3 is maximized in the transformed space. The optimal
transformation with respect to class separability is found to
be A = E where E is the matrix of eigenvectors of S;,‘ Sy

in the original vector space. This relationship is shown in
(21) where A is the corresponding diagonal eigenvalue ma-
trix. The transformation is shown in (20). However, S, is
of rank M — 1, and correspondingly S;}ISb is also of rank
M — 1. As such, there will be M — 1 nonzero eigenval-
ues. (20) will, therefore, project f onto the subspace spanned
by the / largest eigenvectors in a similar manner to the KL-
transform. If / = M — 1, optimality with respect to J3 will
be preserved. Further dimensionality reduction can still be
conducted by choosing a value / < M — 1. This will, how-
ever, be a suboptimal solution. Further details on LDA can
be found in Theodoridis and Koutroumbas (2009).

x=E’f (20)

Where x € R3.X! f € R3X! and E € R3X

S;'S, = EAE" 1)
Where S!S, € R¥3L and A € R™

2.2.3. Classification

Despite utilizing the optimal features described in Sec.
2.2.2, the classification task is highly non-linear, and likely
with significant overlap between classes in most cases. This
is due to the high degree of similarity between the past trajec-
tories. As a result, the k-Nearest Neighbor (kNN) classifier
(Dasarathy, 1991) is utilized due to its nonlinear predictive
power.

Given a data point X, the kNN classifier will measure
the distance to all other data points, X;, in the dataset X using
the Euclidean distance as shown in (22).

d; = |Ix; = Xl 22

The kNN classifier will then identify the k nearest data points
using distance measures from (22). Based on this subset of
data, the algorithm then identifies the class with the most
data points in the subset and classifies x, to the majority
class.

In this study, X is the projection of the backward trajec-
tory feature vector f, of the selected vessel onto the LDA
subspace according to (20). The kNN classification is then
conducted in the LDA subspace, where the k nearest trajec-
tories, i.e. most similar, are found and the majority class
is defined as the class, j, of the selected vessel. The corre-
sponding subset for class j, A; C A, represents the set of AIS
data points that belong to the the trajectories in this class.

2.3. Trajectory Prediction Module

Once the past trajectory of the selected vessel has been
classified to one of the classes, a trajectory prediction can be
conducted with respect to that class. The input data to this
module are all trajectory data belonging to the class deter-
mined in Sec. 2.2.3, i.e. A;. This approach assumes that
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the classification is accurate, and as such only predicts one
unique trajectory.

The algorithm utilized for the trajectory prediction is adapted

from that presented in Murray and Perera (2018). The al-
gorithm is based on the method outlined in Hexeberg et al.
(2017) where a Single Point Neighbor Search Method was
presented to predict vessel trajectories based on historical
AIS data.

Given the initial state of the selected vessel S, the pre-
diction algorithm estimates the future states of the selected
vessel. This is an iterative process where the state in the k"
iteration is defined in (23).

8¢ = [%4 P> 2o O T (23)

The estimated future position in state k, i.e. [Xy, J], is es-
timated given the parameters in state §;_; as a distance Ay
from [X;_y, §;_;] in the direction of ;_,. The time param-
eter T), is then updated according to (24).

To= Ty + L (24)
Ug—1

Once the position parameters [X,, y,] are updated, 7,
and O, are updated using a circular distance based clustering
technique. A cluster C can be defined according to (25)
where p; is an arbitrary vessel position, and q, is the selected
vessel position at §;. The clustering is conducted on the set
of data points in the subset of AIS data that corresponds to
the classified class, i.e. Aj. C, will, therefore, be defined as
the points within a radius r from the predicted position.

Ci=A{a, €A, t|lp;—qill <r} (25)

i and O, are defined as the median values of the points
in cluster C; according to (26) and (27). The median values
were chosen as opposed to the mean given that they are less
sensitive to outliers.

X = median(y; € Cy) (26)

0, = median(v; € Cy) 27)

This iterative process continues until the desired predic-
tion horizon is reached, i.e. fk > Tp. The set of all estimated
states will constitute the predicted trajectory of the selected
vessel. The predicted trajectory is subsequently linearly in-
terpolated at 30 second intervals for comparative analysis.
The method is illustrated in Fig. 3 adapted from that pre-

sented in Murray and Perera (2019).

x pi

S'k - [ka Vi X1 Vi Tk]

Sic1 = [Ree1 i1 Zoe—1 Vi-1, Tiee1]

Figure 3: lllustration of trajectory prediction technique

3. Results and Discussion

This section presents results from a case study. The fu-
ture trajectory of a selected vessel was predicted using the
outlined method in this study. 100 data points were ran-
domly selected form a dataset corresponding to one year
of AIS data from January 1% 2017 to January 1% 2018 for
the region around the city of Tromso, Norway. This dataset
corresponded to approximately 15 million AIS data points.
Each data point was initialized as the initial state for the
100 selected vessels. The case study predicted the future
30 minute trajectory for each selected vessel, where the pre-
dictions were validated using the true trajectories stored in
the historical AIS data. The performance of each module
was investigated, as well as the overall performance of the
method in predicting future ship trajectories.

3.1. Trajectory Clustering Module
3.1.1. Extracted Trajectories

As outlined in Sec. 2.1.2, all trajectories present in the
initial cluster C, centered about the initial vessel state, s,
were extracted. An example of the interpolated extracted
trajectories is visualized in Fig. 4. The illustrated position
data are defined with respect to s, (i.e. [xg, yol = [0,0]) to
more easily visualize the distances involved. To the human
eye, it is evident that there are two main routes the vessel
may follow, with a few outliers. This information may also
be what a navigator on the bridge might be aware of, and
base his future decisions upon.

3.1.2. Clustering Results

The first phase of the clustering technique is to reduce
the dimensionality according to (7). Subsequently, a GMM
is fit to the projection of the trajectory data in the subspace
spanned by the three eigenvectors with the largest eigenval-
ues, as outlined in Sec. 2.1.4. This technique was found to be
quite effective in generating new features with a high degree
of variation between data points. The result of the clustering
of the extracted forward trajectories in Fig. 4 is visualized
in Fig. 5. This figure illustrates the clusters in the reduced
subspace. Using the discovered classes, the labeled trajecto-
ries are visualized in Fig. 6. The method in this example has
discovered eight unique clusters. This implies that the vessel
may have one of eight behavior modes. It is evident that the
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Figure 4: lllustration of extracted forward trajectories

algorithm has primarily focused on differences in the spatial
aspects of the trajectories, i.e. the upper and lower routes.
However, the results indicate that the algorithm also discov-
ers sub-routes within the main routes. These indicate vessels
traveling along the prevailing route at various speeds. As
such, the algorithm is in fact discovering behavior modes
within the data. The method, therefore, is effective in re-
gions with more complex traffic. In regions where vessels
have a high degree of regularity, such advanced clustering
will likely not be as necessary.

The results indicate that KL-transform effectively stores
the most important information from the trajectories by pro-
jecting a 210-dimensional vector to a 3-dimensional vec-
tor. This data compression subsequently allows for effective
clustering in the lower-dimensional subspace, where multi-
ple trajectory groupings can be discovered, providing a more
accurate dataset upon which a trajectory prediction can be
conducted. Given that the true future trajectory of the se-
lected vessel is also available in the historical data, it can be
classified to one of the clusters via the GMM. This provides
the true class of the selected vessel for subsequent accuracy
analysis.

3.2. Trajectory Classification Module
3.2.1. Optimal Feature Representation

In this phase of the method, the backward trajectories
of all vessels present in the initial cluster, C, are extracted.
These trajectories are visualized for the example in Fig. 7
with labels from the corresponding forward trajectories. The
motivation now is to classify the past trajectory of the se-
lected vessel to one of the classes. Using (20), the trajec-
tory features are projected onto the LDA-subspace. In this
subspace, the trajectories are optimally separated, making it
easier for classification. The projection onto the three largest
components for the previous example is visualized in Fig. 8.

3.2.2. Classification

Using a kNN classifier with k = 7, the projection of the
backward trajectory of the selected vessel was classified to
one of the clusters. This resulted in the selected vessel be-
ing classified to the purple class previously illustrated. The

Figure 5: Clustering results in KL-subspace
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Figure 6: Labeled forward trajectories

extracted forward trajectory data corresponding to this class
is illustrated in Fig. 9. The value of k was iteratively varied,
and proved to have little effect on the classification accuracy.
As aresult, a value of kK = 7 was utilized.

3.3. Trajectory prediction module

Using the data visualized in Fig. 9, a prediction can be
conducted utilizing the methodology outlined in Sec. 2.3.
Fig. 10 illustrates the resultant prediction for the previous
example. For this case, the prediction appears to closely cor-
respond to the true vessel trajectory.

3.4. Prediction Accuracy
In order to evaluate the overall performance of the method,

100 random data points were chosen from the AIS dataset.
Each data point was defined as the initial state of a selected
vessel, i.e. sy. The method outlined in Sec. 2 was then run
on each selected vessel to predict its future trajectory. In
this section, the accuracy of the classification module and
the position error of the resultant trajectory predictions are
evaluated.
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Figure 7: Backward trajectories with labels from the corre-
sponding forward trajectories
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Figure 9: Forward trajectories corresponding to class prediction

3.4.1. Classification Accuracy

The true class label of the selected vessel, i.e. the ground
truth, was evaluated using the fitted GMM for each tested
vessel. The predicted classes for all vessels were then com-
pared with the ground truth, and an overall classification ac-
curacy calculated. It was found that for the 100 cases tested

o « True Vessel Trajectory o @
. Predicted Vessel Trajectory ',x"
® So Lot o
~1000 o
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=
-3000

-4000

-5000 -4000 =3000 -2000 -1000 0
x[m]

Figure 10: Trajectory prediction

in this study, the classification accuracy was of 70 %. This
indicates that the features generated via LDA from the back-
ward trajectories provided a basis to correctly classify 70 of
the 100 tested vessels.

3.4.2. Position Accuracy

The position accuracy of the trajectory predictions was
also investigated. The accuracy was evaluated as a function
of time, where the distance between the true and predicted
position of the selected vessel define the error. The position
error was calculated for three cases; the overall error for all
vessels, the error for incorrectly classified vessels, and the
error for correctly classified vessels. Given that the true tra-
jectories of the selected vessels are of various lengths, the
position error is evaluated as a percentage of the true dis-
tance traveled for each time instance. The distance traveled
for each selected vessel was estimated as the sum of trajec-
tory segments extracted from the true trajectory.

The median position errors for all cases are illustrated in
Fig. 11. The median error was chosen for presentation as
opposed to the root mean squared error due to the sensitivity
of the root mean squared error to outliers. It is clear that
the error is significantly higher for the incorrectly classified
vessels. However, for those vessels which are classified to
the correct class, the median error is quite reasonable with a
value of approximately 4 % of the true distance traveled for
a 30 minute prediction. The error appears to increase rather
linearly. This is to be expected, as errors will accumulate as
a function of time.

The position error of the incorrectly classified vessels is
also investigated, as the method mis-classifies 30 % of the
vessels, and as such, will have a corresponding performance
in these cases. Fig. 12 illustrates an example of a trajectory
prediction when the selected vessel was incorrectly classi-
fied. It is evident that the subsequent error can grow to be
quite high for the case of a 30 minute prediction. For the case
of the incorrectly classified vessels in Fig. 11, a sudden dip
is observed around a prediction horizon of 15 minutes. This
effect is not observed for the correctly classified vessels. It is
likely due to the nonlinear nature of many of the ship trajec-
tories. At this point, certain ships that are predicted to travel
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Figure 11: Median position error of trajectory predictions eval-
uated as a percent of the distance traveled
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Figure 12: Incorrectly classified trajectory prediction

along an incorrect route, turn and approach the true route,
causing the position error to decrease for a short period of
time, before once again linearly increasing.

In order to reduce the error associated with the incor-
rect classifications, one needs to improve the classification
module to provide either a better representation to conduct
classification on, or utilize another classifier. Additionally,
anomalies can be filtered out as they will have a degrading
effect on the classification. The error with respect to the cor-
rectly classified predictions is therefore of greater interest for
further investigation. Fig. 13 illustrates the box plots for the
position error at five minute intervals. The horizontal green
line illustrates the median error. It appears that the lower 50
% of the predictions are rather tightly bounded, whilst the
upper 50 % have a higher variance. The variance of the er-
ror also increases significantly as a function of time. This is
to be expected, as the predictions are dependent on both the
speed estimates, as well as the degree of variation within the
cluster.

Nonetheless, the degree of variance observed for the 30
minute predictions is quite high for the upper quartiles. The
correctly classified vessels with poor predictions were there-
fore investigated. Fig. 14 visualizes one such case. It ap-
pears that the vessel has been classified correctly, as the pre-
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Figure 13: Prediction error for correctly classified vessels eval-
uated as a percent of the distance traveled
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Figure 14: Correctly classified trajectory with high position
error

dicted and true trajectories are similar at first. However, ap-
proximately half way along the predicted trajectory, the true
trajectory of the vessel stops and turns around. Such irregu-
lar ship trajectories are difficult to predict, and the algorithm
is unable to identify and recreate such patterns. These irreg-
ularities are the source of much of the high positional error
illustrated in Fig. 13. The algorithm is, nonetheless, effec-
tive in predicting what can be considered regular ship tra-
jectories, represented by the lower quartiles in Fig. 13. In
general, it appears that the approach yields successful results
with respect to predicting the future trajectory of a selected
vessel.

4. Conclusion and Further Work

This study presents a method to provide system intel-
ligence to future autonomous ships such that they achieve
a level of maritime situation awareness. This is facilitated
through the use of historical AIS data and machine learning.
Relevant trajectories are extracted from historical AIS data,
and commonalities in the data are discovered via Gaussian
Mixture Model clustering. These clusters represent modes
of historical ship behavior. When predicting the future tra-
jectory of a target vessel, it is likely that its future behavior
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will belong to one of these modes. Therefore, the observed
behavior of a selected vessel is classified to one the modes
to improve the fidelity of a trajectory prediction. Such high
fidelity predictions can then be used to aid in collision avoid-
ance.

Assuming that the previous behavior of the selected ves-
sel is known, the method has a high classification accuracy.
The results indicate that the use of Linear Disciminant Anal-
ysis provides a more optimal basis for classification. How-
ever, if the previous behavior is unknown, the classification
accuracy will likely be degraded.

The results for the trajectory predictions indicate that the
method was able to successfully predict the future trajectory
of a selected vessel, with relatively low error. For misclas-
sified vessels, however, the performance was significantly
degraded. This is to be expected, given that predictions are
conducted with respect to incorrect behavior modes in these
cases.

For the cases investigated in this study, correctly clas-
sified vessels had low prediction error for time horizons up
to 30 minutes. The median error value was approximately
4 % of the true distance traveled after 30 minutes. This is
likely aided by the direct relationship between data points in
the clusters utilized in the predictions, as well as the abil-
ity to discover ship behavior modes that match the selected
vessel. Certain vessels, however, had anomalous behavior,
which the method was unable to accurately predict.

The method presented in this study is generic, and can be
applied to any geographical region, given sufficient density
of the historical AIS data. As a result, the algorithm can be
implemented in a generic form on any vessel, and will run
on the raw AIS data for that region. Seeing as the method
is data-driven, the amount of data available will enhance the
results. The accuracy of the predictions will also be location
specific, as the number of possible behavior modes that exist
will vary. The method will likely have better performance in
open waterways with fewer possible routes, and a generally
high degree of regularity in ship behavior compared to more
complex waterways such as coastal regions and ports. The
sensitivity of location has, however, not been investigated.
Nonetheless, the ability of the method to discover behavior
modes in the historical data will improve the performance in
complex waterways compared to other methods. The predic-
tions are also conducted without considering the prevailing
weather conditions. These will likely have a significant ef-
fect of the behavior of a vessel, and should be included in
the prediction method.

Further work will include enhancing the classification
accuracy of the method, as well as including weather param-
eters into the dataset. Considering that the classifier utilized
was a kNN classifier, the accuracy can likely be further in-
creased by using more advanced architectures e.g. support
vector machines (Vapnik, 1995). Alternative trajectory pre-
diction methodologies applying additional machine learning
techniques, e.g. deep leaning, will also be investigated to fur-
ther enhance the predictions. It is also vital to connect the
trajectory predictions to existing collision avoidance frame-

works and regulations. This will be addressed in the future,
where such predictions will be applied in a collision avoid-
ance setting.
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Advances in artificial intelligence are driving the development of intelligent transportation systems, with the
purpose of enhancing the safety and efficiency of such systems. One of the most important aspects of maritime
safety is effective collision avoidance. In this study, a novel dual linear autoencoder approach is suggested to

h : predict the future trajectory of a selected vessel. Such predictions can serve as a decision support tool to
rj;t::ol;::mng evaluate the future risk of ship collisions. Inspired by generative models, the method suggests to predict the
AIS future trajectory of a vessel based on historical AIS data. Using unsupervised learning to facilitate trajectory
clustering and classification, the method utilizes a cluster of historical AIS trajectories to predict the trajectory
of a selected vessel. Similar methods predict future states iteratively, where states are dependent upon the
prior predictions. The method in this study, however, suggests predicting an entire trajectory, where all states
are predicted jointly. Further, the method estimates a latent distribution of the possible future trajectories of
the selected vessel. By sampling from this distribution, multiple trajectories are predicted. The uncertainties
of the predicted vessel positions are also quantified in this study.

1. Introduction you and understanding what that information means to you now and in the
future”. Endsley (1995) separated situation awareness into three levels:

As more advanced technologies are introduced into transportation
systems, the opportunity to enhance the safety of these systems in-
creases. Increased computational power in conjunction with advances
in artificial intelligence, and the ubiquity of sensor data, allow for
new methods to be implemented across a wide number of sectors.
Some argue that an industrial revolution is taking place, naming it
Industry 4.0 (Hermann et al., 2016). The automotive industry is an
example of a sector in which such technological advances are embraced
and integrated into existing systems. The shipping industry, however,
has historically been more conservative in adopting new technologies,

1. Perception of the elements in the current situation
2. Comprehension of the current situation
3. Projection of the future status

Maritime situation awareness largely relates to obstacle detection
and prediction of close-range encounter situations. Such obstacles will
primarily be other vessels, referred to as target vessels in an en-
counter situation. It is, therefore, essential for a navigator to have
an adequate degree of situation awareness in order to conduct effec-

often relying on older, but proven systems. Nonetheless, advances are
being made, with some arguing that shipping is also undergoing a
technological revolution, Shipping 4.0 (Rgdseth et al., 2015).

1.1. Maritime situation awareness

An essential aspect of Shipping 4.0 is arguably implementing mod-
ern technologies to enhance the safety of maritime operations. Effective
collision avoidance strategies are an integral part of maintaining safe
operations. The efficacy of such strategies relies on the degree of
situation awareness of the navigator. Situation awareness was defined
in Endsley et al. (2003) as “being aware of what is happening around

* Corresponding author.
E-mail address: brian.murray@uit.no (B. Murray).
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tive collision avoidance maneuvers. A thorough review of collision
avoidance methods can be found in Tam et al. (2009).

The main challenge for a navigator is determining the risk of
collision based on their degree of situation awareness. In light of
Endsley’s definition, one can classify level one situation awareness as
relating to obstacle detection, and level two an evaluation of the current
collision risk. Perera and Guedes Soares (2015) addressed collision
risk detection and quantification techniques with respect to integrating
modern technologies. The study discussed the concept of e-Navigation
as introduced by the International Maritime Organization. e-Navigation
aims to utilize maritime information by electronic means to enhance

Received 12 November 2019; Received in revised form 31 March 2020; Accepted 30 April 2020
0029-8018/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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P Trajectory Prediction
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8 Maximum Offset
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the safety of maritime operations. It was argued that integrated bridge
systems are the main focus. Here, relevant information relating to ship
navigation should be properly integrated in order to provide decision
support to navigators. As such, Perera and Guedes Soares (2015) argued
that the best navigation tools possible should be available on board the
vessel to aid the navigator in identifying high risk situations. Based
on this risk evaluation, adequate collision avoidance maneuvers can
be conducted that adhere to the COLREGS as outlined in Perera et al.
(2010).
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A wide range of technologies are currently adopted to aid in pro-
viding situation awareness to navigators, including radar, conning and
ECDIS (Electronic Chart Display and Information System). Radar sys-
tems facilitated by ARPA (Automatic Radar Plotting Aid) and the ECDIS
are essential in aiding navigators to determine the risk of collision.
Generally, the future state of a target vessel is estimated based on
calculations of constant course and speed values. These estimates can
then be used by the navigator to estimate collision risk parameters
relating to the closest point of approach (CPA), such as the time
(TCPA) and distance (DCPA). Based on this information, a navigator
can make a decision with respect to a potential collision situation.
However, predicting collision situations far in advance, i.e. level three
of Endsley’s situation awareness model, will be the focus area of this
study.

1.2. Vessel trajectory prediction

Predicting ship behavior as in Perera (2017) can provide decision
support to navigators to make appropriate collision avoidance maneu-
vers. Advanced techniques, e.g. Perera et al. (2012), where extended
Kalman filters were utilized to estimate ship trajectories, can further
enhance the situation awareness of navigators. Such methods, however,
are only useful for prediction horizons in the order of seconds to
minutes. As such, they will only aid navigators in cases in which close-
range encounter situations are imminent. As a result, it was suggested
in Perera and Murray (2019) to introduce an advanced ship predictor.
This study focused on methods to provide autonomous vessels with
adequate situation awareness. However, such methods are also relevant
for use in decision support to ship navigators. In this approach, a
local and global scale ship predictor were suggested. At a local scale,
techniques such as those outlined in Perera (2017) can be utilized to
aid in short term trajectory predictions in order to aid in effective
collision avoidance maneuvers once a collision is deemed imminent. On
the global scale however, long term trajectory predictions, on the scale
of 5-30 min, are conducted. Such predictions aim to prevent close-
range encounter situations from occurring at all. Such predictions are,
however, not straight forward, as the future intentions of the vessel are
unknown, and may potentially be complex.

1.2.1. AIS based vessel trajectory prediction

One method to conduct vessel trajectory predictions on a global
scale is to utilize historical AIS (Automatic Identification System) data.
By exploiting AIS data, insight into historical ship behavior can be
gained. Multiple ship parameters relating to historical ship movement
are stored in databases, available for use. Such parameters include the
position, speed and course over ground. Recently, there has been a
significant increase in research into exploiting AIS data for maritime
situation awareness. A number of studies have focused on evaluat-
ing grouping trajectories together to gain insight into maritime pat-
terns. Aarsather and Moan (2009) for instance utilized computer vision
techniques to group trajectories and subsequently calculate statistics
for each traffic pattern. Zhang et al. (2018) also utilized AIS data via
a data driven approach that compressed and clustered trajectories to
extrapolate the general behavior patterns of vessels traveling along the
same route. Subsequently, given a starting point, the Ant Colony Algo-
rithm was utilized to output an optimal route to the destination. Zhang
and Meng (2019) also presented a data driven method to determine a
probabilistic ship domain based on AIS data. Such ship domains can
subsequently be utilized for collision risk assessment. A comprehensive
review of various methods to exploit AIS data for maritime navigation
was presented in Tu et al. (2017).

