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Abstract

Cognitive control is a mental process, which underlies adaptive goal-directed decisions. Previous studies have
linked cognitive control to electrophysiological fluctuations in the u band and u -g cross-frequency coupling
(CFC) arising from the cingulate and frontal cortices. However, to date, the behavioral consequences of differ-
ent forms of u -g CFC remain elusive. Here, we studied the behavioral effects of the u -g CFC via transcranial
alternating current stimulation (tACS) designed to stimulate the frontal and cingulate cortices in humans. Using
a double-blind, randomized, repeated measures study design, 24 healthy participants were subjected to three
active and one control CFC-tACS conditions. In the active conditions, 80-Hz g tACS was coupled to 4-Hz u
tACS. Specifically, in two of the active conditions, short g bursts were coupled to the delivered u cycle to co-
incide with either its peaks or troughs. In the third active condition, the phase of a u cycle modulated the am-
plitude of the g oscillation. In the fourth, control protocol, 80-Hz tACS was continuously superimposed over
the 4-Hz tACS, therefore lacking any phase specificity in the CFC. During the 20 min of stimulation, the partic-
ipants performed a Go/NoGo monetary reward-based and punishment-based instrumental learning task. A
Bayesian hierarchical logistic regression analysis revealed that relative to the control, the peak-coupled tACS
had no effects on the behavioral performance, whereas the trough-coupled tACS and, to a lesser extent, am-
plitude-modulated tACS reduced performance in conflicting trials. Our results suggest that cognitive control
depends on the phase specificity of the u -g CFC.
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Significance Statement

This study investigated the behavioral effects of different forms of u -g cross-frequency coupling (CFC) in
cognitive control. To this aim, we delivered cross-frequency transcranial alternating current stimulation
(tACS) over the cingulate and frontal cortices in humans. We found that when g tACS was coupled to the
trough of u tACS, the stimulation worsened the ability of healthy participants to employ cognitive control.
Our findings highlight the role of u -g CFC in complex goal-directed behavior in humans.

Introduction
In goal-directed behavior, contextual and reward-re-

lated information should be effectively linked to form ac-
tion plans to accomplish goals and perform decisions in a

flexible and prospective manner (Helfrich and Knight,
2019). In humans, at least three main behavioral control
systems influence the decisions: The Pavlovian system
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and the model-free and the model-based instrumental
systems (Guitart-Masip et al., 2014). The Pavlovian sys-
tem is responsible for automatic, reflexive response ten-
dencies that depend on the valence of the stimulus. It
facilitates approaching behavior for rewarding stimuli and
response inhibition for unrewarding ones (Guitart-Masip
et al., 2014). The model-free system gradually incorpo-
rates the behavioral consequences of actions by comput-
ing the difference between the predicted and received
outcome. The model-based system creates an internal
world model, which enables flexible, prospective plan-
ning. Therefore, decisions do not exclusively rely on the
outcome history (Helfrich and Knight, 2019).
Conflict can arise between the Pavlovian and instru-

mental behavioral control systems, when the evolutionary
hard-wired, valence-response associations do not sup-
port adaptive behavior. This situation occurs when ap-
proaching rewards is maladaptive, or when rewards can
be secured by response inhibition rather than by ap-
proach (Guitart-Masip et al., 2012). Cognitive control is a
mental process for resolving this conflict between the be-
havioral control systems (Guitart-Masip et al., 2014;
Shenhav et al., 2017).
The oscillatory activity in the u and g frequency bands

and their interaction may play a crucial role in cognitive
control (Cavanagh and Frank, 2014; Cohen, 2014). u -g ,
phase-amplitude cross-frequency coupling (CFC) is one
form of such interaction, where the phase of the u oscilla-
tion modulates the amplitude of the g oscillation (Canolty
and Knight, 2010). Human intracranial electrophysiologi-
cal recordings revealed that u -g , phase-amplitude CFC in
the anterior cingulate cortex (ACC) and dorsolateral pre-
frontal cortex (DLPFC) emerges during cognitive control
(Smith et al., 2015). Smith and colleagues found that the
amplitude of the high g oscillation was highest in a specif-
ic phase range of the u oscillation (;0–60°) during a cog-
nitive control task (Smith et al., 2015).
To study how participants learn to overcome the

Pavlovian bias by using cognitive control mechanisms,
we used a probabilistic Go/NoGo instrumental learning
task (Cavanagh et al., 2013). We tested the behavioral
relevance of u -g CFC in humans via transcranial alternat-
ing current stimulation (tACS), which can externally gener-
ate oscillating electric fields in the brain (Peterchev et al.,
2012). We used three CFC-tACS protocols delivered in

the u and g frequency bands: peak-coupled and trough-
coupled tACS and amplitude-modulated tACS (Alekseichuk
et al., 2016; Minami and Amano, 2017; Amador de Lara et
al., 2018). In the context of the present study, the notion of
peak and trough refers to the local maximum and minimum
of the amplitude of the delivered u tACS wave, to which the
short g tACS burst was coupled. In the amplitude-modu-
lated protocol, the amplitude of the g oscillation was modu-
lated by the phase of the u wave.
We hypothesized that the peak-coupled tACS would

