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Abstract

Medical imaging with positron emission tomography (PET) plays an important
role in the detection, staging, and treatment response assessment of many diseases,
including cancer, neurological and cardiovascular conditions, inflammation and
infection. PET imaging is based on measuring the distribution of injected radioactive
tracers, designed to follow specific biological pathways. One of the main advantages,
compared to other imaging modalities, such as computed tomography or magnetic
resonance imaging (MRI), is that PET allows, not only visualization of regional
tracer uptake, but also quantification of the underlying biological process.

There are many challenges associated with PET imaging, which, unless accounted
for, may reduce accuracy and precision in PET-based quantification. This thesis
addresses the impact of imaging artifacts and subject motion on static PET-
based tumor quantification and on machine-learning-based prediction models.
Furthermore, the challenge of arterial blood sampling, required for quantification
in dynamic PET is addressed. To this end, four papers are presented, suggesting
methodology for improved PET-based quantification.

In the first two papers, the impact of imaging artifacts and respiratory motion on
tumor quantification is investigated in two lung cancer PET/MRI cohorts. Paper I
demonstrates that specific type of imaging artifacts may have clinical implications
for patients undergoing serial imaging for tumor therapy response assessment. This
is important both for PET-based quantification on the patient level, and as a
pre-processing step for machine-learning-based prediction models.

Paper II investigates the impact of motion on PET-based tumor quantification.
This main outcome of this study is a list of motion-invariant features which may
be extracted from standard free-breathing PET examinations, to build predictive
models for disease state or survival prediction. In this way, time-consuming motion
compensation acquisitions are not needed, which simplifies the imaging workflow
for patients, and allows for collection of data in retrospect, where respiratory gating
or motion correction was not performed.
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In the next two papers, a non-invasive machine-learning-based input function
(MLIF) is proposed to replace the arterial input function (AIF), required for tracer
kinetic modelling in dynamic PET applications. In Paper III, the MLIF method is
evaluated in a small-animal dynamic 18F-fluorodeoxyglucose PET cohort. By using
image-derived input features, it is demonstrated that MLIF is a feasible approach
for non-invasive prediction of a reference AIF in mice.

In Paper IV, the MLIF method is further developed and evaluated in a human
clinical brain-PET cohort using the 15O-water tracer. It is shown that the MLIF
method is feasible in human brain PET applications by using three image-derived
curves as input into the machine learning models. The proposed machine-learning-
based approach to AIF estimation may considerably simplify the acquisition and
analysis workflow in future pre-clinical and clinical dynamic PET studies, by
avoiding the need for invasive blood sampling.
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1 Introduction

Positron emission tomography (PET) is a medical imaging technique that visualizes
the distribution of an injected radioactive tracer in living subjects. The tracer
consists of a molecule which has been designed to follow a specific biological pathway
in the body, and where one of the atoms has been replaced by a radionuclide. By
detecting photons emitted from the radioactive decay with a PET scanner, it is
possible to follow the physical and chemical path of the tracer inside the body.

Medical imaging with PET plays an important role in the detection, staging, and
treatment response assessment of many diseases, including cancer, neurological
and cardiovascular conditions, as well as inflammation and infection. The most
widespread application of clinical PET is within oncology. Many diseases, including
cancer, introduce alterations in the glucose metabolism, which can be measured
with the glucose analogue 18F-fluorodeoxyglucose (FDG) [1–3].

PET is quantitative in the sense that it allows, not only visualization, but also
quantification of regional tracer uptake non-invasively. This is accomplished by
calibrating the voxel-values of the reconstructed images into units of radioactivity
concentration (Bq/cm3). Measurements using standardized uptake value (SUV) is
the main quantitative approach in static PET. On the other hand, with dynamic
PET imaging, it is possible to fully assess the time-dependent tracer distribution in
the body. This allows in vivo quantification of biological processes, such as glucose
metabolism or blood flow, by using tracer kinetic modelling [4].

The quantitative accuracy in PET depends on the proper application of a number
of corrections during image reconstruction, the most important being attenuation
correction. The clinical work-horse for many oncological applications for the last 20
years has been hybrid PET/computed tomography (CT) imaging, where the CT
information is used for both anatomical localization, and for attenuation correction
[5, 6]. As clinical hybrid PET/magnetic resonance imaging (MRI) systems were
introduced, around 10 years ago, the implementation of attenuation correction faced
many new challenges which had to be solved before quantification with PET/MRI
could become comparable to that of PET/CT [7, 8]. Some of these challenges,
for instance the presence of artifacts in MRI-based attenuation correction maps,
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1 Introduction

remains to date, and may contribute in increasing the quantification errors in
PET/MRI imaging [9–13].

Lung cancer is the second most frequent cancer type and the leading cause of
cancer-related death in the world [14]. Early and accurate staging of the disease is
important when deciding which treatment should be given, for instance surgery,
chemotherapy or radiotherapy [15]. Hybrid imaging with 18F-FDG PET/CT is
the standard of care today for staging and treatment response assessment of
lung cancer [16–18]. While 18F-FDG PET is a commonly accepted surrogate for
metabolic activity, CT merely visualizes anatomical structures, and it involves
ionizing radiation, that could be harmful [19–21]. On the other hand, MRI may
provide anatomical images without the use of ionizing radiation, and in addition,
visualize biological aspects of the soft tissue not shown with PET or CT [22]. Thus,
the introduction of integrated PET/MRI systems has opened new possibilities for
tumor characterization by adding excellent soft-tissue contrast, provided by MRI,
to the functional information from PET. In this way, simultaneous, multiparametric
images can be acquired, that facilitate precision medicine and personalized treatment
of the disease [7, 23].

Visual inspection of the vast amount of images generated from a hybrid PET/MRI
scan is a tedious and time-consuming task. Rather, the analysis of large image-sets
can be automated using computer algorithms, based on machine learning. This
is a field of science where a computer-model learns patterns from data in order
to perform a given task, for instance classification or regression. One common
machine learning approach is to first allow the models to learn the patterns of the
data using training samples. Then, the trained model is applied to new, unseen
samples, to perform the given task [24–26]. For instance, image-classification in the
medical domain is the process of assigning a tumor image to a specific histological
subgroup, or predicting the probability of survival, using machine learning. Such
models could be integrated in the clinical workflow to allow for computer-aided
diagnosis, or decision support for the reviewing clinician.

Machine learning algorithms require some measured input quantities, referred to as
features. These are real numbers derived from the images, or from other measure-
ments, that describes the data such that, for instance, classification or regression is
possible. Although simple regional SUV-based quantitative measurements could be
good feature candidates, the use of more comprehensive textural features, so-called
radiomics, has been proposed as prognostic biomarkers in PET [27–32]. Radiomics
refers to the process of extracting various mathematical features from medical
images. In this way, a tumor may be characterized by a large number of quantitative
descriptors, in addition to the commonly-used SUV.
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Patterns of features may match different disease states, or be related to patient
survival. This allows a multi-dimensional radiomic feature-set to be combined into
a machine-learning-based model with the purpose of predicting these end points.
Radiomics may, in this way, provide a high-dimensional tumor-characterization
based on static PET images. On the other hand, dynamic PET imaging with tracer
kinetic modelling allows to truly quantify an underlying biological process, and
thus yield a more detailed tissue quantification than possible by static PET [33].
Quantitative kinetic parameters derived from dynamic 18F-FDG-PET imaging
has shown clinical potential in tumor diagnosis and staging, as well as in therapy-
monitoring research studies [33]. Furthermore, in neurological applications, dynamic
PET imaging of 15O-water is the reference-standard for perfusion (blood flow)
measurements [34–36]. Also, dynamic PET is an essential tool in pharmaco-kinetic
characterization of new tracers, commonly performed with small-animal pre-clinical
PET imaging, prior to injection in humans [33, 37].
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1 Introduction

1.1 Challenges

There are many challenges in the imaging chain that affects PET-based quantitative
measurements [38–40]. Figure 1.1 gives and overview of some of the main challenges.
These can be grouped into four main categories:

1. Physics, aiming at the underlying physical events of the radioactive nucleus
and the resulting annihilation photons.

2. Biology, referring to factors related to the subject (human or animal), or the
object (lesion or healthy tissue) inside the subject

3. Acquisition, including factors related to the tracer, timing, scanner, recon-
struction and artifacts.

4. Analysis, referring to the analysis and processing of images and data.

The challenges addressed in this thesis, indicated in yellow in Figure 1.1, are
presented next.

Ch al l en ges 
f or  

qu an t i tat i ve 
PET  im agin g 

3. Acquisi t ion

1. Physics 2. Biology

4. Analysis

Injected 
dose

Timing

Framing
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Artifacts

Radioactive 
decay

Photon 
interactions

Subject size

Object size

Object 
heterogeneity

Dietary state

Medication

Glucose level

Pathology

Segmentation

Tracer kinetic 
modelling

Tracer

Corrections

Scanner 
hardware

Blood 
sampling

Physical 
activity

Temperature

Subject 
motion

Figure 1.1: Overview of the challenges that are faced in quantitative PET imaging. Challenges
that are addressed in this thesis are indicated in yellow.
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1.1 Challenges

Attenuation correction and artifacts. The single most important correction
for obtaining quantitative PET images is attenuation correction. The annihilation
photons emitted from the radioactive PET tracer inside the subject will be attenu-
ated by the surrounding tissue. The longer the path through the tissue, the more
attenuation. Unless corrected for, this will show as reduced tracer uptake in central
parts of the imaged subject. In hybrid PET/CT imaging, attenuation correction is
performed on the basis of an acquired low-dose CT scan. The voxel-values of a CT
image are proportional to the amount of attenuation at the effective energy of the
particular x-ray beam used during CT scanning. However, the CT image must be
converted into attenuation at 511 keV, which is the energy of the annihilation pho-
tons, in order to derive the attenuation correction map valid for PET [6]. However,
in hybrid PET/MRI imaging, the voxels of the MRI images are unrelated to photon
attenuation and can thus not be directly transformed into attenuation values valid
for PET. This was one of the main challenges to be solved before hybrid PET/MRI
could be clinically introduced. One common solution is the segmentation approach
that first separates air, water, fat tissue, and lung tissue, and then assigns each of
these tissues with tabulated attenuation values. However, some tissues, for instance
bone, are not visible in MRI images. In adition, MRI-based attenuation correction
maps are prone to imaging artifacts, such as truncation and susceptibility. Such
artifacts may affect the diagnostic quality, hinder accurate quantification of the
tracer-distribution [11, 12], and lead to non-consistent SUV quantification in serial
examinations [13]. Therefore, accurate MRI-based attenuation correction is critical
for accurate and reproducible PET-based quantitative measurements in tumor
response assessment studies [7, 9, 41–43].

Subject motion. While certain CT and MRI imaging sequences are short and
allow human patients to follow breath-hold instructions, the length of a typical PET
scan is in the order of 10-60 minutes. Subject motion due to breathing or muscle
relaxation is inevitable during such long acquisitions. A PET image represents
the integrated counts of annihilation events over a fixed time-frame, emitted
from discrete voxels in the subject. Therefore, motion within a time-frame causes
unwanted blurring, which degrade the quality and the quantitative accuracy of the
PET image. Motion-induced image blur may have a large impact on the measured
SUV values and other extracted radiomic feature values [44, 45]. Breathing-induced
motion may also introduce misalignment between the attenuation correction map
(commonly acquired during end-expiration breath-hold) and the PET data (acquired
in free-breathing), which may lead to additional image artifacts [46].

Blood sampling for tracer kinetic modelling. Tracer kinetic modelling re-
quires accurate determination of an arterial input function (AIF), representing the
tracer time-activity curve in arterial blood. The AIF is obtained by measuring the

7



1 Introduction

time-dependent radioactivity concentration of the tracer in arterial blood through
invasive blood sampling. In small-animal PET imaging of rodents, such a proce-
dure is hampered by the limited blood volume that can be withdrawn without
altering animal physiology, the complex surgery required for inserting an arterial
catheter into the blood vessel, and the terminal end-point of such a procedure [4].
Also in clinical PET imaging, arterial cannulation is an invasive, laborious and
time-consuming procedure. Due to induction of pain and risk for complications,
arterial cannulation may discourage patients and volunteers from participating in
research PET studies. Furthermore, in order to obtain a useful AIF curve, careful
cross calibration of the blood measurement detector and the PET scanner must
be performed. In addition, because the blood is most commonly sampled from
the radial artery in humans, additional corrections for dispersion and delay of the
tracer must be applied, to obtain a valid AIF for the site of interest, for instance
in the brain [35, 47–49].

1.2 Aims of the thesis

From Figure 1.1, it is evident that there are many challenges associated with
quantitative PET imaging. Nevertheless, as quantitative PET dates back at least 40
years, many of the mentioned challenges have already been addressed. However, as
new scanner technology is introduced clinically, such as PET/MRI, new challenges
are brought along. Also, new approaches, such as machine learning, may provide
increased efficiency, accuracy and precision in the solution of existing problems.

The overall aim of this thesis is to:

Develop methodology for improved quantification with PET.

All four included papers are dealing with this aim.

The following specific aims are addressed:

1. Investigate how artifacts in the attenuation correction maps as well as respi-
ratory motion affects quantification in PET/MRI of lung cancer.

2. Develop a non-invasive AIF prediction model for tracer kinetic modelling in
dynamic PET studies.
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1.3 Approaches

1.3 Approaches

In Paper I and Paper II, the focus is on the first specific aim, namely to investigate
how imaging artifacts and respiratory motion affects tumor-based image features
in two independent lung cancer PET/MRI cohorts. The focus of these papers
are primarily on the pre-processing of the PET data prior to inclusion into larger
databases of a clinical study, or into training of a predictive machine learning model.
More specifically, these works investigate the impact of imaging artifacts (Paper
I) and respiratory motion (Paper II) on tumor quantification in two lung cancer
PET/MRI cohorts. With this knowledge, it is possible to correct for the affected
artifacts, and select the features that are least affected by motion, to describe the
pathology in the images. This is important both for PET-based quantification on
the patient level, and as a pre-processing step for machine-learning-based prediction
models.

In Paper III and Paper IV, the second specific aim is addressed, namely that
of non-invasive arterial input function prediction in dynamic PET. In these two
studies, a machine-learning-based input function (MLIF) is proposed to replace
the AIF, required for tracer kinetic modelling in dynamic PET applications. In
Paper III, two different machine learning approaches are evaluated in a pre-clinical
mouse PET cohort, to predict an image-based reference AIF. Here, the impact of
different sets of input features on the generated AIFs are evaluated. In Paper IV,
the models are further developed for a clinical brain-PET cohort and evaluated
using a blood-sampled AIF. The use of a machine-learning-based input function
may considerably simplify the acquisition and analysis workflow in pre-clinical and
clinical dynamic PET studies, by avoiding the need for invasive blood sampling.
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1 Introduction

1.4 Brief summary of papers

Paper I investigates the frequency and the test-retest reproducibility of artifacts
in MRI-based attenuation correction maps in a PET/MRI cohort of non-small-cell
lung cancer patients. Further, artifacts in the attenuation correction maps are
corrected and impact of the corrections on PET-based quantification are evaluated
in the test-retest scans. The results showed that specific type of artifacts may
have clinical implications for patients undergoing serial imaging for tumor therapy
response assessment. This is important for PET-based quantification on the patient
level, and as a pre-processing step for machine-learning-based prediction models.

In Paper II the motion variability of radiomic features in a non-small-cell lung
cancer PET/MRI cohort is investigated. By comparing features extracted from free-
breathing and motion corrected PET images, and by using correlation-based feature-
selection, a list of motion-robust features with low correlation is presented. The
results indicate that these features may be extracted from standard free-breathing
PET examinations, to build predictive models for disease state or survival prediction.
In this way, time-consuming motion compensation acquisitions are not needed,
which simplifies the imaging workflow for patients, and allows for collection of data
in retrospect, where respiratory gating or motion correction was not performed.

Paper III presents the MLIF approach for machine-learning-based AIF prediction
in a small-animal dynamic 18F-FDG PET cohort. By using image-derived input
features, it is demonstrated that machine learning is a feasible approach for accurate
and non-invasive prediction of a reference AIF in mice. Furthermore, it is shown that
the input features may not necessarily need to contain the myocardium for accurate
AIF predictions, which is relevant when the heart is outside the PET field-of-view
during scanning. The MLIF approach to AIF estimation could significantly simplify
the workflow for pre-clinical dynamic PET imaging of rodents, by evading the need
for invasive arterial blood sampling.

Paper IV further develops the MLIF approach from Paper III, here in a human
clinical brain-PET cohort using the 15O-water tracer. In this work, three automati-
cally segmented image-derived time-activity-curves are used as input into the MLIF
model, to predict the AIF. The results indicate that non-invasive AIF prediction,
using the MLIF approach, is also feasible in human brain PET applications. Further,
it is demonstrated that tracer kinetic modelling using an MLIF could successfully
predict clinically significant changes cerebral blood flow (CBF) induced from aceta-
zolamide medication. Our proposed MLIF method shows potential to replace the
AIF obtained from blood sampling for CBF measurements using 15O-water PET
and kinetic modelling. This could minimize the risk for complications and, at the
same time, simplify the clinical dynamic PET imaging workflow.

10



1.5 Datasets and ethical approvals

1.5 Datasets and ethical approvals

Paper I and Paper II are based on human clinical PET/MRI scans of patients
with non-small-cell lung cancer; the former obtained from collaborative partners
at St. Olavs Hospital, Trondheim and The Norwegian University of Science and
Technology; the latter was collected by the PhD candidate at the University Hospital
of North Norway. Paper III is based on data from the pre-clinical PET core facility
at UiT The Arctic University of Norway, where the PhD candidate, together with
a collaborative reserach group, collected pre-clinical mouse PET scans for a parent
study. The data for Paper IV was based on a human clinical PET/CT trial,
obtained from collaborators at Uppsala University Hospital, Sweden.

1.5.1 Paper I

The data for this study were obtained in retrospect from a completed clinical study
performed by a collaborative research group at St. Olavs Hospital, Trondheim and
The Norwegian University of Science and Technology.

Patient population

The single-injection dual-time point imaging study included 25 patients with
histologically confirmed non-small-cell lung cancer, having totally 26 lung lesions.
Patients fasted 15h ± 4h before the injection of 281 MBq ± 41 MBq 18F-FDG.
PET/MRI assessment started 113 min ± 10 min post 18F-FDG injection. PET/CT
imaging was conducted prior to the PET/MRI scan, but this data were not used
in the current study.

PET/MRI imaging

The PET/MRI acquisitions were performed using a Siemens Biograph mMR
(software version VB20P) (Siemens Healthineers, Erlangen, Germany). All patients
had the same anatomical region scanned twice without repositioning, using a
free-breathing and arms down scan protocol. First, a 10 minute, 1-bed position
scan, centered over mediastinum, was performed, immediately followed by another
10 minute, 2-bed position scan of the whole thorax (Figure 1.2). A standard
DIXON-based MRI attenuation correction map was acquired for each scan.
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PET data

MR data

FDG injection

Time line
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FDG uptake
PET/
CT
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Other MRI sequences

MRI data

PET/MRI
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Figure 1.2: Time line of the single-injection dual-time point imaging study of Paper I. Patients
were injected with 18F-FDG, followed by 60 minutes rest, before undergoing PET/CT
and PET/MRI imaging. PET data and MRI DIXON attenuation correction data that
were included in this study are indicated in red and blue color, for the 1-bed position
scan centered over mediastinum (test), and the 2-bed position scan of the whole
thorax (retest), respectively. The corresponding anatomical regions are indicated
approximately on the coronal overview scan to the right.

Ethical approval

This study was approved by the Norwegian Regional Committees for Medical and
Health Research Ethics (REC reference 2017/915). All patients signed written
informed consent.
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1.5.2 Paper II

This prospective clinical PET/MRI study was planned and conducted by the
PhD candidate at the PET Imaging Center, University Hospital of North Norway,
Tromsø.

Patient population

The study included 18 patients with histologically confirmed non-small-cell lung
cancer. Patients fasted 15h ± 6h before the injection of 277 MBq ± 66 MBq
18F-FDG. PET/MRI scanning started 2 hours post injection.

PET/MRI imaging

The PET/MRI acquisitions were performed on a 3T integrated PET/MRI system
(Biograph mMR; Siemens Healthineers; software version E11). Patients were posi-
tioned on the scanner bed with the arms along the torso. A 20-minute list-mode PET
acquisition of the thorax was conducted in free-breathing for a single bed-position.
MRI scanning was performed simultaneously with PET acquisition. Standard
DIXON-based attenuation-correction maps were acquired in end-expiration breath-
hold for each scan. Also MRI imaging of five respiratory phases were conducted, to
allow for MRI-based motion correction (See section 2.4.6).

Ethical approval

This study was approved by the Norwegian Regional Committees for Medical and
Health Research Ethics (REC reference 2017/1952). All patients signed written
informed consent.
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1.5.3 Paper III

The pre-clinical PET/CT data for this study were collected in retrospect from a
completed animal study focusing on PET imaging of tertiary lymphoid structures
in two different mouse strains [50]. The PhD candidate participated actively in
the planning and conduction of this parent study, which was performed by a
collaborative research group at UiT The Arctic University of Norway.

Animals

Thirty-six female mice from two strains (NZBWF1, Jax stock #10008 (n=24) and
BALB/ cAnNCrl (n=12)), purchased from The Jackson Laboratory and Charles
River Laboratories, respectively, were included in the study. To minimize the effect
of dietary state and anaesthesia on the 18F-FDG uptake in the mice, a strict fasting
and anaesthesia protocol was followed prior to PET imaging. In short, the mice
were fasted for 3 h 50 min ± 20 min, weighed and anesthetized for 1 h 17 min ± 19
min prior to tracer injection. An oxygen-isoflurane mixture (4% and 2% isoflurane
for induction and maintenance, respectively) was used for anesthesia.

PET/CT imaging

PET/CT imaging of totally 68 mouse scans was performed using a TriumphTM

LabPET-8TM small-animal PET/CT scanner (TriFoil Imaging Inc.). Each mouse
was scanned between 1-5 times at different ages (range 7-37 weeks). The anesthetized
mice were centered in the field-of-view of the PET/CT scanner, while lying on a 35◦C
heated bed inside an animal imaging cell (Equipment Veterinaire Minerve), with
sensors monitoring heart and breathing rate. Tracer administration was conducted
by the injection of 10.5 ± 1.8 MBq of 18F-FDG in 100 µl sterile saline through
a tail-vein catheter during 30 s, with an infusion pump (56 scans), or by manual
injection followed by 20 µl flush of sterile saline (12 scans). A 60 minute list-mode
PET acquisition was started at injection time, followed by CT imaging for PET
attenuation correction. The PET images were reconstructed into 44 time-frames
(24×5, 9×20 and 11×300 s).

Ethical approval

This animal study was approved by The Competent Authority on Animal Research,
the Norwegian Food Safety Authority; FOTS id 6676/2015.
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1.5.4 Paper IV

The data for this study were obtained in retrospect from a completed clinical
research study performed by a collaborative research group at Uppsala University
Hospital.

Subjects

The study population comprised 25 subjects, both patients with multiple sclerosis
and healthy volunteers (mean age (range) in years: 40 (23–56); female-male-ratio
15:10). In this methodological study, there was no differentiation between the two
groups, as the subject’s health status was not considered to have an impact on the
proposed methods. Therefore, all authors were blinded to the health status of each
subject, and thus, no comparisons were made between multiple sclerosis patients
and healthy subjects.

PET/CT and MRI imaging

All subjects underwent two 10 min dynamic brain PET scans on either an ECAT
Exact HR+ stand-alone PET scanner (Siemens, Knoxville, TN; n=9) or a Discovery
MI PET/CT scanner (GE Healthcare, Waukesha, MI; n=16). The scans started
simultaneously with an automated bolus injection of 5 MBq/kg 15O-water. Each
subject underwent one scan at baseline and one scan 15-30 min after intravenous
administration of acetazolamide medication. Attenuation correction was based on
a 10 min transmission scan with rotating 68Ge rod sources (ECAT) or an ultra-
low-dose CT scan (Discovery MI). The PET images were reconstructed into 26
time-frames (1×10, 8×5, 4×10, 2×15, 3×20, 2×30 and 6×60 s).

Continuous arterial blood sampling was performed during 10 min for each scan
using either an ABSS V3 (Allogg, Mariefred, Sweden; subjects scanned on ECAT)
or PBS-100 (Veenstra-Comecer, Joure, The Netherlands; subjects scanned on
Discovery MI).

In addition, all subjects underwent MRI on a 3T MRI scanner (Achieva, Philips
Healthcare, Best, The Netherlands) with a 32-channel head coil.
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Ethical approval

The parent study was approved by the Swedish Ethical Review Authority (reference
2014/453). All subjects signed written informed consent. Since the present work
was purely an image analysis methodology study using pseudonymized data, it
was not covered by the Swedish or Norwegian regulations on medical research in
humans and as such, no additional ethical approval was necessary.

1.6 Organization of the thesis

The remainder of this thesis is organized as follows: Chapter 2 and Chapter
3 presents the relevant background knowledge, including medical imaging with
PET, CT and MRI, the data analysis methods, and the relevant machine learning
approaches. Chapter 4 provides a summary of each of the four included research
papers. Chapter 5 and Chapter 6 discuss the findings in the papers and concludes
the work. Chapter 7 presents limitations of the thesis and proposes possible future
directions and outlook. The four included research papers are presented in Chapter
8 through Chapter 11.
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2 Medical imaging with PET, CT
and MRI

Figure 2.1 shows one transversal slice of a lung cancer patient, imaged with three
different medical imaging modalities, PET, CT and MRI. These imaging techniques
are based on fundamentally different underlying principles.

PET is based on the injection of radioactive tracers into the blood stream, tailored
to follow specific biological pathways in the body. By detecting photons emitted
from the radioactive decay, it is possible to reconstruct three-dimensional images
of the spatial and temporal tracer distribution in the body. In order to make PET
images quantitative, several corrections must be applied during the reconstruction
process, to calibrate the image voxels into units of radioactivity concentration.

PET images display physiological or functional information with little anatomical
information. Therefore, it is common to couple PET scanners with CT, and recently
also MRI systems. Such hybrid imaging modalities allow not only for co-registered
anatomical images, but also for attenuation correction, which is one of the most
important corrections required for quantitative PET imaging. There are a number
of limitations with hybrid PET/MRI systems, especially concerning attenuation
correction, which must be considered to preserve the quantitative accuracy in
PET/MRI applications. Possible advantages of PET/MRI compared to PET/CT
include superior soft-tissue contrast provided by MRI, reduced radiation dose to the
patient, and MRI-based elastic motion correction of the PET data, the latter which
may provide improved image quality and quantification in thoracic imaging.

Among the included works in this thesis, Paper I and II are based on clinical
18F-FDG PET data from static hybrid PET/MRI scanning of lung cancer patients.
Paper III includes dynamic 18F-FDG PET images of mice from a pre-clinical
PET/CT study, while in Paper IV, dynamic brain 15O-water PET images of
patients from a clinical PET/CT study are used. Therefore, in the following
sections, it is relevant to describe the basic principles and underlying physics
behind each of the imaging techniques of Figure 2.1. The main emphasis will
be on PET imaging and how supporting modalities of CT and MRI are used in
combination with PET in hybrid imaging. Quantitative analysis of dynamic PET
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Figure 2.1: PET/CT (top row) and PET/MRI (bottom row) scans of a patient with non-small-cell
lung cancer using the 18F-FDG tracer. A. PET from the PET/CT scan. B. CT. C.
PET from the PET/MRI scan. D. T1-weighted MRI. E. T2-weighted MRI. The
PET/CT scan was performed 60 minutes post-injection of 18F-FDG, while PET/MRI
started 120 minutes after injection. Geometrical differences between PET/CT ad
PET/MRI are attributed to arms-up protocol for PET/CT and arms-down protocol
for PET/MRI. The lung tumor is indicated with green arrow in each image.

images using tracer kinetic modeling is also included, followed by a section on
clinical and research applications with PET.

2.1 Principles of PET

PET is a medical imaging technique that visualizes the distribution of injected
radioactive tracers in living subjects. By detecting annihilation photons from
positron-emitting nuclei, mathematical methods allow the reconstruction of three-
dimensional images of the tracer uptake. The following sections presents the
underlying theory and physics of PET imaging.
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2.1 Principles of PET

2.1.1 Radioactive decay

PET imaging is based on radioactive, positron-emitting atoms. When an unstable
parent nucleus undergoes radioactive decay, it is transformed into a stable state.
The process is spontaneous, meaning that the exact moment of the decay cannot
be predicted. Nevertheless, the number of nuclei in a radioactive sample at a given
time point can be described mathematically, in terms of average decay rates. The
average decay rate, or activity, A, for a sample of N radioactive atoms over time
∆t, is defined as:

A =
∆N

∆t
= −λN [s−1], (2.1)

where λ is the decay constant for the radionuclide. From Equation 2.1, the number
of atoms, N , after decay time, t in a sample of N0 initial atoms, is given by:

N(t) = N0e
−λt (2.2)

Following from Equation 2.2, an expression for the decay constant can be derived:

λ =
ln2

T1/2

[s−1]. (2.3)

T1/2 is the so-called half-life, a characteristic time for each radionuclide, at which
precisely half of the initial number of radioactive atoms in a given sample remains
(Figure 2.2).

As the activity is proportional to the number of atoms in a sample, Equation 2.2
can be expressed in terms of A:

A(t) = A0e
−λt [s−1], (2.4)

where A(t) is the activity of the radioactive sample at time t, and A0 is the initial
activity at t = 0. The derived SI unit for activity is Becquerel (1 Bq = 1 s−1).

19



2 Medical imaging with PET, CT and MRI

T1/2 Time
R

el
at

iv
e 

nu
m

be
r

0.0

0.5

1.0

0

Figure 2.2: Illustration of exponential decay. The relative number of atoms at time t = T1/2, is
half the initial number of atoms at time time t = 0.

2.1.2 Positron emission and annihilation

Nuclei which have an imbalance in the ratio of protons and neutrons are unstable and
will, at some time point, undergo radioactive decay, to be transformed into another,
more stable nucleus. In nuclei which are neutron deficient, positron-emission is one
of the possible modes of decay. In such nuclear radioactive decay, one proton (p+)
is converted into a neutron (n) by the ejection of a positively charged electron,
called positron (β+), and a neutrino (v), according to the reaction [6]:

p+ −→ n+ e+ + v + energy (2.5)

The ejected positron traverses the surrounding material and looses energy in atomic
collisions. Within a distance of a few mm, when the particle is close coming to
rest, it combines with a free electron in an annihilation reaction. Both particles
disappear, and their masses are converted into two anti-parallel photons according
to E = mc2. These two 511 keV, so-called annihilation photons, are the basis of
the image-forming signal in PET. The positron emission and annihilation processes
are depicted in Figure 2.3.

Positron-emitting radionuclides are commonly produced in a cyclotron by bom-
barding a target material with accelerated charged particles, such as protons or
deuterons (2

1H nuclei). The target material undergoes nuclear reactions and is trans-
formed into an unstable nucleus that is prone to radioactive decay [6]. Several of
the positron-emitting radionuclides have short half-life, thus requiring a cyclotron,
in close proximity to the PET scanner. Some commonly-used cyclotron-based
positron-emitting radionuclides are presented in Table 2.1.
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γ
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e-	
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Figure 2.3: A radioactive nucleus undergoes radioactive decay by the emission of a positron (β+).
The positron, travels a few mm from the nuclei before it recombines with a free
electron (e−) by the emission of two anti-parallel annihilation photons (γ).

2.1.3 Photon attenuation

The photons emerging from the annihilation reaction interact with the surrounding
medium through mainly two processes: Compton scatter, which is predominant
at higher photon energies, and photoelectric effect, which is dominant at lower
energies. These interactions essentially results in a reduction of the photon flux,
a process called attenuation. The ability of a material to attenuate photons is
characterized by the linear attenuation coefficient, µ, of the material. The number
of photons, N , remaining in a photon beam of initially N0 photons, after passing
the distance x through a medium, is described by an exponential equation [51]:

N(x) = N0e
−µx (2.6)

Both Compton scatter and photoelectric effect result in the ejection of orbital
electrons, thus, causing ion pairs (a free, negatively charged electron and a positively
charged atom) along the photon path.
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Table 2.1: Cyclotron-based positron emitting radionuclides commonly used in PET with their
respective half-life [6].

Radionuclide Half-life [min]
11C 20.4
13N 9.97
15O 2.03
18F 110

2.1.4 Photon detection

The orbital shell vacancy in each ionized atom, caused by either Compton scatter
or photoelectric effect interactions, will eventually be filled with a free electron.
In this so-called recombination process, energy is released by the emission of a
photon [51]. PET detectors are made of special scintillating materials, in which the
recombination energy is liberated as visible light. PET scintillation crystals should
ideally have high photon attenuation, high light output and fast timing properties.
Commonly used scintillation materials include bismuth germanate (BGO), cerium-
doped lutetium oxyorthosilicate (LSO(Ce)), luthetium ytrium orthocilicate (LYSO)
or thallium-doped soudium iodine (NaI(TI)) [6].

The light produced in the recombination event is typically very small and must
necessarily be amplified. In PET applications, this is accomplished by coupling
the crystal to a photomultiplier tube or a light-sensitive semiconductor detector.
Photomultiplier tubes are commonly used in hybrid PET/CT scanners. They are,
however, incompatible with magnetic fields, making them unsuitable in hybrid
PET/MRI scanners. In these applications, avalanche photodiodes (APDs) or silicon
photomultipliers (SiPMs) are utilized as light amplifiers [6].

2.1.5 PET scanner design

In a PET scanner, multiple detector elements, each comprising a scintillator crystal
coupled with either a photodiode or a photomultiplier tube, are placed adjacent
to each other in a cylindrical geometry to form the detector ring. This allows
near-simultaneous detection of the two opposite annihilation photons in a so-called
coincidence event. Each two opposite detector pair defines a physical volume in which
the annihilation event occurred. This volume is referred to as the line-of-response.
Thus, by analyzing the signals from opposing detectors, a list of coincidence events
along each valid line-of-response can be obtained [6]. Different types of coincidence
events are discussed in Section 2.1.7.
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Figure 2.4: Photograph of the PET detectors of a 16-ring pre-clinical PET scanner with 15 cm

ring diameter. Each gold-block contains the scintillator coupled with an avalanche
photodiode. The holder for the rotating linear 68Ge rod is visible in the background.
The coordinate system for the PET geometry is shown to the right.

Some scintillation crystals, for instance LSO or LYSO, have a timing accuracy in
the order of picoseconds, thus allowing to measure the tiny time-difference between
the arrival of the two annihilation photons. In this way the annihilation event can
be localized along the line-of-response to within a few centimeters. This concept,
known as time-of-flight PET, may provide increased signal-to-noise ratio compared
to non-time-of-flight PET, because information about the spatial localization of
the event can be included in the reconstruction process [6].

Modern PET scanners are build up from multiple detector rings, placed adjacent
to each other. In this way the sensitivity of the scanner is increased by allowing for
detection of annihilation photons from oblique angles. Typically 8-24 detector rings
are common, resulting in an axial field-of-view of 15-25 cm for clinical scanners
[52, 53], or 5-15 cm for pre-clinical systems [54–56] (Figure 2.4). If larger axial
coverage is needed, for instance in whole-body PET imaging, the images from
multiple bed-positions are stitched together to form an extended-field-of-view PET
image. The radial field-of-view is commonly in the range of 60-70 cm in diameter
for human PET [52, 53], or around 8-10 cm in pre-clinical PET scanners [55, 56].

2.1.6 Raw data storage

The PET raw data can be stored in either sinogram-mode or list-mode format,
which will be described next.
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Sinogram-mode

A sinogram is a two-dimensional matrix, in which the total counts for all line-of-
responses are registered. The axes of the sinogram represents the distance, r, from
the PET scanner center, and projection angle, θ (Figure 2.5). If only static PET
images are needed, the raw data, consisting of the projection profiles are commonly
stored as sinograms. For dynamic PET, multiple sinograms can be stored, each
measuring the average number of PET events in a pre-defined time-interval. After
acquisition, it is not possible to create new time-frames [6].

List-mode

When the PET raw data is stored in list-mode format, each detected coincidence
event is recorded sequentially in a list-mode table together with a time stamp, at
which the event occurred. Thus, the list-mode table consists of a list of coincidence
events, in the order they were registered. This allows post-acquisition division of
events into sub-tables with arbitrary-length, also called binning, and thus generation
of arbitrary-length sinograms. These can, in-turn, be reconstructed into PET images
of corresponding length, for instance as a dynamic PET sequence [6].

2.1.7 Coincidence event types

The photons originating from an annihilation event in the central part of the
scanner reaches the detectors within a few nanoseconds. Three types of coincidence
event may occur during PET acquisition, as depicted in Figure 2.6. If both photons
are detected within a given coincidence timing window (typically in the order of
5-10 ns), and within a given energy window (typically 350-650 keV), the event is
recorded as a true coincidence event (Figure 2.6A). Random coincidences occur
when the annihilation photons from two unrelated annihilation events are detected
within the coincidence timing window, and thus registered as an event. This results
in a false line-of-response for this event (Figure 2.6B). Scattered coincidences occur
when one or both of the annihilation photons are scattered by an angle and detected
as an event. Also here, the result will be a false line-of-response (Figure 2.6C) [6].

The sum of true, random and scattered events are called prompt coincidences.
These are all registered in the raw-data sinogram or list-mode table. However, as
the random and scattered events have lost the spatial relation to their origin of
emission, they are of no value in image formation, and would only contribute with
noise in the reconstructed PET image. Therefore, they must be subtracted from
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Figure 2.5: Illustration of the PET scanner geometry in image space (x-y) and the corresponding
sinogram space (r-θ) in two dimensions. The sinogram is a representation of the
projection profiles over all angles, θ, and radial distances, r, in image space. A point
in image space will trace out a curve in sinogram space.

the prompt counts [6]. In fact, random and scatter correction are just two of several
corrections applied to PET raw data, in order to make the PET image voxels have
the units of radioactivity concentration. These corrections will be described next.

2.1.8 PET raw data corrections

Random-coincidence corrections

A random coincidence occurs when the photons from two unrelated annihilation
events are registered by two opposing detectors, within the coincidence timing
window. The random coincidence rate increases with the square of the amount
of activity in the PET scanner. It results in reduced image contrast by adding a
uniform background to the images and thereby altering the relationship between
voxel intensity and activity.
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Figure 2.6: True, random and scattered coincidence events.

Random coincidences may be estimated from the singles count-rate of each of
the two detectors connected by a line-of-response, as outlined in reference [5].
This requires recording of the single-events for each detector, which is the count-
rate registered by each detector element independent of any possible detected
coincidence events. Alternatively, the random coincidences may be estimated by
acquiring a sinogram with a delayed time window. With this method, a delayed
sinogram is acquired where only events that have arrival times separated by a
pre-defined delay (for instance 50 ns) are recorded. Two annihilation photons from
the same decay will hit the detectors within around 2 ns. Therefore, a 50 ns delay
will reject all true (and scattered) events, and thus, only contain random events.
The random coincidence sinogram is subtracted from the prompt sinogram, to
result in a random-corrected sinogram [6].

Scatter correction

Scattered coincidences occur when one or both of the annihilation photons are
scattered by an angle and hit a non-opposing detector, to result in a false line-
of-response for this event. The false line-of-responses are manifested as induced
haze and reduced contrast and quantitative accuracy in the resulting PET images.
In human PET applications, the fraction of scattered events can be as high as
60%-70%. In theory, scattered events could be discarded by rejecting coincidence
events below 511 keV. However, in practice, the scintillation crystal has limited
energy resolution, and therefore, a finite window is needed, typically in the order
of 350-650 keV. Consequently, only a small fraction of the scattered events are
removed by the finite energy window [5].

To remove further scatter contributions, the scatter component can be estimated
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from simultaneously acquired anatomical data (such as CT or MRI, see Section 2.4).
One method for scatter correction is to register the counts outside the border of the
object, which are mainly caused by the scattered component. By fitting a Gaussian
function to the projection profile, it is possible to estimate the scatter contribution
inside the object by extrapolation. The scatter component is then subtracted from
the prompt counts [6]. Another method for scatter correction is to simulate the
scatter contribution on the basis of a non-scatter-corrected reconstruction of the
PET image and the attenuation correction map (see section 2.1.8). The estimated
scatter fraction is then subtracted from the prompt counts and scaled to match the
acquired PET data [5]. The scatter is estimated from either a simple single scatter
model [57], or an analytical model [58]. This method is the most common scatter
correction method implemented in clinical PET systems today [59].

Attenuation correction

The single most important correction for obtaining fully quantitative PET images
is attenuation correction. As described in Section 2.1.3, a photon flux originating
from a source inside a medium will be attenuated. As evident from Equation 2.6,
the longer traversing path, the more attenuation. This will show as reduced tracer
uptake in central parts of the imaged object. The attenuation correction can be
derived from Equation 2.6. If an annihilation event occurs at depth x inside an
object of thickness T , the probability, P1, that a photon will reach detector 1 along
a line-of-response, is given by:

P1 =
N(x)

N0

= e−µx. (2.7)

Assuming that the other annihilation photon from this event was emitted in the
direction of detector 2, it has to traverse a distance of T − x through the object, to
reach the detector. The probability that it will reach the detector is given by:

P2 = e−µ(T−x). (2.8)

The probability, P , that both photons will reach the detectors is given by the
product:

P = P1 · P2 = e−µT . (2.9)
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Evidently, the total probability to detect both photons are only dependent on the
total object thickness along the line-of-response and thus independent of the event
depth. Thus, if the linear attenuation coefficient, µ, and object thickness, T , are
known for a line-of response in the sinogram, the attenuation correction factor, A
is given by:

A =
1

P
= eµT . (2.10)

In most situations µ will vary along T , and the integral over x is used to calculate
the attenuation probability for a line-of-response:

A = e
∫∞
−∞ µ(x)dx. (2.11)

In this way, each line-of-response in the sinogram can be corrected by multiplication
with A prior to reconstruction. In practice, the distribution of all linear attenuation
correction values, called attenuation correction map, is obtained from a rotating
transmission-source, or derived from either CT or MRI images (see sections 2.4.1
and 2.4.4). The attenuation correction map is then transformed into the sinogram
domain and multiplied with the PET-sinogram to obtain an attenuation corrected
PET-sinogram [5, 6].

Normalization

Because of small variations in crystal size, or varying coupling-efficiency with the
light-amplifier, the individual detector elements of a PET scanner have varying
photon-detection efficiency. To generate a uniform output from all detector elements,
normalization is necessary. This is usually accomplished with a 68Ge source. Briefly,
if all detector elements are exposed to the same photon flux, the registered counts
from each element will vary, depending on the efficiency. A normalization factor
for each individual detector element is obtained by dividing its counts with the
average counts from all elements directly in the sinogram domain [6].

Dead-time correction

When a detector element is hit by a photon, a finite amount of time is required for
the reaction-chain of photon-interactions in the scintillator, light-amplification, and
determination of the position and energy of the photon. During this processing-time,
the detector element cannot process new photon hits. This is called dead-time. If
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another photon hits the detector during its dead-time, the two signals may be
erroneously added together, thus destroying both photon-signals. The effect of
dead-time is therefore an underestimation of the true radioactivity concentration,
and to avoid this, dead-time correction must be applied. This commonly consists
of an empirical model, in the form of a look-up-table, where the relative underesti-
mation of radioactivity concentration has been measured for different radioactivity
concentrations and geometries. The factor from the look-up-table can be applied
directly in the sinogram domain for any given geometry and concentration.