Of primary interest for this study, however, is the work done to
predict the future trajectory of a vessel that can be utilized in a global
scale ship predictor. As such, the aforementioned methods are of lim-
ited usefulness. Ristic et al. (2008) utilized a particle filter to predict the
future behavior of vessels using historical AIS data, but the predicted
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future positions had a large uncertainty associated with them, making
the method of limited use with respect to collision avoidance decisions
and actions. A number of studies also have focused on clustering
historical trajectories, and subsequently classifying a vessel to one of
these groups. Pallotta et al. (2013) for instance presented the TREAD
(Traffic Route Extraction and Anomaly Detection) methodology that
clustered all historical trajectories in a specific region to identify traffic
routes and subsequently classify a partial trajectory to one of these
routes for anomaly detection. The method also addressed assessing
the probability of a position along a route. Pallotta et al. (2014)
further expanded upon the TREAD methodology by predicting the
vessel position along a route using the Ornstein—Uhlenbeck stochastic
process. The TREAD technique, however, clustered entry points, way-
points and stationary points of trajectories within a defined region. In
this respect, the trajectory through the entire region was utilized to
group similar trajectories together. This can result in trajectories with
large differences between sub-trajectories being clustered together. For
predictions in the order of hours, this is not an issue, and the outlined
method is quite effective. For collision avoidance purposes, a higher fi-
delity prediction is required that requires more discrimination between
trajectories. Other studies on clustering and classification include Zhao
and Shi (2019) which clustered trajectories by using dynamic time
warping and the Douglas Peucker algorithm, in addition to Zhou et al.
(2019) which clustered using k-means, and subsequently classified ship
behavior. Methods relying on dynamic time warping and way-point
based clustering will cluster trajectories based on similar spatial behav-
ior, but be invariant with respect to time. As such, trajectories that have
similar spatial shapes will be grouped together despite various behavior
being observed at different relative times. This may be detrimental to
a subsequent trajectory prediction, in that the clustering capability is
restricted to the shapes of trajectories, irrespective of their duration and
potential differences in sub-trajectories.

Mazzarella et al. (2015) also presented a trajectory prediction ap-
proach using AIS data, via a Bayesian network approach with a particle
filter. This method was designed for predictions in the order of hours,
and as such of limited use with respect to collision avoidance. Other
methods include Hexeberg et al. (2017), where a Single Point Neighbor
Search method was presented based on historical AIS data. The method
does not involve any clustering or classification steps, and as such
suffers when handling branching. Dalsnes et al. (2018) built upon this
work and provided multiple predictions using a prediction tree. This
approach allows for a probability estimate of a future prediction to be
estimated using a Gaussian mixture model. These methods, however,
do not utilize the relationship between data points, as future states
are based solely on the neighborhood of previous states which may
not have any relationship to the prior predicted states. This will have
a negative effect on the accuracy. Rong et al. (2019) also presented
a probabilistic trajectory prediction method using a Gaussian Process
model. This method, in addition to predicting the future position of
a vessel, gave an uncertainty estimate associated with the prediction.
The method had good results for the regular trajectories investigated
off the coast of Portugal, but did not address how to deal with more
complex traffic situations and trajectories, which likely will degrade
the outcome.

1.3. Generative models

The method utilized in this study takes an alternative approach
to those that come before. It is inspired by a field of deep learning
known as generative models (Foster, 2019), widely adopted in the field
of machine learning. Such models have recently gained a high degree
of popularity due to the powerful generative ability of deep learning
models. One such general model is the autoencoder. An autoencoder is
a type of neural network, with its most simple form being a multi-layer
perceptron (Bourlard and Kamp, 1988). The objective of an autoen-
coder is to reconstruct the data fed into it, essentially copying its input
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Fig. 1. Autoencoder architecture with the encoder illustrated by the blue dashed box,
and the decoder by the green dashed box-. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

to its output. Such techniques are, however, not extensively applied in
the maritime domain. Some studies have looked into applying these
approaches in the maritime domain, e.g. Perera and Mo (2018), where
autoencoders were suggested as a tool to compress data to facilitate
more effective maritime data transmission. Autoencoders are consid-
ered to have two parts: an encoder function f(x) that produces the code,
h, shown in (1), and a decoder function, g(h), that reconstructs the data
from the code shown in (2). An integral part of an autoencoder is the
internal hidden layer, h, that represents the code space, often referred
to as the latent representation of the data.

h=7x) @
X =g(h) @

For an autoencoder to be useful, it must provide a form of func-
tionality other than mapping the input to the output. Undercomplete
autoencoders (Goodfellow et al., 2016), i.e. where h has a smaller
dimension than x, provide a bottleneck in the code space through which
the network can learn a meaningful latent representation of the data.
The mapping function of the input data to the code space, f(x), can be
thought of as a data compression operation, or parameter reduction.
The encoder strives to create a meaningful latent representation that
preserves as much information as possible, such that the decoder
has adequate information to reconstruct the data. As such, when an
autoencoder is trained on a dataset, it will adapt such that the encoder
preserves the most important information in the dataset.

Traditionally, autoencoders have been utilized for dimensionality
reduction and feature generation (Goodfellow et al., 2016). In this case,
the latent representation can be utilized for data visualization or to
generate more relevant features for further processing. Additionally,
once an autoencoder is trained, data can be compressed and stored.
Subsequently, it can be decoded for later use. Such applications are
often very useful. However, the generative capabilities of autoencoders
have recently also gained interest. Alternatively to encoding and de-
coding the data, one can solely utilize the decoder in order to generate
new data. This is done by sampling a data point in the code space, and
subsequently running a forward pass through the decoder to reconstruct
the data. In this manner, one can interpolate between existing data
points in the code space to generate new samples.

The variational autoencoder (Kingma and Welling, 2014; Rezende
et al, 2014) is a popular type of generative model. A variational
autoencoder is a probabilistic version of an autoencoder where the
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network learns a probability distribution of the reconstructed data
based on a learned distribution over the code. In this manner, there
is a continuous distribution in the code space that can be sampled
from. Kingma and Welling (2014) investigated the use of a variational
autoencoder and presented a figure illustrating generated images from
a variational autoencoder trained on the MNIST dataset of handwritten
digits. The figure illustrates the interpolation of the digits with a 2-
D latent code. Each axis along the figure can be thought of as one
dimension in the latent code. It is evident that as one moves around
within the code space, the digits morph from one digit to another. The
latent representation is able to capture the most important differences
in the data along the respective axes. As such, one can generate a
new image simply by interpolating within the code space generated by
training the autoencoder.

Such generative capabilities can be extended to virtually any
dataset, where an autoencoder is trained, and based on the latent distri-
bution of the data, can generate new data samples from the distribution.
As such, if an autoencoder is trained on a cluster of trajectories, it
should be able to generate a new trajectory by interpolating in the
latent space.

1.4. Contribution

The objective of this study is to provide an architecture that can
support collision avoidance actions by providing situational awareness
to navigators or autonomous agents. As a result, the architecture differs
from that of similar studies with respect to its design. To aid in
situation awareness, a method is suggested to provide a global scale
ship predictor that estimates the future 30 min trajectory of a selected
vessel with a high degree of fidelity. As opposed to a number of other
studies, the approach in this study is designed to run live, i.e. without
any pre-trained models. A ship in any region, given an adequate density
of historical AIS data can, therefore, utilize the developed architecture.
In the suggested approach, relevant historical ship trajectories are ex-
tracted from an AIS database, that represent the possible future 30 min
behavior of a selected vessel. This dataset comprises only relevant data
with respect to the observed state of a selected vessel for the purpose of
trajectory prediction, and as such provides the basis for the remainder
of the prediction methodology. Inherent differences in behavior are
described by these trajectories, which in turn represent the possible
modes of the future 30 min behavior the selected vessel may belong
to. Therefore, the trajectory representation differs from other methods
that evaluate entire trajectories for a region. The representation in this
study provides higher fidelity predictions as a result.

In order to discover clusters of similar trajectories, other approaches
utilize trajectory representations that introduce invariance with respect
to time, e.g. dynamic time warping, or point based techniques using
waypoints. These techniques are effective for clustering trajectories of
similar shapes together. For the purpose of this study however, it is
of interest to discover all possible trajectory modes that represent the
future 30 min behavior of the selected vessel, not just trajectories of
similar shapes for the region. As such, trajectories should not be in-
variant with respect to time. Therefore, by representing each trajectory
by vectors of equal length containing the future 30 min of trajectory
data, the representations will be sensitive to the time at which various
behavior is observed. Such a representation will, therefore, be more
sensitive to modes within primary ship routes. Discovering these modes
will provide a much better basis for a subsequent trajectory prediction
for collision avoidance purposes, as the prediction must be as accurate
as possible. This study suggests to cluster compressed trajectories via
Gaussian Mixture Models to an unspecified number of clusters, each
representing a mode of future behavior, and is shown to have good
performance for the purpose of the study.

Once a selected vessel is classified to a given cluster of historical
AIS behavior, this data is used directly in the dual linear autoen-
coder prediction architecture. This architecture differs significantly
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from other methods, which generally predict future states in manner
such that they are predicated upon previous predicted states. In this
study, it is suggested to predict entire trajectories, i.e. all future states
are predicted jointly. A novel trajectory prediction technique inspired
by generative models is, therefore, suggested using a dual linear au-
toencoder approach. In this approach, a latent representation of the
possible future behavior of the selected vessel is calculated. The latent
representation can be viewed as an encoded version of the data. Using
this distribution, the encoded representation of the selected vessel’s
future behavior is estimated by interpolating between the encoded data
points. By decoding the estimate of the latent representation of the
future trajectory, an entire trajectory is predicted by a single matrix
multiplication operation. Other methods predict an average of the
behavior in the cluster, i.e. the average of the distribution, whereas the
method suggested in this study will estimate the most likely sample.
As such, the prediction is discrete, and can provide more accurate
predictions than other methods in which the behavior is averaged out.

The prediction accuracy will also be enhanced for clustering
schemes that are able to identify ship modes with a high degree of
fidelity, as clusters that contain multiple ship modes will result in
the prediction averaging out the behavior between modes due to the
interpolation. As a result, the overall architecture of the study allows
for higher fidelity predictions than other methods. Additionally, the
study provides a method to estimate the distribution of the selected
vessel’s future trajectory latent representation. This is to account for
uncertainty in the estimate, and by decoding samples from this distri-
bution, a region of uncertainty for the predicted position at a given
prediction horizon can be evaluated. The suggested architecture also
utilizes linear autoencoders. Therefore, it allows for fast predictions
as they are facilitated by calculating eigenvectors, and conducting
subsequent matrix multiplications. As such, there is no training of
a deep neural network. This architecture is, therefore, ideal for live
predictions, as the calculations involved in the prediction itself will
be fast. This approach in this study, therefore, provides a method to
conduct live predictions of higher fidelity with respect to collision
avoidance purposes on a global scale than other methods, as well as an
effective method to quantify the uncertainty of the predicted positions.

2. Methodology

In this section, the methodology utilized to predict the future tra-
jectory of a selected vessel is outlined. The objective of the method
is to accurately predict the future trajectory of a selected vessel, and
provide an uncertainty estimate with respect to the predicted positions.
The overall architecture of the method is illustrated in Fig. 2. The
method can be separated into three modules. The first is the trajectory
clustering module, where groupings of similar historical trajectories are
discovered. It is assumed that the future trajectory of a selected vessel
can be inferred based on the historical trajectories of other vessels
in the region. As such, the selected vessel is classified to one of the
discovered clusters in the trajectory classification module. Based on
the cluster of trajectories to which the selected vessel is classified, a
trajectory prediction is conducted in the trajectory prediction module.
This is achieved via a novel dual linear autoencoder approach. In this
approach, two linear autoencoders are utilized. The forward linear au-
toencoder provides a latent representation of the historical trajectories
that can be used to infer the future trajectory of the selected vessel.
The backward linear autoencoder provides a latent representation of
the prior behavior of the historical trajectories. Based on a similarity
measure evaluated in the latent space of the backward linear autoen-
coder, a latent interpolation is conducted to estimate the forward latent
representation of the selected vessel. Subsequently, this estimate can be
decoded, resulting in a trajectory prediction.
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dashed lines.

2.1. Unsupervised trajectory clustering and classification

In this section, the methodology involved in clustering historical
AIS trajectories and classifying the trajectory of a selected vessel is
outlined. This work in this section builds upon preliminary work de-
scribed in Murray and Perera (2019). The reader is, therefore, referred
to Murray and Perera (2019) for further details. It can be argued that
investigating the historical behavior of vessels in a particular geograph-
ical region can provide insight into the future behavior of a vessel
observed in that region. However, historical vessel trajectories will
have a high degree of variation. This variation is due to the existence of
multiple traffic routes, as well as the characteristics of the vessel with
respect to the speed it will traverse along a given route. It is, therefore,
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of interest to identify groupings of similar trajectories, such that specific
traffic behavior can be identified. Once such groupings are identified,
a selected vessel can be classified as belonging to a given group. In
this manner, a subsequent trajectory prediction can be conducted on an
enhanced data set, where the data used for prediction will likely have
a high degree of similarity to that of the selected vessel. This can be
thought of as advanced form of preprocessing of the AIS data, such that
subsequent trajectory predictions will have a higher degree of accuracy.

Grouping such data can be conducted via a technique from the field
of machine learning known as clustering. This is a form of unsupervised
learning, where labels for the data are unavailable. Clustering has as its
goal to discover underlying groupings in the data, i.e. identify clusters
of data. Once the historical vessel trajectories have been clustered, the
observed trajectory can be used to classify the selected vessel to one of
the discovered clusters.

2.1.1. Trajectory extraction

The initial state of a selected vessel is defined in (3). This state
represents the observed parameters of the selected vessel available via
the on-board sensor suite of the own-ship. The parameters in this state
provide the basis for the selection of relevant historical ship trajectories
for a subsequent prediction of the selected vessel’s future trajectory.

So = [x0, ¥os X0» Vol 3)

The method first identifies historical AIS data points with a high
degree of similarity to s). In essence, this means that it is desirable
to identify ships that were at a similar position, with a similar course
and speed, at some point in history. In order to achieve this, an
initial cluster C, is created. C, is defined to be a rectangular cluster
orthogonal to y,, with a height of 6, parallel to y,, and a width 5y,
orthogonal to y,. z’ is the rotated space with the orthogonal vectors
in the original space as basis vectors. C, is defined according to the
following equation (Murray and Perera, 2019):

Co ={a, €A (Ixz; = x0l S0y A |y = yo0l £ 6p)
A = xol £ x5 A loj — vl < vg)} “@

Additionally, data points that do not match the ship type of the
selected vessel are removed. C, will, however, likely contain multiple
data points from the same trajectory. As such, unique trajectories are
identified, and the most similar point to s, in each unique trajectory
determined. C, is then updated by filtering out all data points other
than these most similar points. In this manner, C, only contains one
data point per trajectory.

Once the initial clustering phase is completed, a forward and back-
ward trajectory extraction operation is conducted. This entails that for
all trajectories in C,, the forward trajectory from the corresponding
point in C, is extracted. This can be thought of as the future trajectory
defined in relation to the point in C,. The length of the extracted
forward trajectory is defined based on the desired prediction horizon,
T,. For instance, if a 30 min prediction is desired, 30 min of the forward
trajectory will be extracted. Similarly, the backward, i.e. past, trajec-
tory from its corresponding point in C, of a length corresponding to T,
into the past is extracted. Both the forward and backward trajectories
are subsequently interpolated at 30 s intervals for comparative analysis.
As such, each trajectory will have L =2 x T, entries, where each entry
can be used to compare positions at a given time instance defined from
the origin of the trajectory (see Fig. 3).

2.1.2. Trajectory clustering

One of the objectives of extracting the forward trajectories is to
provide a dataset upon which one can identify possible future routes
that the selected vessel may follow. It is, therefore, desirable to group,
or cluster, these trajectories such that each possible route can be eval-
uated individually, as there may be many possible future routes that
the selected vessel may follow. This is conducted by first generating
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Fig. 3. C, illustrated as a rectangular red box. The forward and backward extracted
trajectories illustrated as green and orange lines respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

features for each trajectory by flattening the positional data given in
UTM-coordinates, i.e. [x, y], into a feature vector.

Clustering is a technique that groups data points based on some
similarity measure, i.e. data points that are closer to one another in
some n-dimensional space are more likely to be considered part of the
same cluster. If the dimensionality of the space is large however, the
clustering algorithm may suffer due to the curse of dimensionality dis-
cussed in Steinbach et al. (2004). One aspect of curse of dimensionality
relates to points getting lost in the space due to large distances between
points with respect to certain dimensions. This can make clustering
in a high dimensional space challenging. Dimensionality reduction is,
therefore, conducted for each trajectory via the Karhunen-Loéve (KL)
transform (Karhunen, 1946) in (5), where the dimensionality is reduced
from 2L to I.

hy = E7f ©)
where hy € R*!, f € R?X! and E € R2M¥
X = EAE" (6)

where X € R212L and A € R2P2L

The next step is to cluster the forward trajectories. This is conducted
using Gaussian Mixture Model (GMM) clustering via the Expectation
Maximization (EM) algorithm. A Gaussian Mixture Model (Reynolds
et al., 2000) assumes that data is comprised of a mixture of M different
Gaussian distributions, each with their own mean vector yu,,, covariance
matrix X, and prior distribution x,. Each data point representing a
forward trajectory will be clustered to the distribution of the highest
probability. The EM algorithm updates the underlying parameters until
a model of best fit is discovered. The assumed number of underlying
distributions, M, is also varied to discover the most likely mixture. For
more details on GMM clustering of trajectories, see Murray and Perera
(2019).

2.1.3. Trajectory classification

Once the forward trajectories have been clustered, it is desirable
to classify the selected vessel to one of the discovered clusters. One
method to achieve this is to investigate the backward trajectories.
Assuming that the past behavior of the selected vessel is available
for a period corresponding to Tj, one can compare the past behavior
of the selected vessel to the backward trajectories extracted from C,.
The aforementioned backward and forward trajectories are in fact
one single trajectory, but the forward trajectories are the section cor-
responding to the future behavior, and the backward trajectory the
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past behavior. In the classification module, the extracted backward
trajectories are assigned the class labels of their corresponding forward
trajectories, discovered in the clustering module. These are utilized to
classify the observed trajectory of the selected vessel to one of these
classes. In order for the classification process to be as effective as
possible, it is of interest to generate optimal features to represent the
backward trajectories. This is achieved via Linear Discriminant Analysis
(LDA) (Fisher, 1936). LDA requires that the data points are labeled,
and as such, the backward trajectories are given the labels of the
corresponding forward trajectories. The transformation is conducted
via (7). Subsequently, a classifier of choice can be utilized to classify
the transformed backward trajectory of the selected vessel to one of the
clusters. This will yield the most likely future route that the selected
vessel will follow. In this study, a kNN classifier is utilized.

h, =E’b (%)
where h, € R¥!, b € R?*! and E € R?22X
SyeSpe = EAE” ®)

where S!S, € R?2L and A € R,
2.2. Dual linear autoencoder

This study introduces a novel dual linear autoencoder trajectory
prediction method that is further described in this section. The motiva-
tion is to predict the future trajectory of a selected vessel. The method
is inspired by the generative models addressed in Section 1.3. If one
can create a latent distribution of possible future trajectories, one can
then interpolate between existing trajectories in the latent space, and
generate a new trajectory that corresponds to the selected vessel.

Autoencoders generally have non-linear activation functions. How-
ever, the linear autoencoders investigated in this study do not have
non-linear activation functions in the network, and as such the encoder
and decoder functions will simply be linear transformations of the data.
Consider a 2-layer linear autoencoder as illustrated in Fig. 1. Let the
encoder function be described by (9) and the decoder function by (10).
If the network is trained using the mean squared error shown in (11),
as the loss function J, the minimum reconstruction error is shown to
be achieved if V = W and ¢ = pu, where the columns of W span
the orthonormal basis spanned by the eigenvectors of the covariance
matrix X of the dataset (Goodfellow et al.,, 2016). The columns of
W are ordered by the magnitude of their corresponding eigenvalues.
One recognizes that the encoder function f(x) is in fact the same as
the KL-transform for the case of a linear autoencoder. This allows for
efficient calculations, as the covariance matrix and its corresponding
eigenvectors and eigenvalues can easily be calculated, significantly sav-
ing computation time compared to training a network. The eigenvectors
calculated here capture the directions in which there is the greatest
degree of variation in the data. Data can, therefore, be compressed and
reconstructed as a linear combination of the projections of that data
onto a subspace spanned by the top / eigenvectors with the largest
eigenvalues.

h=7x)=W'(x-p) )
%x=gh)=Vh+c (10)
J=E[Ix-%|? an

The basis of the method is to train two linear autoencoders. All for-
ward trajectories belonging to the class of the selected vessel are input
to the forward linear autoencoder. In the latent representation, i.e. the
code space, one can then interpolate between existing data points, and
in this manner predict the latent representation of the selected vessel’s
future trajectory. If one then runs a forward pass through the decoder,
i.e. (10), one will get a full trajectory prediction, at the cost of a matrix
multiplication operation. One can in theory move about the latent
space and generate new trajectories in a similar manner to the MNIST
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digits in Kingma and Welling (2014). The underlying distribution of
possible future trajectories would then be visualized, where moving in
one dimension or another represents the most variation in the possible
future trajectories. The interpolation, however, depends on a similarity
measure of the backward trajectories to the backward, i.e. observed,
trajectory of the selected vessel. This is facilitated via the backward
linear autoencoder.

2.2.1. Forward linear autoencoder

The forward linear autoencoder has as its goal to create a meaning-
ful latent representation of the extracted forward trajectories. However,
training an autoencoder on all the forward trajectories will yield a
latent representation that describes the greatest variations in the data,
i.e. between all clusters of trajectories. This may for instance yield
predictions where a data point is interpolated between clusters, and in
fact represents an unrealistic data point that is not part of the original
distribution. If one, however, considers solely the cluster of trajectories
that the selected vessel has been classified to, one now has a subset of
trajectories that are highly similar to each other, where interpolation
between points should be meaningful. As such, training an autoencoder
on this subset of data will allow it to learn a latent representation that
describes this specific cluster. Decoding a data point from this latent
representation will, therefore, yield a trajectory prediction of higher
fidelity. The encoder and decoder functions are shown in (12) and
(13) respectively, where E r is the matrix of the subset of the top /
eigenvectors of the covariance matrix of the forward trajectories.

h, =Eff 12)
f=Eh, 13)

2.2.2. Backward linear autoencoder

The success of the trajectory prediction technique relies on the
interpolation in the latent space of the forward linear autoencoder.
Given that the future trajectory is unknown, one must infer the latent
representation of the selected vessel in the forward latent representa-
tion. It is, therefore, suggested to investigate the backward trajectories
of the classified cluster in comparison to the backward trajectory of
the selected vessel. By identifying the degree of similarity between all
backward trajectories in the cluster, and the backward trajectory of the
selected vessel, one can interpolate in the latent space of the forward
linear autoencoder, using the similarity of the backward trajectories as
weights.