improve the accuracy and/or the speed of learning relative
to the control stimulation. We based this hypothesis on
the notion that these protocols mimic the phase specific-
ity of u -g CFC when signaling the need for cognitive con-
trol (Smith et al., 2015). Moreover, we also anticipated
that the trough-coupled tACS would impair behavioral
performance because this pattern is contrary to that activ-
ity naturally occurring during the successful implementa-
tion of cognitive control (Smith et al., 2015). Third, we
expected that modulating the CFC between the ACC and
DLPFC via CFC-tACS protocols should affect the amount
of Pavlovian bias. In particular, facilitating the CFC be-
tween the ACC and DLPFC via the peak-coupled tACS
would be thought to increase the efficacy of the ACC to
signal the need for cognitive control and thereby increase
the degree of model-based control implemented by the
DLPFC (Smith et al., 2015). This, in turn, might lead to a
decreased amount of Pavlovian bias. On the other hand,
disrupting the CFC between the ACC and the DLPFC via
the trough-coupled tACS should decrease the efficacy of
signaling the need for cognitive control. This may impair
the efficacy of implementing model-based control and
therefore lead to a higher degree of Pavlovian bias. Fourth,
we expected that amplitude-modulated tACS would im-
prove behavioral performance by entraining the ongoing u
oscillation by the envelope of the high-frequency stimula-
tion (Negahbani et al., 2018). The amplitude-modulated
tACS protocol would increase the u synchrony in the cin-
gulate and frontal cortices (Negahbani et al., 2018), which
in turn would improve the ability of the participants to apply
cognitive control.

Materials and Methods
Participants
Twenty-four healthy, native German-speaking adult vol-

unteers (12 female, mean age 6 SD: 23.06 3.26 years,
age range from 18 to 30years) joined the study. This num-
ber of participants was chosen to allow a complete ran-
domization of the order of the four tACS protocols (i.e.,
three active and one control protocols) and is calculated as
four factorial or 24. The mean number of years of education
(6SD) was 16.306 3.05 (range from 12 to 22.5years).
Before entering the study, the participants were informed
about possible adverse effects of tACS, and all of them
gave their written informed consent. The exclusion criteria
were history or presence of current medical, neurologic, or
psychiatric illnesses, including epilepsy, drug and/or alco-
hol addiction, and the presence of metal implants in the
head, neck, and chest. In addition, the participants were
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examined by neurologists at the Department of Clinical
Neurophysiology, University Medical Center Göttingen.
The study neurologist evaluated whether any of the exclu-
sion criteria were met. None of the participants reported
any neurologic or psychiatric disorders, drug dependency,
or medication acting on the central nervous system before
or during the experiment.

Code accessibility, data availability, and ethic
statement
The Ethics Committee of the University Medical Center

Göttingen approved the study, the study protocols, and
all methods used therein. We performed the study in ac-
cordance with relevant guidelines and regulations. The
study was registered under the study approval number
20/5/15. The study materials, code/software and pseudo-
nymized raw data described in the paper is freely avail-
able online at https://github.com/ihrke/2020_cfc_tacs.

Experimental design
The study used a double-blind, within-subject design.

The participants underwent five experimental sessions,
starting with an initial training session to familiarize them-
selves with the behavioral paradigm. During the training ses-
sion, the participants received no stimulation. This initial
session was followed by the four tACS sessions, the order
of which was counterbalanced across participants to reduce
between-session learning effects. Of the four stimulation
sessions, three employed the main stimulation protocols
and one the control protocol. The intersession interval be-
tween the stimulation sessions was at least 48 h.

Behavioral paradigm
The behavioral paradigm consisted of a learning phase

and a subsequent transfer phase, which was adapted
from Cavanagh et al. (2013). The task was introduced as a

card game for the participants (Fig. 1). Stimuli presentation
was controlled by PsychoPy (version number 1.83.01), a
free, open-source application built on the Python program-
ming language (Peirce, 2007, 2009). For the presentation of
the behavioral paradigm, we used a Dell computer with
Windows 7 Enterprise 64-bit operating system, Intel (R) core
i3-3220, 3.30GHz and 4 GB RAM, and a 21.5-inch Dell
screen with a 1920� 1080 resolution and 60-Hz refresh
rate.
During the learning phase, the participants performed a

Go/NoGo instrumental learning task. Here, they had to
learn action (two levels: Go/NoGo) and monetary outcome
(three levels: win, no win/lose, or lose) contingencies. For
each card, the goal was to find the better of the two possi-
ble action choices (Go/NoGo) resulting in the highest
monetary outcome (getting reward or avoiding losing) and
therefore maximize their earnings.
One key feature of the task was that the action choices

and monetary outcomes were orthogonal. As such, the
four unique cards covered all the combinations between
actions choices and monetary outcomes (“Go to win,”
“NoGo to avoid losing,” “Go to avoid losing,” and “NoGo
to win”). Because of the Pavlovian bias, i.e., approach to
appetitive and withdrawal from aversive stimuli, the cards
could be split into congruent and conflicting cards. For
the Pavlovian congruent cards (henceforth the congruent
cards; “Go to win” and “NoGo to avoid losing”), the action
selection under the automatic, Pavlovian bias was advan-
tageous for the participants and hence easier to learn. For
the Pavlovian conflicting cards (henceforth the conflicting
cards; “NoGo to win” and “Go to avoid losing”), the action
selection under the automatic, Pavlovian bias was disad-
vantageous for the participants and therefore harder to
learn (Guitart-Masip et al., 2012).
The action outcomes were probabilistic such that 65%

of correct responses led to a better outcome: neutral
monetary outcomes (no loss) for the lose cards and mon-
etary reward for the win cards. Consequently, 35% of the

Figure 1. The structure and the trial flow of the behavioral paradigm for the learning (A) and the transfer phase (B).
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correct responses led to neutral monetary outcomes for
the win cards and monetary loss for the lose cards. On
the other hand, wrong responses inverted this ratio, i.e.,
65% of incorrect responses led to neutral monetary out-
comes for the win cards and monetary loss for the lose
cards. Previous studies used 80% versus 20% or 70%
versus 30% action-outcome contingencies, which ren-
ders the present version of the probabilistic learning task
slightly more difficult compared with previous versions
(Cavanagh et al., 2013; Guitart-Masip et al., 2012;
Csifcsák et al., 2020).
For illustrative purposes, we describe possible action-

outcome scenarios. Suppose card A was a “Go to win”
card, a fact unknown to the participant. In case the partic-
ipant decided to take the card, there was a 0.65 probabil-
ity to receive the feedback indicating monetary reward.
Consequently, there was a 0.35 probability to receive no
reward. In case the participant did not take the “Go to
win” card, the feedback probabilities were reversed. That
is, the probability of receiving monetary reward was 0.35
and the probability of receiving no reward was 0.65.
Each card was presented 20 times in a random order.