2.1.9 Image reconstruction

With the sinogram corrected for the effects discussed above, the PET image can
be reconstructed by employing either analytical, or iterative methods, as described
next.

Analytical methods

Analytical methods employ an invertible mathematical model to reconstruct the
images. Filtered back-projection is the most commonly used analytical method
because it is fast and computationally efficient. It is, however, rarely used in clinical
practice, due to noise amplification in the reconstruction process. [6].

Iterative methods

Iterative reconstruction methods are commonly used in PET applications because
of reduced noise and thus improved image quality compared to analytical recon-
struction. The aim with iterative reconstruction is to approach the true image
f(x, y), by successive approximations, f ∗(x, y), as summarized in the following
steps: 1) Start with an initial estimate of f ∗(x, y), being either a blank, or uniform
image, 2) compute the forward-projections of the estimated image to obtain an
estimated sinogram, 3) compare the estimated sinogram with the actual measured
sinogram using a cost function, and use the difference between these to update
the estimated image f ∗(x, y). Steps 2) and 3) are repeated until f ∗(x, y) converges
towards f(x, y) [6].

The system matrix, M, is central in the iterative reconstruction process. Each
element in the system matrix, j, represents the probability that a photon-pair is
emitted from voxel i in the image and detected in line-of-response j. Thus, the
system matrix relates the projection profiles to the underlying radioactive source
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distribution in the subject. M is included in the iterative reconstruction loop
to account for scanner-specific, or statistical properties of the data and can be
estimated from the measured (or simulated) activity distribution of a point source
placed at all locations inside the PET scanner [6].

Once the system matrix has been determined, one of several iterative algorithms
may be applied to reconstruct images from the acquired projection profiles. One
commonly known iterative algorithm is the maximum-likelihood expectation-
maximization algorithm, in which the voxel activities are estimated through a series
of iterations. This algorithm is computationally intensive, so the most common
reconstruction algorithm in clinical PET applications is therefore ordered-subset
expectation-maximization, in which only a subset of the projections are used in the
first iterations. This will speed up the initial iterations, as fewer forward-projections
have to be calculated. As f ∗(x, y) approaches f(x, y), more projections are included
to obtain a more accurate estimate [6].

Reconstruction of three- or four-dimensional data

A two-dimensional sinogram represents the projection profiles in one transversal
slice (x-y-plane, see Figure 2.4) of the object inside the PET scanner. In ana-
lytical reconstruction methods, each slice is reconstructed separately from the
respective sinogram. In iterative methods, the system matrix can as well include a
three-dimensional relation between the voxels and projection elements, by simply
expanding the indices i andj to three dimensions. Thus, a three-dimensional volume
is reconstructed in each iteration [6].

For dynamic PET data, the sinogram of each time frame is either recorded directly
(sinogram-mode), or is created post-acquisition from the list-mode data. Each
sinogram then represents one time-frame of the dynamic sequence, and during
reconstruction, each time-frame is reconstructed independently of all others. The
final dynamic PET image can then be represented as a four-dimensional matrix
(x, y, z, t) with three spatial dimensions, x, y, z and one temporal dimension, t [6].

In multi-ring PET systems, where oblique coincidence-angles are also accepted,
each sinogram will contain counts from non-perpendicular line-of-responses. Thus,
there is not a one-to-one relation between transversal slices and registered counts in
the sinogram. One solution to this is to re-bin the oblique data into corresponding
non-oblique transversal slices, for instance by assigning each oblique angle with its
average axial position. This procedure is called single-slice rebinning [6].
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Figure 2.7: The concept for calculating the effective decay factor in a PET frame of length ∆t,
starting at time t. In the absence of decay, the counts during ∆t are proportional
to the total area a1 + a2. Due to radioactive decay, the counts during ∆t will be
proportional to a2. The effective decay factor is given by the ratio a2/(a1 + a2).

Decay correction

PET tracers have a short half-life in comparison with the PET image acquisition
times (See Table 2.1). Therefore, it is necessary to perform decay correction of
the acquired PET frames. The concept of effective decay factor is illustrated in
Figure 2.7. For a time frame starting at time point t, with a duration of ∆t, the
effective decay factor, DFeff, can be derived by the ratio of the area under the
decay curve, a2 (obtained by integration of Equation 2.4), to the total area with
no decay, a1 + a2:

DFeff(t,∆t) =
a2

a1 + a2

= e−λt · 1− e−λ∆t

λ∆t
(2.12)

In practice, for a static PET acquisition, all image voxels are multiplied with the
factor 1/DFeff from Equation 2.12 in order to decay correct the registered counts
within the static PET acquisition to t = 0. For a dynamic PET sequence, the
1/DFeff factor is applied to the voxels in each time frame, using the specific starting
point, t, for each time frame. In this sense, all dynamic PET time frames will be
decay corrected to t = 0. It is common to define t = 0 as the injection time of the
tracer, although this time point can be freely chosen [6].

Quantitative calibration

If appropriate sinogram-based corrections, as well as image reconstructions have
been applied to the PET raw data, the voxel-values in the reconstructed image will

31



2 Medical imaging with PET, CT and MRI

be proportional to the radioactivity concentration of that voxel in the imaged object.
A global quantitative calibration factor is then applied to all voxel-values, to convert
the reconstructed image into the units of radioactivity concentration (kBq/cm3 or
equally kBq/ml). The calibration factor is usually obtained by scanning a uniform
phantom with known radioactivity concentration of a positron-emitting nuclide [6].
To reduce potential bias, the radioactivity concentration injected into the phantom
should preferable be measured using the same measurement device (ion-chamber or
well-counter) as used for the patient-injection syringes. This correction is therefore
sometimes referred to as well-counter correction.

Standardized uptake value

Measurements of lesions or other high-uptake regions in a PET image are commonly
performed by first segmenting the region, either manually or using automated
methods, and then performing statistical measurements on the voxel-values inside
the segmented region. In order to compare quantitative measurements between
patients and scans, it is common to normalize the voxel-values, Cx,y [kBq/ml] to
the amount of injected radioactivity, D [MBq] per body weight, w [kg], to obtain
an SUV image [60]:

SUVx,y =
Cx,y
D/w

[g/ml] (2.13)

Under the assumption that one ml of tissue weights one gram, SUV becomes
dimensionless. Note that both Cx,y and D in Equation 2.13 must be decay corrected
to the same time-point. The SUV can be interpreted as the tracer concentration of a
voxel (nominator of Equation 2.13) relative to a uniform whole-body concentration
(denominator of Equation 2.13). For instance, an SUV of 1.0 is the equivalent
uptake as if all tracer was uniformly distributed in the body [60]. As an illustration,
the tumor in Figure 2.1A and C shows an increased SUV, thus represents an
increased 18F-FDG-uptake compared to the surrounding tissue.

2.1.10 PET tracers

In clinical applications, positron-emitting radionuclides (Table 2.1) are often at-
tached to carrying molecules. Such labelled molecules are called radiopharma-
ceuticals, radiotracers, or simply tracers. There exists a large variety of labeled
compounds that allows imaging of different physiological and biological processes,
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Table 2.2: Examples of PET radiopharmaceuticals and their application for imaging different
biological processes [62, 63].

Radiopharmaceutical Biological process
18F-FDG Glucose metabolism
18F-FLT Cell proliferation
18F-fluoride Bone metabolism
18F-FMISO Hypoxia
68Ga-DOTATOC
68Ga-DOTATATE

Somatostatin receptor

15O-water Perfusion

such as glucose metabolism, blood flow, hypoxia, receptor-binding etc. Some com-
monly encountered radiotracers are listed in Table 2.2. The clinical work-horse
in oncological PET is the glucose analogue 18F-FDG, which allows non-invasive
measurement of glucose metabolism [61].

PET tracers are typically injected in very small concentrations that do not alter the
biological processes of interest. For instance, the intra-tumor 18F-FDG concentration
in a typical clinical PET scan is in the order of 10−15 mol/l in a high-uptake tumor.
Thus, the PET scanner is a highly sensitive instrument for non-invasive imaging of
these small tracer amounts [62].

2.1.11 Tracer uptake

The PET tracer is injected intravenously into the blood stream of the subject. It
will then distribute into cells according to pathways specific for the tracer. Figure
2.8 displays the temporal distribution of 18F-FDG over one hour in three tissues
of a mouse. Myocardium shows an early peak due to the first-pass of blood with
high tracer concentration directly after injection, while at later time points, the
tracer uptake is increasing due to the constant glucose consumption of the beating
heart. The kidney also shows an initial peak followed by decrease of activity as the
tracer is excreted from blood, via the kidney, into the urinary bladder. Soft tissue
and tumors mostly follow the dynamic pattern similar to that of the brain region.
At early times, there is an initial rise of the activity, while after some time, there
is a stable state plateau, or slow decrease of the activity. In static PET scanning
of tumors, it is important that imaging takes place at this late stable state in
order to achieve comparable scans within and between subjects. Therefore, it is
common to let the subject rest for some time after injection, before imaging starts.
This, so-called uptake-time, may vary according to tracer and scan protocol. In
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Figure 2.8: 18F-FDG uptake over 60 minutes in brain, kidney and myocardium tissues of a mouse.

clinical routine static 18F-FDG scans, 60 minutes ± 10 minutes uptake-time is
recommended before scan start. Also, as the glucose level affects the 18F-FDG
uptake in normal tissue, it is important that the subject has fasted at least 4 hours
before scanning [64].

2.1.12 PET acquisition

Depending on the sensitivity of the PET system, the amount of injected tracer
and the desired counting statistics, the duration of acquisition at each bed-position
may vary in length. Imaging times of around 5-20 minutes per bed position are
common in static PET imaging, while in dynamic PET imaging, acquisition-times
between 10-60 minutes of one single bed position are common [40].

Recently, with improved sensitivity of modern PET scanners, it is possible to obtain
high quality images in as short as 30 s per bed position. This allows each bed
position to be scanned at multiple times during acquisition, and as such, allow for
whole-body dynamic PET imaging [65].
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2.1.13 Image quality in PET

Image quality in medical imaging is generally quantified by contrast, noise and
spatial resolution. Compared to other imaging modalities, such as CT and MRI,
PET has relatively high noise level and low spatial resolution, while the contrast
depends on the tracer and examined body part.

Contrast

Contrast in PET images refers to the intensity of an object relative to the sur-
rounding background voxels. For instance, in tumor PET imaging, it is desired to
have a high tumor-to-background ratio, meaning that it should be easy to visually
spot the tumor when reviewing the images. Contrast, thus, heavily depends on the
tracer kinetics and the body region examined. For instance, a lung tumor may have
high contrast, as the background lung activity is low (Figure 2.1), while a brain
tumor may have lower contrast, since the background tracer uptake in normal brain
tissue is high. Noise may also limit the image contrast, especially for low-contrast
objects. Thus, it is desired to have a high contrast-to-noise ratio [6].

Noise

Noise in PET images originate from several sources. The random nature of radioac-
tive nuclear decay follow Poisson statistics, such that the number of registered
counts, N , during a time interval has a variance of

√
N [6]. This implies that short

time frames, in for instance dynamic PET studies, have a lower signal-to-noise ratio
(SNR) compared to longer time frames. If 100 coincidence events are registered
during a short time frame, SNR = N/

√
N = 100/10 = 10, while for a longer frame

duration, if 10 000 events are registered, SNR = 10000/100 = 100 [6].

The random and scatter corrections are unable to correct for all random and
scattered events. Thus, there will exist false line-of-responses in the raw data that
will introduce additional noise in the reconstructed images [6].

The reconstruction process itself will also affect the noise level in the images,
depending on the number of iterations and subsets, filtering method etc. [6].

Lastly, when imaging short-lived positron-emitting radionuclides, the relatively
long acquisition times will result in significant decayed tracer activity in late time
frames. This will reduce the counting statistics, and as such, increase the noise
level in late parts of the scan [6].

35



2 Medical imaging with PET, CT and MRI

Spatial resolution

Spatial resolution in PET is fundamentally limited by two physical effects. First,
the finite range of the positron before it recombines with a free electron, results in
a few mm distance between the site of decay and the site of annihilation. Moreover,
because of the residual energy of the positron and the free electron at recombination,
the two annihilation photons will have a small deviation from the 180◦ emission
angle. This is called non-collinearity effect. These two effects combined results in
a slightly shifted line-of-response for the origin of the radioactive decay, which
cannot be corrected for. The physical resolution limitation depends on the distance
travelled by the two non-collinear photons, thus for clinical (human) PET scanners
with around 80 cm separation between opposite detectors, the lower bound on
resolution is around 1.8 mm. On the other hand, small-bore pre-clinical PET
systems have a lower bound physical resolution of around 0.7 mm [6, 66].

In addition to the physical limitations, the finite size of the PET detector elements,
depth of interaction in the crystals, reconstruction method and filter, also affects
the final spatial resolution. As a result of these additional effects, clinical PET
scanners have a practical resolution limitation of around 2.4 mm, while pre-clinical
may offer 0.8 mm resolution [6, 66].

Partial-volume effect

The partial-volume effect refers to two phenomena that diminishes the voxel-values
of a PET image. First, the limited spatial resolution, due to the factors described
above, introduces image blurring, which causes spill-over from high- to low-intensity
regions in the image. This is equivalent to convolution of the source distribution in
the image with the point spread function of the PET system. Due to these effects,
in a PET image of a small point source, there will be apparent activity outside the
physical boundary of the source [67].

The second contribution to partial-volume effect is the finite size of the 3D image
voxel grid. The cubic voxels have discrete side-lengths that do not perfectly match
the contours of the imaged object. For instance, the region covered by a voxel may
contain both soft-tissue and blood, both of which have tracer uptake. Thus, the
value will inevitably represent an average of the different underlying tracer-signals.
This effect is therefore referred to as the tissue-fraction effect, and may have to be
taken into account, for instance during kinetic modeling (Section 2.5) [67, 68].
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2.2 Principles of CT

CT imaging is based on a rotating x-ray tube coupled with a radiation detector
on the opposite side. A fan-beam of photons irradiates the subject, while the
detector registers the attenuation profile on the opposite side. Simultaneously with
tube-detector rotation, the patient table moves through the radiation beam, until
the desired axial length has been irradiated. Similarly as for PET, the acquired
projection profiles are stored as sinograms for each axial slice (see Section 2.1.6).
The sinograms are reconstructed into a three-dimensional image matrix, using
either filtered-backprojection or iterative methods, similar to those described for
PET (see Section 2.1.9) [6, 69].

The voxels of a CT image represent the linear attenuation coefficient, µ, specific
for the particular photon spectrum and filtration in the x-ray tube. These are
commonly normalized to the linear attenuation coefficient of water, into so-called
Hounsfield units (HU), according to [6, 69]:

HU(x, y, z) =
µ(x, y, z)− µwater

µwater

× 1000 (2.14)

By applying HU normalization, the water voxels in a CT images will have a value
of 0 HU, air will be -1000 HU while bone may approach values of 3000 HU. A
common HU-range to visualize the lung tissues in a CT image is [-1000,200], as
exemplified in Figure 2.1B.

2.3 Principles of MRI

MRI image formation is a based on the spatial encoding of radio-frequency signals
emitted from excited hydrogen nuclei (protons) which are relaxing in a stationary
magnetic field. In general, any nuclei with an odd number of protons and/or odd
number of neutrons have an associated nuclear spin. When placed in an external
magnetic field, B0, these nuclei will align along the field and start precessing around
the field axis with a frequency referred to as the Larmor frequency, ω0, given by:

ω0 = γB0 (2.15)

Here, B0 is the magnetic field strength and γ is the gyromagnetic ratio, a constant
which depends on the type of nucleus. A typical clinical magnet has a field-strenght
of 1.5-3 T, while in pre-clinical MRI, field-strengths may be in the range of 5-15 T.

37



2 Medical imaging with PET, CT and MRI

By

x

z B0
M=Mz

y

x

z B0

B1

M=Mxy

y

x

z B0

Mxy

Mz
M

A C

Figure 2.9: Illustration of the MRI coordinate system. A rotating frame-of-reference around the
z-axis has been chosen, with the angular frequency equal to the Larmor frequency, ω0.
A. The external magnetic field, B0, is applied along z, causing the net magnetization,
M, to also align along the z-axis. B. A second magnetic field, B1, is applied with the
Larmor frequency during time tp, perpendicular to B0. This causes M to be flipped.
In this example, the time, tp is chosen such that M is flipped into the x-y-plane.
In the rotating coordinate system, both Mxy and B1 appear stationary. C. When
B1 is terminated, relaxation of Mxy begins, such that the x-y-component is reduced
exponentially, with characteristic time, T2, and Mz is increased exponentially, with
characteristic time T1.

Moreover, in medical MRI, the image-forming signals originate from the hydrogen
atoms of the water molecules in the tissue [70]. Thus, with knowledge of the field
strength and the type of nucleus, the Larmor frequency can be calculated, which is
important for MRI image formation, as discussed later.

A hydrogen nuclei may exist in either of two spin-states, spin-up, or spin-down. In
a given tissue sample in a magnetic field, around half of the hydrogen nuclei will
align parallel to the magnetic field, while the other half will align anti-parallel. The
spin-up state has slightly lower energy state than spin-down, and thus, the number
of nuclei with spin-up will be slightly greater than the number of nuclei with
spin-down. For instance, in a sample of 1023 nuclei, the difference in the number of
nuclei in the different states is around 1017 [69]. This creates a net magnetization,
M, which is aligned parallel with B0 (Figure 2.9A).

2.3.1 Excitation and relaxation

If a second magnetic field, B1, is applied with the Larmor frequency during time
tp, perpendicular to B0, the individual spins will begin a precession around B1.
This will imply that M is flipped by an angle α, given by [70]:
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α = γB1tp. (2.16)

If B1 is applied for long enough time to flip M by α = 90◦, this is called a 90◦

pulse (Figure 2.9B). Similarly, if the pulse is applied for double the time, it is called
a 180◦ pulse. These so-called radio-frequency (RF) pulses are emitted from coils
winded in a loop around the main magnetic field B0. Their operation are based on
Faraday’s law, namely that a sinusoidal alternating current through the loop at
the Larmor frequency will generate an oscillating magnetic field perpendicular B1.
When the RF pulse is stopped after time, tp, the excited magnetization will begin to
relax, and start to align with B0 again (Figure 2.9C). The rate at which M returns
to B0 is characterized by the T1 and T2 relaxation-times, respectively. T1 describes
the exponential recovery of M along B0, while T2 describes the exponential loss of
transverse magnetization.

The exponential recovery and relaxation of the magnetization vectors follow the
form of Equation 2.2, with λ being equal to −T1 and +T2, respectively. In practice,
the magnetization in the transverse plane disappears within a few ms, while it may
take up to 15 s to recover M along B0 in water (tissue dependent) [69].

Faraday’s law also works in reverse, namely that an alternating magnetic field
around a coil will induce a current in the coil. Thus, when the magnetization
returns to ground state, a current is induced in the RF coil, called free induction
decay. Different tissues have different T1 and T2 relaxation-times. The difference in
relaxation-properties of the different tissues may provide contrast between tissues
in the resulting MRI-image, as will be described Section 2.3.3 [69].

2.3.2 Spatial encoding

In a clinical MRI scanner, the entire patient, or the part of the patient to be scanned,
lies in the magnetic bore of the scanner, within a homogeneous B0. Any RF pulse,
B1, emitted from the RF coil, will flip the magnetization in the entire section of
the patient inside the scanner, and the recorded relaxation-signal will not represent
any meaningful anatomy. Therefore, in order to form a three-dimensional image,
spatial encoding of the RF signals are required. This is commonly accomplished
by applying z, y, and x-directional gradients through special gradient coils. As an
example, the spatial encoding for the spin-echo pulse sequence is outlined here.

First, a gradient coil defines the field-of-view along the z-direction, by introducing
a gradient, Gz, along B0. Because the Larmor frequency depends on the magnitude
of B0, with the gradient coil applied, it will vary along the z-direction, allowing the
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activation of distinct slices by the emission of RF-pulses with a Larmor frequency
matching that of a specific slice. Thus, the frequency of the RF-pulse selects a
specific slice along the z-direction, while the bandwidth of the RF pulse determines
the slice thickness. [70].

Localization in the y-direction is performed using another set of gradient coils,
namely the y-gradient coils. These change the magnetization along the y-direction
by applying a gradient, Gy, in the activated slice, subsequent to the slice selection
gradient. The protons located in high y-positions will precess faster than protons
located in low y-positions. When the y-gradient is switched off, the precission
returns to that of ω0, but with the y-position of each voxel encoded by different
phases of the relaxation signal [70].

Finally, another set of gradient coils, positioned at 90◦ relative to the y-gradient
coils, encode the spatial positions in the x-direction. This is accomplished by
applying a magnetic field gradient, Gx, in the x-direction subsequent to the y-
gradient during readout. This results in a varying frequency of the received signals
along the x-direction [70].

The three gradients, Gz, Gy and Gx, are commonly referred to as slice, phase and
frequency encoding gradients. These may be applied in any given spatial direction
to encode the relaxation-signal, not only in z, y, and x, as exemplified here.

2.3.3 Pulse sequences

By arranging the various excitation pulses and gradients in so-called pulse-sequences,
it is possible to spatially differentiate tissues with different relaxation-times. A
basic spin-echo sequence is visualized in Figure 2.10. This sequence consists of
a 90◦ pulse, at time t1, that flips the magnetization into the transversal plane,
followed by a 180◦ pulse, applied at time t2, that flips all magnetization by 180◦.
During the time between t1 and t2, some of the transversal magnetization has
started to de-phase (the free induction decay), such that at a specific echo-time
(TE), TE = 2 · (t2 − t1), there will be a re-phasing echo peak. This echo is the
image-forming signal in the spin-echo sequence [70].

Another 90◦ pulse is applied at repetition-time (TR), t =TR, after the initial 90◦

pulse. If this pulse is applied before all magnetization, M is rebuilt (depending
on T1 for each specific tissue), the next echo will have lower amplitude. Thus, by
choosing TR short enough, before all magnetization has recovered along the z-axis,
it is possible to obtain MRI images where the contrast depends on T1 properties of
the tissue. Such images are called T1-weighted. Tissues with short T1 (such as fat or
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Figure 2.10: The spin-echo pulse sequence. A 90◦ RF pulse is applied at time t1 together with
the slice selection gradient, Gz. Subsequently, the first phase-encoding gradient, G1

y

is applied, followed by a 180◦ pulse at time t2. An echo is formed at echo-time TE.
The pulse sequence is repeated after repetition-time TR, but this time with phase-
encoding gradient G2

y. When the sequence has been repeated for all phase-encoding
gradients, the next slice can be imaged by repeating all phase-encoding steps for
another slice-selection gradient.

gray matter) will produce larger signals, and thus brighter voxel-values, compared
to tissues with long T1 (such as water or cerebrospinal fluid) [70].

Similarly, for long TR values, by adjusting TE, it is possible to generate T2-weighted
images. Here, the recorded signal depends on the amount of magnetization still
present in the transversal plane, which is a characteristic of T2. Thus, tissues with
short T2 relative to TE (such as fat and gray matter) will produce a weak signal,
because most of the signal has decayed before the echo occurs. On the other hand,
tissues with long relative T2 will decay less until the 180◦ pulse, and thus yield a
higher relative signal [70]. For instance, the tumor in the T2-weighted image in
Figure 2.1D appears brighter than the surrounding tissue.

One final possibility can occur for the spin-echo sequence. With long TR and
short TE times, the signal will be dependent on the initial magnetization in the
transversal plane, which depends on the proton density of the tissue. Such images
are therefore proton-density weighted [69, 70]. An overview of the three different
effects from varying TR and TE is shown in Figure 2.11.

Sequences may also be build up from other combinations of flip-angles and read-
out-gradients. For instance, the gradient-echo sequence uses flip-angles below 90◦,
and application of two opposite gradients: the first to de-focus the transversal
spins, followed by a second read-out gradient, to re-focus the spins, and at the
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Figure 2.11: Effects of various combinations of repetition-time (TR) and echo-time (TE) in the
spin-echo MRI sequence.

same time perform read-out encoding [69]. Because of the partial flip-angle and
immediate read-out, the gradient-echo sequence allows for very short TR, and thus
short overall imaging times.

2.3.4 Signal detection and k-space

The RF-echo emitted during spin re-phasing is detected as an induced current
in two orthogonal receiver coils. The current amplitude as a function of time is
amplified, digitized and stored in a discrete, two-dimensional matrix, referred to as
k-space. As the two coils produce the same signal (but with 90◦ phase-shift), they
are stored in k-space as a complex number, with one of the two signals being the
real part, while the other signal being the imaginary part [70].

For the spin-echo sequence (and many other pulse sequences), k-space is filled row-
by-row. Each row corresponds to the received signal from one specific application
of the phase-encoding gradient. Each column represents the signal amplitudes
at different times during the echo. Lastly, each two-dimensional k-space matrix
corresponds to one specific axial slice in the patient (that of the current slice-
selection gradient). The inverse Fourier-transform (IFT) of the k-space matrix
from one specific z-slice results in a two-dimensional MRI image of that z-slice.
Figure 2.12 illustrates the concept of k-space and MRI image reconstruction in two
dimensions [70]. The final three-dimensional MRI image is the result IFTs of a
three-dimensional k-space matrix. Note that the IFT of a complex k-space results
in a complex image space with both real (Re) and imagingary (Im) parts. In most
common applications, only the magnitude image is stored, where magnitude =√
Re2 + Im2.
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Figure 2.12: Illustration of signal detection and image reconstruction in MRI for one axial z-slice.
The RF-Echo (see figure 2.10) emitted during spin re-phasing is received by the
induction of a current in two orthogonal coils. The current amplitude as a function
of time is digitized and stored as a complex number in a discrete matrix, referred
to as k-space. In the spin-echo sequence, k-space is filled row-by-row, where each
row corresponds to one application of the phase-encoding gradient. The inverse
Fourier-transform (IFT) of k-space results in the final MRI image of the current
z-slice. Note that only the magnitude of the real (Re) and imaginary (Im) parts of the
k-space matrix is shown in the illustration above, where magnitude =

√
Re2 + Im2.

2.4 Hybrid imaging

While PET provides functional images of biological processes in the body, most
tracers provide no direct anatomical localization of the tracer uptake. Therefore,
in practice all commercially available PET systems, both clinical and pre-clinical,
are integrated with an anatomical imaging scanner, such as CT or MRI. Two such
hybrid imaging systems, PET/CT and PET/MRI will be described next.

2.4.1 PET/CT systems

In hybrid PET/CT imaging, the CT component serves two purposes, namely that
of anatomical localization, and that of attenuation correction. The Hounsfield
units of the CT image are proportional to the linear attenuation coefficient at
the effective energy of the particular x-ray beam and filtration used during CT
scanning. For the CT image to be valid at the energies of the PET annihilation
photons, the voxel-values must be converted into the linear attenuation coefficient
at 511 keV for each specific tissue in the CT image. The energy dependence of
the linear attenuation coefficient is significantly different for soft tissue and for
bone. Therefore, the conversion is usually done with a bi-linear mapping, where
voxel-values with HU < 0 (such as soft-tissue, water and air) are scaled differently
compared to voxels with HU > 0 (such as different types of bone) [6].
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2.4.2 Radiation dose

Both PET and CT are based on physical emission of high-energy photons (511
keV in PET and a spectrum of photon energies with maximum energy of typically
120 keV for CT). When these photons undergo interactions with the surrounding
tissue (Compton scattering or photoelectric effect, Section 2.1.3), electrons are
liberated. These electrons, in-turn, undergo many charged-particle-interactions
with the surrounding tissue, transferring their kinetic energy to the surrounding
material in many small steps. Absorbed dose is the total energy deposited in a
material per unit mass, and it is measured in the units of gray (Gy), where 1 Gy
= 1 J/kg [51].

The effective dose may be calculated by taking into account the sum of absorbed
dose in all organs, the type of particles (photons or electrons), and the radiation-
sensitivity of each organ. Effective dose has the unit of Sievert (Sv) and is intended
for use as a radiation protection quantity, rather than for individual risk-estimation
purposes. By incorporating radiation- and tissue-specific weight factors, it serves
as a measure of population-based risk-estimate for cancer, with 5.5%/Sv [71].

The radiation dose from a typical 18F-FDG PET scan is in the order of 6 mSv, while
the CT contributes with an additional of 10-20 mSv, depending on scan protocol
and body region scanned [21, 72, 73]. For comparison, the annual background
radiation in Norway is around 3 mSv [74].

2.4.3 PET/MRI systems

Hybrid clinical PET/MRI systems were introduced commercially in 2008, even
though the idea to combine excellent soft-tissue contrast from MRI, with functional
imaging of PET was born already before the first PET/CT was released [75].
Nevertheless, several technological challenges had to be solved before a hybrid
PET/MRI system could be developed; most importantly designing PET detectors
that could operate in strong magnetic fields, as well as deriving the attenuation
correction map for PET, based on MRI data [53]. The potential advantages with
hybrid PET/MRI over PET/CT include the excellent soft-tissue contrast of MRI,
compared to CT, the true simultaneous acquisition of PET and MRI images, as
opposed to sequential acquisition in PET/CT, and the possibility of MRI-based
motion correction. In addition, MRI, as opposed to CT (and PET) does not involve
ionizing radiation, and therefore, does not contribute to the radiation dose to the
patient.
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Table 2.3: Linear attenuation coefficient values assigned to specific tissues in the DIXON attenua-
tion correction sequence in PET/MRI.

Tissue µ [cm−1]
Background 0

Lung 0.0224
Fat 0.0884

Soft-tissue 0.1

2.4.4 MRI-based attenuation correction

The accuracy of attenuation correction is critical for quantitative PET imaging.
This has been one of the more challenging tasks to solve during integration of
PET and MRI systems, mainly because the small bore-size and high magnetic
field-strength of MRI scanners did not allow integration of a CT-system or rotating
transmission sources for attenuation correction purposes [42]. Current solutions
include the conversion of MRI images to attenuation maps. This is not as straight-
forward as in CT attenuation correction because the MRI signal is related to proton
density and spin-relaxation-times of tissue and does therefore not, as opposed to
CT, reflect any attenuation information. Thus, the bi-linear conversion approach
outlined for PET/CT systems in Section 2.4.1, is not valid for PET/MRI [42].
Instead, it is common to derive the attenuation correction maps by segmenting the
MRI images into distinct tissue classes. The DIXON MRI sequence is well-suited
for this task, because it consists of consecutive scans that provide images of water
and fat separately. By applying image post-processing, this allows for segmentation
into four tissue classes (air, fat tissue, lung tissue and soft tissue), and subsequently
assigning each class the corresponding known linear attenuation coefficient (Table
2.3) [8].

Recently, deep-learning-based methods have been proposed for the direct transfor-
mation of MRI images to CT attenuation correction maps [76, 77], although such
solutions are not yet clinically available.

2.4.5 Image artifacts in PET/MRI

Since PET/CT imaging has been available for many years, several well-known
artifacts for this hybrid modality have been described. For instance, both metallic
implants and intravenous contrast agents may affect the CT-based attenuation
correction map, resulting in overestimation of the PET activity in the affected
region [78, 79]. On the other hand, with the introduction of hybrid PET/MRI,
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new types of problems and artifacts has emerged. These will be described in the
following sections, and are relevant for Paper I.

Truncation artifacts

The field-of-view of clinical PET/MRI systems is often too small to completely
cover the subject in the lateral (x) direction, leading to truncation artifacts, and
consequently, inability to correct for attenuation outside the MRI image (Figure
2.13A) [10].

Truncation of the field-of view may be solved by estimating the missing parts of
the attenuation map based on PET uptake in these regions [80]. This works well
for non-specific PET-tracers, with a high background uptake in soft-tissue, such as
18F-FDG (Figure 2.13D). Alternatively, a pure MRI-based approach may be applied,
where the magnetic field at off-center positions are corrected for inhomogeneities.
This allows for obtaining two additional scans where the field-of-view can be shifted
in the lateral direction [81].

Absence of bone signal

The bone-signal in most MRI sequences is small, due to very short relaxation-times
for bone. Therefore, while bone is usually not visible in MRI images, it is highly
attenuating the annihilation photons. Inability to compensate for the lack of bone
may lead to underestimations in the reconstructed PET images, especially in regions
close to osseous tissue [9].

The absence of bone signal is commonly solved for whole-body imaging by using
an atlas-based bone models, which consists of major bones, such as skull, spine
and pelvis (Figure 2.13F) [82]. These models, however, lack smaller bones such as
ribs and may be prone to misalignment errors, especially in the lung region, due to
respiratory motion [82, 83].

Atlas-based bone models are, obviously, not capable of taking into account abnormal
patient anatomy. Ultra-short echo-time sequences have sufficient timing properties
to detect the very rapid T2 decay of bone. These gradient-echo-based MRI sequences
are therefore commonly employed in brain imaging to derive the bone signal of the
scull [84].
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A B C

D E F

Figure 2.13: Examples of artifacts and corrections in the MRI-based attenuation correction maps.
A. Truncation artifact, where the arms of the patient are outside the MR field-
of-view. B. Susceptibility artifact caused by surgical sternal wires. Note the failed
lung segmentation, where lung attenuation values have been incorrectly assigned to
background (red color in the box insert). C. Tissue inversion artifact with a soft-fat
tissue swap. D. Correction of truncated arms using the background tracer activity
[80]. E. Susceptibility artifact correction using a post-processing algorithm [12]. Note
that the lungs have been ”filled” with lung attenuation values (yellow color in the
box insert). F. Correction of missing bone by adding an atlas-based bone model of
the spine [82].

Susceptibility artifacts

Local magnetic field inhomogeneities, caused by, for instance, metallic implants,
such as endoprotheses, sternal ceclages and dental fillings, may result in signal
voids in MRI images, and thus erroneous tissue classification of the attenuation
maps [85]. In regions where tissue is falsely being classified as air (Figure 2.13B),
this may lead to severe underestimation of the attenuation coefficient, and thus
underestimation of the tracer activity concentration [86]. Several approaches have
been proposed to overcome the issue, suggesting either variations of pulse-sequence
parameters to minimize signal void [87–90], or by post-processing of the attenuation
correction map (Figure 2.13E) [86, 91–93].

Tissue inversion artifacts

During segmentation of the water and fat images from the DIXON-sequence, the
water and fat classes may sometimes be incorrectly assigned, leading to a swap of
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the water and fat classes, and consequently incorrect attenuation values for these
tissues (Figure 2.13C). This may result in under- or over-estimations of the tracer
activity concentration in the affected tissue [11, 46]. There is no straight-forward
solution to tissue-inversion artifacts, other than manual post-processing, or repeated
examination [46].

2.4.6 Motion correction in PET

Patient motion due to breathing or muscle relaxation is inevitable during a typical
PET acquisition. Certain imaging sequences, such as the 19-second DIXON MRI
sequence, are short and allow patients to follow breath-hold instructions. Neverthe-
less, some patients are unable to comply with these due to their ongoing disease,
while some imaging sequences, such as a 20 minute PET acquisition, obviously
are too long to allow for breath-hold. In these cases, motion causes unwanted
blurring, which degrade the quality and the quantitative accuracy of the PET
images (Figure 2.14A). Breathing-induced motion may also introduce misalignment
in the co-registered PET and MRI images. Specifically, any mismatch between the
attenuation correction map (acquired during end-expiration breath-hold) and the
PET data (acquired in free-breathing) may lead to image artifacts [46].

In Paper II, two methods to correct for motion in PET images have been studied,
based on end-expiration gating and elastic motion correction. These two methods
will be described next.

End-expiration gating

To reduce breathing-induced motion-blur and artifacts, end-expiration gating can be
utilized. With an external respiration sensor, usually an air-filled cushion positioned
on the thorax of the patient, the breathing amplitude is recorded as a function
of time, along-side with the list-mode PET-data. In this way, the list-mode table
can be binned in distinct phases, corresponding to the different breathing phases
of the respiratory cycle. The coincidence events from each respiratory phase are
separated and used to reconstruct a PET image for each respiratory phase [94, 95].
Most commonly, only the end-expiratory phase is of interest, as this corresponds to
the most stationary part of the breathing cycle, and consequently, the PET image
with least motion-blur.

Figure 2.14B displays the reconstructed PET image of the end-expiratory phase
for a lung cancer patient. This resulted in less apparent motion-blur, but due to
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Figure 2.14: PET image of a patient with a lung tumor (top row), respiration curve (middle
row) and an illustration of the amount of PET data used for reconstruction and
its variability per breathing cycle (bottom row). A. Free-breathing PET, where all
(100%) of the PET data is used for reconstruction (PET100%). B. End-expiration
gating, where only 40% of the PET data, from the stationary end-expiration part of
the breathing-cycle, are used for reconstruction (PET40%). C. MRI-based motion
corrected PET data (PETMoCo). The primary tumor and corresponding 41% SUVmax

delineation is shown in the right lung and in the insert.

the reduced number of included counts, end-expiration gating also results in an
increased relative noise level, as visible when comparing Figure 2.14A and B.

Elastic motion correction

To overcome the increased noise level in end-expiration gated PET, elastic-motion
correction can be performed. Here, the breathing cycle is divided into a finite
number of phases (for instance 5 phases), and PET images of each phase are
reconstructed, each representing one part of the breathing cycle. The elastic motion
vectors that transforms each phase into a reference phase (commonly the end-
expiration phase) are then calculated and applied to the gated PET images. This
will transform each phase image to the reference phase. The transformed images
are then summed to provide a single, motion corrected PET image including all
acquired PET counts, thus having an improved signal-to-noise ratio (Figure 2.14C)
compared to end-expiration gating (Figure 2.14B).

The motion vectors used for transformation of the images from one phase to the
reference phase are derived from the image velocity between two image frames [96],
which will be described next.
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Estimation of image velocity

Image velocity refers to the motion vectors of individual image voxels that describe
the movement of intensities between time frames. Briefly, a voxel at location
(x, y, z, t), with intensity, I(x, y, z, t), will have moved ∆x,∆y,∆z, during time
between two image frames, ∆t, such that the following equation holds true [97]:

I(x, y, z, t) = I(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t) (2.17)

The image velocity,
−→
V , for this voxel is defined as the distance, ∆x,∆y,∆z, it has

moved during time ∆t:

−→
V =

(
∆x

∆t
,
∆y

∆t
,
∆z

∆t

)
(2.18)

The components of
−→
V can be estimated from the derivatives of the image in all

four dimensions, x, y, z, t, using a three-dimensional expansion of the Lucas-Kanade
algorithm, as described in detail in reference [97].

Once
−→
V has been estimated, the voxels in a given time frame t + ∆t can be

transformed into time frame t by inverting the displacement vectors ∆x,∆y and
∆z [97].

In Paper II, the image velocities in Equation 2.18 were derived from dynamic
MRI data, which will be described next.

Elastic motion correction in PET/MRI

In PET/MRI applications, the motion vectors may be derived using a rapid radial
stack-of-stars spoiled three-dimensional gradient echo sequence, which samples the
center of k-space with a frequency of 5-10 Hz. This sequence allows to extract both
a respiratory signal from the k-space center as well as MRI images of each phase
of the breathing cycle. The MRI phase images can, in-turn, be used to derive the
motion vector fields between the breathing phases, as described above.

In many situations, it is desired to use the MRI system to acquire several other
sequences simultaneously with PET. Therefore, a respiratory sensor may be used
(the same cushion as for respiratory gated acquisitions). The MRI-based respiratory
signal can then be correlated to the cushion-based signal to allow for motion
correction of the entire PET scan, even after the radial MRI sequence has finished.
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Subsequent to PET acquisition, the list-mode PET data is binned into sinograms
corresponding to the respiratory phases of the MRI-derived motion vector fields.
The motion vectors are then transformed into sinogram-space and applied to
the gated PET sinograms to transform all PET phases to the reference phase.
The motion corrected sinograms are then summed and reconstructed into motion
corrected PET images using the end-expiration MRI-based attenuation correction
map (Section 2.1.9) [98]. Figure 2.14C illustrates an MRI-based motion corrected
PET image.

The end-expiration attenuation correction map from the DIXON sequence can be
compared with the MRI images from all breathing-phases. In this way, patients
who were unable to comply with breathing instructions (which is not uncommon
in lung cancer imaging) may be identified. In these cases, the acquired attenuation
correction map (in, for instance end-inspiration) can be corrected by transforming it
into the end-expiration phase with the corresponding MRI-derived motion vectors.
The corrected attenuation correction map can, in-turn, be used during PET-image
reconstruction.

2.5 Tracer kinetic modeling

When a PET tracer is injected into the blood stream, it circulates to all cells
in the body through the vascular system. The tracer may be taken up in extra-
or intra-cellular space or may be passed back into the blood. Thus, the tracer
concentration in both blood and tissue will be time-varying and depend on specific
biological properties, such as cell metabolism, cell-surface receptors or blood flow.
For instance, Figure 2.15 illustrates the time-dependent blood and brain-tissue
activity following injection of 15O-water in a human subject.

The underlying biological processes which control the tracer distribution can be
quantified by using the rate-of-change of the radioactivity concentrations in tissue,
measured by PET, as well as the measured arterial blood concentration, the so-
called AIF. This is accomplished by constructing mathematical models which can
be fit to the measured PET time-activity curves and to the measured AIF. Such
models are called tracer kinetic models, and the estimated parameters of these
models are rate constants quantifying a specific biological process. For instance,
dynamic 18F-FDG-PET imaging allows the quantification of glucose metabolism in
a tissue (Paper III), and dynamic 15O-water-PET scans can be used to measure
tissue perfusion (blood flow) in the brain (Paper IV).
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Figure 2.15: Illustration of an arterial input function (AIF) measured in blood and the whole-brain
radioactivity concentration measured with PET, following the injection of 15O-water
in a human subject. Note the different scaling on the y-axis for the two curves.

2.5.1 Compartments

An assumption in tracer kinetic modeling is that the PET tracer is available in
physiologically separated pools, or compartments. A compartment may represent a
specific spatial region, such as extra- or intra-cellular space, or it may represent
one specific state of the tracer, for instance metabolised state. A compartment, i,
is solely characterized by its time-dependent, homogeneous tracer concentration,
Ci(t). Consequently, any time-varying concentration in a compartment is caused
by tracer-transport into or out from the compartment. The rate constants quantify
the rates at which tracer transport between compartments take place. They are
denoted with the letter k and have the unit of inverse time, [min−1]1 [6, 99].

Compartment models may have an arbitrary number of compartments, although the
model equations can often be derived from simple, first-order differential equations.
In the following, the compartment models valid for 15O-water and 18F-FDG will be
described, which are relevant for Paper IV and Paper III, respectively.

1The unit of the rate constant K1 is

[
ml(blood)

min

ml(tissue)

]
, representing the blood volume whose tracer

content is completely extracted in one minute, and transferred to one ml of tissue. Cancellation
of the volume units is formally not done, and subsequently, this rate constant is denoted with a
capital letter [4].
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Figure 2.16: The one-tissue compartment model.

2.5.2 One-tissue compartment model

The simplest form of a compartment model is the one-tissue compartment model,
illustrated in Figure 2.16. This model is commonly used for tracers that can diffuse
freely between vascular and tissue space, such as 15O-water.