It is suggested in this study to utilize a linear autoencoder to
evaluate the similarity. In the same manner as the forward linear
autoencoder, the backward linear autoencoder will learn a meaningful
latent representation that describes the variation in the underlying
trajectory data. In this lower dimensional latent space, the distance
from the encoded selected vessel trajectory to all other trajectories
can be measured. Conducting such a similarity measure in this space
will yield better results due to the same challenges relating to curse of
dimensionality (Steinbach et al., 2004) as those addressed in 2.1.2. The
encoder and decoder functions are shown in (14) and (15) respectively,
where E, is the matrix of the subset of top / eigenvectors of the
covariance matrix of the backward trajectories.

h,=E]b a4
b=Eh, 15)

2.2.3. Latent interpolation

Since there is no explicit mapping function from the latent space of
the backward autoencoder to the latent space of the forward autoen-
coder, a similarity-based mapping approach is suggested. The architec-
ture of the suggested method is visualized in Fig. 4. The figure shows
how the backward trajectories are mapped to a latent representation,
h,, in orange, as are the forward trajectories in green to the latent
space h;. e represents the coordinate systems of the latent spaces.
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The backward trajectory of the selected vessel is illustrated as the
solid red line, and represents the information available of the past
behavior of the selected vessel. This information is then encoded in the
backward latent representation, h,, ;, as the red data point. The goal of
the mapping operation is to map to the corresponding red data point
in the latent representation of the forward trajectories.

The mapping function can be considered an interpolation between
the data points of the encoded forward trajectories. The similarity
between the encoded backward trajectory of the selected vessel h,,
and all the backward trajectories is calculated as the Euclidean distance
according to (16). One common form of interpolation for multivariate
data is inverse distance weighting. An interpolation scheme is presented
in Shepard (1968) with a weighting function according to (17), and
the interpolated value calculated according to (18). The equation in-
terpolates within a neighborhood, such that the k nearest data points
are found, and the interpolated value is calculated on a subset of
neighboring data. In this manner, the interpolated value is not as
affected by outliers, and, therefore, more likely to be closer to the true
value.

d; = |lhy; —hy | 16)
1
= — 17

w; 4, a7
k

R K wh,;

hf,;= Z,,;{ PN fi (18)
Zici Wi

2.2.4. Decoded trajectory prediction

Subsequent to the latent interpolation operation, the future trajec-
tory of the selected vessel can be decoded, i.e. predicted, according to
(19). Once this is completed, f, must be reshaped to a matrix containing
the spatial data (x,y) as its columns. The prediction is subsequently
updated such that the offset between the true initial position (x, yy)
and the predicted initial position (%, J,) is subtracted from all the
entries of the prediction to account for minor offsets that occur due
to the approximation inherent in the latent interpolation. This yields a
trajectory prediction for the selected vessel at 30 s intervals, up to the
desired prediction horizon, 7). One can evaluate each row of the matrix
as the predicted vessel position, p;, in each vessel state, s;, where each
state is separated by 30 s.

f,=E/h,, a9

2.2.5. Uncertainty estimate of predicted position

The trajectory prediction gives a single prediction. However, the
outlined method does not give a measure of uncertainty related to
the predicted position at each time interval. A method is therefore
suggested to achieve this utilizing the linear autoencoder architecture
previously introduced. Some uncertainty can be attributed to the re-
construction loss that results from reducing the dimensionality in the
autoencoders, but the primary source is the uncertainty associated with
the latent interpolation.

It is, therefore, suggested to create a distribution in the latent space
of the encoded forward trajectories, i.e. H , that can account for
some of the interpolation error. If one considers the neighborhood of
h ;5> ONe can investigate the uncertainty with respect to the k nearest
neighbors in the latent representation of the backward trajectories,
h,. The method suggests to assume that h /s is the mean of a normal
distribution according to (20), with a weighted unbiased covariance
according to (21). These weights correspond to those in (17). In this
manner, the distribution will reflect the relevant importance of each
latent forward trajectory representation, based on their weights from
the backward trajectory similarity measure.

Hy,~ Ny 2 20)
X N N
5= Yoy withy; —hg )hg; — hf.x)T @
s k 2
>rw
Ef:] w; — S

3
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Fig. 4. Illustration of the latent representations in the dual linear autoencoder architecture. The interpolation between the known latent representation of the backward trajectory
of the selected vessel to the unknown forward latent representation is also illustrated. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

This, however, only yields a form of uncertainty with respect to the
latent representation of the selected vessel’s forward trajectory. What
is of interest, however, is the uncertainty of the predicted position at
various vessel states. To achieve this, it is suggested to run a Monte
Carlo simulation (Raychaudhuri, 2008) that samples from the latent
normal distribution in (20) to approximate the distribution of the
trajectory predictions. Each sample from H/ ; is decoded according to
(19), yielding a full trajectory prediction. In the same manner as in
Section 2.2.4, the sampled predictions are also updated based on the
offset of the true and predicted initial positions. This correction will
be greater for samples further away from the true value of h; ;, but
it is assumed to have limited effect on the predictions with respect
to estimating the uncertainty. After the samples are decoded, the
distribution of the decoded trajectory positions can be evaluated at
each time instance. This can be viewed as the distribution P; of the
predicted position p; for each vessel state s;, where each state is that
of the selected vessel at 30 s intervals. The distribution of the position in
each state can further be assumed to be normally distributed according
to (22), where the mean and covariance are calculated based on the
sampled predictions. As such, uncertainty measures can be calculated
with respect to the standard deviation of the distribution.

Pj NN(I‘,’,Z/) (22)
3. Results and discussion

To evaluate the method, 100 random data points were selected
from a dataset of historical AIS data in the region surrounding the
city of Tromsg, Norway. The dataset corresponds to that collected from
January 1st, 2017 to January 1st, 2018. Each data point represents a
selected vessel state, that will be initialized as the initial state, s, of that
vessel. The aforementioned trajectory prediction methodology is then
utilized to predict the future 30 min of each selected vessel’s trajectory,
such as to evaluate the performance of the method. The true future

trajectories of the selected vessels can be thought of as the test dataset
for each respective prediction. The remainder of the AIS data is then
the training dataset utilized to conduct the predictions. In this manner,
the method predicts the future trajectory of 100 different vessels, and
the accuracy can be evaluated based on the true trajectory of the vessel.
A value of / = 3 is utilized for the latent representation of both h, and
h,. Additionally, the 100 most similar vessels to each selected vessel,
i.e. k = 100, is utilized for the latent interpolation.

3.1. Classification accuracy

The input to the trajectory prediction module is the set of extracted
trajectories corresponding to the output of the classification module.
As such, the method relies on the accuracy of this classification, as
an incorrect classification will result in a prediction with respect to
a cluster of ship behavior that does not match the selected vessel. In
this study, a value of k = 7 was utilized for the kNN classifier. For
the results presented in this section, 67% of the selected vessels were
classified correctly.

In many cases, however, the incorrect classification can be at-
tributed an incorrect behavior mode, i.e. cluster. These modes can be
along the correct route, but may for instance traverse further to one
side of the lane, or have variations in the speed profile along the
route. Predictions with respect to these modes, despite being incorrect,
can nonetheless result in reasonably accurate predictions. This is due
to the clustering algorithm identifying multiple modes that are quite
similar. One should note that this can be seen as a situation where some
data clusters can overlap each other. As such, the 33% of incorrectly
classified cases in this study likely includes many cases in which the
selected vessel was classified to an incorrect mode along the correct
route, i.e. a similar trajectory mode.

Additionally, the success of the classification depends on the com-
plexity of the discovered clusters. It is on the one hand desirable
for the clustering algorithm to discover as many trajectory modes as
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Fig. 5. Trajectory prediction with correct classification. Contours are illustrated for
Tp = 30. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

possible, as this can enhance the accuracy of the subsequent trajectory
prediction. On the other hand, an increase in the number of clusters
will provide a more difficult classification task. This will be further
complicated due to overlapping clusters as mentioned previously. Each
cluster is multi-dimensional, and classifying in this space can be chal-
lenging. However, the focus of the study is the dual linear autoencoder
prediction technique.

It should be noted that the trajectory prediction methodology utiliz-
ing a dual linear autoencoder as described in this study can be utilized
based on any previous clustering and classification technique. However,
it does require that trajectories are extracted utilizing the methods
described in Section 2.1.1, such that trajectories can be encoded and
decoded properly. This trajectory extraction process can, however, also
be conducted after an alternative clustering and classification regime
has been utilized.

3.2. Trajectory prediction

Fig. 5 illustrates an example of a trajectory prediction for one of the
randomly selected vessels in the dataset. All presented predictions are
evaluated with p,, as the origin of the coordinate system to more easily
evaluate the distances involved. In the case of Fig. 5, the algorithm
classified the selected vessel to the correct cluster of trajectories. The
green dotted line represents the predicted trajectory of the selected
vessel, and the red dotted line represents the true trajectory of the
selected vessel. It is clear that for this case, the trajectory prediction
was quite accurate. Additionally, an estimate of the uncertainty of the
position at a 30 min prediction horizon is illustrated. Each black dot
illustrated represents a decoded sample from the normal distribution of
H,  in (20). Utilizing these predictions, a normal distribution P;, was
fit to the predicted positions for each state according to (22). Based
on this distribution, the 16, 26 and 3¢ contours could be evaluated,
and are visualized in the figure. Such contours can be evaluated at
any prediction horizon, but only the results for the 30 min prediction
horizons are illustrated in this section. Fig. 6 shows a prediction of
a more complex trajectory, showing that the method is also able to
successfully reconstruct more complex trajectories.

In certain cases, however, the classification is incorrect. This, in
some cases, can result in a vessel prediction along an incorrect route,
resulting in a degree of error with respect to the predicted position. An
example of such a case is illustrated in Fig. 7.
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Fig. 6. Prediction of complex trajectory. Contours are illustrated for T, = 30.
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Fig. 7. Trajectory prediction with incorrect classification. Contours are illustrated for
T, =30.

3.3. Prediction accuracy

The performance of the method is most effectively measured based
on the accuracy of the prediction with respect to the true vessel
position. The predicted position error is calculated as the distance from
the mean, u;, of the distribution P;, and the true position in that state,
i.e. p;. Additionally, the error is presented as a percentage of the true
distance traveled by the selected vessel. This is due to various vessels
having traveled different distances during the course of 30 min. In this
manner, one can compare the error irrespective of the distance traveled.

Fig. 8 illustrates the median error of all 100 predictions as a function
of time, i.e. the desired prediction horizon. The overall error for all
selected vessels is evaluated, where the median error for a 30 min
prediction is found to be 2.5%. If one looks only at the vessels that were
incorrectly classified, it is evident that they result in a higher degree
of error, where the median error at a prediction horizon of 30 min is
9.6% of the distance traveled. If one solely investigates the correctly
classified vessels, however, the accuracy of the prediction increases
significantly, with a median position error of 1.6% for a prediction
horizon of 30 min. This illustrates the importance of correctly classi-
fying the selected vessel, as the predictions are discrete with respect
to each class of trajectories. An incorrect classification results in the
prediction being conducted on a cluster corresponding to a different
mode of ship behavior than that of the selected vessel. Fig. 9 illustrates
a box plot of the positional error at 5 min intervals for the correctly
classified vessels. The green bars correspond to the median values in
Fig. 8. It is clear that the variance of the error increases as a function of



B. Murray and L.P. Perera

10 A

— Incorrect Classification
Overall

—— Correct Classification

Median Position Error [%]

10 15 20 25 30
Pridiction Horizon [min]

Fig. 8. Median position error of 100 randomly selected vessels as a function of the
prediction horizon. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 9. Box plot of error for correctly classified vessels.

time. Generally, it appears that the method has good performance when
vessels are correctly classified for prediction horizons up to 30 min.

3.4. Position uncertainty estimate

As previously mentioned, a normal distribution of the predicted
position P; in each state is evaluated according to (22). The resultant
1o, 26 and 3¢ contours can be utilized to give a measure of uncertainty
relating to the prediction in each state. It is desirable for this uncer-
tainty to be as small as possible whilst still capturing the behavior of
the selected vessel. If the uncertainty is too small, however, it may
not include the true future position of the selected vessel. Allowing
for too much uncertainty on the other hand, is not desirable either.
It is conceivable to extend the region of uncertainty such that the true
future position of the selected vessel will always be included within
the contours. In such cases, however, the usefulness with respect to
maritime situation awareness will be degraded, as there will be a risk
of collision for a very large area. This increases the likelihood of the
navigator needing to take action in cases where the true risk of collision
is low.

The degree of uncertainty is dependent upon two factors: the power
of the clustering algorithm, and the number of vessels included in the
latent interpolation. If the clustering algorithm is able to discover a
group of trajectories with very specific behavior, the uncertainty of
the prediction will decrease as the variance of the behavior within the

10
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Fig. 10. Mean error for values of k used in interpolation.

cluster is limited. In essence, all the historical trajectories utilized in the
prediction are almost the same, causing all predictions to have similar
values when sampling from the latent space. Similarly, if one only
selects a limited number of vessels to evaluate the latent representation
of the selected vessel in (20), the prediction will be restricted to
the behavior of these historical trajectories. Increasing the number of
trajectories will increase the variance of the behavior, and contribute to
a larger region of uncertainty. The effect of this was investigated, where
the number of similar vessels, k, utilized in (20), was varied and the
position error evaluated as a percentage of the distance traveled in the
same manner as described in Section 3.3. Fig. 10 illustrates the mean
error for various values of k as a function of the prediction horizon for
the 100 randomly selected vessels. It is evident that increasing the value
of k contributes to an increase in error, but that this error converges as
k increases.

It should be noted that the probability contours solely relate to the
probability of the predicted future position, and as such are entirely
dependent upon the model developed in this study. They provide a
measure of uncertainty with respect to the predicted positions, where
the true position should fall within the region enclosed by the contours.
The predictions are based on historically similar vessels, whose behav-
ior do not necessarily match that of the selected vessel. The assumption
that the future trajectory of a selected vessel depends on its past
trajectory is, therefore, a limitation of the method. The uncertainty of
the predictions can, therefore, be thought of as describing the variance
of the historical behavior, where it is likely that the vessel will fall
somewhere within the specified region. The method is designed to
identify the most similar trajectories. However, the data may be dom-
inated by specific vessel behavior that has a higher frequency. If more
similar historical trajectories have a lower frequency, the data will be
dominated by the less similar trajectories of the highest frequency. This
effect will, however, be somewhat ameliorated due to the weights in
(17), as the more similar trajectories will have higher weights when
calculating inf‘d. and X, .

The percentage of the correctly classified vessels whose true position
after 30 min was within the regions bounded by the corresponding o-
contours was also investigated. This was conducted in order to evaluate
the uncertainty measure’s ability to capture the true position of the
selected vessel. The results are shown in Table 1. The values are
estimated such that the 3¢ contour includes the points inside the 2¢
contour which again includes the points inside the 1o contour. 75% of
all true vessel positions were captured by the 3¢ contour for the tested
selected vessels. Cases in which the true positions did not reside within
the contours were, therefore, investigated.

Fig. 11 illustrates one such case. The prediction appears to be
quite accurate, with the true and predicted trajectories nearly exactly
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Fig. 12. Uncertainty contours for ferry trajectory prediction.

aligned. It is evident, however, that the uncertainty contours are not
visible. Fig. 12 illustrates a close up of the predicted position after
30 min. Here one can see that the predicted final position, illustrated
as the largest red dot, falls outside the uncertainty contours. When
investigating the scale involved, one can see that the true and predicted
positions in fact reside less than 20 m from each other. The uncertainty
ellipses are extremely small, and therefore reflect a very high certainty
of the model with respect to the predicted position. Fig. 13 illustrates
the cluster of trajectories utilized to conduct the prediction. It is discov-
ered that this cluster corresponds to a ferry, where the final position
after 30 min is at one of its ports. As such, the data upon which the
prediction is determined is concentrated about this position. An offset
of 20 m can be accounted for by error inherent in the AIS data, in
addition to the orientation of the vessel when in a port.

There are multiple ferries in the region surrounding Tromsg. When
investigating all tested vessels with a ship type of “Passenger Vessel”,
it was found that the performance with respect to the uncertainty
measures was degraded, despite the predictions being quite accurate.
The percentage of these vessels is also shown in Table 1, in addition to
results for all vessels except those labeled as “Passenger Vessel”. It is
clear that the performance increases in this case. The performance of
other vessel types is, however, likely affected by vessels with similar
effects, where the cluster of underlying data is too similar to allow for
a large uncertainty measure, whilst still providing accurate predictions.

3.5. Running time

As the algorithm is intended to run live, it is of interest to investigate
the running time of the method. To support the discussion, the authors
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Table 1

Percentage of true 30 min selected vessel position inside corresponding c-contour.

4 All vessels Passenger vessels Without passenger
vessels

1 37% 11% 41%

2 63% 22% 70%

3 75% 33% 82%

have evaluated the running time of the method for the cases in this
study. All evaluations have been run on a 2.30 GHz CPU and 16 GB
ram. In the following sections, the running times are evaluated in two
parts. The first addresses the running time of the trajectory extraction
algorithm, and the other the classification, clustering and prediction
algorithms.

The data utilized in this study consisted of approximately 15 million
data points. These data points are input to the algorithm without
any pre-processing. In the trajectory extraction step, relevant historical
trajectories need to be extracted from the raw AIS data. Once this is
conducted, the data will be available for the period a prediction is
required. Fig. 14 illustrates the running time of the extraction of tra-
jectory data. This is visualized as a function of the number of relevant
trajectories extracted. A third order regression was applied to the data
to visualize the relationship between the running time and the number
of trajectories. It is clear that the running time increases with the
number of extracted trajectories. It appears that for most cases, the tra-
jectories were extracted within two minutes. The trajectory extraction
process only needs to be conducted once, and subsequent predictions
can utilize the previously extracted data. The algorithm utilized to
extract the trajectories from the raw data has not been optimized in
the current implementation, however. As such, the running time of
the extraction phase can likely be significantly improved through opti-
mization. Additionally, in a future system utilized for vessel trajectory
prediction, a more advanced computer would be utilized to conduct the
prediction. Furthermore, speed can be increased by pre-processing data
for regions such that whole trajectories are available for extraction,
instead of raw data points that require trajectories to be created.
Nonetheless, the extraction times evaluated in the implementation in
this study are reasonable for the outlined purposes.

Of most interest to the study is arguably the performance of the
clustering, classification and prediction algorithms. Fig. 15 illustrates
the individual algorithm running times in addition to the total running
time, i.e. the sum of the clustering, classification and prediction running
times. These are again plotted as a function of the number of extracted
trajectories with a third order regression. It is clear that all algorithms
are quite fast. The classification was virtually instantaneous for all
cases, and the dual linear autoencoder trajectory prediction took less
than one second for all cases. The clustering algorithm dominates
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the total running time, where most cases took between one and two
seconds. However, the overall total running time for all algorithms
was nonetheless quite low, with the worst case being just below four
seconds, and the majority of the evaluated cases below two seconds.
This is considered to be acceptable for the purposes of this study. With a
more advanced computer, and optimized implementation, the running
time would likely be even lower.

4. Conclusion

A linear version of the autoencoder is implemented in this study,
and it is shown that it can predict complex trajectories with a high
degree of accuracy. Training the linear version of the autoencoder
utilized in this study is also less computationally demanding than
deeper autoencoders. Compared to methods that predict future states
conditioned upon their prediction of the previous state, this method
draws upon the generative ability of autoencoders to predict entire
trajectories. Generative models have been shown to have good per-
formance in creating new data points that belong to the distribution
of the training data. By interpolating in the latent space of historical
trajectories, the method in this study is able generate an entirely new
trajectory. The method is, however, dependent on the ability to cluster
the trajectories. If one were to apply the same method to all historical
trajectories, as opposed to a cluster, one may end up interpolating
between clusters. As such, a subsequent prediction will result in an
unrealistic trajectory that does not belong to the distribution of the
historical data.
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Applying the method on a single cluster, however, will increase
the ability to describe subtle differences between trajectories, thereby
enhancing the subsequent prediction. Also, given that all trajectories
within the same cluster are quite similar, the likelihood of generating a
trajectory that does not belong to the original distribution is unlikely.
Additionally, as the method generates an entire trajectory, and not
iterative states conditioned upon the previous prediction, prediction
errors will not propagate as a function of time. The error will, therefore,
be related to the error of the entire trajectory. By evaluating multiple
trajectory predictions, however, one can estimate the degree of uncer-
tainty of the prediction, and this uncertainty can be modeled using the
outlined method in this study.

The approach suggested in this study provides an effective method
to predict the future trajectories of ocean going vessels. Specifically, the
method provides the basis for an advanced ship predictor on a global
scale. This ship predictor will aid in providing situation awareness
to navigators, in that the future trajectory of potential target vessels
can be predicted far in advance. Based on a subsequent evaluation
of the collision risk, simple corrective measures can be conducted
to prevent close-range encounter situations from arising. If effective,
such a method will increase the safety associated with maritime op-
erations. Such situation awareness can also potentially be extended to
autonomous vessels, which can make system level intelligent decisions
based on input from the outlined approach.

Future work will include investigating deep learning methodologies
that introduce nonlinearity, and how increases in the complexity of the
model can potentially increase the performance of the predictions. In
addition, further work will be conducted on integrating such methods
into an advanced ship predictor to provide situation awareness to
navigators.

CRediT authorship contribution statement

Brian Murray: Conceptualization, Methodology, Software, Formal
analysis, Writing - original draft, Visualization. Lokukaluge Prasad
Perera: Conceptualization, Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Norwegian Ministry of Education
and Research and the MARKOM-2020 project, a development project
for maritime competence established by the Norwegian Ministry of
Education and Research in cooperation with the Norwegian Ministry
of Trade and Industry. The authors would also like to express gratitude
to the Norwegian Coastal Administration for providing access to their
AIS database.

References

Aarsaether, K.G., Moan, T., 2009. Estimating navigation patterns from AIS. J. Navig. 62
(04), 587-607. http://dx.doi.org/10.1017/5S0373463309990129.

Bourlard, H., Kamp, Y., 1988. Auto-association by multilayer perceptrons and singular
value decomposition. Biol. Cybernet. 59 (4-5), 291-294. http://dx.doi.org/10.
1007/BF00332918.

Dalsnes, B.R., Hexeberg, S., Flaten, A.L., Eriksen, B.-O.H., Brekke, E.F., 2018. The
neighbor course distribution method with Gaussian mixture models for AIS-based
vessel trajectory prediction. In: 2018 21st International Conference on Information
Fusion. FUSION, IEEE, pp. 580-587.

Endsley, M.R., 1995. Toward a theory of situation awareness in dynamic systems. Hum.
Factors: J. Hum. Factors Ergon. Soc. 37 (1), 32-64. http://dx.doi.org/10.1518/
001872095779049543.

Endsley, M.R., Bolté, B., Jones, D.G., 2003. Designing for Situation Awarene
Approach to User-Centered Design. Taylor & Francis.

: An




B. Murray and L.P. Perera

Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7 (2), 179-188. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Foster, D., 2019. Generative Deep Learning. O’Reilly Media, Inc..

Goodfellow, 1., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http://www.
deeplearningbook.org.

Hermann, M., Pentek, T., Otto, B., 2016. Design principles for industrie 4.0 scenarios.
In: 2016 49th Hawaii International Conference on System Sciences. HICSS, IEEE,
pp. 3928-3937. http://dx.doi.org/10.1109/HICSS.2016.488.

Hexeberg, S., Flaten, A.L., Eriksen, B.-O.H., Brekke, E.F., 2017. AlS-based vessel
trajectory prediction. In: 2017 20th International Conference on Information Fusion.
FUSION, IEEE, http://dx.doi.org/10.23919/ICIF.2017.8009762.

Karhunen, K., 1946. Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci. Fenn.
37.