Independent sets of five cards were used and randomly
chosen for each session from a pool of six sets of cards.
We created six card sets for the scenario that one session
has to be repeated. Therefore, participants performed 80
trials in each session (20 trials � four cards) and 400 trials
in total (80 trials� five sessions).
The presentation of the stimuli was performed in full

screen mode. We set the background color of the screen
to white. At the beginning of each trial, a black fixation
cross (10 or 11 s) was presented (Fig. 1A, trial flow). Note
that we used a relatively long duration of fixation cross in
the present study compared with previous studies
(Guitart-Masip et al., 2012). Also, during this time the par-
ticipants were instructed to blink and swallow. This was a
necessary step to increase the comparability of the pres-
ent results with our other experiments using pre-stimulus
intermittent tACS (manuscript in preparation) and scalp
electroencephalogram recordings.
Then a card cue (1 s; original image size 199� 279 pix-

els, presentation size 0.3� 0.5) was presented to the par-
ticipants. We used white cards and distinguished them
with a black capital letter (B, C, D, F, G, H, J, K, R, S, T, V,
A, E, O, U, L, M, P, Q, W, X, Y, Z) printed in the middle of
the card (Fig. 1A, trial flow). We decorated the cards by
adding four pieces of simple shapes around the letter. We
used rhombus, circle, and rectangle shapes and filled
them with blue, gray, green, pink, orange, or yellow col-
ors. In each set, we used the same shape and color for
each card.
The target detection stimulus (black circle; original image

size 225� 220 pixels, presentation size 0.35� 0.45) was
shown until a response occurred, or 1 s passed. The target
detection stimulus indicated to the participants that they
could take the card (Go) or not (NoGo), on which the mone-
tary outcome depended. The feedback was displayed (origi-
nal image size 402� 205 pixels, presentation size 0.6� 0.4)
for 2 s: a green “1e” sign indicated a monetary reward, a
red “–e” symbol indicated a monetary loss and a black

horizontal bar indicated neutral monetary outcome (neither
win nor loss). The next trial started 0.5 s after feedback.
In the subsequent transfer phase of the task (Fig. 1B),

the participants performed a two-alternative, forced-
choice (2AFC) task where each card from the learning
phase was paired with one of the three other cards follow-
ing the order (e.g., “Go to win” vs “NoGo to avoid losing,”
“NoGo to avoid losing” vs “Go to win,” etc.). Each of the
12 card pairs was presented four times until a response
occurred, or 3 s passed.
The dependent variable in this study was accuracy. We

defined accuracy as choosing the response category (Go/
NoGo) that led with a higher probability to the better mon-
etary outcome; hence, monetary reward for the win cards
and neutral monetary outcome for the losing cards.
The participants were paid eight Euros/hour and re-

ceived an additional performance-dependent bonus of 12
Euros if their mean performance calculated over all ses-
sions was above 75%. We used the monetary bonus to
encourage our participants to perform as well as possible in
each session. Unknown to the participants, everybody re-
ceived the monetary bonus at the end of the experiment.

tACS
The stimulation was delivered by a CE-certified

NeuroConn multichannel stimulator (neuroConn GmbH)
during the learning phase of the task. The electrode posi-
tions were chosen according to the international 10–20
EEG system. The electrode montage was centered over
the Fpz electrode location with three return electrodes
positioned over the Cz, F10, and F9 positions (Fig. 2A).
The following standardized steps ensured minimal stim-

ulation-induced cutaneous sensations. After determining
the electrode locations, the corresponding skin surface
was gently cleaned with OneStep abrasive gel (H1H
Medizinprodukte GbR), which was removed with 0.9%
saline solution (B. Braun Melsungen AG). After removing
the residual saline solution with paper tissue, a local anes-
thetic cream (Anesderm, Pierre Fabre Dermo-Kosmetic
GmbH) was applied for 20min to numb the skin (25mg/g
lidocaine, 25mg/g prilocaine). It was wiped off first with
paper tissue followed by a skin antiseptic spray (Kodan
Tinktur Forte, Schuelke & Mayr GmbH). The latter was
necessary to remove the anesthetic cream, which would
otherwise prevent the conductive paste from adhering to
the skin. Homogenous layers of Ten20 conductive paste
(Waever and Company) were then applied to the skin and
the electrode surfaces. Each of the four round, conductive
rubber electrodes with 2-cm diameter (neuroConn GmbH)
was affixed to the head. The impedance was kept below
10 kV. The maximal current density under the main elec-
trode was 0.50mA/cm2. The electrode montage was pre-
pared in a double-blind fashion.
We used four different CFC-tACS protocols, including

amplitude-modulated CFC-tACS (AM), CFC over the
peak, trough, and control tACS (Fig. 2B). Each protocol
started with a 20-s fade-in period, followed by a 20-min
stimulation with the maximum stimulation intensity, and
ended with a 10-s fade-out period. The total stimulation
duration was 20min and 30 s.
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The protocols, peak-coupled, trough-coupled tACS and
control, consisted of a 4Hz, 1mA (=2mA peak to peak) si-
nusoidal waveform coupled with a 0.6mA (=1.2mA peak to
peak) 80-Hz sinusoidal waveform. These stimulation proto-
cols had a maximum intensity of 1.6mA. In the peak-
coupled tACS protocol, the short 80-Hz burst (50ms)
was coupled over the peak (38–88ms) of each u cycle.
In the trough-coupled tACS protocol, the short 80-Hz
burst was coupled over the trough (163–213ms) of
each u tACS cycle. In the control stimulation, both
waveforms were overlaid continuously. The control
stimulation lacked any phase specificity of g relative to
u oscillations but used a highly matched intensity range
and identical stimulation duration with respect to the
real protocols. The control protocol served as the refer-
ence to which we compared the effects of the three
main CFC-tACS protocols.
In the AM protocol, the amplitude of the g frequency

