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Preface 

Insights from epidemiological studies, including population-based studies and clinical studies, 

contribute to new knowledge on health determinants and provide a basis for development of 

public health recommendations. Data collection in epidemiological studies require extensive 

organization and resources to plan and execute, where data on physical activity are 

traditionally collected using physical activity questionnaires and accelerometers, each with 

their own strengths and limitations.   

However, study participants may already wear various mobile sensors measuring health 

related metrics for private use, such as physical activity trackers. Data can be recorded over 

several months and years, but are more unorganized and unplanned, and accuracy is often 

unknown. This type of data may non-the-less be an important addition to traditional methods 

for collection of physical activity data for use in health research. 

The observed decrease in participation in population-based studies over time is a threat to the 

need for representative samples. In contrast, the prevalence of activity tracker ownership is 

steadily increasing. To monitor physical activity levels in a population over time, activity 

trackers, designed for long-term monitoring, stands out as an interesting additional source of 

physical activity data. 

Therefore, this dissertation is part of an initiative to investigate the potential for using 

physical activity data recorded by consumer-based activity trackers as part of future 

epidemiological studies. Specifically, the goal was to create a new method for collecting long-

term data on physical activity, to be used in the next survey of the Tromsø Study, with the 

goal of closing the gap between short-term objective recordings (i.e. accelerometers) and 

long-term subjective estimates (i.e. physical activity questionnaires) . 
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Summary  

New knowledge on health and diseases from epidemiological studies, including population-

based studies and clinical studies, is important for the development of more effective public 

health prevention strategies and interventions. The Tromsø Study is an ongoing longitudinal 

population-based study with seven surveys conducted to date, each survey increasing in 

organizational setup and complexity related to the comprehensiveness of clinical 

examinations, questionnaires, and biological sampling. The growing data collection yields a 

unique basis for research, but also generate increased cost and increased participant burden.  

In contrast, many participants already wear activity trackers for self-monitoring of various 

health metrics. Activity trackers are designed for long-term recoding, but data collection is 

often more unorganized and unplanned, and accuracy is often unknown. These data may non-

the-less be an important addition to data generally collected in these large population-based 

studies.  

In the seventh survey of the Tromsø Study (Tromsø 7), data on physical activity were 

collected using questionnaires and accelerometers. As in previous surveys, Tromsø 7 formed 

a basis for several clinical follow-up studies, including intervention studies. In the upcoming 

survey, Tromsø 8, it is of interest to expand objective physical activity recordings using 

participant’s privately-owned wearable mobile sensors (i.e. activity trackers), to collected 

long-term data on physical activity both prospectively and retrospectively.  

Having access to long-term activity tracker data may provide valuable insight into how 

physical activity changes in a population over time. In order to assess the feasibility of 

collecting this type of data, there is a need to understand if and how consumer-based activity 

trackers can be used for this purpose and create and test the usability of a solution that can 

collect this large-scale source of data in a simple and manageable manner. The main aim of 

this dissertation was therefore to develop and explore new methods to collect data on physical 

activity from participants in future epidemiological studies, using smart mobile sensors (i.e. 

activity trackers).  

In the first paper we gave an overview of the current state of wrist-worn activity trackers on 

the consumer-market and provided suggestions on what to consider when deciding which 

provider and activity tracker model to use in future research.  
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In the second paper we assessed the validity of an activity tracker, the Polar M430, and 

concluded that although it cannot be used as a replacement for current methods of physical 

activity data collection, it has the potential to be used as an additional source for long-term 

physical activity monitoring. 

In the third paper we identified important factors for increasing wear time adherence and 

provided a list of recommendations to consider when using consumer-based activity trackers 

for long-term physical activity monitoring in health research. Major factors include providing 

satisfactory activity tracker training to participants, offer a variety of activity tracker designs, 

and use activity trackers with accurate measurements.  

In the fourth paper we implemented a system for automatic and continuous physical activity 

monitoring, collected from consumer-based activity trackers. Further, to test the usability of 

this system, we assessed how physical activity levels changed during the COVID-19 

pandemic, by retrospectively accessing activity tracker data already collected by participants 

who wore a tracker before-, during-, and after the Norwegian March 2020 lockdown period. 

In conclusion, this dissertation provide insight into what to consider when using consumer-

based activity tracker for long-term physical activity monitoring in health research and 

demonstrate how this type of data can be accessed and used for both retrospective and 

prospective study designs. 
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1 Introduction 

The main topic of this PhD dissertation was to investigate new methods for measuring 

physical activity in epidemiological studies, using smart technology worn by participants over 

an extended period. The introduction gives an overview of the definition of physical activity, 

the current epidemiology of physical activity, current methods for measuring physical 

activity, and how wearable smart technology can be used to record data on physical activity 

over time.  

1.1 Defining physical activity 

Physical activity  

An often referenced definition of physical activity was coined by Caspersen et al. [1] in 1985, 

who defined it as “any bodily movement produced by skeletal muscles that results in energy 

expenditure”. This definition was the result of a need to make it easier to distinguish between 

physical activity, exercise, and physical fitness, terms that were party used interchangeably, 

resulting in difficulties when comparing studies. A almost identical definition is also currently 

used by the World Health Organization (WHO) [2] (i.e. “any bodily movement produced by 

skeletal muscles that requires energy expenditure”).  

Further, physical activity can be considered one element in a larger framework of human 

movement, as suggested by Pettee Gabriel et al. in 2012 [3]. This framework classifies 

different aspects of human movement, where physical activity (e.g. exercising) and sedentary 

behaviour (e.g. sitting) are sub-elements of human movement behaviour, and energy 

expenditure and physical fitness (e.g. body composition, muscular strength) are sub-elements 

of human movement attributes.  

Quantifying physical activity 

The total volume of performed physical activity is a function of intensity (e.g. light, moderate, 

and vigorous), frequency, duration, and activity type [4, 5]. The result can be quantified using 

different units of measurement, where metabolic equivalents of tasks (MET), minutes in 

sedentary behaviour, minutes in different levels of physical activity intensity, various types of 

energy expenditure, and steps are common metrics. 
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Metabolic equivalent of tasks is the rate at which a person expends energy while performing a 

specific task or activity. One MET is roughly the amount of energy expended at rest, where 1 

MET=1 kilocalorie/kilogram/hour (kcal/kg/h). A MET minute is the amount of energy 

expended during a minute at rest (i.e. 1 MET). The MET for a given minutes can be used to 

classify the intensity of that minute.  

Sedentary behaviour is defined as inactive behaviour while awake, where energy expenditure 

is below 1.5 METs while sitting or lying down. Light physical activity (LPA), e.g. slow walk 

or standing, is defined as having a MET of 1.5-3. Moderate physical activity (MPA), e.g. 

brisk walk, heavy cleaning (e.g. vacuuming), or light effort bicycling, is defined as having a 

MET of 3-6. Vigorous physical activity (VPA), e.g. jogging, fast bicycling, or playing soccer, 

is defined as having a MET >6 [6].  

Metabolic equivalent of tasks and minutes of activity intensity can also be converted and 

reported as activity energy expenditure, where total energy expenditure (TEE) is a function of 

physical activity energy expenditure (AEE), resting energy expenditure (REE), and thermic 

effect of food (a.k.a. dietary induced thermogenesis (DIT)), so that TEE = REE + AEE + DIT. 

Energy expenditure is given in kcal or kilojoules (kJ), where 1 kcal = 4,187 kJ.  

In addition, a well-known (but disputed) goal for being active is taking 10,000 steps per day. 

This cut-off dates back to the 1960s where a research team lead by Dr Yoshiro Hatono 

calculated that the average person took between 3500 and 5000 steps per day and increasing 

this to 10,000 would improve their health [7]. Tudor-Locke et al. [8] have created a 

classification for step counts and defined 10-12,000 steps per day as being “active”. 

1.2 Physical activity epidemiology 

Physical inactivity is a leading risk factor for a range of non-communicable diseases 

(including cardiovascular diseases, diabetes, and some cancers) and death [2].  

The 2020 WHO’s Guidelines on physical activity and sedentary behaviour recommends 

adults to engage in at least 150-300 minutes of moderate physical activity or 75-150 minutes 

of vigorous physical activity per week, or an equivalent combination of intensities. In 

addition, moderate or greater intensity resistance training using major muscle groups at least 

two days per week is recommended for additional health benefits. For further increased health 

benefits, performing more than 300 minutes of moderate- or 150 minutes of vigorous aerobic 
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physical activity is recommended, as well as limiting the amount of sedentary time and 

replace it with physical activity [9]. All levels of intensities are associated with a reduction in 

risk of death and some physical activity is better than no physical activity [9, 10]. 

Globally, 23% of adult men and 32% of adult women did not fulfil recommendations in 2016 

[11, 12, 13]. Physical inactivity is an increasing challenge worldwide, especially in high-

income countries [11, 12]. 

Most countries in the European Union have adopted, or are in the process of adopting, 

physical activity recommendations based on WHO’s global recommendations [14, 15]. In 

addition to individual health benefits of achieving the recommended physical activity levels, 

increased physical activity also provides health and economic benefits at the population level 

[16], as achieving the recommended levels of physical activity can reduced both 

cardiovascular disease mortality and total mortality [17]. 

1.3 Assessing physical activity 

Overview 

Recording data on physical activity in large longitudinal epidemiological studies provides 

important insight in how physical activity behaviour changes over time in a population. 

Physical activity is an important variable in a range of research questions but collecting 

accurate data on physical activity is challenging. Physical activity, physical inactivity, 

sedentary behaviour, and physical activity energy expenditure can be estimated using 

different methods. Each method provides different metrics, at different levels of accuracy and 

costs, and generate different participation burden. The choice of method is therefore 

dependent on the study setting, the research question, and available resources.  

In health research, physical activity questionnaires have been the traditional choice due to 

their low cost and low complexity [18]. Technological advancement has increased the use of 

objective measurements, commonly collected using accelerometers, heart rate sensors, and 

combined sensing monitors. Figure 1 (based on figure by Hildebrand and Ekelund [19]) gives 

an overview of common methods for physical activity- and energy expenditure assessment, 

which output estimates are commonly available, and how each method compares in terms of 

accuracy and cost, and ease of use. The figure is a simplified overview of the most common 

methods and not an exhaustive list.  
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Figure 1. Methods for assessing physical activity. 

Objective methods 

There is a range of available methods for objective physical activity estimation. These are 

considered more accurate compared to subjective methods. 

Direct calorimetry (a.k.a. room calorimetry) is the most accurate method for estimating 

energy expenditure in lab-settings. Energy expenditure is calculated by measuring the rate of 

heat loss from participants who are confined to a closed chamber during the measurement 

period. The method is both resource-demanding and complex with high participant burden 

[20]. Direct calorimetry gives no information about physical activity type or intensity. 

The Doubly labelled water (DLW) method is frequently considered the gold standard for 

energy expenditure estimation in free-living but provides no information about physical 

activity type or intensity. Energy expenditure is estimated by orally introducing a known 

quantity of isotope-labelled water, using a heavier and stable isotope of hydrogen (2H, 

deuterium) and oxygen (18O), i.e. 2H2
18O. The elimination rate of these two isotopes is 

measured in the urine over time. The rate of elimination is proportional to carbon dioxide 
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(CO2) production, which is used to calculate energy expenditure. This method is costly and 

requires expertise, but it is safe, non-invasive, and accurate [20, 21, 22]. 

Indirect calorimetry is a method for estimating energy expenditure using oxygen consumption 

(VO2) and carbon dioxide (CO2) production. Gas exchange is collected through a face mask, a 

canopy system, or other closed-circuit solution. This method is accurate, often considered a 

gold standard for energy expenditure estimation in lab-settings, and is frequency used to 

assess energy expenditure in research- and clinical settings, as well as for validating other 

instruments (e.g. accelerometers). Indirect calorimetry is less resource-demanding compared 

to the DLW method and considered non-invasive for short time use, but it cannot be used for 

long-term measurements [20]. Indirect calorimetry gives no information about physical 

activity type but can be used to estimate physical activity intensity. 

Heart rate monitoring is used to estimate energy expenditure from the linear relationship 

between heart rate and oxygen consumption [22]. Since heart rate is not only affected by the 

activity level, physical activity estimates can be improved by combining heart rate monitors 

and accelerometers into sensors using combined sensing [23]. 

Accelerometers estimates activity by measuring acceleration (i.e. change in velocity over 

time) several times per second (typically 30-100), most often in one or three axes [20, 22, 24]. 

Raw accelerometer data are fed to internal algorithm that outputs activity counts per epochs 

(e.g. counts per 10 seconds). These activity counts can be used to classify minutes of 

sedentary time and minutes of activity in different intensity zones, using a wide array of 

defined cut-points [25]. Which cut points to use is dependent on the sample characteristics, 

how many axes the activity counts are based on, and where the accelerometer was placed (e.g. 

hip, wrist). A common cut-point set for adults wearing an accelerometer on the hip, based on 

triaxial counts per minute (CPM) is defined by Sasaki et al. [26], where 2690–6166 CPM is 

classified as moderate intensity; 6167–9642 CPM is classified as vigorous intensity; and 

>9642 CPM is classified as very vigorous intensity. It follows that <2690 CPM is classified as 

light intensity unless other cut-points are used to distinguish between light intensity and 

sedentary time. Activity counts are also used to estimate AEE. Some accelerometers also 

include other sensors, e.g. gyroscope and magnetometer, for enhanced accuracy and 

additional outputs (e.g. body position and rotation). Accelerometers have existed since the 

1980, but it was not until the late 1990 and early 2000 that it saw an increase in popularity for 

physical activity data collection in research [27]. Although there is no explicit gold-standard 
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for collecting physical activity intensity in free-living, accelerometers are generally 

considered the most accurate objective method in this setting [28]. However, because 

objective and subjective methods measures different aspects of physical activity and have 

different benefits and drawbacks, combining accelerometer recording with questionnaires 

have been suggested to achieve a more comprehensive and complementary overview [29]. 

Pedometers records steps taken while walking and running. Albert Stunkard was one of the 

first to describe how to use mechanic pedometers in research to estimate distance [30]. Using 

pedometers gained further popularity in the 1990s [31] as an inexpensive and objective tool 

for physical activity estimation in research [20, 22]. Some pedometers also report other 

metrics, e.g. distance travelled or energy expenditure. However, these metrics are not very 

accurate [32, 33]. Pedometers are the least accurate of the objective methods. Results are 

affected by stride length and walking speed, and several activity types are not recorded at all. 

Mechanical pedometers have mostly been replaced with more accurate accelerometer-based 

tools [34].  

Subjective methods  

Subjective methods, although considered less accurate, complements objective methods. They 

are less costly, can be used in scenarios where objective methods cannot be used, and can be 

used together with objective methods to give a more comprehensive understanding of 

participant’s physical activity levels [29]. 

Keeping a physical activity diary or log can provide a very detailed overview of activity types 

and activity patterns. Activity type can be converted to energy cost, for instance by using the 

physical activity compendium which contains a large number of activity types and how these 

equivalates to METs [35, 36, 37]. A major challenge is the high participation burden [22].  

Physical activity questionnaires (PAQ) are often used in large scale population-based studies 

because of the low cost and easy administration. There is a large number of different PAQs 

available, and which to use is dependent on participant characteristics, the preferred recall 

period, type of physical activity, and which dimension of physical activity is of interest [38, 

39]. In a systematic review from 2012 Helmerhorst et al. [39] 96 different PAQs were 

presented, where most showed acceptable reliability but only moderate validity. A major 

limitation with PAQs is measurement error caused by information bias [39]. 
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Summary 

Assessment of physical activity is challenging, and commonly used traditional self-report and 

objective methods have their limitations. Objective long-term recording for monitoring of 

individual habitual physical activity levels is of interest. Using consumer-based activity 

trackers and related smart technology therefore comes forward as an interesting addition to 

existing methods, as it may close the gap between these two common methods. An increasing 

number of the population wear various activity trackers for extended periods. This create the 

possibility to access objective data on physical activity, retrospectively (historically) as well 

as in real-time.  

1.4 Physical activity in the Tromsø Study: Example study 

The work in this dissertation originated from the Tromsø Study context. However, findings 

are relevant for similar studies planning to collect long-term data on physical activity. I will 

use the Tromsø Study as an example study in this dissertation.  

The Tromsø Study, together with the Trøndelag Health Study (HUNT) [40], are the two 

ongoing Norwegian population-based studies that aims to recruit representative population 

samples. The findings from the Tromsø Study and HUNT complement each other by 

recruiting both in rural and urban areas.  

The Tromsø Study 

The Tromsø Study was initiated in 1974 in order to better understand and prevent the high 

mortality of cardiovascular disease in Norway [41]. In total, seven surveys (Tromsø 1-7 1974-

2016) have been conducted every five to seventh year, resulting in more than 40 years of rich 

longitudinal data. Each survey introduced more comprehensive questionnaires, clinical 

examinations, and biological samplings. More than 45,000 participants have attended one or 

more surveys, 18,500 have attended three or more, and 2000 have attended six or seven times 

[42]. The Tromsø Study is the longest running, most comprehensive (by extensiveness of 

clinical measurements), and best visited (by participation) population-based study in Norway. 

There are currently more than 230 active projects in the Tromsø Study [42].  

Self-reported physical activity in the Tromsø Study 

All seven surveys of the Tromsø Study used PAQs to collect self-reported levels of physical 

activity among participants. Both occupational physical activity and leisure time physical 

activity were collected using different PAQs: the Saltin-Grimby Physical Activity Level Scale 
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[43, 44], a leisure-time PAQ [45], and an exercise frequency, duration, and intensity PAQ 

[46]. A thorough summary of these PAQs used is available in Morseth et al. [47].  

A recent study using questionnaire data from 40,000 Tromsø Study participants, attending 

between one and six repeated surveys between 1979 and 2017, showed that although there is 

an increase in leisure time physical activity, mainly due to increased exercise intensity and 

frequency, there is also an increase in occupational sedentary behaviour [47].  

Objective measurements of physical activity in the Tromsø Study 

In the first five surveys (Tromsø 1-5), physical activity and sedentary behaviour were 

collected using physical activity questionnaires only. In Tromsø 6, a subsample of 300 

participants wore an ActiGraph GT1M (uniaxial) accelerometer for seven consecutive days. 

Results from comparing ActiGraph data with self-reported physical activity showed a 

discrepancy between methods [48]. In Tromsø 7, 6300 participants wore an ActiGraph 

wGT3X-BT (triaxial) for eight consecutive days, and 700 wore an ActiWave Cardio 

(accelerometer and one-lead electrocardiography) for 27 hours. Accelerometer data from 

Tromsø 7 have been used to determine activity levels in adults and elderly [49], to test the 

validity of three physical activity questionnaires [50], to test existing accelerometer non-wear 

time algorithms [51], and to suggest an improved algorithm for non-wear time [52]. In 

addition, these data have been used to assess how physical activity relates to pain sensitivity 

[53], as well as  heart function and heart structure [54]. 

Current challenges and future plans 

Participation in population-based studies have declined worldwide [55, 56], as well as in the 

Tromsø Study. Although recruitment has been comparably high in the Tromsø Study, ranging 

from 78.5% in Tromsø 5 to 65% in Tromsø 7 [57], greater effort was needed in recent surveys 

to achieve these participation proportions. Similar tendencies are present in other European 

health studies [58]. Attendance was lower among younger and older age groups in the Tromsø 

Study [57]. The increasing complexity in epidemiological research, and thus time required for 

participation, adds to the participant burden, which further may reduce willingness to 

participate [56].  
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Further, planning and executing large population-based studies is resource-demanding, and 

there is therefore a need for new strategies and non-intrusive tools for data collection in order 

to increase participation, collect representative samples, and reduce participant burden.   

The number of sold consumer-based activity trackers and smartwatches is increasing 

worldwide [59, 60], and one in five Americans adults owned a fitness tracker or smartwatch 

in 2019 [61, 62]. This source of privately recorded objective physical activity data may be an 

interesting supplement to current methods of collecting physical activity. Current consumer-

based activity trackers can collect a range of different physical activity variables, depending 

on model, and the nature of these devices allows long-term recording both prospectively and 

retrospectively [63, 64]. Consumer-based activity trackers are increasing being used in 

research to record physical activity and other health related metrics [63].  

There are challenges with using these types of instruments for long-term recording in 

epidemiological research. In addition to privacy and ethical considerations, Wright et al. [63] 

especially address the problems with establishing activity tracker validity, and that activity 

tracker internal algorithms are unknown to the researchers. For long-term recording, using 

participant’s own activity trackers, they also highlight challenges with selection bias (i.e. the 

characteristics of an owner of an activity tracker). The benefit from using this method is the 

potential long-term recording and large number of variables available [63]. Furthermore, 

consumer-based activity trackers are designed for long-term usage and are therefore less 

invasive and more user friendly than traditional accelerometers build for research-purposes.  

The potential of health data collected from consumer-based mobile sensors such as activity 

trackers stretches beyond research. These data can be useful during health consultations, as 

they can provide a better overview of the patient’s conditions and life-style choices [65, 66]. 

However, a review from 2017 concluded that there are no standard system allowing patient-

collected health data to integrate with electronic health records and medical systems [67]. 

Although there are challenges on how to access and review this data in a simple way, 

clinicians may argue it is their responsibility to understand and use this data for patient 

consultations [68]. 
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1.5 Consumer-based activity trackers 

1.5.1 Introduction 

A consumer-based activity tracker is a non-research device or application that records and 

analyses data on physical activity and other health related metrics. The terms activity tracker, 

fitness tracker, activity monitor, and fitness monitor, are often used interchangeably and is 

here understood as any wearable consumer-based smart device, capable of recording physical 

activity or other health related data, through integrated sensors and algorithms, with the 

capability of transferring this data to a connected smartphone [63, 69]. In addition, activity 

tracker sensors are incorporated in more advanced wearables using a range of differ names. 

Some are synonyms, some indicate a subtle difference in terms of features, and others indicate 

large differences. Some additional common terms for wearables capable of activity tracking 

include smartwatch, sport watch, GPS (global positioning system) watch, smart band, smart 

bracelet, hybrid watch, smart ring, and smartphone. I will use the term activity tracker or 

tracker in this dissertation as the umbrella term for all consumer-based wearables capable of 

collecting data on physical activity.  

The state of activity trackers on the consumer market has changed over time. The first 

mechanical hip-worn pedometer for step counting became popular in the 1990’s and were 

gradually replaced with more accurate accelerometer-based devices in the early 2000. 

Eventually, new technology made it possible to connect these devices wirelessly to 

smartphones using Bluetooth technology, triaxial accelerometers started to replace the 

uniaxial accelerometer, and additional sensors (e.g. gyroscope, heart rate sensor) became 

more prevalent. This allowed for more complex metrics to be calculated, and the relatively 

simple hip-worn pedometer have evolved into today’s increasingly advanced multi sensor 

devices (i.e. activity trackers), which now more commonly are worn on the wrist.  

In 2011, Jawbone was one of the first providers to release a wrist-worn accelerometer-based 

activity trackers, the Jawbone UP. Since then, new activity trackers and new providers of 

activity trackers appear on the consumer market every year, with increasing sensor support 

and, according to the suppliers, increasingly accurate internal algorithms for data analysis and 

more advanced connected mobile applications.  
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1.5.2 Sensors in consumer-based activity trackers 

Where traditional research devices for physical activity tracking most often has a limited 

number of sensors, activity trackers and smartwatches are often packed with a wide array of 

sensors. The simplest models may only contain an accelerometer, but more high-end devices 

often also include a gyroscope, magnetometer, barometer or altimeter, global positioning 

system (GPS), and/or optical heart rate sensor (i.e. photoplethysmograph). Other sensors also 

exist, e.g. electrocardiography sensors, temperature sensors, light sensors, humidity sensors, 

proximity sensors, and galvanic skin response sensors [70].  

Accelerometers are the basic sensors in current consumer-based activity trackers [69]. Details 

about frequency and number of axis are not always made available by the activity tracker 

provider, but typically these accelerometers records data in three axes, 50-100 times per 

second (i.e. Hz). In contrast to accelerometers developed for research-purposes, raw 

accelerometer data are not commonly exposed from consumer-based activity tracker. Instead, 

the accelerometer data are used in internal algorithms together with data from other sensors, 

which produces and presents a list of calculated variables (e.g. steps, TEE, MVPA). 

A gyroscope measures orientation (i.e. angular movement) of a device. This information is 

used by internal device algorithms to increase the accuracy of physical activity estimation by 

using the change in orientation over time to classify activity type [71]. The rotation axis is set 

horizontally and should point north. This rotation axis must be regularly restored as the 

gyroscope does not seek north, and slowly drifts away from north, i.e. gyroscopic drift. 

A magnetometer is a digital compass that can detect the orientation of a device relative to 

magnetic north [72]. The magnetometer improves motion tracking accuracy by compensating 

for gyroscopic drift, by restoring the orientation of the gyroscope rotation axis towards north.  

Barometers/altimeters are used to detects changes in altitude [72]. These sensors can further 

improve some activity tracker outputs. Climbing a hill or a flight of stairs increases physical 

activity intensity, and the additional energy expenditure can thus be added to the daily total. 

In addition, these sensors can be used to report additional metrics, e.g. number of stairs 

climbed.  

Photoplethysmograph (PPG) is a low cost and non-invasive optical technique for estimating 

heart rate where light from a light-emitting diode (LED) is emitted onto the skin and reflected 
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to a photodetector. Changes in blood volume under the skin affects the wave form of the 

returning light, allowing the sensor to estimate heart rate and other physiological parameters 

(e.g. oxygen saturation) [73]. The reflected light is also affected by other factors, e.g. skin 

tone and deformation, blood flow dynamics, movement artefacts, ambient light and 

temperature, and LED colour [73, 74, 75]. The resulting signal noise reduces the accuracy of 

the heart rate estimation and must be cleaned, using cleaning algorithms that also include data 

from other sensors. The accelerometer is also used for this purpose [76], but other sensors 

have been suggested, including gyroscopes [77] and secondary infrared PPGs for motion 

detection [78].  

In addition to sensors for physical activity estimation, communication hardware is needed to 

communicate with the user’s smartphone. Most activity tracker therefore contains Bluetooth 

for wireless communication [69]. In addition, more expensive activity trackers sometimes 

also include Wi-Fi for communication through wireless local area networks, and eSIM 

(embedded subscriber identification module) allowing the activity tracker to make phone calls 

and be connected to the mobile network without being connected to a smartphone.  

1.5.3 Current state of validity – physical activity 

Although there are many providers and models available on the consumer market, the number 

of providers used in research settings is considerably lower. When we identified articles (Ovid 

MEDLINE) and active/planned studies (ClinicalTrials.gov) for Paper I (2018), Fitbit was by 

far the most popular provider, followed by Garmin, Misfit, Apple, and Polar. Provider 

popularity will change over time as new companies are founded, goes out of business (e.g. 

Jawbone), are acquired by larger companies (e.g. Pebble), or pivots away from the activity 

tracker domain (e.g. Microsoft). Current activity trackers use a range of sensors to estimate a 

range of variables, but the accuracy of these estimations varies. In order to use these devices 

for research purposes there is a need to continuously validate new activity trackers as they are 

released on the consumer marked.  

A large amount of validation studies on consumer-based activity trackers have been 

conducted to date. Most of these were done on activity tracker models that are no longer 

available today. Furthermore, several providers are also no longer available or do no longer 

produce activity trackers. The validity of the most relevant providers, due to high market 

share or special relevance (e.g. Polar) in this dissertation, is discussed below. Some provider 

details are summarized in Table 1. Market share details varies depending on source. Apple 
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have had the highest worldwide market share for several years [59, 60], but has recently been 

surpassed by two Chinese companies (Huawei and Xiaomi) [79]. In North America (which is 

likely more representative for the western region), Apple and Fitbit are the two largest 

providers by activity tracker shipment [80].  

Table 1. Provider market share summary (Paper I) 

Provider Founded First wrist/finger-

worn tracker 

Market share 

worldwide, Q2 

2020* 

Market share, 

North America, 

Q2 2020** 

Huawei 1987, China Talk Band B1 (2014) 24.0%  

Xiaomi 2010, China Mi band (2014) 20.4%  

Apple 1997, US Apple Watch (2015) 17.1% 37.6% 

Fitbit 2007, US Flex (2013) 7.3% 19.3% 

Garmin 1989, US Forerunner 220 (2013) 4.5% 8.1% 

Samsung 1969, Korea Galaxy Gear (2013)  5.0% 

Polar 1977, Finland Loop (2013)   

* IDC: Wearable Devices Market Share [79] 

** Canalys: North American wearables market Q2 2020 [80] 

Only few validations studies are conducted on Huawei’s activity trackers, but due to their 

increasing popularity, especially in Asia [59], we may see more studies in the future [79]. 

Degroote et al. [81] concluded that the Huawei Watch (discontinued) accurately estimates 

steps in free-living. Xie et al. [82] found high accuracy for steps but low accuracy for energy 

expenditure for the Huawei Talk Band B3 (discontinued).  

Although Xiaomi’s Mi Band has high sales numbers worldwide, this is largely because it is 

very popular in Asia [59]. There are only a few available validation studies on Xiaomi, and 

they are all on Mi Band 1 or Mi Band 2. Mi Band is currently on its fifth generation and 

Xiaomi have already announced the release of Mi Band 6. Although two Xiaomi validation 

studies were included in the Fuller et al. [83] systematic review, their accuracy was not 

addressed directly due to lack of data. However, a recent study concluded that the Mi Band 2 

showed high validity for counting steps [84].  

Apple validation studies are included in several systematic reviews [83, 85, 86]. The largest 

systematic review analysing Apple validation studies was published by Fuller et al. [83] in 



 

14 

2020 and included 28 Apple studies. They concluded that Apple (and Samsung) showed 

highest validity for step counting, compared to other providers, and that Apple overestimated 

energy expenditure in 58% of studies. These reviews included studies conducted on Apple 

Watch first and second generation (six generations exist), both of which are discontinued. 

Several additional validation studies have been published more recently, reaching similar 

conclusions, also limited to the first two generations.  

Fitbit is the most included provider in validation studies, and has been reviewed in several 

systematic reviews published between 2015 and 2020 [83, 85, 86, 87, 88, 89]. A 2020 

systematic review by Fuller et al. [83] included 144 Fitbit studies. This review analysed 

device accuracy when estimating steps and energy expenditure. They concluded that Fitbit 

does seem to provide accuracy step estimates in lab-settings. Energy expenditure was found 

not to be accurate. Since Fuller et al. [83] conducted their search in May 2019, several new 

Fitbit validation studies on physical activity have been published. These studies were 

conducted on the same devices as previous studies, and they have similar conclusions. None 

of the included activity tracker models are currently being produced by Fitbit and have been 

replaced by newer models.  

Garmin validation studies have also been included in several systematic reviews [83, 85, 90]. 

A study by Evenson et al. [90] published in 2020, systematically reviewed 32 Garmin 

validation- and reliability studies. They concluded that the validity of step counting for 

Garmin devices was high, but the validity of energy expenditure estimates was low. The study 

by Fuller et al. [83], reviewing 42 Garmin studies, concluded that Garmin had a comparable 

lower error with a tendency to underestimate steps, but energy expenditure was consistently 

underestimated with high error. Activity tracker models included in these reviews are no 

longer available from the provider. A few newer Garmin validation studies, not included in 

any systematic review, have been published. These studies are also conducted on trackers no 

longer produced by Garmin.  

Samsung validation studies are included in two identified systematic reviews [83, 86]. Bunn 

et al. [86] concluded, based on two validation studies, that energy expenditure estimates was 

valid for Samsung Gear S (discontinued). In addition, step count had acceptable agreement, 

but with wide limit of agreements. Fuller et al. [83] concluded that Samsung (and Apple) 

showed highest validity for step counting, compared to other providers. Two more recent 

studies on Samsung activity trackers concludes low validity for energy expenditure in youth 
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[91], and high validity for steps while jogging [92]. All activity tracker models included in 

these studies have been discontinued.  

Four identified systematic reviews include Polar activity trackers [83, 85, 89, 93]. Fuller et al. 

[83] assessed 15 Polar studies and concluded that Polar generally overestimated energy 

expenditure. We assessed 11 studies and concluded that step count estimates seem to be more 

accurate compared to energy expenditure and physical activity intensity [93]. Activity tracker 

models included in these reviews are now discontinued. However, a few newer validation 

studies have been conducted on the Polar Vantage, which is currently available from the Polar 

web store. Gilgen-Ammann et al. [94] concluded moderate accuracy for energy expenditure 

estimates during activities requiring arm movements, Düking et al [95] concluded that energy 

expenditure estimates were not accurate, and we concluded that although correlations were 

strong for steps and energy expenditure, mean error was too high [96].  

1.5.4 Current state of validity – sleep and heart rate 

In addition to physical activity, heart rate and sleep outputs are increasingly becoming 

available in new activity trackers.  

The accuracy of heart rate estimates from PPG is not clear and results differ depending on 

tracker model, current activity levels, and which metric is considered (e.g. heart rate, heart 

rate variability, resting heart rate, etc.) [97]. However, a recent systematic review and meta-

analysis by Zhang et al. [98] concluded acceptable validity for wrist-based PPG estimated 

heart rate. A general agreement is that accuracy is reduced during high intensity physical 

activity [97, 99, 100]. A recent validation study on the accuracy of PPG in two wrist-worn 

activity trackers concluded generally accurate heart rate readings for alle age groups [101].  

Most current activity trackers also report sleep related variables. Although not addressed in 

this dissertation, sleep is worth mentioning, as sleep estimates are based on the same sensors 

that physical activity related estimates are based on (i.e. accelerometer and PPG). Two 2015 

systematic reviews concluded low validity of sleep estimation using current wrist-worn 

activity trackers [87, 102]. However, included studies only assessed devices with no heart rate 

monitor. In a more recent systematic review and meta-analysis on Fitbit activity trackers, 

which also included devices with heart rate sensors (i.e. PPG), Haghayegh et al. [103] 

concluded promising performance when identifying sleep vs awake time, but they also stated 

that such devices cannot be used as a substitute for polysomnography (i.e. gold standard).  
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In addition to wrist-worn activity trackers, newer form-factors are also emerging. For 

instance, the Oura-ring, which is one of few finger-worn activity trackers available, is an 

activity and sleep ring that also tracks heart rate and body temperature. Oura ring shows 

“promising results” and strong correlation with polysomnography for sleep detection [104, 

105], can potentially be used to estimate resting heart rate [96], but cannot replace research-

based accelerometers for physical activity estimations [96]. The ring packs a thermometer, an 

accelerometer, and an optical heart rate sensor, and provides a range of estimates for the 

wearer.  

1.5.5 Summary 

Step counting is the only variable that is repeatedly found to be valid, while energy 

expenditure is very often considered not valid. However, the results vary between studies and 

models, and although there are many validation studies available, there is still a need to 

conduct studies on current activity trackers. Many studies suggest caution when using activity 

trackers, especially for energy expenditure. Although dependent on activity type and intensity, 

heart rate estimates using wrist-worn PPGs generally show acceptable validity.  

O’Driscoll et al. [85] also published a systematic review and meta-analysis in 2020, focusing 

on energy expenditure. They included validation studies on activity trackers from Apple, 

Polar, Garmin, Misfit, Withings, and Samsung. They did not address each provider in detail, 

but rather gave general conclusion about energy expenditure validity. They generally agree 

with other reviews and add that the accuracy of energy expenditure estimates from wrist-worn 

activity trackers are highly dependent on the performed activity type. They also saw that 

activity trackers that combined accelerometer data with heart rate data achieved lower 

measurements error. 

Most activity trackers tested in all identified reviews and subsequent validation studies have 

since been discontinued or replace with newer versions and is no longer produced. Some are 

however still available in stores.  
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1.6 Related solutions 

Below are some relevant solutions and projects that use activity trackers to collect health data. 

Apple Health, HealthKit, and ResearchKit 

Apple Health (Apple Inc., CA, US) is a mobile application preinstalled on iPhones. This 

application analyses manual input user data (e.g. age, height, weight) and internal sensor’s 

output (e.g. accelerometers), and estimates and presents a range of different health related 

variables to the iPhone user [106]. Apple HealthKit is a developer framework for accessing 

and updating data stored in the Health application. Apple ResearchKit was released in 2015 

and is a framework that allows researchers to create mobile applications and recruit research 

participants among iPhone users [107].  

Google Health Studies  

Google recently (December 2020) announced Health Studies, a similar solution as the Apple 

Research Kit [108]. The first study conducted using this framework are investigating how 

COVID-19 is linked to a person’s movements.  

Open mHealth and Shimmer 

Open mHealth is a non-profit organization and a mobile health data interoperability standard 

[109]. Their goal is to make it easier to integrate patient health data from different sources, for 

easier data sharing and data harmonization. Solutions created by Open mHealth is open 

source and adaptable and improved by a community of developers worldwide.  

Shimmer is “the first open-source health data integration tool” [110]. It can collect data from 

popular APIs (application programming interface), including Fitbit, Google Fit, iHealth, 

Misfit, Runkeeper, and Withings. Collected data are stored using the Open mHealth standard 

format. Several of these integrations no longer work, and the last update to the Shimmer 

codebase was in September 2018. 

Human API  

Human API (Human API, CA, US) is a company and tool that provides a “customer-

controlled health data platform” [111]. They have specialized in integrating data from a large 

number of systems used in the US health sector, including electronic health records, patient 
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portals, health insurers, laboratories, and pharmacies. They also have integration with activity 

tracker providers thru open APIs, including Fitbit, Withings, Apple, Google, and Garmin, as 

well as large activity tracker application companies like Strava, UnderArmour, and 

MyFitnessPal. Since they only operate in the US, Human API is HIPAA-compliant (US 

Health Insurance Portability and Accountability Act) but not GDPR-compliant (European 

Union General Data Protection Regulation). Human API is used by the Health eHeart study at 

University of California San Francisco (UCSF) to gather more participant health data [112] 

using data from activity trackers. 

DETECT study 

The DETECT health study was launched early 2020 by the Scripps Research Institute [113]. 

The main aim of this study is to collect activity tracker data to predict viral outbreaks, by 

analysing heart rates and physical activity patterns of participants over time. The DETECT 

team has recently shown that by using heart rate data collected from Fitbit activity trackers, it 

is possible to detect influenza-like outbreaks [114]. This was a research collaboration between 

Fitbit and Scripps Research Institute, where two years of de-identified data from 200.000 

Fitbit users were analysed and compared with historic dates and areas of flu-outbreaks in five 

US states. In a recent study they have also looked at how sensors data and self-reported 

symptoms can be used for COVID-19 detection using participant data collected by Fitbit 

activity trackers, or collected by smartphones and stored in Google Fit and Apple Health 

[115]. 

All of Us Research Program 

Fitbit also has a collaboration with the US National Institute of Health, where participants can 

sign up to a Fitbit Bring-You-Own-Device project. The program aims to recruit one million 

participants in the US by 2024. In addition to questionnaires, physical measurements, and 

biospecimens, they also plan to access physical activity data collected by participant’s Fitbit 

activity trackers, if they own one [116]. This is a large program and possibly the first to 

actively plan to use activity tracker data at this scale.  

RADAR-base 

The RADAR-base is an “open source platform for remote assessment using wearable devices 

and mobile applications” [117]. This platform can access physical activity data from Fitbit 
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activity trackers (and some research grade devices) by programmatically accessing the Fitbit 

cloud storage for participants who have granted such access [118]. This system was recently 

used by Sun et al. [119] to analyse change in physical activity patterns during the COVID-19 

pandemic (by accessing already downloaded data among participants with chronic disease).  

1.7 Rationale for this study 

Physical activity is an important modifiable lifestyle factor that can improve general health 

and reduce the risk of disease. Epidemiological studies such as population-based studies and 

clinical studies cannot currently adequately monitor physical activity over time. Long-term 

monitoring of physical activity is important, typically for surveillance of physical activity 

levels in a population over time, or to study participant physical activity changes in a clinical 

intervention study.  

The ability to objectively measure physical activity in epidemiological research is 

traditionally limited to providing snapshots of physical activity levels for individuals 

(typically a week of recording or shorter). Accessing more continuous and long-term data 

may provide valuable insight into how physical activity changes in a study population over 

time, or before, during, and after an intervention period. Consumer-based activity trackers are 

designed for long-term and continuous use and can therefore potentially be used for this 

purpose.  

The rationale for this study is the need to assess the feasibility of collecting physical activity 

data using consumer-based physical activity trackers, as well as to create a solution that can 

access this diverse and large-scale data source in a simple and manageable manner. 
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2 Aims 

The overall aim of this dissertation was to explore and develop new methods to collect data 

on physical activity in epidemiological studies using consumer-based activity trackers. The 

study settings of interest were both observational and experimental studies, i.e. monitoring of 

physical activity levels in a population over time, and physical activity changes among 

participants in a clinical intervention study.  

Specific aims 

Aim 1: To identify available activity trackers on the consumer market, investigate the 

current state of activity tracker usage in health research, and compare how 

different providers facilitates developer access to collected data. 

Aim 2: To test the validity of a currently available activity tracker and determine which 

variables can be used in health research to infer physical activity levels in study 

participants. 

Aim 3: To identify success factors for increasing wear time of activity trackers when used 

to collect physical activity data over a prolonged period in a clinical study. 