Kingma, D.P., Welling, M., 2014. Auto-encoding variational bayes. In: Proceedings of
the International Conference on Learning Representations. ICLR, http://arxiv.org/
abs/1312.6114.

Mazzarella, F., Arguedas, V.F., Vespe, M., 2015. Knowledge-based vessel position
prediction using historical AIS data. In: 2015 Sensor Data Fusion: Trends, Solutions,
Applications. SDF, IEEE, pp. 1-6. http://dx.doi.org/10.1109/SDF.2015.7347707.

Murray, B., Perera, L.P., 2019. An AIS-based multiple trajectory prediction approach for
collision avoidance in future vessels. In: 38th International Conference on Ocean,
Offshore & Arctic Engineering, Vol. 7B-2019. OMAE 2019, American Society of
Mechanical Engineers (ASME), http://dx.doi.org/10.1115/0MAE2019-95963.

Pallotta, G., Horn, S., Braca, P., Bryan, K., 2014. Context-enhanced vessel predic-
tion based on ornstein-uhlenbeck processes using historical AIS traffic patterns
: Real-world experimental results. In: Information Fusion (FUSION), 2014 17th
International Conference on. July, pp. 1-7.

Pallotta, G., Vespe, M., Bryan, K., 2013. Vessel pattern knowledge discovery from AIS
data: A framework for anomaly detection and route prediction. Entropy 15 (12),
2218-2245. http://dx.doi.org/10.3390/e15062218.

Perera, L.P., 2017. Navigation vector based ship maneuvering prediction. Ocean Eng.
138, 151-160. http://dx.doi.org/10.1016/j.0ceaneng.2017.04.017.

Perera, L.P., Carvalho, J.P., Guedes Soares, C., 2010. Autonomous guidance and
navigation based on the COLREGs rules and regulations of collision avoidance.
Adv. Ship Des. Pollut. Prev. 205-216. http://dx.doi.org/10.1201/b10565-26.

Perera, L.P., Guedes Soares, C., 2015. Collision risk detection and quantification in
ship navigation with integrated bridge systems. Ocean Eng. 109, 344-354. http:
//dx.doi.org/10.1016/j.oceaneng.2015.08.016.

Perera, L.P., Mo, B., 2018. Ship performance and navigation data compression and
communication under autoencoder system architecture. J. Ocean Eng. Sci. 3 (2),
133-143. http://dx.doi.org/10.1016/j.joes.2018.04.002.

Perera, L.P., Murray, B., 2019. Situation awareness of autonomous ship navigation
in a mixed environment under advanced ship predictor. In: 38th International
Conference on Ocean, Offshore & Arctic Engineering, Vol. 7B-2019. OMAE 2019,
American Society of Mechanical Engineers (ASME), http://dx.doi.org/10.1115/
OMAE2019-95571.

13

Ocean Engineering 209 (2020) 107478

Perera, L.P., Oliveira, P., Guedes Soares, C., 2012. Maritime traffic monitoring based
on vessel detection, tracking, state estimation, and trajectory prediction. IEEE
Trans. Intell. Transp. Syst. 13 (3), 1188-1200. http://dx.doi.org/10.1109/TITS.
2012.2187282.

Raychaudhuri, S., 2008. Introduction to Monte Carlo simulation. In: 2008 Winter
Simulation Conference. IEEE, pp. 91-100. http://dx.doi.org/10.1109/WSC.2008.
4736059.

Reynolds, D.A., Quatieri, T.F., Dunn, R.B., 2000. Speaker verification using adapted
Gaussian mixture models. Digit. Signal Process. 10 (1-3), 19-41.

Rezende, D.J.,, Mohamed, S., Wierstra, D., 2014. Stochastic backpropagation and
approximate inference in deep generative models. In: Xing, E.P., Jebara, T.
(Eds.), Proceedings of the 31st International Conference on Machine Learning. In:
Proceedings of Machine Learning Research, vol. 32, (2), PMLR, Bejing, China, pp.
1278-1286, http://proceedings.mlr.press/v32/rezendel4.html.

Ristic, B., Scala, B.L., Morelande, M., Gordon, N., 2008. Statistical analysis of motion
patterns in AIS data: Anomaly detection and motion prediction. In: 2008 11th
International Conference on Information Fusion. pp. 40-46. http://dx.doi.org/10.
1109/1CIF.2008.4632190.

Redseth, @.J., Perera, L.P., Mo, B., 2015. Big data in shipping - challenges and
opportunities. In: 15th International Conference on Computer and IT Applications
in the Maritime Industries. COMPIT ’16, pp. 361-373.

Rong, H., Teixeira, A., Guedes Soares, C., 2019. Ship trajectory uncertainty prediction
based on a Gaussian process model. Ocean Eng. 182, 499-511. http://dx.doi.org/
10.1016/J.0CEANENG.2019.04.024.

Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data.
In: Proceedings of the 1968 23rd ACM National Conference. ACM ’68, ACM, New
York, NY, USA, pp. 517-524. http://dx.doi.org/10.1145/800186.810616.

Steinbach, M., Ert6z, L., Kumar, V., 2004. The challenges of clustering high dimensional
data. In: New Directions in Statistical Physics. Springer, Berlin, Heidelberg, pp.
273-309.

Tam, C., Bucknall, R., Greig, A., 2009. Review of collision avoidance and path
planning methods for ships in close range encounters. J. Navig. 62 (03), 455.
http://dx.doi.org/10.1017/50373463308005134.

Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.-B., 2017. Exploiting AIS
data for intelligent maritime navigation: A comprehensive survey from data to
methodology. IEEE Trans. Intell. Transp. Syst. 1-24. http://dx.doi.org/10.1109/
TITS.2017.2724551.

Zhang, L., Meng, Q., 2019. Probabilistic ship domain with applications to ship
collision risk assessment. Ocean Eng. 186, http://dx.doi.org/10.1016/j.0ceaneng.
2019.106130.

Zhang, S.-k., Shi, G.-y., Liu, Z.-j., Zhao, Z.-w., Wu, Z.-l., 2018. Data-driven based
automatic maritime routing from massive AIS trajectories in the face of disparity.
Ocean Eng. 155, 240-250. http://dx.doi.org/10.1016/j.oceaneng.2018.02.060.

Zhao, L., Shi, G., 2019. A trajectory clustering method based on Douglas—Peucker com-
pression and density for marine traffic pattern recognition. Ocean Eng. 456-467.
http://dx.doi.org/10.1016/j.0oceaneng.2018.12.019.

Zhou, Y., Daamen, W., Vellinga, T., Hoogendoorn, S.P., 2019. Ship classification based
on ship behavior clustering from AIS data. Ocean Eng. 176-187. http://dx.doi.org/
10.1016/j.oceaneng.2019.02.005.



126



Paper 111

Unsupervised Trajectory Anomaly Detection for Situation
Awareness in Maritime Navigation

Brian Murray and Lokukaluge Prasad Perera (2020)

Published in Proceedings of the 39th International Conference on Ocean,
Offshore and Arctic Engineering (OMAE 2020). ASME.

https://doi.org/10.1115/OMAE2020-18281

127



128



Proceedings of the ASME 2020 39th International Conference on

Ocean, Offshore and Arctic Engineering

2020

OMAE
June 28 - July 3, 2020, Ft. Lauderdale, FL, USA

OMAE2020-18281

UNSUPERVISED TRAJECTORY ANOMALY DETECTION FOR SITUATION
AWARENESS IN MARITIME NAVIGATION

Brian Murray*
Department of Technology and Safety
UIiT The Arctic University of Norway
9037 Tromsg, Norway

Email: brian.murray@uit.no

ABSTRACT

Situation awareness is essential in conducting effective col-
lision avoidance in potential ship encounter situations. It has
been shown that data driven trajectory prediction techniques,
utilizing historical AIS data, have the potential to aid in pro-
viding such awareness. However, such data driven techniques
will not perform well for unusual ship behavior, i.e. anomalous
trajectories. Additionally, such anomalies in the dataset can cor-
rupt the predictions. In this study, an unsupervised approach
to anomaly detection is presented to aid such trajectory predic-
tions. Gaussian Mixture Models are used to cluster trajectories,
such that clusters of both normal and anomalous trajectories are
discovered. Further, anomalies are discovered within clusters of
normal behavior. Novel trajectories can then also be evaluated
based on a parametric description of the historical ship traffic.
The approach is shown to be effective in detecting anomalies rel-
evant in such a trajectory prediction scheme.

NOMENCLATURE
a  Arbitrary AIS Parameter Vector
A Setof AIS Data
b Backward Trajectory Feature Vector
C  Data Cluster
d  Mahalanobis Distance
e  Eigenvector
E  Eigenvector Matrix
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Number of Data Points in Selected Trajectory
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INTRODUCTION

The ubiquity of sensor data, in addition to enhanced compu-
tational power, has opened the door for machine learning tech-
niques to be applied across a number of industries. Many argue
that we are currently undergoing a fourth industrial revolution,
often referred to as Industry 4.0 [1]. The automotive industry
for instance has been active in adopting modern technologies,
and integrating them into their designs. The shipping industry,
however, has historically been a bit more conservative in adopt-
ing new technology. Nonetheless, the industrial revolution has
reached the shipping industry as well, with some calling it Ship-
ping 4.0 [2]. The purpose of incorporating such technologies is
to enhance the efficiency and safety of ship operations. With re-
spect to safety, effective collision avoidance is arguably among
the most essential aspects of safe maritime operations, and de-
pends on the level of situation awareness the navigator or system
has. Situation awareness is often defined as having an awareness
of what is going on around you, and the potential implications
for your present and future situation [3].

In [4], historical AIS data are utilized to aid in providing sit-
uation awareness in future vessels. The goal is to predict the fu-
ture trajectory of a selected vessel, such that collision avoidance
maneuvers can be made far in advance of a potential encounter
situation. Unusual ship behavior, i.e. anomalous trajectories,
that do not correspond to regular behavior for the region, will
be difficult to predict, and the algorithm will undoubtedly per-
form poorly. It is therefore of interest to identify anomalous ship
behavior, such that the navigator can be made aware of the al-
gorithm’s inability to effectively predict the future trajectory of
that particular vessel. Additionally, such predictions depend on
the data that the algorithm is trained on. It is, therefore, of in-
terest to identify anomalous historical AIS trajectories that can
corrupt the predictions. Once identified, such anomalies can be
removed from the dataset utilized in the trajectory prediction.
The term anomaly is used in various settings in the maritime do-
main, where domain experts may disagree on the definition [5].
In this study, therefore, a trajectory anomaly is defined as behav-
ior that is inconsistent with normal traffic to a degree that it may
compromise a trajectory prediction.

Related Work

Anomaly detection is a widely researched field encompass-
ing a variety of domains. [6] discusses various techniques used
to facilitate anomaly detection that are generally applicable in
any domain. Extensive work has also been done specifically on
maritime anomaly detection. [7] provides an overview of state-
of-the-art research into maritime anomaly detection, where the
authors categorize the types of trajectory anomalies as positional,
contextual, kinematic, complex or data-related. Generally, most
methods try to extract the normal behavior of vessels, and then
classify new behavior as anomalous or not based on the descrip-

tion of the normalcy. In this study, the normalcy with respect to
both positional and kinematic data are of interest.

Most methods utilize parametric or non-parametric models
to model the normalcy of ship traffic. [8] uses a parametric ap-
proach with a Gaussian Mixture Model (GMM) [9] by separat-
ing regions into cells. Local probability density functions in each
cell evaluate the location, speed and course over ground data as
anomalous or not. [8] further compares the GMM approach with
a non-parametric Kernel Density Estimation approach also used
in [10] to model normalcy. These methods, however, do not con-
sider relationships between data points in a trajectory, and rather
examine whether or not a specific part of the trajectory is anoma-
lous to that of the behavior of that region. [11] presents the Traf-
fic Route Extraction and Anomaly Detection (TREAD) method
which clusters entry points, way-points and stationary points of
trajectories within a defined region using Density-Based Cluster-
ing of Applications with Noise (DBSCAN). Once clusters are
identified, Kernel Density Estimation is utilized to model the
data, and a sliding window technique is used for anomaly de-
tection. Identifying clusters that represent normal behavior for a
given traffic route is a powerful tool for anomaly detection. In
the TREAD approach, however, solely classifying entry, end and
way-points can result in large differences in sub-trajectories that
are classified together, degrading the effectiveness of the cluster-
ing technique.

Contribution

The objective of anomaly detection in this study is to en-
hance trajectory predictions. As such, it is designed with respect
to the architecture outlined in [4]. This study uses a parametric
approach to trajectory anomaly detection. Clustering is utilized
to group historical AIS ship trajectories in a given region, where
the discovered clusters either represent groups of normal or ab-
normal behavior. By discovering such anomalous trajectories,
one can conduct an effective preprocessing of the data, such that
a subsequent trajectory prediction technique can be run on an
enhanced dataset. Additionally, the method can be utilized to
classify an observed trajectory as anomalous based on the his-
torical behavior of ships in the same region. If an observed tra-
jectory is classified as anomalous, the prediction algorithm will
not perform well, given that it is biased towards regular ship be-
havior. As such, the user can be made aware of the anomalous
behavior, in addition to the likely limited predictive ability of the
algorithm.

In this study, only relevant trajectories are extracted, that
represent either where the region the vessel has been in the past,
or may be in the future, relative to the observed state of the se-
lected vessel. As such, the method is not general for any ship in
the area, but selects relevant data for each individual case. Tra-
jectories are evaluated in their entirety via a spectral anomaly
detection approach [6]. In this manner, all parts of the trajectory

Copyright (© 2020 by ASME



are represented in a low dimensional space, that more easily fa-
cilitates anomaly detection. Similarly to other approaches, the
method utilizes clustering facilitated via a GMM to represent the
normalcy of the trajectories. However, the clustering does not
take place in latitude-longitude space, but in the lower dimen-
sional representation of the trajectories. As such, entire trajecto-
ries are clustered together such that a high level of discrimination
is achieved, also with respect to sub-trajectories. The study fur-
ther presents a method to utilize the flexibility of the GMM to
identify clusters of anomalies. Anomalies within clusters rep-
resenting normal behavior are also discovered by investigating
various low dimensional representations of the data. These are
also compared to anomalies discovered by investigating the Ma-
halanobis distance [12].

METHODOLOGY

The overall architecture of the method is illustrated in Fig-
ure 1. The algorithm begins with a global anomaly detection
step, followed by clustering and intermediate anomaly detection
steps. Subsequently, the output of these steps is fed into a lo-
cal anomaly detection step. The detected trajectories are then
removed from the dataset, such that only normal trajectories re-
main. Given the enhanced dataset, the same techniques can be
also utilized to evaluate if an observed trajectory is anomalous or
not.

Trajectory Extraction

Historical AIS trajectories are extracted based on the
methodology outlined in [4]. In order to predict the future tra-
jectory of a selected vessel, the method extracts relevant histori-
cal AIS trajectories. The initial state of the selected vessel, s is
defined in (1):

S0 — [¥0,0, X0, Vo] (1

Given the initial state of the selected vessel, the method identi-
fies historical ships that were at a similar position with a similar
speed and course over ground, and defines them as an initial clus-
ter Cp in (2):

Co= {ai €A: (|xz’i7xz’0| < 6W A yz’ifyZ’U‘ < BH)
A2 =201 < 25 A Ivi—vol <vs)} (2

Given Cy, unique trajectories are identified, with the point
closest to sg in [x,y]-space defined as the initial state of each tra-
jectory. Cp is then updated to solely contain the initial states
of the discovered trajectories. Subsequently, the backward, i.e.
past, trajectories are extracted relative to the the initial states
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FIGURE 1. METHOD ARCHITECTURE.

of each trajectory. In this study, it is assumed that the past 10
minutes of trajectory data are available for the selected vessel,
either via real-time AIS streams, or other on-board sensor sys-
tems. Therefore, the backward trajectories are extracted with
a duration of 7, = 10. Each trajectory is then interpolated at
30 second intervals such that each trajectory has L = 20 entries.
Each backward trajectory is then defined as a feature vector b
containing the flattened spatial data, [x,y]. By investigating these
features, one can compare whether or not an observed trajectory
is anomalous. Alternatively, the forward, i.e. future, trajectories
can also be extracted to facilitate preprocessing for a subsequent
prediction of the selected vessel’s future trajectory. This predic-
tion approach is outlined in [4]. In this study, however, solely the
backward trajectories are investigated to evaluate the anomaly
detection methodology.

Global Anomaly Detection

The first phase of the anomaly detection methodology is
to identify outliers in the dataset. These are considered global
anomalies, as they are anomalies with respect to the entire
dataset, and not local anomalies with respect to the clusters of
which it consists. These anomalous trajectories are identified and
removed from the dataset, such that the subsequent clustering is
more effective.
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Dimensionality Reduction. To provide a basis for
anomaly detection, a dimensionality reduction technique is ap-
plied to the trajectory feature vectors. This is often referred to
as spectral anomaly detection [6]. Such methods assume that
the lower dimensional space will yield a representation where
normal and anomalous data can be separated. Dimensionality
reduction can be facilitated via the Karhunen-Loéve (KL) trans-
form [13] in (3), where the dimensionality is reduced from 2L
to /. E is a matrix containing the top eigenvectors of the data’s
covariance matrix as its columns, in order of the magnitude of
the corresponding eigenvalues.

hy, =E™b 3)

where hy, € IR™!, b € R?2*! and E € R?*/

X —EAE" 4)

where £ € RZ*2L and A € IR¥*2L

Outlier Removal. In this study, it is suggested to reduce
the dimensionality of the data such that / = 2. In this manner, the
data will be projected onto a subspace spanned by the top two
eigenvectors of the covariance matrix. In this subspace, it is as-
sumed that the data can adequately be described by a Gaussian
distribution, Hy,. A multivariate Gaussian distribution is there-
fore fit to the data by using the maximum likelihood estimates of
its mean and covariance according to (6) and (7) respectively.

Hy ~ A (4,X) &)

_ Z{V:l hbj

N 6

u

IV (e — 1) (hp s — p)T
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Given that the data is described by a bivariate Gaussian dis-
tribution, the ellipse corresponding to the 3¢ confidence interval
can be determined. Anomaly detection can then be facilitated by
thresholding points outside a value of 3¢. This technique is of-
ten used in the quality control domain [14]. All points that are
outside the 30 ellipse are, therefore, defined to be outliers, and
labeled as anomalous trajectories. These trajectories are removed
from the dataset.

Intermediate Anomaly Detection

In this section, unsupervised learning is utilized to cluster
the extracted historical trajectories. Each resultant cluster repre-
sents a group of trajectories that have a high degree of similar-
ity. The method is able to discover clusters that represent regular
ship behavior, i.e. regular ship routes, in addition to clusters of
anomalous trajectories. These clusters are defined to be either
anomaly clusters, or transition clusters that represent trajectories
between regular ship routes. These, however, are anomalies of
the regular routes, and the discovered transition clusters are in
fact clusters of anomalies as well.

Clustering is a technique that groups data together based on
a distance measure. Data points that are closer to each other have
a higher degree of similarity, and will as such be more likely to
be part of the same group. However, in high-dimensional spaces,
clustering algorithms may suffer due to the curse of dimensional-
ity [15]. One issue relating to the curse of dimensionality is that
as the number of dimensions increases, data points become in-
creasingly sparse. As such, data points may have large distances
between them with respect to certain dimensions. Clustering al-
gorithms will, therefore, struggle to find groups of data in such
high dimensional spaces. As a result, it is suggested to reduce
the dimensionality of the dataset prior to clustering.

The suggested dimensionality reduction technique, prior to
clustering, is the KL-transform in (3). This is conducted on the
improved dataset, i.e. after outlier removal. In this section, how-
ever, [ is not fixed, but adapts to the underlying data such as to
preserve an adequate amount of data. / is, therefore, chosen such
that the data compression preserves at least 99% of the data. This
is facilitated by evaluating the sum of the eigenvalues for the top
| eigenvectors as a percentage of the sum of all eigenvalues. By
varying [ one can determine the necessary number of eigenvec-
tors to include in E in (3).

Gaussian Mixture Model Clustering. Once the di-
mensionality reduction operation is conducted, clustering is fa-
cilitated viaa GMM. A GMM assumes that the underlying data is
comprised of M Gaussian distributions. Each Gaussian distribu-
tion has its own mean M, covariance X, and prior distribution
7. The algorithm begins by randomly assigning the mean val-
ues to be random data points in the distribution, and initializes the
covariances as the identity matrix. The Expectation Maximiza-
tion algorithm [9] is then utilized to update the model parameters
such that the mixture model best fits the underlying data. The
number of underlying distributions, M, i.e. the number of clus-
ters, can also be unspecified, where the most likely number of
clusters is determined by investigating the Bayesian Information
Criterion. Trajectories are then classified to the Gaussian distri-
bution of highest probability according to Bayes rule, resulting in
M clusters of data. For more information on the GMM trajectory
clustering methodology, see [4].
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Cluster Anomalies. Given the flexibility of the GMM
to adapt to the underlying data, it is able to identify clusters of
both regular ship behavior, as well as clusters of anomalous be-
havior. The first type of such an anomaly grouping is defined as
being a cluster anomaly, i.e. the entire cluster is classified as an
anomaly. This is facilitated via a similar method as that outlined
to detect global anomalies. By only considering the data along
the top two eigenvectors, i.e. [ =2, a new Gaussian distribu-
tion is fit to the data in this two-dimensional subspace according
to (5)-(7). A cluster is then considered anomalous if its mean,
ie. U, lies outside the ellipse representing the 3¢ confidence
interval.

Transition Cluster Anomalies. The second type of
anomaly grouping is referred to as a transition cluster in this
study. These clusters can not be thresholded according to their
means as they lie within the 3¢ confidence interval of the dataset.
Such clusters, however, lie between clusters of regular behavior,
and in this view represent transitions between the various routes
discovered. As such, these clusters contain outliers of the neigh-
boring clusters of regular behavior. Determining if a cluster is
a transition cluster is, however, more challenging, as one can-
not threshold based on their location in the subspace. However,
one can investigate the scatter of the clusters. A cluster that rep-
resents regular ship behavior will be more compact and have a
higher density than that of a transition cluster. As such, clusters
that have a high degree of variance are more likely to be a clus-
ter of anomalous trajectories. This study therefore suggests to
threshold clusters based on the trace of the covariance matrix of
each cluster. The trace will give a measure of the variance of the
cluster, and can be thresholded based on the standard deviation
of the traces of all clusters in the GMM. Therefore, if the trace
of a given cluster is outside 10 from the mean, it is defined as a
transition cluster containing anomalous trajectories.

Local Anomaly Detection

Once the anomaly and transition clusters are identified, only
the clusters of regular, i.e. non-anomalous, ship trajectories re-
main. Each of these remaining clusters represent trajectories that
spatially are quite similar. However, there may exist anomalous
trajectories within these clusters as well. These are not cap-
tured by the previous techniques. Such trajectories will gener-
ally have the same pattern as that of the prevailing route, but
contain inconsistencies that can be categorized as anomalous be-
havior. In this section, each regular cluster is investigated indi-
vidually to identify anomalies of the cluster itself. If the tested
trajectory is an outlier of all discovered clusters, it is classified as
an anomaly. Additionally, all trajectories identified as belonging
to an anomaly or transition cluster should be subjected to local
anomaly detection, as they may in fact belong to a cluster of nor-
mal behavior, but were classified to an anomalous cluster along

the boundary between classes. These trajectories are referred to
as local anomalies in this study.