The tracer diffusion between arterial blood and tissue can be described by the
following state equation [4, 6, 99, 100]:

dCT (t)

dt
= K1 · CA(t)− k2 · CT (t), (2.19)

where CT (t) is the time-activity curve in tissue and CA(t) is the time-activity curve
in arterial blood, also known as the AIF. The solution to Equation 2.19 is given
by [101]:

CT (t) = K1 · CA(t)⊗ e−k2·t, (2.20)

where ⊗ denotes mathematical convolution. As mentioned in Section 2.1.13, due to
the tissue-fraction effect, the PET signal is composed of both tissue and blood com-
ponents. Therefore, the radioactivity concentration measured with PET, CPET (t),
is modeled as the sum of the fractional tissue and blood components, such that:

CPET (t) = (1− VA) · CT (t) + VA · CA(t). (2.21)

Here VA is the fractional arterial blood volume in the tissue. In addition to the
measured PET signal, also the AIF must be measured. The challenges with AIF
measurements are discussed in Section 2.5.4. For the 15O-water tracer, CBF can be
closely approximated by K1 [101].
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Figure 2.17: The uptake pathways of glucose and fluorodeoxyglucose (FDG) from blood into
tissue. Both glucose and FDG are phosphorylated into glucose-6-phosphate and
FDG-6-phosphate, respectively. Glucose is metabolised further by glycolysis, while
FDG-6-phosphate is not, and consequently is trapped in the cell.

Glucose and FDG uptake

The uptake pathways of FDG is closely related to the uptake pattern of glucose
(Figure 2.17). Both FDG and glucose are taken up into the cells by glucose
transporters and then phosphorylated (metabolised) into respectively glucose-6-
phosphate and FDG-6-phosphate by the enzyme hexokinase. FDG-6-phosphate
is however, as opposed to glucose-6-phosphate not metabolized further and can
therefore, as opposed to normal glucose, not exit the cell. In many tumor cells,
dephosphorylation is also down-regulated, and consequently, FDG-6-phosphate
is trapped in the cell. This results in accumulation of tracer in tumor which will
therefore have high contrast in the resulting PET images [4].

Two-tissue compartment model

The compartment model commonly used for 18F-FDG is the irreversible two-tissue
compartment model, illustrated in Figure 2.18. This model assumes 18F-FDG to be
either in a free state, or bound in the tissue cells, with activity concentrations C1

and C2, respectively. The two state equations are [4, 6, 99, 100]:

dC1(t)

dt
= K1 · CA(t)− (k2 + k3) · C1(t) (2.22)

dC2(t)

dt
= k3 · C1(t) (2.23)

As previously, CA(t) is the AIF.

PET cannot differentiate the two signals C1(t) and C2(t), and consequently only
the total radioactivity concentration in tissue, CT (t), can be measured:

CT (t) = C1(t) + C2(t). (2.24)
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Figure 2.18: The irreversible two-tissue compartment model. The green box indicate the tissue
concentration measured with PET.

CT (t) is indicated by the green box in Figure 2.18.

By using Equations 2.22-2.24, CT (t) can be expressed as [102]:

CT (t) =
K1

k2 + k3

[
k3 + k2 · e−(k2+k3)·t]⊗ CA(t). (2.25)

As for the one-tissue compartment model, the tissue-fraction effect has to be taken
into account, according to Equation 2.21.

At late time-points, as t→∞, the exponential term gets sufficiently small. The
tissue activity is then given by:

Ct(t) =
K1 · k3

k2 + k3

· CA(t) (2.26)

Here, the net-influx rate constant, Ki, is defined as [4]:

Ki ≡
K1 · k3

k2 + k3

(2.27)

Subsequently, the metabolic rate of glucose, MRglu, can be estimated from Ki as
[103]:

MRglu = Ki ·
Cglu
LC

. (2.28)

Here, Cglu is the glucose concentration in blood, and the lumped constant (LC)
accounts for the difference in metabolic rate of glucose, to that of 18F-FDG. Cglu
should be measured just before PET scanning with an ordinary glucose meter,
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while the LC can be found in the literature. For instance, the LC in normal brain
tissue has been measured to 0.9 in humans and to 0.7 in rats [104, 105].

2.5.3 Graphical analysis with Patlak plot

In most practical situations, only Ki is of interest, and the individual rate constants,
K1 - k3 are rarely used. For these cases, the analysis of a full compartment model
may be simplified by using graphical methods, such as the Patlak plot, in which
the data are normalized to follow a linear model at late time points.

The Patlak plot is valid for any underlying compartment model, as long as there
is one final compartment where the tracer is trapped, such as the irreversible
18F-FDG model (Figure 2.18). After sufficient time, the tracer concentration in
blood will be in steady-state with the irreversible compartment, and consequently,
any change in the total tissue concentration normalized to the blood concentration,
represents a change in the irreversible compartment. The normalized tissue-to-
blood concentration is then described by a linear curve, which can be derived from
Equation 2.25 [106]:

CT (t)

CA(t)
= V0 +Ki

(∫ t
0
CA(τ)dτ

CA(t)

)
(2.29)

Here, V0 is the initial volume of distribution, that is, the initial value of the tissue-to-
blood concentration ratio. If the CT (t)/CA(t) ratio is plotted versus the normalized

time
(∫ t

0 CA(τ)dτ

CA(t)

)
, V0 and Ki can be estimated from linear regression at late time

points [106].

2.5.4 Input function

As mentioned in Section 2.5.2, the time-dependent AIF, CA(t), must be known in
order to estimate the rate constants from Equations 2.20 and 2.25. Several different
approaches to obtain the AIF will be discussed next.
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Arterial blood sampling

The gold standard method to measure the AIF is through arterial blood sampling.
Arterial sampling must start simultaneously with tracer injection and PET imaging,
and must therefore necessarily be performed while the subject lies in the PET
scanner. An artery is cannulated and arterial blood is sampled throughout the entire
imaging session by a continuous arterial line connected to a scintillation-detector in
the PET scanning room. Such, so-called in-line blood concentration measurements
may have a sampling frequency of, for instance, 1 Hz. One, or a few late manual
blood samples should be extracted from the continuous line and measured in a
gamma counter cross-calibrated to the PET scanner, so that the AIF curve can be
calibrated and used together with the image-derived PET-data [40].

Arterial blood sampling is feasible in human PET imaging by sampling from the
radial artery [107–109]. It is also possible in pre-clinical studies of rats [110–112]
and mice [111, 113, 114] by cannulating the femoral, tail, or carotid artery [110,
115, 116]. However, for mouse-PET studies, blood sampling is far more challenging
compared to humans or rats, due to the requirement of invasive surgery for arterial
cannulation [110, 116], as well as the limited blood volume that can be withdrawn
without altering the animal physiology [117].

The AIF at the sampling site (such as the wrist) will differ from a local AIF at the
site of interest (such as the brain), because of dispersion in the blood vessels and
measurement tubes (in case of in-line sampling) [48]. Furthermore, due to the finite
withdrawal speed during continuous arterial blood sampling, there will be a delay
between the true and measured AIFs [35]. Appropriate corrections for dispersion
and delay must therefore be applied (see Section 2.5.5) [118].

Some tracers, for instance 18F-FLT, are metabolized in the body, resulting in
radio-labelled metabolites circulating in the blood [40]. Thus, for such tracers,
appropriate metabolite-correction must be applied to the measured AIF data before
compartment modeling. Also, some tracers are taken up by the red blood-cells.
This fraction is not available for tissue-uptake, and must also be subtracted from
the AIF before compartment modeling. The metabolite and plasma fractions are
typically assessed by separating plasma, red blood cells and metabolites in the
manually drawn blood samples collected during the PET scan, and measuring each
fraction separately in a cross-calibrated gamma counter. Time dependence of the
plasma and metabolite fractions must be taken into account by collecting multiple
samples throughout the duration of the PET scan and applying corrections for all
time points [116, 119, 120].
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Population-based input function

Due to the invasive, and time-consuming procedures required for arterial blood
sampling, alternative methods may be employed to estimate the AIF. Population-
based input function is one example of such method. For a specific tracer, injection
protocol and subject population, it is possible to calculate a population-based
average AIF from arterial blood sampling of a few subjects. This enables estimation
of an AIF for a new subject, by scaling the population-based input function with
the radioactivity concentration measured in one, or few late venous blood samples.
Although, invasive arterial blood sampling can be avoided, obviously, this method
neglects individual physiological differences as well as scan-dependent variations,
and still, it requires the sampling and measurement of at least one blood sample
for curve scaling [40, 121, 122].

Image-derived input function

Another approach to overcome the limitations with arterial blood sampling is the
use of an image-derived input function (IDIF) [40]. An IDIF can be measured
inside a suitable arterial blood pool directly in the reconstructed PET images.
Depending on which body part is inside the field-of-view of the dynamic PET
sequence, different blood pools may be available. For instance, in human PET
imaging of the thorax, the left ventricle or ascending or descending aorta may
be used, while in the abdomen, the abdominal aorta is an optional blood pool
[123]. In brain imaging, the carotid arteries or the venous sinuses can be employed
for the IDIF [124–126]. In pre-clinical PET imaging of rodents, if the heart is
inside the field-of-view, left ventricle can be used, while to avoid spill-over from the
surrounding myocardium, vena cava is a suitable alternative [127].

Due to the distance between the IDIF sampling site and the tissue of interest,
correction for tracer dispersion must be applied also with image-derived methods
[127]. Furthermore, due to the limited spatial and temporal resolution of the PET
imaging system, image-derived methods suffer from both partial volume effects
and increased image noise. These limitations require standardized methods for
partial volume correction and artery delineation, which may be difficult to achieve
in practice. Consequently, image-derived methods are not very common in clinical
or research studies [40, 128].
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Simultaneous estimation

Simultaneous estimation is a method which does not require an AIF for estimating
the kinetic parameters. Instead, it is applied to image data to estimate both the
AIF and kinetic parameters simultaneously [129–131]. One drawback of this method
is that it assumes a known mathematical AIF model and requires at least one
late blood sample for parameter estimation. Recently, non-invasive simultaneous
estimation methods were developed that obviate the need for the single late blood
sample. Instead, additional input variables from electronic health records were used
as input into the models [132, 133]. The limitation of this method is that a large set
of clinical variables must be collected and handled for each patient. These may not
necessarily be available in the health records for all patients and healthy volunteers
in research studies.

2.5.5 Arterial input function corrections

As mentioned in Section 2.5.4, a measured AIF must be corrected for delay and
dispersion effects, which will be described next.

Delay correction

Delay correction is required to account for the systematic time-delay between the
tracer arrival times at the site of blood sampling (e.g. the wrist) compared to the
tissue of interest (such as the brain). For instance, for 15O-water brain studies,
Equation 2.20 can be modified to include a time-delay term, ∆t, as follows [134]:

CT (t) = K1 · CA(t+ ∆t)⊗ e−k2·t. (2.30)

With this modified model equation, delay correction may be included as a free
parameter during model fitting. It can also be estimated separately by shifting
the arterial blood curve to match the slope of the total PET counts [135], or on
a voxel-to-voxel basis, to account for delay-time heterogeneity in the tissue [136].
Delay correction should be estimated before, or simultaneously with dispersion
correction of the AIF [118].
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Dispersion correction

If the arterial blood signal, CA(t), in Equation 2.20 and 2.25 originates from external
blood sample measurements (either discrete or in-line measurements), the measured
blood signal, g(t), will be affected by dispersion in the blood-vessels and in the
detector system tubes. This can be modeled as a convolution of the true AIF,
CA(t), and a dispersion function, d(t) as [48]:

g(t) = CA(t)⊗ d(t). (2.31)

A mono-exponential dispersion model may be assumed [48]:

d(t) =
1

τ
e
−t
τ , (2.32)

where τ is the dispersion constant. An expression for the true AIF, CA(t), can be
obtained by the Laplace transform [118]:

CA(t) = g(t) + τ
dg

dt
. (2.33)

The dispersion constant may either be fixed to a specific value, such as 15 seconds as
recommended in [48], or it can be included as a free parameter during model fitting
[118]. For instance, for 15O-water brain studies, Equation 2.30 can be modified to
include the dispersion constant, τ as follows [118]:

CT (t) = τK1 · g(t+ ∆t) + (1− τk2)K1 · g(t+ ∆t)⊗ e−k2·t, (2.34)

where g(t+ ∆t) is the uncorrected measured arterial blood curve from Equation
2.31, including both delay and dispersion errors.

Figure 2.19 shows an example of a measured and dispersion-corrected AIF using
Equation 2.33. Evidently, this correction amplifies the noise as a consequence of
the gradient-term in Equation 2.33.
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Figure 2.19: Example of an AIF from a subject injected with 15O-water. The red curve is the
measured AIF using in-line continuous arterial blood sampling. The black curve is
the dispersion-corrected AIF using Equation 2.33 with τ = 15 s.

2.5.6 Parameter estimation

The aim with kinetic modeling is to estimate the rate constants K1 - k4 from
Equations 2.20, 2.25, 2.30 or 2.34, implicitly defined through Equation 2.21. This
is commonly done using non-linear least square fitting. This must be done in an
iterative manner, by starting with an initial guess of the parameters and comparing
the measured and estimated tissue-curves, CPET (t) and CModel(t). The objective is
then to find the parameters that minimize the sum of squared differences between
the curves [137].

2.5.7 Quantification error in PET

As outlined in the preeceding sections, there are many sources of error in the imaging
chain that affects the final result of a PET-based quantitative measurement. The
quantitative error in a PET measurement may be characterized by systematic and
random errors. Systematic errors, or biases, cause the mean value over repeated
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PET measurements under identical conditions to deviate from the true value, thus
being a measure of accuracy. On the other hand, random errors affects the variance
of repeated measurements, and thus affecting the precision of the measurement.

2.6 PET applications in clinic and research

In the current thesis, clinical PET applications within lung cancer are studied in
Paper I and Paper II while Paper IV focuses on brain perfusion. Paper III is
based on a pre-clinical mouse PET study. These applications are described in the
following sections.

2.6.1 Clinical PET applications

The most widespread application of clinical PET is within oncology. Many diseases
introduce alterations in the glucose metabolism which can be measured with the
glucose analogue tracer 18F-FDG. The major clinical application of this tracer
is therefore detection, staging and assessing treatment response of cancer, for
which PET is an important tool in the patient management decision chain [4].
Common applications within oncology include lung, esophageal, colorectal, head
and neck, and breast cancer, as well as melanoma and lymphoma [3]. Clinical PET
is also commonly used in neurology, to diagnose Alzheimer’s disease, Parkinson’s
disease, epilepsy or psychiatric disorders. Furthermore, cardiovascular applications
of PET involve the evaluation of myocardial viability and to diagnose patients with
coronary artery disease [6]. 18F-FDG-PET may also be used to diagnose infection
and inflammation, by detecting granulocytes and macrophages with increased
glucose metabolism [3].

2.6.2 Lung cancer

Prevalance

In 2020, there were more than 19 million new cancer cases in the world, with around
10 million deaths from the disease. Of all cancers, lung cancer is, following breast
cancer, the second most frequent cancer type (11% of all cases) and the world-wide
leading cause of cancer-related death (18% of all deaths) [14]. The most common
causal risk factors for lung cancer are tobacco smoking, radon and air pollution,
with smoking being the leading cause, with 965 500 lung cancer deaths world-wide
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Table 2.4: TNM classification according to the 8th edition of lung cancer stage classification. The
class definitions serve here for illustrative purposes only, and have been somewhat
simplified. Please refer to reference [140] for the complete definitions.

T (Primary tumor)
T0 No evidence of primary tumour
T1 Tumour ≤3 cm

T1a Tumour ≤1 cm
T1b 1 cm < Tumour ≤ 2 cm
T1c 2 cm < Tumour ≤ 3 cm

T2 3 cm < Tumour ≤ 5 cm
T2a 3 cm < Tumour ≤ 4 cm
T2b 4 cm < Tumour ≤ 5 cm

T3 5 cm < Tumour ≤ 7 cm
T4 Tumour > 7 cm
N (Regional Lymph Nodes)
N0 No regional lymph node metastasis
N1 Metastasis in ipsilateral pulmonary or hilar nodes
N2 Metastasis in ipsilateral mediastinal/subcarinal nodes
N3 Metastasis in contralateral mediastinal/hilar, or

supraclavicular nodes
M (Distant Metastasis)
M0 No distant metastasis
M1 Distant metastasis

M1a Separate tumour nodule(s) in a contralateral lobe;
tumour with pleural/pericardial nodules or
malignant pleural/pericardial effusion

M1b Single extrathoracic metastasis in a single organ
M1c Multiple extrathoracic metastases in one or several organs

in 2010. A higher risk is associated with increased duration of smoking, and with
increased number of cigarettes smoked daily [138].

Histological subtypes

Lung cancer is traditionally classified into two main types: small cell carcinoma
and non-small cell carcinoma, with prevalances of around 10-15%, and 85-90%,
respectively. Non-small cell carcinoma is further divided into three main histo-
logical types: adenocarcinoma, squamous cell carcinoma and large cell carcinoma.
Adenocarcinoma and squamous cell carcinoma are the predominant types, with
the incidence of squamous cell carcinoma falling and adenocarcinoma rising and
surpassing that of squamous cell carcinomas [139].

Classification and staging

Lung cancer tumors are staged according to standard TNM categories, currently
following the 8th edition of lung cancer stage classification, which is the world-wide
standard as of January 1, 2017 [140]. Each tumor is described according to three
components: T for the physical extent of the primary tumor, N for regional lymph
nodes, and M for distant metastases. The current TNM classification categories are
shown in Table 2.4. From specific combinations of T, N and M, the tumor is staged
into one of four stage groups: 0, I, II, III or IV, according to Table 2.5 [140].
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Table 2.5: Lung cancer stage grouping. Adopted from [138].
T N M Stage

T1a N0 M0 IA1
T1b N0 M0 IA2
T1c N0 M0 IA3
T2a N0 M0 IB
T2b N0 M0 IIA
T1a N1 M0

IIB

T1b N1 M0
T1c N1 M0
T2a N1 M0
T2b N1 M0
T3 N0 M0
T1a N2 M0

IIIA

T1b N2 M0
T1c N2 M0
T2a N2 M0
T2b N2 M0
T3 N1 M0
T4 N0 M0
T4 N1 M0
T1a N3 M0

IIIB

T1b N3 M0
T1c N3 M0
T2a N3 M0
T2b N3 M0
T3 N2 M0
T4 N2 M0
T3 N3 M0

IIIC
T4 N3 M0

Any T Any N M1a IVA
Any T Any N M1b IVA
Any T Any N M1c IVB

The role of PET/CT for lung cancer diagnosis

PET/CT imaging plays an important role in the diagnosis of lung cancer, especially
for small pulmonary nodules less than 3 cm in diameter. In these small-volume
cancers, metabolic changes can be detected with 18F-FDG PET with much greater
sensitivity compared to the anatomical changes visible in chest radiography or CT.
False-negative results may be obtained for small nodules less than 8–10 mm in
diameter or with low-grade malignancies. Also for larger tumors, with SUV greater
than 2.5, PET/CT may increase the likelihood of malignancy detection, with worse
prognosis with increasing SUV. Furthermore, if the PET/CT examination reveals
hilar or mediastinal tumor infiltration, or mediastinal lymph node involvement,
surgery may be avoided. Likewise, if PET/CT shows non-infiltrating tumors, surgery
is associated with increased prognosis [141].

In the clinical workflow, PET/CT is an integral part in the staging of lung cancer.
For T-staging, the tumor size is most often adequately determined with CT.
However, in some cases, where lung atelectasis or obstructive pneumonia is present,
or when the primary tumor has infiltrated the pleura or mediastinum, PET is
more sensitive compared to CT for T-staging [142]. PET/CT is also the single-
most sensitive imaging modality for detecting hilar and mediastinal lymph node
infiltration, which is important for N-staging. In addition, PET/CT is superior
compared to other imaging modalities in detecting local, regional and distant

64



2.6 PET applications in clinic and research

metastases in, for instance, bone, liver or adrenal glands, which is critical information
for M-staging [142]. For the detection of brain-metastases however, MRI is superior
to 18F-FDG PET/CT, due to the high background activity of 18F-FDG in the brain
[141]. Nevertheless, PET/CT may be used to guide a biopsy to viable (non-hypoxic
and non-necrotic) regions of the tumor, or alternatively, towards a mediastinal
lymph node instead of the primary tumor. In this way, PET/CT-guided biopsy may
provide additional histological information, allowing for more accurate staging than
possible without PET/CT [142]. With the added staging information obtained from
PET/CT, patient management is changed in up to 40% of the cases, compared to
pre-PET diagnosis [141].

PET/CT is also important for radiation therapy treatment planning. For instance,
the detection of previously unknown distant metastasis may change the planned
outcome of the therapy from curative to palliative treatment. Also, PET/CT is
commonly used for the delineation of the lung cancer disease, to allow radiation
therapy treatment planning [141].

Lastly, PET/CT may be useful for evaluating treatment response, during or after
completed radiation-, chemo-, or combined radio-chemo-therapy. After completed
treatment, PET/CT has shown to be highly sensitive in detecting residual or
recurrent lung cancer disease [141].

The role of PET/MRI for lung cancer diagnosis

PET/MRI has gained interest in the diagnosis of several cancers, including lung
cancer, with the potential advantage to combine the excellent soft-tissue contrast
of MRI with the functional information from PET. However, it is difficult to obtain
high quality diagnostic MRI of the lungs due to the low density of protons in
lung tissue. Cardiac- and respiratory motion further complicates the acquisition
of lengthy MRI scans of the thorax [19]. Nevertheless, a recent review found that
PET/MRI is a robust alternative to PET/CT for T- and N-staging. A few distant
metastases were found in liver and brain on PET/MRI, which were overlooked
on PET/CT, but there were not enough data to provide any general statistical
evidence for which modality was best for M-staging. PET/CT was more sensitive
in detection of smaller lung nodules (<5 mm), compared to PET/MRI. However,
the differences found between PET/CT and PET/MRI rarely changed patient
management [143].

Artifacts may frequently occur in the MRI-based attenuation correction maps.
These may introduce inconsistent SUV measurements in serial scans, which might
affect the reliability of therapy assessment studies [13].
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Altogether, there is currently no evidence of PET/MRI being a candidate to replace
PET/CT in the diagnosis and staging of lung cancer patients [143]. Nevertheless,
one potential advantage with PET/MRI is simultaneous motion correction using
MRI-derived motion vector fields (See section 2.4.6). This may reduce motion-
induced blurring of the images, and provide increased sensitivity for small lesions
[144]. Future research is needed to provide evidence for this hypothesis. Another
advantage is that MRI does not contribute to the radiation dose to the patient.

2.6.3 Brain perfusion

Non-invasive quantification of CBF allows to identify patients with different neuro-
logical disorders, such as chronic internal carotid artery occlusion, brain tumors
and epilepsy. There exists several imaging modalities to measure CBF, for instance
using single photon emission computed tomography, CT, MRI or ultrasound [34].
However, PET imaging, using radio-labeled water (15O-water), is considered the
reference standard, because it provides accurate three-dimensional quantitative
CBF measurements on a voxel-level in the whole brain [34–36]. The tracer is
administered as an intravenous bolus injection, starting simultaneously with the
start of a dynamic PET sequence. By simultaneous sampling the AIF, and by the
assumption of the freely-diffusive tracer model, CBF is obtained for each brain
region from kinetic modeling (see Section 2.5.2).

The acetazolamide challenge is commonly used to assess critically reduced perfusion
by paired CBF measurements (baseline and post-acetazolamide). Acetazolamide
medication dilates the vascular system by increasing carbon dioxide levels in the
blood-stream, and thereby increasing the cerebral arterial blood flow velocity [145].
Vasodilation occurs over 3-4 minutes, with maximal effect at 10-15 minutes post-
acetazolamide injection. In healthy patients, CBF increases by more than 30% in
the post-acetazolamide scan, compared to baseline [146, 147]. On the other hand,
in patients with chronic internal carotid artery occlusion, the vessels are already
dilated at baseline. This occurs due to autoregulatory mechanisms that compensate
for the occluded vessels to retain the perfusion in the brain. The already dilated
vessels are unable to further expand, and thus, under the acetazolamide condition,
perfusion is equal, or less, compared to baseline [145, 146]. The rapid radioactive
decay of 15O (2 minute half-life, Table 2.2) allows paired PET measurements to be
performed in a sequence, without patient re-positioning between the baseline and
acetazolamide scan.
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2.6.4 Pre-clinical imaging

Many pre-clinical PET applications has emerged from human, clinical PET imaging,
by simply translating protocols and tracers from the hospital clinic. In this way,
medications and interventions can be studied in mice or rats using similar PET
protocols and tracers as for humans. One benefit of animal models is that repetitive
PET scans can be performed over time, to study the temporal evolution of diseases.
For instance, by implanting tumor cells under the skin of an animal, and allowing
the tumor to grow in vivo, in so-called xenograft models, the tumors can be imaged
with PET over time. After the final imaging session, the tumor can be removed from
the animal by surgery and investigated with other, ex-vivo high-resolution imaging
techniques, such as microscopy or autoradiography, to validate the lower-resolution
PET images. In this way, novel therapeutic drugs, or other cancer-treatments can
be evaluated in animal models prior to clinical studies in humans [4].

There is a fundamental size-difference between humans and mice, with an underlying
weight-ratio in the order of 3500 (70kg/0.02kg). Thus, the technological demands
on pre-clinical PET systems, in terms of spatial resolution and sensitivity are much
higher, compared to clinical PET. As discussed in Section 2.1.13, the theoretical
lower bound of resolution is around 1.8 mm and 0.7 mm for clinical and pre-clinical
PET systems, respectively. In terms of volumetric voxel resolution, this corresponds
to a ratio of 1.83/0.73 = 17. Thus, even with dedicated small-animal PET scanners,
the spatial resolution is inferior compared to human clinical systems [148].

2.6.5 Tracer development

Although the majority of clinical PET applications are performed with 18F-FDG,
this tracer also has limitations. For instance, it is non-specific, meaning that it is
taken up in all living cells, and not only in cancer cells. This may be a drawback in,
for instance, brain imaging, where the high natural background uptake of 18F-FDG
in normal brain tissue may mask possible tumor uptake. Furthermore, certain
tumors have low 18F-FDG-uptake, making them hard to visualize with PET. Thus,
there is a demand for novel, more specific tracers to be used for PET applications.

The development of a new tracer is a complex process involving many steps. One
of the roles of pre-clinical imaging in tracer developments is to test early promising
tracers in animal models that mimic a specific human disease [37]. One obvious
benefit of imaging an unknown tracer in mice is that whole-body dynamic imaging
is possible. Thus, it is possible to map the in-vivo whole-body biodistribution
using PET, although such measurements must also be validated using ex-vivo
biodistribution. Nevertheless, biological differences between humans and rodents

67



2 Medical imaging with PET, CT and MRI

may introduce variations of the applicability of a certain tracer in humans, compared
to rodents. Results from pre-clinical studies must therefore be used with caution
when extrapolated to humans [37].
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3 Machine learning for medical
imaging

Machine learning is a field of research where a computer model can learn patterns
in data in order to perform a given task, such as classification or regression. The
trained model can then be applied to new, unseen data. Machine learning is a sub-
field of the wider concept of artificial intelligence (AI), which refers more broadly
to technology that can simulate human intelligence. Thus, an AI technology may
consist of many specific machine learning models in order to accomplish a given
task without human instruction or interaction.

One potential application of machine learning in the field of medical imaging is to
replace invasive biopsy. For instance, a database of tumor images may be used to
train a classification model to separate two tumor classes, based on PET images.
When a new patient arrives to the hospital and undergoes PET imaging, using the
same protocol as for the images in the training database, the trained model can be
used to classify the tumor into one of the two tumor classes. Thus, the patient may
avoid invasive biopsy with accompanied risk for complications [26].

In Paper I and Paper II, the impact of imaging artifact and patient motion
on tumor-based image features are studied. By proper pre-processing of medical
images, and selection of motion-robust features, robust predictive models can be
built in future studies.

In Paper III and Paper IV, machine learning is used to predict the AIF in
dynamic PET studies. This may simplify future pre-clinical and clinical dynamic
PET imaging by avoiding the need for invasive blood samples.

3.1 Basic concepts and terminology

Figure 3.1 illustrates the different sub-fields of machine learning. The topics relevant
for this thesis are indicated by the green square in the figure. Supervised learning,
refers to situations where the labels of the example data are known. Two common
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Figure 3.1: Taxonomy of different machine learning approaches. The topics relevant for this these
are indicated by the green square.

tasks of supervised learning are classification and regression. A typical classification
task could be to train a model that separates the two classes best, while in regression,
the task is to predict a real number [149]. The concepts of supervised techniques will
be further described in the sections that follow, with main focus on classification,
but may with some minor changes to the models also be applied to regression
problems.

3.1.1 Features

A machine learning model is commonly trained on some measurable properties of
the data, so-called features. A feature should capture characteristic properties of the
data, that allow the model to learn the given task. Multiple features, x1, x2, . . . , xp,
may be extracted from each data sample, to form a feature vector, x [149]:

x = [x1, x2, . . . , xp]
T . (3.1)

Figure 3.2 illustrates a diagram of two features, x1 and x2 extracted from a
hypothetical dataset with known labels. Once the model has been trained, a new
data point may be classified using the model. The classification result may be
different depending on the chosen model, as illustrated in the figure. Returning to
the example in the introduction of this chapter, the two extracted features could
be, for instance, average SUV and volume of a segmented tumor in a PET image,
and the classification task could be to separate two histological subtypes of tumors.
In practice a higher-order feature set is often used, possibly with several hundreds
of extracted features from each segmented tumor (See section 3.4).
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Figure 3.2: Illustration of classification of a labelled dataset with two features, x1 and x2. A.
Dataset with labels indicated by green squares and red circles. B. Classification result
by linear (dashed line) and non-linear model (solid line). One data point from the
square class is falsely classified to the circle class by the linear model. A new data
point, illustrated with a star, is classified to the circle class by the linear model and
to the square class by the non-linear model.

3.1.2 Discriminant functions

The line and curve that separates the two classes in Figure 3.2 are generally referred
to as discriminant functions, or equivalently for linear models, decision hyperplanes,
denoted by f(x). The aim of a typical classification task is to find the discriminant
function, that separates the classes. Thus, f(x) takes a p-dimensional feature value,
x, as input, and outputs the class-relationship, for instance +1 or −1, for class w1

and w2, respectively. The mapping function can be either linear or non-linear. For
instance, a linear mapping function has the form of [149]:

f(x) = wTx + b, (3.2)

where w = [w1, w2, . . . , wp] is a weight vector and b is the bias term.

For a two-class problem, the discriminant function is given by f(x) = 0, such that
the output of the mapping function for two classes, w1 and w2, is given by [149]:

f(x) = wTx + b > 0 ∀ x ∈ w1 (3.3)

f(x) = wTx + b < 0 ∀ x ∈ w2 (3.4)

The problem to solve is how to find a suitable set of weights and bias that correctly
classifies all training data points into the two classes w1 and w2. One algorithm to
accomplish this is the perceptron algorithm, which will be described next.
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3.1.3 The perceptron

The perceptron algorithm, is a method to find the weights of a linear classifier [150].
First, the perceptron loss function is defined as [149]:

J(w, b) =
∑

x∈Y
δx(w

Tx + b), (3.5)

where Y is the subset of feature vectors belonging to training samples that are
missclassified by the hyperplane wTx + b. The parameter δx = −1 if x ∈ w1 and
δx = +1 if x ∈ w2. In this way, as long as there are missclassified points according
to the current hyperplane, the perceptron loss will be larger than zero. For instance,
if x ∈ w1 is missclassified, then wTx < 0 (according to Equation 3.3) and δx < 0,
thus J(w, b) > 0 (and vice versa for a missclassified x ∈ w2). When all points have
been correctly classified, J(w, b) = 0, because Y will be an empty set [149].

With the loss function specified, it is possible to define a weight-update regime, for
instance by the iterative stochastic gradient descent method, such that [149]:

w(s+ 1) = w(s)− ρs
∂J(w)

∂w

∣∣∣∣
w=w(s)

. (3.6)

Here, w(s) are the estimated weights at iteration step s, and ρs is a positive number
called learning rate. Intuitively, Equation 3.6 may be understood as subtracting a
positive number from the current weight estimate, in the direction of decreasing loss
with respect to the weighs. The concept of stochastic gradient descent is illustrated
in Figure 3.3. Substituting Equation 3.5 into 3.6 gives [149]:

w(s+ 1) = w(s)− ρs
∑

x∈Y
δxx, (3.7)

which concludes the perceptron algorithm. By selecting an initial estimate of the
weights, w(0), and an appropriate learning rate, ρs (which may vary with iteration
number, s), it can be shown that the perceptron algorithm converges in a finite
number of iterations [149].

Once the perceptron algorithm has converged, that is, for a given set of training
data, there are no more missclassified samples, the learned set of weights and bias,
also known as the trained model, may be applied to a new, unseen sample. This
is done by calculating the weighted sum of the inputs and adding the bias term,
according to Equation 3.2, and then applying the classification criteria [149]:
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Figure 3.3: Illustration of the stochastic gradient descent algorithm. The red bell-shaped curve
illustrates the loss-weight space, that is, for a given set of weights, the loss reaches
a global minimum. The weights are initialized and the gradient of the loss function
is calculated. The weights are updated along the negative direction of the gradient,
towards the minimum value, with a step size equal to the learning rate. Blue arrows
indicate intermediate weight updates with decreasing (adaptive) learning rate, to
reduce the risk of overshooting the global minimum.

If f(x) = wTx + b > 0 assign x to w1 (3.8)

If f(x) = wTx + b < 0 assign x to w2 (3.9)

This procedure of linear classification is illustrated as a basic network unit, or
perceptron in Figure 3.4. Here the operation of assigning a class label to the output
of f(x) by Equations 3.8-3.9 is performed by the so-called activation function, g(z).
In this case, the activation function is a non-continous step function:

g(z) =

{
1 z > 0
−1 z < 0

(3.10)

To guarantee convergence, the perceptron algorithm assumes linearly separable
classes. In many physical problems however, this is a non-realistic assumption.
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Figure 3.4: Illustration of the perceptron. Each input feature x1, x2, . . . , xp is multiplied by a
weight, w1, w2, . . . , wp, summed and added to the bias term, b. The output number
then goes through a non-linear activation function, g, to generate the class label for
the input, for instance −1 if wTx + b < 1.

Therefore, the perceptron is rarely used for any real-life problems. Nevertheless,
it is fundamental for understanding more complex neural networks, which will be
described next.

3.2 Neural networks

Linear classification algorithms, such as the perceptron, only have a guaranteed
solution for linearly separable classes. For non-linearly separable data, linear clas-
sifiers may still be used, but by other means of optimizing the decision surface,
for instance by the minimizing the mean squared error. Nevertheless, in most
situations, non-linear classifiers have superior performance to linear classifiers. As
will be shown, neural networks may be formed by combining several perceptron
units, to perform, not only non-linear classification, but also regression. The neural
network approach to regression is relevant for Paper III, where it is used for AIF
prediction.

3.2.1 Multilayer perceptron

The multilayer perceptron (MLP), or feed-forward neural network is an example of
a non-linear classifier, which is build up by combining several single perceptron
units, as shown in Figure 3.5.
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Figure 3.5: Illustration of a multilayer perceptron, or feed-forward neural network. Circles in the
diagram represent the nodes of the network. The input features x1, x2, . . . , xp are
presented to the network at the input layer. The line from each input node represents
multiplication by a weight. Each node in the hidden and output layer represents
summation of the weighted output from the previous layer, addition of the bias term,
and applying the activation function to the result. Note that the bias term and the
non-linear activation function at each node have been omitted in the illustration.

As for the perceptron, the input features x1, x2, . . . , xp enter at the input layer.
However, there are some other key differences between the MLP and the perceptron.
First, an intermediate, so-called hidden layer, has been added after the input layer.
This layer serves for transformation of the input vector into a new space. Second,
several perceptron units, so-called nodes, have been added to the hidden layer.
Each node may be thought of as one hyperplane that can separate the classes in
the intermediate space. In Figure 3.5, the hidden layer has been exemplified with
three neurons, thus the p-dimensional input vector is transformed into a three-
dimensional intermediate space. Lastly, the output layer, which for the single-unit
perceptron was only one number, is here a two-dimensional vector, y = [y1, y2],
where

∑
i yi = 1. Classification into two classes is now performed by encoding

the labels of the data as y = [1, 0] for x ∈ w1 and y = [0, 1] for x ∈ w2. In this
way classification into more than two classes is possible, by simply increasing the
number of output nodes [149].

3.2.2 Architectures and activation functions

The architecture of a neural network, that is, the specific combination of number
of hidden layers and the number of nodes in hidden and output layers, determines
the capabilities of the network, and must be pre-defined by the user. For instance,
complex classification tasks may be solved by including a large number of hidden
layers, in so-called deep neural networks. The activation function at each node may
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also be chosen freely. However, the step-function used for the perceptron has zero
gradient for all inputs (except for z = 0, where it is undefined), and can not be
used in the gradient descent-based training of neural networks (as will be outlined
in the next section). Instead, alternative activation functions are commonly used,
for instance the sigmoid function or the rectified linear unit (ReLU) inside the
network, and the softmax function at the output layer [149, 151]:

Sigmoid : g(z) =
1

1 + e−z
(3.11)

ReLU : g(z) = max(0, z) (3.12)

Softmax : g(z)j =
ezj∑K
k=1 e

zk
(3.13)

The activation function, g(z), takes the output, z, from the preceding node, and
maps it to a new number. For instance, the sigmoid function in Equation 3.11,
outputs a number in the range 0 to 1, while the ReLU in Equation 3.12 has linear
output only for positive input numbers. For the softmax function in Equation 3.13,
indices j and k refers to output nodes and K is the total number of output nodes
(classes). This function forces the output of node i in a K-class problem to the
range 0 to 1 and ensures that all output nodes sum to 1. In this way the output at
each node can be interpreted as a probability of that class assignment [149, 151].

3.2.3 Training of neural networks

Training of a neural networks refers to the iterative procedure of finding the weights
and bias parameters that optimally solves a desired task. When some features, x,
are presented at the input layer of a trained network, the calculated output at
node k, ŷk, should become similar to the desired output of that node, yk. This is
achieved by optimizing a loss function, as introduced for the perceptron in Section
3.1.3. The loss function measures the performance of the neural network for the
current set of weights by comparing the network output to the desired output
(label). Examples of commonly-used loss functions are the mean squared error and
the cross-entropy loss [149]:
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Mean squared error : J =
1

2

N∑

n=1

K∑

k=1

(ŷk − yk)2 (3.14)

Cross entropy : J = −
N∑

n=1

K∑

k=1

yknlog[ŷkn]. (3.15)

Here, the first summation is over N data points and the second summation is
over K output nodes. The mean squared error compares two real numbers, and is
therefore ideal to use in regression settings (Section 3.2.4). For K-class classification
with softmax activation (Equation 3.13), the cross entropy is preferred, as it sums
the log of the probability of class assignment at each output node for each class
separately.

Similar to the perceptron example in Section 3.1.3, the task of network training
is to minimize the loss function. This is done by the stochastic gradient descent
algorithm, as outlined for the perceptron in the preceding section. In short, the
weights of the network are first set to some initial values. A data sample is fed
trough the network, resulting in a computed output at each node. Subsequently,
the prediction error is calculated by evaluating the loss function. Based on the
chain-rule, the derivative of the loss for the ith weight, ∂J

∂wi
, can be calculated using

the so-called backpropagation algorithm. The update of each weight, wi, is then
performed according to Equation 3.6. The process is repeated for next sample in
the dataset. One so-called epoch is completed when all training samples have been
fed through the network. Usually, training is repeated for several tens to hundreds
of epochs. By monitoring the value of the loss function, training can be stopped
when there is no further decrease of the loss function [149].

In practice, performing a weight update for each data sample may result in slow
computations, and fluctuations of the weight estimates and the loss function.
Therefore, it is common to feed mini-batches of data samples through the network.
The gradients at each weight are then averaged over all samples in the mini-batch
before weight update is performed. This speeds up the computation times and
reduces the fluctuations of the weights. The typical size of a mini-batch may vary
in the range of tens to hundreds, depending on the size of the dataset [152].

The learning rate in Equation 3.6 must be carefully chosen. A too small learning rate
will lead to slow convergence, while a too large learning rate may cause fluctuation
around the optimal solution. To this end, several alternative gradient descent-based
optimization methods has been developed, that calculates adaptive learning rates
for each parameter, such as Adagrad or the Adaptive Moment Estimation (ADAM)
algorithm [152].
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3.2.4 Regression

MLPs used for classification outputs probabilities of class memberships based on
the input data. It is straight-forward to turn an MLP into a regression model,
which, based on the input data, predicts a real-valued number, instead of a class
probability, as output. First, only one output node is required, instead of K output
classes for classification. Next, the softmax function in the output layer must be
replaced by a linear activation function, i.e. g(z) = z. Lastly, as the cross entropy
loss function is intended for use with probability distributions, alternatives, such
as mean squared error loss function (Equation 3.14) should be considered.

With these modifications, an MLP may be used to predict a real valued number
instead of classes membership. For instance, if the input are a set of tumor features,
the network can be trained to predict some clinically relevant quantitative measure,
based on the training data, such as expected number of months of survival.

3.2.5 Recurrent neural networks

The feed-forward neural network, introduced above, processes a fixed-length input
vector and outputs a class assignment probability or a real number, in the cases of
classification and regression, respectively. Such methods work for time-independent
input features, such as those originating from a static PET image. However,
sequential input data, for instance from a dynamic PET sequence, cannot be
easily handled by ordinary feed-forward networks. For these data, where the input
features are a time-series with τ time steps, x(1),x(2), . . . ,x(τ), another type, so-
called recurrent neural networks have been developed.

Recurrent neural networks are based on parameter sharing across the time steps.
This means that the same weight is used at different time points in the sequence,
and that the output at each time-step is a function of all previous time-steps. This
concept is illustrated in Figure 3.6, where the same parameter, w1 is used for all
time steps. In addition, a recurrent connection between the hidden layers has been
introduced by the weight w2. This serves for passing information from previous
time steps forward, and therefore allows the hidden layer to function as a memory
state for the network. In recurrent neural networks, the hidden layer is therefore
named hidden state. Thus, for each time step, t, the prediction, y(t) is modelled as
y(t) = f(x(t),h(t−1)), where x(t) is the current time step input, h(t−1) is the previous
time step hidden state, and f is parametrized by a neural network [153, 154].

The example network in Figure 3.6 has one output node for each time step, thus
it calculates an output time series with the same length as the input. Other
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Figure 3.6: Illustration of a recurrent neural network with three time steps. Circles in the diagram

represent nodes of the network. The input features x(1),x(2),x(3) represent different
temporal instances of x. The line from each input node represents multiplication by a
weight, where the same weight is used for all time steps between the input and hidden
layer, as well as between the hidden and output layer. Each node in the hidden and
output layer represents summation of the weighted output from the previous layer,
addition of the bias term, and applying the activation function to the result. Note
that the bias term and the non-linear activation function at each node have been
omitted in the illustration.

architectures are also possible, for instance where a class probability, or a real
number is predicted at the end of the last time step [154].