Aim 4: To implement a system for automatic and continuous physical activity monitoring 

using consumer-based activity trackers, and to examine the usability of this 

system as a tool for long-term physical activity recording in epidemiological 

studies. 
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3 Materials and methods 

3.1 Introduction 

This dissertation is based on four papers, using different methods to explore the research 

questions and overall theme from multiple angles. In Paper I we identified and described 

historic characteristics for activity trackers on the consumer market (Aim 1), by searching 

online and offline databases and providers websites. Results were described descriptively. In 

Paper II we tested the accuracy of the Polar M430 activity tracker (Aim 2), with multiple 

reference monitors on multiple locations. We assessed validity using Pearson correlation, 

intraclass correlation, Bland-Altman plots, and mean absolute percentage error. In Paper III 

we identified success factors for increasing activity tracker wear time among participants in a 

clinical intervention study (Aim 3) using a mixed methods approach, combining quantitative 

wear time estimates with qualitative interviews. Finally, in Paper IV we implemented 

mSpider (Aim 4), a system for long-term physical activity monitoring. As an example of 

usability, we analysed participant’s activity tracker data to study change in physical activity 

during the COVID-19 pandemic, with t-tests and Wilcoxon tests to compare periods. Details 

are described below for each paper separately.  

3.2 Paper I – Analysis of consumer wrist-worn activity trackers 

In Paper I we identified available activity trackers and reported findings in three sub-groups: 

1) available providers (i.e. brands), activity trackers (i.e. devices), and sensors, 2) providers 

used in research, and 3) developer possibilities for third party data access. For each sub-group 

we described the search strategy and inclusion and exclusion criteria separately. We also 

described how activity trackers were categorized and grouped for reporting. Results were 

reported descriptively. The content of this chapter is based on the method section of Paper I 

[120].  

3.2.1 Providers, activity trackers, and sensors 

Search strategy 

In the first sub-section, we searched five online databases containing information on various 

types of smart wearables: The Vandrico Wearables database (Vandrico.com) [121], 

GsmArena.com [122], Wearables.com [123], SpecBucket.com [124], and PrisGuide.no [125, 
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126]. We were also granted access to an offline wearable database: The Queen’s University’s 

Wearable Device Inventory [127].  

After merging all six databases we extracted a list of providers (i.e. vendor/brands) names. 

For each provider we searched their website for additional activity trackers. Conflicting 

information between databases were resolved by accessing provider websites. If no official 

website existed (e.g. provider or activity tracker no longer available), we used other online 

sources, e.g. Wikipedia and Google searches. The search was performed between May 15th 

and July 1st, 2017. 

Activity tracker categorization and data collection 

Activity trackers were grouped into three categories: 1) smartwatches, 2) fitness trackers, and 

3) hybrid watches.  

An activity tracker was classified as a smartwatch if the provider classified it as a smartwatch 

and it supported smartphone notifications, or if it had a touch screen and was not specifically 

defined as a fitness tracker by the provider. An activity tracker was classified as a fitness 

tracker if its main function was to track physical activity, or it was specifically defined as a 

fitness tracker by the provider, or it did not support smartphone notifications. An activity 

tracker was classified as a hybrid watch if it had an analogue clockwork with a built-in digital 

accelerometer  

For each tracker we collected the following 11 variables: provider name, tracker name, 

release year, provider country, tracker category (i.e. smartwatch, fitness tracker, or hybrid 

watch), and whether they had a built-in accelerometer, gyroscope, magnetometer, 

barometer/altimeter, GPS, and/or PPG. 

Inclusion and exclusion criteria 

For the “provider, activity tracker, and sensors” search, we included only wrist-worn 

consumer-based activity trackers that included an accelerometer to estimate physical activity. 

Further, activity trackers had to be designed for continuous usage and capable of sharing 

collected data with user’s smartphone using Bluetooth technology. We included activity 

trackers released before July 1st, 2017. Hybrid watches were excluded.  
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3.2.2 Providers used in research  

Search strategy 

In the second sub-section, we searched Ovid MEDLINE and ClinicalTrials.gov, to assess 

provider usage in research so far, and planned usage in future studies.  

Since we identified 132 different providers in the first sub-section, we limited this search to 

the most relevant providers. Relevant providers were a priori defined as 1) being one of the 

five most sold providers in 2015 or 2016 (i.e. Fitbit, Xiaomi, Apple, Garmin, and Samsung), 

or 2) had released 10 or more unique activity trackers (i.e. Garmin, No.1, MyKronoz, 

Samsung, and Polar). We performed a separate Ovid MEDLINE search for each identified 

provider. We exclude articles using out of scope activity trackers by screened the title, 

abstract, and method section from the resulting list of articles.  

We also identified additional providers used in the included articles, to complement the list of 

“relevant providers”, and performed a similar Ovid MEDLINE search for these additional 

providers. We finally defined 11 providers as most relevant. The search was performed on 

September 30th, 2017, and divided into validation- and reliability studies, and studies using 

activity trackers to collect data. 

For each provider, we performed an equivalent keyword search on ClinicalTrials.gov, and 

screened project descriptions to identify upcoming studies where activity tracker usage was 

included in the protocol.  

Inclusion and exclusion criteria 

For the “providers used in research” search, only the 11 providers defined as “most relevant” 

were included. We excluded providers from companies that no longer exist or no longer 

produced activity trackers.  

3.2.3 Provider developer possibilities 

Search strategy 

Different providers have different capabilities in terms of data sharing to third party systems, 

integration with health data clouds, mobile application developer support, and supported 

smartphone ecosystems, and is thus not equally relevant for all research project. In the third 

sub-section, we therefore reviewed the 11 identified providers to map these capabilities. 
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Information was gathered from the App Store (Apple), Google Play (Android), and official 

provider web sites. We especially focused on the availability and capabilities of the provider 

Application Programming Interfaces (API) and Software Development Kits (SDK). 

Information was collected in September 2017. 

Inclusion and exclusion criteria 

For the “provider developer possibility” search, we only included the identified 11 most 

relevant providers. We excluded providers that were not used in any of the previously 

identified articles from the Ovid MEDLINE search. 

3.3 Paper II – Polar M430 validation study 

In Paper II we performed a validation study on the Polar M430 activity tracker. We compare 

correlation and agreement between the Polar M430 and multiple reference monitors. The 

content of this chapter is based on the method section of the published Paper II [128]. 

3.3.1 Study sample 

For the Polar M430 validation study we recruited 50 participants. We used convenience 

sampling to increase ranges for height, weight, body-mass-index, age, and sex. Inclusion 

criteria were age ≥18 years, normal physical function level, and agree to wear all instruments 

for one full day and night of recording. All demographic data were self-reported.  

3.3.2 Protocol 

Participants wore two ActiGraph wGT3X-BT (ActiGraph LLC, Pensacola, FL, USA), two 

Actiheart 4 (CamNtech Ltd, Cambridge, UK), and one Polar M430 (Polar Electro oy, 

Finland) activity tracker. Appendix A gives the study protocol detailing instrument setup. 

Instruments 

The ActiGraph wGT3X-BT is a triaxial accelerometer with 30-100Hz sampling rate which 

can be worn on multiple locations. It is extensively used in research and is considered valid 

for estimating sedentary behaviour [129, 130, 131], physical activity intensity [26, 129], steps 

[132], and energy expenditure [133].  
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The Actiheart is a uniaxial accelerometer with 32Hz sampling rate. It is attached to the chest 

and includes a 1-lead 128Hz electrocardiography sensor. The Actiheart gives valid 

estimations for energy expenditure, both in free-living [134] and in laboratory settings [23].  

The Polar M430 is a consumer-based wrist-worn activity tracker released in 2017. It has a 

50Hz triaxial accelerometer for activity tracking and an optical heart rate sensor with six 

light-emitting diodes for increased accuracy.  

Procedure 

The ActiGraph was worn on the right hip and on the wrist of the non-dominant hand. The 

Actiheart was attached to the chest, using two Red Dot 2238 electrodes (3M, St Paul, MN, 

USA) per device, in the upper- and lower position (approximately at the height of the second- 

and fifth intercostal space). The Polar M430 was worn on the wrist of the non-dominant hand, 

below the ActiGraph. Figure 2 (copied from Paper II) illustrates the wear location for each 

instrument. Instruments were initialized using self-reported height, weight, age, sex, and 

dominant hand, and set to record data for one full day and night (midnight to midnight). 

Accelerometers were setup with maximum sampling rates.  

 

Figure 2. Instrument placement (Paper II) 
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Participants were asked to wear all devices for 24 hours (midnight to midnight), and only take 

off the ActiGraph during water activities and while showering. We collected data in May 

2018. All participants received written and oral instructions and signed informed consent (See 

Appendix B). 

3.3.3 Variable creation 

The different instruments support different solutions for data export and data analysis 

depending on variable. ActiGraph step counting is internally calculated by the ActiGraph and 

were exported directly using ActiLife. Actiheart does not record steps. Energy expenditure 

were analysed in ActiLife and the Actiheart software. Physical activity intensity variables 

were analysed in an external tool for the ActiGraph and the Actiheart, using accelerometer-

based activity counts.  

All Polar M430 variables were calculated by Polar’s internal algorithms and exported using 

Polar Flow. We exported total energy expenditure, steps, minutes of sitting (i.e. sedentary 

time), as well as minutes of low (i.e. light)-, medium (i.e. moderate)-, and high (i.e. vigorous) 

physical activity.  

Physical activity intensity 

For the ActiGraph and Actiheart, physical activity intensity was analysed using 

accelerometer-based activity counts. We used ActiLife to export activity counts from the 

ActiGraph data into CSV (comma-separated value) files. We exported activity counts for all 

three axes of the accelerometer (vertical, horizontal, lateral). Activity counts were exported 

per 10 second epochs (lowest possible setting). We similarly used the Actiheart software to 

export activity counts from the Actiheart data into CVS files. Actiheart is uniaxial, and 

activity counts were created based on vertical acceleration and exported per 15 second epochs 

(lowest possible setting).  

There are no agreed upon cut-points for physical activity intensity classification for 

ActiGraphs worn on the wrist by adults [25]. Therefore, before exporting ActiGraph activity 

counts we applied the wrist-to-hip conversion available in ActiLife. Exported files were 

imported into QCAT (Quality Control and Analysis Tool), a custom-made system for 

analysing activity counts from accelerometer data. The 10-epoch and 15-epoch based activity 
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count from ActiGraph and Actiheart, respectively, were converted into 60-second epochs 

before further analysis, giving counts per minute (CPM).  

We excluded non-valid days, where a valid day was defined as having at least 10 hours of 

wear time on all instruments [135]. We used the Hecht triaxial (i.e. vector magnitude (VM)) 

wear-time algorithm for wear time analysis [136]. The Hecht algorithm analyses VM CPM 

for each 1-minute epoch to answer three questions, where a given minute is defined as wear 

time if at least two of the following questions are affirmed (default threshold): 

• Is the VM CPM above 5?  

• For the following 20 minutes, is the VM CPM above 5 for at least two minutes?  

• For the preceding 20 minutes, is the VM CPM above 5 for at least two minutes? 

We used CPM to classify each minute of activity into five different intensity zones using 

separate cut-points for uniaxial ActiGraph CPM, triaxial ActiGraph CPM VM, and Actiheart 

CPM. We used cut-points defined by Freedson et al. [129] and Matthews et al. [137] to 

classify ActiGraph uniaxial CPM (vertical axis) into intensity zones. We similarly used cut-

points defined by Sasaki [26], Kozey-Keadle [130], and Peterson et al. [131] to classify 

triaxial ActiGraph CPM VM. We classified Actiheart CPM using suggested cut-points by 

Schrack et al. [138], which was the only study we could identify where chest-based Actiheart 

cut-points in adults were suggested. For all instruments we combined vigorous and very-

vigorous physical activity into one variable (i.e. vigorous), since very vigorous was not 

supported by the Polar M430. Table 2 from Paper II is shown in Table 2 below and shows all 

cut-point sets.  

Table 2. Physical activity intensity zones cut points (Paper II) 

Intensity zone ActiGraph uniaxial 

CPM 

ActiGraph triaxial 

CPM VM 

Actiheart CPM 

Sedentary ≤ 99 ≤ 149 ≤ 10 

Light 100-1951 150-2689 11-95 

Moderate 1952-5724 2690-6166 96-234 

Vigorous 5725-9498 6167-9642 ≥ 235 

Very vigorous ≥ 9499 ≥ 9643  

CPM: Counts per minute. VM: Vector magnitude. 
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Energy expenditure 

QCAT only supports physical activity intensity analysis and does not support energy 

expenditure estimation. We therefore calculated CPM based energy expenditure using the 

proprietary software for each instrument (i.e. ActiLife and Actiheart).  

ActiGraph AEE was estimated in ActiLife using Freedson Combination '98” (Freedson 1998 

[129] + Williams Work-Energy) for uniaxial calculations and “Freedson VM3 Combination 

'11” (Sasaki 2011 [26] + Williams Work-Energy) for triaxial calculations. Since Hecht non-

wear algorithm is unavailable in ActiLife, we used the Troiano [139] algorithm with default 

settings. Default settings defines episodes of non-wear where there are at least 60 consecutive 

minutes of zero activity counts, allowing two minutes of between zero and 100 activity counts 

in the 60-minute period.  

The Actiheart calculates AEE using a branched model, where a combination of accelerometer 

derived CPMs and electrocardiogram derived hearts beat per minute defines four different 

energy expenditure calculations [140]. In addition to AEE, the Actiheart also report REE, 

dietary induced thermogenesis (DIT), and TEE. The ActiGraph and Polar M430 only reports 

AEE and TEE, respectively. Actiheart uses the Schofield equation [141] to calculate REE. We 

therefore used the Schofield equation to convert between total- and AEE for the ActiGraph 

and Polar M430, including subtracting or adding 10% of TEE to account for energy expended 

due to food digestion (i.e. dietary induced thermogenesis).  

3.3.4 Statistical analysis 

We presented participants characteristics using descriptive statistics. For each research grade 

instrument (i.e. ActiGraph and Actiheart), we compared daily values for minutes of sedentary 

time, minutes of light-, moderate-, and vigorous physical activity, moderate-to-vigorous 

physical activity (MVPA), as well as step counts (ActiGraph only), AEE, and TEE, against 

the Polar M430 activity tracker. Furthermore, for the ActiGraph, we generated variables using 

accelerometer-based activity counts from both one- and three axes.  

We used the Shapiro-Wilk test to test normality. Since several variables were not normally 

distributed, we tested both Pearson’s and Spearman’s correlation, with and without 

bootstrapping to compare results. There were no major differences between methods, and we 

finally used Pearson’s correlation with bootstrapping for all combinations of variable and 
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reference monitor, to find a more accurate confidence interval and make results comparable. 

We used correlation cut-offs suggested by Evans [142] to classify the strength of the 

association, i.e. very weak: <0.2, weak: 0.2-0.4, moderate: 0.5-0-6, strong: 0.6-0.8, and very 

strong: >0.8.  

We used Bland-Altman limits of agreement to compare the mean difference between 

instruments for a given variable [143], where a positive mean difference indicates that the 

Polar M430 overreports that variable compared to the reference monitor, and a negative mean 

difference indicates an underreporting.  

Furthermore, to better quantify the level of agreement, we calculated the intraclass correlation 

(ICC), for each combination of variable and reference monitor, using absolute agreement, 2-

way random, single measures. We used the 95% confidence interval of the ICC estimates to 

classify agreement, using suggested cut-offs by Koo et al. [144], i.e. poor agreement: <0.5, 

moderate agreement: 0.5-0.75, good agreement: 0.75-0.9, and excellent agreement: >0.9  

We also calculated mean absolute percentage error (MAPE) to identify the measurement error 

between devices for each variable. Although no cut-off is defined to indicate low error, a 

common practice for studies conducted in free-living is to use 5% [145] or 10% [146, 147]. 

MAPE was calculated using the below equation, where A is the actual measurement (i.e. 

value from reference monitor) and E is the estimated value (i.e. value from Polar M430). This 

gives a measure of accuracy of the estimated values. 

𝑀𝐴𝑃𝐸 = 100𝑥
1

𝑛
 ∑ |

𝐴𝑡 − 𝐸𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

Finally, we calculated the sensitivity and specificity of the Polar M430’s ability to identify 

participants that achieved 10,000 steps/day [8]. Analysis were done using R version 3.5.3 (R 

Foundation) 

3.4 Paper III – Succeeding with prolonged usage of activity trackers 

In Paper III we conducted a sub-study within a pilot and feasibility study for a planned 

complex lifestyle intervention among middle-aged and elderly inactive people with obesity 

and elevated risk of cardiovascular disease; the RESTART trial (Re-inventing Strategies for 

healthy Ageing; Recommendations and Tools). We used a mixed methods approach to 

identify potential factor for successful long-term recording using consumer-based activity 
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trackers in clinical research. The content of this chapter is based on the method section of the 

published Paper III [148]. 

3.4.1 Study sample 

For the pilot and feasibility study [149], which the study on prolonged activity tracker usage 

was part of, we randomly selected and invited 75 potential participants from Tromsø 7. 

Inclusion criteria were: 1) 55-75 years of age, 2) self-reported sedentary lifestyle during 

leisure-time, 3) body-mass-index ≥30 kg/m2, 4) no previous myocardial infarction (self-

reported), and 5) elevated NORRISK 2 score (a 10-year risk calculation for fatal and non-fatal 

myocardial infarction or stroke [150]). Invitations were sent by mail to their registered home 

address (see Appendix C). Twenty people responded to the invitation, of which four were 

excluded after telephone interviews. All participants received written and oral instructions and 

signed informed consent (See Appendix D). 

The resulting 16 participants were included in the sub-study on succeeding with prolonged 

usage of activity trackers in clinical studies. All 16 participants remain in the feasibility study 

to study-end, but two participants stopped wearing the activity tracker at intervention-end and 

did not contribute quantitative data in the follow-up period. Further details about participants 

recruitment is available in Deraas et al. [149]. 

3.4.2 The RESTART pilot and feasibility study – Protocol 

The main goal of the RESTART pilot and feasibility study was to test the feasibility of the 

planned intervention, in terms of recruitment, adherence, organization, and potential side-

effects of participation. Participants attended a six-month physical activity intervention, with 

six months of follow-up. The intervention period consisted of two instructor-led exercise 

sessions per week (e.g. stationary biking, aerobic hall sessions, resistance training), individual 

and group-sessions with a nutritionist, and group-sessions with a psychologist for habit 

change counselling. Participants wore a Polar M430 activity tracker for physical activity 

monitoring throughout the intervention and follow-up period. Additional details about the 

feasibility study are described in Deraas et al. [149].  
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3.4.3 Polar M430 activity tracker 

Physical activity recording 

Participants were equipped with a Polar M430 activity tracker at baseline, one week before 

intervention start. They were initially asked to wear the activity tracker for six months (i.e. to 

intervention end). They were also equipped with an ActiGraph wGT3X-BT for eight days at 

baseline and for eight days at the end of the intervention period (i.e. after six months). 

Participants thus wore the ActiGraph and Polar M430 simultaneously for up to 16 days. In 

Paper II we showed that the Polar M430 can be used as a valid instrument for estimating 

TEE. However, because average error was high for steps and MVPA, despite showing strong 

correlation with an ActiGraph, we should be careful when using these variables for physical 

activity estimation. In the present study we used the overlapping days of Polar M430 and 

ActiGraph usage to further test the validity of the Polar M430 in the present cohort for 

MVPA, steps, and TEE. 

The ActiGraph was worn on the right hip. The Polar M430 was worn on the wrist of the non-

dominant hand. The ActiGraph was setup with maximum sampling rate. Polar M430 and 

ActiGraph characteristics have been described in chapter 3.3.2. 

We used ActiLife to export steps, minutes of MVPA, and energy expenditure from the 

ActiGraph. We estimated MVPA using VM CPM cut-off at 2690, as suggested by Sasaki et 

al. [26]. Similarly, we estimated AEE using the “Freedson VM3 Combination '11” (Sasaki 

2011 [26] + Williams Work-Energy) method, and converted this to TEE by adding resting 

energy expenditure, as suggested by Schofield et al. [141], and adding energy expended from 

dietary induced thermogenesis (i.e. 10% of TEE) . 

Setup for long-term usage 

Data registered by Polar activity trackers are transferred from the device, to a smartphone via 

the Polar Flow mobile application, and finally uploaded and stored in Polar Flow [151], 

Polar’s online storage for user collected activity data. In order to download data registered by 

the Polar M430, we created a de-identified Polar Flow account for each participant, where we 

only registered gender, year of birth, height, and weight. We stored no directly identifiable 

information on these accounts and disabled GPS for privacy reasons and to conserve battery 

power. We disabled all possible notifications. Sleep feedback could not be disabled. The 
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standard operating procedure for setting up the Polar M430 activity tracker is given in 

Appendix E. 

We asked participants to wear the Polar M430 all day and night during the six-month 

intervention period. They were asked to only take it while charging every Sunday, and if they 

experienced any discomfort during sleep. Participants received written and oral instructions 

about how to use the Polar M430 activity tracker (see Appendix F). 

Because of the long recoding period, to make data collection less demanding for the research 

team, participants who owned a smartphone were asked to install the Polar Flow mobile app. 

We did not share account credentials with participants but assisted in connecting the Polar 

M430 to their smartphone, in addition to providing technical assistance throughout the study. 

These participants were also asked to initiate data synchronization every Sunday as party of 

the weekly charging procedure. This bring-your-own device (i.e. smartphone) approach has 

shown to improve the experience and engagement of participants [152]. Some participants did 

not own a smartphone capable of connecting to the Polar M430. For these participants we 

connected the activity trackers to a project smartphone and synchronized data sporadically 

during weekly exercise sessions. 

Several participants occasionally lost connection between the activity tracker and their 

smartphone throughout the intervention. We resolved these issues continuously by meeting 

participants before or after their exercise sessions. During these sessions, some participants 

addressed activity tracker related issues that we found important to report for future research. 

These were addressed and discussed together with other relevant researcher experiences. 

To quantify change in physical activity levels before, during, and after the intervention, we 

asked participants to continue to wear the Polar M430 in the follow-up period, totalling 12 

months of wear time. During the follow-up period, we met participants who had their Polar 

M430 connected to the project smartphone every 2-3 month to download data.  

3.4.4 Participant perspective 

Qualitative methods can enrich quantitative results when we wish to access participants 

experiences and perceptions [153]. Therefore, in addition to collecting quantitative data, we 

also used a qualitative approach to gain a deeper understanding of participant’s experiences 

with wearing the Polar M430 for one year. We performed individual semi-structured 
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interviews, as described by Brinkmann [154], with all participants at two time-points; mid-

way in the intervention (i.e. after three months) and at study end (i.e. six months after 

intervention end). Two separate interview guides were developed, with a total of seven 

questions related to activity tracker usage, and used during each interview. Interviews were 

audio-recorded and transcribed verbatim.  

3.4.5 Analysis 

Quantitative analysis 

We used descriptive statistics to describe participant characteristics at baseline. In addition, 

we presented a comparison between responders and non-responders, using data recorded in 

Tromsø 7.  

For quantitative analysis we first used Polar Open AccessLink API (application programming 

interface) to download daily values for MVPA, steps, TEE, and hours of wear time, as 

reported by the Polar M430. This API facilitates automatic data extraction from consenting 

Polar users, i.e. the pre-created de-identified Polar accounts. Only valid days were included in 

analysis. A day was defined as valid if the activity tracker was worn 10 hours or more any 

given day [135].  

We analysed wear time descriptively, reporting the percentage of valid days for the full year 

of recording by participant. We also reported mean number of valid days for all 16 

participants and for participants not lost to follow-up (n=14) separately. We further analysed 

wear time and qualitative comments given during interviews together, to identify reasons for 

not wearing the activity tracker during the follow-up period.  

Phillips et al. [155] has suggested to test the validity of consumer-based activity trackers in 

the target cohort before relying on activity tracker output for outcome analysis. Therefore, 

although we had previously analysed the validity of this activity tracker in a different cohort, 

we also tested the validity of the Polar M430 in the current cohort of participants. Because we 

had multiple days of simultaneous recording of the Polar M430 and a reference monitor, we 

used repeated measures correlation [156] (with bootstrapping to ascertain a more 

representative confidence interval) to determine correlation between the Polar M430 and an 

ActiGraph wGT3X-BT accelerometer for relevant variables. We applied the following 
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correlation cut-offs, as suggested by Evans [142]: very weak: <0.2, weak: 0.2-0.4, moderate: 

0.4-0.6, strong: 0.6-0.8, and very strong: >0.8. 

Finally, we calculated MAPE, using a 10% cut-off to classify acceptable error, and Bland-

Altman limits of agreement [143] to assess agreement between the Polar M430 and the 

ActiGraph. All statistical analyses were done using R version 3.5.3.  

Qualitative analysis 

We used QSR NVivo 12 Plus (QSR International, Pty Ltd) for structuring the transcribed text 

during the analysis phase. Thematic analysis is widely used among health researchers to 

identify themes and patterns in interview data [153]. We used a data-driven inductive 

approach to allow patterns in the data to emerge, rather than a deductive approach, since we 

did not know in advance how to structure our findings [157]. We also used a semantic 

approach, as compared to a latent approach, because we wanted to identify participant’s 

explicit opinions, rather that underlying ideas or patterns in their responses. Further, we used 

the six steps for thematic analysis defined by Braun and Clarke to identify patterns (i.e. data 

familiarization, initial coding, generating themes, reviewing themes, defining and naming 

themes, and writing up report) [158]. Finally, we gave equal weight to comments mentioned 

by one participants as comments mentioned by multiple participants [159].  

We performed coding in three iterations, where the first iteration was done using printouts 

and manually annotating of initial codes. This iteration resulted in a large set of codes with 

much overlap. In the second iteration we used NVivo to merge the paper-based list of codes 

into 11 themes: 1) metric inaccuracy, 2) elements that triggered irritation, 3) tracker visual 

design (look and feel), 4) tracker practical design (ease of use), 5) motivation for usage, 6) 

effect of using the tracker, 7) how tracker was used, 8) why the tracker was used, and 

comments on available metrics, including 9) sleep, 10) heart rate, and 11) physical activity. 

These 11 themes were reduced into the four following themes in the final iteration: 1) 

motivation, 2) activity tracker usefulness, 3) activity tracker annoyances, and 4) activity 

tracker improvements. The merging process is given in Table 3. The first and second author 

performed coding separately and harmonized codes through discussion. The first author did 

the initial analysis after coding, which was thoroughly reviewed by the second and last 

author. For each theme we finally extracted relevant quotes and tagged identified quotes with 

sex, age, and whether the participant owned a smartphone. The age variable was randomly 
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increased or decreased by one, to prevent participant identification. All quotes were translated 

from Norwegian.  

Table 3. Theme merging process (Paper III) 

Themes: Iteration 2  Themes: Iteration 3 

Metric inaccuracy 

→ Activity tracker annoyances Elements that triggered irritation 

Sleep metric 

Tracker visual design 
→ Activity tracker improvements 

Tracker practical design 

Motivation for usage → Motivation 

Effect of using the tracker 

→ Activity tracker usefulness 

How tracker was used 

Why the tracker was used 

Heart rate metric 

Physical activity metric 

3.5 Paper IV – Physical activity surveillance during COVID-19 

pandemic 

In Paper IV we described how we implemented a system for collecting data on physical 

activity from a range of different providers of consumer-based activity trackers. In addition, 

we use data collected from 113 participant’s activity trackers to detect change in physical 

activity due to the Norwegian COVID-19 lockdown in March 2020. The content of this 

chapter is based on the method section of Paper IV [160]. 

3.5.1 The mSpider system 

Introduction 

The mSpider (Motivating continuous Sharing of Physical activity using non-Intrusive Data 

Extraction methods Retro- and prospectively) system (“the system”) is an experimental tool 

designed for automatic and continuous collecting of health-related data recorded by 

consumer-based activity trackers. The system is designed to collect physical activity and 

related variables from activity trackers from a range of different providers over an extended 

period. Activity trackers includes any smart device with sensors capable of estimating these 

variables and that can transfer data from the tracker to a smartphone for persistent storage.  



 

38 

The aim of the system is to collect these types of data from all categories of consumer-based 

activity tracker, including smartphones, smartwatches, activity trackers, as well as from 

fitness- and health apps (Aim 4). Larger providers have cloud storage solution where user 

data are uploaded. Smaller providers often store data in large open cloud repositories, e.g. 

Google Fit and Apple Health. Which type of data are stored depends on both provider and 

activity tracker.  

For most activity trackers, collected data are transferred to a provider-specific mobile 

application on the user’s smartphone, and finally uploaded to the affiliated cloud storage or an 

open cloud storage. Some trackers do not upload data at all, and only stores data locally on 

the user’s smartphone.  

The mSpider system can access uploaded data using two methods. Most providers support 

Open Authorization, which allows third party systems (e.g. the mSpider system) access to 

user collected data through available APIs (Application Programming Interface). Some large 

providers (e.g. Samsung and Apple) do not exposed such APIs, but instead offer SDKs 

(Software Development Kits). SDKs can be used when implementing mobile apps to add 

support for data extraction from these providers. Instead of downloading data directly from 

the provider cloud, data are extracted from the provider mobile application (e.g. Samsung 

Health, and Apple Health), which in turn downloads data from the provider cloud. Data are 

then finally uploaded from the mSpider mobile application to the mSpider server backend.  

There are many providers of consumer-based activity trackers. The system currently supports 

the following providers: Fitbit, Garmin, Oura, Polar, Samsung, Withings, Apple, and 

providers storing data in Google Fit or Apple Health. Figure 3 illustrates how data are 

transferred and stored for supported providers. Data are uploaded to a cloud storage for all 

providers and transferred to the mSpider system using one of the two mention methods. 
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Figure 3. mSpider overview (Paper IV) 

System architecture 

The system has three major modules: 1) the web frontend, 2) the server backend, and 3) the 

mobile application.  

The web frontend is used by study administrators to 1) manage studies (create, edit, delete), 2) 

manage participants (add/invite, remove), 3) send e-mail invitations and reminders, and 4) 

download participant meta data and collected physical activity data. It is used by participants 

to 1) register to studies (i.e. grant access to physical activity data), 2) withdraw from studies, 

and 3) read information about the mSpider system, including privacy statements and terms of 

service statement.  

After recruitment, participants are registered in the web frontend and automatically assigned a 

unique identifier. A web link is created for each participant using this identifier, which must 

be shared with the participant. By clicking the web link, the participant is forwarded to a web 
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page where he/she can select activity tracker provider. This web page is shown in Figure 4. 

Finally, the participant is forwarded to the selected provider, where they authorize the 

mSpider system and grant access to physical activity data collected by their activity tracker.  

 

Figure 4. Provider selector web page (Paper IV) 

The server backend handles communication with providers, stores participant authorization 

access information, and stores participant physical activity data. Data are stored in a database 

on the server. The web frontend does not have direct access to the database. All database 

communication is done through an interface on the mSpider backend server.  

Most providers offer an API for accessing data. The mobile application is used for accessing 

physical activity data from providers that does not offer an API (e.g. Samsung and Apple). 

Participants using trackers from these providers, must install the mSpider mobile application 

to share data. This application is used by participants to give (authorize) mSpider access to 

their physical activity data and for automatic uploading this data to the mSpider server 

backend.  
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A detailed overview of how each provider is connected to the mSpider system is shown in 

Figure 5 (copied from Paper IV). Red dashed lines show lines of communication for each 

provider when a participant authorizes the mSpider system access to their physical activity 

data. Black (pull requests) and grey (push requests) lines between external systems (provider 

systems and mSpider mobile app) and the mSpider server backend shows lines of 

communication when transferring physical activity data from each system to the mSpider 

backend server for local storage. 

 

Figure 5. mSpider architectural overview (Paper IV) 

Authorization 

Participant data access is provided thru Open Authorization (OAuth). Open Authorization is a 

framework that allows users to authorize data sharing between different systems, without 

having to share their username or password. After authorization is granted, participant unique 

Tokens (identifier and secret) are exchanged. All communication related to a participant 
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contain these Tokens in order to identify the participant. If tokens are lost, the participant will 

have to re-authorize access. 

Provider support  

As mentioned, the current implementation supports activity trackers from Polar, Fitbit, 

Withings, Oura, Garmin, Samsung, Apple, as well as providers that store data in Google Fit 

or Apple Health open health clouds. We initially considered implementing support for Suunto 

activity trackers and activity tracking apps like Strava (using Strava V3 API). This was not 

attempted, but support for these providers (and others) should be considered before using this 

system for large population-based studies, in order to support all major providers.  

Each provider offers different variables. An overview of accessed variables and how we 

defined valid days for each provider is given in Table 4 (copied from Paper IV).  

Table 4. Accessed variables, by provider (Paper IV) 

Provider Variables Valid day calculation 

Apple Steps, AEE, REE, sleep Step>150 

Fitbit Steps, TEE, AEE, LPA, MPA, VPA, sleep Step>150 

Garmin Steps, TEE, AEE, MPA, VPA (Sleep + sedentary time + LPA 

+ MPA + VPA) >10 hours 

Google Fit Steps, TEE Step>150 

Oura Steps, TEE, AEE, sedentary time, LPA, 

MPA, VPA, non-wear time 

Step>150 

 

Polar Steps, TEE, AEE, sedentary time, LPA, 

MPA, VPA, sleep 

non-wear time<14 hours 

Samsung Steps, AEE, sleep (Sleep + sedentary time + LPA 

+ MPA + VPA) >10 hours 

Withings Steps, TEE, AEE, LPA, MPA, VPA, sleep Step>150 

AEE: activity energy expenditure, REE: resting energy expenditure, TEE: total energy 

expenditure, LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous 

physical activity. 
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Technology  

The mSpider system runs on an Ubuntu v18.04 (Canonical Ltd., London, UK) Linux server 

and was deployed using the Docker v19.03.6 (Docker Inc., CA, US) container engine. The 

web frontend was developed using NodeJS v10.22 (open source) and Angular v7.2 (Google 

Inc., CA, US) and runs using the Nginx v1.19.2 (Nginx Inc., CA, US) webserver. The 

backend server was written in the Go programming language v1.15 (Google Inc., CA, US) 

and runs using the GIN v1.3 (open source) web framework. Data are stored on a MongoDB 

v4.6.12 (MongoDB Inc., CA, US) server. The mobile application was developed using React 

v16.6.3 (Facebook Inc., CA, US) and React Native v0.57.8 (Facebook Inc., CA, US) for 

native cross-platform compiling. The Android app was compiled for (target version) Android 

v8.1 “Oreo” (API level 26) (Google Inc., CA, US), using Android Studio v3.3 (Google Inc., 

CA, US). The iOS app was compiled using XCode v10.2 (Apple Inc., CA, US).  

3.5.2 Volunteers and study participants 

Volunteers (development phase)  

To test the system, we used convenience sampling to recruit volunteers throughout the 

development phase (2019-2020). Inclusion criteria were: 1) above 18 years of age, 2) willing 

to wear a provided activity tracker for several months, and 3) willing to share collected 

physical activity data. In this phase we recruited 35 participants who were supplied with an 

activity tracker from either Apple, Fitbit, Garmin, Huawei, Oura (ring), Polar, Samsung, or 

Withings. All participants received written and oral instructions and signed informed consent 

(See Appendix G). 

Study participants (physical activity study) 

To test the change in physical activity levels during the COVID-19 lockdown, we further 

recruited 130 participants who already owned an activity tracker in the lockdown period. 

Participants were recruited by online media advertisement in UiT local news and shared by 

regional and national online news sites (framtidinord.no, forskning.no, dagsavisen.no, and 

klikk.no), where we asked people to make contact by email if they were willing to participate. 

Inclusion criteria were: 1) owned an activity tracker from Garmin, Fitbit, Withings, or Oura, 

and 2) willing to share physical activity data prospectively and retrospectively. All 
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participants received written instructions (See Appendix H) and consented to participate by 

signing up for data sharing through their activity tracker provider. 

Although the system also supports data extraction from users of activity trackers from Polar, 

Samsung, Apple, and trackers storing data in Google Fit, we did not include these providers 

when advertising for participants. Polar does not currently support historic data download. 

Samsung has temporary suspended accepting applications to enter their partner program, 

which is required to access data collected from Samsung activity trackers. Finally, we decided 

that the Apple and Google Fit integrations were not yet adequately tested to be included. 

3.5.3 Data collection  

For each participant we downloaded daily estimates for steps, AEE, light physical activity, 

moderate physical activity, vigorous physical activity, sedentary time, sleep duration, and 

non-wear time. Moderate physical activity and vigorous physical activity were further 

combined into a variable for MVPA. Light physical activity, sedentary time, sleep duration, 

and non-wear time were only used to for wear-time estimates. Data was collected for the 

period between January 1st, 2019, and December 31st, 2020.  

Each day was tagged as valid only if the tracker was worn for at least 10 hours and the tracker 

had recorded at least 150 steps. The step threshold was used because some providers (see 

Table 4) do not share other variables for calculating wear time. The threshold was set by 

using the lowest step count among included participants who had at least 10 hours of wear 

time. 

Finally, an online anonymous questionnaire was used for collecting participant self-reported 

data on age, height, weight, and sex.  

3.5.4 Statistical analysis 

Participants characteristics were presented as means, standard deviations, and range. Valid 

days were used to create means for daily steps, AEE, and MVPA, for each month of 2019 and 

2020, as well as a separate yearly means for 2019 and 2020 (March to December). Two 

separate means were created for March 2020: 1st – 12th of March and 12th – 31st of March.  

Depending on normality, we used a two-sided paired sample t-test or a two-sided paired 

Wilcoxon signed-tank test to identify periods of significant change. We compared the 

following periods:  
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1) 2019 (March-December) with 2020 (March-December)  

2) March 2019 with March 1st – 12th 2020 

3) March 2019 with March 13th – 31st 2020 

4) April 2019 with April 2020, May 2019 with May 2020, etc. 

5) March 2020, 1st – 12th with 13th – 31st 

Bar plots were created to visualize differences between periods. R version 4.0.3 was used for 

statistical analysis. 

3.6 Ethics and privacy considerations 

The Regional Committee for Medical and Health Research Ethics in Northern Norway (REC 

North) reviewed the project description for Paper II (reference 557/2019) and Paper IV 

(reference 1014/2019 and reference 164780) and concluded that approval was not needed as 

the study did not fall under the provisions of the Health Research Act. The underlying 

feasibility study for Paper III, with ClinicalTrials.gov identifier NCT03807323, was approved 

by REC North (Reference 1100/2017). The Norwegian centre for research data (NSD) 

evaluated the data collection for Paper IV (reference 978318). All participants gave informed 

consent for in all studies.   
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4 Results – Summary of papers 

4.1 Paper I – Analysis of consumer wrist-worn activity trackers 

The aims of this study were to analyse how consumer-based activity tracker sensor support 

has evolved over time, identify activity tracker providers often used in research, and assess 

their relevance for future studies (Aim 1). We searched six activity tracker databases and 

visited provider websites to identify activity trackers. We further searched Ovid MEDLINE 

and ClinicalTrials to analyse provider usage in research.  

We identified 132 different providers with a total of 423 unique activity tracker models, 

where the earliest models were released in 2011. Sensor support was low in 2011 for most 

sensors (except accelerometer) but increased steadily most years. In 2017, 71% of new 

activity trackers had a PPG, 50% had GPS support, 39% had a gyroscope, 34% had a 

magnetometer, and 32% had a barometer or altimeter.  

The five most common providers used in research were Fitbit, Garmin, Misfit, Apple, and 

Polar. Fitbit was used in twice as many validation studies as any other providers, and Fitbit 

was registered 10 times as often in ClinicalTrials, compared to any other provider. Regarding 

developer possibilities we presented a matrix of attributes to consider when choosing provider 

and activity tracker. Except Apple, all providers supported both Android and iPhone 

smartphones. Most providers either supported upload to their own cloud storage or supported 

upload to Apple Health and/or Google Fit open cloud storages.  

In conclusion, several new providers and activity trackers appear on the consumer market 

every year, with an increase in sensor support and alleged accuracy. However, tracker 

validation, health data cloud integration, and developer support vary, and researchers should 

carefully consider which activity tracker to use, depending on project needs. We provided a 

checklist of points to consider when making such decisions. 

4.2 Paper II – Polar M430 validation study  

The aim of this study was to test the validity of a recent activity tracker (Aim 2). Fifty 

participants wore a Polar M430, two ActiGraph (wrist, hip), and two Actiheart 4 on the chest, 

for one full day and night. We compared minutes of sedentary time, LPA, MPA, VPA, 

MVPA, TEE, AEE, and steps, between the Polar M430 and each reference monitor.  
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Pearson correlations between the Polar M430 and reference monitors ranged from moderate 

to very strong for vigorous physical activity (r 0.59-0.76), MVPA (r 0.51-0.75), steps (r 0.85-

0.87), AEE (r 0.74-0.79), and TEE (r 0.88-0.94). For sedentary time correlations were 

moderate or weaker (r 0.06-.052), for LPA correlations were strong or weaker (r 0.02-0.70), 

and for moderate physical activity correlations were moderate or weaker (r 0.34-0.57). Bland-

Altman plots showed that agreement was higher at higher intensities of physical activity. 