Top Eigenvector Analysis. One technique to discover
local anomalies it to utilize a method similar to that utilized for
global anomaly detection. In this case, the KL-transform is first
utilized to reduce the dimensionality of the trajectories. The
largest degree of variation in the dataset will be captured by the
projection of the data onto the top eigenvectors of the covari-
ance matrix. Similarly to global anomaly detection, the cluster
is assumed to be adequately described by a Gaussian distribu-
tion. This is arguably an adequate assumption as the cluster is
created via a GMM. As for the global anomalies, the data is pro-
jected onto the top two eigenvectors of the covariance matrix.
The mean, U, and covariance, X, are then calculated in this sub-
space according to (6) and (7). In the same manner as for the
global anomalies, the 3¢ ellipse can then be evaluated. Any data
points outside the ellipse are classified as anomalies. Addition-
ally, the 20 ellipse can be evaluated to increase the number of
detected anomalies.

Bottom Eigenvector Analysis. Despite the top eigen-
vectors containing the most information in the cluster, they do
not necessarily capture the necessary information to detect all
anomalous trajectories. [ 16] found that also investigating the bot-
tom eigenvectors, i.e. those with the lowest degree of variance,
gave better results for anomaly detection. The same method as
described for the top eigenvectors can then be utilized to thresh-
old data outside the 20 and 3¢ ellipses.

The trajectory data will be quite compact when projecting it
onto the bottom eigenvectors, and potential anomalies should be
easily detected. These anomalies, however, will correspond to
regions in the trajectories where there is generally a high degree
of similarity. It is therefore likely that these anomalies represent
anomalous sub-trajectories within the cluster.

Mahalanobis Distance Analysis. When investigating
the top and bottom eigenvectors, one looks only in two directions
at a time. As a result, anomalies that lie along the projection of
the data onto the remainder of eigenvectors are not considered.
The Mahalanobis distance gives a measure of the distance a data
point is from the mean of the distribution. The metric projects
the data onto the eigenvectors of the covariance matrix, but nor-
malized such that they each have unit variance in the transformed
space. One can in this manner consider the aforementioned 30
ellipses as being described by a constant Mahalanobis distance if
the data were solely two-dimensional. In this manner, the Maha-
lanobis distance takes into consideration all eigenvectors of the
covariance matrix in a single distance metric.

In the case that the data is described by a multidimensional
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Gaussian distribution, the probability density of an observation
is related to the Mahalabobis distance. It can be shown that the
squared Mahalanobis distance of the data, shown in (8), is x2-
distributed. The xz—distribution, however, depends on the num-
ber of degrees of freedom of the data. In this case, the data will
have 2L degrees of freedom, as no dimensionality reduction has
taken place. The p-value of a given observation can be deter-
mined by using the value of x> cumulative distribution function,
with 2L degrees of freedom. If a trajectory has a p-value less than
a given threshold, it is classified as an anomaly. In this study a
p-value of 0.05 is investigated.

d*=0b-p)Z ' (b—p) ®)

RESULTS AND DISCUSSION

In this section, the outlined ship trajectory anomaly detec-
tion method is evaluated with respect to a case, in order to il-
lustrate its performance. The investigated case corresponds to
a region outside the city of Tromsg, Norway. A randomly se-
lected data point from the historical AIS database corresponding
to ship trajectories from January 1% 2017, to January 1% 2018
was utilized. The results illustrate how anomaly detection can
be utilized to facilitate preprocessing for a subsequent trajectory
prediction of the selected vessel. Similarly, the same techniques
can be utilized to classify the behavior of the selected vessel as
anomalous or normal. Global anomalies are first identified for
the selected case, before potential transition and anomaly clus-
ters are identified. Subsequently, one of the discovered clusters
of normal behavior is investigated to illustrate local anomaly de-
tection. The coordinate system of the figures in this section, with
respect to [x,y], is defined as having an origin at [xp, yo] to better
illustrate the scales involved.

Global Anomaly Detection Results

In this section, the results from the global anomaly detec-
tion are presented. The discovered anomalies correspond to the
red trajectories illustrated in Figure 2. For this case, it appears
that the global anomalies are comprised primarily of vessels that
have a significant change in heading, i.e. those at the bottom of
the figure, as well as vessels that have unusually high speeds,
i.e. those in the upper left and lower right. By removing these
trajectories from the dataset, a new covariance matrix can be cal-
culated based the remaining data, providing a much better basis
for the subsequent cluster analysis.

Intermediate Anomaly Detection Results
In this section, the results from the intermediate anomaly
detection are presented. The results of the clustering via a fitted
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FIGURE 2. ANOMALOUS SHIP TRAJECTORIES IDENTIFIED
VIA GLOBAL ANOMALY DETECTION.

GMM, are presented in Figure 3, where all extracted trajectories
after removing the global anomalies are illustrated. Each color
indicates a unique cluster. In this case, five clusters were discov-
ered. The GMM was fit in the subspace comprised of the top
four eigenvectors of the covariance matrix, as these accounted
for more than 99% of the information in the data. The clustering
is effective was this case, where unique ship routes were discov-
ered.

The projection onto the top two eigenvectors is visualized
in Figure 4. The red ellipse illustrates the 3¢ confidence inter-
val, and the colored dots correspond to each cluster. Each clus-
ter is illustrated by a unique color. The large circles illustrate
the mean of each Gaussian distribution comprising the GMM.
By thresholding the means according to the 30 ellipse, the light
green cluster was identified as an anomaly cluster. The trajec-
tories belonging to this cluster are illustrated in Figure 5. It is
clear that the trajectories are erratic and lack any general pattern.
Additionally, by evaluating the trace of the covariance matrix of
each cluster, the purple cluster was classified as a transition clus-
ter. This is evident from Figure 4, as the data is very sparse. The
transition cluster is illustrated in 6. The purple cluster appears to
contain outliers of all the others, where trajectories are in fact a
transition between the other discovered clusters. In this manner,
the GMM has been able to discover entire clusters of anomalies.

Figure 3 also contains the clusters of normal trajectory be-
havior. On the left of the figure, two clusters are visible, where
the blue represents a main cluster of ship trajectories, with a
dense yellow cluster within the same region. Both clusters ap-
pear to contain trajectories of normal behavior. On the right, the
dark green cluster also appears to contain regular trajectories.
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FIGURE 3. CLUSTERED SHIP TRAJECTORIES AFTER RE-
MOVING GLOBAL ANOMALIES.
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FIGURE 4. TOP EIGENVECTOR REPRESENTATION OF TRA-
JECTORY CLUSTERS. TRANSITION AND ANOMALY CLUS-
TERS ARE IDENTIFIED IN THIS SUBSPACE.

Local Anomaly Detection Results

In this section, the results from the local anomaly detection
are presented. To evaluate the performance of the technique, one
cluster was investigated. The case presented in this section is that
of the blue cluster discovered by the GMM. Anomalies were dis-
covered by analyzing the top and bottom eigenvectors in addition
to the Mahalanabis distance.

Top Eigenvector Analysis Results. Figure 7 illus-
trates the results from the top eigenvector analysis. The orange
and red trajectories are those classified as anomalies, i.e. they
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FIGURE 5. SHIP TRAJECTORIES CORRESPONDING TO
ANOMALY CLUSTER.
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FIGURE 6. SHIP TRAJECTORIES CORRESPONDING TO
TRANSITION CLUSTER.

fell outside the 20 and 30 thresholds, respectively. It is clear
that reducing the threshold increases the number of discovered
anomalies significantly. 7 anomalies were detected out of 536
trajectories for threshold of 30, and 66 for 26. As such, many
anomalous trajectories are not discovered if one thresholds based
on the 30 confidence interval. Given that the anomaly detection
is meant to facilitate effective trajectory prediction, it may be of
interest to reduce the threshold and filter out more unusual be-
havior. However, reducing the threshold may result in the clas-
sification of normal behavior as anomalous, falsely warning that
the algorithm will not produce an accurate prediction.

An investigation was also conducted to interpret why these
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FIGURE 7. LOCAL ANOMALY DETECTION FROM TOP
EIGENVECTOR ANALYSIS. THE ORANGE AND RED TRAJEC-
TORIES CORRESPOND THE DETECTED ANOMALIES.

trajectories were classified as anomalies. This was facilitated by
looking at the output of an element-wise multiplication of the
top eigenvectors with the trajectory feature vectors. The relative
importance of each position along the trajectory could then be
evaluated with respect to its contribution in being classified as an
anomaly or not. Figure 8 illustrates the relative weight contribut-
ing to anomaly classification, where the values are normalized by
the maximum value of the contributions. The higher the value,
the more the position contributes to anomaly classification. In
this case, it appears that the top eigenvectors have focused on
areas where ships have sailed outside the densest regions. It ap-
pears that the highest contributions come from the top left of the
figure, i.e. ships that have sailed more quickly than normal, and
center-right in the figure, i.e. ships that have sailed outside the
normal region. All discovered trajectories, are, however, gener-
ally smooth.

Bottom Eigenvector Analysis Results. Figure 9 il-
lustrates the detected anomalies from the bottom eigenvector
analysis. This is facilitated in the same way as for the top eigen-
vectors. 14 anomalies were detected out of 536 trajectories for a
threshold of 30, and 74 for 20. It is evident from the figure that
new anomalies are detected compared to those for the top eigen-
vectors. The detected anomalies are not as smooth as those for
the top eigenvectors, and have more irregular behavior within the
trajectories themselves, i.e. sub-trajectories are anomalous. The
overall shapes of the trajectories do not, however, appear anoma-
lous. The top eigenvectors focused on the largest differences in
the dataset. As a result, it is seen form Figure 7 that trajectories
that fall outside the densest regions are detected. For the bottom
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FIGURE 8. LOCAL ANOMALY DETECTION FROM TOP
EIGENVECTOR ANALYSIS. THE COLOR CORRESPONDS TO
RELATIVE WEIGHT CONTRIBUTING TO ANOMALY CLASSIFI-
CATION.

eigenvectors, however, the subspace describes the least variation
in the data, i.e. the distribution will be dense. As such, most
trajectories should be similar in this subspace.

Figure 10 illustrates the relative weight contributing to
anomaly classification for the bottom eigenvector analysis in the
same manner as for the top eigenvectors. It is clear here that
the method focuses on different regions of the trajectories as
compared to the top eigenvectors. It appears that irregular sub-
trajectories contribute more in this case. As such, it appears
that the top and bottom eigenvectors discover different types of
anomalies, both of which are relevant for detection.

Mahalanobis Distance Analysis Results. The Ma-
halanobis distance metric differs from the top and bottom eigen-
vector analyses as it takes into consideration the normalized pro-
jection onto all eigenvectors of the data. Figure 11 illustrates the
discovered anomalous trajectories. It is clear from the figure that
far more anomalies were discovered compared to the aforemen-
tioned methods. 84 out of the 536 trajectories in the cluster were
identified as anomalies in this case. When investigating the data,
it appears that the method discovers a combination of anomalies
detected by both the top and bottom eigenvectors, in addition to
new anomalies not detected by either subset. Furthermore, cer-
tain trajectories that were classified as anomalies in the previous
techniques, are not detected via the Mahalanobis method.

The trajectories that are discovered via this technique appear
to be irregular, where trajectories crossing across the main direc-
tion of the route, as well as those with irregular sub-trajectories,
are detected. The Mahalanobis technique appears, therefore, to
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FIGURE 9. LOCAL ANOMALY DETECTION FROM BOTTOM
EIGENVECTOR ANALYSIS. THE ORANGE AND RED TRAJEC-
TORIES CORRESPOND THE DETECTED ANOMALIES.
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FIGURE 10. LOCAL ANOMALY DETECTION FROM BOTTOM
EIGENVECTOR ANALYSIS. THE COLOR CORRESPONDS TO
RELATIVE WEIGHT CONTRIBUTING TO ANOMALY CLASSIFI-
CATION.

be quite powerful in discovering such anomalies within the clus-
ter. This is likely due to the Mahalanobis distance taking into
account all information in the trajectory, and not thresholding af-
ter dimensionality reduction.

As the metric normalizes the projections onto the eigenvec-
tors, there will be no bias towards the projection onto specific
eigenvectors, and anomalies along any eigenvector will have an
effect on the distance metric. However, trajectories that gener-
ally appear normal, but are somewhat anomalous with respect to
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FIGURE 11. LOCAL ANOMALY DETECTION VIA MAHA-
LANOBIS DISTANCE METRIC. THE RED TRAJECTORIES COR-
RESPOND TO THE DETECTED ANOMALIES.

many eigenvectors, may be misclassified as anomalies. This is
due to the Mahalanobis distance taking contributions from all di-
rections. As a result, normal behavior is more likely to be classi-
fied as anomalous with this approach than in the aforementioned
eigenvector approaches. This appears to be supported by Figure
11, where some of the trajectories appear to be normal, likely
contributing to the high number of detections. Nonetheless, the
method is effective in detecting new anomalies not detected by
the eigenvector approaches.

CONCLUSION AND FURTHER WORK

In this study, trajectory anomaly detection is facilitated with
respect to aiding ship trajectory prediction. Based on a trajectory
extraction scheme, relevant ship trajectories are represented by
lower dimensional vectors. These trajectory representations are
effective in discriminating between various groups of trajecto-
ries during clustering. By extracting trajectories based on a fixed
length of time, speed differences are inherently preserved in the
positional data. The GMM clustering, therefore, is effective in
detecting normal ship routes with a high degree of fidelity. In ad-
dition, the flexibility of the technique allows it to discover clus-
ters of anomalous data, which can be identified as either anomaly
or transition clusters.

Local anomaly detection, within clusters of normal behav-
ior, is shown to be achieved by investigating the top and bottom
eigenvectors of the covariance matrix of the data. The projection
onto these eigenvectors allows for ship trajectories with anoma-
lous speeds, as well as unusual sub-trajectories, to be discovered.
However, it is clear that different anomaly modes are discovered
by investigating the various eigenvector projections, both of im-
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portance for detection. Alternatively, the Mahalanobis distance
allows for the discovery of entirely new anomalies. The method,
however, also likely classifies some normal behavior as anoma-
lous, and may therefore pose a challenge when using it to eval-
uate new observed trajectories. The outlined method, however,
appears to facilitate effective preprocessing for trajectory predic-
tion, as well as provide a method evaluate new ship behavior.
Further work will investigate the sensitivity of thresholding in a
two-dimensional subspace against utilizing the Mahalanobis dis-
tance on a subset of eigenvectors. Additionally, various thresh-
olds will be investigated to evaluate the types of anomalies not
detected by the current architecture.
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Deep Representation Learning-Based Vessel Trajectory Clustering for
Situation Awareness in Ship Navigation

Brian Murray & Lokukaluge Prasad Perera
Department of Technology and Safety
UiT The Arctic University of Norway, Tromsg, Norway

ABSTRACT: Vessel trajectory clustering using historical AIS data has been a popular research topic in recent
years. However, few studies have investigated applying deep learning techniques. In this study, deep represen-
taion learning is investigated for use in clustering historical AIS trajctories to provide insight into navigation
patterns to support maritime situation awareness. A recurrent autoencoder and [3-variational recurrent autoen-
coder are investigated to generate fixed size vector representations of the AIS trajectories. Subsequently, clus-
tering is facilitated by applying the Hierarchical Density-Based Spatial Clustering of Applications with Noise
algorithm to the representations. The method was tested on historical AIS data for a region surrounding Tromsg,
Norway, with successful results. The results also indicate that the §-variational recurrent autoencoder was able
to generate representations of the AIS trajectories that resulted in more compact clusters.

1 INTRODUCTION

Maritime situation awareness is an essential aspect
of safe maritime operations. Recently, historical Au-
tomatic Identification System (AIS) data have been
the subject of significant research to aid in intelli-
gent navigation systems (Tu et al. 2017) that can sup-
port in providing maritime situation awareness. One
area of interest has been identifying navigational pat-
terns for various geographical regions based on his-
torical ship behavior. Knowledge of such patterns can
be useful for multiple purposes including anomaly
detection, route prediction, path planning, collision
avoidance and general maritime situation awareness
for ship operators. Multiple studies have addressed
identifying such patterns, where trajectory clustering
is a central element. Clustering is a field of machine
learning concerned with identifying groupings within
a dataset. Aarsather and Moan (2009), for instance,
applied computer vision techniques to find groupings
of trajectories, and Pallotta et al. (2013) introduced
the Traffic Route Extraction and Anomaly Detection
(TREAD) methodology. Murray and Perera (2020)
also clustered trajectories to predict the future po-
sition of a vessel for collision avoidance purposes.
Other relevant studies include Zhang et al. (2018) and
Zhou et al. (2019).

Many of the studies in the literature apply machine
learning to historical AIS data to achieve the desired
effect. To effectively conduct clustering, a similarity
metric must be calculated to compare the trajectories.

This can be challenging as the trajectories may be of
variable length. This is not conducive with standard
clustering techniques that require data points to be
vectors of equal length. Various techniques and met-
rics have been applied to overcome this challenge,
e.g Zhou et al. (2019) which applied Dynamic Time
Warping (DTW). These techniques attempt to gen-
erate a representation of the trajectories such that
they can be compared against each other. Few stud-
ies, however, have investigated utilizing deep learning
techniques in AIS trajectory clustering. Nguyen et al.
(2018) introduced a multi-task deep learning frame-
work based on a variational recurrent neural network
trained on historical AIS data for a region. This frame-
work can be used for multiple tasks including trajec-
tory reconstruction and anomaly detection. However,
the framework employs a 4-hot encoding of the data
that reduces the resolution. Additionally, the architec-
ture does not provide suitable trajectory representa-
tions for clustering. Yao et al. (2017), however, inves-
tigated AIS trajectory clustering based on deep rep-
resentation learning. The outlined method gave good
results in providing representations of the trajectories,
with the clustering based on the deep representations
outperforming other non-deep learning based metrics.
The method, however, does not investigate more ad-
vanced deep learning architectures, and can, there-
fore, be further improved. Additionally, the study em-
ploys the k-means clustering algorithm, which likely
reduces the clustering performance compared to non-
parametric, density-based approaches that better han-



dle clusters of varying shape and size.

In this study, deep representation learning is in-
vestigated to facilitate historical AIS trajectory clus-
tering. A method is presented where deep represen-
tations of trajectories are generated for a given ge-
ographical region. A recurrent autoencoder is com-
pared with a more advanced architecture, the [-
variational recurrent autoencoder. Using the represen-
tations from these architectures, an approach to clus-
ter the trajectories is introduced using a density-based
clustering approach that can adapt to a high number
of clusters of variable density and shape. The method
is applied to a test case, and the results indicate that
deep learning can generate powerful representations
that facilitate effective clustering. The focus of the
study is on the ability of deep learning to generate
meaningful representations, and as such aims to de-
termine if such representations are appropriate for use
in trajectory clustering.

1.1 Deep representation learning

One of the most powerful aspects of deep learning
is its ability to learn meaningful features. Features in
this case are a representation of the data, that in the
case of deep learning, are learned via the training of
the network. Most applications within deep learning
deal with classification tasks, and in such cases these
features are optimized such that they can be used to
discriminate between classes. Deep learning can be
split into two main groups, supervised and unsuper-
vised learning. In supervised learning, class labels for
each data point are available. In a classification set-
ting, the accuracy of the network in correctly classi-
fying the data is utilized to optimize the parameters
in the network. Unsupervised learning on the other
hand, deals with cases in which labels for the data are
unavailable. In such cases, it is desirable to discover
the underlying structure in the data. In machine learn-
ing, the task of finding underlying groupings in the
data is known as clustering. Deep learning in and of
itself does not present a method to cluster the data,
but can be utilized in an unsupervised form to gen-
erate more meaningful representations, i.e. features,
through which the structure of the data is more ap-
parent. Using such new representations, conventional
clustering techniques can be applied to the data.

A meaningful representation of the data should be
one that preserves information. One architecture that
can generate such representations is the autoencoder.
The simplest form of an autoencoder is a multi-layer
perceptron (Bourlard and Kamp 1988). However, al-
ternative frameworks also exist that utilize either con-
volutional or recurrent layers. An autoecoder has as
its objective to reconstruct the data input to the net-
work. Autoencoders can be separated into two parts,
an encoder and a decoder. The encoder produces a la-
tent representation of the input, and the decoder then
reconstructs the data form this latent representation.
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Figure 1: Unfolded RNN structure. The recurrent operation is
illustrated within the red box.

It is desirable to learn meaningful representations
in the latent space of the data. One approach to
achieve this is to utilize undercomplete autoencoders
(Goodfellow et al. 2016), i.e. where the latent space
has a lower dimensionality than the input. Such ar-
chitectures create a bottleneck in the latent space. In
this manner, information must be compressed. By op-
timizing the network via the reconstruction loss, the
network is forced to learn a meaningful representation
of the data that preserves the mutual information be-
tween the input data and their latent representations.
This data compression can also be viewed as a form of
dimensionality reduction. It has been shown that deep
autoencoders have the ability to produce much bet-
ter representations of the data than other dimensional-
ity reduction techniques such as Principle Component
Analysis (PCA) (Hinton and Salakhutdinov 2006).

1.2 Recurrent neural networks

Historical AIS trajectories are datasets of multivari-
ate time series. Traditional autoencoders utilize archi-
tectures that require a fixed size input for each data
point. In the case of trajectory data, each data point is
a time series of variable length. As such, in this study
it is suggested to utilize the power of recurrent neural
networks (RNNs) (Rumelhart et al. 1986) to facilitate
effective trajectory representations.

RNNSs are designed to process sequences, and are
additionally capable of handling sequences of vari-
able length. The networks are ideal for time series
as they are able to incorporate temporal information
and dependencies. In this sense, they have a form of
memory. An RNN can be thought of as an unfolded
computational graph, where the recurrent operation is
unfolded. This is visualized in Fig. 1. Consider the se-
quence of length L : x = {xq, X1, ..., X7, }. An RNN
cell takes the current state of the sequence, x; as well
as the previous hidden state h;_; as input. The cell
then outputs the current hidden state, h;. This process
then repeats for all states in the sequence. The output
of the cell, i.e. the current hidden state, is fed back
into the same cell along with the next state in the se-
quence. In this manner, the operation is recurrent, as
visualized by the red box in Fig. 1. In this sense the
same cell and parameters are shared between all op-
erations.

The standard RNN, also known as the vanilla RNN,
however, encounters challenges during training due to
vanishing gradients during backpropagation (Bengio
et al. 1994). This prevents the network from learn-
ing long-term dependencies. More advanced archi-
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Figure 2: Overview of methodology. Map courtesy of Google
Maps (2020).

tectures have, therefore, been introduced to amelio-
rate the challenge of vanishing gradients. Gated recur-
rent architectures including Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) and
Gated Recurrent Unit (GRU) (Cho et al. 2014, Chung
et al. 2014) address the issue of vanishing gradients
through the introduction of gates. In this manner, the
networks are able to learn long-term dependencies in
the data.