Similar to feed-forward neural networks, recurrent neural networks are trained with
the backpropagation algorithm, but because of the time-dimension, this process
is referred to as backpropagation through time. Unfortunately, standard recurrent
neural network architectures have a limited ability to learn long-term dependencies
because of so-called vanishing or exploding gradients. These arise from the repetitive
multiplication of the same weights in the network during backpropagation. An
activation of the hidden state at an initial time-step may therefore disappear and
be over-written with a new activation at later time steps [153, 155].

3.2.6 Long short-term memory networks

To overcome the problem of learning long-term dependencies, gated recurrent
neural network architectures have been introduced. One example of such a network
is the long-short-term memory (LSTM) network [156], illustrated in Figure 3.7.
In addition to the hidden state, an LSTM also contains a cell state that passes
information forward from previous time steps. The information that is stored in
the cell state is carefully regulated by three serial gates: an input gate, a forget
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Input Hidden Output

x(t)

y(t)h(t)

h(t-1)

F

I

O

c(t-1)

c(t)

Cell

Figure 3.7: Illustration of one time-step of a long short-term memory network. Circles in the
diagram represent nodes of the network. The cell state works as the long-term memory
in this network. First, the input feature at the current time step, x(t), and the hidden
state from the previous time step, h(t−1), are combined to allow the forget gate, F,
to control what is removed from the cell state from the previous time step, c(t−1).
Next, x(t) and h(t−1) are combined to let the input gate, (I), control what is added to
the cell state to form c(t). In addition, x(t), and h(t−1) are also used at the output
gate, O, to generate the hidden state representation for the current time step, h(t),
which is then used together with the current cell state, c(t) to generate the output at
the current time step, y(t). The vectors h(t) and c(t) are passed on to the next time
step, where the process is repeated for with input x(t+1) . The line from each node
represents multiplication by a weight, where the same weight is used for all time steps.
Each node represents summation of the weighted inputs to that node, addition of the
bias term, and application of an activation function. Note that the bias term and the
activation functions have been omitted in the illustration. Adopted from [154].

gate and an output gate decide what information will be added to, removed from,
or carried on by the cell state at each time step [156]. In practice, the gates consist
of trainable weights and activation functions. For instance, if the input gate allows
to add some information to the cell state at the first time step, this is carried
on to subsequent time steps as long as the forget gate does not remove it. The
information from the cell state can be combined with the hidden state to generate
an output at any subsequent time step, as controlled by the output gate [153].

The LSTM approach is used for AIF prediction in Paper III.
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3.3 Gaussian processes

In Equation 3.2 of Section 3.1.2, the mapping function of a classification system,
f(x), was specified as a linear function with parameters w and b. Similarly, the
neural network approach (Section 3.2) was described as a system of connected linear
mapping functions with a finite set of learnable parameters. Gaussian processes
(GPs) introduce a different approach for estimating such mapping functions.

GPs represent a non-parametric method, such that there are no assumptions on
a particular set of parameters. It is based on Bayesian statistics, meaning that it
starts by assuming a prior distribution over all possible mapping functions, before
observing the training data. Samples from the prior follow a Gaussian distribution,
which should reflect general properties of the expected training data in terms of
mean value and variance. With Bayes rule, the prior distribution over functions
can be conditioned on the training data points, such that functions passing through
training data points are given increased weight, resulting in a posterior distribution.
By sampling functions from the posterior it is possible to estimate the underlying
mapping function, f(x), as a GP, specified by its mean function. The estimated
mapping function can then be used to infer function values for new, unseen, test
data. In addition, the variance of the posterior distribution can be calculated, and
thus provide an uncertainty measure of the predictions [157].

The main advantage of GPs over the neural network approach is the possibility for
uncertainty estimation directly from the input training data. Furthermore, GPs
use covariance functions, referred to as kernels, to calculate similarities between
data points. Such, so-called kernel methods, are commonly known to work well with
sparse training datasets, as opposed to neural networks [158].

Although GPs can be used for classification, for this thesis it is relevant to describe
the methods for function estimation (regression). GP regression is used for AIF
prediction in Paper III and Paper IV.

3.3.1 Definition

A GP is, by definition, a collection of any finite number of random variables that
follow a joint multivariate Gaussian distribution. Given an input vector, x, a GP
describes the probability distribution of the mapping function value, f(x), at the
location of the input. A GP is completely defined by its mean function, m(x),
and covariance function (or kernel function), k(xi,xj), where the mean function is
commonly set to zero [157].
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3.3.2 Covarance functions

A covariance function is a function that takes two vectors as input and returns
a real number which is small if the vectors are close in feature space, that is, if
they are similar. Likewise, a large real number is returned if the input vectors
are far apart, or dissimilar. Covariance functions are often denoted as k(xi,xj),
where xi and xj are two p-dimensional input vectors. A kernel matrix may be
generated as a square matrix, Ki,j , with entries k(xi,xj). Per definition, covariance
functions must generate kernel matrices that are symmetric and positive semidefinite
(eigenvalues ≥ 0) [157].

There exists many different covariance functions from which two will be presented
next. The squared exponential covariance function is intuitive and simple to explain
and is commonly used in many kernel applications. However, in Paper III and
Paper IV, a covariance function from the Matérn class was used for regression.

Squared exponential covariance function

One commonly used covariance function is the squared exponential covariance
function, defined for two p-dimensional input vectors, xi and xj, as [157]:

k(xi,xj) = σ2
fe
− 1

2
(xi−xj)>L(xi−xj). (3.16)

Here, L = `−2I for isotropic kernels, where ` is a scalar, or L = diag(`) for
anisotropic kernels, where ` is a vector of length p, thus with different values for
each dimension. In Equation 3.16, σ2

f is a hyperparameter that controls the overall
variance of the distributions, while the ` is the length scale, controlling the scaling
of the inputs dimensions. Intuitively, the length scale affects the distance at which
two points are considered to be close (or similar), along a specific dimension. In
this way, the covariance function returns a positive number that is large if the input
vectors are dissimilar, while for similar input, the exponential term approaches
unity [157].

Matérn class of covariance functions

The squared exponential covariance function has been suggested to be too smooth for
modeling many physical processes. As an alternative, the Matérn class of covariance
functions has been proposed. In addition to the overall variance and length scale, this
covariance function has another hyperparameter, ν, which control the smoothness
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of the generated functions. The scaling of the Matérn covariance funcion has been
chosen such that when v →∞, it approaches the squared exponential. Also, the
expression for the Matérn class covariance functions simplifies considerably when
choosing ν as a half-integer. It is argued in reference [157] that one of the most
relevant cases for machine learning is when ν = 5/2. In this case, the Matérn
covariance function is a product between a plynomial and an exponential function,
as follows [157]:

kν=5/2(xi,xj) = σ2
f

(
1 +
√

5r +

√
5

3
r2

)
e−
√

5r, (3.17)

where r = (xi−xj)
>L(xi−xj), with L and σ2

f being defined equally as in Equation
3.16.

3.3.3 Prior and posterior distributions

Once the covariance function has been defined, it is possible to generate samples
from the prior distribution, f∗. Assuming N∗ test locations at which the prior should
be generated, the prior distribution is defined by a random Gaussian vector:

f∗ ∼ N (0, K(X∗, X∗)). (3.18)

Here, a zero mean function is assumed. Further, K is the symmetric N∗ × N∗
covariance matrix where the entries are the result of the kernel function evaluated
for each pair of input points, xi,xj|i, j = 1, . . . , N∗, in a p-dimensional input data
matrix, X∗ [157]. Figure 3.8A illustrates three realizations of the prior distribution
for a one-dimensional input vector.

The prior distribution in Figure 3.8A has equal variance for all input points, thus, all
predicted curves are equally probable. To restrict the number of possible predictions,
training data must be introduced. First, assuming N training samples, the joint
prior distribution of the training outputs, f and the test outputs, f∗ are formed by
[157]:

[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (3.19)

Note that as kernel matrices are symmetric,K(X,X∗) = K(X∗, X). Thus,K(X,X∗)
and K(X∗, X) results in an N×N∗ and N∗×N matrix, respectively, while K(X,X)
in an N ×N matrix.
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Figure 3.8: Illustration of a GPs prior and posterior distribution using the squared exponential
covariance function (Equation 3.16) with unit variance, σ2

f = 1 and unit length scale,
` = 1. A. Three realizations of the prior distribution for a one-dimensional input
vector, consisting of N = 50 evenly distributed data points in the range between -5
and 5. B. The posterior distribution is conditioned on the five training data points,
effectively resulting in a rejection of all functions that do not pass through the training
data. In both A and B, the shaded area represents the mean plus and minus two
standard deviations for each input point. Note that the 50 discrete data points are
here represented by continuous lines.

By conditioning the joint prior distribution on the training data points, the posterior
distribution is obtained. The posterior distribution does, therefore, only contain
functions that agree with the observed training data [157]. This is illustrated for the
one-dimensional case in Figure 3.8B. Evidently, the variances at the locations of the
training observations are zero, and thus all the sampled functions, and obviously
also the mean function, passes through the training points. Regression can now be
performed at any desired test location along the input dimension.

The posterior distribution may be derived by conditioning the joint Gaussian
distribution on the observations, again assuming zero mean function [157]:

f∗|f ∼ N (K(X∗, X)K(X,X)−1f , K(X∗, X∗)K(X,X)−1K(X,X∗)) (3.20)

Here, the first term describes the predictive mean, while the second term is the
variance.

84



3.3 Gaussian processes

3.3.4 Noisy observations

In reality, the observations are usually corrupted by noise, ε. Consequently, the
mapping function is modified to y = f(x) + ε. It is common to assume a Gaussian
noise model, such that ε ∼ N (0, σ2

ε ). Furthermore, noise is assumed to be uncor-
related between samples. This allows the noise term to be incorporated into the
covariance function, such that, for the squared exponential covariance function,
Equation 3.16 becomes [157]:

k(xi,xj) = σ2
fe
− 1

2
(xi−xj)>L(xi−xj) + σ2

ε δij, (3.21)

where δij is the Kronecker delta, equaling one if i = j and zero elsewhere. Similarly,
the prior on the observations becomes y ∼ N (0, K(X,X) + σ2

ε I), where I is the
identity matrix, thus affecting only the diagonal terms of the covariance matrix.
A similar expression can be derived also for the Matérn covariance function in
Equation 3.17. With these modifications, the equations for the predictive mean,
E[f∗], and the variance, V[f∗] becomes [157]:

E[f∗] = K(X∗, X)[K(X,X) + σ2
ε I]−1y, (3.22)

V[f∗] = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
ε I]−1K(X,X∗) (3.23)

Note that, in Equation 3.22, the mean function is a linear combination of the
observations, y. On the other hand, the variance, in Equation 3.23 is independent
of the observations and thus only depending on the input training and test data. Also
of note is that the first term in Equation 3.23, K(X∗, X∗), is the prior covariance
(from Equation 3.18), from which a positive term is subtracted, representing the
information obtained from the observations. This explains the observed reduction
of the variance close to the training data, in Figure 3.8B [157].

As y is an N × p matrix, where p is the number of dimensions, the output of
Equation 3.22 will be a corresponding N∗ × p matrix for all test samples. Similarly,
the output of the predicted variance, in Equation 3.23, will be an N∗×N∗ matrix.

Both Equation 3.22 and 3.23 involves inversion of an N ×N matrix, which may be
computationally demanding for large datasets. Practical implementations, therefore,
calculate the so-called Cholesky decomposition (or matrix square root), M , of the
covariance matrix, such that K = MM>, where M is a lower triangular matrix.
This decomposition may significantly simplify the matrix inversion by a two-step
forward and backward substitution, as outlined in reference [157].
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3.3.5 Hyperparameter optimization

By the introduction of the noise term in Equation 3.21, the hyperparameter
space is now parametirized by θ = {σ2

f , l, σ
2
ε}1. Figure 3.9 indicates how varying

hyperparameters affects the prior and posterior distributions. Evidently, the variance
term, σ2

f , affects the overall variations of the generated functions along the output
dimension (Figure 3.9C-D); the length scale, `, alters the variations along the input
dimension (Figure 3.9E-F); and the noise term, σ2

ε , introduces noise within the
generated functions, which consequently implies a non-zero variance at the test
points (Figure 3.9G-H).

The hyperparameters are commonly optimized on the basis of the observed training
data, y. The objective function used for this purpose, is the so-called marginal
likelihood, as this expression contains both the observations and the hyperparameters.
The derivation of this expression involves an exponential term originating from
the covariance function. To simplify the expressions, it is common to compute
the logarithm of the marginal likelihood. It can be shown that the log marginal
likelihood is given by [157]:

U = log[p(y|X,θ)] = −1

2
y>(K(X,X)+σ2

ε I)−1y−1

2
log[|K(X,X)+σ2

ε I|]−
N

2
log[2π]

(3.24)

The optimal solution is found by maximizing this objective function using, for
instance, gradient descent. Alternatively, minimizing the negative log marginal
likelihood would yield the same result. In short, the partial derivatives with respect
to the hyperparameters, θ, are calculated and solved for ∂U

∂θi
= 0, where θi repre-

sents each of the hyperparameters of the covariance function. Once the optimal
hyperparameters have been found, they can be used together with Equations 3.22
and 3.23 to calculate the GPs predictive mean and variance, respectively [157].

1This parametrization is valid for the squared exponential and the Matérn covariance functions.
For other covariance functions, additional hyperparameters may be required.
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Figure 3.9: Illustration of a GPs prior (left column) and posterior (right column) distribution
using the squared exponential covariance function (Equation 3.16) with varying
hyperparameters, variance, length scale, and noise, θ = {σ2

f , l, σ
2
ε }, as indicated in

each subfigure. A-B. Unit overall variance, unit length scale and zero noise variance
(equal to Figure 3.8). C-D. Decreased overall variance yields decreased overall variations
of the generated functions. E-F. Decreased length scale results in increased variations
along the input dimension of the generated functions. G-H. Increased noise variance
yields within-function variations and introduces an uncertainty around each training
point. Please refer to the legend of Figure 3.8 for a full description of the generation
of the prior and posterior distributions.
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3.4 Radiomics

Radiomics refers to the concept of high-throughput quantitative image analysis
based on extracted medical imaging features. It relies on standardized definitions
of mathematical features that are extracted from medical images obtained from
standardized imaging protocols. The underlying hypothesis is that an automated
analysis of the extracted features, by means of for instance machine learning, is
superior to manual, visual analysis by a human observer [159].

Radiomics has been used to build predictive models in CT [29, 31], MRI [160, 161],
and PET [162]. Specifically, radiomic features extracted from lung-tumor PET
images have been used for the prediction of histological subtypes [163], epidermal
growth factor receptor (EGFR) mutation status [28], anaplastic lymphoma kinase
(ALK) gene expression [164], survival [165–171], local control [172] and recurrence
[171, 173].

The major challenges in the field of radiomics has been the lack of standardized
feature definitions and processing workflow that allows generalization of results
between imaging centers [174]. Ideally, to build robust prognostic models, radiomic
biomarkers should have low variability to factors which are unrelated to the
disease. Therefore, standardized imaging and processing protocols are important to
minimize the variability due to scanner type [175], reconstruction settings [176–178],
segmentation method [176, 178], and gray scale discretization method [179]. The
Image Biomarker Standardisation Initiative (IBSI) is a recent attempt to provide
procedures for standardized processing and feature extraction, as well as definitions
of hundreds of mathematical imaging features [180].

Radiomics is relevant for Paper II, where the motion-robustness of PET-derived
radiomic features is investigated. In the following, the most important key concepts
in the radiomics pipeline are discussed.

3.4.1 Image processing

It is important that the images are processed to enhance the quality for subsequent
feature extraction. This may include noise reduction, artifact reduction and normal-
ization. For instance, PET images should be converted to the units of SUV (Section
2.1.9), and relevant artifacts should be corrected prior to further analysis (Section
2.4.5). If the voxel-dimensions are non-isotropic, they should also be interpolated
into isotropic resolution, to make features rotationally invariant [180].
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3.4.2 Segmentation

Extraction of radiomic features requires the definition of a volume of interest (VOI)
in the image. This is the region in image space, for instance a tumor, within which
the features are calculated. A standardized and reproducible VOI-definition method
should be used within a study to reduce the variability. The VOI can be segmented
either manually slice-by-slice, or by automatic, or semi-automatic segmentation
methods [181]. In 18F-FDG-PET, a semi-automated threshold method based on,
for instance, 41% SUVmax can be employed to segment the tumor [64]. For the
segmentation of normal brain anatomy, due to the rigid geometry of the scull,
co-registration with a standardized VOI template is a plausible alternative to
manual segmentation [182]. The segmented region is commonly represented as a
binary mask with the same size as the original image, but with the voxel-values
equal to zero outside the VOI and one inside the VOI.

3.4.3 Gray scale discretization

The range of intensity values within the VOI must be discretized to a limited range
in order to extract meaningful radiomic features. Two main methods can be used
for gray scale discretization. Either, the number of bins or the bin-width can be
fixed. With the fixed bin-number method, the voxels are first normalized to the
range 0 to 1 by the relative difference between maximum and minimum intensity
values within the VOI. Next, they are re-sampled into a desired number of bins,
by multiplication of the number of bins, most commonly 8, 16, 32, 64, 128 or 256
bins [179, 183]. The resulting bin number is then rounded down to the nearest
integer bin, which implies that the normalized intensities no longer are related to
the original image units. This method is therefore most suitable for images without
absolute units, but where contrast differences are important, such as MRI. However,
for PET and CT, the fixed bin-width method is recommended, where the image
intensities are arranged into a new bin after each pre-defined bind-width. In this
way, the intensities maintain the original units [180].

3.4.4 Feature extraction

When the images have been preprocessed, segmented and intensity-discretized,
features can be extracted from each VOI. The features are commonly subdivided
into voxel-based and shape features. Voxel-based features are calculated on the
intensity values inside the VOI, while shape features are derived from the binary
segmentation mask. Voxel-features, in-turn, may be subdivided into first order (or
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intensity-based) statistical features, histogram features, and higher-order statistical
(or texture) features. The latter group may include gray level co-occurrence matrix
(GLCM) features, gray level dependence matrix (GLDM) features, gray level run
length matrix (GLRLM) features, gray level size zone matrix (GLSZM) features,
and neighboring gray tone difference matrix (NGTDM) features. These are all are
based on secondary matrices calculated from the discretized intensity values of
the original images, each representing a different encoding of the spatial intensity
variations of the original image. Details on the calculation of many standardized
voxel- and shape-features are given in reference [180].

3.4.5 Image transformations

Features may be derived from original as well as transformed images. Specifically,
features from wavelet filtered images have been commonly used for building predic-
tive models in medical imaging [31, 184]. Wavelet filtering decomposes the original
image into coefficients with varying level of detail by convolution with wavelet
functions of varying scale. At each scale, directional low-pass (L) and high-pass (H)
filtering of the image is performed with pre-defined wavelet functions. While the
wavelet function and number of scales can be chosen arbitrarily, the so-called coiflet
wavelet, applied at three scales, has been common within medical imaging [31, 184].
This results in eight wavelet coefficients from which features can be extracted using
the original segmentation mask. The decompositions are commonly named LLL,
LLH, LHL, LHH, HLL, HLH, HHL and HHH, according to the x, y, z order of
directional filtering [31].

3.4.6 Feature selection

The features extracted from both original and transformed images may form a
feature vector of several hundreds of features for each subject, many of which may
be correlated or irrelevant for the prediction task. Furthermore, training a model
with limited amount of data from a high-dimensional feature space may result in
overfitting, meaning that the model will not generalize well to new data [185]. Also,
as discussed earlier, features should be robust to study-specific factors, such as
scanner and image processing settings. Feature selection is therefore an important
step prior to, or simultaneously with model training.

Several feature selection methods, both supervised and unsupervised, exist [185].
For instance, correlated features add minor value to the models and may be re-
moved [29]. Moreover, with so-called wrapper methods, subsets of features from a
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high-dimensional feature space are used to train a model. Evaluation is performed
and training is repeated for a different feature subset, to find the optimal feature
combination. This method is useful for low-dimensional feature sets, but is com-
putationally intensive and thus not practical when dimensionality is increased. A
comprehensive overview of feature selection methods is out of scope for this thesis
but can be found in references [185, 186].

3.5 Error estimation and validation methods

When a machine learning model has been trained using the available training data,
it is desired to evaluate its performance. This should be carried out on an external
test dataset which has not been part of the training. In many practical situations
only a single dataset is available for both training and testing and the dataset must
therefore be split into a training and test set prior to training. This is referred
to as the holdout method. It can be shown that the error probability decreases
with increasing size on the training dataset. On the other hand, the variance of
the model evaluation increases with decreasing size of the test dataset. Hence, for
limited dataset sizes, the number of samples used for training and testing must be
carefully considered [149].

It is common to use 80% of the data to train the models, while 20% are held out
for subsequent testing. In this example, the dataset is split into five parts, four
parts used for training and one part used for testing. By systematically excluding
each of the five parts for test set, and repeating model training with the remaining
four parts, it is possible to calculate an error-estimate of the model performance,
by averaging the performance measurements from all test sets. This method is
referred to as K-fold cross validation, with K being the number of splits.

One drawback of the holdout method is that, for small datasets, retracting 20%
of the data from model training may decrease the accuracy of the trained model.
In these situations, the leave-one-out method may be used. Here, one sample is
left out for testing, while the remaining samples are used in the training set. The
process is repeated with each of the samples being in the test set once. Thus, this is
equivalent to K-fold cross validation with K being equal to the number of samples.
One drawback of the leave-one-out method is that it is highly computationally
demanding, as a new model must be trained for each sample in the dataset.

In Paper III and Paper IV, the leave-one-out method is used for cross validation,
due to the limited size of the available datasets.
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4.1 Paper I

Quantitative PET/MR imaging of lung cancer in the presence of arti-
facts in the MR-based attenuation correction maps

Samuel Kuttner, Martin Lyngby Lassen, Silje Kjærnes Øen, Rune Sundset, Thomas
Beyer and Live Eikenes, Acta Radiologica, Apr. 2020, Vol. 61, pp 11-20

The aim of this paper was two-fold. First the frequency and test-retest reproducibil-
ity of artifacts in MRI-based attenuation correction maps in a PET/MRI lung
cancer patient cohort was investigated. Second, the impact of artifact corrections
on PET-based tumor quantification was studied. More specifically, truncation of
arms outside the field-of-view, susceptibility and tissue inversion artifacts, as well
as the absence of bone signal were investigated. Truncation artifacts were present
in all of the acquisitions (100%), while susceptibility and tissue inversion artifacts
were observed in 12%, and 52% of the scans, respectively. Furthermore, bone is not
visible in standard MRI, due to the rapid spin-relaxation rates.

The most important result from this study was that up to 20% relative differences
were introduced after susceptibility artifact correction, with large inconsistencies
between test-retest scans. On the other hand, bone and truncation corrections
affected the quantitative accuracy in lung tumor SUV with less than 5%, and also,
tissue inversion was anticipated to have a small effect.

This study has demonstrated that specific type of imaging artifacts may have clinical
implications for patients undergoing serial imaging for tumor therapy response
assessment. Moreover, the study highlights the importance of correcting for imaging
artifacts prior to training of predictive machine learning models, for instance in
tumor classification studies. In this way, extracted tumor features will be the least
affected by PET/MRI-imaging-related limitations, which will result in increased
robustness of the predictive models.

Contributions by the author: The study concept and design were developed
by me, in collaboration with the other co-authors. I performed the image and data
analysis and discussed the results with the other co-authors. I wrote the main draft
of the manuscript.
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4.2 Paper II

Motion-robust radiomic features for image classification in 18F-FDG
PET/MRI imaging of lung cancer

Samuel Kuttner, Erna-Elise Paulsen, Robert Jenssen, Rune Sundset, Jan Axelsson,
Manuscript

This paper aimed at studying motion variability of radiomic features in PET images
of lung tumors. In addition to the artifacts studied in Paper I, breathing-induced
motion may also introduce variability in the radiomic features, which reduce
the accuracy of predictive machine learning models. Motion was characterized
by comparing radiomic features extracted from tumor segmentations in three
different PET reconstructions: 1) Free-breathing PET, 2) end-expiration PET and
3) MRI-based motion corrected PET. In each reconstruction, the primary tumor
was segmented using a threshold algorithm, followed by the extraction of 834
standardized radiomic features from each segmentation.

This main outcome of this study was a list of 43 motion-invariant features, 14 of
which had low correlation to the other included features. These features may be
extracted from any of the three PET image reconstructions, without introducing
reconstruction-bias in the feature values. The free-breathing PET scan protocol is
simpler and more time-efficient to perform, compared to the motion correction se-
quences. Thus, by employing motion-robust features in machine learning prediction
models, gating and motion correction acquisitions are not needed, which simplifies
the PET workflow for patients, and allows for collection of data in retrospect, where
respiratory gating or motion correction was not performed. Furthermore, hybrid
PET/MRI is still an emerging modality, thus limiting the use of MRI-based motion
correction at all PET imaging centers.

Contributions by the author: I developed the study concept and planned and
coordinated the clinical PET/MRI study, in collaboration with the other co-authors.
The image processing and data analysis was performed by me, and the results were
discussed with the co-authors. I wrote the main draft of the manuscript.
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4.3 Paper III

Machine learning derived input-function in a dynamic 18F-FDG PET
study of mice

Samuel Kuttner, Kristoffer Knutsen Wickstrøm, Gustav Kalda, S Esmaeil Dorraji,
Montserrat Martin-Armas, Ana Oteiza, Robert Jenssen, Kristin Fenton, Rune
Sundset and Jan Axelsson, Biomedical Physics & Engineering Express, Jan. 2020,
Vol. 6, p 015020

The aim of this study was to explore machine-learning-based prediction of the
AIF, using the MLIF approach, in a small-animal dynamic 18F-FDG PET study.
The AIF is required for the measurement of glucose metabolism by tracer kinetic
modelling of dynamic 18F-FDG-PET data. However, arterial blood sampling in
rodents is challenging due to limited blood volume and complex surgery.

Two MLIF models, based on GPs and an LSTM network, respectively, were trained
for AIF prediction using image-derived tissue regions as input. A reference AIF was
formed by fitting an established AIF model to image-derived data of two blood-rich
tissues (vena cava and left ventricle). The MLIF models were evaluated by first
comparing the predicted MLIF curves with the reference AIF curves directly. Next,
rate constants in different tissues, obtained from compartment modelling using
both the predicted MLIF and the reference AIF curves, were compared. Also, the
impact of different subsets of input tissue regions on AIF prediction was studied.

Both GPs and LSTM models generated MLIF curves similar to the reference AIF.
The rate constants from both models agreed well with those obtained from the
reference AIF. Myocardium was found to be important for MLIF prediction, but
MLIF curves with similar error was obtained also without the myocardium in the
input data. This study demonstrated that machine learning is feasible for accurate
and non-invasive prediction of a reference AIF in 18F-FDG studies of mice.

The main limitation of this study was that a blood-sampled AIF was unavailable for
training. Instead, an image-based reference AIF was used. Paper IV demonstrates
that the proposed methods are also feasible for predicting an AIF obtained from
blood samples in a human PET cohort.

Contributions by the author: The idea was conceived by me and further
developed in collaboration with the co-authors. I participated in the planning and
conduction of the animal experiments, image acquisition and processing, together
with several of the co-authors. Machine learning and compartment modeling was
performed by me, and the results were discussed with the co-authors. I wrote the
draft of the manuscript.
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4.4 Paper IV

Cerebral blood flow measurements with 15O-water PET using a non-
invasive machine-learning-derived arterial input function

Samuel Kuttner, Kristoffer Knutsen Wickstrøm, Mark Lubberink, Andreas Tolf,
Joachim Burman, Rune Sundset, Robert Jenssen, Lieuwe Appel and Jan Axelsson,
Journal of Cerebral Blood Flow & Metabolism, Jan. 2021, [published online ahead
of print, Feb. 9, 2021]

CBF can be measured with dynamic PET of 15O-water by using tracer kinetic
modelling. However, an AIF obtained from arterial blood sampling is required
for such measurements. Arterial cannulation is an invasive, laborious and time-
consuming procedure, associated with pain and risk for complications. The aim of
this study was to further develop the MLIF methodology from Paper III, and to
investigate if the non-invasive, machine-learning-based approach to AIF estimation
was feasible in a clinical brain-PET study, evaluated with blood-based AIF data.

An MLIF model based on GP was employed in this dual-injection, dual-scan study.
Each subject was scanned both before (baseline) and following acetazolamide med-
ication. Acetazolamide dilates the vascular system and thereby increases the CBF.
Three different image-derived time-activity curves were automatically segmented
from the carotid arteries and used as input into the AIF prediction model. Two
training situations were evaluated: in case 1, training and testing was performed
on baseline and acetazolamide scans separately; in case 2, baseline scans were used
for training followed by testing on acetazolamide scans. The idea with case 2 was
to resemble a more realistic clinical situation compared to case 1, namely that of
having a database with baseline scans for training, followed by applying the trained
model on subjects with an altered condition, in this case the acetazolamide scans.
The approaches were evaluated by comparing AIF and MLIF curves, as well as
whole-brain grey matter CBF values estimated by kinetic modelling using either
AIF or MLIF.

The results showed that when training and testing was performed on baseline and
acetazolamide scans separately (case 1 ), the AIF and predicted MLIF curves were
found to be similar. Subsequent kinetic modelling resulted in similar CBF values
when using AIF and MLIF, as well as similar CBF increase between baseline and
acetazolamide scans. However, when using baseline scans for training followed by
testing on acetazolamide scans (case 2 ), the CBF increase from baseline to post-
medication conditions was reduced. It is suggested that the difference in measured
acetazolamide provocation was caused by the different local input functions in the
brain (image-derived input for case 2 ) and in the wrist (blood-based AIF sampling
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for case 1 ). Although the relative changes between baseline and acetazolamide
scans were different for case 1 and case 2, both were significant and could, hence, be
used in clinical practice to differentiate baseline from acetazolamide conditions.

The non-invasive MLIF method shows potential to replace the AIF obtained from
blood sampling for CBF measurements using 15O-water PET and kinetic modelling,
thus, minimizing the risk for complications and, at the same time, simplifying the
dynamic PET imaging workflow.

Contributions by the author: The idea was conceived by me and further devel-
oped in collaboration with the co-authors. I implemented the machine learning and
compartment models. The results were analyzed and discussed in close collaboration
with the other co-authors. I wrote the draft of the manuscript.
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There are many challenges associated with quantitative PET imaging. Over the
course of more than 40 years since the clinical introduction of PET, many of the
challenges have been solved. However, by the recent introduction of PET/MRI,
new challenges have emerged, mainly related to limitations with MRI-based at-
tenuation correction. Unless accounted for, these limitations may reduce accuracy
and precision in PET/MRI-based quantification. Furthermore, subject motion
introduces image blurring and possibly also misalignment between the attenuation
correction map and the PET data, both of which affects PET-based quantitative
measurements. Also, dynamic PET-based quantification requires additional steps
during acquisition and analysis, the most important being that of arterial blood
sampling, which is a challenging and time-consuming procedure in both humans
and rodents.

The overall aim of this thesis is to address these challenges in order to allow for
improved PET-based quantification. This is accomplished by studying two specific
aims. First, it was investigated how artifacts in the attenuation correction maps
as well as respiratory motion affected quantification in PET/MRI of lung lesions.
Next, an MLIF method was developed, as a non-invasive alternative to the AIF,
required for tracer kinetic modelling in dynamic PET studies.

The combined effect of artifact reduction and motion correction, may improve
PET/MRI-based tumor quantification, and allow accurate and reproducible PET-
based quantitative measurements to be performed. Also, by extracting motion-
robust quantitative features from a lung tumor, in a radiomic framework, it is
possible to train machine-learning-based models for disease state prediction using
data collected without the use of gating or motion correction. This may considerably
simplify the PET imaging protocols, shorten the image acquisition times and allow
for inclusion of data in retrospect, where respiratory gating or motion correction
was not performed. Also, quantitative measurements from dynamic PET studies,
using tracer kinetic modelling, may be considerably simplified by using the MLIF
approach, rather than performing full arterial blood sampling. This may allow
easier clinical and pre-clinical implementation of dynamic PET protocols, and in
this way advance the outcome of quantitative PET studies.
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5.1 Paper I

In Paper I, the frequency and the test-retest reproducibility of artifacts in MRI-
based attenuation correction maps in a PET/MRI lung cancer patient cohort
was investigated. Individual and combined corrections of three types of artifacts
(absence of bone, truncation of arms, and susceptibility artifacts) in standard
DIXON-based attenuation correction maps were studied by investigating their
impact on lung lesion quantification.

The most important result from this study were that up to 20% relative differences
was introduced after susceptibility artifact correction, with large inconsistencies
between test-retest scans. On the other hand, bone and truncation corrections
affected the quantitative accuracy in lung tumor SUV with less than 5%.

Among the included patients, susceptibility artifacts were caused by a void of MRI
signal due to the local magnetic field distortions induced by the surgical sternal
wires after thoracotomy. Three scans with susceptibility artifacts were found in
the dataset. In two of these acquisitions the susceptibility artifacts in the sternum
resulted in a failure of the lung segmentation algorithm and the following invalid
assignment of air attenuation values to lung tissue. For these scans, the artifact
correction, and subsequent filling of the lungs with correct attenuation values,
had a large impact on the corresponding lung tumor SUVs (-5.2% to -22.1%).
However, the algorithm failure was inconsistent between test-retest scans, thus
introducing scan-dependent variations in SUV measurements. For acquisitions with
susceptibility artifacts where the lung segmentation was successful, the impact of
the corrections on the SUV values were lower (-0.3% to -2.8%). This demonstrated
that the accuracy in the attenuation values of the tissue surrounding a lung lesion
was important for accurate tumor quantification, as also reported by others [82].

The observed test-retest inconsistency of specific type of imaging artifacts may
have clinical implications for patients undergoing serial imaging for tumor therapy
response assessment. Therefore, careful inspection of the MRI-based attenuation
correction maps is required, preferably while the patient is still inside the scanner.
In this way, a simple re-scan of the DIXON sequence may, in some cases, provide
an artifact-free attenuation correction map. However, if the artifacts persists,
specifically susceptibility artifacts must be corrected, to ensure highest possible
diagnostic accuracy of a lung PET/MRI examination.

This study highlights the importance of correcting for imaging artifacts prior to
training of predictive machine learning models, for instance in tumor classification
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studies. In this way, extracted tumor features will be the least affected by PET/MRI-
imaging-related factors, which will result in increased robustness of the predictive
models.

In Paper I, there were only three patients with susceptibility artifacts in the
study population. In other words, it was not possible to estimate any population
average effects from the susceptibility artifact corrections. Therefore, in a follow-up
simulation study, synthetic artifacts in 19 of the patients from Paper I were
introduced. Briefly, the lung tissue attenuation values were replaced with the
corresponding values for air in the attenuation correction maps of all included
patients. Subsequently, these modified attenuation correction maps were used
during PET image reconstruction, and the difference in SUV- and volume-based
tumor features were compared to the case with correct attenuation correction maps
[187]. The general reconstruction and image analysis methods were similar to that
of Paper I.

Figure 5.1 shows the result of the follow-up simulation study [187]. Significant
median relative differences of around 10% were found in SUV-based features when
comparing original and artifact-induced images. Individual relative differences of up
to 40% was observed in the SUV-features. On the other hand, tumor-size-metrics
were not affected by the simulated artifacts.

The results from the simulation study strengthens the conclusions from Paper I,
namely that susceptibility artifacts may cause clinically relevant biases in lung
tumor SUV measurements.

In Paper I, the susceptibility artifacts were corrected by manual in-painting
of the affected region in the attenuation correction maps. Other approaches for
metal artifact reduction in PET/MRI have been suggested. For instance, dedicated
MRI sequences, may reduce the size of metal artifacts, although no clinical study
has yet shown the potential of this approach applied to whole-body PET/MRI
[188]. Also, artifact correction methods have been proposed using deep learning
approaches. This has shown potential for automated corrections of arm-truncation
and dental metal-artifacts in the MRI attenuation correction maps [189, 190].
However, this approach has not yet been evaluated for metal artifacts in sternum,
which is relevant for this thesis. One reason may be that the thorax anatomy is
more complex compared to the head and neck anatomy, and therefore require more
complex models and more training data.

A different promising approach is to estimate a pseudo-CT attenuation correction
map directly from the non-attenuation-corrected PET data using a deep learning
algorithm based on generative adversarial networks [191]. The pseudo-CT can
then be used for attenuation correction. This approach has been evaluated for
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Figure 5.1: Box plot showing the relative difference (RD) in five quantitative measurements
obtained from the segmented lung lesions in PET images reconstructed with artifact-
free and artifact-induced MRI-based attenuation correction maps. Nineteen patients
were included in this simulation study. The artifact considered in this study was that
of falsely assigning lung tissue with the attenuation value of air. Note that this figure
is inverted compared to Figure 4 of Paper I. This is because here, the reference image
is the artifact-free, while in Paper I, the reference image was the artifact image.
The tumors were segmented using the 41% SUVmax threshold. The metabolic tumor
volume (MTV) is the volume of this segmentation. SUVmean and SUVmax refers to the
average and maximum voxel-value inside the MTV, respectively. SUVpeak is defined
as the average SUV within the 1 cm3 volume with maximal average value inside the
tumor [64]. Maximum diameter refers to the longest straight line that can be drawn
in three-dimensions inside the tumor. P values indicate statistical significance based
on a paired t-test.

PET/CT, while for PET/MRI applications, the method would require co-registered
CT images for the neural network training. Another limitation with this method
is that it only works for non-specific tracers, such as 18F-FDG, as the pseudo-CT
generation is based on PET-input data with a high content of anatomical details.
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5.2 Paper II

One specific limitation that was not addressed in Paper I was the impact of
respiratory motion on PET quantification. Previous studies have shown that
breathing motion has a large impact on the extracted SUV values, the metabolic
tumor volumes, as well as on extracted radiomic features [44, 45, 192–194]. These
studies evaluated the impact of motion based on end-expiration-gated PET [44,
45]. This acquisition mode has an optimal duty cycle in the order of 35% and thus
have an increased noise level compared to free-breathing PET [195].

In Paper II, the impact of breathing-induced motion on PET quantification was
evaluated by an MRI-based elastic motion correction algorithm (BodyCompass,
Siemens Healthineers, Erlangen), recently made available at our PET imaging center.
With this technique the motion vector fields are calculated over the phases of the
breathing cycle using MRI, and used for motion correction of the simultaneously
acquired PET data. In this way, a stationary and motion corrected PET image can
be obtained without rejection of acquired PET events, thus allowing for motion
corrected images with similar noise level as free-breathing PET [98, 196].

A prospective clinical study was initialized, where patients with suspected non-
small-cell lung cancer, referred to clinical PET/CT at our institution, were asked
to participate in a research PET/MRI scan after their clinical scan. The overall
aim with the study was to generate data for training a machine-learning-based
model for PET-based disease classification. One approach to do this is by extracting
image features as input into the models. To build robust prognostic models, the
input features should have low variability to factors which are unrelated to the
disease, such as scanner type, reconstruction settings, tumor segmentation method,
gray scale discretization method and motion. While many of these factors have
been extensively studied in previous literature [175–179], only a few studies have
addressed the impact of motion on radiomic features, and in these studies, end-
expiration gated PET scans were used [44, 45]. Therefore, in Paper II, the impact
of MRI-based motion correction on PET-based radiomic features was investigated.
The aim was to generate a list of motion-robust features, which may be extracted
from standard free-breathing PET examinations, to build machine-learning-based
models for disease state or survival prediction.

Breathing-induced motion was studied by using two different motion correction
acquisitions: classical end-expiration gating (PET40%) as well as the new MRI-
based elastic motion correction (PETMoCo). These were compared to a reference
free-breathing PET acquisition (PET100%). The rationale was that any feature that
remained equal (within a tolerance) in all three scans was independent of the scan
mode, and thus also of motion, as characterized by PET.
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This main outcome of this study was a list of 43 motion-invariant features. These
features may be extracted from any of the three PET acquisition modes, without
introducing a scan-type-dependent bias in the feature values. Furthermore, 14 of
the 43 features were found to have low correlation to the other included features,
which could therefore represent one possible low-dimensional feature set to be used
as input into subsequent prediction models. However, correlation-based feature
elimination is just one of many possible feature selection methods [29, 186, 197].
With the 43 motion-robust features found in this study, it is possible to explore
both supervised or unsupervised feature selection methods, to find the most optimal
features for the prediction being investigated.

The results from this study have two important implications for PET-based quan-
tification and machine-learning-based prediction models. First, it represents a
feature selection step in the machine learning pipeline; second, it may simplify the
acquisitions by requiring only free-breathing PET scanning. These two aspects will
be discussed next.

It is well known that machine learning models trained on a high-dimensional
feature space using too few training examples (referred to as p >> N problems),
may result in overfitting of the models. In other words, the number of samples,
N , must be large enough with respect to the number of features, p. For many
classification problems, it can be observed empirically that the classification error
will initially decrease as the number of features are increased. At some critical
number of features, the error will start to increase again. This is referred to as
the peaking phenomenon. Thus, for a given problem there is an optimal number
of features, which, only up to a given number, is increasing with the number of
trainable model parameters. [149]. This implies a necessity for feature selection.

In Paper II, a constraint was imposed on the selected features, namely that
they should be independent of motion. For instance, a feature that is dependent
on the breathing of the patient may not aid in the separation of tumor classes.
The clinical implication of the results is that in future studies, the motion-robust
features could be extracted from either of the scans and used in a classification
model. The free-breathing PET scan protocol is simpler and more time-efficient
to perform, compared to the motion correction sequences. Thus, by employing
motion-robust features in machine learning prediction models, gating and motion
correction-based acquisitions are not needed, which simplifies the PET workflow for
patients. Moreover, hybrid PET/MRI is still an emerging modality, thus limiting
the use of MRI-based motion correction at all PET imaging centers. This may
allow to generate datasets from multi-center trials, where access to a PET/MRI
scanner is not necessarily required. Lastly, it may also allow collection of data in
retrospect, where respiratory gating or motion correction was not performed.

104



5.2 Paper II

The main limitation with this study was the limited sample size and that the
end-points of all patients were not yet known. Nevertheless, the sample size was
comparable to similar published studies with the aim to investigate motion vari-
ability of image-derived features [44, 45]. Once the end-points have been reached, a
future follow-up study may allow to investigate the impact of the motion-robust
features on disease state or survival predictions.

In the present work, the motion vectors used for elastic motion correction were
derived from MRI data. To simplify the imaging protocol even further, the motion
vectors can also be derived from gated PET data. In short, this is accomplished by
dividing the breathing cycle into distinct phases, and reconstructing PET images
of each phase, similar to conventional gating. To avoid mismatch between the
attenuation correction map, commonly acquired during end-expiration breath hold,
and the end-inspiration breathing phases, no attenuation correction is performed
for these gated image reconstructions. The image velocities are then calculated
between each gate and the reference image, as described in Section 2.4.6, and used
to reconstruct motion corrected PET images, in a similar way as for PET/MRI
(Section 2.4.6 and 2.4.6) [97].

One limitation with PET-based estimation of the motion vectors is that it is
only applicable with tracers that have a high background uptake, such as 18F-
FDG. For tracers with more specific uptake, such as many 11C, 68Ga and 18F-
based tracers (other than 18F-FDG) [198, 199], there may not be enough motion
information between the gated images to calculate the motion vectors for all voxels
and consequently PET-based elastic motion correction may not work.