Only TEE showed acceptable or close to acceptable error when comparing the Polar M430 

with the hip worn ActiGraph (three axes: 6.94%, one axis: 8.26%) and Actiheart (upper: 

14.54%, lower: 14.37%). Steps had also close to acceptable error, but only for the wrist-worn 

ActiGraph (15.94%). Remaining MAPEs were 22% or higher. For most variables, Pearson 

correlations and ICC agreement were strongest when comparing the Polar M430 with the hip-

worn triaxial ActiGraph: sedentary time (r 0.52, icc 0.10-0.51), LPA (r 0.70, icc 0.37-0.65), 

MPA (r 0.57, icc 0.18-0.52), VPA (r 0.76, icc 0.42-0.88), MVPA (r 0.75, icc 0.31-0.57), AEE 

(r 0.75, icc 0.53-0.87), TEE (r 0.91, icc 0.80-0.96), and steps (r 0.85, icc 0.49-0.75). 

In conclusion, the Polar M430 has potential to be used as an additional source of physical 

activity data. It should not be used as a replacement for established research grade 

instruments, since only TEE has acceptable error and can be considered valid. It may however 

be suited for long-term monitoring for some variables.  

4.3 Paper III – Succeeding with prolonged usage of activity trackers 

The aim of this study was to identify important factors for increasing activity trackers usage 

for long-term monitoring among participants in health research (Aim 3). Sixteen middle-aged 

and elderly (55-74 years) participants from Tromsø 7 with obesity, sedentary lifestyle, and 

elevated cardiovascular risk, participating in a feasibility study and were equipped with a 

Polar M430 activity tracker for 12 months of physical activity monitoring. We used a mixed 

methods approach with two rounds of qualitative interviews and quantitative wear time- and 

validation analysis.  

Mean number of valid days of recording was 292 (SD=86) for all participants over one full 

year of recording (i.e. 80%). In this cohort, the Polar M430 only provide close to acceptable 

estimates for TEE, with a moderate correlation (r 0.45, 95% CI 0.50-0.69), borderline 

acceptable MAPE (10.6%), and an under-reporting of mean 99 kcal/day. Some participants 

reported increased motivation to wear the activity tracker by being able to track progress, 

while others mainly wore the activity tracker because they were part of a study and were 
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asked to wear it. Activity tracker inaccuracy, limited usage training on the activity tracker, 

activity tracker complexity, and activity tracker appearance, were identified as important 

areas to address for increasing wear time. A list of recommendations to consider when using 

consumer-based activity trackers for long-term physical activity monitoring was also 

provided. 

In conclusion, activity tracker wear time was high, and using an activity tracker for long-term 

physical activity recording was feasible in the present study. However, to achieve high wear 

time over a prolonged period, potential success factors includes providing satisfactory activity 

tracker training to participants, offer different activity tracker designs, and use activity 

trackers with accurate estimates.  

4.4 Paper IV – Physical activity surveillance during COVID-19 

pandemic 

The aim of this study was to implement an automated system for collecting long-term 

physical activity data from consumer-based activity trackers, and to examine the usability of 

this system (Aim 4). We retrospectively accessed historic activity tracker data to assess 

change in physical activity levels due to the COVID-19 pandemic.  

There was a significant reduction in daily steps and AEE (kcal) when comparing March 2019 

with March 13th – 31st, 2020 (i.e. post lockdown date), with a mean reduction of 797 steps and 

74 kcal per day. When comparing March 1st – 12th with March 13th – 31st, 2020, there was a 

significant reduction between the first and second half of March 2020, with a mean reduction 

of 913 steps and 85 kcal per day. Remaining step and AEE comparisons showed no 

significant reduction between periods, However, a a significant mean increase of 54 kcal for 

the September (2019 vs 2020) comparison was observed. No significant reduction was 

observed for MVPA, but several monthly comparisons after the lock down was lifter (i.e. 

May, September, October, and December) showed a significant increase in daily MVPA from 

2019 to 2020. There was also an overall increase in daily MVPA in 2020 compared to 2019.  

In conclusion, mSpider can be used as a tool for physical activity surveillance, by accessing 

historic and continuous daily physical activity data collected from participants using 

consumer-based activity trackers. Results showed only a temporary reduction in daily 

physical activity due to the COVID-19 lockdown.   
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5 Discussion 

The discussion is divided into a methodological discussion and a discussion of main results 

from each paper.  

5.1 Methodological discussion 

In Paper I, II, and IV, we used quantitative methods for analysing data. For these papers, I 

will discuss potential bias. In Paper III, we used a mixed methods approach where quantitative 

wear time was analysed together with qualitative interviews. A discussion of this study design 

for this paper is given in a separate sub-chapter.  

5.1.1 Validity 

Validity, together with reliability, relates to the quality of a study. The validity of a method or 

test is related to its accuracy, and a valid method gives results that corresponds to the actual 

value of what was measured [161]. The reliability of a method or test relates to its consistency 

or precision, and a reliable method will give the same results when repeating a measurement 

under identical conditions [161].  

Internal validity refers to which extent we can be confident that an outcome is trustworthy and 

not the results of the influence of other factors, such that findings are representative for the 

sample under study. Internal validity is challenged by confounding, random error (chance), 

and systematic error (bias) [161, 162].  

A confounding factor is a factor that may affect both the exposure and the outcome under 

study [161, 163], i.e. other variables that may partly explain the observed outcome. We did 

not assess the relationship between variables in included studies, and confounding is therefore 

not addressed here. Systematic error, divided into information bias and selection bias, is 

discussed below. 

External validity refers to which degree the study results can be generalized to other groups or 

populations [161], and is also discussed. 

A note on terminology 

In Paper II we referred to the research accelerometers (i.e. ActiGraph and Actiheart) as 

criterion measures and used the term criterion validity throughout the paper. However, a 

criterion measure implies a gold standard method. Although the accelerometers are validated 

against gold standard methods, they are not themselves gold standard methods (even though 
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the ActiGraph corporation refer to their devices as gold standards). Therefore, a more correct 

terminology would be reference monitor and concurrent validity (i.e. assessing validity using 

a method previous validated using a criterion measure). 

5.1.2 Information bias 

Information bias, a.k.a. measurement bias, occurs when the there is a systematic error when 

collecting, measuring, or handling information in a study [164]. We used different methods 

for collecting data in Paper I-IV. In Paper II and Paper III, we partly used the same method 

for collecting and analysing physical activity data for the validation studies. These will be 

discussed together. Remaining methods will be discussed for each paper separately.  

Paper I – Analysis of consumer wrist-worn activity trackers 

For Paper I we aimed to examine how activity tracker have change over time, in terms of 

sensor availability, usage in research, and provider usability in research (Aim 1). We did this 

by first searching for all activity trackers released on the consumer market that fit the 

inclusion criteria. Although we found a large list of trackers, this list was not exhaustive. If 

we had used more time, we would have found more devices. In the paper we addressed some 

limitations that may have caused potential error or misclassifications (e.g. supported sensors) 

in the collected data, but we did not identify any source of systematic error that would cause 

misclassification bias and thus affect the results.  

However, one potential source of information bias could be that most sources we used to 

collect data from were English or Norwegian. Although Apple and Fitbit have been the two 

providers with most shipped devices for several years, two Chinese companies (i.e. Huawei 

and Xiaomi) are currently topping the list of most sold units [59, 79]. It is possible that we 

missed Chinese or other non-western devices popular in these regions in the 2017 search 

because we were limited to English and Norwegian sources.  

For instance, Xiaomi, a Chinese company producing the Mi band activity tracker, is currently 

the second largest provider in terms of shipped units [59, 79]. Xiaomi has a Health Cloud 

developer platform, The platform is documented in Chinese (can be translated using Google 

translate) [165] and we did not identify this when doing research for Paper I. This and other 

platforms may therefore have been excluded. However, the final conclusions and implication 

for practice would likely not have changed.  
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Because we used several sources to collect data, partly with conflicting information, some 

misclassification likely exists, i.e. year and sensors support may be wrong for some devices in 

the final data set. Furthermore, device meta data were collected by the first author only. This 

was not confirmed by other authors, which would have reduced the chance of 

misclassification. However, there is no reason to suspect any systematic error caused by the 

method of collection, and any potential misclassifications would likely not affect the 

conclusions.  

Paper II & Paper III – Polar M430 validation study 

Misclassification bias 

For Paper II we aimed to test the validity of the Polar M430 activity tracker (Aim 2). We also 

included a smaller validation study for this activity tracker in Paper III, because we wanted to 

assess the validity of that device in the study sample. In Paper II we use multiple reference 

monitors on multiple locations. In Paper III we used a hip-worn triaxial ActiGraph as 

reference monitor. In this section I will focus on systematic error for the reference monitor. 

Activity tracker misclassification will be addressed in relation to Paper IV. 

Although accelerometers are objective instruments, researchers face many subjective 

considerations when using these instruments. Key methodological decisions include device 

placement, accelerometer sampling frequency (typically 30-100Hz), epoch length (i.e. time 

interval in seconds), non-wear algorithm, cut-point selection, valid day definition, and various 

signal filtering [25]. Placement and sampling frequency must be decided a priori, while 

remaining decisions can be finalized after data collection is completed. We used a sample rate 

of 100Hz (ActiGraph) and 32Hz (Actilife), which was the highest possible value. Both are 

adequate to catch all human movement [24].  

A non-wear algorithm is used for detecting periods when the accelerometer is not worn, in 

order to exclude these time periods from analysis. The choice of non-wear time algorithm 

affects how minutes are classified. In Paper II we used the Hecht non-wear algorithm [136] as 

this was the algorithm available in QCAT. QCAT only support generating physical activity 

intensity variables and does not support generating variables for individual days of recording. 

For Paper III, where compared individual days of recording, we therefore used ActiLife to 

generate variables. ActiLife does not support Hecht and we used the Troiano non-wear 

algorithm [139] (using default settings). However, the choice of non-wear algorithm will 
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mostly affect the sedentary time variable. This was also shown in Multimedia Appendix 2 in 

Paper II where correlations between ActiLife (using default Troiano settings) and QCAT 

(using Hecht) showed very strong correlations for light-, moderate-, and vigorous PA, but 

strong (borderline moderate) correlation for sedentary time. 

Before generating variables, all ActiGraph and Actiheart files were imported into the ActiLife 

the Actiheart software, respectfully. For Paper II, activity counts were further exported as 

CSV files, using 10 second (ActiGraph) and 15 second (Actiheart) epochs, and finally 

imported into QCAT.  

For the triaxial hip-worn ActiGraph (Paper II and Paper III) we used activity cut points 

defined by Sasaki et al. [26] to classify minutes of physical activity intensity. In Paper II we 

further distinguished between light physical activity and sedentary time by using cut-points 

suggested by Kozey-Keadle et al. [130] and Peterson et al. [131]. Kozey-Keadle suggests 

using 150 counts per minute as a threshold for distinguishing between sedentary time and 

light physical activity. However, this is based on uniaxial (i.e. horizontal) data. The threshold 

of 150 counts was also suggested by Peterson et al. who used all three axes (i.e. vector 

magnitude). This study was conducted on university studies and may therefore not be a 

perfect fit for the samples in Paper II. A cut point of 100 counts per minute using only one 

axis is also common practice [25], which would have resulted in fewer minutes of sedentary 

time and more minutes of light physical activity. In Paper III we only compared the MVPA 

intensity variable, which should not be affected by the choice of cut-points for sedentary time, 

nor which non-wear algorithm we use.  

For the uniaxial hip-worn ActiGraph (Paper II) we used activity cut-points defined by 

Freedson et al. [129] for classifying light-, moderate-, and vigorous physical activity. We used 

Matthews et al. [137] to further distinguish between light physical activity and sedentary time, 

classifying less than 100 counts/minute as sedentary time.  

We used the same cut-points for the wrist-worn ActiGraph (Paper II). However, for the wrist-

worn ActiGraph we applied the ActiLife “worn on wrist” option before exporting to CSV 

files. This option converts wrist-based counts to hip-count equivalents. In contrary to most 

options in ActiLife, this is not based on public scientific evidence, and the accuracy of this 

conversion is not proven. Some studies have tried to define cut-points for wrist-worn 

accelerometers, but there are no agreed upon wrist-based activity count cut points [25]. 
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Regarding Actiheart, we used activity count cut-points suggested by Schrack et al. [138] to 

classify minutes of light-, moderate-, and vigorous physical activity, and minutes of sedentary 

time. Schrack et al. concluded cut-points based on a sample of 440 adults, aged 31-88 years. 

This is the only Actiheart activity cut point set we could identify for an adult sample. I have 

only identified one additional recent paper (preprint) where this cut points set was used, and 

that paper was co-written by Schrack [166]. The Actiheart software classifies each minute of 

wear time into different MET (metabolic equivalent of tasks) levels. We could alternatively 

have used these to classify minutes, using defined thresholds (i.e. sedentary time < 1.5 MET < 

LPA < 3 MET < MPA < 6 MET < VPA [6]). Using METs to classify minutes of intensity 

would likely have affected the output variables, which could affect the final results. Welk et 

al. [167] even suggest focusing on MET-minutes when validating activity trackers because it 

avoids the need to further categorise physical activity intensity using cut-points.  

Energy expenditure was also calculated using ActiLife or Actiheart software. For ActiGraph 

we used ActiLife, using algorithms available in ActiLife. I.e. Freedson et al. [129] for 

uniaxial data and Sasaki et al. [26] for triaxial data. For Actiheart we used the Actiheart 

software which use a branching model where different aspects of energy expenditure is 

calculated based on both activity counts and heart rate. ActiGraph only report activity energy 

expenditure and Polar M430 only reported total energy expenditure. We therefore needed to 

convert between total energy expenditure and activity energy expenditure, by adding or 

subtracting resting energy expenditure and energy expended due to food consumption. Since 

the Actiheart software uses the Schofield equation [141], we used the same equation when 

converting ActiGraph- and Polar M430 variables. This prevents any further bias when 

classifying different types of energy expenditure, but it also shows the need for subjective 

decision making, as there are other equations available for calculating resting energy 

expenditure.  

Further, we did not use individual calibration before placing the Actiheart (Paper II). 

Performing individual activity test to map hart rate at known effort levels improves accuracy 

of energy expenditure output, compared to using the group calibration provided by Actiheart 

[23]. This further adds to the potential classification bias. 

In Paper II we found that wrist-worn ActiGraph reported more steps compared to the hip-

worn ActiGraph. Further, The ActiGraph under-reported steps (regardless of ActiGraph 

placement) compared to the Polar M430 in both Paper II and Paper III. The Actiheart does not 
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report steps. ActiGraph step counts are internally calculated and reported directly. Different 

providers of accelerometers, and device placement, will report different output when 

performing the same activity [168]. The choice of reference monitor and placement will 

therefore affect the results. 

When generating variables from these objective tools (i.e. accelerometers), many subjective 

choices must be made. Performing validation studies are therefore not straight forward, as 

each choice affects the output variables and may therefore affect the results. Although both 

the ActiGraph and the Actiheart have been previously validated in lab settings using gold 

standard methods, there are no gold standard for all variables of interest for studies conducted 

in free-living. Doubly labelled water is a gold standard for energy expenditure and is suitable 

for free-living studies. However, there are no equivalent gold standard method for measuring 

steps and physical activity intensity in free-living. Accelerometers have become the preferred 

tool for this setting and are non-the-less often referred to as a gold standard. It is important 

not to over-interpret results, as the choice of reference monitor and subsequent decisions for 

setup and analysis will affect the results and thus possibly the conclusions.  

A major issue with activity tracker validation and comparison studies is that the large 

variability in how studies are conducted complicates comparisons. Welk et al. [167] have 

created five recommendations to alleviate this problem for future studies: 1) Use a diverse 

sample (sex, age, weight, height), 2) use appropriate protocol for daily behaviour (i.e. free-

living or adequate simulation), 3) use appropriate criterion measure, 4) use standard protocols 

and wear location, and 5) include reference monitor and metrics.  

In Paper II we included a diverse sample with wide range in age, weight, and height, as well 

as good gender balance. In Paper II this was not out aim, as the goal was to test the validity of 

the device in the study sample. In both Paper II and III we conducted the validation study 

under free-living, as recommended to capture natural daily living movement. In Paper II we 

used multiple reference monitors at multiple locations, but we did not use any gold standard 

methods for collecting energy expenditure, steps, or physical activity intensity. In Paper III 

we only used one reference monitor, placed at the standard location (i.e. hip).  

The major limitation regarding standardization is that we did not use a gold standard method 

for energy expenditure calculations, as well as the overall lack of available (or practical) gold 

standard methods for measuring physical activity intensity and steps in free-living. The use of 
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reference monitors instead of gold standards criterion measures could further cause some 

degree of misclassification bias. In addition, a further improvement would have been to use 

MET for assessment instead of counts per minute. 

We believe we took measures to reduce reference monitor misclassification by using 

suggested device setup strategies. However, because of the many subjective choices, our 

findings are affected by these and other studies making different choices will not result in the 

exact same results. From this I conclude that there may be some misclassification bias, 

especially for sedentary time which is affected by both non-wear algorithm and choice of cut 

point (Paper II), but not to the extent that it would greatly affect the final conclusions.  

Statistics analysis 

In Paper II we only recorded one day of measurement per participant. We calculated 

Pearson’s product-moment correlation coefficient to compare association, as suggested by 

Düking et al. [169] when performing validation studies on activity trackers. Düking further 

states that Pearson’s correlation is not sufficient, because it does not say anything about the 

level of agreement. We therefore calculated Intra-class correlations (ICC) and created Bland-

Altman plots [143]. We further calculated mean absolute percentage error (MAPE) to assess 

measurement error between devices.  

In Paper III we had up to 16 days of repeated measurements per participant, totalling 203 

valid person-days. Because we had multiple measurements, we used repeated measures 

correlation, instead or calculating Pearson’s correlations. We also created multiple 

measurement Bland-Altman plots (only limits of agreement included as table in Paper IV) and 

calculated the MAPE.  

Comparison between studies are also challenging in terms of which statistics are used to infer 

conclusions. In a 2019 literature review, Welk et al. [167] found that although most studies 

reported “weak indicators such as correlation coefficients”, only half included studies 

reported the MAPE summary statistics, and only one in four provided a test of agreement. 

Welk et al. [167] also made recommendations for how to standardize analytical methods in 

future validation studies. They defined three “essential” features: 1) report relevant metrics, 2) 

document error, and 3) focus on equivalence. In both Paper II and Paper III, we reported 

MAPE and Bland-Altman limits of agreements as suggested. Welk et al. [167] further suggest 

reporting mean percentage error (MPE), which differs from MAPE by not using absolute 
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values when calculating mean error. Mean percentage error (MPE) shows the direction of 

error for estimating error at the group-level, while MAPE shows the error for individual level 

estimation. We did include ICC to quantify agreement, but no test of equivalence was 

included.  

We did not include all recommended analysis for easy comparison with future validation 

studies, as suggested by Welk et al. [167]. However, I believe conducted analyses together 

gives an appropriate image of the Polar M430 validity, albeit with the limitations already 

mentioned regarding reference monitor setup, usage, and variable creation (i.e. subjective 

decisions that will affect variable classification).  

Paper IV – Physical activity surveillance during COVID-19 pandemic 

Misclassification bias 

For Paper IV we aimed to implement a solution for automatic physical activity monitoring 

using consumer-based activity trackers, and to test the usability of this system (Aim 4). We 

assessed usability by accessing data from participants who already owned an activity tracker.  

We did not acquire information about participant’s activity tracker model. Even if the activity 

tracker for each participant was known, most current activity trackers on the market have not 

been scrutinized by the research community, and the validity of most trackers currently 

available in stores are still unknown. Further, information about how activity trackers 

interpret (i.e. classifies) sensor data into physical activity, steps, energy expenditure, and other 

health related metrics are typically company secrets [63, 170]. A range of validation studies 

have also shown that when wearing different activity tracker models simultaneously on the 

same wrist, the output given by trackers differs enough to affect conclusion on which are 

considered valid (e.g. [82, 92, 171]). However, using multiple trackers on the same wrist is 

not in accordance with provider recommendations, which may partly explain this difference 

[172]. 

Combined, the lack of openness and lack of knowledge about accuracy makes it challenging 

to compare data between participants, as different activity tracker models classify sensor data 

differently. This difference also limits the ability to use this data to estimate absolute levels of 

physical activity in a groups or population.  



 

59 

The major challenge with the collected data is the lack of knowledge about activity tracker 

accuracy. Therefore, as newer activity trackers are constantly released to the consumer 

market, a need to find new ways to speed up validation studies emerges. There is also a need 

to come up with an agreed method for performing validation, as comparing existing 

validation studies are challenging due to large differences in study settings [167, 169].  

However, for the purpose of Paper IV, we did not compare data between participants. We 

only compared participants with themselves between different periods. Therefore, although 

there are challenges with the collected data and misclassification exists, I conclude that this is 

not likely to affect the conclusion of this study. 

Statistical analysis 

In Paper IV we analysed up to two years of daily steps, AEE, and MVPA, per participant. We 

calculated a monthly average for each month; January 2019 to December 2020. Monthly 

averages were calculated from 66.274 daily measurement for each variable (i.e. steps, AEE, 

MVPA). 

We used two-sided paired sample t-tests or Wilcoxon signed-rank test to test if there was a 

significant difference between each compared period (α=0.05). From the included 113 

participants, each comparison was based on monthly averages from 76 to 107 participants, 

because participants acquired their activity tracker at different times and therefore did not 

contribute to the monthly average for all periods (some had no data for 2019). For the step 

and AEE comparisons, we also provided the mean difference per day, including the 95% 

confidence interval. Wilcox signed-rank test was used for MVPA-comparison, as this variable 

did not have a normal distribution. For MVPA we therefore provided the median difference 

per day between periods, as well as the inter-quartile range to show spread of values.  

More sophisticated analysis could be conducted, but since the main aim of the analysis was to 

show that the proposed system (mSpider) could be used for detecting change in physical 

activity over time, we believe the selected analysis were appropriate. Further, we collected 

data anonymously and participant characteristics were not available. We could therefore not 

stratify by participant characteristics.  
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5.1.3 Selection bias 

Selection bias occurs when there is a systematic difference between participants in a study 

and the population they are drawn from, i.e. they are not representative of the population 

[164]. Unless taken into consideration, selection bias can distort the findings and lead to 

errors when interpreting the results.  

In Paper II (and a small part of Paper III) we performed a validation study where we 

compared instrument outputs. Although we recruited to increase ranges for height, weight, 

age, and sex, these characteristics would affect both instruments, and selection bias is 

therefore not a concern.  

Paper III – Succeeding with prolonged usage of activity trackers 

For Paper III, as part of a larger pilot and feasibility study, we randomly invited 75 people 

who had previously participated in the latest survey of the Tromsø Study (Tromsø 7) and 

were eligible for inclusion [149].  

Regarding Tromsø 7 recruitment, everybody aged 40 and above living in the municipality of 

Tromsø were invited [173]. Attendance was 65% across all age groups, and for the 55-75 age 

groups, attendance was 71.7% [173]. These attendance rates are relatively high, as 

participation in epidemiological studies has declined worldwide the last decades [56]. In a 

study design article for Tromsø 6, a previous survey of the Tromsø Study (2007-08) with 

65.7% attendance, the attendance rate was discussed in detail. They concluded a somewhat 

higher education levels among responders compared to the whole population of Tromsø, but 

no other major differences were reported [173]. There is no similar study for Tromsø 7, but 

results would likely be similar for Tromsø 7, as these studies are repeated cross-sectional 

studies in the same population. Tromsø 7 emerges as representative for the population and is 

therefore a good source of recruitment for the pilot and feasibility study. 

The random selection of participants in the underlying pilot and feasibility study is a strength 

of the study as randomization is the best method for reducing selection bias [174]. Recruiting 

participants for clinical trials is challenging, especially when recruiting older adults for 

physical activity intervention studies [175, 176]. Of the 75 invited to the pilot and feasibility 

study, 20 (27%) responded and agreed to participate. Four people were excluded, resulting in 

16 (21%) included participants. The resulting low response rate may have introduced a 

difference between those who responded and those who did not respond. We speculate that 
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those who responded to the invitation were likely people who already had thought about 

addressing their sedentary lifestyle and saw study participation as a chance to break bad 

habits. Because of this, included participants could be more inclined to adhere to the research 

protocol. For the underlying study, where the aim was to test the feasibility of a complex 

lifestyle intervention [149], this difference could potentially affect study outcomes because 

responders could be more motivated to make a lifestyle change compared to non-responders.  

However, in Paper III, where we used a mixed methods approach, only the wear time analysis 

(and validation study which is already addressed) was analysed quantitatively. Since 

participants were part of an intervention study with close follow-up, the design of the study is 

more likely to affect adherence to the wear protocol than the characteristics of included 

participants. Selection bias is therefore not a major concern for Paper III. 

Paper IV – Physical activity surveillance during COVID-19 pandemic 

For Paper IV we recruited volunteers to test the data sharing routines during development of 

mSpider. We used convenience sampling to recruit volunteers. We did not analyse activity 

data from volunteers and did not attempt to recruit a representative sample from the 

population.  

We further recruited participants who already owned and wore an activity tracker before-, 

during-, and after the Norwegian COVID-19 lockdown in March 2020. After initial 

recruitment, 130 volunteered to participate. After sending out invitations and instructions (and 

two reminder), 113 participants responded by registering. We do not know where in Norway 

participants live nor their characteristics. We only know the mean height, weight, sex, and 

age, as this was collected using an anonymous online questionnaire. Recruitment was first 

conducted in local online media (Tromsø) and was later picked up by regional and national 

online news outlets. The largest portion of participants volunteered in the earlier phase of 

recruitment, before it was shared nationally. It is therefore likely that most participants lived 

in (or read news from) the northern part of Norway. This can affect physical activity levels 

because seasonal weather variations affects outdoor activity negatively during winter weather 

[177]. However, the northern part of Norway experience heavy (some places record breaking) 

snow fall in the 2019/2020 winter season [178], potentially resulting in increased physical 

activity due to snow removal.  
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People who own and use an activity tracker are likely to be more physically active compared 

to those that do not own an activity tracker [179, 180]. There is also some evidence that 

people who voluntaries to participate in physical activity studies are likely to be more 

physically active (i.e. volunteer bias) [181, 182]. Finally, with 113 participants we cannot 

assume that we have a representative sample. The included sample is therefore likely more 

activity than the general population, which could potentially affect how active they become 

due to the COVID-19 lockdown. A study on Canadians residents showed that inactive 

participants were more likely to reduce their level of activity, compared to active participants, 

during the first period of nationwide restrictions in March 2020 [183].  

However, since the aim of this recruitment was mainly to test the usability of the mSpider 

system (Aim 4), we did not aim to recruit a representative sample. In addition, since earlier 

research using both self-reported [183, 184] and objective data [185] have shown that national 

lockdowns causes temporary change in physical activity, we expected to see a change also 

when using objective measures on people who are more physically activity than the average 

population. 

5.1.4 Study design – a mixed methods approach 

Paper III – Succeeding with prolonged usage of activity trackers 

For Paper III we aimed to identify factors that can assist in increasing participant wear-time of 

consumer-based activity trackers for long-term physical activity monitoring in health research 

(Aim 3).  

Participant characteristics and results from the validation study were analysed statistically and 

presented separately. Results from the wear time results were analysed together with 

responses given during interviews. This allowed a more detailed understanding of why some 

participants chose to stop wearing the activity tracker after the intervention period. Further, 

the researcher perspective allowed a more detailed understanding of what worked and what 

did not work when designing a study for long-term physical activity monitoring using 

consumer-based activity trackers. This mixed-methods approach allows deeper insights into 

potential success factors as viewed from multiple angels. 

In qualitative research, the required number of participants is depended on multiple factors, 

including study scope, prior knowledge, and data quality [186]. The included 16 participants 

represented 21% of invited and there may thus be a difference between included and not 
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included participants. Further, although we achieved rich and thorough descriptions from the 

interviews, the interview guide covered multiple themes. For Paper III we only included 

seven questions related to activity tracker usage. A more focused interview could potentially 

give more diverse responses.  

The trustworthiness of qualitative research can be viewed in terms of credibility, 

dependability, and transferability [187]. The credibility of a study deals with the study focus, 

in terms of participant recruitment, data gathering, and analytical approach [187]. Participants 

were recruited from a population study where a representative sample of the population were 

included. An interview guide was created and used, allowing a focused interview with room 

for relevant side discussion. Further, we used an iterative approach when analysing responses 

in order to find meaningful themes. Decisions on final themes was achieved through 

discussion between authors. These measures strengthened the credibility of the study.  

The dependability of a study deals with undesirable change in the data over time, due to the 

phenomenon being studies or alteration in study design [187]. To strengthen dependability, 

we aimed for a strong focus between phases, where we interview each participant and 

conducted transcription and analysis within a limited period.  

The transferability of a study deals with whether findings are applicable in other settings or 

groups [187]. Participants were part of an intervention, potentially causing increased activity 

tracker wear time due to desirability bias. Further, since included participants potentially were 

more motivated than non-responders, results from interviews may have been affected. These 

elements may limit the transferability of results to other study designs.  

5.1.5 External validity 

External validity, i.e. transferability, refers to whether study findings can be applied to the 

source population or other populations.  

The sample used in Paper III was representative for the underlying feasibility study. However, 

participants were older than the average population in Norway. A younger sample could 

potentially give other responses regarding success factors for prolonged usage. Similarly, all 

participants were Norwegian, and cultural difference could also potentially affect responses. 

These differences should be considered when applying findings from Paper III to a younger 

population in Norway or populations unsimilar from the Norwegian population. 
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Further, the study design of Paper III was a physical activity intervention with close follow-up 

of participants. The design is likely to affect who agrees to participate, as a physical activity 

intervention requires higher motivation compared to observational studies, and participants 

may be more inclined to adhere to the study protocol (i.e. increasing activity tracker wear 

time). This can also limit transferability of findings to other study designs. 

As the overall aim of this dissertation was to find new methods for collecting physical activity 

data in future epidemiological studies, an important question related to external validity is 

whether this system can be used in other groups or populations. 

As previously discussed, people who use an activity tracker [179, 180] and people who 

volunteers to participates in a physical activity study [181, 182] are likely to be more 

physically active compared to others. Despite this likely higher physical activity level, our 

findings clearly showed a temporary physical activity reduction in the first period of the 

lockdown. It is therefore likely that the observed reduction in physical activity also apply to 

the general population of Norway.  

In addition, the Norwegian lockdown was less strict compared to several other European 

countries, and no national curfew was ordered. Although self-isolation and social distancing 

were encouraged, people were allowed outdoors e.g. to exercise. It is therefore likely that the 

observed reduction in activity levels would be more dominant in countries where stricter 

interventions were instigated.  

Another main issue that may affect the external validity of using the proposed system for 

physical activity surveillance, is that the current prevalence of activity tracker ownership is 

not equal in all countries. Although we did not assess absolute activity levels, only change 

between periods, this issue is important to consider if the aim is to assess the current level of 

physical activity in a population.  

5.2 Discussion of main results 

5.2.1 Paper I – Analysis of consumer wrist-worn activity trackers 

In Paper I we identified many activity tracker providers and models, where only a limited 

number of providers are repeatedly used for health research purposes. Because the activity 

tracker marked is rapidly changing with newer and improved models released every year, we 

also provided a list of criteria to consider when deciding which provider and model to use for 
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physical activity tracking in research. I will discuss these criteria below when discussing 

recommendation given in Paper III. 

The discussion in Paper I was focused on the current state of activity trackers, in terms of 

provider popularity, sensors support, as well as research relevance and implication for 

practice. Here I will further discuss how sensor support may change over time and how this 

may potentially benefit future health research.  

The current and future activity tracker landscape 

Despite challenges in heart rate accuracy [97], especially when performing high intensity 

physical activity [97, 99, 100], we found PPG to be the most common sensor in wrist-worn 

accelerometer-based activity trackers released in 2015-2017. In 2017, more than 70% of 

released devices packed a PPG.  

Current sensors are mostly used for detecting various metrics for physical activity, heart rate, 

and sleep. However, sensor technology is rapidly improving, and it is likely that more sensors 

will become common in future trackers. For instance, in 2018 the Apple Watch 4 was the first 

to release an activity tracker with a built-in electrocardiogram (ECG) which can be used for 

self-diagnosis of atrial fibrillation. Saghir et al. [188] found the Apple Watch 4 to produce 

accurate ECGs in healthy adults. However, Seshadri et al. [189] advices caution when using 

the watch to monitor patient with cardiac arrhythmias. Other challenges includes high price, 

false positives and false negatives in atrial fibrillation detection, privacy and security 

considerations, and that it uses a single lead system [190]. 

As of December 2020, there are eight activity trackers on the market with ECG support: 

Apple Watch 4 (2018), Apple Watch 5 (2019), Withings Move ECG (2019), Samsung Galaxy 

Watch Active 2 (2019), Amazfit Smartwatch (2019), Samsung Galaxy Watch 3 (2020), Fitbit 

Sense (2020), and Withings ScanWatch (2020). Atrial fibrillation prevalence and incidence 

are increasing [191], and this sensor can be used to improve patient experience and self-

management [190]. This is likely to result in more activity trackers with ECG support as 

providers are incentivised by customer needs. Despite current challenges, there is great 

potential for future research in screening-, management-, and evaluation of atrial fibrillation 

[190].  
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We are also seeing a few activity trackers that includes a thermometer. The Oura-ring (2018) 

and the Fitbit Sense (2020) are two of few activity trackers that includes a thermometer and 

measures body temperature from the skin. Since change in body temperature is an important 

health indicator, this sensor can further assist in activity tracker enabled health assessment. 

For instance, long-term temperature monitoring, using sensors embedded in socks, has been 

identified as a promising solution for management of foot ulcers [192]. Similarly, skin 

temperature, together with other sensor data, can also be used to assess psychological stress 

and emotions [193]. 

However, although current and future trackers include temperature sensors and other new 

sensors, data from these sensors are not necessarily directly accessible and may only be used 

internally by the device to infer other outputs. For instance, the Oura-ring does not show 

current temperature, but rather the change in temperature between days. Regardless, both 

current and new sensors will continue to be included in future activity trackers as they 

become more accurate, smaller in size, and cheaper to produce, which will likely provide new 

and interesting opportunities for research and private health monitoring alike.  

Update needed 

The two major sources of activity tracker data in Paper I were the Vandrico database [121] 

and the offline Queens Wearable Device Inventory [127]. The Queens Wearable Device 

Inventory has since been published online. Neither sources have been updated since the initial 

search for Paper I in 2017. The other web-based sources are similarly outdated (except 

company web sites), where GsmArena.com seems to now focus solely on mobile phones, and 

neither Wearables.com nor SpecBucket.com are regularly updated. I found no other openly 

available activity tracker databases, and a follow-up paper may be timely. 

5.2.2 Paper II – Polar M430 validation study 

In Paper II, we discussed the validity of a specific activity tracker (i.e. Polar M430) and how 

it compared to previous Polar models. In this section, I will further discuss potential 

challenges with the current way validation studies are conducted.  

In chapter 1.5 I addressed the current state of validity of activity trackers. I identified four 

systematic reviews that included Polar devices [83, 85, 89, 93]. Summarized, step counting is 

more accurate than energy expenditure and physical activity intensity estimates [93], and 
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Polar generally overestimated energy expenditure and underestimated steps [83]. However, 

there is great variation. All studies included in these systematic reviews were conducted on 

discontinued devices.  

I further identified three validation studies conducted on the Polar Vantage, the only activity 

tracker included in validation studies that is currently (December 2020) available in the Polar 

store. Findings for this tracker is similar to earlier findings, where estimates for steps and 

energy expenditure is moderate at best [94, 95, 96, 128]. I identified only one study assessing 

the reliability of Polar Vantage heart rate estimates. This study concluded higher precision 

when performing low and high intensity training, compared to moderate intensity training 

[194].  

As earlier addressed, using consumer-based activity trackers as a source of physical activity 

estimates has several limitations, which should be considered when discussing the results of a 

validation study. One of the main challenges are related to classification bias when selecting 

and using reference monitors to test the accuracy of an activity tracker. We showed in Paper 

II that the choice of reference monitor and its placement affected correlation and agreement 

with the Polar M430. I also discussed above how the choice of cut-points (and other options) 

would similarly affect the results of such studies. Therefore, due to the large difference 

between studies in how data are collected and analysed, it is challenging to compare result 

[172].  

A second challenge is the short time activity trackers seems to have on the consumer market 

before they are replaced with newer models [170]. Some models are even replaced annually. 

This is a challenge, because even if new studies were conducted immediately after a device is 

released, the rigorous process of collecting and analysing data, and writing and publishing a 

paper takes time. By the time the paper is published, the vendors may already have released 

an updated model, and may have stopped producing the replaced model. The use of pre-prints 

can assist in reducing the time it takes to publish initial results. Conversely, Weisberg et al. 

[172] have suggested that as long as older activity trackers are supported by the provider, they 

could be more desirable to researchers as they have a lower cost and published validation 

studies are more likely to exist. Related, a further challenge is that most current activity 

trackers outputs (i.e. variables) have been studied only once, which is a challenge since 

tracker results should be confirmed by multiple studies. Combined, these challenges 

complicate decisions when choosing a device for data collection.  
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When using an activity tracker for the underlying study of Paper III, we chose to assess the 

accuracy of the Polar M430 in the included sample. At the time, no other Polar M430 studies 

had been published. Although Paper II was the first published physical activity validation 

study on Polar M430, data collection for Paper II was conducted after activity tracker 

validation data were collected for Paper III. There are now several other studies on this 

tracker available, showing similar results for steps [195] (abstract) and energy expenditure 

[196]. There is also a Master’s thesis available assessing the validity of reported maximum 

oxygen consumption [197]. 

Comparing results from Paper II and Paper III, using similar methods, showed that results 

were not identical. For the older and less physically activity sample in Paper III, correlations 

and agreements were weaker compared to the sample used in Paper II. This highlights the 

need to conduct validation studies in the included sample, to know how accurate each variable 

is, before using consumer-based activity trackers to estimate physical activity.  

A concluding remark is that the accuracy of consumer-based activity trackers can be 

challenging to assess. Therefore, greater effort should be put into conducting validation 

studies as soon as devices are released, studies should be conducting using comparable 

methods (for instance as suggested by Welk et al. [167] and Düking et al. [169]), results 

should be published in pre-prints, and researchers should conduct validation studies in the 

target sample when planning to use activity tracker for physical activity monitoring.  

5.2.3 Paper III – Succeeding with prolonged usage of activity trackers 

In Paper III, we discussed and provided recommendations for what to consider when planning 

to use consumer-based activity trackers for long-term physical activity recording. In this 

section, I will briefly discuss how the included validation study was affected by the sample, as 

well as how suggested recommendations from Paper I and Paper III compares to the current 

scientific literature.  

Validation study 

In Paper III we presented results from the validation study in a table. Although not included in 

the paper, Bland-Altman plots (given in Appendix I), using separate colour for each 

participant, showed that one participant contributed several outliers. I conducted a sub-

analysis where I removed each participant one-by-one. When one specific participant was 
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removed, the effect size for steps changed distinctively, increasing correlations from 0.63 to 

0.82, reducing MAPE from 120% to 75%, and reduced the width of the Bland-Altman limits 

of agreement from 17.300 steps to 9600 steps. This change in effect size was not observed for 

MVPA or total energy expenditure.  

Although we do not know how wrist movement is interpretated by the activity tracker, 

increased wrist movement may be interpreted as steps. I believe this participant mentioned in 

passing that she was an active knitter. The increased wrist movement caused by knitting may 

thus register as steps by the Polar M430, resulting in misclassification and higher level of 

steps registered than what was actually performed. In a larger sample, knitting may not affect 

the effect size to the same extent. This is merely a speculation, but in addition to showing how 

a small sample size (even when using multiple measurements) can affect results, it also shows 

how activity tracker algorithms can be affected by various type of movement. Since internal 

algorithms for variable generation are generally company secrets [170], and may change over 

time, investigating to which extent specific movements affects output would be challenging.  

Recommendations 

In Paper III we also presented recommendations to consider when planning and executing 

studies where participants are asked to wear an activity tracker for an extended period. These 

recommendations expand on recommendations from Paper I, where we suggested criteria to 

consider when choosing activity tracker provider and model.  

Recommendations from Paper I focused solely on considerations when selecting provider and 

model. Recommendations in Paper III focused on factors for increasing wear-time among 

study participants.  

In an earlier paper, Cadmus-Bertram [170] provided a list of considerations when using 

consumer-based activity trackers as an intervention tool or when assessing physical activity. 

There were four areas of focus: 1) when is it appropriate to use activity trackers, 2) choosing 

provider and model, 3) ensuring wear compliance, and 4) how to extract and use data. The 

main conclusion of Cadmus-Bertram regarding provider and model was that a balance of 

features, usability, and cost is usually adequate to find the most appropriate tracker [170]. 

Although recommendations from Paper I were more detailed, this conclusion from Cadmus-

Bertram is to the point and captures the essence of our findings. Wear compliance was also 

addressed, suggesting providing training on the activity tracker and handing out the user 
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manual, and to clearly communicate usage expectations and provide tracker support. 

Recommendations from Paper III are in accordance with these recommendations.  

Turner-McGrievy et al. [198] provided a similar list of considerations, based on experiences 

from four studies. There is extensive overlap between their recommendations and 

recommendations by Cadmus-Bertram, as well as recommendations given in Paper I and 

Paper III.  

Weisberg et al. [172] built on our recommendations in Paper I, Cadmus-Bertram [170], and 

Turner-McGrievy [198], and provided additional factors to consider when conducting 

research on older adults, grouped into key factors concerning 1) outcome measures, 2) 

protocol considerations, and 3) activity tracker features. Main overlapping recommendations 

from Weisberg et al. and Paper III are to perform validation studies of the selected tracker in 

the selected sample, give adequate training on the selected tracker, and recommendations 

related to tracker accuracy and usability. 