(80 Hz) was modulated by the phase of the u frequency
(4Hz). In all protocols, the amplitude of the u frequency was
constant. Consequently, the AM protocol employed
lower peak stimulation intensities (Fig. 2C, left) com-
pared with the remaining protocols, which led to a
slightly higher electric field strength (Fig. 2C, right).
However, this was a necessary step to match the

amplitude of the envelope frequency in the amplitude
modulation protocol to the amplitude of the u fre-
quency in the remaining protocols.
In order to estimate the magnitude of the induced elec-

tric field in the brain, we ran simulations using the free
software package Simulations for Non-invasive Brain
Stimulation (SimNIBS; version 3.0.2; Thielscher et al.,
2015). To this aim, we conducted electric field calculations
on an anatomically realistic, six-compartment template
head model (almi5.msh) available in SimNIBS. We used de-
fault conductivity values [S/m] that were set to 0.465 for
the scalp, 0.01 for skull, 1.654 for cerebrospinal fluid, 0.275
for gray matter, and 0.126 for the white matter. The simula-
tion accounted for volume-normalized anisotropy in the
brain. We observed peak electric field magnitudes up to
0.3mV/mm in the medial frontal cortex (Fig. 2C, right).

Procedure
At the start of each session, the participants filled out a

short questionnaire. We asked our participants to report
the quality of sleep during the previous night. Further, we
assessed the level of arousal (“How are you feeling right
now?”) with a 10-point Likert-scale where value 1 corre-
sponded to very tired and 10 to completely awake. We

Figure 2. Stimulation parameters including electrode montage (A), cross-frequency-coupling tACS waveforms (B), and estimated
electric field magnitudes in the gray matter (C). Electric field simulations were performed with SimNIBS version 3.0.2 on a template
head model. The peak absolute electric field strength reached 0.3 mV/mm in the medial frontal cortex. AM, amplitude modulated;
Peak, peak-coupled tACS; Trough, trough-coupled tACS; Control, control tACS.
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also assessed the presence and intensity of headache
(“Do you have a headache right now?”) with an initial yes-
no answer and an optional 10-point Likert-scale for yes
responses. Here, value 1 corresponded to low and 10 to
very strong headache. We assessed the intake of medica-
tion, coffee, or alcohol consumption in the 24 h before the
session. The purpose of these assessments was to avoid
the possibility that irregular sleep patterns in the previous
night, headache or mental fatigue because of alcohol
would corrupt the possible behavioral findings of tACS.
Theoretically, a new session was going to be scheduled if
the participant had consumed more than two alcoholic
beverages in the previous day, however, arranging a new
session was not necessary.
All participants received detailed written instructions

about the task. Before the training session, we asked
them to perform a practice session to familiarize them-
selves with the task and to ensure that they were able to
operate the response box (RB-740, Cedrus Corporation)
comfortably. We used an independent set of cards in the
practice session. Before the start of the learning task, the
participants filled out a questionnaire to ensure that they
understood the tasks correctly. The questionnaire as-
sessed whether the participants understood (1) the mean-
ing of the three feedback types (win, no win/no loss, loss)
and (2) the probabilistic nature of the feedback.
In the following stimulation sessions, the short ques-

tionnaire was followed by the electrode preparation, the
application of the topical anesthetic cream, and the im-
pedance measurements. This preparation phase took
;35–40min, during which the participants watched docu-
mentary movies to maintain their vigilance.
Following the preparatory phase, the participants per-

formed two short practice tasks. The practice tasks con-
tained 16 trials for the learning and 12 trials for the
transfer phase.
Following the practice task and directly before the start of

the learning task, the data collector opened the sealed en-
velope containing the information about that day’s stimula-
tion condition. After opening the envelope, the data
collector selected the protocol on the stimulator and in-
formed the participants about the start of the stimulation.
Following this moment, the data collector initiated no further
communication. The learning phase began directly after the
fade-in period. After the end of learning phase and following
a 5-min break, the participants completed the transfer
phase of the task, during which no stimulation was applied.
At the end of each session, we assessed the level of

self-reported arousal, the presence and intensity of head-
ache and secondary perceptual adverse effects associ-
ated with the application of tACS. We focused on
cutaneous (i.e., itching, tingling, and burning) and visual
flickering sensations (i.e., phosphenes). First, the partici-
pants were asked to indicate the presence of secondary
adverse effects (yes or no question). In case of a positive
answer, we assessed the subjective level of discomfort
using a 10-point Likert scale. On the Likert scale, “1” indi-
cated the lowest noticeable discomfort, and “10” indi-
cated an amount of discomfort the participants would not
be able to endure during the experiment. The participants

were informed that they could discontinue the study at
any time without having to give any reason for terminating
the study.
At the end of each session, we asked our participants to

recall the card types and provide an internal ranking of the
cards. We focused on whether the participants were able to
correctly recall the cards’ valence-action contingency.