Another limitation is that PET-based elastic motion correction does not allow
correction of the attenuation correction map for patients who did not comply
with breathing instructions. The pseudo-CT approach for generating attenuation
correction maps of several breathing phases from gated PET images, discussed in
Section 5.1, may be feasible in these cases. Alternatively, with the use of MRI-based
motion correction, the end-expiration attenuation correction map from the DIXON
sequence can be compared with the MRI images from all breathing-phases. In this
way, cases where the patient was unable to comply with breathing instructions
(which is not uncommon in lung cancer imaging) may be identified and corrected.
In these cases, the acquired attenuation correction map (in, for instance end-
inspiration) can be transformed into end-expiration by using the MRI-derived
motion vectors, and, in-turn, be used during PET-image reconstruction. In the
case of PET/CT, it is non-trivial to obtain phase information from the CT-based
attenuation correction map. This would require four-dimensional CT images, which
would considerably increase the radiation dose to the patient, and further prolong
the imaging time [200]. On the other hand, with MRI-based motion correction, the

105



5 Results and discussion

attenuation correction map can be transformed into the correct breathing phase
using the motion vector fields, thus reducing the image artifacts in the reconstructed
PET images [98]. MRI-based elastic motion correction may, therefore, be considered
as the most feasible elastic motion correction strategy for lung cancer patients,
although the deep-learning-based pseudo-CT approach could also be highly relevant
for this problem.

Recently, a deep-learning-based approach for estimating the motion vector fields
was proposed [201], which could be a viable alternative to MRI-based derivation
of the motion vectors. However, this method also suffers the above-mentioned
limitations of tracer application and attenuation correction, so it is not obvious
where this method could provide advantages over, for instance MRI, or PET-derived
motion vector fields.
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5.3 Paper III

Paper III addresses one of the main challenges in quantitative, pre-clinical, dy-
namic PET imaging, namely that of obtaining a valid AIF. In rodents, this is
hampered by the limited allowed blood withdrawal volume and complex and ter-
minal surgical procedures for inserting an arterial catheter [4]. In this work, the
MLIF approach is proposed as a non-invasive alternative for AIF estimation in a
dynamic PET study of mice.

The main result of this study was that an MLIF, predicted from image-derived
tissue regions, could be used as a feasible alternative to a reference AIF estimated
from vena cava and left ventricle. In addition, the MLIF could be predicted using
different combinations of input tissue time-activity curves, not necessarily including
the myocardium wall, which is a blood-rich tissue that closely resembles the AIF.
This could be relevant in studies where the heart is outside the PET field-of-view.

Two AIF prediction models were evaluated, based on GPs and an LSTM neural
network, respectively. Mathematically, these two methods represent two vastly
different approaches for solving the problem of AIF estimation. GPs is a non-
parametric approach based on the conditioning of a Gaussian distributed prior, on
the training data, where the prior distribution is specified by a kernel matrix. On
the other hand, the LSTM model in this study was parameterized by roughly 2100
weights, each of which have to be updated iteratively during training.

The LSTM model provided slightly better agreement between predicted and refer-
ence AIF curve shapes, compared to GPs, although the result from compartment
modelling showed similar performance between the models. In Paper III, the
use of the LSTM method was recommended, due to the slightly lower errors in
AIF prediction. One aspect, which was not discussed in the paper, was training
time. With N training samples, the GPs approach relies on the inversion of an
N ×N covariance matrix (Equation 3.22). Although this operation may become
challenging for very large training data sets (in the order of 1000 samples or more),
for the data set sizes of the current thesis, this matrix inversion was computationally
very fast. On the other hand, the LSTM method involves iterative calculation
of gradients, and weight-updates, which was considerably more time-consuming
(calculations were performed on a desktop CPU). Although no timing data was
recorded in this work, typical training times for the leave-one-out cross validation
approach of this paper was in the order of minutes for the GPs approach, and in
the order of hours for the LSTM approach. In the experimental setup of the current
work, this was not an issue, and therefore, this discussion was not emphasized in
Paper III. However, at a later stage, for clinical implementation, computational
time may be of significant interest, which could affect the choice of method for
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5 Results and discussion

AIF estimation. This was also the motivation for choosing the GPs approach in
Paper IV.

One advantage with pre-clinical PET imaging of mice is that the whole mouse
body fits inside the field-of-view of the PET scanner. This allows dynamic imaging
and subsequent extraction of time-activity curves for readily all organs. From a
machine learning point of view, this means that the number of input features
may be large, which can be an advantage, as discussed in Section 5.2. A wrapper
method was implemented to evaluate different combinations of input features on
AIF prediction. Not surprisingly, the myocardium showed to be important for
accurate predictions. This region inevitably contains spill-in from the blood pool,
thus inherently including a strong component that reflects the AIF.

Both the left ventricle and vena cava regions were used in the generation of the
reference AIF, as there were no blood-sample-based AIFs available in this study.
Therefore, they had to be excluded from the input features for model training.
Obviously, the MLIF method must be validated with real blood-based AIFs in a
future pre-clinical PET study. In this case, it is conceivable that the inclusion of the
left ventricle and vena cava regions will contribute positively to AIF prediction, as
the information in these regions are directly related to blood. The MLIF model will
then represent the transformation that maps image-derived input data, essentially
by performing partial volume correction, to a ready-to-use AIF.

Another interesting and related approach in future whole-body mouse AIF predic-
tion studies, would be to increase input feature space even further. Hypothetically,
if all mice were coregistered to a reference anatomy template, each individual voxel
could represent an input feature. This approach would be highly sensitive to ab-
normal anatomy, positioning of the animal, as well as statistical noise in individual
voxels, and would therefore not be practical. A potentially more feasible approach
would be to utilize a convolutional neural network for feature extraction [202]. This
method is based on multiple layers of trainable convolution filters and subsequent
pooling of voxels, to reduce the dimensions of the input image to subsequent layers.
Before the ouput layer, the reduced-size image is flattened to a one-dimensional
feature vector. In the next step, the feature vector from each time step could be
passed on to an LSTM network, to predict the AIF. With this method, manual
segmentation of different tissues in the PET images would not be necessary, because
the network effectively is trained to become a feature extractor by the convolutional
layers. However, as the number of parameters of such a network increases even
further, compared to the LSTM approach, it is hypothesized that a larger training
dataset would be necessary.
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5.4 Paper IV

5.4 Paper IV

The aim of Paper IV was to leverage the results from Paper III in order to
investigate if the MLIF approach to AIF estimation was feasible in a human clinical
brain-PET cohort for CBF measurements using the 15O-water tracer. The reference
AIF in this study was based on continuous arterial blood sampling, and thus
representing a more realistic clinical situation, compared to Paper III. Also, the
acetazolamide challenge was performed on each subject. This allowed to study, not
only if CBF could be correctly estimated using an MLIF, but also if a clinically
relevant CBF change could be detected, between baseline and acetazolamide
scans.

The proposed, non-invasive, MLIF method showed potential to replace the AIF
obtained from blood sampling for CBF measurements using 15O-water PET and
kinetic modelling. This could minimize the risk for complications and, at the same
time, simplify the clinical dynamic PET imaging workflow. Three automatically
segmented image-derived curves were used as input into the MLIF model. In short,
the three input regions were generated, representing blood-uptake with different
partial-volume contents around the carotid arteries (10 voxels are within the artery,
100 voxels mostly within artery, and 1000 voxels also sampling the partial-volume
generated spill-out to pixels outside the artery). The median voxel-value was derived
for each time-frame and region, resulting in three IDIF time-activity curves. The
three regions were used in a similar GPs framework as the one proposed in Paper
III, but here it was used for the prediction of a real blood AIF. It is not unlikely
that the approach described in Section 5.3, using a convolutional neural network
as feature extractor, could also work in this case, taking the rigid brain anatomy
into consideration. This should be investigated in a future study.

It was further demonstrated that the MLIF approach could successfully predict
clinically significant changes in CBF, induced from acetazolamide medication. One
key finding, which is thoroughly discussed in Paper IV, is that a lower CBF
change was observed for MLIF compared to AIF, when comparing baseline and
acetazolamide scans. However, as the increase was significant compared to baseline,
the MLIF method still shows a clinical potential to differentiate baseline and
acetazolamide scans.

Another important observation in the study was that when comparing CBF mea-
surmements obtained from AIF to those obtained from MLIF, some outliers were
found. At first, it was assumed that these outliers were due to an inaccurate predic-
tion of the MLIF, and a subsequent error in the CBF value, following compartment
modelling. However, at closer inspection, it seemed to be the AIF causing the CBF
values to become outliers. This was realized when comparing the CBF values to

109



5 Results and discussion

population averages, not only for predicted, but also for the reference CBF values.
Therefore, future methods should be developed to quality control the input data.

In this study a fixed dispersion constant of τ = 15 s was assumed, as recommended in
[48]. This dispersion constant explains both external dispersion in the measurement
tubes, as well as internal dispersion in the vessels, from the artery sampling point
to the brain region studied. External dispersion is approximately constant in all
scans, as the detector tubes have a fixed length. However, internal dispersion may
vary in the range between 4-6 s [48], and could therefore affect the results.

Individually fitted dispersion constants can be estimated from Equation 2.34 by
performing an initial fit of the kinetic parameters and dispersion and delay constants,
to the measured PET data. The AIFs can thereafter be corrected with the individual
dispersion constant for each subject, before included in MLIF training. Individually
fitted dispersion constants may introduce additional between-subject variations of
the corrected AIF curves, not seen in the current data, and should therefore be
evaluated in future studies, preferably using larger datasets.

Another limitations of this study was that two populations (healthy subjects and
multiple sclerosis patients) and two scanners were present in the data, potentially
introducing biases. Such variations in the input data could make the prediction
models more robust, because they will learn natural variations of the data. However,
considering the small size of the dataset, these variations could also result in noise
and thus reduce the accuracy of the trained models. Therefore, in future studies, a
homogeneous dataset should preferably be investigated.

The GPs variance in Equation 3.23 can be interpreted as a measure of whether
a test sample under consideration is close or far away from the available training
data points in input feature space. Thus, it could potentially be used to detect
outliers. However, a high variance does not necessarily imply that the predicted
AIF is incorrect, only that is based on uncertain grounds [157]. In the present
study, no relationship was found between the CBFMLIF/CBFAIF ratios and the GPs
variance. Further research is needed to develop methods for uncertainty estimation
and possible outlier identification using, for instance, the GPs variance.
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6 Conclusion

In this thesis, several challenges associated with quantitative PET imaging of
humans and small-animals have been addressed. Methodologies have been developed
that could potentially advance quantification in both static and dynamic PET
imaging.

Attenuation correction related artifacts have been identified, that affect the quanti-
tative accuracy in PET/MRI imaging of lung lesions (Paper I). Here, it was found
that susceptibility artifacts, caused by metal objects, may cause clinically relevant
variations in lung tumor SUV measurements, which might affect the accuracy in
serial studies of the same patient. These findings warrant careful inspection of
MRI-based attenuation correction maps, and subsequent correction of susceptibility
artifacts, to ensure highest possible diagnostic accuracy of the PET/MR examina-
tion. This is also an important pre-processing step before including the imaging
data in the training of machine-learning-based models.

Moreover, a set of motion-robust PET-based tumor features have been identified
(Paper II), that can be extracted from simple free-breathing PET reconstructions,
without employing gating or motion correction during image acquisition. This
may considerably simplify and shorten clinical scan protocols, and reduce the
need for patient compliance to breathing instructions, in imaging studies used for
acquiring training data for machine learning models. It may also allow inclusion of
retrospective imaging data, or data from other imaging centers, where respiratory
gating or motion correction was not applied.

For quantification in dynamic PET studies, methodology for non-invasive estimation
of the AIF have been developed, for both pre-clinical 18F-FDG-PET (Paper III)
as well as for clinical 15O-water-PET applications (Paper IV). The proposed MLIF
approach uses solely image-derived input data into the machine learning models,
which in practice implies evading of arterial cannulation. This may considerably
simplify quantification in small-animal dynamic PET imaging, as arterial cannula-
tion in rodents is challenged by limited blood volume and a complex and terminal
surgical procedure. Also, in human dynamic PET imaging, non-invasive AIF esti-
mation may reduce pain and risk for complications, and significantly simplify the
dynamic PET imaging workflow.
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6 Conclusion

In conclusion, the four research works presented in this thesis have contributed to
the field of quantitative PET imaging, mainly by addressing challenges related to
imaging artifacts and subject motion in static PET quantification, and to challenges
related to blood sampling required for tracer kinetic modelling in dynamic PET
quantification.
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7 Limitations and future directions

This chapter indicates some of the limitations with this thesis, and points out
possible directions of future research in the continuation of this thesis.

In Paper I, the inspection of the attenuation correction maps was performed
visually, and subsequent artifacts were corrected manually. Both these aspects could
be automated. For instance, a machine-learning-based classifier can be trained
to detect cases of susceptibility artifacts where the lung segmentation has failed.
This could be implemented as a quality-assurance step in the imaging workflow
to reduce the risk for attenuation-correction-related artifacts being undiscovered.
If artifacts are detected, they could also be corrected automatically using deep
convolutional neural networks [189, 190].

In Paper II, a set of features that were robust to the acquisition mode (free-
breathing, end-expiration gating or motion correction) were derived. Because of
the limited sample size, and that the end-points were not yet known, it was not
possible to build predictive models to test the impact of the motion-robust features
on disease or survival predictions. The clinical parent study, from which the data
to this paper was extracted, is still ongoing, so when sufficient number of patients
have been included, and when the clinical end-points have been reached, it will be
possible to evaluate the potential of these motion-robust features with a machine
learning model for tumor histology classification, or survival prediction.

In Paper III the use of an MLIF to predict the AIF was evaluated in a pre-clinical
dynamic PET study using 18F-FDG. The main limitation with the validation of the
method was the lack of a blood-based AIF. In Paper IV the MLIF approach was
evaluated in a human brain study using 15O-water. However, the MLIF method
remains to be evaluated for 18F-FDG in mice. Also, it would be highly interesting
to investigate if the MLIF approach could be adopted to other animal models and
tracers, possibly also those requiring metabolite correction, by merely retraining
the models. If validated correctly, this will give a foundation for a simplified MLIF-
based approach to dynamic PET-based quantification in future clinical and research
applications.
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7 Limitations and future directions

7.1 Explainable artificial intelligence

In Paper III and Paper IV, the predictive MLIF models were trained by using
manually extracted input time-activity curves. As mentioned in Section 5.3, con-
volutional neural networks may work as trainable feature extractors that take an
input image, and output a feature vector. Such an approach could be evaluated in
future research, to allow for automatic feature extraction, thus, evading the need
for manual segmentation of the input images [202].

Inevitably, more complex models requires larger amounts of training data. Moreover,
as the model complexity increases, the rationale behind the predictions becomes
harder to interpret, and consequently more difficult to trust, especially in the field
of medicine and healthcare. There has been a growing expectation that machine
learning models should generate, not only a prediction, but also an explanation. This
has lead to a boost in the research field of explainable artificial intelligence in recent
years, leading to the development of a vast number of methods for interpreting
the predictions from deep neural networks [203–205]. Interpretability models may
explain which features at the input layer are important for a specific prediction at
the output layer. For instance, in case a convolutional neural network is used for
AIF prediction, an interpretability approach could highlight which voxels in the
input PET image are important for a given prediction at the output layer. This
could also work as a quality assurance step for the AIF predictions in the sense
that, if non-blood-related regions are highlighted, the predicted MLIF-curve may
not be valid.

Clearly, interpretability models represent a highly interesting and relevant approach,
and an obvious next-step in future machine learning research. This will allow to
use machine learning, not only for classification or regression, but also for a
deeper understanding of the learning aspects of the models. This may become
highly relevant for presenting the machine-learning-based predictions to researchers,
clinicians and patients in order to gain trust and belief in the automated decisions.
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Abstract
Background: Positron emission tomography (PET)/magnetic resonance (MR) imaging may become increasingly impor-

tant for assessing tumor therapy response. A prerequisite for quantitative PET/MR imaging is reliable and repeatable

MR-based attenuation correction (AC).

Purpose: To investigate the frequency and test–retest reproducibility of artifacts in MR-AC maps in a lung cancer

patient cohort and to study the impact of artifact corrections on PET-based tumor quantification.

Material and Methods: Twenty-five lung cancer patients underwent single-day, test–retest, 18F-fluorodeoxyglucose

(FDG) PET/MR imaging. The acquired MR-AC maps were inspected for truncation, susceptibility, and tissue inversion

artifacts. An anatomy-based bone template and a PET-based estimation of truncated arms were employed, while sus-

ceptibility artifacts were corrected manually. We report the frequencies of artifacts and the relative difference (RD) on

standardized uptake value (SUV) based quantification in PET images reconstructed with the corrected AC maps.

Results: Truncation artifacts were found in all 50 acquisitions (100%), while susceptibility and tissue inversion artifacts

were observed in six (12%) and 26 (52%) of the scans, respectively. The RD in lung tumor SUV was< 5% from bone and

truncation corrections, while up to 20% RD was introduced after susceptibility artifact correction, with large incon-

sistencies between test–retest scans.

Conclusion: The absence of bone and truncation artifacts have limited effect on the PET quantification of lung lesions.

In contrast, susceptibility artifacts caused significant and inconsistent underestimations of the lung tumor SUVs, between

test–retest scans. This may have clinical implications for patients undergoing serial imaging for tumor therapy

response assessment.
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Introduction

Lung cancer is the most frequent cancer type and the

leading cause of cancer-related death in the world (1).

Positron emission tomography (PET)/computed tomog-

raphy (CT) with 18F-fluorodeoxyglucose (FDG) is the

standard of care today for lung cancer staging and is

also increasingly used to aid in radiotherapy

treatment planning and for tumor therapy response

assessment (2–6).
The recent introduction of integrated PET/magnetic

resonance (MR) systems has opened new possibilities
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for tumor characterization by adding excellent soft-
tissue contrast, provided by MR imaging (MRI), to
the functional information from PET. In this way,
simultaneous, multiparametric images can be acquired,
that facilitate precision medicine and personalized
treatment of the disease (7,8). The use of non-ionizing
MRI is another benefit for the use of PET/MR, rather
than PET/CT, in the follow-up assessment of patients
undergoing radiation or chemotherapy (9).

The reproducibility of the standardized uptake
values (SUV) in PET/MR imaging is important for a
reliable assessment of therapy response, and it is
strongly linked to accurate MR-based attenuation
correction (AC) during PET image reconstruction
(7,10–13). In fully integrated PET/MR systems, stan-
dard AC maps are calculated from the segmentation
of MR images into a number of tissue classes (e.g.
air, lung, fat, and soft tissue), thereby assigning a spe-
cific attenuation coefficient to each tissue (7,14).
A known limitation of many MR sequences used for
generating AC maps is the low bone signal, which may
cause an underestimation of quantitative measure-
ments in the resulting PET images in close vicinity to
osseous tissue (11). Furthermore, the reduced transax-
ial field of view (FOV) of the MR, in comparison with
the PET FOV, has been reported to result in truncation
artifacts of distal body parts (15). In addition, distor-
tion of the magnetic field, caused by metallic implants,
such as surgical sternal wires, may cause susceptibility
artifacts in the AC maps (16,17). Lastly, soft-fat tissue
inversions in the AC map may occur (16). These effects
have been proven to affect both diagnostic quality and
hinder accurate quantification of the tracer-distribution
in brain, head/neck, and cardiac PET studies (16,17).
Further, a recent study reported that MR-AC related
artifacts occurred frequently and inconsistently in
test–retest scans of lung cancer patients, leading to
non-consistent SUV quantification in serial examina-
tions (18).

The aim of the current study is to investigate the
frequency and the test–retest reproducibility of artifacts
observed in standard MR-based AC maps in a lung
cancer patient cohort undergoing PET/MR imaging.
Further, we intend to correct for artifacts in the AC
maps and evaluate the impact of the corrections on the
PET-based quantification in the test-retest setup.

Material and Methods

Ethical approval

This study was approved by the Norwegian Regional
Committees for Medical and Health Research Ethics
(REC reference 2017/915). All patients signed written
informed consent.

Patient population, preparation, and
imaging overview

Twenty-five lung cancer patients with a total of 26 lung
lesions were included in this single-injection dual-time
point PET/MR imaging study. Patients fasted 15 h
� 4 h before the injection of 281 MBq� 41MBq
FDG. PET/MR assessment started 113 min� 10 min
post FDG injection (Fig. 1).

PET/MR image acquisition

The PET/MR acquisitions were performed in a
Siemens Biograph mMR (software version VB20P)
(Siemens Healthineers, Erlangen, Germany) using a
free-breathing and arms-down scan protocol during
the entire simultaneous image acquisition. All patients
had the same anatomical region scanned twice, without
repositioning and reinjection between the scans, thus,
allowing for the assessment of the test–retest reproduc-
ibility of the images. First, a 10-min, one-bed position
scan, centered over the mediastinum, was performed,
immediately followed by another 10-min, two-bed

Fig. 1. Time line of the single-injection dual-time point imaging study. Patients were injected with FDG, followed by 60 min rest,
before undergoing PET/CT and PET/MR imaging. PET and MR DIXON data that were included in this study are indicated in red and
blue, for the one-bed position scan centered over the mediastinum (test) and the two-bed position scan of the whole thorax (retest),
respectively. The corresponding anatomical regions are indicated approximately on the coronal overview scan to the right. FDG: F-
flurodeoxyglucose; PET: Positron emission tomography; CT: computer tomography; MR: magnetic resonance.
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position scan of the whole thorax (Fig. 1). A standard

DIXON-based MR-AC map was acquired for each

scan, resulting in a total of 50 MR-AC maps for the

25 patients.

Inspection of the attenuation correction maps

All 50 MR-AC maps were inspected for artifacts by

two experienced imaging physicists. We report the fre-

quency of the observed artifacts from this test-retest

assessment, divided into three categories: truncation

artifacts; susceptibility artifacts in the sternum; and

tissue inversion (Fig. 2a–c). For the second category,

we specify the number of acquisitions for which lung

segmentation in the MR-AC map failed.

Corrections of the attenuation correction maps

For each patient, up to four additional sets of test–

retest AC maps were formed by correcting for the

artifacts that were found in each original AC map

(Fig. 2d–f): (i) missing bone was corrected by adding

an anatomy-based bone template of the spine (19); (ii)

truncation artifacts, if found, were corrected using the

MLAA algorithm (20). Both these corrections were

performed using vendor-provided software, thus,

updating the AC maps in DICOM-format;

(iii) susceptibility artifacts, causing misclassified

voxels in the sternum and lungs, if found, were cor-
rected using an in-house developed algorithm imple-
mented in Matlab (Mathworks, MA, USA) (17). This
correction was applied on the interfiles used for recon-
structions in a vendor-provided reconstruction tool
(JSRecon (e7-tools), Siemens Healthineers, Erlangen,
Germany); (iv) a fully corrected AC map was formed
by applying all the above-mentioned corrections. The
different AC maps are denoted ACOriginal, ACBone,
ACTrunc, ACSusc, and ACAll, respectively, throughout
this paper. Thus, for each patient, a total of eight (no
ACSusc) or 10 (with ACSusc) different AC maps were
included for subsequent analyses.

PET image reconstruction

Static PET images were reconstructed for all patients
by employing each of the generated AC map, to form
PETOriginal, PETBone, PETTrunc, PETSusc, and PETAll

(Fig. 3). This resulted in a total of 214 PET image
series included for further evaluation. All reconstruc-
tions were performed using ordered-subset expectation-
maximization (OSEM) algorithm with three iterations,
21 subsets, and 4 mm Gaussian smoothing. The matrix
size of the reconstructed PET images was 344� 344�
127 and 344� 344� 224 for test (one-bed) and retest
(two-bed) scans, respectively, with a voxel size of
2.1� 2.1� 2.0 mm.

Fig. 2. Examples of the three types of artifacts reported in this study and their corrections in the MR-AC maps: (a) Truncation
artifact, where the arms of the patient are outside the MR FOV. (b) Susceptibility artifact caused by surgical sternal wires. Note the
failed lung segmentation, where lung attenuation values have been incorrectly assigned to background (red color in the box insert). (c)
Tissue inversion artifact with a soft-fat tissue swap. This artifact was not corrected in this study. (d) Correction of truncated arms
using the MLAA algorithm (20). (e) Susceptibility artifact correction using an in-house developed algorithm (17). Note that the lungs
have been “filled” with lung attenuation values (yellow color in the box insert). (f) Correction of missing bone by adding an anatomy-
based bone template of the spine (19). MR-AC: magnetic resonance attenuation correction; MR FOV: magnetic resonance field
of view.
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PET image evaluation

FDG-avid lesions were delineated using a 41% SUVmax

threshold (21). For each lesion, the mean, maximum,
and peak SUV values were measured (SUVmean,
SUVmax, and SUVpeak). Relative difference (RD) was
calculated using Eq. 1:

RD ¼ SUVCorrected

SUVOriginal
� 1

� �
� 100% (1)

where SUVCorrected and SUVOriginal represent measure-
ments obtained from the PET images reconstructed
with the corrected and original AC maps, respectively
(Fig. 3). Statistical significance was calculated using
Wilcoxon signed-rank test, after square root transfor-
mation of the data, to correct for asymmetric
distributions.

The impact of the corrections on tumor size was
evaluated by measuring the largest diameter and the
volume of the delineated lesions in all recon-
structed images.

Results

Frequency of artifacts

Truncation artifacts were reported in all 50 MR-AC
maps (100%), whereas susceptibility artifacts, caused
by sternal wires, and tissue inversion was observed in
six (12%) and 26 (52%) of the MR-AC maps,

respectively. All susceptibility artifacts were reproduc-

ible between test–retest scans. As a consequence of sus-

ceptibility artifacts in the sternum, lung tissue

segmentation failed for two of the patients in the test

scan (Table 1).
Tissue inversion artifacts were observed in a total of

19 (76%) patients, which was reproduced in the retest

scan in seven (37%) of the patients. For 12 (63%) of

the patients, tissue inversion artifacts were present in

only one of either the test or retest scans (Table 1).

Correction of artifacts

The relative differences of the lung tumor SUVs after

applying bone, truncation, and all corrections are shown

in Fig. 4. Inclusion of the anatomy-based bone template

caused an increased tumor SUVmean, SUVmax, and

SUVpeak< 0.5% (P < 0.001) in both test and retest

scans, while correction of truncation and all artifacts

yielded a corresponding increase< 3% (P< 0.01) (Fig. 4).
Table 2 shows the relative difference in the lung

tumor SUV for the three patients with susceptibility

artifacts in the AC maps after applying the different

corrections. The susceptibility artifacts introduced an

acquisition-varying effect on the tumor SUV values,

with test–retest variations of up to 22% (Patient 21).
To visualize the effect of the different AC map cor-

rections on the reconstructed PET images, relative dif-

ference images of a representative patient is shown in

Fig. 5 and Supplementary Figures S1 and S2.
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Fig. 3. Schematic overview of MR-AC map correction, PET image reconstruction, and subsequent quantitative SUV extraction. For
each patient, up to five different sets of test–retest PET images were reconstructed, using the original AC map (ACOriginal), and each of
the corrected AC maps (ACBone, ACTrunc, ACSusc, and ACAll). From each PET image, the lung tumor SUVmean, SUVmax, and SUVpeak was
extracted from the delineated tumor (41% of SUVmax threshold). The analysis was performed for both test and retest scans. MR-AC:
magnetic resonance attenuation correction; PET: Positron emission tomography; SUV: standardized uptake values; AC: attenua-
tion correction.
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Fig. 6 shows the association between the SUV

and lesion diameter, without and with corrections

for artifacts in the AC maps. While the corrections

affected the SUV values, they did not introduce

alterations in the tumor diameters (Table 3). Similar

results were obtained for the tumor volumes (Table 3

and Fig. 7).

Discussion

We have studied how individual and combined correc-

tions of the three most frequent artifacts (absence of

bone, truncation of arms, and susceptibility artifacts) in

standard DIXON-MR-AC maps affect lesion quantifi-

cation in a PET/MR imaging cohort of lung cancer

patients. Our main finding is that artifacts in the

MR-AC maps introduce variability in the lung lesion

SUVs of up to 22% in a test–retest set-up without

patient repositioning. Absence of bone is caused by

known limitations in the MR DIXON scan sequence

and, therefore, is present in all scans (11). The impact

of adding the anatomy-based bone template on the

lung tumor SUVs was low (< 0.5%) (Fig. 4) and the

effect is limited to the close vicinity of the spine (Fig. 5).

This agrees with earlier studies that showed only local

effect close to the bones and no clinically relevant

effects for lung lesions, when omitting bone from the

AC map (14,22,23).
Truncation artifacts were observed in all AC maps.

These artifacts arise from fixed geometrical limitations

in the MR FOV and, thus, are not expected to affect

test–retest examinations. This is also in agreement with

an earlier study (17). We found that truncation artifacts

introduced up to 3% relative differences in the lung

tumor SUV values (Fig. 4) and even larger effects

inside the truncated regions (Fig. 5), which is in accor-

dance with previous studies (24,25). This result indi-

cates that accurate truncation correction of the AC

Table 1. Frequency of artifacts observed among the test–retest AC maps in the dataset.

Patient no.

Truncation Susceptibility Failed lung seg. Tissue inversion

Test Retest Test Retest Test Retest Test Retest

1 X X

2 X X X X

3 X X

4 X X

5 X X

6 X X X X

7 X X X X X

8 X X X

9 X X X

10 X X

11 X X X

12 X X X X

13 X X X

14 X X X

15 X X X X

16 X X X X

17 X X X

18 X X X

19 X X X

20 X X X X X X X

21 X X X X X X

22 X X X

23 X X

24 X X X

25 X X X X

Test–Retest sum 25 (100) 25 (100) 3 (12) 3 (12) 2 (8) 0 (0) 8 (32) 18 (72)

Total sum 50 (100) 6 (12) 2 (4) 26 (52)

Test [ Retest 25 (100) 3 (12) 2 (4) 19 (76)

Test \ Retest 25 (100) 3 (12) 0 (0) 7 (37)

(Test [ Retest)\(Test \ Retest) 0 (0) 0 (0) 2 (4) 12 (63)

Values are presented as n (%).

Positive observations are indicated with X. AC: attenuation correction.
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maps is not necessarily critical for clinically relevant
lung tumor quantification (6).

The frequency of susceptibility artifacts was repro-
ducible between test–retest scans (Table 1). This agrees

with a previous study focusing on artifacts in MR-AC
maps for cardiac PET/MR applications (17). However,
in the present study we report a reduced frequency of
susceptibility artifacts (12%), compared to the previous
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Fig. 4. Box plots showing the relative difference in lung lesion SUVmean (top row), SUVmax (middle row), and SUVpeak (bottom row),
obtained from the 41% SUVmax threshold, after correcting for bone, truncation, and all effects, compared to the original, uncorrected
case, for test (left) and retest (right) scans, respectively. Asterisks (*) indicate significance level. †Corrections for susceptibility artifacts
of the three patients from Table 2 are not included in this column. SUV: standardized uptake values.

Table 2. Relative difference in SUV before and after correction of susceptibility, and all artifacts, respectively, for the three patients
with susceptibility artifacts in the AC maps.

Patient no.

Susceptibility artifacts corrected (%) All artifacts corrected (%)

SUVmean SUVmax SUVpeak SUVmean SUVmax SUVpeak

Test Retest Test Retest Test Retest Test Retest Test Retest Test Retest

7 2.2 1.6 2.3 1.5 2.8 2.3 8.3 5.1 7.8 4.0 8.3 7.2

20 6.5* 1.2 7.3* 0.4 5.2* 0.3 10.6* 0.8 11.6* 0.2 9.4* –0.2

21 20.0* 1.4 22.1* 1.4 16.1* 1.2 25.9* 4.4 28.7* 4.5 20.7* 3.8

*Values derived from acquisitions where lung segmentation failed and was subsequently corrected. SUV: standardized uptake values; AC: attenua-

tion correction.
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study (25%). This is due to the fact that cardiac
patients have a higher frequency of sternal wires fol-
lowing from cardiac surgeries, compared to lung cancer
patients. For two of the acquisitions in our study
(Patients 20 and 21, test scan), the susceptibility arti-
facts in the sternum caused misclassified voxels in parts
of the lungs, due to failure of the lung segmentation
algorithm. For these scans, the artifact correction, and
subsequent filling of the lungs with correct attenuation
values, had a large impact (>100%) on the resulting

PET SUV values in the lungs (Fig. 5 and
Supplementary Figure S2) and on the corresponding
lung tumor SUVs ((�5.2) – (�22.1%)) (Table 2). For
acquisitions with susceptibility artifacts where the
lung segmentation was successful, the impact of the
corrections on the SUVs were lower ((�0.3) –
(�2.8%)) (Table 2 and Supplementary Figure S1).
This demonstrates that the accuracy in the attenuation
values of the tissue surrounding a lung lesion is impor-
tant for accurate tumor quantification, as also reported
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Fig. 5. The effect of the different corrections in the AC maps on the reconstructed PET images for a representative coronal slice of
patient 21. (a) The original PET image. (b) The fully corrected PET image. (c–f) RD images between original and corrected PET images,
where bone correction (c), truncation correction (d), susceptibility correction (e), and all corrections (f), have been applied,
respectively. A schematic circumference of the lung lesion for this patient has been indicated with a green line. Of note, the horizontal
stripe in the central part of the right lung and the top part of the left lung was caused by transitions between correct and incorrect
lung segmentation regions in the MR-AC map. AC: attenuation correction; PET: Positron emission tomography; RD: relative differ-
ence; MR-AC: magnetic resonance attenuation correction.
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Fig. 6. Lesion diameter without and with all corrections for artifacts in the AC maps. Susceptibility artifact corrections of the three
patients from Table 2 are not included here. The corrections did not introduce any relevant alterations in the tumor diameters when
using SUVmean (a), SUVmax (b), nor SUVpeak (c) assessments. Note that because SUVpeak is not defined for lesions with volume <1 cm3,
5 data points were excluded from (c). AC: attenuation correction; SUV: standardized uptake values.
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in an earlier study (19). Furthermore, the importance

of correct attenuation values in the sternum, for lesion

quantification, was shown in another recent study (26).
The combined effect of the applied corrections for

the absence of bone and truncation had only limited

effect (RD< 3%) on the lung tumors (Fig. 4).

However, correcting for susceptibility artifacts, intro-

duced by sternal wires, caused a RD in the lesions of up

28.7% (Table 2), a clinically relevant measure (6),

which may affect the treatment assessment of the

patient, as the effects from these artifacts were not

reproducible between test–retest scans.
We report tissue inversion artifacts in 26/50 (52%)

acquisitions, with low reproducibility (37%) between

test–retest scans (Table 1). Our incidence rate is

higher than previously reported for other disease

groups (16,17). Tissue inversion artifacts in the AC

maps may introduce up to 35% quantification errors

in the affected areas of the PET image (16). In the

current study, tissue inversion was observed exclusively

in the abdomen of the patient. This explains the higher

frequency of tissue inversion in retest scans (two-bed),

compared to test scans (one-bed). Because all lung

lesions were far away from the affected areas, the

impact on tumor quantification was anticipated to be

low; therefore, no tissue inversion correction was

employed in the current study.
In response assessment studies, both lesion size and

SUV can be used as measures of therapy response,

where one or both may decrease after successful ther-

apy (6). In this study, it was found that the AC map

corrections had no impact on the measured lesion

diameter or volume (Table 3, Figs. 6 and 7),

thus, lesion size-based assessment of therapy response

is independent of AC map artifact corrections.

Furthermore, the increase in SUV values due to the

corrections were independent of tumor size (Figs. 6

and 7); however, because the SUV values were

increased by the corrections (Table 2 and Figs. 4, 6,

and 7 and Table 2), careful inspection and correction

of the AC maps, before PET image reconstruction, is

still critical in SUV-based response assessment studies.
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Fig. 7. Tumor volume without and with all corrections for artifacts in the AC maps. Susceptibility artifact corrections of the three
patients from Table 2 are not included here. Data points with volumes< 10 cm3 are shown in the insert. The corrections did not
introduce any relevant alternations in the lesion volumes when using SUVmean (a), SUVmax (b), nor SUVpeak (c) assessments. Note that
because SUVpeak is not defined for lesions with volume< 1 cm3, 5 data points were excluded from (c). AC: attenuation correction.
SUV: standardized uptake values.

Table 3. Tumor diameter and volume without and with corrections for artifacts in the AC mapsa. The corrections did not introduce
any relevant alterations in the tumor diameters or volumes.

Absolute difference

Original Bone Trunc BoneþTrunc

Volume �10 cm3

Diameter (mm) 22.5� 7.0 0.0� 0.1 (P¼ 0.10) 0.1� 0.5 (P¼ 0.45) 0.0� 0.6 (P¼ 0.98)

Volume (cm3) 2.8� 2.0 0.0� 0.0 (P¼ 0.01) 0.0� 0.0 (P¼ 0.19) 0.0� 0.1 (P¼ 0.60)

Volume> 10 cm3

Diameter (mm) 76.7� 28.8 0.0� 0.0 (P¼ 0.33) 0.1� 0.3 (P¼ 0.07) 0.1� 0.4 (P¼ 0.55)

Volume (cm3) 54.6� 47.0 0.3� 0.8 (P¼ 0.10) 0.6� 1.1 (P¼ 0.02) 0.0� 1.2 (P¼ 0.87)

All volumes

Diameter (mm) 43.3� 32.4 0.0� 0.1 (P¼ 0.07) 0.1� 0.4 (P¼ 0.13) 0.0� 0.5 (P¼ 0.75)

Volume (cm3) 22.7� 38.4 0.1� 0.5 (P¼ 0.09) 0.3� 0.8 (P¼ 0.02) 0.0� 0.7 (P¼ 0.82)

aSusceptibility artifact corrections of the three patients from Table 2 are not included here. AC: attenuation correction.
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Our study has several limitations. Bone artifacts
were corrected using an anatomy-based bone template
(19), which does not model the ribs. However,
the effect of the ribs is expected to be non-significant,
due to their breathing-induced shifting during acquisi-
tion and the fact that they are small and mainly consist
of trabecular bone (27).

Further, susceptibility artifacts in the MR-AC maps
were corrected with a simple, manual method in this
study. More advanced and fully automatic correction
methods have been proposed earlier (28,29). However,
with the introduction of novel artifact reducing
MR sequences (e.g. MAVRIC, VAT, WARP, etc.),
susceptibility artifacts could be minimized already at
acquisition, thus potentially eliminating the need for
manual retrospective correction of the AC maps.
Unfortunately, such sequences are currently time-
consuming, which hampers the implementation into
clinical routine (30–33).

While the PET/MR system evaluated in the current
study used a DIXON-based sequence for AC, other
systems, using non-DIXON-based sequences, may
cause other types of errors. However, systems using,
for example, T1-weighted fast gradient-echo sequences,
are expected to be prone to similar types of artefacts as
the DIXON-based methods.

Another limitation was that different FOVs were
used between test and retest scans. However, this is
assumed to have minimal effect on the resulting
SUVmean and SUVpeak, because of their robustness to
noise, and because the same lung segmentation algo-
rithm was applied in both one-bed and two-bed
scans (14,34).

In addition, we did not investigate the effect of respi-
ratory motion on the MR-AC maps, which is known to
introduce large biases in thoracic PET imaging (35–37).

Lastly, there was a relatively small number of
patients included in this study.

In conclusion, the majority of artifacts found in the
MR-AC maps, in this clinical PET/MR lung cancer
study, did not affect the quantitative accuracy of
SUV or tumor size measurements. However, suscepti-
bility artifacts may cause clinically relevant variations
in lung tumor SUV measurements, which might affect
the accuracy in serial studies of the same patient.
Therefore, our findings warrant careful inspection of
the MR-AC maps and subsequent correction of suscep-
tibility artifacts, to ensure the highest possible diagnos-
tic accuracy of the PET/MR examination.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This work was supported by the Northern Norway

Regional Health Authority (grant no. HNF1349-17) and the

Central Norway Regional Health Authority (grant

no. 46056912).

ORCID iD

Samuel Kuttner https://orcid.org/0000-0001-7747-9003

References

1. Pasic A, Postmus PE, Sutedja TG. What is early lung

cancer? A review of the literature. Lung Cancer

2004;45:267–277.
2. Van Elmpt W, Zegers CML, Das M, et al. Imaging

techniques for tumour delineation and heterogeneity

quantification of lung cancer: Overview of current possi-

bilities. J Thorac Dis 2014;6:319–327.
3. Sauter AW, Schwenzer N, Divine MR, et al. Image-

derived biomarkers and multimodal imaging strategies

for lung cancer management. Eur J Nucl Med Mol

Imaging 2015;42:634–643.
4. Ladr�on De Guevara Hernández D. The role of PET/CT

imaging in lung cancer. J Cancer Ther 2015;6:690–700.
5. Greenspan SB. Role of PET/CT for precision medicine in

lung cancer: perspective of the Society of Nuclear

Medicine and Molecular Imaging. Transl Lung Cancer

Res 2017;6:617–620.
6. Pinker K, Riedl C, Weber WA. Evaluating tumor

response with FDG PET: updates on PERCIST, compar-

ison with EORTC criteria and clues to future develop-

ments. Eur J Nucl Med Mol Imaging 2017;44:55–66.
7. Bezrukov I, Mantlik F, Schmidt H, et al. MR-based PET

attenuation correction for PET/MR imaging. Semin Nucl

Med 2013;43:45–59.
8. Huo E, Wilson DM, Eisenmenger L, et al. The role of

PET/MR imaging in precision medicine. PET Clin

2017;12:489–501.
9. Lee SM, Goo JM, Park CM, et al. Preoperative staging

of non-small cell lung cancer: prospective comparison of

PET/MR and PET/CT. Eur Radiol 2016;26:3850–3857.
10. Keller SH, Holm S, Hansen AE, et al. Image artifacts

from MR-based attenuation correction in clinical,

whole-body PET/MRI. Magn Reson Mater Physics,

Biol Med 2013;26:173–181.
11. Bezrukov I, Schmidt H, Mantlik F, et al. MR-based

attenuation correction methods for improved PET quan-

tification in lesions within bone and susceptibility artifact

regions. J Nucl Med 2013;54:1768–1774.
12. Wagenknecht G, Kaiser HJ, Mottaghy FM, et al.

MRI for attenuation correction in PET: Methods and

challenges. Magn Reson Mater Physics, Biol Med

2013;26:99–113.
13. Beyer T, Lassen ML, Boellaard R, et al. Investigating the

state-of-the-art in whole-body MR-based attenuation

correction: an intra-individual, inter-system, inventory

Kuttner et al. 9



study on three clinical PET/MR systems. Magn Reson
Mater Physics, Biol Med 2016;29:75–87.

14. Martinez-Moller A, Souvatzoglou M, Delso G, et al.
Tissue classification as a potential approach for attenua-
tion correction in whole-body PET/MRI: evaluation with
PET/CT data. J Nucl Med 2009;50:520–526.

15. Schramm G, Langner J, Hofheinz F, et al. Influence and
compensation of truncation artifacts in MR-based atten-
uation correction in PET/MR. IEEE Trans Med Imaging
2013;32:2056–2063.

16. Ladefoged CN, Hansen AE, Keller SH, et al. Impact of
incorrect tissue classification in Dixon-based MR-AC:
fat-water tissue inversion. EJNMMI Phys 2014;1:101.