Recommendations in Paper I and III fits well with other recommendations and may assist 

future researchers when planning to use activity tracker for physical activity monitoring in 

future research. 

5.2.4 Paper IV – Physical activity surveillance during COVID-19 pandemic 

In Paper IV, we discussed how our COVID-19 related physical activity findings compared to 

other studies. We also discussed how the mSpider system could be used as a method for long-

term physical activity monitoring in epidemiological research. In this section, I will further 

discuss challenges and opportunities when using this method for long-term physical activity 

monitoring.  

There are two ways to collect consumer-based activity tracker data from participants, 1) 

provide participants with an activity tracker, and 2) collected data from activity trackers 

already owned by participants. In Paper III, where we provided participants with an activity 

tracker, we believe that a major contributor to the high wear time (80%) was the study design 

(i.e. intervention study) with close follow-up of participants. Providing participants with an 

activity tracker for population-based studies (ignoring the monetary costs), where there is 

little to no follow-up, would present challenges which must be further addressed. 
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In Paper IV, where we collected data from participant’s own activity trackers, wear time was 

higher, with an average of 94% of days contained data. Therefore, in relation to non-wear, 

this option stands out as the better choice for population-based settings. However, the wrist-

worn activity tracker penetration in the consumer market may not be high enough to be able 

to recruit a representative sample.  

Using data from two nationally representative surveys conducted in the United Kingdom in 

2016 and 2018, Strain et al. [199] analysed smartphone and activity tracker ownership. 

Results showed high smartphone prevalence (79%), but lower activity tracker prevalence 

(14%). Further, higher age and lower social economic status were inversely correlated with 

both outcomes. They concluded that using activity trackers as the only source of physical 

activity data was premature. Similar results were observed in a 2017 study on US adults, 

where Omura et al. [200] concluded that activity tracker users are not representative of the 

population.  

However, smartphones can also collect physical activity data, using internal accelerometers 

and other sensors. The prevalence of people owning a smartphone is higher, compared to 

wrist-worn activity trackers, and the method for third party data access is identical as for 

wrist-worn activity trackers. For instance, the mSpider tool can download physical activity 

estimates generated from smartphone sensor data, if these estimates are stored in Google Fit. 

Smartphones can therefore also be a potential source of physical activity data. Certainly, this 

presents other challenges, including lower wear-time.  

The proposed system contributes towards finding a solution for the existing gap between 

traditional physical activity questionnaires, which offer long-term but self-reported and 

inaccurate estimates, and accelerometers, which offer objective and more accurate estimates, 

but only for short-term monitoring. Another benefit of implementing a solution like mSpider, 

compared to using existing alternatives using similar technology, is having full control of 

which providers to support and which variables to access from the large number of available 

data types.  

Although this dissertation has focused on activity tracker technology, and how we can access 

data collected from such devices, consumer-based trackers are not presently suited to be the 

only source of physical activity in all settings. It is non-the-less an interesting additional data 

source. Some studies have also shown that people may be willing to share this type of data 
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[201], but they may also expect something in return, e.g. access to tailored recommendations 

based on their shared data [202, 203]. Therefore, although the technology may be available, 

work is still needed to motivate participant to share data and increase wear time.  
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6 Conclusion 

Activity trackers has triggered broad research interest as there is potential in using these 

sensors as a source of digital biomarkers and biofeedback that can be used in a range of 

scientific fields, including physical activity interventions in healthy participants [204] and in 

patients with chronic disease [205], oncology [206], influenza outbreak surveillance [114], 

post-surgery physical activity intervention and monitoring [207, 208], and a range of other 

areas. 

6.1 Conclusions and implication for practice 

The technology to collect long-term physical activity data from a large number of participants 

using activity trackers currently exists. Recorded data are uploaded to provider clouds and can 

be accessed directly from the cloud or through the provider mobile application installed on 

participant’s smartphones.  

The main aim of this dissertation was to explore and develop new methods for collecting data 

on physical activity from participants in future epidemiological studies using activity trackers.  

Towards this aim, we first mapped activity trackers on the consumer marked and assessed 

how the most popular providers could be used to collect long-term physical activity data in 

future research and provided recommendations for what to consider before choosing a 

provider and model.  

The large number of different activity trackers available on the consumer market constitutes a 

challenge, because accuracy has only been assessed for a limited number of currently 

available models. In studies where participants wear a limited number of models, a validation 

study can be performed a priori, providing researchers with necessary knowledge about the 

validity of the tracker they use. In studies were participants share physical activity data from 

activity trackers they already own, the large heterogeneity in device models, offering different 

metrics, and with limited knowledge about device accuracy, makes it challenging to compare 

collected data. To contribute to alleviating this challenge, we assessed the validity of the Polar 

M430, and concluded that this tracker was more suited for detecting change in physical 

activity over time, than as an exclusive tool for physical activity assessment in a population. 

An additional challenge for long-term monitoring is wear compliance, especially when 

participants are provided with an activity tracker. Towards successful implementation of such 
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study designs, we provided a list of recommendations to consider when planning and 

executing a study. Potential success factors especially centred around allowing participants to 

choose between different tracker modes with accurate measurements and to provide adequate 

training on tracker usage.  

Finally, to test the usability of using consumer-based activity trackers as a source of long-term 

physical activity data, we implemented mSpider and successfully used this tool to collect 

historic physical activity data among participants owning a tracker before-, during-, and after 

the Norwegian 2020 COVID-19 lockdown. The number of people in a population currently 

owning an activity tracker may be rising, but this group may not currently be large enough to 

constitute a representative sample of the population. Similarly, people owning activity 

trackers are not distributed evenly among age groups, genders, and social economic statuses. 

Although we were able to show a clear but temporary reduction in physical activity levels 

among participant, this reduction is not necessarily representative for the whole population. 

We have shown that the suggested method can be a valuable addition to existing methods for 

physical activity assessment. However, all methods have their strength and limitations. The 

major strength of the proposed method is the possibility for long-term monitoring. The 

addressed challenges should be considered before using this method. Further, this method 

should not be considered an alternative to existing methods, but rather an additional source of 

physical activity data that can contribute to closing the gap between current methods of 

physical activity assessment, with especial relevance for detecting change in physical activity 

over time. 

6.2 Further perspectives 

Improve support for existing providers 

The current implementation for Apple and Samsung requires the participant to install a 

mobile application in order to share physical activity data. This is a limitation with these 

providers and cannot be resolved unless these providers decide to offer an API. We chose to 

focus on API based providers in this project, since an API (i.e. access data from the cloud) 

based approach required less participants burden compared to an SDK (i.e. install mobile 

application) based approach. However, in order to investigate challenges and estimate needed 

effort, we developed a prototype mobile application for Apple and Samsung.  
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The Samsung mSpider application was installed on a few highly motivated volunteers who 

owned an Android smartphone and were provided with a Samsung Galaxy watch. In order to 

successfully share physical activity data using an application that is not released in Google 

Play (i.e. under development), too many steps are required for it to be a feasible solution for 

most people.  

We did not fully test the Apple mSpider app, but the process for installing and sharing data is 

similarly cumbersome. Both the Samsung and Apple mSpider apps must be improved, 

thoroughly tested, and put into Google Play/App Store before they can be fully integrated into 

the mSpider system. Apple and Samsung combined worldwide smartwatch market share was 

49% in the first quarter of 2020 [60], showing the importance of also supporting these 

providers in future data collections.  

Adding support for additional providers 

In addition to finalizing Apple and Samsung application development, some additional 

identified provides have open APIs and should be supported in order to allow more 

participants to be included when using this method for physical activity monitoring:  

• Misfit Cloud API (https://build.misfit.com) 

• Suunto Cloud API (https://apizone.suunto.com) 

• Strava v3 API (https://developers.strava.com) 

• Under Armour API (https://developer.underarmour.com) 

Misfit and Suunto are providers of hardware-based activity tracers, while Strava and Under 

Armour are software-based mobile apps for physical activity tracking. 

Privacy 

In this project we did not focus especially on issues related to privacy and security. This is a 

large field and requires special attention. In order to comply to GDPR regulations and ensure 

data privacy, and because of limited time, we chose to collect data for Paper IV anonymously. 

After participants had initiated data sharing between their provider and the mSpider tool, and 

the relevant physical activity data were downloaded, we removed identifying information 

from the server database. We also deleted e-mail communication to participants where 
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identifying information (including de-identified information) were included. It is thus not 

possible to identify the participants in the data. 

We are currently working on a risk analysis for the mSpider tool, with the aim of being able 

to store de-identified data within the system. We have plans to use this system for long-term 

physical activity monitoring in several future studies, where we need to be able to identify 

participants. 

Disease outbreak surveillance 

In this dissertation I have mostly focused on activity trackers as an additional tool for 

collecting physical activity data in health research. As shown in Paper IV, these trackers also 

have the potential to detect sudden changes in physical activity behaviour in a population. An 

increasing number of trackers include pulse sensors and some newer trackers have also started 

to include thermometers. This combination of sensors could thus potentially be used to detect 

clusters of disease outbreaks (e.g. influence) since reduction in physical activity with increase 

heart rate and increased temperature is an indication of infection [114]. 
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Abstract

Background: New fitness trackers and smartwatches are released to the consumer market every year. These devices are equipped
with different sensors, algorithms, and accompanying mobile apps. With recent advances in mobile sensor technology, privately
collected physical activity data can be used as an addition to existing methods for health data collection in research. Furthermore,
data collected from these devices have possible applications in patient diagnostics and treatment. With an increasing number of
diverse brands, there is a need for an overview of device sensor support, as well as device applicability in research projects.
Objective: The objective of this study was to examine the availability of wrist-worn fitness wearables and analyze availability
of relevant fitness sensors from 2011 to 2017. Furthermore, the study was designed to assess brand usage in research projects,
compare common brands in terms of developer access to collected health data, and features to consider when deciding which
brand to use in future research.
Methods: We searched for devices and brand names in six wearable device databases. For each brand, we identified additional
devices on official brand websites. The search was limited to wrist-worn fitness wearables with accelerometers, for which we
mapped brand, release year, and supported sensors relevant for fitness tracking. In addition, we conducted a Medical Literature
Analysis and Retrieval System Online (MEDLINE) and ClinicalTrials search to determine brand usage in research projects.
Finally, we investigated developer accessibility to the health data collected by identified brands.
Results: We identified 423 unique devices from 132 different brands. Forty-seven percent of brands released only one device.
Introduction of new brands peaked in 2014, and the highest number of new devices was introduced in 2015. Sensor support
increased every year, and in addition to the accelerometer, a photoplethysmograph, for estimating heart rate, was the most common
sensor. Out of the brands currently available, the five most often used in research projects are Fitbit, Garmin, Misfit, Apple, and
Polar. Fitbit is used in twice as many validation studies as any other brands and is registered in ClinicalTrials studies 10 times as
often as other brands.
Conclusions: The wearable landscape is in constant change. New devices and brands are released every year, promising improved
measurements and user experience. At the same time, other brands disappear from the consumer market for various reasons.
Advances in device quality offer new opportunities for research. However, only a few well-established brands are frequently used
in research projects, and even less are thoroughly validated.
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Introduction

Background
The World Health Organization recommends 150 min of
moderate intensity physical activity (PA) each week for adults
and 60 min for children and adolescents [1]. However, 25% of
adults and more than 80% of adolescents do not achieve the
recommended PA targets [1]. Results from the Tromsø Study,
the longest running population study in Norway, shows that
only 30.4% of women and 22.0% of men reach the
recommended target [2].

Low PA is currently the fourth leading risk factor for mortality
worldwide [3]. Even though there is limited evidence that using
wearable fitness trackers will improve health [4,5], these devices
are still popular, and new fitness devices appear on the consumer
market regularly. In 2016, vendors shipped 102 million devices
worldwide, compared with 82 million in 2015 [6]. Fifty-seven
percent of these devices were sold by the top five brands: Fitbit,
Xiaomi, Apple, Garmin, and Samsung. The first quarter of 2017
shows an increase of 18% in devices sold, compared with the
same period in 2016 [7]. With a large number of available
devices and brands, it is difficult to navigate through an
ever-growing list of brands and devices with different
capabilities, price, and quality.

Available sensors and internal interpreting algorithms determine
device output. Sensor data are, in most devices, reduced to a
limited set of metrics before being transferred to the user’s
mobile phone. In addition, limited space affects how long the
device can collect data before such a transfer is needed. Data
are stored locally, and in many cases, uploaded to brand specific
or open cloud–based health repositories. Accessing these data
by third-party apps and comparing them is not always possible.
These interoperability challenges were recently identified in a
study by Arriba-Pérez et al [8]. They suggested ways to handle
these issues, but they did not make any brand or device
recommendations. Several studies have compared
activity-tracking wearables. As an example, Kaewkannate and
Kim [9] did a comparison of four popular fitness trackers in
2016. They compared devices objectively and subjectively. Data
were thoroughly collected, but because of the rapid release of
new devices, these four devices will be among the most popular
only for a relatively short time. A comparison of brands is also
of interest because brands from larger companies are, compared
with small start-ups and crowd funded brands, likely to survive
longer. In addition, it is of interest to know which brands support
the various available programming options. Sanders et al [10]
did a literature review on articles using wearables for health
self-monitoring and sedentary behavior and PA detection. They
reviewed various aspects of these devices, but they gave no
details about device sensor support and suitability in research.

The objective of this study was to examine how the consumer
market for wearables has evolved, and analyze and summarize

available devices that can measure PA and heart rate (HR).
Moreover, we aim to identify brands that are used extensively
in research projects, and compare and consider their relevance
for future studies.

Sensors
A plethora of devices promises to measure PA in new and
improved ways. These devices use different sensors and
algorithms to calculate human readable metrics based on sensor
output. Traditional step counters use pedometers to detect daily
step counts. Although cheap and energy efficient, pedometers
are not as accurate as accelerometers, which is the current
standard for collecting PA data [11]. All modern fitness trackers
and smartwatches have an accelerometer. Compared with
research tools (eg, ActiGraph [12]), these devices are considered
less accurate for some measurements [13,14]. However, they
are generally less invasive, cheaper, have more functionality,
are more user-friendly, and are increasingly being used in
research. Most accelerometer-based fitness wearables measure
acceleration in three directions [15] and can be used to estimate
type of movement, count steps, calculate energy expenditure
(EE) and energy intensity, as well as estimate sleep patterns and
more. The validity and reliability of these metrics varies.
Evenson et al [14] did a review in 2015 and found high validity
for steps but low validity for EE and sleep. Furthermore, they
found reliability for steps, distance, EE, and sleep to be high
for some devices.

In addition, some wearables have gyroscopes, magnetometers,
barometers, and altimeters. A gyroscope can potentially increase
device accuracy by measuring gravitational acceleration, that
is, orientation and angular velocity, and better estimate which
activity type a person is performing [16]. A magnetometer is a
digital compass [15] and can improve motion tracking accuracy
by detecting the orientation of the device relative to magnetic
north. Magnetometers improve accuracy by compensating for
gyroscope drift, a problem with gyroscopes where the rotation
axis slowly drifts from the actual motion and must be restored
regularly. Accelerometers, gyroscopes, and magnetometers are
often combined into an inertial measurement unit (IMU). Most
mobile phones use IMUs to calculate orientation, and an
increasing number of fitness wearables include this unit to give
more accurate metrics. Barometers or altimeters detect changes
in altitude [15] and can be used to improve some metrics (eg,
EE), as well as report additional metrics (eg, climbed floors).

Photoplethysmography (PPG) is a relatively new technique in
wearables. PPG is an optical technique to estimate HR by
monitoring changes in blood volume beneath the skin [17]. A
light-emitting diode projects light onto the skin, which is
affected by the HR and reflected back to the sensor. However,
movement, ambient light, and tissue compression affect the
light, resulting in signal noise, and cleaning algorithms often
use accelerometer data to assist HR estimation [18]. There is
some evidence that gyroscopes could be used [19] to reduce
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PPG signal noise, so we are likely to see more devices in the
future equipped with PPG sensors. To further enrich the PA
data collection, some devices have a built in global positioning
system (GPS) receiver. This is especially true for high-end
fitness trackers and sports watches specifically targeting
physically active people. With a GPS, it is possible to track
more data, including position, speed, and altitude.

Algorithms and Mobile Apps
Raw data from sensors must be converted into readable metrics
to be meaningful for the user. Many devices only display a
limited set of metrics directly on the device (eg, today’s step
count or current HR) and rely on an accompanying mobile app
to show the full range of available metrics (eg, historic daily
step count and detailed HR data). Although the physical sensors
in these devices are very similar, the algorithms that interpret
sensor output are unique for most vendors. These algorithms
are often company secrets, and they can be changed without
notice. In addition, the quality and supported features of the
accompanying mobile apps varies, and the total user experience
will therefore differ. Each additional sensor included in a device
can be used to add additional types of metrics for the user or
supply internal algorithms with additional data to improve
accuracy of already available metric types. However, additional
sensors affect price and power consumption.

Device Types
There are many similarities between different types of devices,
and they may be difficult to categorize. We will use the term
wearable in this paper as a common term for wrist-worn devices
that can track and share PA data with a mobile phone.

A smartwatch is a wrist-worn device that, mostly, acts as an
extension to a mobile phone and can show notifications and
track PA and related metrics. Modern smartwatches often
include a touch screen and can support advanced features and
display high resolution activity trends [15]. Fitness trackers (ie,
smart band or fitness band), normally worn on the wrist or hip,
are devices more dedicated to PA tracking. A fitness tracker is
typically cheaper than a smartwatch because of less expensive
hardware and often fewer sensors. Due to this, it generally also
has better battery life and a limited interface for displaying
tracking results [15].

Other terms are also used, for example, sports watch and GPS
watch, which can be considered merges between smartwatches
and fitness trackers. In addition, there are hybrid watches (ie,
hybrid smartwatches) that have a traditional clockwork and
analogue display that have been fitted with an accelerometer.
An accompanying mobile app is needed to access most data,
but daily step counts are often represented as an analogue gauge
on the watch face.

Wearable Usage Scenario
Wearables come forward as a new alternative to tracking PA in
research (compared with, eg, ActiGraph), especially when it is
desired to collect measurements for a prolonged period of time.
In an intervention study, continuous data collecting from
wearables would allow researchers to better track changes in
PA and adjust the intervention accordingly. Wearables can also

be used in epidemiological research as a tool for tracking PA
for an extended period. This could reveal detailed PA changes
in a population over time. In both scenarios, there are several
potential important requirements to consider when choosing a
device for the study, including usability, battery life, price,
accuracy, durability, look and feel, and data access possibilities.

Methods

Search Strategies

Brands, Devices, and Sensors
We searched six databases to create a list of relevant wearable
devices: The Queen’s University’s Wearable Device Inventory
[20], The Vandrico Wearables database [21], GsmArena [22],
Wearables.com [23], SpecBucket [24], and PrisGuide [25,26].
We only used publicly available information when comparing
devices. We did the search from May 15, 2017 to July 1, 2017.

We identified wearables in two steps. In step one, we identified
and searched the six defined databases. In step two, we extracted
all brands from the list of devices identified in step one and
examined brand websites for additional devices. If we found
the same device in several databases with conflicting
information, we manually identified the correct information
from the device’s official website or other online sources (eg,
Wikipedia and Google search). We removed duplicates and
devices not fitting the inclusion criteria.

Brand Usage in Research
We searched Ovid MEDLINE on September 30, 2017 to
determine how often the most relevant brands were used in
previous studies. For each search, we performed a keyword
search with no limitations set. We divided our findings into
validation and reliability studies and data collection studies.

To decide which brand to consider most relevant, we did two
sets of searches. In the first set, we created a brand-specific
keyword search for brands that were (1) One of the five most
sold brands in 2015 or 2016 or (2) Had released 10 or more
unique devices. From the resulting list of articles, we screened
title, abstract, and the method section. This screening was done
to (1) Exclude articles out of scope and (2) To identify additional
brands used in these studies. We compiled a list of these brands
and performed a second set of searches, one for each new
identified brand. Eleven brands were finally included. The
specific keyword search used for each brand is given in the
Results section where we summarize our findings.

We also searched the US National Library of Medicine database
of clinical studies through the ClinicalTrials website, using the
same 11 keyword searches, to determine brand usage in ongoing
projects. One author did the articles screening, as well as the
projects description screening in ClinicalTrials.

Brand Developer Possibilities
To determine how relevant a specific brand is when planning
a new research project, we reviewed the 11 identified brands
and considered available developer options, supported mobile
phone environments, and options for health data storage. We
especially reviewed availability of an application programming
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interface (API) and a software development kit (SDK).
Information was collected from Google Play, Apple’s App Store,
and official brand websites. Information retrieval was done in
September 2017.

Inclusion and Exclusion Criteria

Brands, Devices, and Sensors
The study is limited to wrist-worn consumer devices that utilize
accelerometers to measure PA. Devices capable of collecting
HR from the wrist using an optical sensor were tagged as PPG
devices. Devices were tagged as GPS devices only if they had
a built-in GPS tracker. We only included devices meant for
personal use, designed to be worn continuously (24/7), and were
capable of sharing data with mobile phones through Bluetooth.
The wrist-worn limitation was added because hip-worn devices
are not normally worn during the night (ie, not 24/7). Only
devices released before July 1, 2017 were included. We excluded
hybrid watches because most hybrid vendors make a large
number of watch variations, with what seems to be the same
hardware. In addition, these watches are mostly available
through high-end suppliers of traditional watches, at a price
point that would prevent researchers from considering their use
in a large study.

Brand Usage in Research
Due to the large number of available brands, we limited our
search to include only the 11 brands already identified as
relevant. We excluded brands that are no longer available (ie,
company shut down). Review studies were also excluded.

Brand Developer Possibilities
When reviewing brand relevance in research, we only reviewed
developer capabilities for the 11 brands we had already included
in the list of relevant brands. We set the additional limitation
that the brand was used in at least one article in Ovid
MEDLINE.

Device Categorization, Data Collection, and Reporting
Categories
When collecting information about wearables, we categorized
them into three groups:

1. Smartwatches: a device was tagged as a smartwatch if
• It supported mobile phone notifications, and the vendor

described it as a smart watch, or if
• It had a touch screen and was not explicitly described

as a fitness tracker by the vendor.

2. Fitness trackers: we classified a device as a fitness tracker
if
• Its main purpose was to track PA, or if
• The vendor called it a fitness tracker, or if
• The device did not support notifications from the

connected mobile phone (eg, incoming calls or texts).

3. Hybrid watches: to be considered a hybrid watch, the device
had to have an analogue clockwork with a built-in digital
accelerometer.

We collected the following variables for each device: brand
name, device name, year of release, country of origin, device

type (eg, fitness tracker), and whether they had a built-in
accelerometer, gyroscope, magnetometer, barometer or altimeter,
GPS, and PPG.

We looked at three aspects of the devices we identified and
reported under three categories:

1. Metrics and trends: in this category, we described the status
for available brands, devices, and sensors, as well as
reviewed trends in sensor availability over time.

2. Brand usage in research: in this category, we searched Ovid
MEDLINE and ClinicalTrials and determined which brands
are most used in a research setting.

3. Brand developer possibilities: in this category, we reviewed
software integration platforms and mobile platform support
for the most relevant brands.

Results

Relevant Devices
An overview of the device search process is given in Figure 1.
We found 572 devices by searching online and offline databases
and 131 additional devices by visiting the official websites for
each identified brand, totaling 703 devices. Removing duplicates
left 567 unique devices. These were screened for variation, that
is, the same device with different design. After excluding 41
because of variation, 526 remained and were screened for
eligibility. We removed 103 devices for not fitting the inclusion
criteria. The remaining 423 devices were included in the study.

Brands, Devices, and Sensors

Brands
We identified 423 unique wearables, distributed between 132
different brands. Almost half the brands (47.0%, 62/132) had
only one device. Moreover, 75.0% (99/132) of brands had three
or fewer devices, and 83.3% (110/132) had five or fewer
devices. Brands originated from 23 different countries, but the
United States (43.2%, 57/132) and China (16.7%, 22/132,
mainland China; 19.0%, 25/132, including Taiwan) represented
the largest number of brand origin. Each remaining country
represented between 0.8% (1/132) and 5.3% (7/132) of brands.

As the market has grown and wearable technology has become
increasingly popular, a number of new brands have appeared
on the market. In 2011, there were only three brands available.
There was a small increase in brand count in 2012 and 2013,
but in 2014, we saw the largest increase with 41 new brands.
The number of new brands started to decrease in 2015, with 36
new brands in 2015 and 23 in 2016. Only three new brands have
been introduced in 2017, but this number only represents the
first 6 months of 2017. The final count for 2017 will likely be
higher. An overview of the number of new brands that appeared
on the market between 2011 and 2017 is given in Figure 2. Note
that some companies are no longer active and, for 17 devices,
we could not determine release year.

Most brands only had a small number of wearables, but some
produced a lot more. The brand with most unique wearables
was Garmin (United States) with 40 different devices. No.1
(China) introduced the second highest number of wearables
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with 19 devices. An overview of the release year of the 22 (out
of 132) brands that have released more than five devices is given
in Table 1. Seven out of these 22 brands originated in the United
States, five (six including Taiwan) originated in China, and two
originated in South Korea. All other countries are represented
only once. Some of these brands are no longer active (eg, Pebble
and Jawbone).

Devices
Three devices were released in 2011 (earliest year), seven in
2012, 30 in 2013, and 87 in 2014. The year with the highest
number of new wearables was 2015, with 121 new devices. In
2016, 120 new devices were released; the first year with a
decreasing number of new wearables. The number of new and
accumulated devices from 2011 to 2017 is summarized in Table
2. The last column (unknown) represents devices where we
could not identify the release year. The above numbers represent
the total number of new devices. If grouped into fitness trackers
and smartwatches, there is a small overrepresentation among
new smartwatches. Up until 2014, about half of devices were
smartwatches. In 2015 and 2016, smartwatches represented
59.3% (143/241) of new devices, whereas fitness trackers
represented 40.6% (98/241).

Sensors
The number of sensors included in new devices have increased
in the last few years. Since 2015, the order of the most common
sensors has consistently been PPG, GPS, gyroscope,
magnetometer, and barometer or altimeter. In addition, these
sensors have had a steady increase in availability in the same
period. For 2017, 71% (27/38) of new devices included a PPG
sensor, 50% (19/38) included a GPS, 39% (15/38) included a
gyroscope, 34% (13/38) included a magnetometer, and 32%
(12/38) included a barometer or altimeter. Figure 3 gives an
overview of the number of devices each year that includes each
sensor, in percent of total number of released devices that year.
Devices with more than one sensor are represented once for
each sensor it includes.

In total, since 2011, 38.5% (163/423) of wearables have only
been equipped with one sensor (accelerometer). Moreover,
29.8% (126/423) of devices had two sensors, 12.1% (51/423)
had three sensors, 11.1% (47/423) had four sensors, and 6.4%
(27/423) had five sensors. Only 2.1% (9/423) of devices had
all six sensors. In Table 3, these numbers are broken down by
sensor combination and year. Some sensor combinations do not
exist and are excluded.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart.
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Figure 2. Number of new and aggregated available brands by year.

Table 1. Device count per year for brands with six or more wearables.

TotalaUnknown2017201620152014201320122011CountryBrand

4041311651United StatesGarmin

914211United StatesFitbit

821311United StatesMisfit

7151United StatesLifeTrak

6141United StatesiFit

63111United StatesJawbone

61311United StatesPebble

19595ChinaNo. 1

9252ChinaOmate

9252ChinaZeblaze

81331ChinaHuawei

711221ChinaOumax

8422TaiwanMobile Action

124161South KoreaSamsung

72113South KoreaLG

7511EnglandWorldSim

1122421FinlandPolar

624GermanyTechnaxx

743ItalyAwatch

752JapanEpson

7412NetherlandsTomTom

181764SwitzerlandMyKronoz

aTotal brand count for the United States=7, China and Taiwan=6, and South Korea=2. All other countries are represented only once.

Table 2. Number of new and accumulated devices by year.

Unknown2017201620152014201320122011Devices

1738120121873073New

42340636824812740103Accumulated
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Figure 3. Percentage of devices released each year, supporting each sensor. GPS: global positioning system; PPG: photoplethysmography.

Brand Usage in Research
The top five vendors in 2015 [27] and 2016 [6], in sold units,
were Fitbit, Xiaomi, Apple, Garmin, and Samsung. Brands with
more than 10 unique wearables include Garmin, No.1,
MyKronoz, Samsung, and Polar. These eight, and additional
brands identified during the MEDLINE search and ClinicalTrials
search, were considered. We did not find any publications or
active clinical trials that used devices from No.1 or MyKronoz.
Devices from Basis, BodyMedia, Pebble, Jawbone, Microsoft,
and Nike were also used in some of the identified studies, but
these brands do no longer produce wearables within the scope
of this paper and were excluded from further analysis.

The MEDLINE search resulted in 81 included studies that we
divided into two groups: (1) validation and reliability studies
and (2) data collection studies. Studies where wearable output
was compared with existing research instruments known to give
accurate results (eg, ActiGraph) or with direct observation, as
well as studies where several wearables were compared with
each other for accuracy or reliability, were classified as
validation and reliability studies. Studies where wearables were
used as a tool for intervention or observation, to collect data on
PA, HR, EE, sleep, or other available metrics, were classified
as data collection studies. Out of these 81 studies, 61 were
classified as validation and reliability studies, whereas 20 were
classifies as data collection studies.

Fitbit devices were used in 54 studies [9,13,28-79]. Out of these,
40 studies were validation or reliability studies. In 22 of the
studies, one or more Garmin devices were used
[32,33,46,49,50,62,77-92]. Of these, 18 were validation or
reliability studies. Eight studies used Apple devices

[29,30,35,49,62,79,93,94]. Six of these were validation or
reliability studies. All studies using devices from Misfit, Polar,
Withings, Mio, Samsung, PulseOn, TomTom, and Xiaomi were
validation or reliability studies. Misfit devices were used in 12
studies [9,36,42,43,46,61-63,85,95-97]; Polar devices were used
in 6 studies [36,43,46,62,98,99]; Withings [63,85,89,100,101],
Mio [29,30,54,102,103], and Samsung [29,30,58,62,96] devices
were used in 5 studies; PulseOn devices were used in 4 studies
[29,104-106]; TomTom devices were used in 2 studies [54,79];
and Xiaomi devices were used in 1 study [96].

From ClinicalTrials, we found that the vast majority of ongoing
projects use, or are planning to use, Fitbit devices. All other
devices were mentioned in three or less projects, whereas Fitbit
devices were mentioned in 31 studies. A summary of these
studies and projects is given in Table 4. We further grouped the
validation and reliability studies into five categories. A total of
31 studies focused on step counts or distance, 15 studies
researched EE, 15 studies measured HR, 10 studies measured
sleep, and 7 studies collected other metrics. Multimedia
Appendix 1 gives an overview of articles found in MEDLINE,
which brands they included in the study, and which of the five
categories they are grouped into.

Brand Developer Possibilities
Next, we considered developer possibilities for the 11 brands
already identified as most relevant in research: Apple, Fitbit,
Garmin, Mio, Misfit, Polar, PulseOn, Samsung, TomTom,
Withings, and Xiaomi. All brands had an app in the Apple App
Store and could connect to the iPhone. Except for the Apple
Watch, all other brands had an app in Google Play and could
be used with Android phones.
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Table 3. Number and percentage of devices supporting a specific group of sensors, by year.

2017201620152014201320122011Sensors

4 (11)37 (30.8)50 (41.3)40 (46)16 (53)5 (71)2 (67)Accelerometer (Acc), n (%)

Acc + 1 sensor, n (%)

10 (26)27 (22.5)11 (9.1)9 (10)1 (3)1 (14)PPGa

3 (2.5)15 (12.4)9 (10)2 (7)1 (33)GPSb

1 (3)4 (3.3)9 (7.4)3 (3)1 (3)Gyroscope (Gyro)

3 (2.5)1 (1)2 (7)1 (14)Magnetometer (Mag)

2 (5)1 (0.8)1 (1)Barometer (Bar)

Acc + 2 sensors, n (%)

3 (8)6 (5)7 (5.8)1 (3)GPS + PPG

1 (3)5 (4.2)5 (4.1)4 (5)Gyro + PPG

2 (1.7)2 (1.7)1 (1)Gyro + GPS

2 (1.7)1 (0.8)1 (3)Bar + PPG

1 (0.8)2 (2)Gyro + Mag

1 (0.8)1 (1)1 (3)Mag + GPS

1 (0.8)Mag + PPG

1 (1)Gyro + Bar

2 (2)Bar + GPS

Acc + 3 sensors, n (%)

1 (3)2 (1.7)3 (2.5)3 (3)1 (3)Gyro + Mag + GPS

1 (3)3 (2.5)2 (1.7)4 (5)Gyro + Mag + PPG

1 (3)4 (3.3)2 (2)3 (10)Mag + Bar + GPS

1 (3)6 (5)1 (1)Gyro + GPS + PPG

2 (5)2 (1.7)Bar + GPS + PPG

1 (3)1 (0.8)Mag + GPS + PPG

2 (1.7)Gyro + Bar + PPG

1 (0.8)Gyro + Mag + Bar

Acc + 4 sensors, n (%)

4 (3.3)3 (2.5)1 (3)Mag + Bar + GPS + PPG

3 (8)3 (2.5)1 (1)Gyro + Mag + GPS + PPG

1 (3)4 (3.3)2 (1.7)Gyro + Bar + GPS + PPG

2 (5)1 (0.8)Gyro + Mag + Bar + GPS

1 (0.8)1 (1)Gyro + Mag + Bar + PPG

Acc + 5 sensors, n (%)

4 (11)2 (1.7)2 (1.7)1 (1)All sensors

38120121873073Total, n

aPPG: photoplethysmography.
bGPS: global positioning system.
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Table 4. Number of identified articles in Medical Literature Analysis and Retrieval System Online (MEDLINE) and ClinicalTrials.

ClinicalTrialsMEDLINEMEDLINEa search termBrand

Data collection
studiese

Validation or reliability
studiesd

Data collection studiesc

(total article count=20)
Validation or reliability
studiesb (total article
count=61)

3011440Fitbit AND (Alta OR Blaze OR
Charge OR Flex OR Surge)

Fitbit

21418Garmin AND (Approach OR D2
OR Epix OR Fenix OR Forerunner
OR Quatix OR Swim OR Tactix
OR Vivo*)

Garmin

10012Misfit AND (Flare OR Flash OR
Link OR Ray OR Shine OR Va-
por)

Misfit

1126Apple watchApple

3106Polar AND (“Polar Loop” OR
M200 OR M4?0 OR M600 OR
V800 OR A3?0)

Polar

2005WithingsWithings

2105Mio Alpha OR Mio Fuse OR Mio
Slice

Mio

2005Samsung Gear NOT “Gear VR”
NOT Oculus

Samsung

1004PulseOnPulseOn

 102TomTomTomTom

1001XiaomiXiaomi

aMEDLINE: Medical Literature Analysis and Retrieval System Online.
bNumber of validation or reliability studies in MEDLINE.
cNumber of data collection studies in MEDLINE.
dNumber of validation or reliability studies in ClinicalTrials.
eNumber of data collection studies in ClinicalTrials.

Three brands supported Windows Phone: Fitbit, Garmin, and
Misfit. Apple Health and Google Fit are the two most common
open cloud health repositories. Mio, Misfit, Polar, Withings,
and Xiaomi, were the only brands that automatically
synchronized fitness data to both of these repositories through
these open APIs. The Apple Watch only synchronized
automatically to the Apple Health repository. Seven out of 11
brands had a private cloud repository with an accompanying
API, which allows third-party apps to access these data. Five
brands had an SDK, which makes it possible to create custom
programs to communicate with the device or create watch faces
that can run on the device.

The Apple Watch was the only device running on watchOS.
Three brands had at least one device running on Android Wear.
The remaining seven brands used a custom system. A summary
of all attributes for each brand is given in Table 5. Not all
devices for a specific brand support all features. In addition,
this is a snapshot of the status of these attributes, which are
likely to change over time as new devices and brands expand
their capabilities. The Apple Watch development environment
is called WatchKit SDK and can be used to write apps for the
Apple Watch [107]. Apple’s health storage solution is called
Apple Health. A variety of different data types can be stored

here and accessed by third-party developers through the
HealthKit API [108]. Access to any of these services requires
enrollment in the Apple Developer Program, which currently
costs US $99 per year.

Fitbit offers three major SDKs (Device API, Companion API,
and Settings API) for developing apps for Fitbit devices. In
addition, Fitbit offers the Web API that can be used to access
Fitbit cloud-stored fitness data. The Web API exposes six types
of data: PA, HR, location, nutrition, sleep, and weight [109].
Fitbit also has a solution for accessing high-resolution step and
HR data (ie, intraday data), granted on a case by case basis.
There is no cost for developing with the Fitbit SDKs or API.

There are two generations of programmable Garmin wearables
[110]. The Connect IQ SDK can be used by both generations,
but devices using the newer Connect IQ 2 generation support
more features. Development with this SDK is free. Garmin also
offers a cloud-based Web API, Garmin Connect, which allows
third-party apps to access users’ cloud-based fitness data. Access
to this API costs US $5000 (one-time license). In addition,
Garmin maintains a separate Health API intended to be used
by companies for wellness improvement of their employees.
This API is free but requires a manual approval from Garmin.
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Table 5. Brand environment, integration, and development support.

XiaomiWithingsTomTomSamsungPulseOnPolarMisfitMioGarminFitbitAppleFeature

Supported platform

✓✓✓✓✓✓✓✓✓✓Android

✓✓✓✓✓✓✓✓✓✓✓iPhone

✓✓✓Windows phone

Integration

✓✓✓✓✓✓Automatic synchronization
to Apple Health

✓✓✓✓✓Automatic synchronization
to Google Fit

✓✓✓✓✓✓✓Private cloud storage

✓✓✓✓✓✓✓✓Cloud storage APIa

✓✓✓✓✓Developer SDKb

Watch system

✓✓✓Android Wear

✓watchOS (Apple)

✓✓✓✓✓✓✓Custom

aAPI: application programming interface.
bSDK: software development kit.

The Misfit developer ecosystem consists of three SDKs (Sleep
SDK, Link SDK, and Device SDK) [111]. The Misfit Device
SDK is the major SDK for developing apps for and
communication with Misfit devices. This SDK is only available
on request. Misfit also offers the Misfit Scientific Library that
can be used to access Misfits proprietary sensor algorithms
directly. This library is also only available on request. In
addition, the Misfit Cloud API is used to access users’ data from
the Misfit cloud server. All SDKs and the API are free.

Polar does not offer a separate SDK. Polar devices can integrate
with Google Fit and Apple Health and deposits collected data
there [112]. This data are accessed using Google Fit APIs and
Apple HealthKit APIs. In addition, data are uploaded to Polar’s
cloud storage, which is accessible by third-party developers
through the AccessLink API. Besides PA data (steps, EE, and
sleep), basic training data are also stored here. Access to
AccessLink is free.

Development for a Samsung smartwatch is done using the Tizen
SDK (Samsung smartwatch operating system is called Tizen).
The Samsung Health SDK platform consists of two parts: Data
SDK and Service SDK. Together these can be used to store and

access health data collected from internal and external sensors,
as well as third-party apps running on a Samsung watch or a
mobile phone. Development using any of these services is free
[113].

TomTom offers the Sports Cloud API for accessing data
collected from TomTom devices. The API provides four types
of data: PA (eg, exercises bouts), HR, tracking (eg, steps and
EE), and physiology (eg, weight). Access to the API is free
[114].

Nokia acquired Withings in 2016, and the original Withings
API is now available as the Nokia Health API. Besides PA and
sleep measurements, the API also gives access to intraday PA
data. Nokia must manually approve access to this high-resolution
activity API. The API is free [115].

Summarizing Results
Which features are most important when considering devices
for a research project will depend on the purpose and design of
the study. It is therefore not possible to identify one brand as
the best brand in all circumstances. However, we have tried to
quantify various aspects of a brand to identify and summarize
their benefits.
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Table 6. Brand summary.

No. 1MyKronozXiaomiTomTomPulseOnMioWithingsSamsungPolarAppleMisfitGarminFitbitBrand

191837132121138409Devicesa

12455568122254MEDLINEb

12455566121840Validation or
reliabilityc

1422161021Steps

221343410Energy ex-
penditure

1245214147Heart rate

21418Sleep

1243Other

111322421331ClinicalTrialsd

✓✓✓✓✓✓SDKe

✓✓✓✓✓✓✓✓APIf

✓✓✓✓✓✓Apple Healthg

✓✓✓✓✓Google Fith

aNumber of unique devices.
bMEDLINE: Medical Literature Analysis and Retrieval System Online. Number of articles in MEDLINE.
cNumber of validation or reliability studies in MEDLINE, grouped by metric (step, EE, HR, sleep, and others).
dNumber of active projects in ClinicalTrials.
eSupports an SDK for third-party software implementation.
fAPI: application programming interface. Supports an API for developer access to data cloud.
gSupports automatic synchronization to Apple Health data cloud.
hSupports automatic synchronization to Google Fit data cloud.

We used eight categories in this custom comparison, which we
suggest to consider before deciding on a brand for any research
project:

1. Device count: a higher number of available devices make
it possible to pick a device that is more tailored to the study.