Statistical analysis
All statistical analyses were performed using the R sta-

tistical programming environment (version 3.5.1) and the
RStudio integrated development environment (version
1.1.456; R Studio Team, 2016; R Core Team, 2018). For
the data analysis, we used a Precision 7920 Rack com-
puter, Debian GNU/Linux 9.9 operating system, 2� Intel
Gold 6152, 2.1GHz, 22 cores, and 512 GB RAM.
We applied Bayesian methods, and we report our re-

sults in terms of the mean of the posterior distribution and
their associated 95% highest-density intervals (HDIs).
These intervals are derived from the posterior distribution
of the model-parameters or a combination of parameters
(e.g., differences) by finding the interval that contains
95% of the posterior mass while also satisfying the criteri-
on that all points within the interval have a higher probabil-
ity density than points outside the interval (Kruschke,
2014). The interpretation of the Bayesian 95% HDI is that
it gives the range in which the estimated parameter is lo-
cated with a probability of 0.95. We consider effects to be
statistically reliable, if the 95% HDI excludes zero.
In order to model accuracy on the single-trial level, a di-

chotomous dependent variable, we used hierarchical
Bayesian logistic regression. For these regression analyses,
we used the R package brms (Bayesian Regression Models
using Stan; Bürkner, 2018) with default, uniform priors for all
regression coefficients. This package uses Hamiltonian
Monte-Carlo (HMC) techniques implemented in Stan
(Carpenter et al., 2017) to fit the models. We used four
chains, where each chain had a warm-up period of 1000
samples and 1000 post warm-up samples resulting in a
total of 4000 posterior samples. We used the Gelman–Rubin
diagnostic (Gelman and Rubin, 1992) to ensure that all re-
ported results had an R̂ � 1:05. For model comparison, we
used the Leave-One-Out Information Criterion (LOOIC),
where lower scores of the LOOIC suggest a better model fit
(Vehtari et al., 2017). Specifically, a model was considered
better if the LOOIC score were lower, and if the DLOOIC
score were at least double the corresponding LOOIC SE.

Computational modeling
The orthogonal Go-NoGo task used in our study usually

allows one to fit computational reinforcement learning
(RL) models to the data collected during the experiment
(Cavanagh and Frank, 2014; Csifcsák et al., 2020). These
models assume that each time a certain stimulus is en-
countered, an internal value representation of the stimu-
lus-action pair (known as Q value) is updated according
to the reward received after taking an (in-)action.
Furthermore, the decision on which action to take is
based on this internal value-representation, and thus, as
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the Q value gets close to the actual value with repeated
encounters of a stimulus, performance becomes more ac-
curate. The orthogonalized nature of the Go-NoGo task
typically also allows the estimation of Pavlovian influences
on this RL process by biasing Go responses for rewarding
stimuli and NoGo responses for punished stimuli. We
used Bayesian hierarchical modeling to fit a series of
these models to our data using a strategy identical to that
presented in Csifcsák et al. (2020), and we refer the reader
to this paper and the data repository for this paper at
https://github.com/ihrke/2020_cfc_tacs for technical de-
tails of the RL model. The model-code was based on a
the hBayesDM toolbox (Ahn et al., 2017).
The described computational models were imple-

mented using the R-package rstan (Stan Development
Team, 2018). We used eight parallel chains with a total of
8000 postwarm up samples from the posterior distribu-
tion. The convergence diagnostics were identical to the
other models as described above.

Results
Computational modeling
We fitted models of increasing complexity to the data

from our experiment. First, we fitted a model without any
session-specific terms (null-model) as a baseline. Next, we
modeled separate learning-rates a, temperature parameters
b , Pavlovian bias parameters p and go-biases b for each of
the tACS sessions (tACS-model). Furthermore, we included
a model that let each of the four core-parameters depend
on the session order (order-model) and, finally, a model
where separate parameters were fit for each tACS session
and each parameter depended on session-order (full
model). Diagnostics of the HMC chains indicated that all
models converged successfully.
We calculated the LOOIC for each of these models

(Table 1). Although the model that only modeled the RL
parameters as a function of session order received the
lowest LOOIC, the differences between all four models
were small compared with their SEs (Table 1) and model
selection was therefore inconclusive. We conducted pos-
terior predictive checks and simulated 1000 random data-
sets from the posterior distribution of the parameters.
Unfortunately, while some general characteristics of our
participants’ performance were captured by the model, it
failed to properly account for the complex changes across
sessions, trials, and card types. Given that the computa-
tional models were unable to capture our participants’ be-
havior, we chose not to interpret or report changes in
model parameters across sessions but to focus on the
more descriptive logistic regression models reported
below. The reason for our failure to model our partici-
pants’ performance with these established models is puz-
zling and deserves further investigation.

Accuracy and learning
To assess learning performance across sessions, we fit-

ted a series of hierarchical Bayesian logistic regression
models, treating accuracy as the dependent variable. All of
the models received a random intercept for each participant

and for sessions nested within participants. Furthermore,
we included various combinations of the following predictor
variables: Card type (four levels: Go-to-Win, NoGo-to-
Avoid, Go-to-Avoid, and NoGo-to-Avoid), tACS session
(five levels: Training, Control, AM, Peak, and Trough), Trial
(Z-transformed trial number during each experimental ses-
sion), session order (continuous predictor coding for the
order in which the tACS sessions were conducted) as well
as their interactions. All of these 20 models were compared
according to their out-of-sample predictive performance
using the LOOIC (Vehtari et al., 2017). Based on this criteri-
on, we calculated model weights using two different techni-
ques: based on Akaike weights (Wagenmakers and Farrell,
2004) using the LOOIC instead of the AIC and using
Bayesian model averaging (BMA; Yao et al., 2018). Both of
these techniques resulted in posterior probabilities quantify-
ing how likely it is that each of the models was the best one.
After calculating these model selection criteria, we

found converging evidence that the model that encom-
passed all predictors, including all two-way and three-
way interactions between Card, tACS session and Trial,
as well as a main effect of Session order outperformed
the other models (Akaike weight p ¼ 0:63, next best
model p ¼ 0:34; BMA weight p ¼ 0:47, next best model
p ¼ 0:23).
We therefore based our conclusions on that winning

model and investigated it in detail. First, we checked that
the model captured the trends in the data well. In Figure
3, we plotted the raw data and overlaid predictions from
the winning logistic regression model (posterior predictive
check). The model captured the trends in the data well
and the uncertainty (95% HDIs) around the model-predic-
tions was sufficiently broad relative to the fluctuations in
the data. The Bayesian R2 value for this model was
R2 ¼ 0:23 HDI 0:22;0:24½ �.
We focused on two separate aspects of the data. First,

we investigated how the general accuracy level varied across
cards and sessions. In the presence of the three-way interac-
tion of Card � tACS session � Trial, we quantified and com-
pared the accuracy level in the middle of each session.
Second, we were interested in the learning rate with which
accurate responding increased. In our model, this was mani-
fested in the tACS session � Trial, Card � Trial, and Card �
tACS session � Trial interactions that allowed us to investi-
gate the rate with which the correct way to respond to each
of the cards was learned across the sessions.