17. Lassen ML, Rasul S, Beitzke D, et al. Assessment of
attenuation correction for myocardial PET imaging
using combined PET/MRI. J Nucl Cardiol 2017. doi:
10.1007/s12350-017-1118-2.

18. Olin A, Ladefoged CN, Langer NH, et al.
Reproducibility of MR-based attenuation maps in

PET/MRI and the impact on PET quantification in
lung cancer. J Nucl Med 2018;59:999–1004.

19. Paulus DH, Quick HH, Geppert C, et al. Whole-body
PET/MR imaging: quantitative evaluation of a novel
model-based MR attenuation correction method includ-
ing bone. J Nucl Med 2015;56:1061–1066.

20. Nuyts J, Bal G, Kehren F, et al. Completion of a trun-
cated attenuation image from the attenuated PET emis-
sion data. IEEE Trans Med Imaging 2013;32:237–246.

21. Boellaard R, Delgado-Bolton R, Oyen WJG, et al.
FDG PET/CT: EANM procedure guidelines for
tumour imaging: version 2.0. Eur J Nucl Med Mol
Imaging 2015;42:328–354.

22. Samarin A, Burger C, Wollenweber SD, et al. PET/MR
imaging of bone lesions - Implications for PET quantifi-
cation from imperfect attenuation correction. Eur J Nucl
Med Mol Imaging 2012;39:1154–1160.

23. Aznar MC, Sersar R, Saabye J, et al. Whole-body PET/
MRI: The effect of bone attenuation during MR-based
attenuation correction in oncology imaging. Eur J Radiol
2014;83:1177–1183.
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Abstract
This study investigates motion variability of radiomic features in positron emission tomography

(PET) images of lung tumors. This resulted in a list of motion-invariant features which can be

extracted from free-breathing PET examinations. Furthermore, a condensed list of features useful

to build robust predictive models is suggested.

Radiomic features are becoming increasingly important in non-invasive, machine-learning-based

models for prediction of disease state or survival. In lung cancer PET imaging, breathing-induced

motion introduces variability in the radiomic features, which reduce the accuracy of a prediction

model.

Eighteen non-small-cell lung cancer patients underwent a 20 minute, single-bed, PET/magnetic

resonance imaging (MRI) acquisition in free-breathing. Three PET images were reconstructed for

each patient: 1) Free-breathing PET (PET100%), 2) end-expiration PET (PET40%) and 3) MRI-

based motion-corrected PET (PETMoCo). In each reconstruction, the primary tumor was segmented

using a threshold method, and 834 standardized radiomic features were extracted from each

segmentation. Motion robust features were selected by comparing feature values from PET100% to

the corresponding values in PET40% and PETMoCo. The following three criteria were used to select

motion robust features: relative difference less than 5%, P-value larger than 0.05 and concordance

correlation coefficient larger than 0.95. A condensed list of features with low correlation was created

from the motion-robust features, based on a correlation-matrix threshold of 0.95.

We found 43 of the 834 features to be motion robust. Fourteen of these had low correlation,

according to the correlation-matrix threshold, and may be used as one possible feature-set for

predictive model training. PETMoCo features showed lower differences relative PET100%, than did

PET40%.

In conclusion, we have identified 43 motion-robust lung-tumor PET features which can be

extracted from free-breathing PET acquisitions, thus omitting the need for gating and motion

correction.

Keywords

PET, Radiomics, features, variability, motion correction, lung cancer
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Introduction
Lung cancer is the most frequent cancer type and the world-wide leading cause of cancer-related

death (Wild et al. 2020). Medical imaging with 18F-fluorodeoxyglucose (FDG) positron emission

tomography (PET) plays an important role in the staging of the disease, and visual review

and standardized uptake value (SUV)-based metrics are commonly used for clinical lung tumor

characterization (Sauter et al. 2015; Ladrón De Guevara Hernández 2015; Greenspan et al. 2017;

Pinker et al. 2017). Numerous studies have investigated the use of textural features, so-called

radiomics, as prognostic biomarkers (He et al. 2018; S. S. Yip et al. 2017; Wu et al. 2016; Lovinfosse

et al. 2016; Aerts et al. 2014; Cook et al. 2013). Radiomics refers to the process of extracting a

large number of mathematical features from medical images, and thus, with a larger number of

descriptives than with just SUV, characterize a tumor non-invasively.

Multiple radiomic features can be combined into predictive models for disease state or survival.

Examples of traditional algorithms are Cox’s regression and Kaplan-Meier analysis (Simon et al.

2011; Bianconi, Palumbo, Spanu, et al. 2020), while more recently, the use of machine-learning-

based classifiers, for instance deep neural networks, have been introduced (Ahn et al. 2019; Avanzo

et al. 2020). Radiomic features extracted from lung-tumor PET images have been used to build

prognostic models for histological subtypes (Bianconi, Palumbo, Fravolini, et al. 2019), EGFR

mutation status (S. S. Yip et al. 2017), ALK gene expression (Yoon et al. 2015), survival (Tixier

et al. 2014; Pyka et al. 2015; Ohri et al. 2016; Desseroit et al. 2016; Hatt et al. 2018; Kirienko

et al. 2018; Oikonomou et al. 2018), local control (Dissaux et al. 2020) and recurrance (Oikonomou

et al. 2018; Ahn et al. 2019). A requirement of these models is that the number of features must be

smaller than the number of patients to avoid overfitting (Simon et al. 2011). With a large number of

features, the number of patients is normally the limitation in clinical studies. Therefore a selection

of the most relevant features must be performed (Blum et al. 1997; Urbanowicz et al. 2018). For

instance, correlated features add minor value to the models and may be removed (Wu et al. 2016).

To build robust prognostic models, radiomic biomarkers should have low variability to factors

which are unrelated to the disease. Therefore, the stability of radiomic feature to various effects

have been extensively studied in recent years. For example, it has been shown that features extracted

from PET images are affected by the scanner type (Fried et al. 2016), reconstruction settings (Altazi

et al. 2017; Shiri et al. 2017; Velden et al. 2016), the tumor segmentation method (Altazi et al.

2017; Velden et al. 2016), and the gray scale discretization method (Leijenaar et al. 2015) used. In

addition, one of the main challenges in thoracic PET is image blurring due to respiratory motion.

Previous studies have shown that breathing motion has a large impact on the extracted SUV values,

the metabolic tumor volumes, as well as on the radiomic features (Oliver, Budzevich, Zhang, et al.

2015; S. Yip et al. 2014).

To reduce breathing-induced motion-blur, end-expiration-based PET is commonly utilized,

where only PET data from the stationary phase of the breathing cycle are used during image

reconstruction. Thus, compared to free-breathing PET, it reduces motion-induced blurring, enabling

PET-based features to be better resolved (S. Yip et al. 2014). On the other hand, end-expiration
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PET has an optimal duty cycle in the order of 35% (Van Elmpt et al. 2011) and thus have an

increased noise level compared to free-breathing PET, which might increase variability of many

radiomic features (Oliver, Budzevich, Hunt, et al. 2017; S. Yip et al. 2014).

The recent introduction of integrated PET/magnetic resonance imaging (MRI) systems has

opened new possibilities for tumor characterization, not only by providing excellent soft-tissue

contrast by MRI, but also by allowing image-based motion correction of the PET data. With

this technique the motion vector fields are calculated over the phases of the breathing cycle, and

used for motion correction of the simultaneously acquired PET data. In this way, a stationary

and motion corrected PET image can be obtained without rejection of acquired PET events, thus

allowing for motion corrected images with similar noise level as free-breathing PET (Furst et al.

2015; Grimm et al. 2015). Furthermore, breathing induced motion introduces mismatch between

the attenuation-correction map and PET image data. This commonly introduces artifacts in free-

breathing and end-expiration PET images (Keller et al. 2013). With MRI-based motion correction,

the attenuation-correction map can be transformed into the correct breathing phase using the

motion vector-fields, thus reducing the image artefacts in the reconstructed PET images (Furst

et al. 2015). To the best of our knowledge, no study has, to date, investigated the impact of MRI

based motion correction on radiomic features.

In this study we investigate the motion variability of radiomic features in a non-small-cell lung

cancer PET cohort. Our aim was to generate a list of motion-invariant features that have the

potential to be used in predictive models for disease state or survival prediction. These features

may be extracted from free-breathing, end-expiration or motion corrected PET images without

introducing reconstruction-bias in the feature values. Specifically, the free-breathing PET scan

protocol is less complex and time-consuming to perform, compared to the motion correction

sequences. Thus, by employing motion-robust features in machine learning prediction models, end-

expiration gating and motion correction acquisitions are not needed, which simplifies the PET

workflow for patients. Furthermore, hybrid PET/MRI is still an emerging modality, thus limiting

the use of MRI-based motion correction at all PET imaging centers.

Materials and Methods
Ethical approval

This study was approved by the Norwegian Regional Committees for Medical and Health Research

Ethics (REC reference 2017/1952). All patients signed written informed consent.

Patient population and imaging preparations

Eighteen patients with histologically confirmed non-small-cell lung cancer were included in this

prospective PET/MRI study. Patients fasted 15h ± 6h before the injection of 277 MBq ± 66 MBq

FDG. PET/MRI scanning started 2 hours post injection. The patient characteristics are summarized

in Table 1.
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PET/MRI acquisition

The PET/MRI acquisitions were performed on a 3T integrated PET/MRI system (Biograph

mMR; Siemens Healthineers; software version E11). Before scanning, patients were positioned

on the scanner bed with the arms along the torso. MRI acquisitions were performed employing

a flexible 6-element surface coil (Body Matrix Coil; Siemens Healthineers) positioned over the

thorax. Respiratory phase was monitored during the scan with a respiratory cushion between the

surface coil and the thorax, positioned between the costal arch and sternum. This region was then

centered in the field-of-view of the scanner. A 20-minute list-mode PET acquisition was conducted

in free breathing for a single bed-position. MRI scanning was performed simultaneously with PET

acquisition. Standard DIXON-based attenuation-correction maps with 4 tissue classes (air, fat, lung

tissue, soft tissue) were acquired in end-expiration breath-hold for each scan, including a dedicated

scan to account for arms outside the field-of-view (Blumhagen et al. 2014). A bone-model template

was added to the segmented attenuation-correction maps (Kuttner et al. 2020).

A self-gated T1-weighted radial ”stack-of-stars” spoiled 3-dimensional gradient echo sequence

with fat suppression (StarVIBE, Siemens Healthineers) was used to acquire MRI images of five

respiratory phases, followed by calculation of corresponding motion vector fields that allowed non-

rigid registration of each phase to the end-expiration reference phase (Furst et al. 2015; Grimm

et al. 2015).

Image reconstruction, gating and motion correction

Static PET images (PET100%) were reconstructed from the entire 20 minute PET scan (Figure 1A),

by employing the end-expiration attenuation-correction map.

End-expiration PET images (PET40%) were created from the 20 minute list-mode data by using

40% of the breathing phase. The end-expiration phase was set to be from 30% - 70% of the breathing

cycle, as measured from peak-inspiration with the respiratory cushion (Figure 1B). PET40% was

reconstructed using the end-expiration attenuation-correction map.

Motion corrected PET images (PETMoCo) were reconstructed by binning the 20 minute list-mode

PET events into sinograms for five respiratory phases corresponding to the phases for the MRI-

derived motion vector fields. The five motion vector fields were transformed into the sinogram

domain and applied to each PET sinogram to result in five motion-compensated PET sinograms in

end-expiration (reference phase). These five sinograms were then summed and reconstructed into

the motion corrected PETMoCo image, which resulted in 100% duty cycle (Figure 1C).

In the PETMoCo workflow, a visual comparison between end-expiration and end-inspiration

StarVIBE images and the acquired attenuation-correction map is performed. For PETMoCo

reconstructions, attenuation-correction maps in end-expiration (reference phase) are required. In

some patients, where the attenuation-correction maps were found to be in end-inspiration, the

attenuation-correction maps were transformed into end-expiration using the MRI-derived motion

vector fields, prior to PET image reconstruction.

All PET image reconstructions were performed using an ordered-subset expectation-maximization

algorithm with 4 iterations, 21 subsets and 3 mm Gaussian smoothing. The matrix size of the
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reconstructed PET images was 344×344×128 with a voxel size of 2.1×2.1×2.0 mm. All PET images

were converted to SUV prior to further processing. End-expiration PET reconstruction (manual

gating) and motion correction (BodyCOMPASS, Siemens Healthineers) are commercially available

and were installed on the clinical PET workstation by the vendor.

Tumor delineation and feature extraction

The primary tumor was delineated for each patient and reconstruction (PET100%, PET40% and

PETMoCo) using a 41% SUVmax threshold (Boellaard et al. 2015). From each segmented tumor,

834 radiomic features were extracted, out of which 106 features were derived from the original PET

images, and 728 features were derived from wavelet transforms of the original PET image.

The 106 features from the original PET images could be subdivided into 91 voxel-based features

and 14 shape features, and were defined according to The Image Biomarker Standardisation

Initiative (IBSI) (Zwanenburg et al. 2020). In addition one clinically relevant feature, SUVpeak, was

also extracted from the original PET images (Boellaard et al. 2015). The 91 voxel-based features

could be subdivided into 7 classes, including 18 first-order statistical features, 22 Gray Level Co-

occurrence matrix (GLCM) features, 14 Gray Level Dependence Matrix (GLDM) features, 16 Gray

Level Run Length Matrix (GLRLM) features, 16 Gray Level Size Zone Matrix (GLSZM) features,

and 5 Neighboring Gray Tone Difference Matrix (NGTDM) features.

Voxel-based features were also extracted from 8 wavelet transforms of the original PET image, as

described in the literature (Aerts et al. 2014). In short, directional low-pass (L) and high-pass (H)

filtering was applied to the image, resulting in 8 transformed images from which features could be

extracted using the original tumor delineations. The decompositions are named LLL, LLH, LHL,

LHH, HLL, HLH, HHL and HHH, according to the x, y, z order of directional filtering.

Radiomic features were extracted using PyRadiomics 3.0 (Griethuysen et al. 2017).

Data analysis and statistics

Individual tumor movement for PET100% was quantified as center-of-mass displacement relative

PET40% and PETMoCo, and described as median and 75-percentile deviation. The 75-percentile

was included because of the realization that only a small fraction of the patients showed substantial

respiratory movement.

The relative difference in feature-values for PET40% and PETMoCo compared to PET100% was

calculated for all features and reported as mean and 95% confidence interval across patients. Feature-

values with a relative difference lower than 5% was considered to be motion robust in this work.

The t-distribution was used for calculation of the confidence intervals. Inspection of quantile-

quantile plots revealed that normality could not be assumed. Consequently, statistical significance

was calculated using Wilcoxon signed-rank test. P-values lower than 0.05 were considered significant.

The concordance correlation coefficient (CCC) was calculated for all features to determine

the correlation between PET40% and PET100%, and between PETMoCo and PET100%. In this

work, motion robust features were defined to have a CCC larger than 0.95, corresponding to a

”substantial” or ”high” strength-of-agreement level (McBride 2007).
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Selection of motion robust features

In this work we define a feature to be motion robust if it has the same value in PET100%, PET40% and

PETMoCo reconstructions. Wilcoxon signed-rank test measured if the differences were significant.

The CCC was included as a third measure to evaluate the agreement between features, which

may handle situations where other statistical tests fail (Lin 1989). Thus, all three criteria (relative

difference, P-values, and CCC) was employed to find motion robust features.

First, from the 834 initially extracted features, all features with relative difference lower than 5%,

P-value above 0.05 and CCC larger than 0.95 in both PET40% and PETMoCo comparisons were

selected as motion robust features. In this three-wise combined comparison, the features matching

these criteria have feature-values that are robust to the PET reconstruction type (PET100%, PET40%

and PETMoCo), and, consequently, independent of the breathing pattern of the patient.

A similar pair-wise selection was also performed comparing PET100% to PET40% features, and

PET100% to PETMoCo features separately, to identify features that were pair-wise motion robust.

To thoroughly investigate which features were truly motion robust, the patients with large

tumor movement were evaluated separately. In this analysis, patients with tumor center-of-mass

displacement larger than the median displacement in PET100% relative to PETMoCo were included.

The three-wise selection criteria was re-evaluated on this reduced data-set. Displacement was

quantified as the distance between the center-of-mass distance of PET100% relative that of PETMoCo.

Selection of uncorrelated features

Among the selected motion robust features, there could still be redundancy if features were highly

correlated. Therefore, feature selection is an important pre-processing step in classification tasks,

to reduce the number of redundant features in order to improve the performance of the classifier

(Blum et al. 1997). In this work, to generate a set of features with low correlation for PET40%

and PETMoCo, one example of a feature selection method was applied: The correlation matrix

was calculated between all motion robust features (Figure 3A), and feature-pairs with correlation

coefficient larger than 0.95 were identified as candidates for removal. For each candidate pair,

i, j, with correlation coefficient cij , the feature with highest average correlation, C, across all (n)

features, C = 1
n

∑
j cij , was removed (Wu et al. 2016). The features remaining after the selection

process could be treated as both motion robust and with low correlation (Figure 3B).

As a final step, we compared the features from recent radiomics publications with our results.

None of the publications found were performed using respiratory-motion information.

Results
One patient was identified as an outlier and removed from the subsequent analyses due to abnormal

feature-values, possibly due to infiltration of the lung tumor into vertebral bone and the presence

of a rare autoimmune disease.

Visual inspection of Figure 1 reveals that the PET40% and PETMoCo image have smaller tumor

volume compared to PET100%. As expected, the noise level in PET40% is visually higher than for

PET100%, while the noise level for PETMoCo is comparable to PET100%.
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The deviation in center-of-mass relative PET100% was 0.96 mm (median) and 1.99 mm (75-

percentile) for PET40%. For PETMoCo the corresponding deviation was 2.6 mm (median) and 3.7

mm (75-percentile) relative PET100%.

Figure 2 shows the difference, relative PET100%, for all 834 features for PET40% and PETMoCo.

In general, there were more features with low relative difference values for PETMoCo, compared to

PET40%.

The number of features per feature class fulfilling each criteria in the three-wise comparison

is summarized in Table 2. From the 834 initially extracted features, 126 features had a relative

difference lower than 5%, 169 had a P-value above 0.05 and, 193 had a CCC larger than 0.95, and

43 features fulfilled all three criteria, in the three-wise PET40% and PETMoCo comparisons.

Table 3 lists all 43 of the 834 evaluated features remaining after applying the three-wise selection

criteria. These features are considered stable and independent of the breathing pattern of the

patient and can thus be extracted from non-gated or non-motion-corrected PET-examinations. Six

of these features were previously reported to be useful for prediction of survival or disease state

for non-small-cell lung cancer patients, in recent radiomics publications, as indicated in Table 3.

Supplementary Table S1 and S2 lists, respectively, the 80 and 213 features remaining after applying

the three selection criteria pair-wise to the PET40% and PETMoCo comparisons. Supplementary

Table S3 shows the resulting 38 features remaining after applying the three-wise criteria on the

nine patients with largest tumor displacement.

One example of a feature reduction method, to remove highly correlated features, was applied,

to reduce the number of features even further. This example is illustrated in Figure 3 for PET40%.

Figure 3A, shows the Pearson correlation matrix for all pairs of the 43 motion-robust features

from Table 3. Figure 3B displays the sparse matrix with the remaining features after performing

the correlation-based feature elimination procedure (correlation coefficient > 0.95). The equivalent

figure for PETMoCo is shown in Supplemenatary Figure S1. This elimination process reduced the 43

motion robust features to 14 motion robust features with low inherent correlation for both PET40%

and PETMoCo.

Table 4 displays the features with low between-feature correlation remaining after the correlation-

based elimination process. The majority of the features were the same between PET40% (Table 4A)

and PETMoCo (Table 4B). Two features for PET40% and two features for PETMoCo were unique. As

indicated in Table 4, the two features ”GLCM JointEnergy” and ”NGDTM Coarseness” have been

previously reported to be diagnostically predictive in PET-radiomics research (Ohri et al. 2016;

Kirienko et al. 2018).

Table 5 shows 24 other PET-radiomic features which were not motion robust, but which have

been reported to be predictive for health status, using non-gated PET.
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Discussion
Respiratory motion introduces artefacts and blurring in thoracic PET images. This results in

breathing-amplitude dependent variability of PET-based radiomic tumor-features, yielding less

robust predictive models for disease classification. In this study, we identify radiomic features

that are robust to motion and, thus, can be extracted from simple free-breathing PET (PET100%)

without gating or motion correction, which both require additional time and special attention during

scanning. These features are candidates for building robust predictive models for disease state or

survival classification, that can be implemented with standard clinical PET acquisition protocols.

We extracted 834 standardized radiomic features from 18 non-small-cell lung cancer patients

within a clinical PET/MRI trial. Features from PET100% were compared to two motion-

compensation PET methods: end-expiration (PET40%) and MRI-based motion corrected

(PETMoCo) reconstruction. A feature was classified as motion robust if the following three criteria

were fulfilled: relative difference < 5%, P-value > 0.05 and CCC > 0.95.

We found that 43 of the 834 extracted features were motion robust (Table 2), while 94% of

the extracted features exhibited variability to motion. Shape features were generally more robust

compared to voxel-based features, which is in agreement with several previous publications (Oliver,

Budzevich, Zhang, et al. 2015; Oliver, Budzevich, Hunt, et al. 2017; Du et al. 2019; Peerlings et al.

2019).

As illustrated in Figure 2, the spread of the relative difference values (relative to PET100%) were

higher for PET40% than for PETMoCo. This coincides with the observed larger image noise for

PET40% (Figure 1). One plausible explanation may be that some first and higher-order voxel-based

features are known to be highly noise dependent (Oliver, Budzevich, Hunt, et al. 2017), resulting

in the observed higher variability of the PET40%-based feature values.

Motion amplitude

A requirement when studying motion variability of radiomic features is that motion is present in

the data. In this study, the presence of motion was characterized by the difference in tumor center-

of-mass between free-breathing PET100% and the two motion compensated PET reconstructions

(PET40% and PETMoCo). We found average center-of-mass differences of 1-2 mm. This is of similar

magnitude as the reported 1.5 mm displacement for lung lesions located in the upper lung lobe,

which are known to be less affected by motion, than central or lower located lesions (Grootjans

et al. 2016). To accommodate for some patients having small tumor motion, we investigated the

75-percentile displacement, which was found to be 2-5 mm. A smaller fraction of the patients was,

thus, affected by larger tumor motion than the average patient, which could affect the results, as

discussed below.

Motion robust features

In this work we define a feature to be motion robust if it has the same value in the three

PET reconstructions (PET100%, PET40% and PETMoCo). Initially, we were inspired by previous
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studies using only a CCC-based selection criterion to classify features as robust to motion (Oliver,

Budzevich, Zhang, et al. 2015; Oliver, Budzevich, Hunt, et al. 2017; Timmeren et al. 2016; Traverso

et al. 2018). With this selection method, we found features with high CCC values with large

deviations, which, thus, were not motion robust. Instead, we employed three criteria, based on

relative difference, P-value and CCC, which all had to be fulfilled in pair-wise, or three-wise

comparisons, to classify a feature as motion robust.

Forty-three features remained after applying the three-wise selection criteria (Table 3). These 43

features can be considered independent of the PET reconstruction type (PET100%, PET40% and

PETMoCo), and may be extracted from a static, free-breathing PET, without the need for gating

or motion correction.

The majority of motion robust features were based on wavelet transformed PET-images (Table 3.

feature 21-43). Wavelet features have been successfully included in radiomics models in computed

tomography (CT) (Aerts et al. 2014; Wu et al. 2016) and MRI (Zhou et al. 2020), but to the

best of our knowledge, to date, not been used in any published predictive PET study. As our list

of motion robust features is dominated by wavelet-based features, we believe that incorporating

wavelet transforms would be an important factor to successful PET-radiomics prediction-studies of

lung cancer.

Above, we have discussed the 43 features that were found invariant to all three reconstructions

(PET100%, PET40% and PETMoCo). To further understand the differences between PET40% and

PETMoCo, we compared the reconstructions pair-wise. Comparing PET100% to PET40% (using the

same three selection criteria as above) resulted in 82 features being motion robust (Supplementary

Table S1). Likewise, the same comparison between PET100% and PETMoCo resulted in 219 motion

robust features (Supplementary Table S2). As discussed earlier, PET40% has increased noise level

compared to both PET100% and PETMoCo. In addition, both PET40% and PETMoCo has reduced

motion, compared to PET100% (Figure 1). The difference in motion compensation methodology

between PET40% (using only end-expiration PET counts) and PETMoCo (non-rigid registration

of five breathing phases), may have introduced differences in tumor texture, and thus, resulted

in different sets of motion robust features. This may explain the differences between Table 3 (43

features) and Table S1 (82 features).

To investigate the impact of motion amplitude on the selected features, we performed the analysis

on the half of patients with largest tumor motion, as measured with the center-of-mass difference

in PET100% relative PETMoCo. This resulted in a list of 38 features (Supplementary Table S3).

Half of these features coincided with our suggested list of motion robust features in Table 3. Shape

features was the feature class with most overlap, where all shape features from Table 3 were present

in Supplementary Table S3. Around half of the wavelet-based features remained equal, while no

first-order features were overlapping between the tables. The different set of features between Table

3 and Supplementary Table S3 indicates that the remaining list of features after applying the

three selection criteria is highly dependent on the fraction of tumors with small and large motion

amplitude in the data set. As clinical studies consists of patients with varying motion amplitude,
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we believe that our list of 43 features in Table 3 is a more representative feature-set for a normal

cohort, representing all types of breathing patterns.

Eliminating correlated features

To reduce the number of correlated features, an unsupervised, correlation-matrix based, elimination

process was applied. This approach reduced the 43 motion robust (but correlated) features (Table

3), to 14 features with low correlation, for PET40% and PETMoCo (Figure 3, Table 4). Correlation-

based feature elimination is just one of many possible feature selection methods (Blum et al. 1997;

Wu et al. 2016; Urbanowicz et al. 2018). With the 43 motion-robust features in Table 3 as a starting

point, it is possible to explore supervised or unsupervised feature selection methods, to find the

most optimal features for the prediction being investigated.

Features predictive of health status

Among the 43 motion robust features in Table 3, we found six features (Entropy, Uniformity,

GLCM JointEnergy, GLCM JointEntropy, GLCM MaximumProbability and NGTDM Coarseness)

previously used in disease-related prediction models and cited in recent PET radiomics publications.

Earlier research have identified features predictive of health status using non-gated PET, but

which did not fulfill our criteria for motion robustness (Table 5). Interestingly, these features could

still differentiate between clinical end points, even though the images were blurred by motion. It is

possible that these prediction models could be further improved by using motion robust features,

as suggested in a recent CT-based radiomics study (Du et al. 2019).

Related work

Three of the motion robust features found in our study (Firstorder Entropy, GLCM Joint Entropy

and GLCM SumEntropy) were also reported as motion-invariant by Oliver, Budzevich, Zhang, et al.

2015. They found six additional features with low variability, which we did not find to be motion

robust (Shape Sphericity, GLCM Imc2, GLRLM ShortRunEmphasis, GLRLM LongRunEmphasis,

and GLRLM RunPercentage). One plausible explanation to this may be that the total number of

radioactive decays within the acquisition time was lower, compared to our study. As discussed above,

GLCM and GLRLM features are highly noise sensitive, thus, it is likely that the different noise levels

in the two studies affected the results. In addition, Oliver, Budzevich, Zhang, et al. 2015 used solely

a CCC-based criterion to classify features, which leaves the possibility that features fulfilling the

CCC-criterion still are not motion robust when also relative differences and P-values are considered.

We found NGTDM Coarseness to be motion robust while NGTDM Contrast was non-motion

robust. This is contradictory to the study by S. Yip et al. 2014 who found motion-variability in

the former feature, while the latter was motion-robust. The PET counts per bed position was

approximately double in S. Yip et al. 2014, compared to our study, suggesting that the noise

properties, in combination with motion, could possibly affect the variability of feature-values.

Another possible explanation to the different results is that S. Yip et al. 2014 used relative difference

and P-value criteria for feature selection, while we, in addition, employed CCC, to select motion

robust features.
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Limitations

Our sample size was comparable to similar published studies (Oliver, Budzevich, Zhang, et al. 2015;

S. Yip et al. 2014) and we hypothesize that this did not affect our results. Because of the limited

sample size, and that the end-points are not yet known, we could not build predictive models to

test the impact of the motion robust features on disease or survival predictions. We will investigate

this in a future follow-up study.

Conclusion

In conclusion, we have identified 43 motion robust tumor PET tumor features, of which 37 have

not been previously reported. These features can be extracted from simple free-breathing PET

reconstructions, without employing gating or motion-correction.
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Figure 1. PET image of one representative patient (top row), respiration curve (middle row) and an
illustration of the amount of PET data and it’s variability per breathing cycle, used for reconstruction
(bottom row). A. PET100%. B. PET40%. C. PETMoCo. The primary tumor and corresponding 41% SUVmax

delineation is shown in the right lung and in the insert.
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B. RD of PETMoCo to PET100%. In A and B, horizontal red line indicate ± 5% RD. The y-axis limits were
chosen to include 97% of the data points.
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Figure 3. Plots of the absolute value of pair-wise Pearson correlation coefficients for the 43 motion robust
features from Table 3. A. Before removal of correlated features. B. After removal of features with correlation
coefficient > 0.95.
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Tables

Table 1. Patient characteristics.
Characteristics Value
Female 7
Male 11
Age 71 (52-81)† years
Weight 80 (51-132)† kg
Histological subtype

Adenocarcinoma 9
Squamous cell carcinoma 9

Clinical disease stage∗

I 5
II 3
III 7
IV 3

†Value presented as Mean (range)
∗TNM 8th edition

Table 2. Number of features remaining per selection criterion. ”None” indicates the distribution of features
without any selection criterion applied. ”All” indicates that all three selection criteria were fulfilled.

Number of features
Feature class None RD < 5% P > 0.05 CCC > 0.95 All
Firstorder 163 14 35 46 7
GLCM 198 44 29 41 8
GLRLM 144 31 22 37 7
GLSZM 144 11 31 19 6
NGTDM 45 2 17 12 2
GLDM 126 14 26 27 6
Shape 14 10 9 11 7
Sum 834 126 169 193 43
RD = Relative difference
CCC = concordance correlation coefficient



Page 21 of 23

T
a
b
le

3
.

A
ll

fe
a
tu

re
s

w
it

h
P

E
T

4
0
%

a
n

d
P

E
T

M
o
C
o

re
la

ti
v
e

d
iff

er
en

ce
<

5
%

,
P

-v
a
lu

e
>

0
.0

5
,

a
n

d
C

C
C

>
0
.9

9
.

F
ea

tu
re

s
th

a
t

a
re

co
in

ci
d

in
g

w
it

h
S

u
p

p
le

m
en

ta
ry

T
a
b

le
S

3
h

av
e

b
ee

n
m

a
rk

ed
w

it
h

a
d

a
g
g
er

(†
).

F
ea

tu
re

s
th

a
t

h
av

e
b

ee
n

u
se

d
in

re
ce

n
t

ra
d

io
m

ic
s

li
te

ra
tu

re
fo

r
d

is
ea

se
st

a
te

p
re

d
ic

ti
o
n

a
re

m
a
rk

ed
w

it
h

th
e

co
rr

es
p

o
n

d
in

g
re

fe
re

n
ce

.
R

el
a
ti

v
e

d
iff

er
en

ce
is

sh
ow

n
w

it
h

th
e
±

9
5
%

co
n

fi
d
en

ce
in

te
rv

a
l.

P
E

T
4
0
%

P
E

T
M

o
C
o

F
ea

tu
re

n
a

m
e

R
el

a
ti

ve
d

iff
er

en
ce

[%
]

P
-v

a
lu

e
C

C
C

R
el

a
ti

ve
d

iff
er

en
ce

[%
]

P
-v

a
lu

e
C

C
C

R
ef

er
en

ce
1

O
ri

g
in

a
l

F
ir

st
or

d
er

E
n

tr
o

p
y

0
.6

9
±

1
.3

6
0

.6
2

0
.9

9
1

1
.0

8
±

1
.5

4
0

.1
4

0
.9

8
8

(B
ia

n
co

n
i,

P
a

lu
m

b
o

,
F

ra
vo

li
n

i,
et

a
l.

2
0

1
9

)
2

O
ri

g
in

a
l

F
ir

st
or

d
er

M
ed

ia
n

4
.4

9
±

5
.2

0
0

.1
2

0
.9

8
6

5
.0

0
±

4
.7

1
0

.0
6

0
.9

8
4

3
O

ri
g

in
a

l
F

ir
st

or
d

er
S

U
V

p
ea

k
2

.2
4
±

4
.8

4
0

.8
0

0
.9

9
3

4
.9

8
±

4
.5

2
0

.0
8

0
.9

8
7

4
O

ri
g

in
a

l
F

ir
st

or
d

er
U

n
if

or
m

it
y

-0
.9

2
±

4
.4

7
0

.5
9

0
.9

9
4

-3
.3

4
±

4
.9

7
0

.8
3

0
.9

9
4

(B
ia

n
co

n
i,

P
a

lu
m

b
o

,
F

ra
vo

li
n

i,
et

a
l.

2
0

1
9

)
5

O
ri

g
in

a
l

G
L

C
M

Im
c1

-2
.2

1
±

9
.6

3
0

.3
6

0
.9

7
4

4
.0

1
±

7
.0

9
0

.2
7

0
.9

7
2

6
O

ri
g

in
a

l
G

L
C

M
Jo

in
tE

n
er

g
y

-3
.8

3
±

5
.0

8
0

.1
4

0
.9

8
9

-4
.9

3
±

6
.4

0
0

.4
9

0
.9

9
1

(K
ir

ie
n

ko
et

a
l.

2
0

1
8

)
7

O
ri

g
in

a
l

G
L

C
M

Jo
in

tE
n

tr
o

p
y

0
.8

9
±

1
.1

8
0

.1
0

0
.9

9
7

0
.7

3
±

1
.1

8
0

.1
5

0
.9

9
5

(D
es

se
ro

it
et

a
l.

2
0

1
6

;
P

yk
a

et
a

l.
2

0
1

5
;

T
ix

ie
r

et
a

l.
2

0
1

4
;

O
ik

o
n

o
m

o
u

et
a

l.
2

0
1

8
)

8
O

ri
g

in
a

l
G

L
C

M
M

a
xi

m
u

m
P

ro
b

a
b

il
it

y
-2

.8
6
±

7
.8

5
0

.3
6

0
.9

9
5

-0
.6

9
±

7
.8

9
0

.7
2

0
.9

8
1

(S
.

S
.

Y
ip

et
a

l.
2

0
1

7
)

9
O

ri
g

in
a

l
G

L
D

M
D

ep
en

d
en

ce
N

o
n

U
n

if
or

m
it

y
-1

.6
5
±

5
.0

6
0

.2
9

0
.9

9
5

-0
.4

6
±

7
.7

1
0

.5
5

0
.9

9
4

1
0

O
ri

g
in

a
l

G
L

R
L

M
G

ra
yL

ev
el

N
o

n
U

n
if

or
m

it
yN

or
m

a
li
ze

d
-1

.1
0
±

4
.4

0
0

.6
2

0
.9

9
5

-3
.2

7
±

4
.9

3
0

.7
9

0
.9

9
3

1
1

O
ri

g
in

a
l

G
L

R
L

M
R

u
n

E
n

tr
o

p
y

-0
.0

7
±

1
.5

5
0

.6
5

0
.9

8
2

1
.1

5
±

1
.1

9
0

.1
6

0
.9

8
3

1
2
†

O
ri

g
in

a
l

G
L

R
L

M
R

u
n

L
en

g
th

N
o

n
U

n
if

or
m

it
y

-4
.0

4
±

4
.8

5
0

.0
6

0
.9

9
0

-1
.0

1
±

7
.7

3
0

.0
8

0
.9

9
2

1
3
†

O
ri

g
in

a
l

N
G

T
D

M
C

o
ar

se
n

es
s

-1
.3

7
±

3
.6

3
0

.2
9

0
.9

9
1

-1
.9

8
±

5
.4

2
0

.2
7

0
.9

8
0

(P
yk

a
et

a
l.

2
0

1
5

)
1

4
†

O
ri

g
in

a
l

S
h

a
p

e
M

a
jo

rA
xi

sL
en

g
th

-1
.3

9
±

2
.0

0
0

.1
0

0
.9

9
9

-1
.6

6
±

3
.1

6
0

.1
5

0
.9

9
8

1
5
†

O
ri

g
in

a
l

S
h

a
p

e
M

a
xi

m
u

m
2

D
D

ia
m

et
er

C
o

lu
m

n
-0

.4
6
±

2
.2

5
0

.5
5

0
.9

9
8

-0
.3

8
±

4
.0

3
0

.5
7

0
.9

9
5

1
6
†

O
ri

g
in

a
l

S
h

a
p

e
M

a
xi

m
u

m
2

D
D

ia
m

et
er

R
ow

1
.7

9
±

4
.1

7
0

.4
3

0
.9

9
2

0
.1

5
±

3
.6

8
0

.7
9

0
.9

9
3

1
7
†

O
ri

g
in

a
l

S
h

a
p

e
M

a
xi

m
u

m
2

D
D

ia
m

et
er

S
li
ce

-1
.3

2
±

2
.8

9
0

.3
3

0
.9

9
8

-1
.2

2
±

3
.6

6
0

.3
3

0
.9

9
6

1
8
†

O
ri

g
in

a
l

S
h

a
p

e
M

a
xi

m
u

m
3

D
D

ia
m

et
er

-0
.8

9
±

1
.9

9
0

.1
2

0
.9

9
9

-0
.9

1
±

2
.8

2
0

.4
7

0
.9

9
8

1
9
†

O
ri

g
in

a
l

S
h

a
p

e
M

in
or

A
xi

sL
en

g
th

-0
.0

1
±

2
.4

2
0

.6
2

0
.9

9
9

2
.0

5
±

3
.8

4
0

.4
1

0
.9

9
2

2
0
†

O
ri

g
in

a
l

S
h

a
p

e
S

u
rf

a
ce

A
re

a
0

.9
7
±

4
.2

5
0

.8
3

0
.9

9
4

0
.1

3
±

5
.9

1
0

.2
3

0
.9

9
6

2
1
†

W
a

ve
le

t-
H

L
L

G
L

R
L

M
R

u
n

L
en

g
th

N
o

n
U

n
if

or
m

it
y

4
.1

1
±

5
.7

4
0

.8
7

0
.9

9
5

-1
.0

9
±

7
.7

1
0

.1
5

0
.9

9
1

2
2
†

W
a

ve
le

t-
L

H
H

G
L

D
M

D
ep

en
d

en
ce

E
n

tr
o

p
y

0
.3

3
±

1
.3

5
0

.6
9

0
.9

5
4

0
.9

0
±

0
.8

4
0

.0
6

0
.9

7
5

2
3
†

W
a

ve
le

t-
L

H
L

G
L

D
M

D
ep

en
d

en
ce

E
n

tr
o

p
y

-0
.3

0
±

0
.8

5
0

.1
2

0
.9

8
4

0
.6

7
±

0
.6

4
0

.0
6

0
.9

9
0

2
4
†

W
a

ve
le

t-
L

H
L

G
L

R
L

M
R

u
n

L
en

g
th

N
o

n
U

n
if

or
m

it
y

0
.7

9
±

5
.4

3
0

.5
2

0
.9

9
2

-0
.9

0
±

8
.1

0
0

.0
8

0
.9

9
2

2
5
†

W
a

ve
le

t-
L

H
L

G
L

S
Z

M
Z

o
n

eE
n

tr
o

p
y

0
.5

9
±

1
.6

1
0

.7
2

0
.9

7
1

0
.1

4
±

1
.3

2
0

.2
7

0
.9

8
6

2
6

W
a

ve
le

t-
L

L
L

F
ir

st
or

d
er

E
n

tr
o

p
y

0
.4

4
±

0
.9

7
0

.6
5

0
.9

9
3

0
.7

3
±

0
.8

5
0

.1
2

0
.9

9
4

2
7

W
a

ve
le

t-
L

L
L

F
ir

st
or

d
er

M
ed

ia
n

4
.1

0
±

5
.1

8
0

.1
5

0
.9

8
6

4
.7

9
±

4
.7

8
0

.0
6

0
.9

8
4

2
8

W
a

ve
le

t-
L

L
L

F
ir

st
or

d
er

U
n

if
or

m
it

y
-1

.3
7
±

4
.1

4
0

.5
9

0
.9

9
6

-3
.0

8
±

3
.8

6
0

.5
5

0
.9

9
6

2
9

W
a

ve
le

t-
L

L
L

G
L

C
M

Im
c1

0
.1

7
±

5
.8

4
0

.5
9

0
.9

8
5

2
.4

8
±

3
.1

3
0

.1
9

0
.9

8
7

3
0
†

W
a

ve
le

t-
L

L
L

G
L

C
M

Jo
in

tE
n

er
g

y
1

.8
7
±

5
.5

7
0

.9
8

0
.9

7
7

-0
.9

0
±

6
.0

6
0

.5
2

0
.9

9
2

3
1
†

W
a

ve
le

t-
L

L
L

G
L

C
M

Jo
in

tE
n

tr
o

p
y

-0
.1

7
±

1
.0

6
0

.4
1

0
.9

9
7

0
.2

2
±

1
.0

8
0

.5
2

0
.9

9
6

3
2

W
a

ve
le

t-
L

L
L

G
L

C
M

M
a

xi
m

u
m

P
ro

b
a

b
il
it

y
-1

.9
2
±

7
.5

2
0

.4
6

0
.9

8
3

-4
.0

3
±

6
.0

8
0

.4
9

0
.9

9
3

3
3
†

W
a

ve
le

t-
L

L
L

G
L

D
M

D
ep

en
d

en
ce

E
n

tr
o

p
y

-0
.6

5
±

0
.9

9
0

.1
2

0
.9

8
3

0
.4

0
±

0
.8

2
0

.4
9

0
.9

8
9

3
4
†

W
a

ve
le

t-
L

L
L

G
L

D
M

D
ep

en
d

en
ce

N
o

n
U

n
if

or
m

it
y

-2
.6

8
±

3
.2

6
0

.0
9

0
.9

9
4

0
.6

7
±

7
.3

3
0

.1
1

0
.9

9
2

3
5

W
a

ve
le

t-
L

L
L

G
L

D
M

S
m

a
ll
D

ep
en

d
en

ce
E

m
p

h
a

si
s

4
.2

6
±

6
.0

6
0

.0
6

0
.9

8
2

-0
.1

3
±

1
.9

7
0

.5
5

0
.9

9
5

3
6

W
a

ve
le

t-
L

L
L

G
L

R
L

M
G

ra
yL

ev
el

N
o

n
U

n
if

or
m

it
yN

or
m

a
li
ze

d
-1

.3
9
±

4
.1

3
0

.7
6

0
.9

9
6

-3
.0

6
±

3
.8

7
0

.6
5

0
.9

9
6

3
7

W
a

ve
le

t-
L

L
L

G
L

R
L

M
R

u
n

E
n

tr
o

p
y

0
.1

3
±

1
.0

6
0

.9
8

0
.9

9
1

0
.7

2
±

0
.7

9
0

.1
4

0
.9

9
3

3
8

W
a

ve
le

t-
L

L
L

G
L

S
Z

M
G

ra
yL

ev
el

N
o

n
U

n
if

or
m

it
yN

or
m

a
li
ze

d
-2

.2
1
±

4
.0

5
0

.3
8

0
.9

9
4

-3
.2

2
±

3
.9

2
0

.5
2

0
.9

9
6

3
9
†

W
a

ve
le

t-
L

L
L

G
L

S
Z

M
S

iz
eZ

o
n

eN
o

n
U

n
if

or
m

it
y

-1
.4

7
±

5
.6

5
0

.1
6

0
.9

9
4

-1
.3

1
±

8
.4

7
0

.1
1

0
.9

9
3

4
0

W
a

ve
le

t-
L

L
L

G
L

S
Z

M
S

iz
eZ

o
n

eN
o

n
U

n
if

or
m

it
yN

or
m

a
li
ze

d
0

.5
9
±

2
.8

1
0

.3
8

0
.9

7
3

-0
.4

6
±

2
.5

1
0

.7
9

0
.9

8
8

4
1

W
a

ve
le

t-
L

L
L

G
L

S
Z

M
S

m
a

ll
A

re
a

E
m

p
h

a
si

s
0

.1
6
±

1
.2

8
0

.4
6

0
.9

8
5

-0
.3

7
±

1
.3

9
0

.8
7

0
.9

8
9

4
2

W
a

ve
le

t-
L

L
L

G
L

S
Z

M
Z

o
n

eE
n

tr
o

p
y

0
.3

3
±

0
.7

9
0

.6
9

0
.9

9
0

0
.8

2
±

0
.8

6
0

.0
8

0
.9

8
6

4
3

W
a

ve
le

t-
L

L
L

N
G

T
D

M
C

o
ar

se
n

es
s

2
.3

2
±

3
.3

3
0

.4
9

0
.9

9
8

-2
.6

8
±

5
.2

2
0

.1
1

0
.9

9
0



Page 22 of 23

Table 4. List of motion robust (RD < ± 5%, P > 0.05, CCC > 0.95) features with low correlation
(correlation coefficient < 0.95). Features that are unique in subtable A and B are indicated in bold. Relative
difference is shown with the ± 95% confidence interval.