2. Article count: a higher number of articles in Ovid
MEDLINE indicate usage in previous studies.

3. Validation or reliability count: a high number of validation
or reliability studies provides knowledge about device and
brand accuracy.

4. ClinicalTrials count: a high number of active projects in
ClinicalTrials indicate brand relevance.

5. SDK support: brands that allows third-party programs to
run on their devices or communicate directly with the
device, by offering an SDK, adds more possibilities for
customization.

6. API support: brands that allows third-party programs to
access the data cloud repository, by offering API access,
adds more possibilities for health data collection and
retrieval.

7. Apple Health: brands supporting automatic synchronization
to Apple Health allow usage of Apple HealthKit API.

8. Google Fit: brands supporting automatic synchronization
to Google Fit allow usage of Google Fit API.

A consensus between authors was reached to include these
specific categories because we think together they indicate how
often a specific brand has been used in the past and will be used
in the future, and they show which options are available for data
extraction. These are not the only possible categories, and each
category will not be equally important for all studies.

Table 6 gives a summary of these categories for each brand. A
transposed Excel (Microsoft) version for dynamic sorting is
given in Multimedia Appendix 2. We have divided MEDLINE
validation and reliability studies into subgroups, making it easier
to compare brands for specific study purposes.

Discussion

Availability and Trends
The number of new brands increased every year from 2011 to
2014, but from 2015 to 2016, we saw a decrease in the number
of new brands. The number of new devices also increased from
2011 to 2015, with a slight reduction in 2016. Many new and
existing companies have tried to enter the wearable market
during these years. Some have become popular, whereas others
are no longer available. The number of new devices in the first
two quarters of 2017 seems low, and there is a small indication
that the number of new brands and devices released each year
is declining. During the data collection phase, we also identified
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a large number of hybrid watches. Although we did not report
on these, this relatively new branch of wearables has grown in
popularity. The Fossil group, representing 19 brands, recently
announced they would launch more than 300 hybrid watches
and smartwatches in 2017 [116]. Most of these will be hybrids,
and 2017 may see the highest number of new hybrids released
to date.

We only found nine devices that support all five sensors
considered in this study. Among the 11 most relevant brands,
only Fitbit Surge, Garmin Forerunner 935, Garmin Quatix 5,
Samsung Gear S, and TomTom Adventure fall in this category.
Most devices (68%) support only one sensor, in addition to the
accelerometer. These numbers indicate that sensor count is not
the main argument when choosing a device for personal use. In
addition to the accelerometer, the most common sensors are
PPG and GPS, regardless of sensor count. One reason for this
may be that the added benefit of having these sensors, in a
fitness setting, is very clear. Accelerometers can be used for
step counting, PA intensity, exercise detection, and other
well-understood metrics, whereas the added benefit of a
gyroscope may be less intuitive. The added convenience of
using a PPG compared with a pulse chest strap, or no HR
detection at all, is also easy to understand. Adding a GPS also
adds some easy-to-understand benefits, where tracking progress
on a map and the possibility to detect speed is the most obvious.
Magnetometers and barometers or altimeters may not be sensors
that most people consider relevant for PA, although they can
be used to enhance accuracy of EE and other metrics.

Brand Usage in Research
In the MEDLINE literature search, we found 81 studies that
used one or more of the 11 brands we identified as most relevant
in research. Out of these, 61 were validation or reliability
studies. The remaining 20 studies used wearable devices as data
collection instruments to measure PA, HR, EE, sleep, or other
metrics. Fitbit was used in twice as many validation or reliability
studies as any other brand. This has likely contributed to the
high number of studies where Fitbit was used as the only

instrument for health data collection. The same trend will likely
continue in future publications because numbers from
ClinicalTrials for active projects shows an overrepresentation
of Fitbit-enabled projects. Of the brands currently available, the
five most often used in research projects are Fitbit, Garmin,
Misfit, Apple, and Polar. In addition, these brands have all
existed for several years and have either released a large number
of unique devices or shipped a large number of total devices.
As such, they are likely to stay on the market for the near future.

A high article count, high number of validation or reliability
studies, or high number of studies in ClinicalTrials for a specific
brand does not automatically imply validity or reliability. It
does, however, show researcher interest in these brands.

Implication for Practice
Table 6 is a good starting point when considering brands for a
new research project. Article count, validation or reliability
study count, and ClinicalTrials count together indicate brand
dependability. Larger numbers indicate how relevant, usable,
and valid previous researchers have found each brand to be. In
projects where it is relevant, SDK support allows programmatic
interaction directly with the device. API support allows storage
in, and access to, a brand-specific cloud-based health data
repository. Apple Health and Google Fit support are alternative
solutions for storing and accessing health data in an open cloud
repository. For projects that require multiple brand support,
using open solutions reduces the need to implement specific
software for each brand. SDK, API, Apple Health, and Google
Fit must be supported on both the brand and device level,
however.

A high brand device count makes it easier to find a device that
best supports the study needs. In addition to available sensors
(ie, metrics), validation, and previous usage in research, several
other potential relevant criteria exist, including price,
availability, phone environment support, affiliated app features,
look and feel, battery life, build quality or robustness, water
resistance, connectivity, and usability.

Figure 4. Criteria to consider when choosing brand or device. API: application programming interface; SDK: software development kit.
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Furthermore, projects that need programmatic access to the
wearable or stored health data should especially consider SDK
or API features and ease of use, as well as privacy and security.
Figure 4 gives a summary of criteria to consider when selecting
brand and device.

Limitations
We visited all the brands’ websites to find additional devices,
but several sites did not contain any information about
discontinued devices. The release year of a device was rarely
available on device webpages, and we had to search for reviews
and other sources to find this information. The level of detail
in device hardware specifications varied. Some vendors did not
specify which sensor they included in their devices and only
mentioned which features the device had. In some cases, the
sensor could be derived from this information, but in other cases,
we had to find this information elsewhere. Wikipedia was also
used to collect sensor support and release year for some devices.
This open editable encyclopedia is not necessarily always
updated with correct information. For these reasons, there may
be some inaccuracies in reported sensor support and release
year. We did not collect information about device

discontinuation. Reported numbers for total available devices
does, therefore, not reflect the numbers of devices that currently
can be store bought but rather the number of unique devices
that have existed at some point.

Conclusions
In the last few years, we have seen a large increase in available
brands and wearable devices, and more devices are released
with additional sensors. However, for activity tracking, some
sensors are more relevant than others are. In this study, we have
focused on sensor support, health data cloud integration, and
developer possibilities; because we find these to be most relevant
for collection of PA data in research. However, deciding which
wearable to use will depend on several additional factors.

The wearable landscape is constantly changing as new devices
are released and as new vendors enter or leave the market, or
are acquired by larger vendors. What currently are considered
relevant devices and brands will therefore change over time,
and each research project should carefully consider which brand
and device to use. As a tool for future research, we have defined
a checklist of elements to consider when making this decision.
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Abstract

Background: Accelerometers, often in conjunction with heart rate sensors, are extensively used to track physical activity (PA)
in research. Research-grade instruments are often expensive and have limited battery capacity, limited storage, and high participant
burden. Consumer-based activity trackers are equipped with similar technology and designed for long-term wear, and can therefore
potentially be used in research.

Objective: We aimed to assess the criterion validity of the Polar M430 sport watch, compared with 2 research-grade instruments
(ActiGraph and Actiheart), worn on 4 different locations using 1- and 3-axis accelerometers.

Methods: A total of 50 participants wore 2 ActiGraphs (wrist and hip), 2 Actihearts (upper and lower chest position), and 1
Polar M430 sport watch for 1 full day. We compared reported time (minutes) spent in sedentary behavior and in light, moderate,
vigorous, and moderate to vigorous PA, step counts, activity energy expenditure, and total energy expenditure between devices.
We used Pearson correlations, intraclass correlations, mean absolute percentage errors (MAPEs), and Bland-Altman plots to
assess criterion validity.

Results: Pearson correlations between the Polar M430 and all research-grade instruments were moderate or stronger for vigorous
PA (r range .59-.76), moderate to vigorous PA (r range .51-.75), steps (r range .85-.87), total energy expenditure (r range .88-.94),
and activity energy expenditure (r range .74-.79). Bland-Altman plots showed higher agreement for higher intensities of PA.
MAPE was high for most outcomes. Only total energy expenditure measured by the hip-worn ActiGraph and both Actiheart
positions had acceptable or close to acceptable errors with MAPEs of 6.94% (ActiGraph, 3 axes), 8.26% (ActiGraph, 1 axis),
14.54% (Actiheart, upper position), and 14.37% (Actiheart, lower position). The wrist-worn ActiGraph had a MAPE of 15.94%
for measuring steps. All other outcomes had a MAPE of 22% or higher. For most outcomes, the Polar M430 was most strongly
correlated with the hip-worn triaxial ActiGraph, with a moderate or strong Pearson correlation for sedentary behavior (r=.52)
and for light (r=.7), moderate (r=.57), vigorous (r=.76), and moderate to vigorous (r=.75) PA. In addition, correlations were
strong or very strong for activity energy expenditure (r=.75), steps (r=.85), and total energy expenditure (r=.91).

Conclusions: The Polar M430 can potentially be used as an addition to established research-grade instruments to collect some
PA variables over a prolonged period. However, due to the high MAPE of most outcomes, only total energy expenditure can be
trusted to provide close to valid results. Depending on the variable, the Polar M430 over- or underreported most metrics, and
may therefore be better suited to report changes in PA over time for some outcomes, rather than as an accurate instrument for
PA status in a population.

(JMIR Form Res 2019;3(3):e14438)  doi: 10.2196/14438
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Introduction

Background
Lack of physical activity (PA) is the fourth-leading risk factor
for global mortality, and the World Health Organization
recommends at least 150 minutes weekly of moderate-intensity
PA (eg, 30 minutes of moderate PA, 5 times per week) or 75
minutes weekly of vigorous-intensity PA for adults, and 60
minutes weekly of moderate to vigorous PA (MVPA) for
children and adolescents [1]. However, worldwide, these
recommendations are not reached by 80% of adolescents and
31% of adults (ranging from 17% in Southeast Asia to 43% in
the eastern Mediterranean and the Americas) [2]. Two national
reports from the Norwegian Directorate of Health show that, in
the Norwegian population, these recommendation were reached
by only 20% in 2009 [3] and 32% in 2015 [4].

Accelerometers and combined sensing (ie, accelerometers and
heart rate) are used to track PA. Research-grade instruments
are often expensive and have limited battery capacity, limited
storage, and high participant burden. Consumer-based activity
trackers, on the other hand, are designed for long-term wear,
equipped with similar technologies, generally cheaper, and less
intrusive, and can potentially track PA for research purposes.

Consumer-based activity trackers are increasingly being
evaluated for use in research. Recent examples includes Lawrie
et al [5] and Beukenhorst et al [6], who included smart watches
in their research protocols. The major limitation of these devices
is the limited knowledge of device validity. Due to the rapid
growth of new devices, high-quality validation studies of
emerging models are needed [7]. Specifically, to our knowledge,
no validation study on the Polar M430 has been conducted to
date. Most previous validation studies have compared multiple
consumer devices with 1- or 2-criterion instruments (eg, [8,9]).
In this study, we compared 1 consumer device with multiple
criteria, placed on multiple locations, and analyzing 1 and 3
axes of the accelerometer.

Objective
The aim of this study was to assess the criterion validity of time
(in minutes) spent in various PA intensity zones, step counts,
and energy expenditure (EE) between the Polar M430 and 2
extensively used research-grade instruments (ActiGraph and
Actiheart) worn on 4 different locations using uniaxial and
triaxial measurements in free-living conditions. We used
multiple criteria because we wanted to show how the choice of
criterion and placement affects outcomes. The ActiGraph can
be considered a reference standard for PA intensity in free-living
people, but because the Actiheart also has a heart rate sensor,
it can be an attractive alternative in many cases.

Methods

Sample
We recruited 50 participants, who were eligible for inclusion if
they were 18 years of age or older with normal physical
function. We used convenience sampling to maximize ranges
for weight, height, body mass index, age, and sex.

Instruments
The Polar M430 (Polar Electro Oy, Kempele, Finland), released
in 2017, is a sport watch with a 6–light-emitting diode
wrist-based optical heart rate sensor and a 50-Hz triaxial
accelerometer for tracking PA. It weighs 51 g, with 20 days of
battery life.

ActiGraph wGT3X-BT (ActiGraph LLC, Pensacola, FL, USA)
is a 19-g triaxial accelerometer with a 30- to 100-Hz sampling
rate, to be worn on the wrist, hip, ankle, or thigh, with 25 days
of battery life. ActiGraph has been previously validated for
sedentary behavior [10-12], PA intensity for both uniaxial [12]
and triaxial [13] acceleration, step counting [14], and EE [15].

The Actiheart (CamNtech Ltd, Cambridge, UK) is a 10-g
uniaxial accelerometer with 32-Hz sampling rate and additional
electrocardiography with 128-Hz sampling rate, to be worn on
the chest, with 21 days of battery life. The Actiheart is
extensively used to measure EE, and has been shown by Brage
et al to produce valid estimations for EE both in laboratory
settings [16] and under free-living conditions [17].

Procedure
We used self-reported information on height, weight, age, sex,
and dominant hand to initialize the devices. The Polar M430
and an ActiGraph (attached with an elastic band) were placed
on the wrist of the nondominant hand. One ActiGraph was
placed on the right hip (attached with an elastic band). One
Actiheart was placed approximately at the level of the second
intercostal space at the sternum (medial part) and to the left
(lateral part). The second Actiheart was placed approximately
at the level of the fifth intercostal space at the sternum (medial
part) and to the left (lateral part). The Actihearts were attached
with 2 Red Dot 2238 electrodes (3M, St Paul, MN, USA) each.
Table 1 [18] gives the setup used for all instruments and Figure
1 shows the placement of each instrument.

Devices were attached by 1 of 2 researchers after agreement of
method in accordance with manufacturer recommendations.
Participants were instructed to wear all instruments at all times
except for temporarily removing the ActiGraph for showering
and water activities. Participants wore all instruments for 1 full
day (24 hours). We collected data in May 2018. Participants
received written and oral instructions on how to wear the
devices. All participants signed an informed consent form.
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Table 1. Device setup and output variables.

InstrumentVariables

Polar M430ActiheartActiGraph

Hardware and setup

24 h15 s10 sEpoch length (lowest available)

50 Hz32 Hz100 HzAccelerometer sample rate

Nondominant wristChest (V2), chest (V5)Nondominant wrist, right hipWear location

Height, weight, sex, age, wear locationHeight, weight, sex, ageHeight, weight, sex, age, wear locationParameters

Polar Flow [18]Actiheart 4.0.122ActiLife 6.13.3Software for setup and download

Polar FlowQCAT/ActiheartQCATa/ActiLifeSoftware for analysis

2P4wGT3X-BTDevice model

1.1.34H90.651.9.2Device firmware version

Output variables

YesYesYesSitting or sedentary behavior

YesYesYesLight physical activity

YesYesYesModerate physical activity

YesYesYesVigorous physical activity

NoYesYesActivity energy expenditure

YesYesNoTotal energy expenditure

YesNoYesSteps

aQCAT: Quality Control and Analysis Tool.

Figure 1. Instrument placement and Polar M430 illustrations.

Variable Creation
Using the proprietary software of ActiGraph and the Actiheart,
we exported activity counts into comma-separated values files,
using the lowest possible epoch setting, that is, 10- (ActiGraph)
and 15- (Actiheart) second epochs. From the ActiGraph, triaxial
(vertical, horizontal, lateral) counts and steps per epoch were
exported. From the Actiheart, uniaxial (vertical) counts were
exported. We extracted precalculated variables from the Polar
M430 from Polar Flow directly. Table 1 details the software
and epochs.

Due to no agreed-upon cut points for calculating PA intensity
from the wrist-worn ActiGraph in adults, we applied a
conversion function provided by ActiLife version 6.13.3 (after
ActiLife export; ActiGraph) to the wrist-worn ActiGraph data
before further analysis (Multimedia Appendix 1).

Exported comma-separated values files with epoch data were
imported into the custom-made Quality Control and Analysis
Tool (QCAT) developed at UiT The Arctic University of
Norway and Technical University of Munich. We converted
activity counts into 60-second epochs before doing further
analysis. We used counts per minute (CPM) to calculate minutes
in the various PA intensity zones, using several algorithms. By
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using QCAT, data from ActiGraph and Actiheart were analyzed
by the same program and comparable variables were created.
We included only valid days, a priori defined as all instruments
worn at least 10 hours per day [19], in the analysis. We
identified nonwear time using the triaxial wear-time algorithm
of Hecht et al [20]. Multimedia Appendix 2 shows correlations
between QCAT and ActiLife.

For the ActiGraph data (wrist and hip), we calculated 5 PA
intensity zones using cut points defined by Freedson et al [12]
and Matthews et al [21], using only the vertical axis. In addition,
we used a combination of the methods of Sasaki et al [13],
Kozey-Keadle et al [10], and Peterson et al [11] to generate the
same PA intensity zones using all 3 axes, or vector magnitude
(VM). To our knowledge, there are no agreed-upon cut points
for chest-based PA counts in adults using an Actiheart. However,
we used cut points identified in a study by Schrack et al [22].
We combined minutes spent in vigorous and very vigorous
intensity into 1 variable. Table 2 gives an overview of each cut
point set.

As QCAT does not support EE calculation, we calculated this
variable from the proprietary software tools ActiLife and
Actiheart. We calculated EE from ActiLife using the Freedson
combination 1998 formula (Freedson et al [12] plus Williams
work-energy equation) for uniaxial calculation and the Freedson
VM3 combination 2011 formula (Sasaki et al [13] plus Williams
work-energy equation) for triaxial calculation. We analyzed

nonwear time using the default Troiano [23] settings. Actiheart
uses a branched model where recorded activity and heart rate
from the electrocardiogram are used together to improve EE
calculations [24].

While the Actiheart reports resting EE (REE), activity EE
(AEE), diet-induced thermogenesis, and total EE (TEE), the
ActiGraph reports only AEE, and the Polar M430 reports only
TEE. Since Actiheart used the Schofield equation [25] when
calculating REE, we used the same equation to convert between
AEE and TEE for the Polar M430 and the Actiheart.
Furthermore, we subtracted or added, respectively, 10% of TEE
to account for diet-induced thermogenesis.

The Polar M430 exports data for TEE, steps, and 5 PA intensity
zones: minutes in (1) rest, (2) sitting, (3) low-intensity PA, (4)
medium-intensity PA, and (5) high-intensity PA. We did not
know the algorithm used by Polar to assign PA in 1 of these 5
categories, but we used the following conversion between the
Polar M430 and other instruments: sitting = sedentary, low =
light, medium = moderate, and high = vigorous + very vigorous
PA. We did not use “minutes in rest” from the Polar M430. We
compared steps only between the Polar M430 and the 2
ActiGraph locations, as this variable is not available in the
exported Actiheart data. We did not compare heart rate outcomes
in this analysis, as our aim was to investigate PA measures. We
will address heart rate measures in a separate analysis.

Table 2. Alternative cut-point sets for physical activity intensity zones.

Actiheart CPMActiGraph triaxial CPM vector magnitudeActiGraph uniaxial CPMaIntensity zone

≤10≤149≤99Sedentary

11-95150-2689100-1951Light

96-2342690-61661952-5724Moderate

≥2356167-96425725-9498Vigorous

N/Ab≥9643≥9499Very vigorous

aCPM: counts per minute.
bN/A: not applicable.

Statistical Analysis
We investigated Polar M430 validity for the following variables:
sedentary behavior minutes per day, light PA minutes per day,
moderate PA minutes per day, vigorous PA minutes per day,
MVPA minutes per day, steps per day, AEE per day, and TEE
per day. We used the Shapiro-Wilk test to test normality. We
calculated and compared Pearson and Spearman correlations,
with and without bootstrapping. Finally, we used the Pearson
correlation coefficient, with bootstrapping, to assess the
association between all instrument outcomes.

We used correlation cutoffs suggested by Evans [26]: very weak,
less than .2; weak, .2-.4; moderate, .4-.6; strong, .6-.8; and very
strong, greater than .8. We also calculated the intraclass
correlation coefficient (ICC) to test agreement between
instruments (absolute agreement, 2-way random, and single
measures), which is not indicated by Pearson. We used the 95%
confidence intervals of the ICC estimate to indicate poor (<.5),

moderate (.5-.75), good (.75-.9), and excellent (>.9) agreement
[27]. Mean absolute percentage error (MAPE) was used to
calculate measurement error between devices for each outcome.
There is no agreed-upon cutoff for MAPE, but previous
validation studies have used a MAPE of less than 5% [9] or
10% [28,29] to indicate low error.

We also used Bland-Altman plots to assess the agreement
between instrument outcomes [30]. Bland-Altman limits of
agreement (LoA) indicate the mean difference between 2
instruments, when comparing the mean for each outcome. A
positive mean value indicates an overreporting from the Polar
M430. The width of the upper and lower LoA indicates the
agreement between instruments, where a narrower range
indicates a higher agreement.

For each variable, we present (as a figure or multimedia
appendix) a scatterplot and a Bland-Altman plot for each
criterion. In the scatterplot, the blue straight line shows the fit
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line for the Pearson correlations. The black dashed line shows
how a perfect correlation and agreement would appear, and can
be used, together with the ICC, to see how much the Polar M430
over- or underreported the variables. In the Bland-Altman plot,
the blue line indicates the mean difference between the Polar
M430 and each criterion. Red lines show the upper and lower
LoA.

Finally, we performed sensitivity and specificity tests to evaluate
the ability of the Polar M430 to identify a target of 10,000
steps/day [31]. We did not report sensitivity and specificity for
the recommended 30 minutes of MVPA per day, because the
Polar M430 recorded at least 30 minutes of MVPA for all
participants. All statistical analysis were performed using R
version 3.5.3 (R Foundation).

Ethics Approval and Consent to Participate
The Norwegian regional committees for medical and health
research ethics reviewed the study (2019/557/REK nord). All
participants gave informed and written consent. This study was
conducted in accordance with the 1964 Declaration of Helsinki
and its later amendments.

Results

Participant Demographics and Wear Time
Table 3 presents participants’ height, weight, body mass index,
age, and sex.

All ActiGraphs had a wear time of at least 10 hours and were
included in the analysis. Recording on 1 Actiheart in the upper
position failed, and we excluded it from the analysis. Two
Actihearts were incorrectly initialized and were excluded from
the TEE and AEE analyses. Although 7 Actihearts in the upper
position and 5 Actihearts in the lower position had less than 10
hours of wear time, we did not exclude these because the
participants informed us that they did not remove the device
and manual review of the activity data indicated
misclassification of nonwear and sleep.

Polar M430 Validity and Agreement
Multimedia Appendix 3 shows all outcomes for all criteria.
Table 4 gives an overview of group data for all variables from
the Polar M430. The tables in Multimedia Appendix 4 present
all outcomes and group variables for each variable and all
criteria.

Table 3. Participant characteristics (N=50).

RangeValueVariable

152-193173.7 (10.1)Height (cm), mean (SD)

49-12575.3 (16.4)Weight (kg), mean (SD)

19.0-33.624.7 (3.6)Body mass index (kg/m2), mean (SD)

19-7445.1 (15.5)Age (years), mean (SD)

N/Aa24 (48)Females, n (%)

aN/A: not applicable.

Table 4. Data of exported variables from the Polar M430 (N=50).

ValueVariable

500.61 (110.78)Sedentary behavior (minutes), mean (SD)

308.45 (96.40)Light physical activity (minutes), mean (SD)

98.10 (48.71)Moderate physical activity (minutes), mean (SD)

25.55 (37.27)Vigorous physical activity (minutes), mean (SD)

123.65 (67.50)Moderate to vigorous physical activity (minutes), mean (SD)

2591.5 (619.1)Total energy expenditure (kcal), mean (SD)

N/AaActivity energy expenditure (kcal), mean (SD)

13,426 (4775)Steps, n (%)

aN/A: not applicable.

Sedentary Behavior
Only the hip-worn ActiGraph VM gave a moderate Pearson
correlation with the Polar M430. The remaining criteria gave a
weak or very weak correlation. All ICC agreements were poor.
The Bland-Altman LoA indicated underreporting of sedentary
behavior by the Polar M430 compared with the hip-worn

ActiGraph, and overreporting of the remaining criteria. All
MAPEs were high. Table A in Multimedia Appendix 4 provides
details of all criteria. Multimedia Appendix 5 gives correlations
and Bland-Altman plots for the Polar M430 against each
criterion.
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Light Physical Activity
The hip-worn ActiGraph and both Actihearts gave a strong
Pearson correlation with the Polar M430. The highest ICC
agreement was shown for the hip-worn ActiGraph CPM, with
a poor to moderate ICC. The Bland-Altman LoA indicated an
overreporting of light PA by the Polar M430 compared with
the hip-worn ActiGraph CPM and both Actihearts, and an
underreporting for the remaining criteria. All MAPEs were high.
Table B in Multimedia Appendix 4 provides details of all
criteria. Multimedia Appendix 6 gives correlations and
Bland-Altman plots for the Polar M430 against each criterion.

Moderate Physical Activity
All criteria except the Actiheart in the upper position gave a
moderate Pearson correlation with the Polar M430. The highest
ICC agreement was shown for the Actiheart in the lower
position, with a poor to moderate ICC. The Bland-Altman LoA
indicated an overreporting of moderate PA by the Polar M430
compared with the hip-worn ActiGraph CPM and both
Actihearts, and an underreporting for the remaining criteria. All
MAPEs were high. Table C in Multimedia Appendix 4 provides
details of all criteria. Multimedia Appendix 7 gives correlations
and Bland-Altman plots for the Polar M430 against each
criterion.

Vigorous Physical Activity
The hip-worn ActiGraph gave a strong Pearson correlation with
the Polar M430. The wrist-worn ActiGraph reported 0 minutes

in vigorous PA and were therefore excluded from analysis. The
Actiheart in the upper and lower position gave a strong and
moderate correlation, respectively. The highest ICC agreement
was shown for the hip-worn ActiGraph VM, with a poor to good
ICC. The Bland-Altman LoA indicated an overreporting of
vigorous PA by the Polar M430 compared with the hip-worn
ActiGraph, and an underreporting for both Actihearts. All
MAPEs were high. Table D in Multimedia Appendix 4 provides
details of all criteria. Multimedia Appendix 8 gives correlations
and Bland-Altman plots for the Polar M430 against each
criterion.

Moderate to Vigorous Physical Activity
All criteria, regardless of cut points and number of axes
considered, gave a moderately or strongly significant Pearson
correlation when comparing MVPA for the Polar M430. The
hip-worn ActiGraph VM had the strongest correlation. The
highest ICC agreement was shown for the Actiheart in the lower
position, with a poor to good ICC. The Bland-Altman LoA
indicated an overreporting of MVPA by the Polar M430
compared with the hip-worn ActiGraph, a minor underreporting
for the Actiheart in the upper position, and an underreporting
for the wrist-worn ActiGraph and the Actiheart in the lower
position. All MAPEs were high. Table E in Multimedia
Appendix 4 provides details of all criteria. Figures 2 and 3 show
correlations and Bland-Altman plots, respectively, for the Polar
M430 against each criterion.

Figure 2. Correlation between the Polar M430 and all criterion measures for moderate to vigorous physical activity (MVPA). CPM: counts per minute;
ICC: intraclass correlation coefficient; VM: vector magnitude.
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Figure 3. Bland-Altman plots for the Polar M430 and each criterion measure for moderate to vigorous physical activity (MVPA). Numbers are mean
difference and upper and lower limits of agreement (95% CI). CPM: counts per minute; VM: vector magnitude.

Activity Energy Expenditure
All criteria showed a strong and significant Pearson correlation
for AEE, where the wrist-worn ActiGraph VM was marginally
stronger than the other criteria. ICC agreement was highest for
the hip-worn ActiGraph VM with a moderate to good agreement.
The Bland-Altman LoA showed an overreporting of AEE by
the Polar M430 compared with the hip-worn ActiGraph and an
underreporting for the wrist-worn ActiGraph and both
Actihearts. All MAPEs were high. Table F in Multimedia
Appendix 4 provides details of all criteria. Multimedia Appendix
9 gives correlations and Bland-Altman plots for the Polar M430
against each criterion. Multimedia Appendix 10 gives a
combined plot for AEE and TEE.

Total Energy Expenditure
All criteria showed a very strong and significant Pearson
correlation for TEE. The correlation for wrist-worn ActiGraph
CPM was marginally stronger than other ActiGraphs. ICC
agreement was highest for the hip-worn ActiGraph VM, with
good to excellent agreement. The Bland-Altman LoA showed
an overreporting of TEE by the Polar M430 compared with the
hip-worn ActiGraph, and an underreporting for remaining
criteria. The hip-worn ActiGraph had an acceptable MAPE of
6.94% (VM) and 8.26% (CPM). the remaining criteria had a
high MAPE. Table G in Multimedia Appendix 4 provides details
of all criteria. ActiGraph does not report TEE, and group data
are therefore not available. Figures 4 and 5 show correlations
and Bland-Altman plots, respectively, for the Polar M430
against each criterion.
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Figure 4. Correlation between the Polar M430 and each criterion measure for total energy expenditure (TEE). CPM: counts per minute; ICC: intraclass
correlation coefficient; VM: vector magnitude.

Figure 5. Bland-Altman plots for the Polar M430 and each criterion measure for total energy expenditure (TEE). Numbers are mean difference and
upper and lower limits of agreement (95% CI). CPM: counts per minute; VM: vector magnitude.
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Steps
There was a very strong significant, and approximately equal,
correlation between the Polar M430 and both the wrist-worn
and hip-worn ActiGraph when measuring steps. ICC agreement
was moderate to good for both locations. The Bland-Altman
plot showed that the Polar M430 overreported steps for both
placements of the ActiGraph, but at a higher rate on the
hip-worn ActiGraph. Both MAPEs were high, but the hip-worn
ActiGraph had the lowest MAPE. Table H in Multimedia
Appendix 4 provides details of all criteria. Figure 6 shows

correlations and Bland-Altman plots for the Polar M430 against
both criteria.

Sensitivity (true-positive) analysis showed that the Polar M430,
compared with the hip-worn ActiGraph, identified all cases in
which a participant achieved 10,000 steps/day. For the
wrist-worn ActiGraph, sensitivity was .94. Specificity, the ability
of the Polar M430 to correctly identify those not achieving the
10,000 step/day target was .43 for the hip-worn ActiGraph and
.71 for the wrist-worn ActiGraph.

Figure 6. Correlations and Bland-Altman plots for the Polar M430 and the wrist-worn and hip-worn ActiGraph for steps. Numbers in the Bland-Altman
plots are mean difference and upper and lower limits of agreement (95% CI). ICC: intraclass correlation coefficient.

Discussion

Principal Findings
We have shown how the available variables correlate and agree
between the Polar M430 and 6 different combinations of device,
placement, and number of accelerometer axes. For most
outcomes, the Polar M430 showed the strongest correlation
with the hip-worn triaxial ActiGraph (VM). Similarly, agreement
was most often highest (or almost as high) when we compared
the Polar M430 with this criterion. Exceptions are MVPA and
moderate PA, where the Actiheart in the lower position showed
a somewhat higher agreement.

A previous study by Tudor-Locke et al [32] showed that the
hip-worn ActiGraph had a higher accuracy for step counting
than the wrist-worn ActiGraph in laboratory settings. Under
free-living conditions, the same study showed that the ActiGraph
detected more steps when placed on the wrist. It is therefore
possible to conclude that, although our study showed that the

wrist-worn ActiGraph had a higher correlation, higher
agreement, and lower MAPE, the true step counts may be closer
to the numbers reported by the hip-worn ActiGraph. Similarly,
studies comparing how wear location affected PA intensity [33]
and EE [34,35] outcomes showed that the hip-worn ActiGraph
is more accurate than the wrist-worn ActiGraph.

When compared with the hip-worn ActiGraph VM, the Polar
M430 had a very strong correlation for TEE and steps, a strong
correlation for AEE, MVPA, light PA, and vigorous PA, and a
moderate correlation for sedentary behavior and moderate PA.
Bland-Altman plots showed that the mean agreement was higher
for higher intensities of PA, with underreporting by the Polar
M430 for sedentary behavior and light PA, and overreporting
for the remaining variables. Sensitivity analysis also indicated
that the Polar M430 overreported the number of steps. However,
MAPE was high for most variables, and only TEE had an
acceptable MAPE of 6.9%. Multimedia Appendix 11 and
Multimedia Appendix 12 give correlations and Bland-Altman
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plots, respectively, for the Polar M430 and the hip-worn
ActiGraph VM for all variables.

MVPA was strongly correlated for all criteria except 1 (ie,
wrist-worn ActiGraph VM), and all criteria gave a strong
correlation for AEE and a very strong correlation for TEE and
steps. For the hip-worn ActiGraph, most outcomes showed a
stronger correlation when using the triaxial variable than the
uniaxial variable. For all criteria, all correlations for TEE were
stronger and all MAPEs were smaller than for AEE. This is
expected, as REE constitutes between 60% and 75% of TEE
[36]. Except for sedentary behavior and moderate PA, outcomes
were similar for the upper and lower position of the Actiheart.
This is in accordance with a previous study by Brage et al [37],
in which position did not affect outcome significantly.

Comparison With Previous Studies
We identified 12 previous studies that compared wrist-worn
Polar devices with an objective criterion measure for measuring
steps, PA intensity, and EE. These studies tested 5 different
Polar models: the Polar Loop (released in 2013), Polar V800
(released in 2014), Polar A300 (released in 2015), Polar A360
(released in 2015), and Polar M600 (released in 2016). We
found no studies on the Polar M430 (released in 2017). The
validity of EE, steps, and PA intensity levels for the Polar
devices in these studies varied, and correlations ranged from
weak to strong, depending on the study setting (laboratory vs
free-living), device, and criterion measure.

We found 3 previous Polar validation studies on EE in
laboratory settings showed a very weak to weak Pearson
correlation for the Polar Loop (r range .02-.3) [38] and Polar
A360 (r=.28) [39], and a very strong correlation for the Polar
V800 (r range .63-.85) [28]. In free-living study participants,
the Polar Loop [40], Polar A300 [41], and Polar V800 [42],
showed a very strong (r=.9), strong (r=.83), and weak to
moderate (r range .34-.69) correlation, respectively, for EE.

We found 3 studies on PA intensity levels in free-living
populations showed poor agreement for the Polar A300
(ICC=.36) [41], strong to very strong Pearson correlation for
the Polar V800 (r range .84-.93) [42], and moderate Spearman
correlation and poor agreement for MVPA on the Polar M600
(ρ=.53, ICC=.38) [43]. We found no studies comparing PA
intensity levels conducted in laboratory settings.

A total of 5 studies compared steps in laboratory settings. The
Polar Loop was tested in 4 studies, where Wahl et al (r range
.06-.83) [38], Wang et al (correlation not given) [44], and
Fokkema et al (r range .08-.26) [9], showed low validity for
steps, with a higher validity for higher walking speeds in 1 study
(Wahl et al [38]). An et al [45], on the other hand, found higher
validity for this device (r range .4-.7). Bunn et al [46] tested the
Polar A360 and also found it to have low validity (r range –.24
to .49). In addition, 4 studies compared steps in free-living
populations. The Polar Loop showed a strong to very strong
Pearson correlation (r range .7-.89) [47], the Polar A300 showed
a very strong correlation (r=.99) [41], the Polar V800 showed
a very strong correlation (r range .89-.92) [42]), and the Polar
M600 showed good agreement (ICC=.7) and a strong Spearman
correlation (ρ=.85) [43].

The results from previous studies showed that the validity of
Polar devices, ranging from the Polar Loop, released in 2013,
to the Polar M600, released in 2016, was highly dependent on
the study setting. Studies conducted in free-living populations
seem to agree that EE was reasonably valid, but not always.
Our study also showed a strong correlation for AEE and a very
strong correlation for TEE, for some criteria. The correlations
for MVPA were stronger in our study than in all other studies.
Results from previous research on step counting in free-living
populations showed similar strong correlations to those found
in our study.

With the exception of the Polar Loop, there are a limited number
of studies for each device. For all other devices, only 1 or 2
studies were available for a given device, and at most 1 per
device in free-living populations. In addition, previous studies
used a range of criteria, and as we found in our study,
correlations between the Polar M430 and each criterion can be
very different depending on which criterion is used for
comparison. It is therefore difficult to compare our results with
previous validation studies. However, because all of the previous
validation studies were conducted on older devices, it is
reasonable that our results showed stronger correlations and
higher agreements, as modern devices are likely to be more
accurate than older devices.

Other studies on non-Polar consumer-based activity trackers
generally agreed that the validity of step was high, but validity
for EE was lower. In a 2015 systematic review, Evenson et al
[48] concluded that, for consumer-based activity trackers such
as Jawbone and Fitbit, validity of steps was high, but validity
for EE was lower. Similarly, Feehan et al [49] systematically
reviewed Fitbit devices and found that validity for EE was low,
but validity for measuring steps was higher. Bunn et al [50]
systematically reviewed validation studies testing devices by
Fitbit, Garmin, Apple, Misfit, Samsung Gear, TomTom, and
Lumo, and found a tendency for devices to underestimate EE
and steps, but step validity was higher at higher intensities. This
is partly in contrast to our study. Compared with step counting,
TEE showed higher correlations for all ActiGraph outcomes.
For AEE, on the other hand, step counting was more strongly
correlated.

Strengths and Limitations
The strengths of this study include the large sample size, with
a wide range for participant weight, height, body mass index,
and age. We compared the Polar M430 against multiple criterion
measures, showing that the outcomes were highly dependent
on instrument type and placement. Furthermore, we used 1 tool
(QCAT) to convert all activity counts into PA intensity
variables, thereby limiting the number of unknowns introduced
when using multiple software packages.

Limitations are mainly related to uncertainties in cutoffs and
conversions. We compared TEE and AEE between instruments
because the Polar M430 did not report AEE and the ActiGraph
did not report TEE. We used the same algorithm for adding and
removing REE, but since we did not know how Polar calculates
REE, we did not know the conversion’s accuracy. No
agreed-upon cut points for PA intensity exist for the Actiheart
or the wrist-worn ActiGraph, so the accuracy of related
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outcomes was also somewhat uncertain. We did not individually
calibrate Actiheart devices, which could have given a more
accurate EE measure. Finally, the Hecht 2009 nonwear time
algorithm was not created for uniaxial accelerometer CPM. This
likely caused misclassification between nonwear time and
sedentary behavior, and lower correlation for this outcome.

Conclusion
This first validation study of the Polar M430 indicated higher
validity for MVPA, steps, and EE than with previous Polar
devices. The Polar M430 can potentially be used as an addition
to established research-grade instruments to collect some PA
variables over a prolonged period. Depending on the variable,

the Polar M430 over- or underreported most metrics and may
therefore be better suited to report changes in PA over time for
some outcomes, rather than as an accurate instrument for PA
status in a population. Due to the high MAPE of most outcomes,
only TEE or activity tracking in large samples can be trusted
to provide close to valid results. Before using any consumer
activity tracker or smart watch in research, we suggest piloting
the selected device in the population under study. In a future
study, we will attempt to create a function for converting Polar
M430 reported steps, MVPA, and EE into the ActiGraph
hip-worn VM equivalent, in order to determine whether such
an approach can be used to better track PA status in a population
over time.
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Multimedia Appendix 1 – ActiGraph wrist-to-hip activity-count conversion table 

The table below gives an overview of the cut-points used by ActiLife to convert wrist-worn 

ActiGraph activity counts to the hip-worn ActiGraph equivalent. 

Wrist CPM Equivalent counts 

0 0 

0 – 644 0.5341614 * Wrist count 

645 – 1272 1.7133758 * Wrist count - 759.414013 

1273 – 3806 0.3997632 * Wrist count + 911.501184 

3807 - infinite 0.0128995 * Wrist count + 2383.904505 

Multimedia Appendix 2 – Correlations between ActiLife and the QCAT 

The correlation between QCAT and ActiLife was found to be strong or very strong for all 

activity intensity zones, when using the sample defined in this paper, and when using the 

default setting for wear-time validation in ActiLife (i.e. Troiano [20]). 

The table below gives the Pearson correlation for each PA variable when comparing triaxial 

hip-worn ActiGraph, using the Troiano wear-time algorithm in ActiLife and the Hecht 2009 

wear-time algorithm in QCAT. Except for sedentary behaviour, correlations were very strong.  

Variable Pearson’s r Lower CI Upper CI Significance 

level 

Steps  1.000 1.000 1.000 P < .001 

Sedentary  .606 .394 .757  P < .001 

Light  .977 .959 .987 P < .001 

Moderate  .935 .887 .963 P < .001 

Vigorous  .993 .988 .996 P < .001 

MVPA  .957 .924 .975 P < .001 

CI: Confidence interval (95%) 

Multimedia Appendix 4 - Tables (A to H) of group data for each criterion compared 

with the Polar M430 for all outcomes 

Table A. Group data for each criterion compared with the Polar M430: output for sedentary 

behavior and each criterion measure. 