Average accuracy
The accuracy levels as estimated by themodel in themiddle

of each session are displayed in Figure 4. There was a

Table 1: Results of the model selection procedure for the
computational models

Model LOOIC DLOOIC SE(DLOOIC)
Order 10,598.3 – –

Full 10,607.8 9.6 30.2
tACS 10,608.5 10.2 39.4
Null 10,615.3 17.0 33.2

All differences in LOOIC are small compared with their SEs and model selec-
tion is therefore inconclusive.
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significant amount of variation both between the cards and
sessions. As expected, responses to the Go-to-Win card were
generally most accurate (bGoAvo ¼ �0:88 �1:24;�0:54½ �,
bNoGoAvo ¼ �1:02 �1:39;�0:68½ �, bNoGoWin ¼ �1:25 �1:63;½
�0:90�), while the NoGo-to-Win card was most difficult with
the other two cards being situated between.
Furthermore, we found a learning effect between the

Training session (whichwas always the first session each par-
ticipant was exposed to) and the other sessions (which were
randomized): performance was better in all tACS sessions
and for all cards, the only exception being the Go-to-Win
card in the Trough session (P Trough.Training _GoWinð Þ ¼
0:23). This learning-effect was not surprising given that this
task is known to exhibit between-session learning effects
(Csifcsák et al., 2020). However, after the initial effect of learn-
ing from the Training session to the second one, there was
no clear further effect of Session order, border ¼ �0:08
�0:26;0:10½ �.

We were interested in how general accuracy
changed between the different tACS sessions. A sum-
mary of the results is presented in Figure 5, upper row.
Here, each entry in the matrix documents the posterior
probability that accuracy was increased from one ses-
sion (A) to the next (B). High values close to 1 (red) indi-
cate that session A was highly likely to show increased
accuracy relative to session B, while low values close
to zero indicate the opposite. Intermediate values
(gray) mean that the results are inconclusive for that
particular comparison. For example, in the “Go to win”
card, the value of 0.95 in the middle row, right column
suggests that it is highly probable that the average ac-
curacy was higher in the control tACS (session A) com-
pared with the trough-coupled tACS (session B).
We start by comparing the three active tACS sessions AM,

Peak, and Trough with the Control session. The p values
given here represent the posterior probability that the active
session showed higher accuracy compared with the Control
session (i.e., the probability that the difference b is positive)
and are not to be confused with frequentist p values.
There was no clear difference between the AM and the

Control session for congruent cards (Go-to-Win: b ¼ 0:21
�0:47; 0:87½ �;p ¼ 0:73, NoGo-to-Avoid: b ¼ 0:06 �0:54;½
0:75�; p ¼ 0:58) with possibly a small performance de-
crease for conflicting cards (Go-to-Avoid: b ¼
�0:43 �1:09;0:19½ �;p ¼ 0:10, b ¼ �0:25 �0:85; 0:38½ �;p ¼
0:22), although the HDIs for these effects did not exclude
zero. The Peak session did not result in a change in gener-
al accuracy compared with Control for congruent (Go-to-
Win: b ¼ �0:15 �0:86;0:47½ �;p ¼ 0:32, NoGo-to-Avoid:
b ¼ 0:11 �0:52; 0:76½ �; p ¼ 0:63) or conflicting cards (Go-to-
Avoid: b ¼ �0:19 �0:84;½ 0:47�;p ¼ 0:28, NoGo-to-Win:
b ¼ 0:31 �0:32;0:95½ �;p ¼ 0:84). Finally, the Trough ses-
sion showed reduced accuracy particularly for the easi-
est Go-to-Win cards, b ¼ �0:56 �1:18;0:11½ �;p ¼ 0:05
(but not for NoGo-to-Avoid, b ¼ 0:11 �0:55;0:74½ �;p ¼
0:62) and reduced accuracy for both conflicting cards (Go-
to-Avoid: b ¼ �0:70 �1:33;�0:04½ �; p ¼ 0:02, NoGo-to-
Win: b ¼ �0:34 �0:95;½ 0:29�;p ¼ 0:14). Direct comparisons
between the active stimulation sessions are also shown in
Figure 5, upper row.

Figure 3. Posterior predictive checks for the final logistic regression model. The model predictions (solid lines) captured the main
trends in the data (dashed lines) well. Colored ribbons are 95% HDIs. AM, amplitude modulated; Control, control tACS; Peak, peak-
coupled tACS; Trough, trough-coupled tACS. GoWin: Go-to-Win, GoAvo: Go-to-Avoid, NoGoAvo: NoGo-to-Avoid, NoGoWin:
NoGo-to-Win.