(A) PET40%

Feature name Relative difference [%] P-value CCC Reference
1 Original Firstorder Median 4.49 ± 5.20 0.12 0.986
2 Original Firstorder SUV peak 2.24 ± 4.84 0.80 0.993
3 Original GLCM Imc1 -2.21 ± 9.63 0.36 0.974
4 Original GLCM JointEnergy -3.83 ± 5.08 0.14 0.989 (Kirienko et al. 2018)
5 Original NGTDM Coarseness -1.37 ± 3.63 0.29 0.991 (Pyka et al. 2015)
6 Original Shape Maximum3DDiameter -0.89 ± 1.99 0.12 0.999
7 Original Shape SurfaceArea 0.97 ± 4.25 0.83 0.994
8 Wavelet-LHH GLDM DependenceEntropy 0.33 ± 1.35 0.69 0.954
9 Wavelet-LHL GLSZM ZoneEntropy 0.59 ± 1.61 0.72 0.971

10 Wavelet-LLL GLCM Imc1 0.17 ± 5.84 0.59 0.985
11 Wavelet-LLL GLCM JointEnergy 1.87 ± 5.57 0.98 0.977
12 Wavelet-LLL GLCM MaximumProbability -1.92 ± 7.52 0.46 0.983
13 Wavelet-LLL GLSZM SizeZoneNonUniformityNormalized 0.59 ± 2.81 0.38 0.973
14 Wavelet-LLL GLSZM ZoneEntropy 0.33 ± 0.79 0.69 0.990

(B) PETMoCo

Feature name Relative difference [%] P-value CCC Reference
1 Original Firstorder SUV peak 4.98 ± 4.52 0.08 0.987
2 Original GLCM Imc1 4.01 ± 7.09 0.27 0.972
3 Original GLCM JointEnergy -4.93 ± 6.40 0.49 0.991 (Kirienko et al. 2018)
4 Original NGTDM Coarseness -1.98 ± 5.42 0.27 0.980 (Pyka et al. 2015)
5 Original Shape Maximum3DDiameter -0.91 ± 2.82 0.47 0.998
6 Original Shape SurfaceArea 0.13 ± 5.91 0.23 0.996
7 Wavelet-LHH GLDM DependenceEntropy 0.90 ± 0.84 0.06 0.975
8 Wavelet-LHL GLSZM ZoneEntropy 0.14 ± 1.32 0.27 0.986
9 Wavelet-LLL Firstorder Median 4.79 ± 4.78 0.06 0.984

10 Wavelet-LLL GLCM Imc1 2.48 ± 3.13 0.19 0.987
11 Wavelet-LLL GLCM JointEnergy -0.90 ± 6.06 0.52 0.992
12 Wavelet-LLL GLCM MaximumProbability -4.03 ± 6.08 0.49 0.993
13 Wavelet-LLL GLDM DependenceEntropy 0.40 ± 0.82 0.49 0.989
14 Wavelet-LLL GLSZM SizeZoneNonUniformityNormalized -0.46 ± 2.51 0.79 0.988
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Figure S1: Plots of the absolute value of pair-wise Pearson correlation coefficients for the 43 highly motion robust
features from Table 2. A. Before removal of correlated features. B. After removal of correlated features using a
threshold of M < 0.95.
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Table S1: All features with PET40% relative difference < 5%, P-value > 0.05, and CCC > 0.95. Features that have been
used in recent radiomics literature for disease state prediction are marked with the corresponding reference. Relative
difference is shown with the ± 95% confidence interval.

PET40%
Feature name Relative difference [%] P-value CCC Reference

1 Original Firstorder Energy 1.48 ± 7.85 0.08 0.998
2 Original Firstorder Entropy 0.69 ± 1.36 0.62 0.991 [1]
3 Original Firstorder InterquartileRange 0.19 ± 7.00 0.69 0.959
4 Original Firstorder Mean 4.44 ± 5.23 0.14 0.986 [1]
5 Original Firstorder MeanAbsoluteDeviation 2.30 ± 5.90 0.94 0.977
6 Original Firstorder Median 4.49 ± 5.20 0.12 0.986
7 Original Firstorder RobustMeanAbsoluteDeviation 1.03 ± 6.30 0.79 0.970
8 Original Firstorder RootMeanSquared 4.40 ± 5.22 0.12 0.986
9 Original Firstorder SUV peak 2.24 ± 4.84 0.80 0.993

10 Original Firstorder TotalEnergy 1.48 ± 7.85 0.08 0.998
11 Original Firstorder Uniformity -0.92 ± 4.47 0.59 0.994 [1]
12 Original GLCM Imc1 -2.21 ± 9.63 0.36 0.974
13 Original GLCM JointAverage 2.95 ± 5.68 0.65 0.976 [6]
14 Original GLCM JointEnergy -3.83 ± 5.08 0.14 0.989 [5]
15 Original GLCM JointEntropy 0.89 ± 1.18 0.10 0.997 [2, 7–9]
16 Original GLCM MaximumProbability -2.86 ± 7.85 0.36 0.995 [10]
17 Original GLCM SumEntropy 0.51 ± 1.24 0.83 0.992
18 Original GLDM DependenceNonUniformity -1.65 ± 5.06 0.29 0.995
19 Original GLRLM GrayLevelNonUniformityNormalized -1.10 ± 4.40 0.62 0.995
20 Original GLRLM LongRunHighGrayLevelEmphasis 2.88 ± 12.75 0.87 0.979 [5]
21 Original GLRLM RunEntropy -0.07 ± 1.55 0.65 0.982
22 Original GLRLM RunLengthNonUniformity -4.04 ± 4.85 0.06 0.990
23 Original GLSZM GrayLevelNonUniformity -3.06 ± 6.82 0.31 0.991
24 Original GLSZM ZoneEntropy 1.19 ± 3.83 0.27 0.953
25 Original NGTDM Busyness -4.57 ± 9.02 0.19 0.992 [8, 10]
26 Original NGTDM Coarseness -1.37 ± 3.63 0.29 0.991 [8]
27 Original Shape Flatness 0.75 ± 2.73 0.87 0.962
28 Original Shape MajorAxisLength -1.39 ± 2.00 0.10 0.999
29 Original Shape Maximum2DDiameterColumn -0.46 ± 2.25 0.55 0.998
30 Original Shape Maximum2DDiameterRow 1.79 ± 4.17 0.43 0.992
31 Original Shape Maximum2DDiameterSlice -1.32 ± 2.89 0.33 0.998
32 Original Shape Maximum3DDiameter -0.89 ± 1.99 0.12 0.999
33 Original Shape MinorAxisLength -0.01 ± 2.42 0.62 0.999
34 Original Shape SurfaceArea 0.97 ± 4.25 0.83 0.994
35 Wavelet-HHH GLRLM RunLengthNonUniformity 1.82 ± 5.48 0.98 0.996
36 Wavelet-HLL GLCM Imc1 2.31 ± 9.09 0.72 0.969
37 Wavelet-HLL GLDM DependenceEntropy 0.85 ± 1.10 0.27 0.966
38 Wavelet-HLL GLRLM RunLengthNonUniformity 4.11 ± 5.74 0.87 0.995
39 Wavelet-HLL NGTDM Coarseness -0.98 ± 7.82 0.38 0.971
40 Wavelet-LHH GLDM DependenceEntropy 0.33 ± 1.35 0.69 0.954
41 Wavelet-LHL GLCM Imc1 -2.31 ± 7.32 0.41 0.977
42 Wavelet-LHL GLCM Imc2 0.86 ± 2.27 0.79 0.969
43 Wavelet-LHL GLDM DependenceEntropy -0.30 ± 0.85 0.12 0.984
44 Wavelet-LHL GLRLM RunLengthNonUniformity 0.79 ± 5.43 0.52 0.992
45 Wavelet-LHL GLSZM ZoneEntropy 0.59 ± 1.61 0.72 0.971
46 Wavelet-LHL NGTDM Coarseness -0.19 ± 6.93 0.79 0.988
47 Wavelet-LLH GLCM Imc2 -1.07 ± 2.21 0.18 0.984
48 Wavelet-LLH GLDM DependenceEntropy -0.04 ± 1.03 0.49 0.982
49 Wavelet-LLL Firstorder 90Percentile 4.24 ± 5.10 0.14 0.986
50 Wavelet-LLL Firstorder Energy 1.08 ± 7.87 0.08 0.998
51 Wavelet-LLL Firstorder Entropy 0.44 ± 0.97 0.65 0.993
52 Wavelet-LLL Firstorder InterquartileRange -1.10 ± 6.60 0.23 0.966
53 Wavelet-LLL Firstorder Maximum 3.97 ± 5.25 0.19 0.987
54 Wavelet-LLL Firstorder Mean 4.25 ± 5.19 0.14 0.986
55 Wavelet-LLL Firstorder MeanAbsoluteDeviation 1.45 ± 5.96 0.69 0.976
56 Wavelet-LLL Firstorder Median 4.10 ± 5.18 0.15 0.986
57 Wavelet-LLL Firstorder Minimum 3.37 ± 5.37 0.46 0.984
58 Wavelet-LLL Firstorder Range 4.42 ± 5.29 0.12 0.987
59 Wavelet-LLL Firstorder RobustMeanAbsoluteDeviation 0.20 ± 6.46 0.69 0.967
60 Wavelet-LLL Firstorder RootMeanSquared 4.18 ± 5.19 0.15 0.986
61 Wavelet-LLL Firstorder TotalEnergy 1.08 ± 7.87 0.08 0.998
62 Wavelet-LLL Firstorder Uniformity -1.37 ± 4.14 0.59 0.996
63 Wavelet-LLL GLCM Imc1 0.17 ± 5.84 0.59 0.985
64 Wavelet-LLL GLCM JointEnergy 1.87 ± 5.57 0.98 0.977
65 Wavelet-LLL GLCM JointEntropy -0.17 ± 1.06 0.41 0.997
66 Wavelet-LLL GLCM MaximumProbability -1.92 ± 7.52 0.46 0.983
67 Wavelet-LLL GLCM SumEntropy 0.11 ± 0.94 0.83 0.995
68 Wavelet-LLL GLDM DependenceEntropy -0.65 ± 0.99 0.12 0.983
69 Wavelet-LLL GLDM DependenceNonUniformity -2.68 ± 3.26 0.09 0.994
70 Wavelet-LLL GLDM SmallDependenceEmphasis 4.26 ± 6.06 0.06 0.982
71 Wavelet-LLL GLRLM GrayLevelNonUniformityNormalized -1.39 ± 4.13 0.76 0.996
72 Wavelet-LLL GLRLM RunEntropy 0.13 ± 1.06 0.98 0.991
73 Wavelet-LLL GLSZM GrayLevelNonUniformity -4.16 ± 6.10 0.08 0.982
74 Wavelet-LLL GLSZM GrayLevelNonUniformityNormalized -2.21 ± 4.05 0.38 0.994
75 Wavelet-LLL GLSZM GrayLevelVariance 4.29 ± 12.36 0.59 0.974
76 Wavelet-LLL GLSZM SizeZoneNonUniformity -1.47 ± 5.65 0.16 0.994
77 Wavelet-LLL GLSZM SizeZoneNonUniformityNormalized 0.59 ± 2.81 0.38 0.973
78 Wavelet-LLL GLSZM SmallAreaEmphasis 0.16 ± 1.28 0.46 0.985
79 Wavelet-LLL GLSZM ZoneEntropy 0.33 ± 0.79 0.69 0.990
80 Wavelet-LLL NGTDM Coarseness 2.32 ± 3.33 0.49 0.998



Table S2: All features with PETMoCo relative difference < 5%, P-value > 0.05 and CCC > 0.95. Features that have been
used in recent radiomics literature for disease state prediction are marked with the corresponding reference. Relative
difference is shown with the ± 95% confidence interval.

PETMoCo
Feature name Relative difference [%] CCC P-value Reference

1 Original Firstorder Entropy 1.08 ± 1.54 0.14 0.988 [1]
2 Original Firstorder Median 5.00 ± 4.71 0.06 0.984
3 Original Firstorder SUV peak 4.98 ± 4.52 0.08 0.987
4 Original Firstorder Uniformity -3.34 ± 4.97 0.83 0.994 [1]
5 Original GLCM Correlation -2.58 ± 4.47 0.11 0.967 [8]
6 Original GLCM Id -2.47 ± 3.54 0.23 0.993 [7–9]
7 Original GLCM Idm -2.10 ± 6.12 0.36 0.996
8 Original GLCM Idmn -0.25 ± 0.36 0.18 0.961 [10]
9 Original GLCM Idn -0.20 ± 0.41 0.41 0.983

10 Original GLCM Imc1 4.01 ± 7.09 0.27 0.972
11 Original GLCM Imc2 0.37 ± 0.85 0.25 0.982 [3]
12 Original GLCM JointEnergy -4.93 ± 6.40 0.49 0.991 [5]
13 Original GLCM JointEntropy 0.73 ± 1.18 0.15 0.995 [2, 7–9]
14 Original GLCM MaximumProbability -0.69 ± 7.89 0.72 0.981 [10]
15 Original GLDM DependenceEntropy 0.81 ± 1.07 0.55 0.983
16 Original GLDM DependenceNonUniformity -0.46 ± 7.71 0.55 0.994
17 Original GLDM DependenceVariance -4.24 ± 6.82 0.27 0.996
18 Original GLDM LargeDependenceEmphasis -1.05 ± 7.00 0.38 0.993
19 Original GLDM SmallDependenceEmphasis -1.17 ± 6.75 0.19 0.960
20 Original GLRLM GrayLevelNonUniformityNormalized -3.27 ± 4.93 0.79 0.993
21 Original GLRLM LongRunEmphasis 0.38 ± 1.36 0.62 0.991
22 Original GLRLM RunEntropy 1.15 ± 1.19 0.16 0.983
23 Original GLRLM RunLengthNonUniformity -1.01 ± 7.73 0.08 0.992
24 Original GLRLM RunLengthNonUniformityNormalized -0.16 ± 0.75 0.62 0.996
25 Original GLRLM RunPercentage -0.15 ± 0.49 0.62 0.996
26 Original GLRLM RunVariance 4.17 ± 14.81 0.52 0.991
27 Original GLRLM ShortRunEmphasis -0.10 ± 0.35 0.65 0.996
28 Original GLSZM SizeZoneNonUniformity -4.34 ± 13.78 0.83 0.994 [10]
29 Original GLSZM ZonePercentage -0.98 ± 10.02 0.14 0.980 [9]
30 Original NGTDM Coarseness -1.98 ± 5.42 0.27 0.980 [8]
31 Original Shape LeastAxisLength 0.55 ± 2.01 0.69 0.997
32 Original Shape MajorAxisLength -1.66 ± 3.16 0.15 0.998
33 Original Shape Maximum2DDiameterColumn -0.38 ± 4.03 0.57 0.995
34 Original Shape Maximum2DDiameterRow 0.15 ± 3.68 0.79 0.993
35 Original Shape Maximum2DDiameterSlice -1.22 ± 3.66 0.33 0.996
36 Original Shape Maximum3DDiameter -0.91 ± 2.82 0.47 0.998
37 Original Shape MeshVolume -0.66 ± 7.85 0.07 0.993
38 Original Shape MinorAxisLength 2.05 ± 3.84 0.41 0.992
39 Original Shape Sphericity -0.62 ± 1.46 0.62 0.996 [4, 10]
40 Original Shape SurfaceArea 0.13 ± 5.91 0.23 0.996
41 Original Shape SurfaceVolumeRatio 1.34 ± 2.25 0.27 0.990
42 Original Shape VoxelVolume -0.69 ± 7.74 0.07 0.992 [1, 10]
43 Wavelet-HHH GLDM GrayLevelNonUniformity -0.47 ± 7.79 0.07 0.993
44 Wavelet-HHH GLDM SmallDependenceEmphasis -2.85 ± 5.31 0.08 0.967
45 Wavelet-HHL Firstorder 90Percentile 0.79 ± 7.69 0.79 0.956
46 Wavelet-HHL Firstorder Energy -0.19 ± 13.45 0.21 0.978
47 Wavelet-HHL Firstorder Entropy -0.03 ± 3.81 0.62 0.968
48 Wavelet-HHL Firstorder MeanAbsoluteDeviation 0.30 ± 8.13 0.65 0.957
49 Wavelet-HHL Firstorder RootMeanSquared 0.23 ± 7.74 0.46 0.964
50 Wavelet-HHL Firstorder TotalEnergy -0.19 ± 13.45 0.21 0.978
51 Wavelet-HHL Firstorder Uniformity 1.54 ± 6.17 0.79 0.968
52 Wavelet-HHL GLCM JointEntropy -0.75 ± 3.68 0.41 0.964
53 Wavelet-HHL GLCM MaximumProbability 4.76 ± 9.95 0.41 0.968
54 Wavelet-HHL GLCM SumEntropy 0.72 ± 3.07 0.91 0.968
55 Wavelet-HHL GLDM DependenceNonUniformity -4.76 ± 7.01 0.06 0.979
56 Wavelet-HHL GLDM GrayLevelNonUniformity 1.81 ± 13.09 0.59 0.991
57 Wavelet-HHL GLDM LowGrayLevelEmphasis 2.96 ± 15.65 0.49 0.995

Continued on next page.
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Table S2 – continued from previous page
PETMoCo

Feature name Relative difference [%] P-value CCC Reference
58 Wavelet-HHL GLRLM GrayLevelNonUniformity -0.53 ± 11.11 0.23 0.989
59 Wavelet-HHL GLRLM GrayLevelNonUniformityNormalized 1.49 ± 5.85 0.83 0.973
60 Wavelet-HHL GLRLM LowGrayLevelRunEmphasis 2.66 ± 16.01 0.65 0.994
61 Wavelet-HHL GLRLM RunEntropy 0.89 ± 1.17 0.08 0.962
62 Wavelet-HHL GLRLM RunLengthNonUniformityNormalized -2.56 ± 2.91 0.06 0.959
63 Wavelet-HHL GLRLM RunPercentage -1.57 ± 1.89 0.08 0.964
64 Wavelet-HHL GLRLM ShortRunEmphasis -1.25 ± 1.57 0.08 0.973
65 Wavelet-HHL GLRLM ShortRunLowGrayLevelEmphasis 1.23 ± 16.45 0.41 0.985
66 Wavelet-HHL GLSZM GrayLevelNonUniformityNormalized 0.40 ± 5.83 0.88 0.975
67 Wavelet-HHL GLSZM GrayLevelVariance 1.12 ± 8.87 0.68 0.968
68 Wavelet-HHL NGTDM Busyness -3.07 ± 18.37 0.18 0.963
69 Wavelet-HLH Firstorder Energy 2.67 ± 18.04 0.69 0.966
70 Wavelet-HLH Firstorder Maximum 3.68 ± 13.09 0.65 0.954
71 Wavelet-HLH Firstorder Range 1.42 ± 11.76 0.79 0.957
72 Wavelet-HLH Firstorder TotalEnergy 2.67 ± 18.04 0.69 0.966
73 Wavelet-HLH GLDM DependenceNonUniformity -4.00 ± 7.47 0.06 0.984
74 Wavelet-HLH GLDM GrayLevelNonUniformity 4.14 ± 13.47 0.41 0.991
75 Wavelet-HLH GLDM LowGrayLevelEmphasis 4.06 ± 18.10 0.18 0.980
76 Wavelet-HLH GLRLM GrayLevelNonUniformity 0.52 ± 10.46 0.08 0.991
77 Wavelet-HLH GLRLM LowGrayLevelRunEmphasis 4.13 ± 18.28 0.31 0.980
78 Wavelet-HLH GLRLM ShortRunLowGrayLevelEmphasis 1.61 ± 17.69 0.29 0.961
79 Wavelet-HLL Firstorder Entropy 2.70 ± 3.22 0.08 0.961
80 Wavelet-HLL GLCM DifferenceEntropy 1.67 ± 3.79 0.43 0.967
81 Wavelet-HLL GLCM Id -0.07 ± 4.82 0.83 0.972
82 Wavelet-HLL GLCM Idm 0.26 ± 7.27 0.94 0.973
83 Wavelet-HLL GLCM InverseVariance 0.14 ± 7.55 0.46 0.954
84 Wavelet-HLL GLDM DependenceNonUniformity 0.11 ± 7.33 0.52 0.991
85 Wavelet-HLL GLDM DependenceVariance -1.24 ± 10.80 0.49 0.977
86 Wavelet-HLL GLDM LargeDependenceEmphasis 0.16 ± 10.48 0.83 0.974
87 Wavelet-HLL GLRLM LongRunEmphasis 0.45 ± 3.95 0.76 0.967
88 Wavelet-HLL GLRLM RunLengthNonUniformity -1.09 ± 7.71 0.15 0.991
89 Wavelet-HLL GLRLM RunLengthNonUniformityNormalized -0.11 ± 2.10 0.98 0.978
90 Wavelet-HLL GLRLM RunPercentage -0.16 ± 1.27 0.91 0.979
91 Wavelet-HLL GLRLM RunVariance 3.15 ± 12.78 0.76 0.970
92 Wavelet-HLL GLRLM ShortRunEmphasis -0.15 ± 1.10 0.94 0.976
93 Wavelet-HLL GLSZM GrayLevelNonUniformityNormalized -4.35 ± 7.14 0.18 0.972
94 Wavelet-HLL GLSZM LargeAreaEmphasis 3.04 ± 26.24 0.49 0.964
95 Wavelet-HLL GLSZM ZoneEntropy 1.08 ± 1.18 0.06 0.982
96 Wavelet-LHH Firstorder 10Percentile -4.93 ± 6.67 0.27 0.974
97 Wavelet-LHH Firstorder 90Percentile 0.21 ± 7.85 0.94 0.963
98 Wavelet-LHH Firstorder Energy -0.42 ± 15.44 0.27 0.952
99 Wavelet-LHH Firstorder Entropy 0.25 ± 4.40 0.83 0.969

100 Wavelet-LHH Firstorder InterquartileRange 0.07 ± 7.66 0.94 0.969
101 Wavelet-LHH Firstorder MeanAbsoluteDeviation -0.77 ± 7.05 0.87 0.976
102 Wavelet-LHH Firstorder Minimum 1.15 ± 8.53 0.83 0.954
103 Wavelet-LHH Firstorder RobustMeanAbsoluteDeviation -0.56 ± 7.39 0.87 0.968
104 Wavelet-LHH Firstorder RootMeanSquared -0.69 ± 7.28 0.91 0.976
105 Wavelet-LHH Firstorder TotalEnergy -0.42 ± 15.44 0.27 0.952
106 Wavelet-LHH Firstorder Uniformity 1.04 ± 4.85 0.62 0.976
107 Wavelet-LHH Firstorder Variance 0.14 ± 14.61 0.91 0.963
108 Wavelet-LHH GLCM ClusterTendency 4.53 ± 11.65 0.87 0.950
109 Wavelet-LHH GLCM Contrast -3.08 ± 10.95 0.55 0.966
110 Wavelet-LHH GLCM DifferenceAverage -3.56 ± 5.97 0.27 0.962
111 Wavelet-LHH GLCM DifferenceEntropy -1.66 ± 3.66 0.49 0.967
112 Wavelet-LHH GLCM DifferenceVariance -0.26 ± 10.44 0.69 0.958
113 Wavelet-LHH GLCM Id 1.38 ± 2.45 0.14 0.961
114 Wavelet-LHH GLCM Idm 1.60 ± 3.28 0.15 0.960
115 Wavelet-LHH GLCM Idmn 0.21 ± 0.39 0.21 0.951
116 Wavelet-LHH GLCM JointEnergy 4.99 ± 10.46 0.21 0.974
117 Wavelet-LHH GLCM JointEntropy -0.59 ± 4.39 0.72 0.964
118 Wavelet-LHH GLCM SumEntropy 0.41 ± 3.53 0.94 0.970

Continued on next page.
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Table S2 – continued from previous page
PETMoCo

Feature name Relative difference [%] P-value CCC Reference
119 Wavelet-LHH GLCM SumSquares 1.65 ± 11.19 0.87 0.957
120 Wavelet-LHH GLDM DependenceEntropy 0.90 ± 0.84 0.06 0.975
121 Wavelet-LHH GLDM GrayLevelNonUniformity 0.54 ± 9.76 0.65 0.992
122 Wavelet-LHH GLDM GrayLevelVariance 1.81 ± 11.08 0.98 0.966
123 Wavelet-LHH GLDM LowGrayLevelEmphasis 4.19 ± 18.92 0.91 0.960
124 Wavelet-LHH GLDM SmallDependenceEmphasis -2.43 ± 11.66 0.46 0.956
125 Wavelet-LHH GLRLM GrayLevelNonUniformity -2.79 ± 8.02 0.19 0.993
126 Wavelet-LHH GLRLM GrayLevelNonUniformityNormalized 0.30 ± 4.92 0.98 0.974
127 Wavelet-LHH GLRLM GrayLevelVariance 3.15 ± 11.59 0.91 0.964
128 Wavelet-LHH GLRLM LowGrayLevelRunEmphasis 4.40 ± 18.92 0.87 0.967
129 Wavelet-LHH GLRLM RunLengthNonUniformityNormalized -2.79 ± 2.94 0.10 0.966
130 Wavelet-LHH GLRLM RunPercentage -2.04 ± 1.97 0.07 0.963
131 Wavelet-LHH GLRLM ShortRunEmphasis -1.63 ± 1.74 0.09 0.970
132 Wavelet-LHH GLSZM ZoneEntropy -0.84 ± 7.28 0.87 0.953
133 Wavelet-LHH GLSZM ZonePercentage -1.41 ± 16.33 0.83 0.955
134 Wavelet-LHL Firstorder Entropy 1.27 ± 1.88 0.19 0.988
135 Wavelet-LHL Firstorder Maximum 4.76 ± 8.16 0.29 0.966
136 Wavelet-LHL Firstorder Uniformity -2.52 ± 5.24 0.55 0.996
137 Wavelet-LHL GLCM DifferenceAverage 3.45 ± 5.94 0.19 0.977
138 Wavelet-LHL GLCM DifferenceEntropy 1.35 ± 2.18 0.15 0.986
139 Wavelet-LHL GLCM Id -0.22 ± 3.84 0.87 0.990
140 Wavelet-LHL GLCM Idm 0.69 ± 6.75 0.98 0.991
141 Wavelet-LHL GLCM Idmn 0.06 ± 0.21 0.14 0.976
142 Wavelet-LHL GLCM InverseVariance -1.06 ± 6.18 0.29 0.979
143 Wavelet-LHL GLCM JointEnergy -3.45 ± 6.69 0.36 0.990
144 Wavelet-LHL GLCM JointEntropy 0.76 ± 1.43 0.10 0.995
145 Wavelet-LHL GLCM MaximumProbability -1.58 ± 8.14 0.76 0.992
146 Wavelet-LHL GLDM DependenceEntropy 0.67 ± 0.64 0.06 0.990
147 Wavelet-LHL GLDM DependenceNonUniformity -0.28 ± 9.55 0.18 0.990
148 Wavelet-LHL GLDM LargeDependenceEmphasis 1.28 ± 14.85 0.72 0.990
149 Wavelet-LHL GLDM SmallDependenceEmphasis 3.88 ± 10.96 0.59 0.954
150 Wavelet-LHL GLRLM GrayLevelNonUniformityNormalized -2.78 ± 5.20 0.55 0.996
151 Wavelet-LHL GLRLM LongRunEmphasis 0.33 ± 2.99 0.87 0.980
152 Wavelet-LHL GLRLM RunEntropy 1.36 ± 1.14 0.07 0.981
153 Wavelet-LHL GLRLM RunLengthNonUniformity -0.90 ± 8.10 0.08 0.992
154 Wavelet-LHL GLRLM RunLengthNonUniformityNormalized -0.10 ± 1.61 0.79 0.991
155 Wavelet-LHL GLRLM RunPercentage -0.13 ± 1.02 0.87 0.992
156 Wavelet-LHL GLRLM ShortRunEmphasis -0.19 ± 0.91 0.94 0.991
157 Wavelet-LHL GLSZM GrayLevelNonUniformity -2.54 ± 9.23 0.07 0.992
158 Wavelet-LHL GLSZM GrayLevelNonUniformityNormalized -3.73 ± 6.52 0.33 0.984
159 Wavelet-LHL GLSZM ZoneEntropy 0.14 ± 1.32 0.27 0.986
160 Wavelet-LHL GLSZM ZonePercentage 4.19 ± 11.03 0.59 0.966
161 Wavelet-LLH GLCM DifferenceAverage 4.42 ± 7.99 0.55 0.975
162 Wavelet-LLH GLCM DifferenceEntropy 2.64 ± 4.05 0.14 0.984
163 Wavelet-LLH GLCM Id -0.60 ± 4.15 0.69 0.987
164 Wavelet-LLH GLCM Idm -0.11 ± 6.76 0.65 0.987
165 Wavelet-LLH GLCM InverseVariance -0.25 ± 7.76 0.31 0.951
166 Wavelet-LLH GLDM DependenceNonUniformity 0.67 ± 7.58 0.59 0.990
167 Wavelet-LLH GLDM DependenceNonUniformityNormalized 2.10 ± 6.23 0.79 0.958
168 Wavelet-LLH GLDM DependenceVariance -0.10 ± 10.66 0.76 0.982
169 Wavelet-LLH GLDM LargeDependenceEmphasis -0.92 ± 10.28 0.98 0.988
170 Wavelet-LLH GLDM SmallDependenceEmphasis 4.29 ± 11.39 0.65 0.964
171 Wavelet-LLH GLDM SmallDependenceLowGrayLevelEmphasis -1.88 ± 16.86 0.09 0.976
172 Wavelet-LLH GLRLM LongRunEmphasis 0.27 ± 4.66 0.98 0.976
173 Wavelet-LLH GLRLM LongRunLowGrayLevelEmphasis -4.99 ± 19.94 0.49 0.969
174 Wavelet-LLH GLRLM RunLengthNonUniformity -0.34 ± 8.26 0.10 0.993
175 Wavelet-LLH GLRLM RunLengthNonUniformityNormalized 0.36 ± 2.69 0.65 0.990
176 Wavelet-LLH GLRLM RunPercentage -0.02 ± 1.78 0.79 0.990
177 Wavelet-LLH GLRLM RunVariance 1.85 ± 12.01 0.98 0.977
178 Wavelet-LLH GLRLM ShortRunEmphasis -0.17 ± 1.68 0.83 0.989
179 Wavelet-LLH GLSZM GrayLevelNonUniformity 1.79 ± 10.62 0.55 0.988

Continued on next page.
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Table S2 – continued from previous page
PETMoCo

Feature name Relative difference [%] P-value CCC Reference
180 Wavelet-LLH GLSZM GrayLevelNonUniformityNormalized -4.59 ± 6.54 0.23 0.983
181 Wavelet-LLH NGTDM Contrast 1.90 ± 8.18 0.41 0.995
182 Wavelet-LLL Firstorder Entropy 0.73 ± 0.85 0.12 0.994
183 Wavelet-LLL Firstorder Median 4.79 ± 4.78 0.06 0.984
184 Wavelet-LLL Firstorder Uniformity -3.08 ± 3.86 0.55 0.996
185 Wavelet-LLL GLCM Correlation -2.43 ± 4.24 0.06 0.968
186 Wavelet-LLL GLCM Id -4.19 ± 3.25 0.08 0.996
187 Wavelet-LLL GLCM Idmn -0.21 ± 0.20 0.06 0.985
188 Wavelet-LLL GLCM Idn -0.24 ± 0.32 0.16 0.988
189 Wavelet-LLL GLCM Imc1 2.48 ± 3.13 0.19 0.987
190 Wavelet-LLL GLCM JointEnergy -0.90 ± 6.06 0.52 0.992
191 Wavelet-LLL GLCM JointEntropy 0.22 ± 1.08 0.52 0.996
192 Wavelet-LLL GLCM MaximumProbability -4.03 ± 6.08 0.49 0.993
193 Wavelet-LLL GLDM DependenceEntropy 0.40 ± 0.82 0.49 0.989
194 Wavelet-LLL GLDM DependenceNonUniformity 0.67 ± 7.33 0.11 0.992
195 Wavelet-LLL GLDM DependenceNonUniformityNormalized 1.65 ± 2.51 0.41 0.984
196 Wavelet-LLL GLDM LargeDependenceEmphasis -2.23 ± 3.22 0.15 0.997
197 Wavelet-LLL GLDM SmallDependenceEmphasis -0.13 ± 1.97 0.55 0.995
198 Wavelet-LLL GLRLM GrayLevelNonUniformityNormalized -3.06 ± 3.87 0.65 0.996
199 Wavelet-LLL GLRLM LongRunEmphasis -0.03 ± 0.40 0.23 0.997
200 Wavelet-LLL GLRLM RunEntropy 0.72 ± 0.79 0.14 0.993
201 Wavelet-LLL GLRLM RunLengthNonUniformity -0.65 ± 7.74 0.08 0.992
202 Wavelet-LLL GLRLM RunLengthNonUniformityNormalized 0.04 ± 0.20 0.46 0.998
203 Wavelet-LLL GLRLM RunPercentage 0.01 ± 0.12 0.41 0.998
204 Wavelet-LLL GLRLM RunVariance -2.23 ± 6.88 0.12 0.996
205 Wavelet-LLL GLRLM ShortRunEmphasis 0.01 ± 0.08 0.43 0.998
206 Wavelet-LLL GLSZM GrayLevelNonUniformityNormalized -3.22 ± 3.92 0.52 0.996
207 Wavelet-LLL GLSZM LargeAreaEmphasis -1.36 ± 3.41 0.41 0.994
208 Wavelet-LLL GLSZM SizeZoneNonUniformity -1.31 ± 8.47 0.11 0.993
209 Wavelet-LLL GLSZM SizeZoneNonUniformityNormalized -0.46 ± 2.51 0.79 0.988
210 Wavelet-LLL GLSZM SmallAreaEmphasis -0.37 ± 1.39 0.87 0.989
211 Wavelet-LLL GLSZM ZoneEntropy 0.82 ± 0.86 0.08 0.986
212 Wavelet-LLL GLSZM ZonePercentage -0.28 ± 1.89 0.38 0.997
213 Wavelet-LLL NGTDM Coarseness -2.68 ± 5.22 0.11 0.990
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Table S3: All features with PET40% and PETMoCo relative difference < 5%, P-value > 0.05, and CCC > 0.95 for the
nine most motion-prone patients. Features that are coinciding with Table 3 in the main paper have been marked with
a dagger (†). Features that have been used in recent radiomics literature for disease state prediction are marked with
the corresponding reference. Relative difference is shown with the ± 95% confidence interval.

PET40% PETMoCo
Feature name Relative difference [%] P-value CCC Relative difference [%] P-value CCC Reference

1 Original GLCM Idmn -0.23 ± 0.19 0.07 0.979 -0.24 ± 0.23 0.11 0.971 [10]
2 Original GLDM DependenceEntropy -0.32 ± 0.71 0.44 0.993 0.68 ± 1.05 0.44 0.987
3 † Original GLRLM RunLengthNonUniformity -2.54 ± 6.22 0.51 0.991 0.68 ± 11.03 0.77 0.966
4 Original GLSZM GrayLevelNonUniformity -1.47 ± 10.16 0.86 0.994 -3.07 ± 9.19 0.59 0.984
5 Original GLSZM ZoneEntropy -0.28 ± 0.81 0.37 0.993 0.96 ± 1.51 0.26 0.972
6 † Original NGTDM Coarseness -1.40 ± 5.56 0.95 0.975 -4.20 ± 7.76 0.21 0.966 [8]
7 Original Shape LeastAxisLength -0.62 ± 1.42 0.26 0.997 1.03 ± 2.94 0.26 0.989
8 † Original Shape MajorAxisLength -1.81 ± 3.55 0.31 0.997 -2.58 ± 4.67 0.21 0.992
9 † Original Shape Maximum2DDiameterColumn -0.95 ± 4.13 0.68 0.984 -0.84 ± 7.35 0.95 0.961

10 † Original Shape Maximum2DDiameterRow 0.37 ± 4.68 0.51 0.976 -1.77 ± 4.34 0.51 0.971
11 † Original Shape Maximum2DDiameterSlice -1.84 ± 4.87 0.58 0.995 -1.46 ± 6.63 0.77 0.989
12 † Original Shape Maximum3DDiameter -1.67 ± 3.44 0.44 0.996 -1.77 ± 4.70 0.33 0.990
13 Original Shape MeshVolume -3.70 ± 6.80 0.51 0.988 -0.22 ± 11.31 0.77 0.966
14 † Original Shape MinorAxisLength -0.37 ± 2.18 0.68 0.998 2.24 ± 5.54 0.77 0.971
15 Original Shape Sphericity -1.59 ± 2.02 0.14 0.990 -1.37 ± 1.76 0.37 0.993 [4, 10]
16 † Original Shape SurfaceArea -1.03 ± 4.10 0.68 0.999 1.21 ± 8.94 0.95 0.965
17 Original Shape SurfaceVolumeRatio 3.27 ± 3.87 0.14 0.980 1.97 ± 2.73 0.17 0.992
18 Original Shape VoxelVolume -3.69 ± 6.68 0.40 0.988 -0.24 ± 11.23 0.77 0.966 [1, 10]
19 Wavelet-HHH GLRLM GrayLevelNonUniformity -4.50 ± 6.36 0.26 0.989 -2.47 ± 11.01 0.51 0.965
20 † Wavelet-HLL GLRLM RunLengthNonUniformity 4.22 ± 4.94 0.37 0.995 2.59 ± 9.91 0.77 0.965
21 Wavelet-HLL GLSZM ZoneEntropy 1.55 ± 2.09 0.21 0.968 1.69 ± 1.52 0.07 0.980
22 † Wavelet-LHH GLDM DependenceEntropy 0.02 ± 1.76 0.95 0.952 1.05 ± 1.48 0.26 0.954
23 Wavelet-LHL GLCM Idmn -0.20 ± 0.18 0.07 0.969 0.10 ± 0.24 0.59 0.962
24 † Wavelet-LHL GLDM DependenceEntropy -0.26 ± 1.34 0.26 0.966 0.66 ± 0.78 0.17 0.983
25 † Wavelet-LHL GLRLM RunLengthNonUniformity 0.33 ± 4.83 0.95 0.995 2.28 ± 10.59 0.77 0.967
26 † Wavelet-LHL GLSZM ZoneEntropy -0.44 ± 0.95 0.21 0.989 0.67 ± 1.13 0.26 0.984
27 Wavelet-LLH GLDM DependenceEntropy -0.28 ± 0.80 0.59 0.989 1.18 ± 1.35 0.11 0.965
28 Wavelet-LLH GLRLM RunLengthNonUniformity 1.75 ± 5.46 0.95 0.994 4.98 ± 10.09 0.95 0.967
29 Wavelet-LLH GLSZM ZoneEntropy 2.93 ± 4.42 0.26 0.971 3.01 ± 3.11 0.05 0.984
30 Wavelet-LLL GLCM Idn -0.27 ± 0.29 0.11 0.988 -0.40 ± 0.46 0.14 0.971
31 Wavelet-LLL GLCM Imc2 -0.03 ± 0.10 0.51 0.984 -0.01 ± 0.06 0.51 0.993
32 † Wavelet-LLL GLCM JointEnergy 1.67 ± 5.99 0.77 0.997 -0.99 ± 8.64 0.44 0.992
33 † Wavelet-LLL GLCM JointEntropy -0.35 ± 0.88 0.68 0.996 0.07 ± 1.31 0.86 0.992
34 Wavelet-LLL GLCM SumEntropy 0.48 ± 0.82 0.44 0.994 1.08 ± 0.92 0.05 0.988
35 † Wavelet-LLL GLDM DependenceEntropy 0.40 ± 0.93 0.51 0.993 1.04 ± 0.99 0.09 0.986
36 † Wavelet-LLL GLDM DependenceNonUniformity -0.45 ± 4.49 0.59 0.991 3.12 ± 11.73 0.86 0.956
37 Wavelet-LLL GLRLM RunLengthNonUniformity -3.41 ± 6.46 0.44 0.989 0.07 ± 11.25 0.77 0.965
38 † Wavelet-LLL GLSZM SizeZoneNonUniformity -1.22 ± 4.36 0.51 0.992 2.72 ± 11.46 0.77 0.958
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Cerebral blood flow measurements with
15O-water PET using a non-invasive
machine-learning-derived arterial
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Abstract

Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by

using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from

arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function pre-

diction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.

Twenty-five subjects underwent two 10min dynamic 15O-water brain PET scans with continuous arterial blood sampling,

before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were

automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction

model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by com-

paring AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with

either AIF or MLIF.