Measure ActiGraph Actiheart 

Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

 

Number 50 50 50 50 49 50 



Minutes in activity, 

mean (SD) 

738 (105) 620 (109) 477 (114) 399 (106) 398 

(110) 

416 

(126) 

Pearson r (95% CI) .49 (.1 to 

.7)a 

.52 (.15 

to .73)a 

.09 (–.16 

to .32) 

.06 (–.21 

to .3) 

.05 (–

.19 to 

.29) 

.3 (.02 

to .57)b 

Intraclass 

correlation 

coefficient (95% 

CI) 

.14 (.05 

to .26)a 

.33 (.1 to 

.51)a 

.09 (0 to 

.31) 

.04 (0 to 

.21) 

.04 (0 

to .23) 

.24 (.01 

to .5)b 

Mean absolute 

percentage error 

(%) 

52.68 29.24 25.11 28.90 25.74 22.22 

Mean difference –237.23 –119.59 23.19 101.97 98.05 84.29 

Upper limit of 

agreement 

–22.99 91.00 320.66 394.00 392.14 359.83 

Lower limit of 

agreement 

–451.47 –330.18 –274.28 –190.06 –196.04 –191.25 

aP≤.001. 
bP≤.05. 

 

Table B. Group data for each criterion compared with the Polar M430: output for light 

physical activity and each criterion measure. 

Measure ActiGraph Actiheart  
Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

       

Number 50 50 50 50 49 50 

Minutes in activity, 

mean (SD) 

291 (99) 399 (111) 536 (81) 501 (73) 245 

(85) 

272 

(87) 

Pearson r (95% CI) .62 (.46-

.75)a 

.7 (.53-

.81)a 

.41 (.12-

.65) b 

.02 (–.23 

to .29) 

.69 

(.52-.8)a 

.62 

(.44-

.76)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.62 (.47-

.75)a 

.5 (.37-

.65)a 

.1b (.03-

.18) 

.01 (0-.08) .55 (.4-

.68)a 

.58 

(.42-

.72)a 

Mean absolute 

percentage error 

(%) 

22.75 38.09 92.40 83.44 25.41 24.24 

Mean difference 17.11 –90.79 –227.93 –192.43 65.52 36.71 



Upper limit of 

agreement 

182.99 69.79 –37.85 42.46 207.03 193.71 

Lower limit of 

agreement 

–148.77 –251.37 –418.01 –427.32 –75.99 –120.29 

aP≤.001. 
bP≤.05. 

 

Table C. Group data for each criterion compared with the Polar M430: output for moderate 

physical activity and each criterion measure. 

Measure ActiGraph Actiheart 

 Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

       

Number 50 50 50 50 49 50 

Minutes in activity, 

mean (SD) 

49 (36) 56 (35) 178 (69) 293 (88) 57 (25) 71 (37) 

Pearson r (95% CI) .52 (.25-

.66)a 

.57 (.27-

.70)a 

.53 (.33-

.72)a 

.53 (.33-

.72)a 

.34 

(.03-

.59)b 

.56 

(.31-

.74)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.31 (.16-

.45)a 

.36 (0.18-

0.52)a 

.27 (.15-

.42)a 

.1 (.06-

.17)a 

.18 

(.02-

.34)b 

.45 

(.25-

.62)a 

Mean absolute 

percentage error 

(%) 

49.72 40.89 109.11 250.02 43.93 40.58 

Mean difference 48.72 41.86 –80.16 –194.44 42.02 27.36 

Upper limit of 

agreement 

133.01 121.83 37.20 –48.39 133.52 108.56 

Lower limit of 

agreement 

–35.57 –38.11 –197.52 –340.49 –49.48 –53.84 

aP≤.001. 
bP≤.05. 

 

Table D. Group data for each criterion compared with the Polar M430: output for vigorous 

physical activity and each criterion measure. 

Measure ActiGraph Actiheart 

 Hip 

counts 

Hip 

vector 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 



per 

minute 

magnitud

e 

       

Number 50 50 - - 49 50 

Minutes in activity, 

mean (SD) 

8 (21) 11 (23) - - 68 (40) 74 (40) 

Pearson r (95% CI) .6 (.25-

.82)a 

.76 (.52-

.85)a 

- - .62 (.4-

.78)a 

.59 

(.37-

.75)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.44 (.14-

.83)a 

.62 (.42-

.88)a 

- - .39 

(.21-

.59)a 

.33 

(.17-

.52)a 

Mean absolute 

percentage error 

(%) 

82.59 79.53 - - 833.33 953.60 

Mean difference 17.55 14.67 - - –42.41 –48.75 

Upper limit of 

agreement 

76.16 63.40 - - 24.11 20.00 

Lower limit of 

agreement 

–41.06 –34.06 - - –108.92 –

117.50 
aP≤.001. 

 

Table E. Group data for each criterion compared with the Polar M430: output for moderate to 

vigorous physical activity and each criterion measure. 

Measure ActiGraph Actiheart  
Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

       

Number 50 50 50 50 49 50 

Minutes in activity, 

mean (SD) 

57 (41) 67 (41) 178 (69) 293 (88) 124 

(47) 

145 

(58) 

Pearson r (95% CI) .73 (.53-

.82)a 

.75 (.54-

.84)a 

.6 (.44-

.73)a 

.51 (.34-

.66)a 

.6 (.39-

.76)a 

.68 

(.51-

.79)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.38 (.26-

.5)a 

.44 (.31-

.57)a 

.46 (.31-

.61)a 

.15 (.09-

.23)a 

.57 

(.36-

.74)a 

.64 

(.48-

.77)a 



Mean absolute 

percentage error 

(%) 

53.53 43.49 79.40 198.61 44.79 53.87 

Mean difference 66.27 56.53 –54.61 –168.89 –0.39 –21.39 

Upper limit of 

agreement 

158.59 146.24 64.94 –14.11 106.65 78.28 

Lower limit of 

agreement 

–26.05 –33.18 –174.16 –323.67 –107.42 –

121.06 
aP≤.001. 

 

Table F. Group data for each criterion compared with the Polar M430: output for activity 

energy expenditure and each criterion measure. 

Measure ActiGraph Actiheart 

 Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

       

Number 50 50 50 50 48 49 

Kcal, mean (SD) 603 (348) 711 (353) 1415 (543) 1727 (558) 987 

(488) 

991 

(525) 

Pearson r (95% CI) .75 (.5-

.87)a 

.75 (.54-

.87)a 

.78 (.65-

.86)a 

.79 (.63-

.87)a 

.74 

(.57-

.85)a 

.79 

(.63-

.87)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.69 (.51-

.84)a 

.75 (.53-

.87)a 

.31 (.24-

.41)a 

.2 (.15-

.27)a 

.57 

(.45-

.69)a 

.59 

(.49-

.69)a 

Mean absolute 

percentage error 

(%) 

27.71 24.01 103.08 152.65 54.38 53.38 

Mean difference 136.69 28.48 –676.05 –987.66 –252.65 –

257.58 

Upper limit of 

agreement 

600.63 492.57 21.99 –270.27 396.16 408.60 

Lower limit of 

agreement 

–327.25 –435.60 –1374.09 –1705.06 –901.46 –

923.76 
aP≤.001. 

 

Table G. Group data for each criterion compared with the Polar M430: output for total energy 

expenditure and each criterion measure. 

Measure ActiGraph Actiheart 



 Hip 

counts 

per 

minute 

Hip 

vector 

magnitud

e 

Wrist 

counts per 

minute 

Wrist 

vector 

magnitude 

Upper 

chest 

Lower 

chest 

       

Number - - - - 48 49 

Kcal, mean (SD) - - - - 2864 

(763) 

2866 

(806) 

Pearson r (95% CI) .91 (.75-

.95)a 

.91 (.78-

.95)a 

.94 (.88-

.97)a 

.93 (.86-

.96)a 

.88 (.8-

.93)a 

.89 

(.81-

.94)a 

Intraclass 

correlation 

coefficient (95% 

CI) 

.88 (.78-

.94)a 

.91 (.8-

.96)a 

.6 (.52-

.68)a 

.44 (.35-

.53)a 

.8 (.71-

.86)a 

.8 

(.73-

.86)a 

Mean absolute 

percentage error 

(%) 

8.26 6.94 28.71 42.54 14.54 14.37 

Mean difference 151.88 31.65 –751.17 –1097.40 –279.25 –

284.63 

Upper limit of 

agreement 

667.37 547.29 24.43 –300.30 441.76 455.49 

Lower limit of 

agreement 

–363.61 –484.00 –1526.77 –1894.51 –

1000.26 

–

1024.7

5 
aP≤.001. 

 

Table H. Group data for each criterion compared with the Polar M430: output for steps and 

both criteria reporting steps. 

Measure ActiGraph hip CPM  ActiGraph wrist CPM  

   

Number 50 50 

Step count, mean (SD) 9880 (3913) 12940 (3381) 

Pearson r (95% CI) .85 (.75-.91)a .87 (.79-.92)a 

Intraclass correlation 

coefficient (95% CI) 

.63 (.49-.75)a .82 (.7-.88)a 

Mean absolute percentage 

error (%) 

25.98 15.94 

Mean difference 3546 486 

Upper limit of agreement 8500 5298 

Lower limit of agreement –1408 –4327 
aP≤.001. 



Multimedia Appendix 5 – Correlations and Bland-Altman plots for the Polar M430 and 

each criterion measure for sedentary behavior.  

 



Multimedia Appendix 6 – Correlations and Bland-Altman plots for the Polar M430 and 

each criterion measure for light physical activity.  

 



Multimedia Appendix 7 – Correlations and Bland-Altman plots for the Polar M430 and 

each criterion measure for moderate physical activity.  

 



Multimedia Appendix 8 – Correlations and Bland-Altman plots for the Polar M430 and 

each criterion measure for vigorous physical activity.  

 



Multimedia Appendix 9 – Correlations and Bland-Altman plots for the Polar M430 and 

each criterion measure for activity energy expenditure.  

 



Multimedia Appendix 10 – Combined scatterplots for energy expenditure with Pearson 

correlations and intraclass correlations for activity energy expenditure and total energy 

expenditure. 

 

 



Multimedia Appendix 11 – Correlations for the Polar M430 and hip-worn triaxial 

ActiGraph for all variables. 

 



Multimedia Appendix 12 – Bland-Altman plots for the Polar M430 and hip-worn 

triaxial ActiGraph, for all variables.  
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Succeeding with prolonged usage of
consumer-based activity trackers in clinical
studies: a mixed methods approach
André Henriksen1* , Anne-Sofie Sand2, Trygve Deraas1, Sameline Grimsgaard1, Gunnar Hartvigsen3 and
Laila Hopstock1

Abstract

Background: Lack of physical activity (PA) is a risk factor for death and non-communicable disease. Despite this,
more than one fourth of adults worldwide do not follow PA guidelines. As part of a feasibility study to test a
complex intervention for increasing PA, we included a consumer-based activity tracker (AT) as a tool to measure PA
outcomes and to track heart rate during exercise sessions. The aim of the present study was to identify factors that
increase wear time when using a consumer-based AT for monitoring of participants in clinical research.

Methods: Sixteen participants aged 55–74 years, with obesity, sedentary lifestyle, and elevated cardiovascular risk
were recruited to a 12-month feasibility study. Participants wore a Polar M430 AT to collect continuous PA data
during a six-month intervention followed by 6 months of follow-up. We performed quantitative wear time analysis,
tested the validity of the AT, and completed two rounds of qualitative interviews to investigate how individual
wear-time was linked to participant responses.

Results: From 1 year of tracking, mean number of valid wear days were 292 (SD = 86), i.e. 80%. The Polar M430
provides acceptable measurements for total energy expenditure. Motivations for increased wear time were that
participants were asked to wear it and the ability to track PA progress. Perceived usefulness included time keeping,
heart rate- and sleep tracking, becoming more conscious about day-to-day activity, and improved understanding of
which activity types were more effective for energy expenditure. Sources of AT annoyance were measurement
inaccuracies and limited instruction for use. Suggestions for improvement were that the AT was big, unattractive,
and complicated to use.

Conclusions: Adherence to wearing a consumer-based AT was high. Results indicate that it is feasible to use a
consumer-based AT to measure PA over a longer period. Potential success factors for increased wear time includes
adequate instruction for AT use, allowing participants to choose different AT designs, and using trackers with
accurate measurements. To identify accurate trackers, AT validation studies in the target cohort may be needed.

Trial registration: U.S. National Library of Medicine, Clinical Trial registry: NCT03807323; Registered 16 September
2019 – Retrospectively registered.
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Background
The World Health Organization recommends at least
150 min of moderate physical activity (PA) or 75 min of
vigorous PA each week for adults [1]. Physical inactivity
is a leading risk factor for death and a range of non-
communicable diseases, including cardiovascular disease,
diabetes, and some cancers [2]. Worldwide, in the adult
population, 23% of men and 32% of women were physic-
ally inactive in 2016 [3–5]. Physical inactivity is more
prevalent in high-income countries, and together with
obesity, they are increasing globally [3, 4]. At the popula-
tion level, increased PA provides health and economic
benefits [6], and achievement of the PA recommenda-
tions has shown to reduce both cardiovascular disease
mortality and total mortality [7].
Most lifestyle intervention studies use traditional

research instruments (e.g. accelerometers, pedometers,
doubly labelled water, and calorimetry) for objective PA
and energy expenditure (EE) data collection [8], but the
number of studies using consumer-based activity
trackers are increasing [9]. Validation studies on such
activity trackers show different results, but several recent
reviews show that some metrics for some activity
trackers are accurate enough to measure PA in research
settings [9–13]. In addition, a recent meta-analysis by
Brickwood et al. [14] indicates that including an activity
tracker as part of a PA intervention may increase PA
participation through self-monitoring as well as assist
researchers in participant monitoring. This is also
supported by earlier systematic reviews, where De Vries
et al. [15] found an increase of PA in adults with over-
weight and obesity, and Lewis et al. [16] found similar
findings among intervention studies on adults.
However, few studies utilizing activity trackers use tracker

output as outcomes, and recording time is mostly limited
to the intervention period [8]. Exceptions include Schrager
et al. [17] who used a Fitbit Flex to collect PA over 1 month
(secondary outcomes), Carmichael et al. [18] who used a
Garmin Vivofit 3 to collect PA (primary outcome) for up to
1 month of follow-up, and Patel et al. [19] who used a Fitbit
Flex in a 12-week intervention, with 12-weeks of follow-up.
Although long time follow-ups with consumer-based
activity trackers are uncommon, such studies are likely to
increase in frequency going forward. For instance, Halse
et al. [20] are planning an RCT where participants will be
asked to wear an activity tracker for 6 months as part of an
intervention, with six additional months of follow-up. Simi-
larly, Maxwell-Smith et al. [21] planned a 12-week RCT,
where participants would wear a Fitbit Alta, with 12
additional weeks of follow-up. Although Fitbit-results for
the follow-up period are not yet reported, results from this
intervention period have been published [22].
Measuring long-term effects of a PA intervention

by requesting participants to return for additional

measurements several months after intervention end,
can be expensive, time consuming, and add to the
participant burden. To understand the long-term
effect of PA interventions better, future research
should include activity trackers and collect PA data
during- and beyond- the intervention period. There
is a need to identify success factors that can contrib-
ute to the adaptation of this approach. Phillips et al.
[23] identified a range of challenges associated with
using activity trackers in research. They grouped
challenges into participants’ challenges, challenges
with the research setting, and challenges with the
activity tracker.
In the planning of a randomized controlled trial

(RCT), the RESTART trial, with a complex lifestyle
intervention for lasting lifestyle changes, we conducted a
feasibility study that included a Polar M430 (Polar oy,
Finland) activity tracker to track PA for 1 year. The
Polar M430 was chosen because it was recently released
(2017), claimed high pulse sensor accuracy, and had an
acceptable price.
Having access to both quantitative and qualitative data

from the same study gives an opportunity to gain a more
complete understanding of the research topic by com-
paring and combining different perspectives [24]. To
look further into some of the areas identified by Phillips
et al. [23], we used a qualitatively driven mixed methods
approach where we analysed qualitative participant inter-
views together with an analysis of relevant quantitative PA
recordings. In this paper, we describe our findings and
provide recommendations for future research.
The aim of the present study was to identify factors

that increase wear time, in terms of daily wear adherence
and prolonged usage, when using a consumer-based
activity tracker for participant PA monitoring in clinical
research.

Method
Participant characteristics
Sample
For the feasibility study we invited 75 randomly selected
participants from the seventh wave of the Norwegian
population based Tromsø Study [25]. Inclusion criteria
were age ≥ 55 years, body mass index ≥30 kg/m2, self-
reported sedentary lifestyle, and increased cardiovascular
risk. Sixteen participants (participation 21%) responded
and were recruited for a 12-month feasibility study on
lasting life-style change, comprising a six-month exercise
intervention with 6 months of follow-up.

RESTART feasibility study
Participants in the feasibility study were exposed to a
22-week intervention of two 1-h group-sessions per
week with instructor-led gradually intensified exercise
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sessions (endurance and strength), three 2-h group coun-
selling sessions with nutritionist (Nordic Nutritional Rec-
ommendations [26]) and psychologist (Implementation
Intention-based strategies [27]). Participants wore a Polar
M430 activity tracker during the intervention period and
for 6 months of follow-up. The activity tracker was used
for participant monitoring and to allow participants to
self-monitor heart rate during training sessions. The activ-
ity tracker was not used as a tool for behaviour change.
The primary aim of the feasibility study was to examine
whether the intervention was feasible to progress to a
definitive RCT, regarding recruitment, adherence, and side
effects. Participants received written and oral instructions
on how to wear the activity tracker. Details about the
feasibility study are described elsewhere [28].

Polar M430
Physical activity recording
We equipped participants with a Polar M430 activity
tracker 1 week before intervention start and instructed
them to wear it for the duration of the intervention
study (i.e. 6 months). Participants also wore an ActiGraph
for 8 days at baseline and 8 days at the end of the six-
month intervention. For each participant, we therefore re-
corded up to 16 days of simultaneous measurements with
the ActiGraph and the Polar M430. ActiGraph output was
used to monitor change in PA and to test the validity of
the Polar M430 in the present cohort for relevant variables
(i.e. MVPA, steps, and total energy expenditure (TEE)).

Instruments
The Polar M430 was released in 2017. It has a six LED
(light-emitting diode) wrist-based photoplethysmography
sensor, i.e. optical pulse sensor, and a 50 Hz triaxial
accelerometer for tracking PA. It is waterproof, weighs
51 g, has up to 20 days of battery life, and cost 150 USD.
In a previous study we have shown that the Polar M430
gives valid results for TEE in a wider age- and weight-
range, when compared to a hip-worn ActiGraph wGT3X-
BT accelerometer (ActiGraph, Pensacola, FL, USA) [29].
The same study shows that although correlations are
strong for moderate-to-vigorous physical activity (MVPA)
and steps, average error is high, and researchers should be
careful to use these variables to infer PA levels.
The ActiGraph is extensively used in PA research and

is considered valid for PA intensity [30], step counting
[31], and EE recording [32]. The ActiGraph (firmware
version 1.9.2) was setup using ActiLife version 6.13.3
(ActiGraph, Pensacola, FL, USA). Output variables were
generated using ActiLife. MVPA variables were calcu-
lated using triaxial activity count cut-offs at 2690 or
above, as suggested by Sasaki et al. [13]. Steps were
internally calculated by the ActiGraph and exported
directly (through ActiLife). Activity EE variables were

calculated using “Freedson VM3 Combination ‘11”
(Sasaki 2011 [13] + Williams Work-Energy), and con-
verted to TEE by adding resting energy expenditure
(using the Schofield equation [33]) and 10% of TEE to
account for dietary induced thermogenesis.

Polar M430 setup and usage
For each participant we created a de-identified account
on Polar Flow [34], Polar’s online cloud storage solution,
containing only demographic data (i.e. sex, year of birth,
weight, and height). No identifiable information was
stored on the accounts, and participants did not have
access to account credentials. Since we did not want
activity tracker feedback to affect participant behaviour,
all notifications and feedback messages were disabled,
except sleep, which was impossible to disable. The
Global positioning system (GPS) was disabled to reduce
battery consumption and for privacy reasons. We
initially asked participants to wear the activity tracker
for the duration of the study (i.e. 6 months) and to wear
the tracker all day and night (24 h/day). They were told
to take the activity tracker off during sleep if they experi-
enced any discomfort.
Due to the long recording period, we asked partici-

pants who owned a smartphone to install the Polar Flow
mobile application on their private smartphones. Polar
Flow is used to transfer data between the activity tracker,
a smartphone, and Polar’s online cloud storage. We
assisted participants with connecting the activity tracker
to their smartphone and aided in any issues related to
the activity tracker throughout the study period.
We instructed participants to initiate data synchronization

(between activity tracker and smartphone) and charging
every Sunday. This bring-your-own device (i.e. smartphone)
approach has shown to improve the experience and engage-
ment of participants [35]. For participants who did not own
a smartphone, we linked their activity tracker to a project
smartphone. Since only five activity trackers had to be
connected to the project smartphone, we did not en-
courage pairing with other private devices (e.g. laptop).
Data synchronization between the project smartphone
and activity trackers were initialized every few weeks
during the weekly exercise sessions.
The first author met with participants regularly to

assist in connectivity issues with the activity tracker.
During these sessions, spontaneous discussions between
the researcher and participants about the activity tracker
occurred. Relevant information from these discussions is
reported and addressed in the discussion together with
other experiences from the researcher perspective.
After intervention end, we asked participants to

continue to wear the Polar M430 for an additional 6
months, for a total wear time of 12 months. Participants
without a smartphone meet with a researcher every 2–3
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months in the follow-up period to download data from
the activity tracker. After study end, we offered the Polar
M430 to the participants for their private use. Participants
were only informed after study end that they would
receive the activity tracker. We collected no further data
after the handover.

Participant perspective
To gain a deeper understanding of participant experi-
ences with the Polar M430, we used a qualitative
approach as qualitative methods are well suited for
accessing participants experiences and perceptions [36].
We performed semi-structured interviews, as described
by Kvale and Brinkmann [37]. All participants took part
in individual interviews at two time-points, mid-way in
the intervention and 6 months after intervention end.
Interview guides were developed and used during the in-
terviews to secure that all relevant aspects were covered.
An excerpt of the interview guides, with questions
related to activity tracker experiences, is given in in
Table 1.

Analysis
Participant characteristics were described descriptively.
In addition, we included a comparison of responders
and non-responders, using data registered at the seventh
wave of the Tromsø Study. We downloaded daily values
for steps, TEE, MVPA, and hours of wear time from the
Polar M430, and analysed hours of wear time to define
valid days for the full year of recording. A day was con-
sidered valid if the activity tracker had at least 10 h of
wear time [38]. Wear time was analysed descriptively,
reporting valid days (percentage of 1 year) for each par-
ticipant, mean number of valid days, and number of
valid days for participants who used the activity tracker
for the whole 12 months of recording. In addition, wear
time was analysed with participant comments.
As suggested by Phillips et al. [23], we also tested the

validity of the Polar M430 to check whether it was valid
in the current cohort of participants. We used repeated
measures correlations [39], with bootstrapping, to calcu-
late correlations between the Polar M430 activity tracker
and the ActiGraph wGT3X-BT accelerometer. We used
correlation cut-offs suggested by Evans [40], i.e. very

weak: < 0.2, weak: 0.2–0.4, moderate: 0.4–0.6, strong:
0.6–0.8, and very strong: > 0.8. We also calculated mean
absolute percentage error (MAPE) for each variable,
using 10% error as cut-off for acceptable error in free-
living studies. Finally, we used Bland-Altman limits of
agreements to assess consistency between instrument
outcomes [41]. Statistical analyses were performed using
R version 3.5.3.
The second author performed the verbatim transcrip-

tions of the mid-way interview audiotaped sessions,
while a professional firm (Digforsk AS) performed the
transcriptions of the six-months after audiotaped
sessions. We used the computer software QSR NVivo 12
Plus (QSR International, Pty Ltd) as a tool for structur-
ing data in the analysis process. We used thematic
analysis when identifying and reporting themes and pat-
terns in the data, a widely used method among health
researchers [36]. We used an inductive and semantic
approach to identify themes, to allow the themes to
emerge from the data and to identify participant’s opin-
ions. To identify patterns in the text, we used the six
steps defined by Braun and Clarke [42] for thematic ana-
lysis: data familiarization, initial coding, generating
themes, reviewing themes, defining and naming themes,
and writing up report. Comments mentioned by only
one participant were given equal weight as comments
mentioned by multiple participants [43]. Coding was
done by the first and second author and later harmo-
nized through discussion. Analysis was done by the first
author, and thoroughly reviewed by the second and last
author. Quotes used in the manuscript were translated
from Norwegian.
Coding was done in three iterations. The first iteration

was done on paper and resulted in many partly overlap-
ping codes. The second iteration was done in NVivo,
where we merged initial codes into the following 11
themes: 1) metric inaccuracy, 2) elements that triggered
irritation, 3) tracker visual design (look and feel), 4)
tracker practical design (ease of use), 5) motivation for
usage, 6) effect of using the tracker, 7) how tracker was
used, 8) why the tracker was used, and comments on
available metrics, including 9) sleep, 10) pulse, and 11)
PA. These were further refined into the four final
themes: motivation, activity tracker usefulness, activity

Table 1 Excerpt from interview guides with questions related to the activity tracker

Interview Number Question

Mid-way 1 How was your experience with using the activity tracker?

6 months after 2 How did you use the activity tracker? (Only during workouts, or also other times? Pulse zones? As a watch?)

6 months after 3 Did the activity tracker motivate you to work out more often? Harder?

6 months after 4 Was there anything special about the activity tracker that made you more motivated?

6 months after 5 What motivated you to wear the activity tracker (for an extended period)?

6 months after 6 Is there anything you wish was possible with the activity tracker, which could have motivated you to wear it longer?
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tracker annoyances, and activity tracker improvements.
Quotes are tagged with sex, age group, and whether they
owned a smartphone or not.

Results
Participant characteristics
Among the 16 participants, 11 (70%) owned a smart-
phone and could connect their phone to the activity
tracker. Participant characteristics at baseline are given
in Table 2. Activity tracker recording was performed be-
tween October 2017 and September 2018. An overview
of responders and non-responders, using recorded data
from the seventh wave of the Tromsø Study, held ap-
proximately 2 years before the RESTART feasibility
study, is given in Table 3.

Polar M430
Wear time
From the available 365 days of tracking, when including
all 16 participants, mean number of valid days was 292
(SD = 86), i.e. 80%. Half of the participants had 30 or less
non-valid days for the whole year of recording. Two
participants (number 14 and 15 in Fig. 1) stopped using
their activity tracker at the end of the intervention (after
6 months of wear time). Mean number of valid days for
the whole year, when excluding these participants, was
313 (SD = 69), i.e. 88%. We observed no difference in
wear time between the different months, except one par-
ticipant (8) who stopped using the activity tracker during
the summer holiday (July), and one participant (13) who
mostly stopped using the activity tracker after the inter-
vention but resumed wearing it after the summer
months. An overview of valid days for all participants for
the whole year of recording is given is Fig. 1.
The two participants who terminated use of the activ-

ity tracker after 6 months reported similar reasons for

this. One participant reported being very conscious
about wearing the activity tracker during the interven-
tion and said that she became more disciplined by wear-
ing it, which resulted in an increase in motivation.
However, after the intervention ended, she “just felt done
with it” (Participant 10, female 70–80, smartphone).
Two specific reasons were that it was too complicated,
and she had trouble with the connected smartphone,
and therefore did not have easy access to all the metrics.
As stated in the interviews, “I did not see the results I
wanted on my iPad … my daughter has a watch I like
better … it is simpler” (Participant 10, female 70–80,
smartphone). The other participant reported mainly
using the activity tracker as a tool to keep track of pulse
zones during instructor led exercise sessions: “you were
told to increase your heart rate by an amount, and then
you could look at the watch” (Participant 14, male 60–70,
no smartphone). In addition, he did not have a con-
nected smartphone, and felt the activity tracker was too
complicated, especially without access to the instruction
manual. “When you don’t know … how to use the watch
… if I had the instruction manual I could see [how to use
it]” (Participant 14, male 60–70, no smartphone).

Polar M430 validity
We used output from overlapping days of Polar M430
and ActiGraph usage to test the validity of the Polar
M430 in the present study. One participant did not wear
both devices simultaneously and were excluded from
analysis. Remaining participants had 8 to 16 valid days
of simultaneous recordings. All analyses are based on
data from 203 days of measurements distributed among
15 participants.
We found a strong correlation between the ActiGraph

and the Polar M430 for step count, and a moderate
correlation for MVPA and TEE. On average, the Polar
M430 over-reports steps and time in MVPA, and under-
reports TEE. Only TEE had a borderline acceptable
MAPE. Details for each variable are given in Table 4.

Participant perspective
We grouped comments into four themes: Motivation,
activity tracker usefulness, activity tracker annoyances,
and activity tracker improvements.

Motivation
This theme explores if and how participants were moti-
vated by wearing an activity tracker during- and after
the intervention. Some participants mentioned the activ-
ity feedback from the activity tracker, and the possibility
of directly observing progress, as the primary motivation
to wear it for such a long period. For these participants,
this feedback was an opportunity to push themselves

Table 2 Participant characteristics at baseline. The RESTART
feasibility study 2017–18

Characteristics Value

Age in years, mean (SD) 66.1 (5.8)

Smartphone owner, mean age (SD) 65.2 (4.8)

Not smartphone owner, mean age (SD) 68.2 (7.8)

Male sex, % (number) 68.8 (11)

Body mass index, kg/m2, mean (SD) 35.6 (5.3)

Current smokinga, % (number) 13 (2)

High total cholesterol, % (number) 50 (8)

Low HDL (high-density lipoprotein) cholesterol, % (number) 25 (4)

Hypertension, % (number) 19 (3)

Current smoking Self-reported daily smoking, High total cholesterol Total
cholesterol ≥5 mmol/L; Low HDL cholesterol HDL cholesterol < 1.3 (women)
or < 1.0 (men) mmol/L, Hypertension Blood pressure ≥ 140/90 mmHg, SD
Standard deviation. amissing values: 1 participant
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harder, especially during the instructor led exercise
session.
One participant stated that being able to measure pro-

gress, when she did not think there would be any pro-
gress, was very motivating and gratifying, and stated: “I
reached my goals … it was very gratifying … I did not
think I would [reach my goals]” (Participant 12, female
70–80, no smartphone). Another participant highlighted
that the ability of using the activity tracker to push him-
self into working harder and harder each session was
motivating, and said that “It was interesting to follow
progress, … I have never used this [technology] before, …
nice to observe that … yes, now I have pushed myself”
(Participant 2, male 50–60, smartphone).
During ad-hoc conversations throughout the interven-

tion period, many participants stated that they were
happy with being invited to the project and wanted to
contribute to the research by sharing their data. This
was also confirmed in the interviews, where several

participants indicated that an important reason for wear-
ing the activity tracker for such a long period was that
they were asked to do it. This willingness to share was
expressed by several participants: “We were asked to
wear it ... I though it is only fair [for the benefit of the
study]” (Participant 4, female 60–70, smartphone), “I
know how important research is ... so that you will get
reliable data … I was willing to make the ‘sacrifice’ for
you and the research” (Participant 13, male 60–70,
smartphone), and “No, I didn’t (when asked if he
reviewed recorded data), I just let it [the activity tracker]
do what it was supposed to do [record data] and I just
did what I was supposed to do [share data]” (Participant
3, male 70–80, smartphone).

Activity tracker usefulness
This theme encapsulates how and why participants used
the activity tracker, as well as their perceived effects of
using it. Most participants reported mainly using the

Table 3 Descriptive characteristics by attendance. The seventh wave of the Tromsø study

Characteristics Attended the pilot

No Yes

Number of participants 59 16

Age in years, mean (SD) 65.3 (5.7) 64.1 (5.8)

Male sex, % (number) 76.3 (45) 68.8 (11)

Body mass index, kg/m2, mean (SD) 34.0 (3.5) 36.2 (5.8)

Current smoking, % (number) 27.1 (16) 18.8 (3)

Total cholesterol, mmol/L, mean (SD) 5.8 (1.1) 5.5 (1.2)

HDL (high-density lipoprotein) cholesterol, mmol/L, mean (SD) 1.3 (0.5) 1.2 (0.3)

Systolic blood pressure, mmHg, mean (SD) 151.7 (18.3) 144.4 (15.4)

Current smoking Self-reported daily smoking, SD Standard deviation

Fig. 1 Activity tracker wear time for 1 year of recording
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activity tracker to get continuous feedback on heart rate
during instructor led workouts. In addition, it was also
used as a timepiece, and some used it as a tool for
measuring sleep and tracking PA, during and after the
intervention.
One participant highlighted the usefulness of the activ-

ity tracker by saying, “I had to pay attention to how I
performed, so I could increase resistance to get to the
[heart rate] level I was supposed to be at” (Participant 1,
male 60–70, smartphone). However, not all who said
they used it to track changes during a workout payed
much attention to it, as illustrated by one participant
who said, “I didn’t put too much into it, but it was fun to
keep track [of the activity]” (Participant 2, male 50–60,
smartphone).
In addition, many participants used it as a timepiece,

and replaced their existing wristwatch with the Polar
M430 to accommodate the study. One participant stated
that he “only used it as a watch” (Participant 13, male
60–70, smartphone) and some simply answered “Yes”
(Participant 6, male 50–60, no smartphone. Participant
16, female 70–80, no smartphone), when asked in a
follow-up question if they simply used the watch as a
timepiece.
An often-mentioned useful feature was the ability to

track sleep quality and sleep interruptions during the
night. For some this was an acknowledgement of what
they already knew about their sleep patterns, prompting
responses like “I look at sleep … I am awake a lot”
(Participant 8, male 60–70, smartphone) and “I can see
how little sleep I get” (Participant 6, male 50–60, no
smartphone). For others it constituted a source of
confusion because the activity tracker was perceived as
inaccurate, resulting in quotes like “tracking sleep … but
I don’t always think it is accurate” (Participant 15,
female 60–70, smartphone).
The reported effects of wearing the activity tracker

were different for most participants, and only a few
mentioned specific behavioural changes because of the
activity tracker. However, one participant said, “I became
more disciplined” (Participant 10, female 70–80, smart-
phone). Another participant mentioned that he became
more conscious about daily activity levels and which
types of activity that were effective and stated, “I am

more conscious about moving more while at work …. I
take the stairs instead of the escalator” (Participant 11,
male 60–70, smartphone), and “… more aware of what is
effective and what isn’t” (Participant 11, male 60–70,
smartphone). One participant highlighted this learning
effect by saying, “I learned something from the watch.
Things that I thought was [effective] … the watch showed
me that it actually wasn’t” (Participant 4, female 60–70,
smartphone).In addition, during ad-hock discussions
with participants when performing technical support on
the activity tracker, some participants stated that they
compared activity tracker output with each other and
found that interesting.

Activity tracker annoyances
This theme summarizes issues that participants found
annoying about the activity tracker. Being annoyed with
the activity tracker may reduce motivation to wear it.
Sources of annoyance should therefore be identified and
addressed if possible.
Technical challenges were a major source of annoyance,

where participants experienced disconnects between their
smartphone and activity tracker, and often found that the
activity tracker was difficult to use without assistance. This
was repeatedly mentioned during the interviews, prompting
responses such as, “negative about the watch … we got no
instructions on how to use it” (Participant 1, male 60–70,
smartphone), “a lot of information at once, considering I
hadn’t used this [technology] before” (Participant 4, female
60–70, smartphone), and “I have struggled with the tech-
nical aspects” (Participant 13, male 60–70, smartphone).
Several participants mentioned that it could be helpful to
have access to the instruction manual, to better understand
both the complicated features and the more basic watch
features. As stated by two participants: “It was too compli-
cated … but I didn’t spend too much time on it anyway …
because we didn’t have the instruction manual” (Participant
10, female 70–80, smartphone), and “I miss instructions
about the watch ... unsure how to set time” (Participant 7,
male 70–80, smartphone).
Activity tracker inaccuracies was also a major source

of annoyance, and sleep feedback was repeatedly men-
tioned as a source of annoyance because of perceived
inaccuracy. Two participants who had contradictory

Table 4 Mean data for Polar M430 and ActiGraph, and correlation, p-value, mean absolute percentage error, and Bland-Altman
mean difference and limits of agreements (LoA), for steps, moderate-to-vigorous physical activity, and total energy expenditure.
Person-days: n = 203

Variable Polar ActiGraph Correlation (95% CI) P-value MAPE Mean difference Lower LoA Upper LoA

Steps 8956 (5106) 5165 (3230) 0.625 (0.44, 0.70) < 0.001 119.5% 3791 − 4860 12,442

MVPA 143 (97) 44 (32) 0.495 (0.31, 0.53) < 0.001 373.9% 99.0 −80.4 278.4

TEE 2868 (581) 2967 (458) 0.446 (0.50, 0.69) < 0.001 10.6% − 98.7 − 948.5 751.1

Numbers are means (standard deviations). MVPA Moderate-to-vigorous physical activity, TEE Total energy expenditure, Correlation Repeated measurement
correlation with 95% confidence interval, MAPE Mean absolute percentage error, LoA Limits of agreement
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experiences may best describe this. One participant said,
“The only thing that annoys me … when I feel that I have
slept very well … it reports how bad I have slept” (Par-
ticipant 3, male 70–80, smartphone), and the other said,
“the sleep thing … I almost got annoyed sometimes … I
woke several times per night, and sometimes I am out of
bed three-four times ... and it reports that I have slept
well” (Participant 12, female 70–80, no smartphone).
One participant also noticed that the pulse sensors

was not always accurate, and she got somewhat frus-
trated about this, stating that, “I got very caught up in
the [low] pulse measurements … resting at 39 [beats per
minutes] during the day? I don’t get it” (Participant 4,
female 60–70, smartphone). Another participant also
wondered about the accuracy during exercise sessions,
and mention that, “I wonder if the watch is correct … it’s
not correct … much lower pulse … not even close”
(Participant 5, male 70–80, no smartphone).
Interest in tracking activity was limited for some par-

ticipants who did not own a smartphone (and we could
not connect the activity tracker to their phone). When
asked about whether they used the watch to track PA,
one responded “No, I didn’t, … we could have connected
[the watch] to a smartphone, but I didn’t have [a smart-
phone]” (Participant 6, male 50–60, no smartphone).
Furthermore, when we asked if they missed any features
on the activity tracker, only lack on direct feedback on
PA metrics were mentioned by these participants. As
stated by two participants without a smartphone: “Sigh.
Yes, steps” (Participant 16, female 70–80, no smartphone)
and “Steps, … I am almost certain it is available on the
watch” (Participant 14, male 60–70, no smartphone). In
addition, one participant, who owned a smartphone but
where the connection between her smartphone and ac-
tivity tracker was unstable and hampered data transfer,
pointed out that this made it more complicated to use
the activity tracker and said, “It was hard to use the
watch … I did not see the results as I wanted … I think
those who saw their results on their phones got more out
of it” (Participant 10, female 70–80, smartphone without
successful connection).

Activity tracker improvements
The final theme captures suggestions that participants
reported regarding the choice of activity tracker. Most
participants were happy to wear the activity tracker dur-
ing the intervention, both day and night, and reported
no major issues with the day-to-day usage. However,
some participants mentioned that the activity tracker
could have been more attractive, and some felt it was
too large and tight, prompting comments such as, “It is
[for instance] not good looking during the Christmas holi-
day” (Participant 4, female 60–70, smartphone), “I take
it off when I dress up” (Participant 10, female 70–80,

smartphone), “I have a more expensive watch I use when
I want to look nice” (Participant 1, male 60–70, smart-
phone), and “It is a bit big … also tight” (Participant 1,
male 60–70, smartphone). Other participants were not
too concerned about the design of the activity tracker,
and one even made a point of saying “I could not be
bothered to wear another watch when at parties”
(Participant 15, female 60–70, smartphone).
Although the activity tracker had more features than

we informed participants about, some pointed out that
they knew other people with more advanced activity
trackers with more interesting features. One participant
said, “My daughter has a more advanced [watch], with
all possible features ... but it is of course more expensive”
(Participant 13, male 60–70, smartphone). On the other
hand, another participant, who had a daughter with a
less complex activity tracker, thought it would be better
to use a less complicated activity tracker and commen-
ted that “I liked it better … it was easier to use” (Partici-
pant 10, female 70–80, smartphone).

Discussion
Summary of findings
In this feasibility study with 12 months of PA recording,
we analysed participant wear time, tested the Polar
M430 validity in this sample, and reported participant
experiences with long term usage. Wear time was high
throughout the study. The Polar M430 over-reports
steps (strong correlation) and MVPA (moderate correl-
ation), and under reports TEE (moderate correlation).
TEE had borderline acceptable error. Main motivations
for increased wear time were that they were asked to do
it and the ability to track activity progress. Regarding
usefulness, most participants mainly used the activity
tracker as a timepiece, but some also used it to measure
heart rate and sleep tracking. In addition, reported
positive effects were being more conscious about their
day-to-day activity and improving their understanding of
the effect of different activity types. Two major sources
of annoyance were sleep- and -heart rate inaccuracy and
limited instruction for use on the activity tracker. Sug-
gestions for improvement were that the Polar M430 was
big, unattractive, and too complicated to use.

Participant characteristics
We invited 75 participants randomly selected from the
seventh wave of the Tromsø Study. Since only 16
accepted the invitation, we included everyone who
accepted, resulting in a sex skewed cohort of 70% men.
All participants owned a mobile phone, but only 70%
owned a smartphone. Smartphone penetration is lower
in older age groups [44], which we also saw in this sam-
ple, as those owning a smartphone had a lower median
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age (64y vs 73y) compared to those who did own a
smartphone.