2 METHODOLOGY

In this section, the methodology utilized to facilitate
clustering of historical AIS trajectories is presented.
The overall architecture is two-fold, and is illustrated
in Fig. 2. In the first step, deep learning is utilized
to facilitate representation generation. The architec-
ture takes as input historical AIS trajectories for a
given geographical region, and outputs a latent repre-
sentation that can be further processed. In the second
step, clustering is conducted on the latent trajectory
representations to evaluate the ship traffic in the re-
gion. Two deep learning-based approaches are inves-
tigated in this study. The first is a recurrent autoen-
coder (RAE), and the second a 3-variational recurrent
autoencoder (8-VRAE). These approaches are further
described in this section. Using the latent trajectory
representations, the Hierarchical Density-Based Spa-
tial Clustering of Applications with Noise algorithm
is applied to cluster the trajectories. This study aims to
investigate the ability of deep representation learning
to facilitate effective clustering of vessel trajectories.
As such, the study is limited to the methods described
in this section.

2.1 Preprocessing

Prior to applying the representation generation step,
a preprocessing of the the historical AIS data is con-
ducted. Each unique vessel trajectory for the given re-

%o %2 XL

LI

Xer1 XL,

Figure 3: RAE architecture. The encoder is visualized in green,
the final hidden state, i.e. latent representation, in yellow, and the
decoder in orange.

gion is extracted and stored. Each trajectory is a se-
quence x = {xg, X1, ..., X1} that has been interpo-
lated at one minute intervals. Each state x; is a vector
of spatio-temporal data, that includes the positional
data x,y in UTM-coordinates, the speed over ground
v, and the x— and y— components of the course over
ground Y and X, in (1). Each of these values are nor-
malized across the dataset to have values between —1
and 1.

Xt = [$>yall)7Xx7Xy] (1)

2.2 Recurrent autoencoder

In order to learn good representations of the trajecto-
ries, an undercomplete autoencoder structure is inves-
tigated. This introduces a bottleneck through which
the network must learn the best representation to re-
construct the data. Given that AIS trajectories are se-
quences of data, recurrent neural networks provide the
core architecture applicable to generate meaningful
representations. Some of the most popular forms of
recurrent neural networks are sequence to sequence
models (Sutskever et al. 2014). These provide the ba-
sis for many natural language processing tasks such as
translation (Cho et al. 2014). The basis of these mod-
els is to train an encoder-decoder model in a similar
manner to an autoencoder. The encoder takes an in-
put sequence, for instance a sentence in English, and
encodes it to a fixed size vector. The decoder then
takes the hidden representation of the sentence and
generates a target sentence in another language, for
instance Spanish. The input and target sequences can
be of variable length as well.

If one, however, utilizes a sequence to sequence
model to reconstruct its input, i.e. with the target se-
quence equal to the input sequence, the architecture
functions as a recurrent autoencoder (RAE) (Srivas-
tava et al. 2015). The structure of an RAE is visu-
alized in Fig. 3. In this case, the input sequence is
run through an encoder recurrent neural network. The
output of the final cell will have compressed the in-
formation in the sequence into a fixed size vector, i.e.
the final hidden representation, hy,. h;, is then fed into
a decoder recurrent neural network that predicts one
time step at a time. First, the initial state x, is pre-
dicted using hj, as input. The following hidden state



Figure 4: GRU cell. Illustration adapted from colah.github.io.

is then fed into the next cell along with the predicted
initial state as input. Each predicted value, i.e. yy, is
estimated using a fully connected layer that takes the
current hidden state, h; as input. This process then re-
peats for the remainder of the sequence. The network
can be optimized by using the mean squared error as
a loss function, where the error between the predicted
and true states for each time step are calculated.

By training such an architecture, variable length
AIS trajectories can be represented by a fixed size
vector via their hidden representations, hy,. This space
is equivalent to the latent space for this architecture.
When training the recurrent autoencoder, trajectories
that have a higher degree of similarity will be in closer
proximity to each other than dissimilar sequences in
the latent space. Similarity measures can easily be
evaluated based on distances in this space, and classi-
cal clustering techniques can be applied.

2.2.1 Gated recurrent unit

The more recent Gated Recurrent Unit (GRU) cell is
a variant of the LSTM that reduces the number of pa-
rameters necessary to learn, and is, therefore, inves-
tigated for use in this study as the core architecture
in the recurrent autoencoder. Each cell in Fig. 3 can,
therefore, be thought of as a GRU cell. The architec-
ture of the GRU cell is illustrated in Figure 4. The cell
takes in the previous hidden state, h; ;, and the cur-
rent input state, x;. The reset gate (2) and the update
gate (3) regulate what information should be retained
or forgotten in the network. Each gate comprises a
weight matrix, W, and bias term, b, that consist of
parameters that are updated during the training of the
network. The output of the operations are fed into sig-
moid activation functions. These force the values be-
tween 0 and 1, and are multiplied with the various in-
puts using the Hadamard product, thereby regulating
the amount of information that should be passed on.
In this manner, they function as gates, either allowing
or preventing information from flowing. (4) calculates
a new candidate vector for the hidden state via a hy-
perbolic tangent activation function. In (5), the hidden
state is calculated and passed on to the next cell in the
network. The hidden state, h;, can also used for a pre-
diction, yy, via (6).

ry = U(WzTXL + bzr + Whthfl + br) (2)

u; = U(quxt + bmu + Whuhtfl + bhu) (3)

n; = tanh(wxnxt + bwn +r,© (Whnht—l + bhn))

(€]
hy=1-w)Oh_1+u6n (5)
Y = Whyht + bhy (6)

2.3 B-variational recurrent autoencoder

As previously mentioned, autoencoders can be pow-
erful in generating meaningful representations of the
data they are trained on. Typically, however, the la-
tent space is sparsely populated. This is not an issue
for tasks where compression is the goal of the au-
toencoder, as the scatted data indicate an ideal utiliza-
tion of the latent space and often lead to better re-
construction results (Spinner et al. 2018). This, how-
ever, may be challenging for a clustering algorithm,
as data points belonging to the same class may be
scattered over a large region in the latent space. The
variational autoencoder (Kingma and Welling 2014,
Rezende et al. 2014) attempts to limit the chaos in the
latent space. This is achieved by forcing latent vari-
ables, denoted z, to become normally distributed. The
main goal of the variational autoencoder is data gen-
eration, as they attempt the learn the underlying distri-
bution of the data, p(x), such that new data points can
be generated by sampling from the distribution. How-
ever, the resulting latent representations of the data
end up being more compact than for standard autoen-
coders, where similar data are more closely grouped.
This may provide a better basis for a clustering algo-
rithm.

The variational autoencoder is a probabilistic ver-
sion of a traditional autoencoder. It is assumed that
the data are generated by a random process utilizing
a continuous random variable, z. The general idea is
that a value z’ is generated from a prior distribution
po(z), and a data point x’ is generated via some con-
ditional distribution py(x|z).

The marginal likelihood ps(x) in (7) and posterior
density py(z|x) in (8) are, however, intractable. As a
result, the variational aspect of the autoencoder is in-
troduced in that py(z|x) is replaced with an approxi-
mation, ¢4(z|x). In the context of an autoencoder, the
function ¢,(z|x) can be thought of as a probabilis-
tic encoder that produces a distribution over the latent
variable, z. py(x|z) can, therefore, be thought of as
the decoder, taking z, and reconstructing the input, x.

Polx) = / Pol(2)po(x|z)dz ™

po(x|z)pe(z)

8
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po(z|x) =



It is assumed that the approximate posterior is
a multivariate Gaussian with a diagonal covariance
structure according to (11). A neural network is uti-
lized to estimate the parameters of the distribution,
i.e. the mean p, and standard deviation o .. The la-
tent variable, z, is then sampled from this distribution
and decoded by py(x|z) to generate the reconstructed
data, x. A neural network is also used to model
po(x|z). In Kingma and Welling (2014), a multi-layer
perception network was suggested, but alternative ar-
chitectures have also been proposed.

Fabius and van Amersfoort (2015) introduced the
variational recurrent autoencoder (VRAE) by inte-
grating an RNN architecture. As such, the encoder
and decoder functions are assumed to be described
by RNNS. In this study, a GRU architecture is utilized
as the RNN cell. The encoder RNN produes the final
hidden state h, which compresses the information in
the given AIS trajectory. The parameters of the nor-
mal distribution in (11) are subsequently calculated
via fully connected layers in (9) and (10).

M= WﬂhL + b# ©)
o.=W,h, +b, (10)
qs(2|x) ~ N (p.,021) (11)

However, training such an architecture using back-
propagation is not possible, as gradients are un-
able to flow through the sampling operation. The re-
parametrization trick is, therefore, utilized. Instead of
sampling from (11), the latent vector z is calculated
in (13). The sampling effect is achieved by sampling
from a noise vector, €, distributed according to (12).
This allows for gradients to flow freely. The initial
hidden state that is input to the decoder RNN is then
calculated according to (14). Subsequently, the de-
coder RNN reconstructs the data in the same man-
ner as for a conventional recurrent autoencoder. The
overall architecture of the variational recurrent au-
toencoder is visualized in Figure 5.

e~ N(0,1) (12)
Z=p,+0,0€ (13)
hy = tanh(W .z + b.;) (14)

The approximation of the true posterior py(z|x) by
¢ (2z|x) is optimized by maximizing a lower bound on
the log-likelihood, i.e. log(ps(x)) > L(0,¢;x,2,[).
The lower bound is defined in (15). In this study, the
network is, therefore, trained using a loss function de-
fined by maximizing the lower bound in (15). The first
term is the expectation of the decoder function under
the approximation of the encoder function. This can
be thought of as the likelihood of the reconstruction of
the data. As a result, the lower bound is maximized by
minimizing the reconstruction loss. In this study, the
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Figure 5: VRAE architecture. The encoder is visualized in green,
the final and initial hidden states in yellow, the latent variable in
blue and the decoder in orange.

reconstruction loss is evaluated via the mean squared
error.

The second term is the negative Kullback-Leibler
(KL) divergence between the approximate posterior
distribution and the prior. This means that maxi-
mizing the lower bound entails minimizing the KL-
divergence. This can be thought of as forcing the dis-
tribution of the posterior to be close to the distribution
of the prior. In effect, this is a regularization term that
encourages the latent variables to have Gaussian dis-
tributions. In this study, this is evaluated by assuming
the prior is distributed as py(z) ~ N(0,I). This regu-
larization term is weighted according to a factor 5 as
seen in (15). For a variational autoencoder, a value of
5 =1 is utilized.

Higgins et al. (2017) introduced the [-variational
autoencoder (5-VRAE), often referred to as a disen-
tangled autoencoder. In such an architecture, values of
[ > 1 are utilized when training the network. As such,
the regulation term is weighted higher. This further
encourages the network to learn compact Gaussian
distributions. In this manner, the network is able to
learn more ordered, i.e. disentangled, representations,
since a stronger constraint is imposed on the bottle-
neck in the latent representation. In this sense, sim-
ilar data points are encouraged to be closer together
in the latent space. As a result, a $-variational recur-
rent autoencoder may generate more compact and dis-
entangled representations that result in a more effec-
tive clustering of AIS trajectories. This architecture is,
therefore, chosen for investigation in this study.

L(0, ¢:x,2, ) = Eguy, (a)x) [l0g(po(x]2))]
(15)
— BDrr(q4(2]x)|ps(2))

2.4 Trajectory clustering

Trajectory clustering is facilitated via the representa-
tions generated in Sec. 2.2 and 2.3. All the trajectories
for the region of interest will be run through a forward
pass of the encoder for each architecture, resulting in
either a hidden state, h, or latent variable, z, repre-
sentation for each trajectory. Clustering can then be



applied to the dataset in either the h- or z-space de-
pending on the representation architecture chosen.

In the representation space, standard clustering
techniques can be applied. However, due to the unsu-
pervised nature of the problem, the number of clusters
is unknown. This is due to the fact that there could be
any number of trajectory routes, or groupings of sim-
ilar trajectories in the data. A technique that can dis-
cover the most likely number of clusters is, therefore,
necessary. Additionally, there may exist hundreds of
trajectory clusters, and a method that can handle such
a dataset must, therefore, be utilized. In this study the
Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) algorithm is in-
vestigated to facilitate trajectory clustering.

2.4.1 HDBSCAN algorithm

The HDBSCAN algorithm was introduced in
Campello et al. (2013). Density-based clustering
approaches, such as Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) (Ester
et al. 1996), are powerful in that they provide a
non-parametric clustering approach that is capable
of handling clusters of variable shape, in addition to
identifying noise in the data. However, DBSCAN re-
quires hyperparameters that determine the sensitivity
of the clustering to noise, and constrict the clusters
to having similar densities. HDBSCAN introduces a
hierarchical approach that allows for the discovery
of clusters of varying density, and is, therefore, more
powerful for the case of AIS trajectory clustering.

HDBSCAN begins by finding the core distance
of each point d,, i.e. the distance to the kth-nearest
neighbor. The value of k is input as a hyper-parameter.
This functions as a local density estimate for the
point. The algorithm then calculates a distance metric
given by the mutual reachabliity distance d,,, where
the distance between two points x’ and %/ is calcu-
lated in (16).

Using the mutual reachability distance metric, a
minimum spanning tree is constructed, and subse-
quently converted into a hierarchy of connected com-
ponents. An additional hyper-parameter is introduced
that defines the minimum size of a cluster. Clusters in
the hierarchy that do not have a size larger than this
value are filtered out. It is then desirable to choose the
clusters that have the greatest stability in the hierar-
chy. This choice, however, must be made under the
constraint that once a cluster is selected, no cluster
that is a descendant of it may be selected. This results
in a clustering scheme where the most stable clus-
ters are found, and all points not belonging to these
clusters are labeled as noise. For further details, see
Campello et al. (2013).

din(x',x7) = maz (d.(x"), do(x7), ||x" —x7|]5) (16)

3 RESULTS AND DISCUSSION

In this section, the power of deep representation learn-
ing to facilitate effective AIS trajectory clustering is
investigated in a case study of the region surrounding
the city of Tromsg, Norway. One year of historical
AIS data from January 1°¢, 2017 to January 1%, 2018
was utilized. This corresponds to 81033 unique tra-
jectories, each of varying length. Zero-padding was
utilized on the trajectories to facilitate batch-training,
where each trajectory was padded such that it had a
length equal to that of the longest trajectory in the
batch. Additionally, reversing the order of the input
sequence when training recurrent autoencoder archi-
tectures has been found to make the optimization eas-
ier, as the model can start by looking at low range
correlations (Sutskever et al. 2014). Each trajectory,
therefore, had its order reversed after padding be-
fore being fed to the encoder. The decoder, however,
strives to reconstruct the trajectories in the forward
direction.

The RNNSs utilized in this study had a hidden size
of 50 neurons. As a result, the dimensionality of the
latent representation for the RAE was equal to the di-
mensionality of the hidden state, i.e. hy € R%**!. For
the 5-VRAE, the latent vector was chosen to have a
dimensionality of 20, i.e. z € IR?®*!. Furthermore, a
value of 5 = 20 was utilized for the 5-VRAE. A num-
ber of iterations using various hyperparameters were
conducted, with good results for those presented in
this study. PyTorch (Paszke et al. 2019) was utilized
to implement the neural networks. All models were
trained using the Adam optimizer (Kingma and Ba
2015).

3.1 Deep representation generation

In this section, the deep representations of the histor-
ical AIS trajectories are presented. In Fig. 6(a), the fi-
nal hidden representation, h;, representing the latent
space of the RAE is illustrated. Each data point repre-
sents a unique trajectory in the dataset, facilitated by
a forward pass of the encoder of the RAE. As such,
the figure illustrates the distribution of the trajectories
in the latent space. The latent space for the RAE has
50 dimensions, as the hidden state is 50-dimensional.
The top two principle components of the 50 dimen-
sional data are, therefore, visualized in the figure via
PCA. The figure indicates that there are groupings of
data discovered by the RAE. These should be easily
identified when clustering in this space. However, the
data do appear to be spread out significantly, which
may prove difficult to cluster effectively. Nonetheless,
it appears that the RAE is able to discover meaning-
ful representations of the historical AIS data for the
selected region in this case.

In Fig. 6(b), the latent distribution of the 5-VRAE
is illustrated. The latent space in this case is 20-
dimensional. In order to effectively visualize the data,
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Figure 6: Latent distributions, i.e. deep representations. The data
are illustrated using the top two principle components of the la-
tent data, e; and es.

(a) RAE. (b) B-VRAE.

Figure 7: Clustering results. The data are illustrated using the top
two principle components of the latent data, e; and es.

the top two principle components are illustrated via
PCA. Comparing the deep representations generated
by the 5-VRAE in Fig. 6(b) to those from the RAE in
Fig. 6(a), it appears that the 5-VRAE generated more
compact clusters than the RAE. The data are spread
out, but appear to be significantly more compact than
that in Fig. 6(a). The results indicate, therefore, that
the 5-VRAE is more effective in generating meaning-
ful representations suitable for clustering, due to the
increased grouping of data in the latent space.

3.2 Trajectory clustering

Utilizing the trajectory representations in Sec. 3.1,
HDBSCAN was applied to the latent distributions of
the RAE and 5-VRAE with a minimum cluster size
of 50. This was deemed a minimum size to be con-
sidered a significant cluster of ship trajectories. The
implementation in McInnes et al. (2017) was utilized
to facilitate the clustering. The results for the RAE
and $-VRAE are illustrated in Fig. 7(a) and 7(b) re-
spectively. The reader should note that multiple clus-
ters appear to have similar colors, but are in fact sepa-
rate. For the RAE, 103 clusters were discovered, and
111 for the 5-VRAE. HDBSCAN appears to have ef-
fectively clustered the data, where clusters of vary-
ing density and shape were discovered. Furthermore,
these architectures can be utilized to support anomaly
detection, either via the identified noise data from
HDBSCAN, or by further analysis of individual clus-
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Figure 8: Subset of clustered trajectories for the region of
Tromsg, Norway. Map courtesy of Google Maps (2020).

ters. As indicated by the results in Sec. 3.1, how-
ever, it appears that representations generated using
the 5-VRAE resulted in a more effective clustering
regime. The RAE generated clusters that were much
less dense and defined, whilst the 5-VRAE generated
more compact and well defined clusters. As a result,
the results indicate that a 5-VRAE has superior per-
formance with respect to generating deep representa-
tions to facilitate clustering.

Clustering using both the RAE and 5-VRAE re-
sulted in over 100 different clusters. Therefore, it is
very difficult to visualize the clustered trajectories on
a map. A subset consisting of 11 clusters from the /-
VRAE results are presented in Fig. 8 to illustrate the
clustering performance. The reader should note that
the colors do not match those for the clustering results
in Fig. 7. Given the unsupervised nature of the prob-
lem, the clustering must be validated by a visual in-
spection of the raw trajectories on a map. The results
indicate that the deep representations in conjunction
with the HDBSCAN algorithm resulted in a success-
ful clustering of the trajectories, with the 5-VRAE
having the best performance.

4 CONCLUSION

In this study, it has been shown that deep represen-
tation learning can provide powerful representations
of historical AIS trajectories to facilitate vessel tra-
jectory clustering. By utilizing recurrent autoencoder
architectures, variable length trajectories can be en-
coded to a fixed size vector. A recurrent autoencoder
and [-variational recurrent autoencoder were com-
pared. Both architectures were found effective in gen-
erating groupings of similar trajectories. However, the
[-variational recurrent autoencoder provided more
compact representations. Using the region of Tromsg,
Norway as a test case, the Hierarchical Density-Based
Spatial Clustering of Applications with Noise algo-
rithm was applied to the deep representations, provid-
ing a successful clustering of the data. Based on a vi-
sual inspection of the clusters plotted on a map, the
trajectory clusters appear to be meaningful.



The method outlined in this study can be ex-
panded to include more complex architectures such
as stacked- and bi-directional recurrent autoencoders
that likely will be able to capture more information in
their deep representations. Nonetheless, the less com-
plex models described in this study appear to provide
a successful clustering of the trajectories for the tested
region. Further work will investigate more complex
deep learning architectures that can be used in con-
junction with trajectory prediction algorithms for col-
lision avoidance purposes.
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ABSTRACT

This study presents a deep learning framework to support regional ship behavior prediction using his-
torical AIS data. The framework is meant to aid in proactive collision avoidance, in order to enhance
the safety of maritime transportation systems. In this study, it is suggested to decompose the histor-
ical ship behavior in a given geographical region into clusters. Each cluster will contain trajectories
with similar behavior characteristics. For each unique cluster, the method generates a local model
to describe the local behavior in the cluster. In this manner, higher fidelity predictions can be facili-
tated compared to training a model on all available historical behavior. The study suggests to cluster

AIS historical trajectories using a variational recurrent autoencoder and the Hierarchical Density-Based
Spatial Clustering of Applications with Noise algorithm. The past behavior of a selected vessel is
then classified to the most likely clusters of behavior based on the softmax distribution. Each local
model consists of a sequence-to-sequence model with attention. When utilizing the deep learning
framework, a user inputs the past trajectory of a selected vessel, and the framework outputs the most
likely future trajectories. The model was evaluated using a geographical region as a test case, with
successful results.
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the ocean environment, depend on conducting safe maritime
operations. Maritime situation awareness can be argued to
be one of the most essential elements with regards to main-
taining the safety of such systems. Situation awareness is
defined as being aware of what is happening around oneself,
and understanding the implications of the current situation
now, as well as in the future (Endsley et al., 2003). All nav-
igators must have an adequate degree of situation awareness
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to effectively conduct operations at sea. In this context, the
primary challenge relates to detecting obstacles and predict-
ing close-range encounter situations. As such, effective col-
lision avoidance can be viewed as a key component of safe
maritime transportation systems.

Navigators rely on visual observation, as well as any nav-
igational tools they have available to them, to maintain an
adequate degree of situation awareness. Such tools include
radar, conning, ECDIS (Electronic Navigation Chart Display
and Information System) and AIS (Automatic Identification
System). With respect to collision avoidance, navigators rely
heavily on radar systems facilitated by ARPA (Automatic
Radar Plotting Aid) in addition to the ECDIS. The best nav-
igational tools should be available to navigators to support
the navigator in identifying high risk situations (Perera and
Guedes Soares, 2015), such that they can conduct effective
collision avoidance maneuvers that adhere to the COLREGS
(Perera et al., 2010).

Generally, a linear constant velocity model is utilized to
evaluate potential close-encounter situations. In this man-
ner, the future position of a vessel is predicted using con-
stant speed and course over ground values. This method is
reliable, and provides the basis for many commercial sys-
tems for predictive traffic surveillance (Xiao et al., 2020).
However, they are inherently constrained by their linearity,
and will have degraded performance when predicting com-
plex behavior. More advanced techniques, e.g. Perera et al.
(2012); Perera (2017), where extended Kalman filters were
utilized to estimate more complex ship behavior, can aid in
predicting more complex ship behavior. However, such tech-
niques will not be useful for prediction horizons greater than
a few minutes.

Perera and Murray (2019) suggested to introduce an ad-
vanced ship predictor to aid maritime situation awareness.
The predictor is comprised of a local and global predictor to
overcome such issues. On a local scale, such techniques can
be used to predict short-term ship behavior (order 0-5 min-
utes). A global predictor is used to predict more long-term
behavior (order 5-30 minutes). The goal of such global pre-
dictions is to prevent close-encounter situations from aris-
ing. By predicting the future trajectory of vessels accurately,
the future collision risk between two neighboring vessels
can be computed. In this manner, the risk of future close-
encounter situations can be predicted, and appropriate colli-
sion avoidance actions implemented (Daranda, 2016). Such
global behavior may, however, be complex, and will require
more advanced techniques to effectively predict.