The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated

and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method

shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and

kinetic modelling.
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Introduction

Measurements of cerebral blood flow (CBF) can be

used to separate pathological and healthy brain tissue

as well as for functional brain research. Tracer kinetic

modelling following dynamic 15O-water positron emis-

sion tomography (PET) imaging with arterial blood

sampling is considered the reference standard for

CBF measurements.1–6 However, arterial cannulation

is an invasive, laborious and time-consuming proce-

dure, and may, due to induction of pain and risk for

complications, discourage patients and volunteers from

participating in research studies. Furthermore, a useful

arterial input function (AIF) curve cannot be obtained
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without careful cross calibration of the blood measure-

ment detector and the PET scanner. In addition,

because the blood is most commonly sampled from

the radial artery, additional corrections for dispersion

and delay of the tracer must be applied, to obtain the

true AIF for the brain.3,7–9

The use of an image-derived input function (IDIF)

has been proposed as an alternative approach to over-

come the challenges with the AIF.10 In brain PET

imaging, an IDIF can be measured inside a suitable

intracranial blood vessel directly in the reconstructed

PET images, for instance in the intracranial carotid

arteries.11–13 Due to the limited spatial resolution of

the PET system, and the need for short time-frames

during the first pass of the bolus, image-derived meth-

ods suffer from both partial volume effects and image

noise. These limitations require complex and standard-

ized methods for partial volume correction and artery

delineation, which may be difficult to achieve in prac-

tice. Recently, a few clinical studies have suggested the

use of integrated PET/magnetic resonance imaging
(MRI) for deriving an IDIF in brain, where the latter

modality is used for artery delineation or even motion

correction.14–18 However these methods are sensitive to

registration errors between the modalities and require

detailed knowledge of the scanner resolution. Another

recent study overcame potential misregistration prob-

lems and formed a corrected IDIF by deriving total

number of counts and artery volume from the two

modalities separately.19 However, this method was

not yet validated with arterial blood sampling and as

hybrid PET/MRI is still an emerging modality, to date,

image-derived methods are rarely used in larger clinical

or research studies.10,20

Alternatively, a standardized, population-based AIF

can be calculated as an average AIF from a group of

subjects acquired with the same tracer, injection protocol

and population, and scaled to the specific subject.21,22

However, this method requires at least one blood

sample for curve scaling while individual physiological

differences and scan-dependent variations are neglected.
An approach on image data with simultaneous esti-

mation of AIF and kinetic parameters has also been
reported.23–25 This method, however, assumes a known

mathematical AIF model and requires at least one late

blood sample for parameter estimation. Recently, non-

invasive simultaneous estimation methods were devel-

oped that obviate the need for the single late blood

sample by using additional input variables from elec-

tronic health records into the models.26,27 The limita-

tion of such an approach is that a large set of clinical

variables must be collected and handled for each

patient. These variables may not necessarily be avail-

able in the health records for all patients and may even

complicate inclusion of healthy volunteers in research
studies.

In this study we use a machine learning-based
approach for AIF estimation. Machine learning-
methods are especially useful for function estimation
and regression.28 Briefly, one seeks to determine a
function, f, that predicts the machine-learning-derived
input function (MLIF), based on an input vector, x,
composed of multiple image-derived tissue curves,
such that MLIF ¼ fðxÞ. The function f is determined
by optimizing hidden parameters to find the best map-
ping, AIF ¼ f xð Þ; for a set of training data, where both
the AIF and the tissue curves are known. Once the
model has been trained and f is known, the MLIF
can be predicted for unseen test data using only the
tissue-curves extracted from the image data.28

In our previous work, we developed and validated a
machine-learning-based input function for 18F-
fluorodeoxyglucose (FDG) in a mouse PET cohort.29

In short, two learning models were evaluated that
predicted an AIF from time-activity curves of up to 7
different tissue regions as input. The main limitation
with our previous study was the lack of an AIF, thus
the models could only be validated against a reference
IDIF. However, in mouse PET scanning, the entire
body of the mouse fits in the PET field-of-view, thus,
time-activity curves from all organs are readily available
as input data for the models. We showed that, for
instance, the myocardium and liver were important for
AIF prediction, because their time-activity curves closely
resembled the reference IDIF. In contrast, these blood-
rich organs are outside the field-of-view in clinical brain
PET imaging, and thus, alternative input curves had to
be derived for the MLIF model in the current study.

In the present study, we have further developed the
MLIF approach for human 15O-water brain PET data
and evaluated the models against an AIF obtained from
continuous arterial-blood sampling. We aimed to show
that an AIF could be accurately predicted by an MLIF
model using multiple image-derived input data from the
carotid arteries. We hypothesized that there were no sig-
nificant differences in estimated CBF when using either
AIF or MLIF, and investigated similarities and differ-
ences between image-derived sampling in the brain
versus arterial-sampling from the arm. Further, we
investigated whether the MLIF method was capable to
predict a clinically relevant CBF difference between
scans before and after acetazolamide medication.

Materials and methods

Subjects

Pseudonymized data from 25 subjects were retrospec-
tively collected from a completed clinical research
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study at Uppsala University Hospital. The data com-

prised both patients with multiple sclerosis (MS) and

healthy volunteers (mean age (range) in years: 40 (23–

56); F:M 15:10). In this methodological study, we did

not differentiate between the two groups as we consid-

ered that the subject’s health status had no impact on

our evaluation of the MLIF model. Therefore, all

authors were blinded for the health status of each sub-

ject and thus, no comparisons were made between

healthy subjects and MS-patients. The results of the

parent study will be reported elsewhere.
The parent study was approved by the Swedish

Ethical Review Authority (reference 2014/453). All

subjects signed written informed consent prior to inclu-

sion. Since the present work was purely an image anal-

ysis methodology study using pseudonymized data, it

was not covered by the Swedish or Norwegian regula-

tions on medical research in humans and as such, no

additional ethics approval was necessary.

Image acquisition

All subjects underwent two 10min dynamic brain PET

scans on either an ECAT Exact HRþ stand-alone PET

scanner (Siemens, Knoxville, TN; n¼ 9) or a Discovery

MI PET-Computed tomography (CT) scanner (GE

Healthcare, Waukesha, MI; n¼ 16). The scans started

simultaneously with an automated bolus injection of 5

MBq/kg 15O-water (15O-water in 5ml saline at 1ml/s

followed by 35ml saline at 2ml/s). Each subject under-

went one scan at baseline and one scan 15–30min after

intravenous administration of acetazolamide (9mg/kg

up to a maximum of 1000mg; 5min infusion) such that

every subject was its own control. Acetazolamide med-

ication dilates the vascular system and thereby it

increases the cerebral arterial blood flow velocity.30–32

Attenuation correction was based on a 10min trans-

mission scan with rotating 68Ge rod sources (ECAT)

or an ultra-low-dose CT scan (Discovery MI). Images

were reconstructed into 26 time-frames (1� 10, 8� 5,

4� 10, 2� 15, 3� 20, 2� 30 and 6� 60 s). Image

reconstruction algorithms were chosen to result in a

matching image resolution for the two scanners:

ordered subsets expectation maximization with 6 iter-

ations, 8 subsets and a 4mm Hanning filter (ECAT)

and 3 iterations, 16 subsets and a 5mm Hanning filter

(Discovery MI).
In addition, all subjects underwent MRI on a 3T

MRI scanner (Achieva, Philips Healthcare, Best, The

Netherlands) with a 32-channel head coil. A three-

dimensional T1-weighted gradient echo sequence was

obtained with voxel size 1.0� 1.0� 1.0mm3, repetition

time¼ 8.2ms and echo time¼ 3.7ms.

Blood sampling

Continuous arterial blood sampling was performed
during 10min for each scan (3ml/min) using either an
ABSS V3 (Allogg, Mariefred, Sweden; subjects scanned
on ECAT) or PBS-100 (Veenstra-Comecer, Joure, The
Netherlands; subjects scanned on Discovery MI). A
single arterial blood sample was taken through a
three-way-valve on the arterial line 5min post injection
and measured in a cross-calibrated well counter for
calibration of the continuous arterial blood data.

The measured blood signal, g(t), was affected by
dispersion in the vessels and in the detector system
tubes. This could be modelled as a convolution of the
true AIF, CA(t), and a dispersion function, d(t)8

g tð Þ ¼ CAðtÞ � dðtÞ (1)

A mono-exponential dispersion model was assumed8

d tð Þ ¼ 1

s
e�

t
s (2)

where s is the dispersion constant. An expression for
the true AIF, CA(t), could be obtained by the Laplace
transform33

CA tð Þ ¼ g tð Þ þ s
dg

dt
(3)

The dispersion constant was fixed to 15 s for all sub-
jects in this study, as suggested in the literature.8

The dispersion-corrected AIFs were delay-corrected,
as described in the ‘Image processing’ Section.

A visual assessment of the AIF curves was per-
formed to identify abnormal AIFs due to failures in
tracer administration or continuous arterial blood sam-
pling. Three subjects were excluded after the visual
assessments.

Image processing

All images were corrected for inter-frame motion
using in-house written software in Matlab
(Mathworks, MA, USA). A simple and objective
multi-VOI thresholding method, that could capture
blood information from the carotid arteries, was empir-
ically developed. First, to remove noise close to the
edge slices, a PET search-volume was defined by trim-
ming 20 voxels in the x-y-plane periphery, and by
removing 5 slices in the z-direction. The algorithm for
identifying the time-frame for carotid-VOI threshold-
ing was based on a frame-wise graph of whole-brain
gray-matter total intensity. The time-frame used for
VOI thresholding was the first frame where the total
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intensity was larger than 25% of the maximum value

in this graph. Three VOIs were generated, comprising

the 10, 100 and 1000 highest-intensity voxels (Figure 1a

to c). The median voxel value was derived for each

time-frame and VOI, resulting in three IDIF time-

activity curves, named IDIF10, IDIF100 and IDIF1000

(Figure 1d), which could be interpreted as three differ-

ent image-derived blood-curves with different amounts

of partial volume effect.
Subsequently, to match the AIF sampling, all PET

data were interpolated linearly to one second time

framing. To correct for delay between the AIF and

the PET data, the dispersion corrected AIF was shifted

to provide the best overlap with the IDIF10 curve, i.e.

where the dot product between the two curves was

maximized.
In all following analyses, only PET and AIF data

from 0–6min were used, to minimize noise from late

parts of the scans. Calibration of the AIF curves with

the single arterial blood sample was only conducted for

the training data, and thus no AIF or blood sample

was required for the test data.
To extract time-activity curves for whole-brain grey

matter, T1-weighted MRI images were co-registered to

PET images and segmented using SPM8 (The

Wellcome Centre for Human Neuroimaging, UCL

Queen Square Institute of Neurology, London, UK).

All image analysis was performed in the native PET
image space.

Function prediction using Gaussian processes

Gaussian processes (GP) is a well-known, non-para-
metric Bayesian regression method which has been fre-
quently used within machine learning for data-driven
function estimation and regression tasks.34,35 One
advantage with GP is that it predicts not only the
mean function, but also its variance, thus providing
an uncertainty measure of the model.36 Furthermore,
GP, is known to work well with sparse training data-
sets, as opposed to neural networks.37,38

In GP regression, the output y, is approximated by a
probability distribution of functions of the input, x,
such that fðxÞ�GP m xð Þ; k x; x0ð Þ� �

, which is a general-
ization of the multivariate Gaussian distribution to
infinitely many variables. Here, m xð Þ is a mean func-
tion and k x; x0ð Þ is a covariance function.36 Assuming N
available input-output training samples in a dataset
fxn; yngNn¼1, each including the three IDIF time-
activity curves, xn (see Figure 1), with corresponding
known AIF, yn. Then the mean value MLIF of the
test sample, E y�½ �, and the variance, V y�½ �, can be pre-
dicted by

E½y�� ¼ kT� ðK þ r2� IÞ�1y (4)

V½y�� ¼ k x�; x�ð Þ � kT� ðK þ r2� IÞ�1k* (5)

Here k� is the covariance between the training sam-
ples xn and the test sample x�; K ¼ k xn; xmð Þ is the
covariance between all training samples; r2� I is a
scalar matrix with diagonal elements equal to the
noise level; k x�; x�ð Þ is the covariance between the test
sample and itself.36

Input function prediction

For input function prediction, leave-one-out cross val-
idation was employed, which is a common validation
method in machine learning with limited amounts of
data.28 In short, one sample was withdrawn from the
dataset and assigned as test sample, while the remain-
ing samples were allocated for training. The three time-
activity curves (Figure 1) were used as input vectors
into the GP framework, and the MLIF and variance
of the test sample were predicted using equations (4)
and (5), respectively. The process was repeated by
assigning a new sample as test sample, until all samples
had been tested once.

In all experiments, the Mat�ern covariance function
was chosen, with �¼ 5/2, because it has been reported
to generate smooth functions.36 Data normalization

(a)

(d)

(b) (c)

Figure 1. Outline of the VOI thresholding method imple-
mented in this work. (a) to (c) shows an enlarged axial brain PET
slice of the optimal time-frame for a representative subject.
Highlighted are the parts of the IDIF10 (a), IDIF100 (b) and
IDIF1000 (c) comprising the 10, 100 and 1000 highest intensity
voxels. (d) The resulting time-activity curves during the first two
minutes for IDIF10-1000. The IDIF10 captures the highest activity in
the carotid artery, while the IDIF100 and IDIF1000 shows a lower
activity due to a higher number of voxels included.
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was applied on the input-IDIFs, which is a well-known

approach to improve convergence of machine learning

models.39 Normalization of the IDIF10 curves was per-

formed by identifying the IDIF10 curve with the highest

peak value among all subjects. Subsequently, each

IDIF10 curve was normalized by dividing with this

peak value. Similarly, the IDIF100 and IDIF1000

curves were normalized independently with their

respectively found highest peak value among the sub-

jects. Thus, the model was trained with three different

normalized IDIFs with values ranging between 0 and 1.

The normalization was only a scale factor, meaning

that relative amplitudes between subjects remained.

GP regression was implemented in Python 3.6.8,

using GPflow 1.2.0, in which the matrix inversion of

equation (4) was approximated by Cholesky decompo-

sition. The hyperparameters of the covariance function

were optimized by maximizing the logarithm of the

marginal likelihood of the training data.40

Kinetic modelling

Quantification of CBF was performed on the whole-

brain grey-matter region. A single-tissue compartment

model was used to generate CBF values. This model

assumes that water can diffuse freely between vascular

and tissue space, with activity concentrations CA and

CT, respectively, and is described by the following

equation41,42

dCTðtÞ
dt

¼ K1 � CA tð Þ � k2 � CT tð Þ (6)

where CA(t) is the whole-blood arterial time-activity

curve, also known as the AIF. The solution to equation

(6) is given by43

CTðtÞ ¼ K1 � CA tð Þ � e�k2�t (7)

where � denotes mathematical convolution. The activ-

ity concentration measured with PET, CPET, is mod-

elled as the sum of the tissue compartment, CT (t), and

the fractional arterial blood volume in the tissue, VA,

such that

CPET tð Þ ¼ 1� VAð Þ � CT tð Þ þ VA�CAðtÞ (8)

For tracers with high extraction fraction relative to
the blood flow, such as 15O-water, CBF equals K1.

43,44

Evaluation design

The aim of the current work was to investigate whether
an AIF could be accurately predicted using an MLIF
model in baseline and acetazolamide scans of the same
subject. In a first case, a GP model named MLIF1 was
trained and subsequently tested on baseline scans using
leave-one-out cross validation. Similarly, another GP
model, named MLIF2, was trained and subsequently
tested on acetazolamide scans using leave-one-out
cross validation.

In a routine setting, it is of interest to train a pre-
dictive model on normal subjects and apply the same
model on a disease, or medicated group. Therefore, in a
second case, an additional GP model named MLIF*

1,
was trained on all baseline scans, and subsequently
tested on all acetazolamide scans. Here, the asterisk
(*) in MLIF*

1 emphasises that all subjects from the
baseline scan were included in the training data for
this model, as opposed to the leave-one-out training
for MLIF1. Essentially, one might see MLIF*

1 and
MLIF1 as two models trained on the same dataset, as
the difference is only one subject.

Finally, we hypothesized that MLIF*
1 might be

more representative for a local AIF in the brain, com-
pared to an AIF sampled in the wrist. Therefore, in a
third case, we aimed to evaluate the CBF increase from
baseline to acetazolamide scans obtained by the two
different methods in case 1 and case 2, by using the
carotid arteries with the ten highest-intensity voxels
(IDF10) as input function during kinetic modelling.

The evaluation design is summarized in Table 1.

Evaluation methods

The GP predicted MLIF curves were first compared
point-by-point to AIF using orthogonal regression.

Table 1. The evaluation design of the MLIF method.

Case Training data Testing data Input function Procedure

1 Baseline Baseline MLIF1 Leave-one-out

Acetazolamide Acetazolamide MLIF2 Leave-one-out

2 Baseline Baseline MLIF1 Leave-one-out

Baseline Acetazolamide MLIF1* All baseline scans

3 a Baseline IDIF10
a Only used to calculated change

between baseline and acetazolamide CBFa Acetazolamide IDIF10
a

aIn case 3, no GP prediction was used, but instead, kinetic modelling was based on the 10 highest-intensity carotid artery voxels (IDIF10) as input

function.
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Subject scans with regression slopes that were more

than three scaled-median absolute-deviations away

from the median slope, were considered outliers, and

removed from further model comparisons.45 Time–

activity curves averaged over subjects were calculated

for: whole-brain grey matter, AIF, the MLIF models

and IDIF10. CBF and VA were estimated for whole-

brain grey matter using kinetic modelling with both

AIF and the GP-predicted MLIF (case 1 and case 2)

as well as with the IDIF10 time-activity curve as input

function (case 3).
MLIF-based CBF estimates were compared with

the one based on AIF by paired t-test (a¼ 0.05), ratio

calculation, orthogonal regression and Bland-Altman

plots.46 Normality was assessed using quantile–

quantile plots.
The GP variance (equation (5)) was considered as a

measure of prediction error. This measure was evalu-

ated by the relationship between the magnitude of the

CBF-ratio (CBFMLIF/CBFAIF) and GP variance for

case 1.

Results

CBF values based on AIF (CBFAIF) and MLIF

(CBFMLIF) are shown in Supplementary Table S1.

The average CBFAIF and CBFMLIF were similar for

both baseline and acetazolamide scans, about 0.45

and 0.60ml�min�1�g�1, respectively. The mean

CBFMLIF/CBFAIF ratio was 1.04 and 1.03 for baseline

and acetazolamide, respectively. No significant

differences were found between the average CBFAIF

and CBFMLIF for either scan.
Individual data points for MLIF and AIF from case

1 are shown as a scatter plot in Figure 2(a). Based on
the outlier removal criterion, four scans were removed

from model comparisons. There is a strong overall
linear relationship between AIF and MLIF curves for
both baseline (slope: 0.8) and acetazolamide scans
(slope: 0.9). Individual r2 values were high for both

baseline (mean: 0.90, SD: 0.1) and acetazolamide
(mean: 0.93, SD: 0.07). Histograms of slope values
indicate slopes close to unity for most subjects for
both baseline (median slope: 0.86, Figure 2b) and acet-
azolamide (median slope: 0.87, Figure 2c).

Displaying the CBF data from case 1 as a scatter
plot (Figure 3a), a strong linear relationship and high

overall correlation (r2>0.9) between CBFAIF and
CBFMLIF was obtained. Bland-Altman analysis
(Figure 3b) exhibited a prediction bias close to zero.

The fractional arterial blood volume, VA, from
equation (8), was found to be near zero for all scans
(0.001	 0.003).

As a visual illustration of the effect of prediction
errors on estimation of CBF, the AIF and GP-
predicted MLIF from the baseline scan for four repre-
sentative subjects are shown in Figure 4. Figure 4(a)

and (b) comprises two examples with less than 3% dif-
ference between CBFAIF and CBFMLIF, while Figure 4
(c) and (d) display cases with substantial differences
between both methods. Based on the CBF ratios

(CBFMLIF/CBFAIF), it can be observed that an over-
prediction of the AIF peak (Figure 4c) results in an

(a) (b)

(c)

Figure 2. (a) Scatter plot of MLIF and AIF data points for all subjects for baseline (blue) and acetazolamide (red) scans based on case
1. The 1 s time frames were interpolated back to the original PET time framing (26 time-frames). The solid lines are the orthogonal
regression fits. (b and c) Histogram of orthogonal regression slopes for individual subjects for baseline (b) and acetazolamide (c) scans.
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underestimation of CBF, while an underpredicted AIF
peak (Figure 4d) ends in an overestimated CBF.

Figure 5 displays box plots of whole-brain grey
matter CBF for baseline and acetazolamide scans,
when using different prediction models for MLIF (see
Table 1).

The GP variance was evaluated as prediction error
measure in case 1 (Supplementary Figure S1). No rela-
tionship was found between the magnitude of the
CBFMLIF/CBFAIF ratios and the GP variance values.
The predicted variance was not further considered in
this work.

(a) (b)

Figure 3. Evaluation of the GP-predicted MLIF for baseline (blue) and acetazolamide (red) scans based on case 1. (a) Scatter plot of
MLIF-based and AIF-based CBF. The solid lines are the orthogonal regression fits. (b) Bland-Altman plot of case 1.

(a) (b)

(c) (d)

Figure 4. Comparison of AIF (black dashed line) and GP-predicted MLIF (red line) for the baseline scan of four representative
subjects. (a and b) Two scans with less than 3% difference between CBFAIF and CBFMLIF. (c) Representative example of a scan where
the MLIF overpredicts the AIF peak, resulting in an underestimation of the calculated CBF. (d) Representative example of a scan where
the MLIF underpredicts the AIF peak, resulting in an overestimation of the calculated CBF.
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In case 1 we evaluated the MLIF method by training

and applying separate GP models for baseline (MLIF1)

and acetazolamide (MLIF2) data. There were no sig-

nificant differences between mean CBFAIF and mean

CBFMLIF in neither baseline, nor acetazolamide scans.

Furthermore, following acetazolamide medication, we

found on average 37% increase (P < 0.01) in mean

CBFAIF and 29% increase (P < 0.01) in mean

CBFMLIF (Figure 5a). For case 1, both the AIF and

the MLIF based methods resulted in similar CBF

values, while the CBF increase after acetazolamide

medication was lower for the MLIF method. The cor-

relation coefficient between AIF and MLIF-based

CBF changes for case 1 was 0.62.
In case 2, a predictive model (MLIF*

1) was trained

on baseline scans and then applied on acetazolamide

scans. Similar to MLIF1, the average CBFMLIF*1 was

non-significantly different from the corresponding

CBFAIF after acetazolamide medication. Also, there

was still a significant increase (17%, P < 0.01) in CBF

between baseline and acetazolamide scans (Figure 5b),

but notably smaller than the 29% increase observed in

case 1. The correlation coefficient between AIF and

MLIF-based CBF changes for case 2 was 0.14.
In a final case, the relative CBF increase from base-

line to acetazolamide scans was investigated by using

the IDIF10 as input function for each scan. A signifi-

cant CBF increase of 19% (P¼ 0.04) was found after

acetazolamide medication (Figure 5c), which was com-

parable to the change observed in case 2.
As CBF is based on underlying time-activity curves,

we proceeded to investigate the differences in CBF

after acetazolamide medication in the first two cases

by inspecting the mean time-activity curves across sub-

jects in Figure 6. We observed that the local brain input

function (IDIF10) (Figure 6e) showed a shape-

dependence on acetazolamide medication which was

not reflected in the AIF measured in the wrist (Figure

6b). In the AIF, the baseline and acetazolamide curves

were similar, while for IDIF10, the acetazolamide curve

had a larger area-under-curve compared to baseline.

Also, for IDIF10, there was a slight shift in the mean

time–activity curves between baseline and acetazol-

amide, which was not visible for the AIF. Thus, the

AIF measured in the wrist does not reflect physiologi-

cal changes due to acetazolamide, which are apparent

in the local brain input (IDIF10).

Discussion

Tracer kinetic modelling of dynamic PET data requires

accurate knowledge of an AIF, conventionally mea-

sured through arterial blood sampling. Our aim was

to investigate whether an AIF could be predicted as

accurately by an MLIF model using solely image-

derived input data from the carotid arteries.
AIF and predicted MLIF curves were found to be

similar, with no significant difference between whole-

brain grey matter CBFAIF and CBFMLIF estimates.

Furthermore, the correlation between the CBF esti-

mates was r2>0.9 and the mean differences were close

to zero. The MLIF model was also able to accurately

predict an increased CBF after acetazolamide medica-

tion, when trained on post-acetazolamide data.

(a) (b) (c)

Figure 5. Box plot of estimated whole-brain grey matter CBF for baseline and acetazolamide scans, when using different input
functions for case 1 (a), case 2 (b) and case 3 (c). For an explanation of the cases, see Table 1. For visual purposes, the data in panel (c)
was scaled to match the range of the AIF-based CBF values in panel (a). Percentage differences are shown as mean	 95% confidence
interval, and P values are based on paired t-test. In the box plots, red points indicate the data points; the horizontal line and the black
box represent median and interquartile range (25th to 75th percentile), respectively; the whiskers indicate the maximum and min-
imum data point up to 1.5� interquartile range.
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Altogether the results indicate that the MLIF method
has potential as an alternative AIF for generation of
CBF values using 15O-water PET and kinetic model-
ling, which in clinical practice implies evading of arte-
rial cannulation.

Initially, we evaluated an MLIF model trained on
pooled baseline and acetazolamide data. However,
this resulted in inferior generalization to new samples
compared to when training was done separately for
baseline and acetazolamide scans (data not shown).
The reason for this difference between the approaches
may be because the input IDIFs under the two condi-
tions vary in amplitude (Figure 6e), while the AIF

(Figure 6b) does not. Therefore, in a first case, input
functions of baseline scans were predicted using an
MLIF model trained on baseline data (MLIF1), and,
similarly, input functions of acetazolamide scans were
predicted using an MLIF model trained on acetazol-
amide data (MLIF2). There was a strong linear rela-
tionship between the data points from AIF and
predicted MLIF curves, although the peak values
were systematically underestimated (slope <1 in
Figure 2). In the time-activity curves, the number of
high data values, acquired during the first pass peak,

is low compared to the number of low values, acquired
during the rest of the scan. Also, the standard deviation
around the peaks was observed to be larger than at the

tails (data not shown). We speculate that this imbal-
ance affects the GP models and results in the system-
atically underestimated peak values. Previous work has
shown that when data is limited, the GP model may
underestimate the mean function.47

For both baseline and acetazolamide, the mean
time-activity curves for AIF (Figure 6b), and MLIF1,
MLIF2 (Figure 6c) appeared similar in shape.
Following kinetic modelling, the average CBF values
obtained using an AIF are in line with previously pub-
lished work before48,49 and after administration of
acetazolamide.48 No significant differences were
found between AIF-based and MLIF-based CBF esti-

mates in whole-brain grey matter for neither baseline
nor acetazolamide scans (Figure 5a). Also, a slope close
to unity, an r2>0.9 and low bias between CBFAIF and
CBFMLIF estimates pointed towards an acceptable
agreement of both methods (Figure 3a). Across both
baseline and acetazolamide scans, differences between
CBFAIF and CBFMLIF estimates were relatively small
(Figure 3b), although several subjects had relative CBF
errors of> 20% for the baseline scans while there was a
somewhat lower spread for the acetazolamide scans.
Our hypothesis is that a GP model trained on acetazol-

amide data (MLIF2) generalize better to new samples,
compared to a model trained on baseline data
(MLIF1). We speculate that the reason for this is that

(a) (b)

(d) (e)

(c)

Figure 6. Mean time-activity curves across subjects for baseline (blue) and acetazolamide (red) scans during the first 2 min of PET
scanning. (a) Measured radioactivity uptake in whole-brain grey matter. (b) AIF. (c) MLIF1 model for baseline, and MLIF2 for acet-
azolamide scans. (d) MLIF1 model for baseline, and MLIF*1 for acetazolamide scans. (e) IDIF10 input function based on the 10 highest
voxels in the carotid arteries.
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a larger range of CBF values is a result from a larger
range of input values (IDIF10-1000), for acetazolamide,
compared to baseline scans. This may have resulted in
MLIF2 being valid for a wider range of unseen sam-
ples, compared to MLIF1, as mentioned and illustrated
in Supplementary material. Nevertheless, the CBF
increase between baseline and acetazolamide scans
was highly correlated to that of the AIF in case 1.
Furthermore, it was observed that the shape of the
input function had an impact on the accuracy of the
MLIF-based CBF estimates (Figure 4). Evidently,
an underpredicted AIF peak resulted in an overesti-
mated CBF while an overpredicted AIF peak caused
an underestimation of CBF. This can be explained
by the inverse relationship between K1 and CA in
equation (7).

In a second case, we trained an MLIF model on all
baseline scans and then applied that model on the acet-
azolamide scans (MLIF*

1). The idea was to resemble a
situation where the baseline scans reflected a database
comprising healthy subject with a normal CBF where-
as the acetazolamide scans reflected clinical data
from patients with an altered CBF. Even in this sce-
nario significant differences were found between the
whole-brain grey matter CBF from the baseline and
acetazolamide scan. However, the CBF increase
between baseline and acetazolamide scans in this case
displayed small between-subject variation (data not
shown) and, maybe because of that, low correlation
to the AIF CBF changes. Furthermore, unexpectedly,
the difference in CBF was only 17% (Figure 5b) com-
pared to 29% in the previous case (Figure 5a).

We found this difference between baseline and acet-
azolamide response striking. The local brain input
function (IDIF10) (Figure 6e) showed a shape-
dependence on acetazolamide which was not reflected
in the AIF measured in the wrist (Figure 6b).
Consequently, CBF calculated with a local brain
input would by necessity be different from AIF-based
CBF. This effect remained also for the MLIF1 and
MLIF1

* models (Figure 6d) and could possibly explain
the observed differences in CBF change.

In order to quantify the differences in CBF after
acetazolamide medication in the first two cases,
we attempted using a carotid artery region (IDIF10)
as input function for both baseline and acetazolamide
scans (case 3). In case 3 a significant difference of
19% was found between baseline and acetazolamide
scans which was similar to the observed difference
found in case 2. This supports that the difference in
acetazolamide provocation results were caused by the
different input functions in brain (case 2, Figure 6d)
and in the wrist (case 1, Figure 6c). Note that, case 3
was used only to investigate the relative increase
in CBF between baseline and acetazolamide scans

found in case 1 and case 2. IDIF10 cannot be
used as a substitute for AIF, due to the limitations
of image derived methods, as described in the
Introduction.

We suggest that the above discussed difference in
input function curve shape might be explained in part
by effects on the vascular system after acetazolamide
medication. Acetazolamide dilates the vascular system
and increases the cerebral blood flow velocity,30–32

which explains the increased mean time–activity curve
in whole-brain grey matter after acetazolamide medi-
cation (Figure 6a). A lower back-pressure due to dilat-
ed vasculature together with increased blood
velocity30,31 could possibly also explain the observed
effect on MLIF*

1 (Figure 6d) and on the IDIF
(Figure 6e). Figure 6e also indicated that the 15O-
water tracer arrived earlier to the brain after acetazol-
amide medication compared to the baseline scan,
resulting in a slight shift of the mean time–activity
curves. This observation might also support that the
differences in the IDIF10 peaks between scans were
partly due to an enhanced cerebral blood-flow velocity
in the acetazolamide scan. An additional contributing
effect to the increased amplitude of the IDIF after acet-
azolamide may be an increased spill-over from tissue
due to increased brain uptake.

In summary, when training and testing on the same
scans, similar CBF estimates for whole-brain grey
matter are obtained when using AIF and MLIF
(case 1). However, when using baseline scans for
training followed by applying the model to the acet-
azolamide scans (case 2) the blood input curves
are higher for the MLIF model, possibly due to the
increase in blood flow velocity after acetazolamide
medication. Consequently, CBFMLIF for whole-brain
grey matter was lower for acetazolamide, compared
to baseline, and the difference in CBF before and
after acetazolamide medication was reduced from
29% to 17%. Although these relative changes were
different for case 1 and case 2, both were significant
and hence suggesting that the MLIF method has a
clinical potential to differentiate baseline from acet-
azolamide scans.

A prerequisite for the MLIF approach is that repre-
sentative training data have been collected for the spe-
cific tracer and imaging system, including both images
and blood AIFs. Once an MLIF model has been
trained, it offers several advantages, compared to
various other image-derived and population-based
methods.11–13,20–25 A trained MLIF model is a non-
invasive method describing both the shape and the
amplitude of an AIF, without any need for calibration
blood samples. The MLIF models represents a learned
transformation, that directly maps the image-derived
input data, to a ready-to-use AIF, by inherently
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correcting for partial volume effect, with no predefined
assumption of the model function. Furthermore,
the input data required by the MLIF approach consists
of only three carotid artery regions which can be objec-
tively and automatically segmented in the PET images.
This makes the MLIF approach simple and convenient
to use, without the need for MRI-based artery segmen-
tation.14–19

One limitation of this study is that the GP models
were trained on at most 22 samples (MLIF*

1), which
might have resulted in an inferior generalization of the
model to new samples which were dissimilar from
the training data. To investigate the robustness of the
MLIF model to unseen test data, new IDIF curves
were created by scaling the existing input IDIF time–
activity curves for each subject during the leave-one-
out testing (Supplementary material). When the input
data was scaled, the MLIF model was stable for input
ranges encountered in the training data. For higher and
lower scale factors, the model performance was gradu-
ally degraded (Supplementary Figure S2A). The drop
of performance of machine learning models outside the
range of training data, so called domain shift, is
expected and well known.50–52

In a clinical setting where an existing MLIF model is
applied to a patient, it is important that the resulting
CBF is reliable. We have reported four outliers based
on abnormal regression slopes between the AIF and
MLIF data points. However, we cannot know if it
was the AIF or the MLIF curves that were abnormal.
The corresponding CBF values for these outlier scans
all indicate that the AIF was abnormally high as indi-
cated by CBFMLIF/CBFAIF 
 1 (Table S1). This sug-
gests that the outlier was caused by the AIF and not by
the MLIF model. Future research should investigate
methods for quality control of predicted MLIF
curves and CBF values from a trained model.

Another limitation of the study is the combination
of healthy and MS patients in the data set, as well as
data from two different scanners. This increased the
heterogeneity in the input data to the MLIF models,
and in combination with the effects of acetazolamide,
this might have affected the results. However, the lim-
ited number of subjects does not allow to study these
effects further in detail. Further, the evaluation of our
MLIF model was mainly based on differences in
whole-brain gray matter CBF. We expect similar
results to be obtained for CBF in smaller brain regions,
but this aspect should be investigated in future studies.
Also, the test-retest variability of the MLIF method
should be investigated and compared to that of the
blood AIF,53 as well as the evaluation of the model
sensitivity in relation to aspects such as injected dose,
time-framing, reconstruction settings and different type
of scanners. Finally, the generalizability of the MLIF

method to other diseases should be investigated. For
example, it is known that carotid stenosis alters the
temporal shape of the AIF,54 which might have impli-
cations for MLIF models trained on baseline scans and
applied to patients with pathological arterial
vasculature.

In this study, different MLIF models were evaluated
with 15O-labeled water. In our previous research29 a
machine learning approach was also feasible for AIF
prediction using FDG, although not yet evaluated in
clinical data. Thus, we suggest that the method can be
adopted to other tracers by merely training similar
MLIF models. With proper validation, it may also be
conceivable that tracers requiring metabolite correction
of the AIF can be included in the prediction model. As
for all data-driven models, the accuracy of the MLIF
approach for a particular PET application will depend
on the quality and quantity of the available training
data. Nevertheless, MLIF opens for simplified and
non-invasive input function measurements, and there-
by potentially eliminating the need for extensive arteri-
al blood sampling in future PET studies.

In conclusion, we demonstrated that our non-
invasive MLIF prediction method may be a viable
alternative for CBF measurements using 15O-water
PET and kinetic modelling, which in clinical practice
implies evading of arterial cannulation. The MLIF
method successfully differentiated CBF values before
and after acetazolamide medication.
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Table	S1.	Comparison	of	 individual	whole-brain	grey	matter	CBF	values	 for	baseline	and	

acetazolamide	15O-water	brain	PET	scans	estimated	by	kinetic	modelling	using	AIF	and	GP-

predicted	 MLIF	 as	 input	 function.	 Ratios	 are	 expressed	 as	 CBFMLIF/CBFAIF.	 For	 subjects	

marked	with	asterisk	(*),	the	AIF	and	GP-predicted	MLIF	from	the	baseline	scan	are	shown	

in	 Figure	 2.	 Scans	 marked	 with	 dagger	 (†)	 were	 outliers	 according	 to	 the	 slope-based	

criterion	defined	in	the	main	text.	

	 CBF	[ml·min−1·g−1]	
	 Baseline	 Acetazolamide	

Subject	 CBFAIF	 CBFMLIF1	 Ratio	 CBFAIF	 CBFMLIF2	 Ratio	
1	 0.55	 0.61	 1.12	 0.69	 0.66	 0.95	
2	 0.29	 0.38	 1.30	 0.35	 0.39	 1.12	
3*	 0.50	 0.49	 0.98	 0.63	 0.63	 1.00	
4	 0.33	 0.37	 1.13	 0.48	 0.49	 1.03	
5	 0.39	 0.51	 1.30	 0.59	 0.59	 0.99	
6	 0.39	 0.53	 1.34	 0.53	 0.60	 1.13	
7	 0.30	 0.29	 0.98	 0.33	 0.37	 1.12	
8	 0.42	 0.49	 1.18	 0.79	 0.77	 0.96	
9	 0.45	 0.36	 0.80	 0.57	 0.49	 0.86	
10*	 0.41	 0.41	 1.01	 0.38	 0.45	 1.17	
11	 0.36	 0.39	 1.10	 0.45	 0.52	 1.18	
12	 0.32	 0.37	 1.14	 0.61	 0.48	 0.79	
13	 0.27	 0.31	 1.17	 0.39	 0.35	 0.89	
14	 0.43	 0.69	 1.60	 0.67	 1.05	 1.56	
15*	 0.57	 0.41	 0.72	 0.63	 0.50	 0.79	
16	 0.52	 0.52	 0.99	 0.74	 0.71	 0.97	
17	 0.57	 0.45	 0.79	 0.77	 0.82	 1.06	
18	 0.76†	 0.44†	 0.58†	 0.83	 0.81	 0.98	
19	 0.91†	 0.49†	 0.54†	 0.48	 0.58	 1.20	
20	 0.49	 0.40	 0.82	 0.63	 0.51	 0.82	
21	 0.57†	 0.42†	 0.74†	 0.69†	 0.54†	 0.78†	
22*	 0.30	 0.44	 1.47	 0.44	 0.56	 1.26	
Mean	 0.46	 0.44	 1.04	 0.58	 0.59	 1.03	
SD	 0.16	 0.09	 0.28	 0.15	 0.17	 0.19	
P	 0.67	 	 0.73	 	
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Figure	S1.	Scatter	plot	of	predicted	GP	variance	versus	CBFMLIF/CBFAIF	ratio.	No	clear	
relation	between	GP	variance	and	high	or	low	ratio	values	was	observed	in	the	data.		
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MLIF	scale	dependency	

We	have	further	investigated	how	the	MLIF	model	responds	to	input	IDIFs	outside	
the	range	of	the	training	data.	This	was	evaluated	by	multiplying	the	input	IDIF	
time-activity	curves	of	the	test	subject	with	a	scale	factor	during	the	leave-one-out	
testing.	Thus,	the	MLIF	model	was	trained	on	non-scaled	training	data,	consisting	
of	all	subjects	except	the	one	currently	left	out	as	test	patient.	Subsequently	the	
input	IDIFs	of	the	test	subject	was	scaled	by	multiplication	of	the	scale	factor.	The	
scaled	IDIFs	were	used	as	input	into	the	trained	MLIF	model,	to	generate	a	
predicted	scaled	MLIF	curve.	The	scale-dependency	of	the	MLIF	model	was	
evaluated	by	comparing	the	area-under-curve	(AUC)	of	the	scaled	input	IDIFs	and	
AUC	of	the	corresponding	scaled	output	MLIF	curves.	Scale	factors,	s,	in	the	range	
0.5	to	2	were	investigated	(s	=	0.5,	0.75,	1.0,	1.25,	1.5,	2).	
	
Figure	S2A	displays	the	generated	MLIF	AUC	as	a	function	of	the	scaled	IDIF	AUCs	
for	all	subjects.	This	graph	shows	that	the	model-generated	MLIFs	scales	non-
linearly	with	scaled	IDIFs.	Furthermore,	it	can	be	deduced	that	the	model	works	
well	within	the	range	of	the	training	data	(scale,	s	=	1).	This	can	be	expected	for	
any	data-driven,	machine	learning-based	method.	The	model	breaks	for	higher	
scale	factors,	at	IDIFs	with	an	AUC	above	2000	kBq.s/ml,	where	the	AUCs	are	about	
1.3	times	the	values	used	for	training.	There	is	also	a	tendency	for	the	lowest	scale	
factor	data	(s	=	0.5)	to	fail	at	the	values	furthest	from	the	range	of	the	training	data	
(s	=	1).	Figure	S2A	suggest	that	it	is	safe	to	predict	MLIF	data	within	the	training	
range,	but	also	for	data	with	amplitudes	(or	AUC)	within	a	range	being	extended	
from	the	training	data	range	by	25%	(s=0.75	to	1.25)		
	
These	results	confirm	that	the	normalization	used	as	input	for	the	training	does	
not	affect	the	MLIF	model’s	capability	to	infer	the	MLIF	amplitude	from	the	IDIF.			
	
The	reason	for	the	non-linear	dependency	of	the	MLIF	AUC	on	IDIF	scaling	can	be	
understood	from	Figure	S2B.	Also	here,	in	the	original	arterial	input	data,	there	is	a	
non-linear	dependency,	in	this	case	between	the	IDIF	and	the	measured	AIF	AUC	
values.	This	non-linearity	may	be	hard	to	appreciate	from	Figure	S2B	but	becomes	
more	obvious	considering	that	a	line-fit	has	a	slope	of	1.5	for	the	range	of	training	
data.		Furthermore,	the	y-intercept	of	the	linear	fit	is	>>	0	kBq.s/ml,	which	is	not	
describing	the	reality	where	zero	blood	input	would	give	zero	IDIF	from	images.		
	
To	summarize,	this	observation	suggests	that	the	non-linear	relationship	observed	
at	different	scaling	of	the	IDIF	(Figure	S2A)	is	a	feature	carried	over	from	the	
original	data.	Thus,	the	non-linearity	is	not	a	defect	by	the	MLIF-model	but	arise	
from	the	non-linear	scaling	of	the	AIF	with	the	scaled	IDIFs	(Figure	S2B).	This	is	in	
itself	an	interesting	observation,	which	may	arise	from	the	influence	of	the	
neighboring	tissue	to	the	pixels	defining	the	IDIF.		However,	further	investigation	
of	this	effect	is	outside	the	scope	of	the	current	work.	
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Figure	S2.		A.	Area-under-curve	(AUC)	of	predicted	MLIF	for	different	scaled	input-
IDIF	AUCs.	IDIF	AUC	is	calculated	as	the	mean	AUC	of	IDIF10,	IDIF100	and	IDIF1000.	
Colors	indicate	different	scale	factors,	s.	Green	circles	display	non-scaled	values	(s	
=	1).	Horizontal	bars	indicate	the	AUC	range	of	predicted	MLIF	AUC	values	for	each	
scale	factor.		The	graph	indicates	that	the	model	explains	data	well	within	the	
trained	range	but	breaks	down	when	extending	input	data	too	far	outside	the	
trained	range	(s	=	1).	The	curve	is	a	fit	to	a	power	function	on	the	non-scaled	data,	
as	a	visual	guide	(dashed	green	line).	B.	AUC	of	the	measured	AIF	and	IDIF	(not	
scaled)	show	that	the	AIF	does	not	scale	linearly	(linear	fit:	y=1.5x+1639)	with	
IDIF,	but	rather	follows	a	power	fit	(dashed	line).		
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