Polar M430
Wear time
In the present study, wear time was high, and most par-
ticipants wore the activity tracker for the duration of the
study. This high wear time is in alignment with a similar
study, where Duignan et al. [45] conducted a shorter
intervention study (3 months) in a younger sample
(mean age: 23.4, SD: 2.8). In this study, 73% of partici-
pants still wore an activity tracker after 87 days, with an
average wear time of 79 days (90%) among remaining
participants. Reasons for loss of participants were mostly
technical (e.g. data synchronizing) and loss of activity
tracker. However, in a observational study by Hermsen
et al. [46] they saw a slow exponential decline in wear
time of a hip-worn Fitbit Zip, also mostly due to
technical reasons, where only 16% still wore the activity
tracker after 320 days. Although anecdotal, this indicates
that being part of an intervention with close follow-up
of participants increases wear time, as compared to stud-
ies where participants are only observed.

Polar M430 validity
In a systematic review of Polar activity trackers [47], we
have previously reported that Polar activity trackers
show mixed results depending on activity tracker, study
setting, and study sample. Furthermore, compared to
findings in a previous Polar M430 validation study [29],
with a wider range of weight, height, and age, correla-
tions were lower and MAPEs were higher in the present
cohort.
The difference in results between the two validation

studies shows that it is good practice to perform a separate
validation study on participants with similar characteris-
tics as the sample under study, when planning to use a
consumer-based activity tracker in clinical research, as
suggested by Phillips et al. [23]. The ActiGraph and the
Polar M430 are worn of different locations, which may
contribute to the large difference in MVPA and steps be-
tween devices. Certain activity types, e.g. stationary biking
where hands are placed firmly on the bike’s handle, will
result in more activity on the hip compared to the wrist.
TEE is less affected by this difference as resting energy ex-
penditure (energy consumed to maintain body functions
at rest) is the main component of TEE and constitutes
between 60 and 75% of TEE [48]. In addition, about 10%
of TEE is expended from food digestion (dietary induced
thermogenesis).
The Polar M430 is not a suitable replacement for the

ActiGraph but can be used as a source of additional in-
formation for long term monitoring, for some variables.

Participant perspective
Challenges and solutions
In the following, we discuss challenges and potential
solutions, drawn from participants’ feedback together
with experiences from the researcher perspective, and
results from the objective data analyses.

Motivation and activity tracker usefulness Most
participants were enthusiastic about being invited to
participate in the study. This was expressed repeatedly
throughout the intervention during ad-hoc encounters.
Because of this and because collecting data from the
activity tracker was presented as an important part of
the intervention, we do not find it surprising that wear
time was high during the intervention. This is also in
accordance with Duignan et al. [45] who achieved high
wear time in a 3-month PA intervention. Wear time dur-
ing follow-up was higher than expected, as the observa-
tional study by Hermsen et al. [46] showed high activity
tracker attrition. However, the same study also showed
that this attrition was lower in higher age groups, which
may be part of the explanation of the high wear time in
the present study.
Most users, when buying a new activity tracker, tend

to stop using it after a few months, mostly due to loss of
motivation [14, 49]. In the present study, only two of 16
stopped using the activity tracker after 6 months (i.e.
intervention end). A major reason that participants in
the present study wore the activity trackers for a full
year, was because they were asked to wear it and they
wanted to contribute to the study. This suggests external
motivation and, at least for this group, may partly
explain why activity tracker usage is not higher in the
general population. About 20% of Americans use an
activity tracker, with about 10% usage among people
aged 55 and above [50]. While some reported annoyance
with sleep and heart rate inaccuracies, we believe most
participants were not too concerned with activity tracker
accuracy, but more concerned about understanding how
to use the activity tracker and having access to all
collected data.
Similarly, we observed (during ad-hoc interactions

with participants during the intervention) that some par-
ticipants sometimes compared activity tracker output
with each other. This may also indicate that having
access to activity output for self-monitoring and being
able to compare and compete with others was a possible
source of motivation for prolonged wear time. This
observation supports earlier findings which shows that
activity tracker feedback can motivate PA participation
in and of itself [14–16]. This effect must thus be consid-
ered when planning and analysing results of a PA inter-
vention, to avoid ascribing increased PA participation to
the intervention when the activity tracker itself may have
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been a major source of motivation. In addition, for par-
ticipants who found the activity trackers useful during
exercise sessions, and those who found it useful for
learning which types of activity that were effective, it is
likely that these features contributed to the increased
wear time. It is apparent that activity tracker output is
important for many, and unless there are specific rea-
sons to not displaying these outputs, researchers should
use an activity tracker that can show output that partici-
pants would find relevant to track their own progress
(e.g. steps and/or minutes of MVPA).

Activity tracker annoyances We found several sources
of annoyance or nuisance among participants, where
problems were mostly related to technical problems, ac-
tivity tracker inaccuracy, and activity tracker complexity.
Technical problems during smartphone and activity

tracker setup are likely to occur because of the large
variation in participant phone models. It is therefore
necessary to schedule enough time available for setup
and have technically skilled personnel available who can
resolve any issues directly. Too many technical problems
may reduce participants motivation to wear an activity
tracker. This is also suggested by Hermsen et al. [46]
who found that the main reason (57%) for tracker attri-
tion was related to technical problems. In addition, some
participants did not bring their smartphone for the setup
meeting, and several participants’ phones were out of
power. Participants should have been reminded to bring
a fully charged smartphone, and we should have brought
charging equipment to the initial meeting. In addition,
some participants lost their charging cable, and one
misplaced the activity tracker for a period, showing that
replacement equipment should also be available.
We did not specifically ask participants to clean the

activity tracker regularly. Because of the long recording
period, this caused the optical pulse sensor to become
unclean and therefore unreliable. This sensor emits light
onto the skin and estimates pulse by analysing changes
in light waveform from the reflecting light. The reflect-
ing light is affected by change in blood volume under
the skin [51]. Annoyances about heart rate inaccuracy
could have been avoided, at least partly, by instructing
participants to clean the activity tracker regularly. In
addition, the Polar M430 regularly misclassified sleep
and non-wear time. Our main reason for selecting the
Polar M430 was that it had a very good optical pulse
sensor (according to Polar). However, we did not
consider that being unable to disable sleep notifications
could cause annoyance. We did not perform sleep valid-
ation on the Polar M430, which we (in retrospect)
should have done to be able to inform participants about
the possible inaccuracy of this metric.

Inaccuracy was mentioned as an individual issue and
as a source of curiosity when participants compared ac-
tivity tracker output between themselves and saw differ-
ent results for the same activity. People are different and
activity tracker output will differ between individuals.
An additional possible source of variation may be activ-
ity tracker firmware, which is routinely updated by
vendors. How updates affect activity tracker output are
mostly company secrets. We therefore avoided updating
the firmware unless we could update all activity trackers
simultaneously. However, participants who connected
the activity tracker to their smartphone were able to do
this update more frequently, which resulted in several
weeks where participants had different firmware. Activ-
ity tracker inaccuracy has also been identified by e.g.
Hardcastle et al. [52] as a source of disappointment and
false sense of achievement.
Several participants requested an easier way to view

activity tracker output. The Polar M430 does not show
daily step count automatically. This was annoying to sev-
eral participants. This is also supported by Hardcastle
et al. [52] who identified steps as the most popular fea-
ture of an activity tracker. Activity output would likely
have been more accessible for participants if we had pro-
vided them with the instruction manual, which shows
how to access this information. The main reasons for
not providing the instruction manual were to prevent
participants to change settings (e.g. turn on GPS track-
ing) or be affected by activity tracker output. However,
since wearing an activity tracker is likely to only affect
short term behaviour [14] we suggest providing partici-
pants with the instruction manual for long-term
measurements. The importance of having access to the
instruction manual and that lack of instructions are a
source of annoyance, is also supported by previous stud-
ies on activity tracker use in older adults [53]. In the
present study, some participants said that the Polar
M430 was too complicated. However, in a study by
McMahon et al. [54] on older adults using an activity
tracker to increase PA, they showed that although older
adults require more time to adopt new technology and
needs more technical support [55], they found activity
trackers easy to use and useful for PA self-tracking.
Although this study used a Fitbit One, a less complex
activity tracker compared to the Polar M430, adequate
training in the present study would likely empower
participants to use the activity tracker as intended.

Activity tracker improvements Participant feedback re-
garding the activity tracker was mostly related to activity
tracker design and available outputs. Hardcastle et al.
[52] also found appearance to be important, and the
Polar A300 (an earlier Polar model with similar design
as the Polar M430) was found to be especially “bulky
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and clunky”. Similarly, Puri et al. [56] have also shown
that aesthetics and comfort are important to increase
activity tracker usage. When considering activity trackers
in future studies, researchers should therefore consider
appearance and usability, and not only price, accuracy,
battery life, etc. Many vendors offer multiple versions of
the same activity tracker, with different colours, shapes,
and materials. Allowing participants to choose between
multiple designs may increase wear time. This may be
more important in a study with a younger population, as
younger participants are more likely to own an activity
tracker and may be resistant to replace it or start wear-
ing an additional device. Similarly, because some partici-
pants said the activity tracker was too complicated and
others said it was too simple, it could be beneficial to
have more than one activity tracker available for partici-
pants to choose between, at least if the goal is to
increase wear time. The drawback is that it is more com-
plicated to compare activity levels between participants
using different activity trackers.

Recommendations
From the above discussion, we have extracted the follow-
ing recommendations that should be considered when
planning and performing a study where participants are
equipped with an activity tracker over a prolonged period.
We have grouped recommendations into three phases: 1)
the preparation and planning phase, 2) the setup and
training phase, and 3) the recording phase.

Preparation and planning phase
– Budget for a technician who can provide technical

support throughout the study and during follow-up.
– Offer activity trackers that can easily display relevant

metrics, unless there are specific reasons not to
display output.

– Allow participants to choose from multiple activity
tracker designs, both in terms of complexity and
appearance.

– Validate recent activity trackers in the relevant
cohort if no such study exists, to identify acceptable
activity trackers.

– Validate all metrics on the selected activity tracker
and consider informing participants about
untrustworthy metrics.

Activity tracker setup and participant training phase
– Provide adequate time for training and follow-up of

participants.
– Remind participants to bring a fully charged

smartphone (and bring charging equipment for
common phones types) before connecting
participants’ phones to their activity tracker.

– Instruct participants to clean the activity tracker
regularly, to avoid inaccuracy in pulse
measurements.

– Provide activity tracker instruction manual to
participants, unless there are specific reasons not to.

Recording phase
– Keep close follow-up of participants to increase wear

time.
– Have replacement activity trackers and charging

equipment available.
– During study or follow-up; update activity tracker

firmware simultaneously if possible.

Contribution to the literature
The most important contribution to the literature from
this study is the identification of several important suc-
cess factors that may increase wear time of an activity
tracker, when provided to participants in a clinical study
for PA tracking over a prolonged period. These factors
have been summarized into a list of recommendations
for clinical studies where similar methods of PA tracking
are used. Following these recommendations may be
timesaving for researchers, as well as reduce potential
activity tracker annoyance among participants.

Strengths and limitations
The main aim of this paper was to identify factors that
contributed to the wear time of the activity tracker.
Study participants were recruited from a large ongoing
population study, with a well-defined sample in terms of
age, lifestyle habits, and health risks. This strength adds
to the study’s transferability to similar population groups
in similar societies [57]. Another strength is the use of a
mixed methods approach and the long recording period,
which allowed us to identify challenges from multiple
perspectives and identify challenges that would not
necessarily be detected in a study of shorter duration.
The main limitation is the limited transferability to

other populations and age groups. Since participants
were part of an intervention, desirability bias may have
affected activity tracker wear time. This limits transfer-
ability of findings to other study designs. In addition,
because only 16 participants were included, the variation
in quantitative findings may be due to undetected differ-
ences in background characteristics. Participation,
although low (21%), is as expected because intervention
studies are unavoidably hampered by selection bias be-
cause participation demands high motivation and com-
pliance. This challenge is further reinforced in studies
that also require considerable efforts from participants,
i.e. lifestyle interventions. In addition, older people often
decline participation in PA interventions [58]. Accept-
ance assessment for the underlying feasibility study is
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addressed in Deraas et al. [28]. Further, participants were
recruited from a population-based health study, and
although the attendance was 72% in this age-group [59],
this may introduce selection bias.

Conclusions
In this study, long term activity tracker wear time was
high. Results indicate that it is feasible to use a consumer-
based activity tracker to measure PA over a longer period.
Potential success factors for increased wear time includes
providing adequate instructions on how to use the activity
tracker, allowing participant to choose between different
activity tracker designs (appearance and complexity), and
offer activity trackers with accurate measurements. Valid-
ation studies on recent activity trackers may be needed for
the target cohort, to identify such trackers.
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Abstract 
Background: Consumer-based physical activity trackers increase in popularity. The widespread use of 
these devices and the long-term nature of the recorded data provides a valuable source of physical 
activity data for epidemiological research. Major challenges include the large number of activity 
tracker providers and models, and the difference in how and what data are recorded and shared.  

Objective: The aim of this study was to develop a system to record data on physical activity from 
different providers of consumer-based activity trackers, and to examine its usability as a tool for 
physical activity monitoring in epidemiological research. The longitudinal nature of the data and the 
concurrent pandemic outbreak allowed us to show how the system can be used for surveillance of 
physical activity levels before, during, and after a COVID-19 lockdown. 

Methods: We developed a system (mSpider) for automatic recording of data on physical activity from 
participants wearing activity trackers from Apple, Fitbit, Garmin, Oura, Polar, Samsung, and Withings, 
as well as trackers storing data in Google Fit and Apple Health. To test the system throughout 
development, we recruited 35 volunteers to wear a provided activity tracker from primo 2019 and 
onwards. In addition, we recruited 113 participants with privately owned activity trackers worn 
before, during, and after the COVID-19 lockdown in Norway. We examined monthly change in 
number of steps, minutes of moderate-to-vigorous physical activity, and activity energy expenditure 
during 2019-2020 using bar plots and two-sided paired sample t-tests and Wilcoxon signed-rank test. 

Results: Compared to March 2019, there was a significant reduction in mean step count and mean 
activity energy expenditure during the March 2020 lockdown period. The reduction was temporary, 
and the year to year comparison show a small increase in moderate-to-vigorous physical activity and 
no change in steps and activity energy expenditure. 

Conclusions: mSpider is a working prototype currently able to record physical activity data from 
providers of consumer-based activity trackers. The system was successfully used to examine change 
in physical activity levels during the COVID-19 period.  

Keywords: Energy expenditure; physical activity; steps, smart watch; fitness tracker; actigraphy; 
public health; lockdown; Sars-Cov-2; pandemic; COVID-19. 

Introduction 
Physical activity is an important lifestyle factor [1] associated with a range of health outcomes [2]. 
Physical activity questionnaires and accelerometers are widely used to measure physical activity in 
epidemiological studies. The widespread use of advanced consumer-based activity trackers with a 



growing list of sensors and capabilities [3] has increased the use of activity trackers for research 
purposes [4]. New activity trackers are continuously released, and although the validity of most 
currently used activity trackers is unknow, a recent systematic review showed that inter-device 
reliability is often very strong [5].    

This unique source of longitudinal physical activity recordings can be used to measure change in 
physical activity over time. It is therefore of interest to develop a system for automatic and 
continuous recording of physical activity data from available providers. This system can be used in a 
range of different research projects, including as a tool for physical activity surveillance.  

The disease outbreak of COVID-19 (SARS-CoV-2) started in China December 2019, spread rapidly, and 
became a global pandemic. The first case of COVID-19 in Norway was confirmed February 26th, 2020. 
March 12th the Norwegian government implemented a lockdown of all schools, kindergartens, 
universities, high schools, gyms, etc., with additional restrictions in the following days. Although a 
national curfew was not instigated, people were encouraged to stay at home if possible. The most 
restrictive measures were gradually lifted from the end of April throughout May 2020. Less intrusive 
social distancing restrictions were gradually re-introduced throughout the Autumn, but no second 
lockdown was instigated in 2020. 

In addition to the societal cost of the COVID-19 pandemic [6], physical inactivity during lockdown, 
and failing to revert to normal physical activity routines after the lockdown may cause health harm 
[7].  

The aim of this study was to develop a system for automatic continuous recording of physical activity 
data from a range of providers of consumer-based activity trackers, and to examine its usability as a 
tool for physical activity monitoring in epidemiological research. The longitudinal nature of the data, 
and concurrent pandemic allowed us to examine how this system could be used to monitor change in 
physical activity before, during, and after the COVID-19 lockdown. 

Materials and methods 

System architecture 
We designed and developed an experimental system, mSpider, intended for automatic and 
continuously recording of physical activity data using consumer-based activity trackers. The system 
collects data on physical activity, energy expenditure, pulse, sleep, and related variables over an 
extended period, and from a range of providers and activity tracker models.  

The system consists of three modules (see Figure 1): 1) the web frontend, 2) the server backend, and 
3) the mobile application. The web frontend is used for managing surveys and to facilitate participant 
authorization when granting access to their activity tracker data. The server backend stores 
participant authorization access information, handles data transfer between mSpider and the cloud 
storages of supported providers, and stores downloaded activity tracker data. The mobile application 
further facilitates authorization and data transfer for providers where communication cannot be 
performed directly between the server backend and the provider cloud storage (e.g. Samsung and 
Apple activity trackers). For these providers, communication is performed through the provider 
mobile application and uploaded to the mSpider server backend via the mSpider mobile application. 

Figure 1 gives an architectural overview of the mSpider system, which providers are supported, and 
communications paths between systems. Red dashed lines indicate communication paths for 
participant authorization. To share data, users of Samsung and Apple activity trackers must install the 
mSpider mobile application and initiate authorization through this application via the provider 
mobile application. All other supported providers initiate authorization via the web frontend, using 
open authorization, and participants are not required to install the mSpider application. Black solid 
lines between the server backend and external systems show providers where the server backend 
initiates a pull request to fetch data directly from the provider cloud storage, after access is granted 



by the participant. Grey dashed lines show providers where data transfer is initiated at the provider 
side (e.g. Garmin) using a push request to provider-specific interfaces on the server backend. Data 
collected by the mSpider mobile app are also pushed to the mSpider server backend.  

 
Figure 1. mSpider system architectural overview. 

Authorization 
Participants authorizes the mSpider system and grants access to their activity tracker data using open 
authorization (OAuth). Open Authorization is an open protocol for allowing users to securely 
authorize data sharing between systems, without sharing user logon credentials [8]. 

Pull requests from the mSpider system to external APIs (e.g. Fitbit Web API) contains a Client 
Identifier and Client Secret, identifying mSpider as an authorized application for data retrieval. These 
credentials are given by the external system (i.e. providers) upon successfully registration of the 
mSpider app with each provider.  

In addition, a Token Identifier and Token Secret are provided by the external system when an activity 
tracker user registers to participate in a study. Tokens are used to identify participants in future pull 
requests to the provider cloud storage (or push request from the provider). No directly identifiable 
information is transferred between the provider systems and the mSpider system. All communication 
is encrypted through the secure socket layer (SSL) protocol (i.e. https). 

Provider support and available data types 
We developed support for activity trackers from Fitbit, Polar, Garmin, Withings, Samsung, Oura, and 
Apple, as well as providers that store data in Google Fit or Apple Health open health clouds (e.g. 
Huawei). Except Samsung and Apple, supported providers offers a REST (representational state 
transfer) API (application programming interface) web service. The REST software architectural style 
provides a set of constrains for distributed systems [9] and is a style commonly used when 
developing web services. A RESTful API, i.e. an API using HTTP (Hypertext Transfer Protocol) requests 



(e.g. GET, POST), uses a stateless architecture where the necessary information, including participant 
identification (i.e. tokens), is transferred with the request. To access data from providers not 
supporting a REST API, the mSpider mobile application was developed using provider specific 
software development kits (SDK), which gives access to activity tracker data via the provider specific 
mobile application. Table 1 gives an overview of providers and which API/SDK we used to access 
data.  

Table 1. Provider data access details 

Provider documentation API/SDK Version 

Apple [10] HealthKit 6.4 

Fitbit [11] Web API 1/1.2 

Garmin (Must register to gain access) Health API 2.9.7 

Google [12] Fit API 1 

Oura [13] Cloud API 1 

Polar [14] AccessLink API 3.36.0 

Samsung [15] Health SDK 1.4.0 

Withings [16] Data API 2.0 

API: Application programming interface. SDK: Software development kit. 

Each provider offers a different set of data types through their API/SDK. Steps is the only variable 
supported by all providers. Table 2 gives a list of available variables relevant for the present study for 
each provider, and how we used these variables to define valid days, i.e. days where activity tracker 
wear time was sufficient to be included in daily physical activity analysis.  A complete list of available 
variables can be found in the provider documentations (Table 1).  

Table 2. Available variables by provider 

Provider Variables Valid day calculation 

Apple Steps, AEE, REE, sleep Step>150 

Fitbit Steps, TEE, AEE, LPA, MPA, VPA, sleep Step>150 

Garmin Steps, TEE, AEE, MPA, VPA (Sleep + sedentary time + LPA + MPA + 
VPA) >10 hours 

Google Fit Steps, TEE Step>150 

Oura Steps, TEE, AEE, sedentary time, LPA, 
MPA, VPA, non-wear time 

Step>150 
 

Polar Steps, TEE, AEE, sedentary time, LPA, 
MPA, VPA, sleep 

non-wear time<14 hours 

Samsung Steps, AEE, sleep (Sleep + sedentary time + LPA + MPA + 
VPA) >10 hours 

Withings Steps, TEE, AEE, LPA, MPA, VPA, sleep Step>150 

TEE: Total energy expenditure, AEE: activity energy expenditure, REE: resting energy expenditure, 
LPA: light physical activity, MPA: moderate physical activity, VPA: vigorous physical activity. 

Recruitment of volunteer and study participants 
Volunteers (development phase) 
To test the system during development and increase the likelihood of long-term recording, we used 
convenience sampling to recruit 35 volunteers with the following inclusion criteria; 1) 18 years or 
older, 2) willing to wear a provided activity tracker for an extended period, and 3) willing to share 
collected physical activity data. Data from these volunteers were used for system development 
purposes and were not included in the longitudinal analysis of physical activity.   

Volunteers were recruited during the development phase (2019-2020) and equipped with an activity 
tracker from Apple, Fitbit, Garmin, Huawei, Oura, Polar, Samsung, or Withings. Two participants also 



shared mobile phone collected physical activity data stored in Google Fit. One participant withdrew 
after a few days and two participants withdrew after a few months. We gave no instructions on 
activity tracker usage, except giving instructions on how to initiate automatic data sharing with the 
mSpider system. Participants were given written and oral information about the mSpider system, and 
informed that all collected data would be stored at the activity tracker provider cloud storage. All 
volunteers signed informed consent.  

Study participants (physical activity study) 
Through online news media advertisement, we recruited 130 people with privately owned activity 
trackers, worn before, during, and after the Norwegian COVID-19 lockdown. Inclusion criteria were: 
1) owned an activity tracker from Garmin, Fitbit, Withings, or Oura, and 2) willing to share physical 
activity data. Participants received an e-mail invitation with a letter of information and instructions 
on how to grant access to the mSpider system. Participants gave informed consent by actively 
granting access to their data. 

Privacy 
The 35 volunteers who received an activity tracker were required to register a user account at the 
activity tracker provider. Although the mSpider system only accessed non-identifiable information, 
volunteers were informed that by registration of a provider account, all data collected by the activity 
tracker would be upload to the provider cloud storage, including potential identifiable information 
(e.g. GPS-data).  

The 130 study participants for analysis of activity tracker data already owned an activity tracker and 
thus already had a provider user account. After downloading the relevant data, we removed user 
tokens from the mSpider database and thus stored data anonymously. 

Data collection  
Daily estimates for steps, activity energy expenditure, moderate physical activity, and vigorous 
physical activity were downloaded from study participants to be included in the physical activity 
analysis. A variable for moderate-to-vigorous physical activity (MVPA) was created by combining 
moderate physical activity and vigorous physical activity, for participants where these variables were 
available. We further downloaded light physical activity, sedentary time, sleep duration, and non-
wear time, to be used for activity tracker wear-time estimates.  Data download was limited to days 
between January 1st, 2019 and December 31st, 2020.  

Only days where the activity tracker was worn for at least 10 hours were labelled as valid days [17]. 
As this was not possible for all providers (Table 2), days with less than 150 recorded steps were 
excluded. After data download was completed, we removed the connection between the user’s 
provider and the mSpider tool by deleting user tokens. All data on physical activity was thus stored 
anonymously. An anonymous online questionnaire was used to collect self-reported data on sex, age, 
height, and weight.  

Statistical analysis 
Participant characteristics from the online questionnaire are presented as means, standard 
deviations, and range. For each participant we used valid days to create monthly and yearly averages 
for steps per day (steps/day), activity energy expenditure in kilocalories per day (kcal/day), and 
MVPA in minutes per day (minutes/day) for 2019 and 2020. March 2020 was divided into two 
periods (up to and after March 12th, i.e. the lockdown date). For each variable we compared the 
following:  

1) 2019 (March-December) with 2020 (March-December)  
2) March 2019 with March 1st – 12th 2020  
3) March 2019 with March 13th – 31st 2020  
4) April 2019 with April 2020, May 2019 with May 2020, etc.  



5) March 2020, 1st – 12th with 13th – 31st 

We created bar plots to visualize difference between time periods. Normality was checked using 
histograms. We used two-sided paired sample t-test or two-sided paired Wilcoxon signed-rank test, 
depending on normality, to test differences in physical activity between time periods. Two-sided p-
values <.05 were considered statistically significant. Statistical analyses were performed using R 
version 4.0.3.   

Results 

Participant characteristics 
Of the 130 recruited study participants, 14 did not respond to the following invitation e-mail and 
three owned an un-supported activity tracker. A final sample of 113 participants were thus included 
in the analysis. Of the included participants, 106 completed the online questionnaire and provided 
their characteristics (Table 3).  

Table 3. Participant characteristics (N=106). 

Variable Value Range 

Height, cm 173.5 (8.0) 158 – 194 
Weight, kg 76.0 (14.3) 53.5 – 147.0 
Body mass index, kg/m2 25.2 (4.0) 18.3 – 50.3 
Age, years 40.6 (10.6) 21 – 69 
Females, % 56.2 (59) NA 

Values are means (standard deviations) or percentages (numbers). NA; not applicable. 

Altogether 39 participants used Fitbit activity trackers and 74 participants used Garmin activity 
trackers. No participants owned a Withings-, or Oura activity tracker. Both Fitbit and Garmin provide 
data on steps, MVPA, and activity energy expenditure. All 113 participants were thus included when 
generating monthly means for all three variables. Monthly means are calculated from 66.274 
measurements (i.e. valid person-days).  

Change in physical activity  
On average participants walked 797 fewer steps per day in March 13th – 31st, 2020 compared to 
March 2019 (p=.021). Similarly, participants walked on average 913 fewer steps per day in March 13th 
– 31st, 2020 (post lockdown) compared to March 1st – 12th, 2020 (pre lockdown) (p<.001). Remaining 
step comparisons showed no differences. 

Mean activity energy expenditure was 74 kcal/day lower in March 13th – 31st, 2020 compared to 
March 2019 (p=.021). In addition, mean activity energy expenditure was 85 kcal/day lower in March 
13th – 31st, 2020 (post lockdown) compared to March 1st – 12th, 2020 (pre lockdown) (p=.001). 
However, activity energy expenditure was on average 54 kcal/day higher in September 2020 
compared to September 2019 (p=.021). Remaining activity energy expenditure comparisons showed 
no difference. 

For MPVA, monthly comparisons showed a significant increase from 2019 to 2020 for May (p=.013) 
with median difference of eight minutes, September (p=.008) with median difference of three 
minutes, October (p=.022) with median difference of five minutes, and December (p=.043) with 
median difference of four minutes, as well as the yearly comparison (p=.026) with median difference 
of four minutes. Remaining MVPA comparisons showed no difference. 

A summary of mean difference per day between periods for steps and activity energy expenditure, 
with 95% confidence intervals and p-values from each t-test is given in Table 4. The table also gives 
the median of the difference per day between periods for MVPA, with interquartile ranges and p-
values from each Wilcoxon test. Because we used paired tests, analysis only include participants with 
data in both the pre-period and the post-period, thus is based on data from 76-107 participants. 



Figure 2 and Figure 3 gives monthly mean step count and activity energy expenditure from March 
2019 thru December 2020. Figure 4 gives median MVPA for the same periods. 

Table 4. Difference per day between pre-periods and post-periods.  

Monthly comparison 
2019-2020   

Steps 
(steps/day) 

P-
value 

AEE 
(kcal/day) 

P-
value 

MVPA 
(min/day) 

P-
value 

March-December 349 (-4, 702) .053   29 (-2, 60) .066   4 (-6, 4) .026  

March 1st – 12th*    28 (-608, 664) .930 21 (-40, 82) .493   -2 (-14, -2) .566   
March 13th – 31st**  -797 (-1468, -126) .021 -74 (-136, -11) .021 2 (-11, 2) .831   

April  -123 (-850, 605) .738   -35 (-105, 34) .319   -1 (-15, -1) .810   

May  53 (-586, 692) .869   2 (-59, 64) .936   8 (-6, 8) .013  

June  301 (-276, 878) .303   45 (-7, 97) .092   4 (-10, 4) .068   

July  442 (-232, 1117) .196   44 (-15, 104) .141   1 (-14, 1) .525   

August  326 (-271, 922) .280  24 (-24, 72) .325   2 (-14, 2) .529   

September  324 (-148, 797) .176   54 (8, 100) .021  3 (-7, 3) .008  
October  361 (-290, 1011) .274   41 (-7, 89) .096   5 (-6, 5) .022  

November  242 (-442, 927) .484   42 (-22, 106) .199   4 (-11, 4) .338   
December  491 (-6, 988) .053   32 (-21, 84) .235   4 (-8, 4) .043  

Numbers are mean difference with 95% confidence interval (steps and AEE), or median of the 
difference with interquartile range (MVPA), followed by p-values from paired sample t-test or paired 
Wilcoxon signed-rank test.  
*Comparing March 2019 with March 1st – 12th 2020.   
**Comparing March 2019 with March 13th – 31st.  
AEE: activity energy expenditure. MVPA: moderate-to-vigorous physical activity. kcal: kilocalories. 
min: minutes. 

 
Figure 2. Bar plot of mean step count per day, by month, with standard deviation (error bars). 



 
Figure 3. Bar plot of mean activity energy expenditure per day, by month, with standard deviation 
(error bars). 

 
Figure 4. Bar plot of median minutes of moderate-to-vigorous physical activity (MVPA) per day, by 
month, with inter-quartile range (error bar). 

Discussion 

Principal findings 
In this study, the mSpider-system was successfully used to download historic data on steps, activity 
energy expenditure, and MVPA from Garmin and Fitbit activity tracker users. The longitudinal data 
showed changes in physical activity during the COVID-19 pandemic.  

Findings indicate a short-term reduction in steps and activity energy expenditure due to the COVID-
19 lockdown, but no reduction in MVPA. However, participants increased their level of MVPA the 
month after the lockdown period (i.e. May) and some months in the autumn of 2020 (i.e. September, 
October, and December), compared to 2019. 

Comparison with previous work 
Results in the present study are supported by reports from providers of consumer-based activity 
trackers. Garmin have released a statement showing that users globally had a distinct decline in step 
count during the last two weeks of March 2020, and that the reduction in step counts was 



compensated by increase in other activities [18]. Withings have reported a temporary decline in step 
counts among users during national lockdowns [19]. Similarly, a study of UK adults using physical 
activity data recorded by a smartphone application, showed a significant decrease in physical activity 
during the March 2020 UK national lockdown [20].  

Google trend analysis of community interest in physical activity during the COVID-19 outbreak and 
lockdown, showed an increase in Google search rates on physical activity topics in Australia, the UK, 
and the US [21]. A study among German athletes, using activity tracker data, showed that shorter 
and more vigorous exercise sessions replaced longer sessions [22].  

These studies support our finding that although restrictions confined people to their home, they 
found alternative ways to keep their habitual physical activity level. Conversely, based on online 
physical activity questionnaires, a study from Thailand did not show any increase in physical activity 
after the lockdown was lifted [23] and a study from Bangladesh showed high prevalence of inactivity 
during lockdown [24]. 

In summary, activity tracker data from several vendors and groups of users including athletes and 
chronic disease patients, have shown changes in physical activity levels and patterns during the 
COVID-19 pandemic, but findings vary between countries.  

mSpider as a method for collection data on physical activity 
The analysis of physical activity changes related to the COVID-19 pandemic period showed that the 
mSpider system can be a valuable tool for collection  of long-term data on physical activity, including 
historical data, as well as detect changes in physical activity over time. 

In the present study, we used the proposed system to access data retrospectively from participants 
with privately owned activity trackers. Previously, we have successfully used the same technology for 
long-term prospective physical activity monitoring, among participants in a lifestyle intervention 
study wearing a provided activity tracker for up to one year [25, 26, 27].  

A system similar to mSpider, RADAR-base (Remote Assessment of Disease And Relapses), was used 
by Sun et al. [28], who observed change in daily steps during national lockdowns, among participants 
with chronic disease equipped with a Fitbit tracker. RADAR-base is an open source platform for 
collecting physical activity data from smartphones, Fitbit- and Garmin activity trackers, and some 
research grade accelerometers [29]. RADAR-base uses similar technology as mSpider, but data 
collection is limited to only two providers of consumer-based activity trackers. 

A study by Radin et al. [30] successfully mapped historic Fitbit data (provided manually by Fitbit) to 
known influenza outbreaks. This also shows the potential for the proposed system as a tool for 
disease outbreak surveillance, where clusters of participants with a combination of physical activity 
reduction and elevated resting heart rate can be used to indicate disease outbreaks in an area. The 
quality of accelerometer-based physical activity data is dependent on participant wear compliance. 
Since younger adults tends to be less compliant when wearing accelerometers in research [31], but 
more likely to own and wear an activity tracker [32], the proposed system also has potential to add 
to and enrich current methods for physical activity data collected used in epidemiological research.  

Summarized, we find the mSpider system to be an interesting supplement to present tools for 
physical activity monitoring in epidemiological studies. However, major challenges must be kept in 
mind. First, self-selected users of activity trackers are often more physically active compared to non-
users [32, 33]. Second, the accuracy of different activity trackers is highly variable [5, 34, 35]. At the 
population level, the system may perform better to detect change in physical activity over time, than 
to estimate the absolute levels of physical activity.  

Strength and limitations 
The major strength of the present study is the long-term recording, with up to two years of daily 



physical activity data per participant. This allowed for month-to-month comparison between 2019 
and 2020, thus taking potential seasonal differences in physical activity levels into account.  

The study has limitations that can affect the study results. Firstly, the participants were self-selected 
owners of physical activity trackers, who are likely to be more physically active than the general 
population. A recent study by Anyan et al [36] investigating physical activity change during the 
Norwegian lockdown (using questionnaire data), found that 14% of participants reported reduction, 
22% reported increase, and 64% reported no change in physical activity level. Therefore, there is a 
risk of selection bias in this study, i.e. the sample may not be representative of the general 
population. Nevertheless, the observed changes in physical activity levels in this sample during the 
study period demonstrates the usefulness of the mSpider system. Further, due to anonymous data 
collection, we could not link participant characteristics to physical activity data to examine physical 
activity in strata of sex, age or other characteristics.  

Conclusion 
mSpider is a working prototype currently able to record physical activity data from several providers 
of consumer-based activity trackers. The system was successfully used to detect longitudinal changes 
in physical activity levels before, during, and after the Norwegian COVID-19 lockdown period in 2020. 
To our knowledge, this is the first study reporting change in physical activity caused by the COVID-19 
lockdown in Norway, using two years of objective consumer-based activity tracker data. 
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Study protocol, Polar M430 validation study (Paper II). 

  



 

 

  



Protocol: Accelerometer validation study  
1. Introduction 

Accelerometers measuring physical activity  

Physical activity can objectively be measured by accelerometers. Accelerometers are small, light, 

wearable non-invasive devices that measure acceleration (i.e. movement) in one or more axis, giving 

an indication of frequency, duration, and intensity of physical activity per time unit [1]. Today, a wide 

range of accelerometer devices exist, aimed at both research [1] use and the consumer marked [2].  

A major limitation of using accelerometers in physical activity research is the lack of standardization 

of raw data to counts, due to patent protection. Another limitation is the uncertainty of various 

accelerometer devices to detect various types of physical activity. Thus, validation studies between 

devices are needed.  

Traditionally, research-aimed devices, like the ActiGraph, have been used in population-based 

studies to collect objective data on physical activity. Even though ActiGraphs are extensively used in 

research, their accuracy is not agreed upon. When compared with indirect calorimetry (Ultima CPX), 

previous studies using both ActiGraphs and Actiheart found a high correlation for energy expenditure 

and steps for the ActiGraph, as well as high accuracy for Actiheart energy expenditure estimation [3].  

One study found the ActiGraph to be both valid and reliable for measuring PA when compared with 

VO2 measurements by the Cosmed K4b wearable metabolic system [4]. Another study concluded 

ActiGraph did not provide valid estimates for energy expenditure when compared to a portable gas 

analyser (MetaMax 3B) [5]. Yet another study found ActiGraph to be valid for step counting only at 

certain walking speeds when compared to manual step counting [6].  

Similarly, the ActiWave Cardio (CamNTech) and the Actiheart (CamNTech) has been used in research 

settings to measure both heart rate and physical activity. Previous validation studies of Actiheart 

show conflicting results. Some studies indicates that there is a low agreement between the Actiheart 

compared with Doubly Labelled Water (DLW) [7] , while others report good level of agreement [8]. 

To our knowledge, no validation studies of ActiWave Cardio have been published. 

In a systematic review from 2015, Evenson et al [9] concluded that for some consumer-market 

brands (here Jawbone and Fitbit), there is an indication that validity of steps is high, but validity for 

energy expenditure is lower. Previous studies using Polar devices in lab settings, indicates that step 

and energy expenditure validity is low for the Polar Loop, using various comparison means 

(Bodymedia accelerometer, manual step counting, indirect calorimetry), but energy expenditure is 

partly acceptable for the Polar V800 [10-13]. In free-living conditions, there is some evidence that 

Polar devices may be slightly more valid compared to lab settings, using accelerometers as criterion 

measure (Bodymedia, ActiGraph, Yamax) [14-16].  

The Polar Loop and Polar V800 were released in 2013 and 2014, respectively. Even though Polar has 

released several devices each year since 2014, no studies have reported on these. Specifically, no 

validation study on the Polar M430 has been conducted to date. 

 

 



Accelerometers in population-based studies  

Results from the 2007-08 survey of the Tromsø Study (Tromsø 6) shows that, when compared with 

objective measurements collected using an ActiGraph, only 30 percent of participants achieve the 

recommended level of moderate to vigorous activity (MVPA), even though 85 percent self-reported 

meeting these recommendations [17]. Thus, there is a need to collect this data objectively when 

conducting population studies.  

In the last Tromsø Study (Tromsø 7), 6300 participants wore an ActiGraph to collect data on physical 

activity. In addition, 700 participants wore an Actiwave Cardio to collect data on physical activity and 

heart rhythm. These data can provide valuable insight in the current health status of the Tromsø 

population. However, only about 35 percent of participants were measured using these devices, and 

the duration of the measurements was limited to 8 days for the ActiGraph, and 27 hours for the 

Actiwave Cardio. The participation rate for Tromsø 7 was 65 percent, which is relatively high, 

compared to similar studies, but the trend for this and other population studies is that participation 

rates are dropping. There is a need to find new ways to collect objective data on physical activity, 

over a longer period of time, with a lower burden for both participants and researchers.   

One solution for collecting more data, with more participants, and over a longer period, is by 

accessing data already being collected through people’s smart phones, fitness trackers, and smart 

watches. The technology used in these devices is, in many cases, very similar to that of research 

grade accelerometers like the ActiGraph. The validity of these devices is not well known, and 

validation studies are needed.  

Raw data versus processed data 

Accelerometers typically give information on number of steps, amount of time spent in various 

physical activity levels, and an estimation of energy expenditure per time unit. The underlying 

“counts” per minute (the sum of the acceleration that the accelerometer have registered divided on 

number of minutes that the accelerometer have been in use) is the commonly used variable for 

physical activity provided in various accelerometer software. The categorization of levels of intensity 

(sedentary, light, moderate or vigorous) is based on validated cut-points of counts via algorithms in 

various software. 

With consumer devices, access to raw data is very limited, and most devices do not expose this data. 

Different devices provides different output variables, where steps and energy expenditure per day is 

common. In addition, they may output the number of minutes per day in various activity intensity 

zones; minutes of sleeps per day in various sleep zones, and more. Some devices also measures heart 

rate using photoplethysmograph, which is an optical technique to estimate heart by monitoring 

changes in blood volume beneath the skin [18]. The exact algorithm for calculating these variables 

from the raw data are largely company secrets, and not available to researchers.  

Coherence between devices for comparison between studies 

In the two population-based studies, the Tromsø 7 Study (Tromsø 7) and the International Project on 

Cardiovascular Disease in Russia Study (IPCDR), as well as in the pilot intervention study Lasting 

Lifestyle Change (LLC), four different accelerometer devices were used. In Tromsø 7, a hip-worn 

ActiGraph wGT3X-BT (ActiGraph Corp) and a chest-worn Actiwave Cardio (CamNtech LT) was used. In 

IPCDR, a chest-worn Actiheart (CamNtech LT) was used. In LLC, a hip-worn ActiGraph and a wrist-

worn Polar M430 watch (Polar Electro) was used. Actiwave Cardio, Actiheart, and Polar M430 

additionally provide heart rate measurements. There is a need to perform a validation study to 



investigate the correlation of different measurement outputs between these four accelerometers for 

comparison between studies. Table 1 gives an overview of the devices used in these three studies.  