Developments within maritime traffic monitoring sys-
tems can assist in providing situation awareness to naviga-
tors, such that proactive collision avoidance maneuvers can
be conducted. Vessel Traffic Systems (VTS) collect traffic
data from a variety of sources, including AIS, shore-based
radar, Long-Range Identification and Tracking, as well as
Synthetic Aperture Radar (SAR) satellite imagery to sup-
port maritime traffic safety. The data from such real-time
observations are used by VTS operators to support proac-
tive traffic management (Xiao et al., 2020). The ubiquity of

data relating to maritime traffic opens up for opportunities to
take advantage of recent developments in machine learning
and artificial intelligence.

1.1. Historical AIS Data

Historical AIS data provide insight into the historical
behavior of ships in given regions, which can be used for
maritime traffic data mining and forecasting techniques. Re-
search into utilizing these data to support maritime trans-
portation systems has been the topic of much research re-
cently, with a review of various applications found in (Tu
et al., 2017). For instance, Goerlandt and Kujala (2011) uti-
lized AIS data to simulate maritime traffic and assess the
probability of ship collisions. Silveira et al. (2013) evaluated
the ship collision risk off the coast of Portugal, providing a
statistical analysis of the traffic separation schemes and eval-
uate collision risk. Rong et al. (2020) also utilized AIS data
to characterize maritime traffic and detect anomalies using
data mining. A review of methods to assess waterway risk
based on AIS data can also be found in Du et al. (2020).

1.1.1. AIS-Based Ship Behavior Prediction

Ristic et al. (2008) was one of the first to investigate using
AIS data for trajectory prediction. The study used a particle
filter for ship behavior prediction based on AIS data. The
uncertainty of the prediction, however, renders the method
of limited use with respect to collision avoidance purposes.
A number of studies have also addressed clustering histor-
ical AIS trajectories, classifying a vessel to a given cluster
and conducting a prediction. Pallotta et al. (2013) introduced
the TREAD (Traffic Route Extraction and Anomaly Detec-
tion) method to cluster historical trajectories into routes, and
classify a partial trajectory to one of these routes. Pallotta
et al. (2014) expanded this work to predict vessel positions
for a cluster discovered by TREAD via an Ornstein Uhlen-
beck stochastic process. Mazzarella et al. (2015) also ap-
plied a bayesian netowrk approach using a particle filter for
trajectory prediction. These methods, however, are useful
for predictions in the order of hours, and as such of greater
benefit for general maritime traffic forecasting, than for col-
lision avoidance purposes.

Other methods include Hexeberg et al. (2017) which in-
troduced a single point neighbor search method to predict
trajectories using historical AIS data. The moethod, how-
ever, does not handle branching waterways, and the accu-
racy of the method is limited. Dalsnes et al. (2018) expanded
this approach to provide multiple predictions using a predic-
tion tree. The resultant predictions are then clustered using
a Gaussian mixture model. Both these methods, however,
do not utilize trajectory clustering prior to conducting a pre-
diction. Predictions are based on the neighborhood of a pre-
dicted state, which may include data points that belong to
other clusters of ship behavior, inherently degrading the per-
formance.

Rong et al. (2019) presented a probabilistic approach to
ship behavior prediction using a Gaussian process model.
This method had successful results for the investigated re-
gion off the coast of Portugal. However, this region did not
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contain complex traffic situations. Therefore, the outcome of
the same approach to more complex traffic regions is incon-
clusive. Based on a clustering of locally extracted trajecto-
ries, Murray and Perera (2020a) classified a selected vessel
to one of the clusters, and predicted the future trajectory us-
ing a dual linear autoencoder approach. This approach had
successful results, but was computationally expensive with
respect to extracting trajectories. This may degrade the re-
sults in certain situations with respect to collision avoidance
purposes.

1.1.2. Deep Learning-Based Approaches

Deep learning (Goodfellow et al., 2016) has been the
center of technological innovation in recent years. With state
of the art performance in image and speech recognition (Good-
fellow et al., 2016), the methods have slowly begun to gain
the attention of other domains. Within the maritime do-
main, however, there is still limited research on adopting
deep learning techniques.

AIS data are an ideal dataset to apply deep learning tech-
niques in the maritime domain. Zhang et al. (2020), for in-
stance, applied a convolutional neural network to classify
regional ship collision risk levels. Nguyen et al. (2018) de-
veloped a multi-task deep learning architecture for maritime
surveillance based on a variational recurrent neural network.
The framework can be utilized for multiple purposes includ-
ing trajectory prediction. However, the method applied a
4-hot encoding to the data that reduces the resolution of the
predictions, degrading the performance with respect to col-
lision avoidance purposes.

Yao et al. (2017) investigated clustering AIS trajecto-
ries using deep representation learning, where the results in-
dicated that the deep learning approach outperformed non-
deep learning based approaches. Murray and Perera (2020b)
expanded this work, where it was found that a variational re-
current autoencoder architecture provided better representa-
tions for trajectory clustering. These methods, however, do
not provide a method to predict the future trajectory of a se-
lected vessel. Forti et al. (2020) utilized a recurrent neural
network to predict trajectories using a sequence-to-sequence
model. The results are promising, but have only been tested
on a dataset of limited complexity. If applied to an entire
region of historical data, the performance will likely be de-
graded.

1.2. Contribution

In this study, it is suggested to utilize historical AIS data
to predict ship behavior on a global scale, with the purpose
of aiding in proactive collision avoidance. It is, therefore,
assumed that future ship behavior can be predicted based on
the historical behavior of other vessels in a given geograph-
ical region. If successful, such methods can aid in providing
situation awareness to navigators, VTS centers, as well as
future autonomous vessels.

The study presents a deep learning framework for re-
gional ship prediction. Given the past trajectory of a selected
vessel, the framework predicts its future trajectory. To fa-
cilitate this, the data for a specific geographical region are

used to generate a prediction model for ship behavior within
this region. Similar methods train neural networks on all the
available AIS data. However, for the purpose of aiding in
collision avoidance, trajectory predictions should be as ac-
curate as possible. As a result, this study suggests decom-
posing the historical ship behavior into local models.

To create these local models, it is suggested to cluster
historical ship behavior using a variational recurrent autoen-
coder, as outlined in Murray and Perera (2020b). This ap-
proach is expanded to add more complexity to the model,
resulting in improved clustering performance. The method
is able to discover clusters of ship behavior, such that local
models can be trained for each individual cluster. Such lo-
cal models should have enhanced performance, as they are
trained on specific ship behavior. In contrast, training on all
available data will result in models that must capture a much
larger degree of variation, inherently degrading their perfor-
mance due the the increased complexity of the underlying
data.

The method further suggests to classify a trajectory seg-
ment to a given cluster using a deep learning architecture.
The method outputs a distribution over possible clusters of
behavior the trajectory may belong to, such that multiple pre-
dictions can be made. It is highly likely that the trajectory
belongs to one of these clusters, and as a result, one of the
trajectory predictions should be accurate.

The local models are trained on the data in each unique
cluster of historical behavior. In this study, a sequence-to-
sequence model using an attention mechanism is suggested
to function as the local model for each cluster. This archi-
tecture has not previously been addressed for AIS-based tra-
jectory in the literature to the best of the authors knowledge.
Such attention mechanisms provide the basis for state of the
art translation architectures, improving the performance sig-
nificantly compared to conventional sequence-to-sequence
models. Furthermore, sequence-to-sequence models should
have enhanced performance compared to standard recurrent
neural networks, as they predict an entire sequence based on
an entire input sequence. As such the error for the entire fu-
ture sequence is used to optimize the network, and not just
error for one time step at a time.

The overall framework outlined in this study provides a
novel contribution to conduct efficient trajectory predictions.
Using pre-trained networks for a given geographical region,
the most probable future trajectories can be output to a user
in under a second.

2. Methodology

In this section, the proposed methodology of the deep
learning framework is outlined. The framework is designed
such that it can be applied to any geographical region. The
objective of the framework is to support ship behavior pre-
diction. It is assumed that the respective vessels observed
in a given geographical region may have similar behavior to
that of other vessels in the past. By developing a framework
to model the historical behavior of the respective ships for a
given region, it may be possible to predict the future behav-
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Figure 1: Overview of deep learning framework.

ior of a selected vessel. This is achieved through the use of
historical AIS data.

An overview of the framework is illustrated in Fig. 1.
Overall, the framework can be viewed as being conducted in
two phases. The first is the training of the modules, where
the trained models are illustrated in orange in Fig. 1. The
second phase is the prediction phase, and uses the pre-trained
networks. This phase is illustrated in Fig. 1 in green.

The clustering module is trained first using all available
historical AIS data for the selected geographical region. The
goal of the clustering module is to discover clusters of his-
torical ship behavior. These clusters contain historical AIS
trajectories that have similar behavior. Fig. 1 depicts the
clustering module in orange. The left figure in the module
presents a heat map of the available historical AIS data for
a specified region, and the right a subset of clusters of ship
behavior. These clusters correspond to groupings of simi-
lar historical ship behavior. Such clusters may, for instance,
involve alternate routes, or speed profiles along routes.

The purpose of the prediction module is to predict the
future trajectory of a selected vessel, given its observed past
behavior. It is assumed in this study that the past 30 min-
utes of AIS data are available. The input to the prediction
module, as illustrated in Fig. 1 corresponds, therefore, to
the past 30 minute behavior of a selected vessel. However,
the architecture can be trained based on any input trajectory
length.

The prediction module consists of two sub-modules, the
classification module and local behavior module. In the clas-
sification module, the input trajectory is matched to one of
the behavior clusters discovered in the clustering module.

>

The input trajectory in this study is the past 30 minute be-
havior of the selected vessel. The classified cluster label is
then input to the local behavior module, which selects the
pre-trained model that corresponds to that cluster of behav-
ior. This model is then used to predict the future 30 minute
behavior of the selected vessel. The classification module
also outputs multiple possible clusters the trajectory may be-
long to, with a probability associated with each cluster. In
this manner, multiple trajectories can be predicted based on
the local models for the classified behavior clusters.

2.1. Preprocessing

Prior to training the neural networks involved in this study,
preprocessing of the AIS data must be conducted. The first
step is to generate complete trajectories from the unprocessed
AIS data. This is conducted by extracting trajectory seg-
ments, where the time between consecutive points exceeds
some parameter. In this study, trajectories are defined where
any two points are more than 30 minutes apart. Furthermore,
each individual trajectory is interpolated at one minute in-
tervals to facilitate higher density data, as well as provide
a common foundation for training the network. As such,
each vessel state, x;, will be one minute apart. Each vessel
state is defined in (1), and contains the positional data de-
fined in UTM coordinates p = [p;, p,1, as well as the speed
over ground v and course over ground,y decomposed into
the UTM coordinate directions, ¥ =[x x>l

X, = [p1, 2,0, 215 12] (€Y

However, the parameters in the vessel states vary signifi-
cantly in magnitude. As such, all states are scaled across
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Figure 2: RNN. lllustration adapted from Murray and Perera
(2020b)

each parameter for all extracted trajectories from the region
of interest. In this case, the values are scaled between [—1, 1]
given that the data is more optimal for the recurrent neural
networks that make use of the tanh function.

All trajectories are present in the input data, i.e. no anoma-
lous trajectories have been removed from the dataset. This
is due to the ability of the clustering module to identify such
trajectories, and remove them before further processing. This
is addressed in Sec. 2.3.

2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) (Rumelhart et al., 1986)

are designed to handle sequence data. The general RNN ar-
chitecture is visualized in Fig. 2. As historical AIS trajecto-
ries are multivariate time series, RNNs are chosen to serve
as the main deep learning architecture in the framework uti-
lized in this study. RNNs are capable of handling time series
of variable length, and can be combined with other architec-
tures to achieve various goals. RNNs are ideal for time series
data in that they incorporate a sense of memory into the net-
work. Given a time series x = {xo, X/, ..., X, } of length L,
a recurrent neural network processes the input state x, at at
a given state, ¢, sequentially. In addition, information about
the time series before state ¢ is processed through previous
hidden state h,_;. The network then outputs the current hid-
den state h, that incorporates relevant information from x;
and h,_; in (2).

h; = f(h,_;.x;;0) (@)

Each operation can be thought of as applying (2) in a
RNN cell. The same operation repeats for all states, and is
in this sense recurrent. A recurrent neural network can be
thought of as an unfolded computational graph, where each
operation, i.e. each cell, applies (2). In this manner the pa-
rameters are shared between all operations. The recurrence
is visualized within the red box in Fig. 2, indicating that
each cell is fed the previous cells output along with the cur-
rent input. The architecture is in this sense causal, where
the current output depends on all the past time steps. It is
evident that such an architecture is applicable to ship trajec-
tories, in that the future behavior should be dependent on the
past behavior.

2.2.1. Gated Recurrent Unit
The original RNN architecture is often referred to as the
vanilla RNN. When training this architecture, the network

h;_4 O—C) > h,
Ty G
(x&@u, ()
[stgm| ng
[ tanh]
Xt

Figure 3: GRU cell.
Perera (2020b).

Illustration adapted from Murray and

struggles to learn long-term dependencies. This is due to
vanishing gradients during backpropagation of the network
(Bengio et al., 1994). The long-term memory of such net-
works is, therefore, poor, and can degrade their performance
when long-term dependencies in the data exist. The Gated
Recurrent Unit (GRU) (Cho et al., 2014; Chung et al., 2014)
is an recurrent architecture that introduces the concept of
gates to reduce the effect of vanishing gradients. Fig. 3 il-
lustrates the architecture of the GRU cell. Other gated ar-
chitectures include the Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997). The GRU, however,
reduces the number of model parameters compared to the
LSTM, thereby reducing training time.

In the GRU, the reset gate (3) and the update gate (4)
regulate how much information should be passed on to the
next cell, i.e. how much should be remembered.

r,=o(W, X, +b, +Wyh,_, +b,) 3)

u = O'(quxt + bxu + Whuht—] + bhu) (4)

When training the network, the weights in each each weight
matrix, W, and bias vector, b, are updated. A sigmoid acti-
vation function outputs values between zero and one. These
values are then multiplied with the data to be passed on using
the Hadamard product, thereby either restricting or allowing
the flow of information. A new candidate vector is calcu-
lated in (5) using a hyperbolic tangent activation function,
tanh. The current hidden state is then calculated in (6) and
passed on to to the next state.

n, = tanh(W,x, +b,, +r, © (W, h,_ + b)) (5)

h,=(1-u)Oh,_, +u,0On, (6)

The internal functionality of the GRU cell can, therefore, be
described in equations (3)-(6), where the general form of the
RNN cell in (2) is equivalent to (6). For further details see
Cho et al. (2014); Chung et al. (2014).
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Figure 4: Stacked RNN with N layers.

2.2.2. Bidirectional RNNs

Standard RNNs conduct calculations in the forward di-
rection, i.e. from the past to the future. Bidirectional RNNs
(Schuster and Paliwal, 1997), however, provide an architec-
ture where the calculations are conducted in both the forward
and backward directions concurrently. In this manner, future
events can be thought to affect past events. In the case of
ship trajectories, this may not be as intuitive. However, the
argument can be made that choices made by a navigator may
depend on future choices, e.g. speed changes dependent on
a future course alteration, route choice, etc. As such, a bidi-
rectional RNN will incorporate more information about the
navigational patterns of past ships in a historical AIS data
set.

2.2.3. Stacked RNNs

Deep neural networks, i.e. with multiple layers, have
been shown to have superior performance to more shallow
networks. The same can be said for RNNs, as it was shown
in Graves et al. (2013) that increasing depth to RNNs en-
hanced their performance. Such RNNs are often referred to
as stacked RNNs. The stacked architecture merely implies
that there are multiple RNNs that feed into eachother as illus-
trated in Fig. 4. The figure illustrates a network of N layers
with 0 being the initial layer and abritrary layer / between.

2.3. Clustering Module
In the clustering module, clusters of ship behavior are
discovered. This is achieved through an unsupervised learn-

ing technique known as clustering, where the underlying group-

ings in the data are discovered. The groupings in the case of
this study correspond to sets of trajectories with similar be-
havior. Discovering such groupings, however, can be chal-
lenging. Standard clustering techniques require representa-
tions of the data to be vectors of equal size. A clustering
algorithm will then group the vectors based on some similar-
ity, i.e. distance, measure. Historical AIS trajectories, how-
ever, consist of multivariate time series with variable length.
As a result, they can not be clustered using standard tech-
niques. It is, therefore, of interest to develop a framework to
generate fixed size representations of the trajectories, such
that standard clustering techniques can then be applied to
the representations.

Murray and Perera (2020b) suggested to utilize a deep
representation learning-based approach to facilitate trajec-
tory representation generation for subsequent clustering. The
study argues that RNNs are ideal for such a task, as they
are designed to generate representations of multivariate se-
quences via their hidden states. The study compares utiliz-
ing a recurrent autoencoder and f-variational recurrent au-
toencoder (f-VRAE) (Higgins et al., 2017) to learn good
representations of the data. It was found that the f-VRAE
provided more compact groupings, resulting in a more ef-
fective clustering scheme. The Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
algorithm (Campello et al., 2013) was utilized to cluster the
trajectory representations with good results.

The method is expanded in this study, where a bidirec-
tional stacked VRAE architecture is utilized to generate rep-
resentations of the data, which are subsequently clustered
using HDBSCAN. The details of the architecture of the clus-
tering module are presented in the following sections.

2.3.1. Variational Recurrent Autoencoder

The goal of the VRAE is to generate meaningful repre-
sentations of the historical AIS trajectories, such that they
can be effectively clustered. A common method to generate
meaningful representations is the autoencoder. An autoen-
coder is comprised of two parts, and encoder and a decoder.
The encoder encodes the data to a latent representation, and
the decoder subsequently attempts to reconstruct the data
from this latent representation.

RNNs inherently provide a compression of the data, where
feeding a sequence into an RNN, the network outputs a final
hidden state h; that represents the entire input sequence. By
training an encoder RNN that encodes the historical ship tra-
jectories to a hidden state, h; , a decoder can be trained to re-
construct the input trajectory from h; . Such an architecture
is known as a recurrent autoencoder (Srivastava et al., 2015).
This is in essence an application of sequence-to-sequence
models (Sutskever et al., 2014) that provide the basis for
the state-of-the-art in natural language processing tasks e.g.
translation (Cho et al., 2014).

The VRAE is extension of the recurrent autoencoder that
utilizes a variational autoencoder (VAE) (Kingma and Welling,
2014; Rezende et al., 2014). The VAE introduces a prob-
abilistic approach to the autoencoder, where it is assumed
that data are generated by a random process from a contin-
uous latent variable denoted z. An approximate probabilis-
tic encoder, g4(z|x), produces a distribution over the latent
variable, z, and a decoder p,(x|z) reconstructs x from z. It
is, furthermore, assumed that q¢(z|x) is a multivariate Gaus-
sian with a diagonal covariance in (7).

4,(@IxX) ~ N(p,, 6T) @)

Both the encoder, q¢(z|x), and decoder, py(z|x), are approx-
imated by neural networks. The advantage of using a VAE
compared to a standard autoencoder, is that it encourages the
latent variables to become normally distributed. Murray and
Perera (2020b) argued that this limits the chaos in the latent
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Bidirectional
Stacked Encoder

Stacked Decoder

Figure 5: VRAE wth a bidirectional stacked encoder, and stacked decoder. The forward encoder is illustrated in yellow, and the
backward encoder in blue. The decoder is illustrated in green. All RNNs are stacked.

space, and forces the latent representations of the data to be
more compact, thereby providing better representations for
a clustering algorithm.

Fabius and van Amersfoort (2015) extended the VAE to
introduce a recurrent architecture in the variational recur-
rent autoencoder (VRAE). Here the encoder and decoder are
comprised of RNNs. The overview of the architecture in this
study is presented in Fig. 5. To the left in the figure is the
encoder. The encoder is bidirectional, where the forward
encoder is illustrated in yellow, and the backward encoder
illustrated in blue. Both encoders are GRUs. Integrating a
bidirectional architecture, more information can be encoded
in the latent space. Furthermore, the bidirectional encoder is
stacked, providing increased depth to the network. This al-
lows it to learn more complex relationships in the data. The
output of the forward and backward encoders are concate-
nated to comprise the final hidden state, h; ,of the encoder.
This is visualized in orange in Fig. 5. The mean and stan-
dard deviation of the normal distribution in (7) are estimated
via linear layers in (8) and (9).

j;=W,h, +b, @®)

6. =W,h, +b, ©)

Using the re-parametrization trick to allow for backprop-
agation, the latent variable is estimated in (10), where € is

sampled from a normal distribution according to € ~ A0, I).

This is illustrated in purple in Fig. 5.
(10)

The decoder, illustrated in green in Fig. 5, takes the initial
hidden state as input. This is calculated in (11).

h;, = tanh(W_,z +b_;)

Z=u,+06,0€

an

It then reconstructs the input sequence sequentially, where
the the next state is estimated according to (12).

X1 = Wizgh, + by 12)

Each predicted state is fed into the following cell to predict
the next. The basis for the entire prediction is the input from
h;,. Therefore, all the information contained in the sequence
must be stored in the latent vector z. Training this encoder-
decoder architecture forces the network to learn a meaning-
ful representation of the data in the latent space.

The network is optimized by maximizing a variational
lower bound on the log-likelihood (13).

J0,9:%.2) =B, q1x) [log(py(x|2))]
— Dk (q4(z|X)||pp(2)

13)

The first term in (13) can be viewed as the reconstruction
loss, and is evaluated in this study using the mean squared
error. The second term is the Kullback-Leibler (KL) diver-
gence between the approximate posterior, g,(z|x) (i.e. en-
coder), and the prior py(z). In this study is is assumed that

the prior is normally distributed according to py(z) ~ N0, I).

Therefore, maximizing this second term implies minimizing
the KL-divergence. By applying this constraint to the latent
space, this term tries to enforce compact groupings of data.
Therefore, similar ship trajectories should be encouraged to
be closer together in the latent space. As such, a clustering
algorithm should be more successful in discovering clus-
ters of trajectories using such an architecture. For further
details on representation learning for trajectory clustering,
please see Murray and Perera (2020b) as well as Kingma
and Welling (2014); Rezende et al. (2014); Fabius and van
Amersfoort (2015) for further details on VAEs.

2.3.2. Hierarchical Density-Based Spatial Clustering
of Applications with Noise
The Hierarchical Density-Based Spatial Clustering of Ap-

plications with Noise (HDBSCAN) algorithm (Campello et al.

2013) is utilized to cluster the latent representations (i.e. z).
The goal is to identify class labels that can be utilized in the
classification module, where each class relates to a cluster
of ship behavior. HDBSCAN is a non-parametric clustering
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Figure 6: Classifier with a bidirectional stacked encoder for dynamic data. The embedding block embeds categorical static
data. The encoded dynamic data is concatenated with the embedded categorical static data and continuous static data. Fully

connected (FC) layers predict the class via a softmax ouput layer.

approach that can identify clusters of varying density and
shape, and was argued in Murray and Perera (2020b) to be
powerful in clustering ship trajectory representations gener-
ated by a VRAE.

HDBSCAN extends the Density-Based Spatial Cluster-
ing of Applications with Noise algorithm by adapting it to a
hierarchical clustering scheme. The algorithm defines core
distances for each point as the distance to the k" nearest
neighbor. These distances function as local density estimates,
and provide the basis for a mutual reachability metric be-
tween two points. This metric then provides the basis for
a minimum spanning tree and hierarchy. The tree is then
pruned using the minimum cluster size, where any clusters
below a given threshold are filtered out. The algorithm then
discovers the most stable clusters in the hierarchy. Further-
more, HDBSCAN provides the capability to discover noise
in the data, where any data points that do not belong to the
clusters are labeled as noise. For further details see Campello
etal. (2013).