Figure 4. Estimated accuracy levels in the middle of the experi-
mental session for each session and card. The colors represent
the four card types, with the experimental sessions shown on
the horizontal axis. Note that the participants received no tACS
during the training session. AM, amplitude-modulated tACS;
control, control tACS; Peak, peak-coupled tACS; Trough:
trough-coupled tACS. GoWin: Go-to-Win, GoAvo: Go-to-Avoid,
NoGoAvo: NoGo-to-Avoid, NoGoWin: NoGo-to-Win.
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Learning rate analysis
Next, we supplemented the analysis of the general ac-

curacy with a parallel analysis regarding the learning rate,
i.e., Card and tACS session interactions with the Trial
term in the model. In Figure 5, the lower row shows a
summary of this analysis. AM and Control sessions did
not differ clearly for congruent cards (Go-to-Win: b ¼
0:10 �0:30;0:52½ �;p ¼ 0:68, NoGo-to-Avoid: b ¼ �0:09
�0:47;0:31½ �; p ¼ 0:32), but learning was decreased for con-
flicting cards (Go-to-Avoid: b ¼ �0:50 �0:88;�0:13½ �;
p ¼ 0:01, NoGo-to-Win: b ¼ �0:33 �0:69;0:02½ �;p ¼ 0:04).
For the Peak session, the results are similar but less clear,
with a possible small improvement for Go-to-Win cards
(b ¼ 0:24 �0:14; 0:58½ �; p ¼ 0:89) but not NoGo-to-Avoid
(b ¼ �0:11 �0:51;0:28½ �; p ¼ 0:29) and possibly a weak de-
crease for Go-to-Avoid cards (b ¼ �0:21 �0:61;0:18½ �;
p ¼ 0:14) but not for the NoGo-to-Win cards (b ¼ 0:08
�0:30;0:44½ �;p ¼ 0:66). For the Trough session, we found
no clear differences for congruent cards (Go-to-Win:
b ¼ �0:07 �0:41; 0:31½ �;p ¼ 0:36, NoGo-to-Avoid: b ¼
0:21 �0:22; 0:59½ �;p ¼ 0:84) but clear learning decreases
for the conflicting cards (Go-to-Avoid: b ¼ 0:36 �0:01;½
0:74�;p ¼ 0:02, NoGo-to-Win: b ¼ 0:49 0:11; 0:80½ �;p ¼
0:00).

Perceptual adverse effects
Most participants reported no cutaneous sensations

during tACS, possibly because of the application of the
topical anesthetic cream. However, we also inspected the
amount of perceptual adverse effects, such as itching, tin-
gling, and burning sensations, and phosphenes that were
reported following each tACS session. A careful inspec-
tion of the subjectively reported perceptual adverse ef-
fects did not reveal any substantial differences between
the stimulation sessions.

Discussion
In this study, we investigated the behavioral effects of

three active u -g CFC-tACS protocols in a cognitive con-
trol task. In the peak-coupled and trough-coupled tACS
conditions, we coupled the short bursts of 80-Hz g tACS
to the local maximum, i.e., peak, or minimum, i.e., trough,
of the 4-Hz u tACS. In the amplitude-modulated tACS
condition, we modulated the amplitude of the 80-Hz g
tACS by the phase of the 4-Hz u tACS. In the fourth con-
dition, which served as a control, we continuously
coupled the 80-Hz g tACS to the 4-Hz u tACS.
As we had hypothesized, we found that the trough-

coupled tACS condition impaired behavioral perform-
ance, in particular in the more challenging, conflicting tri-
als. We speculate that this protocol likely interfered with
the phase-dependent u -g coupling between the cingulate
(e.g., ACC) and the prefrontal cortices (e.g., DLPFC;
Smith et al., 2015). In a previous study using a Stroop-like
interference task, information transfer analysis (Granger
causality) showed that the feedback-related information
travels from the ACC to the DLPFC in the u band (Smith
et al., 2015). These findings may suggest that the ACC
presumably signals the need for cognitive control, where-
as the DLPFC processes this information and influences
ongoing behavior by exerting model-based behavioral
control (Smith et al., 2015). Thus, the modulation of the in-
formation flow from the cingulate to prefrontal cortex via
u -g CFC could have impaired the model-based control in
the trough-coupled tACS condition.
The observed behavioral effects in the present study

may be because of the direct stimulation of the frontal and
cingulate cortices or to indirect network effects. It has been
shown in primates that there are monosynaptic connec-
tions between the frontal cortex, including the ventromedial
prefrontal and cingulate cortices, to the subthalamic nu-
cleus (Haynes and Haber, 2013). This pathway is called the

Figure 5. Comparison of average accuracy (top row) and learning rate (bottom row) between tACS sessions for each of the four
cards. Colors and numbers in the matrices indicate the probability that the session indicated by the column showed a stronger ef-
fect compared with the session indicated by the row of each matrix. AM, amplitude modulated; Trough, trough-coupled tACS;
Peak, peak-coupled tACS; Control, control tACS.
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hyperdirect pathway, which supposedly exerts a strong
top-down control on ongoing decisions: it influences
whether an action is performed or not (Frank, 2006). One of
the proposed functional relevancies of the hyperdirect
pathway is to slow down the initial actions in cognitive con-
trol situations, when it is crucial to quickly evaluate the ex-
pected outcome of different behavioral alternatives (Frank,
2006). It is possible that the observed behavioral findings in
the present study are because of the notion that the
trough-coupled tACS condition indirectly interfered with
the neural oscillation in the hyperdirect pathway.
At the same time, the trough-coupled tACS condition

did not impair the average accuracy, but it may even have
slightly improved the learning rate in one of the congruent
trials, i.e., “NoGo to avoid.” We note, however, that the
statistical analysis provided only inconclusive evidence
for the improvement effect in the learning rate. We there-
fore interpret this finding that the trough-coupled tACS
condition had only negligible effect if any on the “NoGo to
Avoid” decisions and that the main effect of the trough-
coupled tACS condition was interferential in nature.
Unexpectedly, the amplitude-modulated tACS condi-