The clusters discovered by HDBSCAN represent the reg-
ular ship behavior in the region of interest. The data clus-
ters can, therefore, be used to create local models that de-
scribe the regular behavior for each cluster. The algorithm
also functions as a form of pre-processing, where anoma-
lous trajectories will be labeled as noise, as they do not cor-
respond to any cluster of regular ship behavior. Predicting
such anomalies is difficult, as the behavior of such vessels is
often highly erratic. This study, therefore, focuses on mod-
eling regular ship behavior, and discards the noise identified
by HDBSCAN.

2.4. Classification Module

The classification module is trained using 30-minute seg-
ments of trajectory data. Each trajectory in the dataset is,
therefore, split into 30 minute segments using a sliding win-
dow technique with a one minute interval. In this manner,
the classification module will be trained using all possible
30 minute trajectory segments. Each segment is assigned a
class label corresponding to the class of its parent trajectory,
discovered via the clustering module. The objective of the
classification module is to correctly classify an input trajec-
tory segment to one of the underlying ship behavior clusters
in the dataset.

The architecture of the classification module is illustrated
in Fig. 6. Given that the trajectory segments consist of se-
quence data, it is suggested to utilize RNNs to encode the
dynamic data. A bidirectional, stacked encoder is, therefore,
utilized to encode the trajectory segments to a fixed size vec-
tor in a similar manner to the clustering module. The final
hidden states of the backward and forward encoders are con-
catenated, allowing the encoder to preserve dependencies in
both directions.

Historical AIS data, however, is not limited the dynamic
data represented by the trajectory data. Static data is also
available, e.g. ship type, ship length, date, etc. Assuming
that this information is available via AIS at the time of pre-
diction, such static data can be utilized by the classifier to
discriminate between classes. In this study, it is suggested to
include the ship type and length in the static data. Ship type
will play a significant role in the behavior of a vessel, and
should aid the classifier in achieving higher accuracy. The
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ship length should also play a role in the type of behavior to
be expected by the ship.

The static data is further separated into categorical data,
S.q» and continuous data, s,,,,;. The continuous features, e.g.
length, can simply be scaled and concatenated with the dy-
namic data, as shown in Fig. 6. The categorical data, how-
ever, e.g. ship type, must be encoded using an embedding
layer. An embedding layer maps a category to a vector rep-
resentation. The concept was introduced to aid natural lan-
guage processing, where word embeddings (Mikolov et al.,
2013) provide the basis for many natural language process-
ing tasks. In this study, it is suggested to embed the categor-
ical static data, and concatenate these embeddings with the
remainder of the data as shown in Fig. 6.

The concatenated data are then fed into fully connected,
i.e. linear, layers. The final layer will have an output dimen-
sion corresponding to the number of classes, i.e. clusters,
discovered by the clustering module. A softmax layer then
computes the final output by scaling the output between 0
and 1 according to (14).

(14)

v; is the predicted value for class i from the fully connected
layers, and ¢; is the softmax output for class i . In this man-
ner, a probability distribution is created over the number of
classes. The classifier then compares the softmax output to
the true class vector ¢, where ¢; = 1 for the true class and
¢; =0V j # i. The cross entropy loss is then calculated and
used to optimize the network.

When training the model, modern deep learning archi-
tectures, e.g. PyTorch (Paszke et al., 2019), include a soft-
max layer in the cross entropy loss. As a result, when train-
ing a network using the built in cross entropy loss, the soft-
max layer is not included in the architecture of the network.
When evaluating the model, the predicted class is, therefore,
generally taken as the argmax of v without using a softmax
layer. However, given that the softmax function gives a prob-
ability distribution over the number of classes, this can be
used to identify a distribution over the ship behavior clusters
the trajectory segment belongs to. As such, multiple trajec-
tory clusters can be identified as possible for the selected
vessel during a prediction. Therefore, a softmax layer is ap-
plied to the network during evaluation in this study.

2.4.1. Local Behavior Module

Given that the clustering module has discovered clusters
of ship behavior in the historical AIS data, local models can
be created to predict the ship behavior. Each cluster repre-
sents a group of localized ship behavior. Training a model
on the subset of data corresponding to this local behavior
should improve the predictive capabilities of the algorithm,
as opposed to training on all available data.

In this study, each local model is comprised of a sequence-
to-sequence model (Sutskever et al., 2014). The VRAE in

Sec. 2.3.1 is a such an architecture, where a sequence-to-
sequence model is utilized to aid in clustering. As outlined
in Sec. 2.3.1, this encoder-decoder approach is common in
natural language processing. The core of such models is a
RNN, where the RNN used in this study is a GRU. The en-
coder RNN encodes the input sequence to a fixed size vector,
and the decoder RNN decodes the target sequence using this
vector, i.e. latent representation, of the input sequence. In
an autoencoder architecture, as in Sec. 2.3.1, the target se-
quence is equal to the input sequence. In this manner the
decoder’s task is to reconstruct the input.

The local models in this study, however, take the past
30 minute behavior of a selected vessel as input, and predict
the future 30 minute behavior. As such, the past 30 minutes
must be encoded into a fixed size vector, and the future 30
minutes must be predicted using this representation. For an
autoencoder, this bottleneck in the latent representation pro-
vides the basis for clustering, as one wishes to discriminate
between classes in this space. When a sequence-to-sequence
model is used for predictions, however, this bottleneck is
detrimental to the performance.

The bottleneck in sequence-to-sequence models limits
the capacity of the model, as an entire sequence must be pre-
dicted from a single vector. Furthermore, the encoder often
becomes gradient starved. This is due to the fact that gradi-
ents calculated from the loss in the decoder must flow via the
bottleneck during backpropagation. As a result, the encoder
side of the network does not update well during training.
Bahdanau et al. (2015) introduced an attention mechanism
that addresses this issue. Instead of only looking at the final
hidden state of the encoder, the decoder is able to look at all
of the encoder hidden states, enhancing the predictive perfor-
mance of the model. Using such an architecture, gradients
are allowed to flow freely to the encoder side of the network
via the attention mechanism. This approach was developed
for translation tasks, but the architecture is also relevant for
sequence-to-sequence tasks involving time series data.

The local model architecture in this study, therefore, uti-
lizes the attention mechanism in Bahdanau et al. (2015) to
facilitate effective ship trajectory prediction. The architec-
ture of the local model is illustrated in Fig. 7. The atten-
tion mechanism is facilitated by a fully connected network,
represented by the pink box in Fig. 7. The attention mecha-
nism takes the previous hidden state of the decoder, i.e. h,_;,
as well as all of the encoder hidden states as input. In this
study, the encoder is bidirectional and stacked. As a result,
the input to the attention mechanism will be the hidden states
from the top layer, which contain the concatenated backward
and forward hidden states of the encoder for each time step.
The attention mechanism in this study functions in two steps.
First, h,_; of the decoder is matched with the encoder hid-
den states. For the case of ship trajectory prediction, this can
be thought of as how relevant ship behavior at some point
during the past 30 minutes is for conducting a prediction at
the current time step. The network can in this manner learn
what to look at in order to most effectively conduct a pre-
diction. The outputs are then run through a softmax layer
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Bidirectional
Stacked Encoder

Figure 7: Prediction architecture using a sequence-to-sequence model with attention.

Stacked Decoder

The bidirectional stacked encoder is

illustrated in yellow, and the stacked decoder in green. For each prediction in the decoder, the attention mechanism looks at the
encoder hidden states and calculates a weighted sum. This is then input to the decoder RNN cell.

as in (14). This generates an attention distribution, a, over
the encoder hidden states, where each attention value can
be viewed as a weight for the corresponding encoder hidden
state. A weighted sum of the encoder hidden states is then
calculated, illustrated by the blue box in Fig. 7. The block
takes in the encoder hidden states, as well as the attention
weights, and outputs a weighted sum.

The architecture of each decoder cell is illustrated in the
red box in the upper right of Fig. 7. The input to each RNN
cell is a concatenation of the previous prediction, §,_;, with
the weighted encoder hidden states, w. Furthermore, the lin-
ear layer that conducts the prediction for each state, §,, takes
¥:_1, and w as input. Each prediction can, therefore, look at
the entire past trajectory, and identify relevant parts to con-
duct as accurate a prediction as possible. The linear layer is
allowed to look at the current input, to further enhance the
accuracy of the prediction, where short term dependencies
can be directly determined. For the case of ship trajectory
prediction, the next state will undoubtedly have a high de-
pendency on the previous.

Each local model is, therefore, trained using the outlined
architecture. The decoder will function in the same man-
ner as in Sec. 2.3.1, where states are iteratively predicted,
but instead of reconstructing the input, a target sequence, y
is predicted. The loss is calculated using the mean squared
error as in Sec. 2.3.1. To optimally train the network, all
combinations of past and future 30 minute trajectory seg-
ments should be utilized. In this study, one hour trajectory
segments were extracted using a sliding window technique,
where the window size was one minute. The first 30 minutes

of each trajectory are defined as the input (i.e. past), and the
final 30 the target (i.e. future).

3. Results and Discussion

In this section, the results from a case study using the
outlined deep learning framework are presented. A dataset
corresponding to one year of AIS data from January 1% 2017
to January 15" 2018 for the region around the city of Tromso,
Norway was utilized. This region contains complex traffic,
and provided a relevant test case for the framework.

PyTorch (Paszke et al., 2019) was utilized to implement
the neural networks. All networks were trained using the
Adam optimizer (Kingma and Ba, 2015). Furthermore, gra-
dient clipping (Pascanu et al., 2013) and batch normaliza-
tion (Ioffe and Szegedy, 2015) were utilized to aid in conver-
gence. Hyperparameters were tuned for this specific region,
and will need to be tuned to the specific geographical region
to which the framework is to be applied.

3.1. Clustering Module

In this section, the results for the clustering module are
presented. The technique described in Sec. 2.3 was ap-
plied to the dataset corresponding to the region surrounding
Tromsg. This corresponded to approximately 70,000 trajec-
tories. In this study, a VRAE was utilized to cluster the his-
torical AIS trajectories. The results indicated that using a
VRAE as opposed to a f-VRAE resulted in more optimal
clusters for the architecture and data in this study, i.e. f = 1.
It appeared based on visual inspection of the clusters of tra-
jectories, that increasing the value of # caused multiple local
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Figure 8: VRAE loss.

behavior clusters to merge. This may degrade the results of
the subsequent trajectory prediction, as it is desirable to dis-
cover behavior clusters that are as specific as possible. It
should be noted that the optimal value of f will vary based
on the complexity of the ship traffic in the region of interest.

3.1.1. Network Training

The VRAE utilized in this study was comprised of a stacked,

bidirectional GRU encoder with 3 layers, each with a hidden
size of 50. A stacked GRU decoder with 2 layers, and a hid-
den size of 50 was used. The dimensionality of the latent
space was set to 20 to allow for further compression of the
data. A number of variations of parameters were run to de-
termine the best performance.

During training, the dataset was sh uffled and split into
training and validation datasets. The training data accounted
for 90% of the trajectories, and the validation 10%. Fig. 8
illustrates the total loss of the VRAE on both the training
and validation sets during training for 10 epochs. The re-
sults indicate that the model is not overfitting to the data, as
the validation and training losses are highly correlated for
the duration of the training. It appears that the total loss in-
creases over time, but this effect is due to a technique known
as KL-annealing, where the KL-loss term is introduced lin-
early over a span of a number of epochs. In this study, it was
introduced over five epochs, as can be seen in Fig. 9. In this
figure, the reconstruction- and KL-loss terms are plotted in-
dividually. KL-annealing allows the model to learn how to
reconstruct the data before enforcing the KL-regularization
term. As a result, it can be seen that the reconstruction loss
decreased quickly, whilst the KL-term increased. Each step
of the KL-loss downwards after this corresponded to an in-
crease in its weighting. The loss terms converged after this,
and it was concluded that the model had converged.

3.1.2. Clustering Results

In order to cluster the trajectories, a forward pass of the
encoder was run to generate the latent representations for
each trajectory. The trajectories are then clustered in this
space using HDBSCAN. The implementation in Mclnnes

—— Reconstruction Loss
20 KL-Loss

) 530 1000 1500 2000 2500 3000
Training Iterations

Figure 9: Reconstruction and KL losses for VRAE.

et al. (2017) was utilized in this study.

The minimum cluster size in the algorithm, however, is
found to be decisive in the type of clusters discovered. This
value was varied, and found to play a significant role in the
outcome of the remainder of the architecture. When the min-
imum cluster size was set to 10, over 400 clusters of ves-
sel behavior were discovered. In this case, the algorithm is
able to discover very specific vessel behavior. This is benefi-
cial as one wishes to discriminate between behavior clusters,
and generate predictions using these clusters. More specific
behavior should lead to better predictions. However, when
classifying a 30 minute trajectory segment to one of these
clusters in the classification module, the network will have
great difficulty in correctly classifying the segment, and the
performance of the overall algorithm will be degraded. This
is due to the existence of many similar clusters, such that the
algorithm is unable to conduct an accurate classification.

Increasing the minimum cluster size causes clusters of
local behavior to merge into larger clusters, where the behav-
ior whithin a given cluster varies to a greater degree. Discov-
ering smaller clusters allows the model to discover a greater
number of ship speed clusters within a given route for in-
stance. Merging these clusters, however, allows the model
to classify a given trajectory segment with a higher degree
of accuracy, contributing to the overall success of the algo-
rithm. As a result, a minimum cluster size of 100 was set
based on trials for various minimum cluster sizes. In this
case, 52 ship behavior clusters were discovered. Fig. 10
illustrates the clustered latent representations, where it ap-
pears that the algorithm had discovered meaningful clusters.
Fig. 11 illustrates a subset of the clusters discovered by the
module. Each of these clusters corresponds to a cluster of
historical ship behavior. Despite utilizing clusters of more
general behavior, discovering such main local ship behavior
cluster will aid the performance of the local prediction mod-
ule, which, with its architecture, can predict various behavior
within these main clusters.
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Figure 10: Clusters in latent space of VRAE. The latent space
is illustrated using the top two principle components of the
space, ¢, and e,. Clusters with similar colors are not necessarily
the same.

Figure 11: Subset of discovered trajectory clusters with mini-
mum cluster size of 100.

3.2. Classification Module

The classification module was designed with a bidirec-
tional, 5-layer stacked GRU with 20 hidden units as the en-
coder. 3 linear layers were utilized as the classification head,
where the first was set to have one fourth as many neurons as
the number of classes (i.e. number of clusters), the second
half as many, and the third as many neurons as the number of
classes. The embedding size was set to 10. During training,
it was found that embedding the ship type led to the model
focusing too much on the ship type, thereby degrading the
results. As a result, a dropout rate of 50 % (Srivastava et al.,
2014) was applied to the emdedding layer to prevent overfit-
ting to the embedding data.

3.2.1. Network Training

Prior to training the network, the dataset was shuffled and
split into training (70 %), validation (10%) and test (20%)
sets. Subsequently, each dataset was split into 30 minute
trajectory segments using a sliding window technique with
a window size of one minute. As a result, all possible 30
minute trajectory segments in the data are used to train the

Table 1
Size of datasets.

Training | Validation |  Test
L127x10° | 1.66x 10° | 3.16 X 10°
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Figure 12: Classification network loss, where the loss is defined
as the cross-entropy loss.

classifier. The size of the datasets is shown in Table 1.

The results of the training are illustrated in Fig. 12. It
appears that both the training and validation losses continue
to decrease until about 20000 iterations. As a result, it was
concluded that the model had converged at this point. Fur-
thermore, the validation loss is closely correlated with the
training loss. Therefore, it was concluded that the model is
not overfitting to the data.

3.2.2. Classification Results

When evaluating the classification performance on the
test set, the classification accuracy was found to be 47 %.
However, in this study it is suggested to use the softmax dis-
tribution of possible clusters. Any clusters with a softmax
output over 0.1 (i.e. 10% probability) are output as likely
ship behavior clusters. In this manner, the model identifies
multiple possible clusters the trajectory segment may belong
to. The softmax distribution for a randomly selected vessel
trajectory segment from the test set is illustrated in Figure
13. The colors of the bars correspond to the colors of the
trajectory clusters illustrated in Fig. 14.

For the selected vessel in Figure 13, the model correctly
classified the behavior to cluster 25 (i.e. blue). However, the
softmax output also indicated that the selected vessel may
belonged to cluster 23 (i.e. red), as its probability was above
0.1. Furthermore, cluster 24 had a probability above 0.05,
and might have been a possible behavior cluster. All three
clusters share common behavior, and in this case, it appeared
appropriate to investigate multiple possible clusters.

When using a 10 % softmax threshold, the classification
accuracy increased to 73 % for the test set. On average, the
model outputs 3 possible clusters a trajectory segment may
belong to. Decreasing the threshold was also investigated.
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Figure 14: Classified ship behavior clusters for selected vessel
case. The selected vessel was classified to the blue, with the
red above the softmax threshold of 10%, and the green above
5%.

Table 2
Classification Accuracy and Average Number of Clusters.

Absolute | 10% Softmax | 5% Softmax
Accuracy 47% 73% 92%
Clusters - 3 5

With a threshold of 5 %, the accuracy rate increased to 92
%. In this case, the model outputs an average of 5 possible
clusters the trajectory segment may belong to. The results
are summarized in Table 2. For the selected vessel case in
Fig. 13 and 14, the blue and red clusters would be identified
for a softmax threshold of 10%, with the addition of the green
cluster for a threshold of 5 %.

Overall, it appears that the model was successful in clas-
sifying the trajectory segments in the test set, where the ac-
curacy increased as the softmax probability threshold was
lowered.

3.3. Local Behavior Module
In the local behavior module, local models for each clus-
ter of ship behavior are available. In this study, however,

Table 3
Size of Local Behavior Model Datasets.

Training | Validation Test
Model 1 | 9.23x 10* | 2.80x 10* | 1.2x 10*
Model 2 | 1.02 x 10* 33x%x10° 1.3x10°

it was infeasible to train 52 neural networks to evaluate the
overall performance using the available resources. In a com-
mercial setting, however, this should be done. As such, only
two models were trained to illustrate the performance of the
method. These correspond to the blue and red clusters from
the example in Sec. 3.2.2, illustrated in Fig. 14. These mod-
els are chosen as they were above the 10% softmax threshold
used in this study. These models are hereafter referred to as
model 1 (i.e. the blue cluster), and model 2 (i.e. the red
cluster).

Both models have a bidirectional 2-layer stacked GRU
encoder with 20 hidden units, and a 2-layer stacked GRU
decoder with 20 hidden units. Variations of these architec-
tures were evaluated to determine the architecture with the
best performance.

3.3.1. Network Training

The datasets for both models were initially reduced to
only contain the trajectories in the respective clusters. Sub-
sequently, each model dataset was shuffled and split into train-
ing (70 %), validation (10%) and test (20%) sets. These dat-
sets were again split into 30 minute trajectory segments us-
ing a sliding window technique with a window size of one
minute. Source sequences (past 30 minute trajectory), and
their corresponding target sequences (future 30 minute tra-
jectory) were extracted in this manner. The sizes of the re-
spective datasets are summarized in Table 3.

The training and validation losses for model 1 and model
2 are illustrated in Fig 15 and Fig. 16, respectively. Both
models were trained for 1000 epochs. The training and vali-
dation losses were both correlated for the duration the train-
ing of the models, indicating that neither model overfit to
the data. The losses continue to decrease for the duration of
the training iterations illustrated in the figures. Once the de-
crease was minimal, the models were assumed to have con-
verged.

3.3.2. Prediction Results

The predictive performance of the models was evaluated
on their respective test sets. The results for each model are
presented in Figure 17. The figure illustrates the root mean
squared error (RMSE) of the predicted position as a function
of the prediction horizon. The results indicate that model 2
has better performance, with a mean squared error of 436 m
for a prediction horizon of 30 minutes, whilst model 1 has a
mean squared error of 576 m. This may be due to model 1
being trained on a greater number of trajectories. The cluster
for model 1 was much larger than for model 2. As a result,
there will be a greater degree of variation in the data, and the
model is not as effective in capturing the variation. In model

B. Murray, L.P. Perera: Preprint submitted to Elsevier

Page 13 of 16



An AlS-Based Deep Learning Framework for Regional Ship Behavior Prediction

14 —— Training Loss
Validation Loss

0.8

Loss

0.6

0.4

1L

0.0

0 2500 5000 7500 10000 12500 15000 17500
Training lterations

Figure 15: Model 1 training and validation loss.
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Figure 16: Model 2 training and validation loss.

2, the data likely has less variation, and, therefore, fits well
to the data.

Figure 18 illustrates the prediction results for the selected
vessel case in Sec. 3.2.2. Here, two predictions were con-
ducted using the two models identified by the classification
module. The results indicate the the sequence-to-sequence
model with attention can provide successful results, even
with highly nonlinear input trajectories. It appears that the
attention mechanism allows the models to focus on the most
relevant aspects of the past trajectory. Model 2, however,
appears to have better performance than model 1. Model
1 should have better performance, as the test trajectory be-
longs to the cluster for model 1. Nonetheless, in this case
it appears that the model with the second highest probabil-
ity has the best performance. This indicates that incorrectly
classifying the selected vessel may not result in a significant
degradation in the prediction results. As such, many of the
incorrectly classified trajectory segments may be classified
to a cluster of similar behavior.
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— 400
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Figure 17: Root mean squared error (RMSE) of test set pre-
dictions.
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Figure 18: Predictions for selected vessel case.

4. Conclusion and Further Work

Limited work has been conducted on utilizing deep learn-
ing to enhance the safety of maritime transportation systems.
One area of interest is in aiding maritime situation awareness
via proactive collision avoidance. To facilitate this, global
scale trajectory predictions, ie. order 5-30 minutes, must
be conducted. This study suggests an approach to this issue
via a deep learning framework for regional trajectory pre-
diction. Using such an architecture, the future trajectory of
a vessel can be predicted in under a second. The framework
investigates utilizing modern deep learning architectures to
facilitate a decomposition of regional ship behavior into lo-
cal models. Utilizing historical AIS data, the framework is is
successful in clustering historical ship behavior using a vari-
ational recurrent autoencoder. The results also indicate that
the increased complexity of the model allows it to cluster
vessel behavior more successfully.

Utilizing this historical knowledge, the past behavior of a
selected vessel is classified to the most likely clusters of his-
torical behavior. Predictions corresponding to the behavior
in each cluster are then output to the user. The local predic-
tion models are comprised of sequence-to-sequence models
with attention. The results indicate that the attention mech-
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anism assists the prediction by allowing the model to focus
on the most relevant parts of the past trajectory. By decom-
posing the behavior into local models, greater accuracy can
be achieved than training a similar prediction model to the
data in all clusters. Overall, the suggested framework is suc-
cessful in predicting trajectories on a global scale.

Further work will include providing further uncertainty
estimation via Bayesian dropout techniques. In this manner,
a distribution is predicted for each time step. The classifi-
cation module will also be further improved to enhance the
classification accuracy. Weather parameters will likely aid
the predictions, as ships will display various behavior based
on the prevailing weather conditions. This should also be
addressed in future work.
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