tion slowed the learning rate for the conflicting trials,
which is reminiscent of the behavioral effects of the
trough-coupled tACS condition. However, its diminishing
behavioral effect was less pronounced when compared
with the trough-coupled tACS condition. In the amplitude-
modulated tACS protocols, the slow, i.e., the u frequency,
might have played an important role in producing the cog-
nitive effects of tACS (Minami and Amano, 2017). As in-
creased power of u -range oscillations leads to better
performance during cognitive conflict (Cavanagh et al.,
2013), we would expect behavioral improvement under
this protocol. Previous studies with single-frequency u
tACS showed beneficial behavioral effects in cognitive
control tasks, including reduced reaction time or facili-
tated behavioral accuracy (Hsu et al., 2017; Lehr et al.,
2019).
Contrary to our expectations, we found no clear and

consistent behavioral effects for the peak-coupled tACS
protocol. In a previous study, Alekseichuk et al. (2016) ob-
served behavioral improvement in the sensitivity index of
a spatial working memory task during the peak-coupled
tACS. Since the peak-coupled tACS protocol mimics the
phase specificity of u -g CFC when signaling the need for
cognitive control (Smith et al., 2015), we expected that it
would increase the efficacy of the cingulate cortex to sig-
nal the need for cognitive control and thereby increase
the degree of model based control implemented by the
prefrontal cortex.
The lack of the behavioral effects could also have been

because of the thorough instructional procedure we used
in the present study. The exhaustive instructional proce-
dure might have produced a ceiling effect, which could di-
minish the ability of the stimulation to further improve the
performance of our volunteers. We expect that the peak-
coupled tACS condition may improve the behavioral per-
formance in groups of participants who do not reach the
ceiling effect, e.g., in elderly participants or in individuals
with mild cognitive impairment.

One of the limitations of the present study is that the
computational modeling results were inconclusive given
that the model was unable to capture our participants’ be-
havior. Therefore, we can neither confirm nor falsify our
third hypothesis concerning the underlying cognitive
processes (i.e., Pavlovian bias parameter). We speculate
that the lack of fit of our computational models could be,
at least partially, because of the instructional procedure
we used in this study. Specifically, our participants re-
ceived very thorough instructions about the task including
reading the written instruction, listening to the verbal ex-
planation of the experimenter, performing the short prac-
tice, filling out the questionnaire about the task, and
performing the training session. By this procedure, we ini-
tially intended to minimize the probability that the partici-
pants would misunderstand the task and make their
decisions in a random fashion. However, the exhaustive
instructional procedure likely affected the strategy of the
participants, who performed very well on the task. In fact,
although our task was more difficult than that used in pre-
vious studies (Cavanagh et al., 2013), the overall accuracy
level in the tACS sessions was higher in our study indicat-
ing that the participants were potentially able to exploit
the task structure to improve their reward rate.
Evidence exists that the task instruction can indirectly

influence how humans perform an instrumental learning
task. This phenomenon is known in the literature as the
behavioral rule-governing effect (Doll et al., 2009). It is
possible that after the instructional phase at least some
participants were able to infer the correct structure of the
task, even before the direct experience. This may have fa-
cilitated the learning process through the mechanism of
confirmation bias (Doll et al., 2009); participants learned
quickly to amplify those outcomes that were consistent
with their internal model of the task and discarded the in-
compatible ones. Given the relatively difficult reward con-
tingency probabilities (0.65 vs 0.35), we expected much
more exploration in the initial phase of the task (Csifcsák
et al., 2020).
This argument is further supported by the results of the

qualitative analysis we performed about the explicit
knowledge of the card types. We found that all partici-
pants were able to correctly identify both the valence and
the action value of the cards in the overwhelming majority
of the cases (;91%). Occasionally, the participants made
mistakes when identifying the correct action to the va-
lence (;8%). Other error types were very rare. We inter-
pret these findings as a further indirect support that the
participants had explicit, rule-based knowledge about the
structure of the task.
By using a less thorough instructional procedure, future

studies may use computational modeling (Csifcsák et al.,
2020) to explore the hidden parameters that may be influ-
enced by the CFC-tACS protocol. Because these models
assume that participants do gradually learn the expected
value of the stimulus (Cavanagh et al., 2013; Csifcsák et
al., 2020), we were not able to use them fruitfully in the
present study.
Another possible limitation of the present study is the

lack of a sham tACS protocol. Because real tACS can
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induce both cutaneous and visual perceptual adverse
effects during the entire stimulation period, we pre-
ferred using a control tACS protocol, instead of a sham
tACS protocol (Turi et al., 2013). The conventionally
used fade-in, short-stimulation, fade-out sham proto-
cols, may not be able to maintain effective blinding for
the real intervention because of their shortness, as has
been shown for transcranial direct current stimulation
(Greinacher et al., 2019; Turi et al., 2019).
According to an alternative explanation, the control

condition might have improved the behavioral perform-
ance to a similar extent to the peak-coupled tACS condi-
tion but slightly stronger than in the amplitude-modulated
tACS condition. Given that the u and g tACS were contin-
uously superimposed in the control condition, this proto-
col had equal chance to improve or impair the behavioral
performance. Therefore, this alternative explanation does
not explain why the control stimulation would have im-
proved, rather than impaired the performance. Second, a
previous study applying a closely matched control proto-
col found no cognitive effect on a cued-recall task, even
when comparing the cognitive performance before and
after the intervention (Amador de Lara et al., 2018).
Therefore, we find this alternative explanation to be less
likely.
Taken together, CFC-tACS protocols can extend sin-

gle-frequency tACS protocols by enabling the testing of
CFC phenomena intrinsic to endogenous network oscilla-
tions (Alekseichuk et al., 2016; Bächinger et al., 2017;
Minami and Amano, 2017). In this study, we showed that
trough-coupled tACS, i.e., when g tACS was coupled
over the trough of u tACS, and amplitude-modulated
tACS decreased the behavioral performance and the use
of cognitive control in healthy participants. These findings
suggest that the phase of coupling between u and g fre-
quencies may play an important role in cognitive control.
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