Table 1 Accelerometer overview 

 
Tromsø 7 IPCDR LLC 

Device ActiGraph 
wGT3X-BT 

Actiwave 
Cardio 

Actiheart ActiGraph Polar M430 

Vendor ActiGraph 
Corp 

CamNtech LT CamNtech LT ActiGraph Corp Polar Electro 

Sensor 
technology 

Accelerometer 
3-axial 

Accelerometer 
3-axial, heart 
rhythm and 
heart rate 

(ECG) 

Accelerometer 
mono-axial, 
heart rate 

(ECG) 

Accelerometer, 
3-axial 

Accelerometer 3-axial, 
heart rate 

(photoplethysmograph) 

Placement Right hip Chest (V4/V5) Chest (high 
(V1/V2) or low 

(V4/V5)) 

Right hip Non-dominant hand 

Fixation Belt  Electrodes1 Electrodes2 Belt  Watch 

Wear time 8 days and 
nights 

27 hours 5 days and 
nights 

8 days and 
nights 

1 year 

Software ActiLife  Actiwave  Actiheart  ActiLife Polar Flow 

Raw data 
availability 

Yes Yes Yes Yes No 

23M red dot 2570 or Kendall H99SG 

1Unomedical Unilect Long Term 4060M,  Bio Protech ECG electrode E5 Tele815, or 3M red dot 2570 

2. Purpose 
The purpose of this study is to investigate the difference in measurement output between four 

different accelerometers with different positioning (Polar M430 versus ActiGraph, Actiwave Cardio, 

and Actiheart), with and without heart rate monitoring, worn by human adults in a free-living setting. 

3. Methods 

3.1 Devices 

The Polar M430 sport watch (Polar, Finland) was released in 2017 and is one of Polar’s newest watch 

with integrated GPS, 6 LED wrist-based optical (photoplethysmograph) heart rate sensor, and a 3-axis 

accelerometer for tracking activity and sleep. It weighs 51 gram, and has up to 20 days of battery life. 

The ActiGraph wGT3X-BT (ActiGraph, Pensacola, FL, USA) is a research grade devices for measuring 

acceleration in three axis. Sample rate can be set to 30-100 Hz, i.e. number of samples per second. Its 

dimensions are 46mm x 33mm x 15mm, and it weighs 19 gram. It can be worn on the wrist, waist, 

ankle, and thigh, for up to 25 days (maximal battery life).  

The CamNtech Actiwave Cardio (CamNtech Ltd, Cambridge, UK) is a single-led electrocardiogram 

(ECG), which can measure ECG waveform for up to 31 hours. ECG sample rate can be specified 

between 32 and 1024Hz. A built in 3-axis accelerometer can record activity in 25, 32, 50, 64, or 100 

Hz.  The Actiwave Cardio attaches to the chest using standard ECG electrodes; it weighs 10.3 grams, 

and has a diameter of 32mm.    



The CamNtech Actiheart CamNtech Ltd, Cambridge, UK) can record heart rate and activity for up to 

21 days. ECG sampling rate is 128 Hz.  It has a mono-axial accelerometer, which records using a 

sample rate of 32 Hz. The Actiheart attaches to the chest using standard ECG electrodes, and it 

weighs less than 10 grams.  

3.2 Placements, setup, and wear time 

3.2.1 Placement 
The Polar M430 is placed on the wrist of the non-dominant 

hand. One ActiGraph is placed next (above) to the Polar M430 

on the non-dominant hand. One ActiGraph is placed on the 

right hip. The Actiwave Cardio is placed approximately at the 

level of the forth intercostal space at the sternum (medial part) 

and to the left (lateral part). One Actiheart is placed just below 

the Actiwave Cardio approximately at the fifth intercostal space 

(medial part) and to the left (lateral part). The other Actiheart is 

placed approximately at the level of the second intercostal space 

at the sternum (medial part) and to the left (lateral part). Figure 1 

indicates device placement. 

3.2.2 Setup and export 
Participant height, weight, and age, is specified on each device during setup. When exporting data, 

epoch length for the ActiGraph, Actiwave Cardio, and Actiheart, is set to 10, 10, and 15 seconds, 

respectively.  

ActiGraph setup: 

- Select start time: 00:00 the following day  (“tomorrow”) 

- Use stop time: Tick box, and add 1 day to “todays” date, so that a full day of recording is 

specified. 

- Sample rate: 100 Hz 

- Idle sleep mode: Disabled 

Actiheart setup: 

- Long Term recording 

- Start: 00:00 the following day  (“Tomorrow”) 

- Recording control: 15 seconds epoch 

- Disable  HRV: not ticked 

ActiWave Cardio setup: 

- Start on: 00:00 the following day  (“tomorrow”) 

- ECG Sample at: 128 Hz 

- ECG Resolution: 9 bits 

- Channel 1: Enable ECG 

- Accelerometer: Tick all three boxes (x, y, z) 

- Accelerometer: Sample at 32 Hz 

 

 

Figure 1 Device placement 



3.2.3 Wear time 
The Polar M430, the ActiGraphs, and the Actihearts are set to record for one full day. The Actiwave 

Cardio is set to record for the maximum 27 hours. All recordings starts at 00:00 the day after the 

devices are placed on the participant. Table 2 gives and overview of sample rates, recording duration, 

and export epochs. 

Table 2 Alternative device setup 

Device Accelerometer 
sample rate (Hz) 

ECG sample 
rate (Hz) 

Epoch (second) Recording 
duration 

Polar M430 - - - 1 day 

Actiwave Cardio 32 128 10 27 hours 

Actiheart 32 128 15 1 day 

ActiGraph 100 - 10 1 day 

3.3 Sample 

Because of the high number of devices and the high requirement for compliance, we will use 

convenience sampling and recruit people we believe will adhere to the protocol.  We aim to include 

20 adult participants, aged above 20 years and below 70 years.  

3.4 Analysis 

Table 3 gives an overview of available output variables from all devices, including the frequency of 

those variables. The Polar M430 uses proprietary unknown algorithms to calculate all output 

variables. For Polar M430, raw data are not available. The Actiwave, Actiheart, and Actiwave Cardio 

export raw data, and/or aggregated in data in a predefined number of seconds (epochs).  Epoch data 

are used to calculate steps, calories, activity intensity, non-wear time, sleep, and heart rate/pulse in 

order to compare with Polar variables.  

Table 3 Output variables: Polar M430, ActiGraph, Actiwave Cardio, and Actiheart 

Output variables Polar M430 ActiGraph 
wGT3X-BT 

Actiheart Actiwave 
Cardio 

Steps per day X    

Calories per day X    

Sedentary minutes per day X    

Light physical activity minutes 
per day 

X    

Moderate physical activity 
minutes per day 

X    

Vigorous physical activity 
minutes per day 

X    

Non-wear time minutes per day X    

Restless sleep minutes per day X    

Restful sleep minutes per day X    

Heart beats per minutes (BPM) 
frequency 

12/hour - 4/minute 1/second 

ECG - - 4/minute 128/second 

Accelerometer frequency - 100/second 4/minute 32/second 



Epoch (export) - 10 seconds 15, 30, 60 
seconds 

10 seconds 

Number of accelerometer axis 3 3 1 3 

References 

1. Butte, N.F., U. Ekelund, and K.R. Westerterp, Assessing physical activity using wearable 
monitors: measures of physical activity. Med Sci Sports Exerc, 2012. 44(1 Suppl 1): p. S5-12. 

2. Henriksen, A., et al., Using Fitness Trackers and Smartwatches to Measure Physical Activity in 
Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res, 2018. 20(3): p. 
e110. 

3. McMinn, D., Acharya, R., Rowe, D. A., Gray, S. R. and Allan, J. L., Measuring activity energy 
expenditure: accuracy of the GT3X+ and actiheart monitors  International Journal of Exercise 
Science, 2013. 

4. O'Neil, M.E., et al., Measuring reliability and validity of the ActiGraph GT3X accelerometer for 
children with cerebral palsy: a feasibility study. J Pediatr Rehabil Med, 2014. 7(3): p. 233-40. 

5. Gastin, P.B., et al., Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to 
estimate energy expenditure during physical activity and sport. Journal of Science and 
Medicine in Sport, 2018. 21(3): p. 291-295. 

6. Riel, H., et al., Comparison between Mother, ActiGraph wGT3X-BT, and a hand tally for 
measuring steps at various walking speeds under controlled conditions. PeerJ, 2016. 4: p. 
e2799. 

7. Campbell, N., et al., The Actiheart in Adolescents: A Doubly Labelled Water Validation. 
Pediatric Exercise Science, 2012. 24(4): p. 589-602. 

8. Villars, C., et al., Validity of combining heart rate and uniaxial acceleration to measure free-
living physical activity energy expenditure in young men. J Appl Physiol (1985), 2012. 113(11): 
p. 1763-71. 

9. Evenson, K.R., M.M. Goto, and R.D. Furberg, Systematic review of the validity and reliability 
of consumer-wearable activity trackers. The International Journal of Behavioral Nutrition and 
Physical Activity, 2015. 12: p. 159. 

10. Wahl, Y., et al., Criterion-Validity of Commercially Available Physical Activity Tracker to 
Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. 
Front Physiol, 2017. 8: p. 725. 

11. Wang, L., et al., Evaluation on Step Counting Performance of Wristband Activity Monitors in 
Daily Living Environment. IEEE Access, 2017. 5: p. 13020-13027. 

12. Fokkema, T., et al., Reliability and Validity of Ten Consumer Activity Trackers Depend on 
Walking Speed. Medicine & Science in Sports & Exercise, 2017. 49(4): p. 793-800. 

13. Roos, L., et al., Validity of sports watches when estimating energy expenditure during 
running. BMC Sports Sci Med Rehabil, 2017. 9: p. 22. 

14. Brooke, S.M., et al., Concurrent Validity of Wearable Activity Trackers Under Free-Living 
Conditions. Journal of Strength & Conditioning Research, 2017. 31(4): p. 1097-1106. 

15. Hernandez-Vicente, A., et al., Validation study of Polar V800 accelerometer. Annals of 
Translational Medicine, 2016. 4(15): p. 278. 

16. Simunek, A., et al., Validity of Garmin Vivofit and Polar Loop for measuring daily step counts 
in free-living conditions in adults. Acta Gymnica, 2016. 

17. Emaus, A., et al., Does a variation in self-reported physical activity reflect variation in 
objectively measured physical activity, resting heart rate, and physical fitness? Results from 
the Tromso study. Scand J Public Health, 2010. 38(5 Suppl): p. 105-18. 

18. Allen, J., Photoplethysmography and its application in clinical physiological measurement - 
IOPscience. 2007. 

 



 

 

Appendix B 

Letter of information and consent form, Polar M430 validation study (Paper II). 

  



 

 

  



Participant: __________________________________ 

 

Information about validation project: Activity measurement 

 
The Purpose of this project is to test the agreement between different devices capable 
of measuring movement and heart rate. 
 
During the measurement periode: 

 All devices are worn at the same time 

 All devices should be constantly worn, during the whole periode (day and night)  

 All devices are water resistant 

 The ActiGraphs worn on the hip and waist can be removed when showering, to avoid 
wet belts. 

 If a device is removed, remember to re-attach it in the correct place and with the 
correct orientation.  

 If an electrode loosens, replace it with a new one, and re-attach the device.  

 Chest worn devices can be removed and re-attached by pressing two buttons. One 
button on each part of the device. 

 Do your activities as you normally would. 
 
Stored information is limited to movement and heart rate, to compare these readings 
from different devices. When initializing each device, age, gender, weight, and height 
must be entered, in order to be able to calculate energy expenditure.  
 
 
Your devices can be removed when you wake up on ____________day _____   ______. 
 

 
Polar M430 watch  
Measures movement and pulse.  
Worn on the wrist (non-dominant hand).  
Must have skin contact. 
 
ActiGraph 
Measures movement. 
One device is worn on the wrist (non-dominant hand) above the Polar watch. 
One devices is worn on the right hip.  
The black “button” should be pointing upwards.  
 
Actiwave Cardio 
Measures movement and heart rate.  
Worn on the chest between two Actihearts, attached with electrodes.   
 
 
Actiheart 
Measures movement and heart rate.  
Worn on the chest, attached with electrodes. One Actiheart is worn 
above the ActiWave Cardio and one below the ActiWave Cardio.  
 



Participant: __________________________________ 

 

Device placement 
Devices must be worn as illustrated below: 

- Polar M430 Watch: On the wrist (non-dominant hand) 
- One ActiGraph: On the wrist (non-dominant hand), above the Polar M430 watch. 
- One ActiGraph: On the right hip. 
- ActiWave Cardio: Middle two electrodes on the chest 
- One Actiheart: Top two electrodes on the chest. 
- One Actiheart: Bottom two electrodes on the chest. 

 
Non-dominant hand means that if you are right handed, the devices should be placed on 
your left wrist. If you are left-handed, the devices should be placed on your right wrist.  

The ActiGraphs on the wrist and hip should be worn in such a way that the black “button” 
points upward when you stand with your arms hanging down. 

 
 
 

 
 

 



 

Postboks 6050 Langnes, N-9037 Tromsø / 77 64 40 00 /  postmottak@uit.no / uit.no  

 
Consent for participation in accelerometer (physical activity sensor) validation 
study 
 
 
I have received written (separate information sheet) and oral information about the purpose of 

this study and its contents, and I had the opportunity to ask questions about the study before 

consent. 

 

 

I hereby consent to participate in this study 

 

 

 

  

Place and date      Participant’s signature 

 

 

 

 

       Participant’s name in capital letters 

 

 

 

I hereby confirm that I have provided information about the study  

 

 

 

  

Place and date      Signature 

 

 

 

  

 

 

 





 

 

Appendix C 

Letter of invitation (Norwegian), RESTART pilot and feasibility study (Paper III). 

  



 

 

  



 

 Kontaktinformasjon: 

Tromsøundersøkelsen Telefon: 776 207 00 

Forskningsposten UNN Telefon: 776 26 909  

 

OLA NORDMANN 
VEGEN XX 
90XX TROMSØ        Tromsø, xx.xx.xx 

 
 

 

 

 
 
 
 

Invitasjon til å delta i forskningsprosjekt om varige livsstilsendringer 
 
I Tromsøundersøkelsen ble det gjort en rekke målinger og registreringer av faktorer som kan 
ha betydning for den enkeltes risiko for hjerte- og kar sykdommer. Vi gjennomfører nå et 
forskningsprosjekt for å måle langtidseffekten av et program for å øke fysisk aktivitet og 
endre kosthold blant personer som har forhøyet risiko for hjerte- og kar sykdommer. I første 
fase skal det gjennomføres en studie som varer i 6 måneder for å samle erfaringer om 
studieopplegget.  
Ved å delta får du tilbud om å trene to dager i uka på Stamina, kostholdsveiledning og 
rådgivning til å endre livsstil. Du finner mer detaljert informasjon om dette i vedlagte 
«Forespørsel om deltakelse i forskningsprosjektet Varige livsstilsendringer».  
 
Prosjektstart er siste uke av september i år, og vil foregå ved UNN og Stamina i Tromsø 
sentrum. Prosjektet avsluttes før påske 2018. 
 
Dersom du kan tenke deg å delta, eller ønsker mer informasjon om prosjektet, kan du 
kontakte Forskningsposten v/studiesykepleier Elin Hanssen, tlf. 776 26026/26909, 
sende en e-post til forskningsposten@unn.no, eller returnere svarslippen som du finner 
nederst i brevet i vedlagte frankerte konvolutt innen 13.09.2017. 
 
Med hilsen 
 
For Tromsøundersøkelsen                                            Prosjektleder «Varige livsstilsendringer» 

     
Heidi Johansen                                                                   Trygve S. Deraas      
Prosjektleder Tromsøundersøkelsen    Forsker, Institutt for samfunnsmedisin 
Institutt for samfunnsmedisin              UiT, Norges arktiske universitet                   
UiT, Norges arktiske universitet       
                                 

………………………………………………………………………………………………………………………………. 
Prosjekt «Varige livsstilsendringer» 
 

□ Ja, jeg vil ha nærmere informasjon om studien 

 
Navn: ……………………………………………   Adresse: …………………………………………………………… 
 
Telefonnummer: ……………………………    E-postadresse: ………………………………………………….. 
 
 
 

mailto:forskningsposten@unn.no
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Letter of information and consent form (Norwegian), RESTART pilot and feasibility study 

(Paper III). 
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FORESPØRSEL OM DELTAKELSE I FORSKNINGSPROSJEKTET  

VARIGE LIVSSTILSENDRINGER  
Dette er et spørsmål til deg om å delta i et forskningsprosjekt som har til hensikt å undersøke langtidseffekten 

av et program for å øke fysisk aktivitet og endre kosthold blant personer som har deltatt i den syvende 

Tromsøundersøkelsen (Tromsø 7), hvor de har fått påvist forhøyet risiko for hjerte- og karsykdom.  I første 

fase av studien (pilotstudien) ønsker vi å undersøke gjennomførbarhet og samle erfaringer med 

studieopplegget som senere skal testes i en stor studie (hovedstudien).  

Fysisk inaktivitet, overvekt og fedme øker risikoen for hjerte- og karsykdom. Flere studier tyder på at fysisk 

aktivitet bidrar til å redusere risiko for hjerte- og karsykdom og diabetes.  Det er imidlertid få studier som har 

vist langvarig effekt av fysisk aktivitet og kostholdstiltak hos personer med økt risiko for hjerte- karsykdom. 

Likeledes er effekten av smartklokker med løpende tilbakemelding lite undersøkt. Denne pilotstudien samler 

erfaringer og tester utforming og logistikk av et studieopplegg, som vi har til hensikt å undersøke videre i en 

større studie. Pilotstudien gjennomføres i samarbeid med Stamina Helse og Stamina Trening, som har lang 

erfaring med oppfølging av personer med helseutfordringer. Det gjennomføres to fellesaktiviteter på Stamina 

hver uke, tirsdager og torsdager fra klokken 14.15 til 16.00. I tillegg vil det avsettes tid til kostholdsveiledning 

og motiverende gruppesamtaler.  

HVA INNEBÆRER PROSJEKTET?  

For å delta i undersøkelsen må du ha deltatt i den syvende Tromsøundersøkelsen og ha fått påvist forhøyet 

risiko for å få hjerte- og karsykdom, overvekt og at du har lavt nivå av fysisk aktivitet. Du må være mellom 5574 

år, ha kroppsmasseindeks (BMI) på 30 eller mer og økt risiko for hjerte-karsykdom. Du må også være motivert 

og samtykke til å delta. Du kan ikke ha en alvorlig sykdom eller sykdom som begrenser din deltakelse i 

prosjektaktiviteter.   

Personer som ønsker å være med i studien vil etter et telefonintervju bli invitert til å møte på Forskningsposten 

på UNN for å undersøke om de fyller kravene for deltakelse. I så fall blir de bedt om å signere samtykke til 

deltakelse. Studiedeltakere vil deretter fylle ut spørreskjema og undersøkes på Forskningsposten (høyde/vekt, 

hofte/midjemål, blodtrykk, hjerterytme, EKG, kroppssammensetning, blodprøver). De vil også gjennomgå en 

kondisjonstest for å undersøke fysisk form. Deretter følger de et trenings- og kostholdsprogram på Stamina i en 

periode på totalt 26 uker der de følges opp av teamet på Stamina. Midt i studieperioden og ved studiens slutt 

blir de innkalt til de samme undersøkelser som over på Forskningsposten på UNN.    

Gjennom studieperioden blir du som deltaker bedt om å fylle ut spørreskjema og bruke aktivitetsmålere som 

bæres på hofta hele døgnet i en uke og deretter returneres til studieledelsen.   

Deltakerne vil også få utlevert pulsklokke (Polar M430) som bør brukes mesteparten av døgnet i hele 

studieperioden. Denne er forhåndsinnstilt med en fiktiv identitet som er koblet til deltakernes nummer i 

prosjektet for å ivareta deltakernes personvern og sikre at vi får samlet inn data som kan brukes til å beregne 

søvn, stillesitting, puls og fysisk aktivitet til studiens egen datalagringsserver på UiT. Hvis deltakerne endrer 

innstillingene på klokka vil det kunne forhindre at vi får samlet inn de data vi ønsker, og vi anmoder derfor om 

at deltakerne ikke bruker pulsklokka på annen måte enn avtalt med prosjektleder eller prosjektmedarbeidere.  

Deltakere kan bli forespurt om muntlige intervjuer i løpet at studieperioden på 26 uker. Samtalene vil bli tatt 

opp på bånd og deretter skrevet ut og analysert. Båndet slettes når intervjuene er skrevet ut. Alle opplysninger 

behandles konfidensielt og all presentasjon av resultater vil skje i anonymisert form. Når alle intervjuene er 

analysert vil alle intervjudata bli slettet.   
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Kondisjonstest  

Dette er en test for å måle maksimalt oksygenopptak (VO2max) ved fysisk anstrengelse. Testen innledes med 20 

minutters rolig oppvarming på tredemølle eller på ergometersykkel. Selve testen tar ca. 8 minutter og foregår 

ved at deltaker går/løper på en tredemølle. Under testen måles hjertefrekvens, oksygenopptak (O2) og utlufting 

av karbondioksid (CO2) ved at deltaker puster gjennom en slange med et munnstykke. Testen er ikke farlig, men 

kan oppleves litt ubehagelig dersom deltaker ikke er vant til å presse seg. Testdeltakere oppfordres til å yte 

maksimalt, men kan avslutte testen på et hvilket som helst tidspunkt dersom de ikke klarer mer.   

Treningsprogram   

Aktiviteten omfatter trening i gruppe to ganger ukentlig med vekt på styrke, utholdenhet og bevegelighet. 

Treningen foregår både utendørs og inne i sal på Stamina. Deltakere oppfordres og veiledes til egenaktivitet i 

tillegg til den organiserte aktiviteten.   

Blodprøver  

Det vil bli tatt blodprøver for å undersøke blodprosent, nyre og leverfunksjon, muskelenzymer, 

langtidsblodsukker (HbA1c) og nivået av fettstoffer i blodet (kolesterol og triglyserider) både ved studiestart, 

etter 13 uker og ved studiens avslutning. Det tas også urinprøve for å sjekke nyrefunksjonen. Stoffskifteprøver 

tas ved studiestart.   

Tidsskjema for studien  

Aktivitet  sep.17  okt.17  nov.17  des.17  jan.18  feb.18  mar.18  

Rekruttering                       

Intervju deltakere                       

Basismålinger                       

Oppstart intervensjonen                       

Intervensjonens periode                       

Registrering                       

  

MULIGE FORDELER OG ULEMPER  

Fysisk aktivitet antas å ha mange positive effekter på helsa. Det er vist at fysisk aktivitet forebygger hjerte- og 

karsykdom. Det å være fysisk aktiv gir økt velvære, trivsel og mental helse og dermed økt livskvalitet.   

Når personer som har vært lite fysisk aktive øker sin aktivitet er det en viss fare for å få belastningsskader. For å 

unngå dette vil vi i prosjektet ta utgangspunkt i den enkelte deltakers utholdenhet, styrke og bevegelighet. 

Deltakere kan oppleve stølhet og smerter i muskulatur etter trening. Dette er ufarlig, men kan være litt 

ubehagelig. Ved oppstart av trening kan enkelte oppleve leddsmerter som følge av uvant belastning. Det er da 

viktig å opplyse om dette slik at belastningsmengden kan tilpasses.  

 FRIVILLIG DELTAKELSE OG MULIGHET FOR Å TREKKE SITT SAMTYKKE  

Det er frivillig å delta i studien. Du kan når som helst og uten å oppgi noen grunn trekke ditt samtykke til å delta 

i studien. Dersom du ønsker å delta, undertegner du samtykkeerklæringen på siste side.  
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Dersom du senere ønsker å trekke deg eller har spørsmål til prosjektet, kan du kontakte prosjektleder: Lege, 

ph.d. Trygve S. Deraas, tlf. 934 40 708, eller ledende forskningstekniker Anna-Kirsti Kvitnes tlf 77 64 48 19,  e-

post: anna.kirsti.kvitnes@uit.no    

  

 HVA SKJER MED INFORMASJONEN OM DEG?   

Informasjonen som registreres om deg fra spørreskjema, kondisjonstester og blodprøver skal kun brukes for å 

studere gjennomførbarhet og effekten av et program for å øke fysisk aktivitet. Alle opplysninger og prøver vil 

bli behandlet uten navn og fødselsnummer. Det vil ikke være andre gjenkjennende opplysninger om deg i 

analysematerialet. En kode knytter deg til dine opplysninger og prøver gjennom en navneliste, og denne 

kodelisten vil bli oppbevart elektronisk og utilgjengelig for uvedkommende. Det vil ikke være mulig å 

identifisere deg i resultatene av studien når disse publiseres. Når analysene er avsluttet vil opplysningene om 

deg føres tilbake til Tromsøundersøkelsens helseregister.   

Hvis du samtykker til å delta i studien har du rett til få innsyn i hvilke opplysninger som er registrert om deg. Du 

har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom du trekker deg fra 

studien vil det ikke samles inn flere opplysninger om deg. Opplysninger som allerede er innsamlet vil ikke bli 

slettet.   

HVA SKJER MED PRØVER SOM BLIR TATT AV DEG?   

Blodprøvene som blir tatt analyseres fortløpende og etter analyser blir det resterende blodet destruert. Det 

opprettes ikke noen biobank for studien.   

FORSIKRING   

Studiedeltakere der dekket av Pasientskadeerstatningen ved besøk på Forskningsposten på UNN, og de er 

dekket av Stamina Helse sin forsikring ved aktivitet i regi av Stamina.   

ØKONOMI   

Studien er finansiert gjennom forskningsmidler fra næringsrettede midler til regional utvikling (RDA-midler) og 

av Det helsevitenskapelige fakultet, UiT- Norges arktiske universitet.   

Det er gratis å delta i studien og prosjektet dekker utgiftene til trening på Stamina Helse og Stamina Trening i 

26 uker. Deltakere må selv dekke utgiftene til transport til Stamina. Bruk av offentlig transportmiddel til UNN i 

forbindelse med besøk på Forskningsposten dekkes av studien i form av et Sentrumsgavekort på kr 400 og 

deles ut ved start av studien. Deltakerne får utdelt en pulsklokke (Polar M430) til bruk i prosjektet.    

GODKJENNING  

Prosjektet er godkjent av Regional komite for medisinsk og helsefaglig forskningsetikk, REKnr. 2017/1100.  
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SAMTYKKE TIL DELTAKELSE I PROSJEKTET «VARIGE LIVSSTILSENDRINGER» 2017-2018  

  

JEG ER VILLIG TIL Å DELTA I PROSJEKTET   

  

 

Sted og dato  Deltakers signatur  

    

  

 

  Deltakers navn med trykte bokstaver  

  



 

 

Appendix E 

Standard operating procedure Polar M430/H10 (Norwegian), RESTART pilot and feasibility 

study (Paper III). 
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Introduksjon 

Polar M430 Pulsklokke og Polar H10 pulsmåler m/belte 

Alle deltakere skal få utlevert en Polar 
M430 pulsklokke som skal bæres på 
venstre eller høyre håndledet, hele 
dagen og hele natten, i hele studiens 
varighet. De skal i tillegg bruke en Polar 
H10 pulsmåler med pulsbelte på 
fellestreninger.  

Mottak av deltaker  

Velkommen  
 
I dette prosjektet måler vi fysisk aktivitet, stillesitting, søvn og puls med en 
pulsklokke og et pulsbelte. 
 
Her ønsker vi å samle inn pulsdata gjennom hele studien for å kunne forske 
mer på hvordan pulsen endres seg over tid. Pulsklokken måler også fysisk 
aktivitet, stillestilling og søvn, på samme måte som aktivitetsmåleren på hoften 
som skal bæres en uke. Vi ønsker å samle inn denne dataen for å kunne 
sammeligne data fra aktivitetsmåleren på hoften og pulsklokken. 
 
Pulsklokken (vise pulsklokken) plasseres på høyre eller venstre håndledd og 
bæres i seks måneder, dag og natt. Bortsett fra når det lades. 
Pulsbeltet (vise pulsbeltet) tas på før trening og tas av etterpå. 
 
Pulsklokken og pulsbeltet leveres inn etter seks måneder, dvs siste samling på 
UNN   
 
 
Takk til deltager. 
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Utstyr: Pulsklokke M430 og Pulsmåler H10 

• Polar M430 Pulsklokke 
• Ladekabel til pulsklokke m/strøm 
• Polar H10 pulsmåler m/pulsbelte  
• Informasjonsskriv  
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Initialisering av pulsklokke  

1. Be deltaker feste pulsklokken på venstre eller høyre arm 
2. Sjekk med deltaker at dette er den armen han/hun vanligvis vil ha klokken 

på, og noter ned svaret. 
3. Be deltaker ta fram sin telefon og slå på Wifi og Bluetooth 
4. Be deltaker laste ned «Polar Flow» app 
5. Neste fire punkter er ulik for Android/iPhone 

Android 

a) Åpne «Play Butikk» og søk etter «Polar flow». Installer 
b) Be deltaker starte «Polar Flow» app, samt godkjenne «polar electro End-

User software agreement» (kan hende det står på norks) 
c) Appen vil be om tilgang til enhetens plassering. Velg «Tillatt». NB: 

Informer deltaker om at vi ikke skal samle inn GPS-data, men siden dette 
er en GPS-klokke trenger den tilgang til GPS (enhetens plassering) 

d) De trenger ikke aktivere GPS/possisjonstjenesten selv om appen ber om 
det.  

iPhone 

a) Åpne «App store» og søk etter «Polar Flow». Hent og 
installer. 

b) Be deltaker starte appen 
c) De må trykk «ok» når de får beskjed om at «polar flow ønsker å gjøre 

data tilgjengelig for bluetooth-enheter i nærheten selv om appen ikke er 
i bruk» 

d) Trykk på «Kom i gang» 

Resten er felles 

6. Be deltaker legge inn e-postadressen på formen: 
varigendringXX@helsefak.uit.no, der XX erstattes med deltakerens 
deltakernummer (01, 02, .., 18,19,20). NB: Husk ledende 0 på tall under 
10. 

7. Passordet legges inn av prosjektmedarbeider. NB: Denne skal ikke deles 
med deltaker.  

8. For de med Android: Deltaker kan legge inn kjønn, fødselsdato, høyde og 
vekt hvis de vil. Trykk «Fortsett».  

9.  Klokken kobles til telefonen ved å:  

mailto:varigendringXX@helsefak.uit.no
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a. Holde inn knappen nederst til venstre på klokken i 3 sekunder, 
inntil klokken viser «Koble til enhet» 

b. Holde klokken inntil telefonen, mens Polar Flow-appen er aktiv 
c. Klokken viser en pin kode som må skrives inn på telefonen. Legg inn 

denne og trykk «sammenkoble»/ «ok» 
d. Synkroniseringen kan ta litt tid.  
e. Hvis synkroniseringen ikke blir vellykket, prøv på nytt.  

10. Polar Flow-appen kan nå lukkes 
11. Klokken er nå koblet til deltakers telefon. Pulsmåler er allerede koblet til 

klokken. 
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Utlevering av Pulsklokke 

Forklaring til deltakerne 
 

1. Deltakeren skal utføre sine aktiviteter som vanlig.  
2. Pulsklokken brukes kontinuerlig til stoppdato, gjerne også under søvn.  
3. Pulsbeltet brukes ved fellestreninger 
4. Informer om punktene i infoskrivet. 
5. Del ut informasjonsskriv, pulsklokke og pulsbelte  

 

Feste pulsklokken 
• Pulsklokken festes på høyre eller venstre arm. Som en vanlig klokke.  

 

Feste pulsmåler/pulsbeltet 
 

• Før trening klikkes pulsmåleren fast i pulsbeltet (vis hvordan dette 
gjøres) 

• Baksiden av pulsbeltet må fuktes med vann. 

• Pulsbeltet settes rundt livet, slik at pulsmåleren er ca midt under 
brystmusklene 

• Etter trening klikkes pulsmåleren av pulsbeltet, og begge deler skylles i 
vann 

 

 
 

 
 

 
 



 

 

Appendix F 

Letter of information Polar M430/H10 (Norwegian), RESTART pilot and feasibility study 

(Paper III). 

  



 

 

  



 

Informasjon om pulsklokken Polar M430 
og pulsmåler H10 
 
Polars pulsklokke M430 
Pulsklokken måler bevegelse og puls. Data fra pulsklokken vil brukes for å måle 
aktivitetsnivået. 
 
Daglig bruk 
Klokken bæres hele dagen og natten så langt det er mulig. Klokken tåler vann og kan 
brukes i basseng og ved dusjing. Bluetooth skal være slått på hele tiden.  
 
Lading  
Klokken må lades hver søndag med medfølgende ladekabel.  

1) Sett i ladekabel på klokken 
2) Slå på Bluetooth og Wifi på telefonen 
3) Hold inne knappen nederst til venstre på klokken i 2 

sekunder 
 
Dataoverføring 
Data overføres fra klokken til en app (PolarFlow) kontinuerlig 
(Bluetooth må være på) når klokken er i nærheten av din mobiltelefon. PolarFlow-appen 
må ikke fjernes/avinstalleres fra telefonen. Dataoverføring krever at telefonen er koblet 
til et nettverk (WiFi). Sørg for at Bluetooth og WiFi og er aktivert på telefon og den er 
koblet til et nettverk når klokken lades. 
 
Polars bulsmåler H10 m/belte 
Aktivitetsmåleren festet til et elastisk bånd når den er i 
bruk og kobles av igjen når treningsøkten er over.  
 
Vær oppmerksom på følgende: 

 Utfør alle dine aktiviteter som vanlig 

 Bruk klokken hele døgnet, også om natten 

 Bruk pulsmåler m/belte ved fellestreninger 

 Pulsmåler må bæres direkte mot hud, som i bildet under 



 

Hvordan slå på Bluetooth/Wifi: Android 

Dra med en finger ned fra toppen av 

telefonen og trykk på Bluetooth-symbolet 

for å slå på Bluetooth, og Wifi-

symbolet for å slå på Wifi.  

 

 

Hvordan slå på Bluetooth/Wifi: iPhone 

Dra med en finger opp fra bunnen av 

telefonen og trykk på Bluetooth-symbolet 

for å slå på Bluetooth, og Wifi-

symbolet for å slå på Wifi. 
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Letter of information (Norwegian), mSpider volunteers (Paper IV) 
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Informasjon om studie for innsamling av aktivitetsdata via smartenheter  
 

Hensikten med studien er todelt, der DEL 1 er å teste ut datauthenting fra ulike 

aktivitetsmålere og smartklokker (smartenheter), og DEL 2 er å undersøke samsvar 

mellom målinger av bevegelse og hjertefrekvens mellom ulike aktivitetsmålere.   

 

Datainnsamling i DEL 1 gjøres via utlevert smartenhet. Denne bæres fra du får den 

utlevert og så lenge du ønsker å gå med den. Det er ønskelig at du bærer enheten hele 

døgnet over flere måneder, gjerne et helt år, men du kan selv bestemme når du tar den 

av og på. Når du ikke lenger ønsker å delta skal enheten returneres.  

 

Datainnsamling i DEL 2 gjøres på et senere tidspunkt, og innebærer å gå med flere 

målere i én eller flere begrensede perioder. Eget informasjonsskriv og eget 

samtykkeskjema for denne delen blir utlevert før denne innsamlingen starter.  

 

Informasjon som lagres i DEL 1 hentes automatisk fra smartenheten, 

datalagringsløsningen til smartenhetens leverandør eller dens samarbeidspartner 

(f.eks. Google/Apple). Dette inkluderer informasjon som steg, tid i ulike aktivitetssoner, 

og pulsdata. I DEL 2, der vi måler aktivitet med akselerometer/ hjertefrekvensmåler, 

samler vi i tillegg inn informasjon om aktivitetsmønstre og hjertefrekvens, samt 

grunnleggende informasjon om alder, kjønn, vekt og høyde. Denne grunnleggende 

informasjonen er nødvendig for å kunne beregne energiforbruk. 

 

Du har fått utlevert følgende enhet (leverandør/modell): _______________ /__________________ 

 

Følgende mobil app må installeres på din mobiltelefon: _____________________________________ 

 

Ved oppstart 

 Smartenheten plasseres på håndledd (ikke dominant hånd). Ikke-dominant hånd 
vil si at dersom du er høyrehendt skal målerne stå på venstre håndledd.  

 Du må installere tilhørende mobil app på din mobiltelefon (Polar, Fitbit, Garmin, 
etc).  

 Du må opprette en privat brukerkonto i appen og legge inn riktig informasjon om 
høyre, vekt, alder, etc. NB: All data du legger inn, samt registrert 
aktivitetsdata, vil også lagres hos leverandøren av smartenheten. 

 Du må koble smartenheten til din mobiltelefon via tilhørende mobil app. 
 Du vil få tilsendt en link per e-post, der du godkjenner at datainnsamlingsstudien 

kan hente ut din aktivitetsdata fra smartenhetens lagringsløsning. 
 
I måleperioden 

 Smartenheten må lades med jevne mellomrom (ca. en gang i uken). 
 Smartenheten må være koblet til din telefon via tilhørende app. 
 Smartenheten bæres helst hele døgnet  
 Smartenheten bæres over så mange dager og måneder som mulig  
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Samtykke til deltakelse i studie for datainnsamling fra smartklokker 
 
 

Jeg har mottatt skriftlig (eget informasjonsskriv) og muntlig informasjon om studiens formål og 

innhold, og jeg har hatt mulighet til å stille spørsmål om studien før samtykke. 

 

 

Jeg samtykker herved i å delta i studien. 

 

 

 

  

Sted og dato      Deltakers signatur 

 

 

 

 

       Deltakers navn med trykte bokstaver 

 

 

 

 

Jeg bekrefter å ha gitt informasjon om prosjektet 

 

 

 

  

Sted og dato      Signatur 

 

 

 

 

 

  

  

 

 

 



 

 

Appendix H 

Letter of information (Norwegian), mSpider COVID-19 physical activity study (Paper IV) 
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Kontinuerlig innsamling av aktivitetsdata fra forbrukerbaserte aktivitetsmålere 
 
Dette er en invitasjon om å delta i et forskningsprosjekt hvor formålet er å samle inn data fra 
ulike aktivitetsmålere/smartklokker. I dette skrivet gir vi deg informasjon om formålet med 
prosjektet og hva deltakelse innebærer. 

 
Data fra aktivitetsmålere samles inn ved hjelp av mSpider, et datainnsamlingssystem 
utviklet ved UiT Norges arktiske universitet. Aktivitetsmålere samler inn data basert på 
bevegelse (fysisk aktivitet, hvile, søvn) samt puls. 
 
Formålet med forskningsprosjektet er todelt. Vi vil teste ut datauthenting fra ulike 
aktivitetsmålere. Vi vil også studere ulike typer data fra aktivitetsmålere over tid, herunder 
se på hvordan aktivitetsnivået blant deltakerne har endret seg pga. COVID-19. 

 

Datainnsamlingen gjøres enten via utlevert aktivitetsmåler eller via en aktivitetsmåler du 

allerede har.  

 

For deg som har din egen aktivitetsmåler 

Du bærer din måler som vanlig. Vi vil samle inn data både framover og bakover i tid. 

 

For deg som får utlevert en aktivitetsmåler 

Utlevert måler bæres fra du får den utlevert og så lenge du ønsker å gå med den. Det er 

ønskelig at du bærer måleren hele døgnet, over tid. Når du ikke lenger ønsker å delta skal 

måleren returneres.  

 

Data samles automatisk inn til datalagringsløsningen til aktivitetsmålerens leverandør 

(Fitbit, Polar, Garmin, Withings, Oura, Apple, Samsung, Google), via tilhørende app for 

mobiltelefon. Basert på innsamlet data fra aktivitetsmåleren (bevegelse og puls) beregnes 

ulike variabler f.eks. antall steg og energiforbruk. Noen aktivitetsmålere kan registrere  GPS 

posisjoner. Registrering av GPS kan forhindres ved å avslå tilgang til GPS i tilhørende mobil 

app. I tillegg vil annen data du selv registrerer i appen (f.eks. kjønn, alder, høyde, vekt) 

samles inn. I dette forskningsprosjektet samler vi ikke inn slik identifiserende data fra 

aktivitetsmålerens leverandør (f.eks. GPS, kjønn, alder, høyde og vekt). Mer informasjon om 

personvernerklæringene til disse leverandørene er samlet her: https://mspider.org/tos.  

 

Hva innebærer det for deg å delta? 

Ved oppstart 
• Aktivitetsmåleren plasseres på ikke-dominant hånd håndledd (dvs. dersom du er 

høyrehendt; venstre håndledd, dersom du er venstrehendt; høyre håndledd).  
• Tilhørende mobil app må installeres på din mobiltelefon (f.eks. Polar, Fitbit, Garmin).  

https://mspider.org/tos
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• Privat brukerkonto i appen må opprettes, og riktig informasjon om kjønn, alder, høyde, 
og vekt må legges inn. NB: Data du legger inn, samt bevegelsesdata, vil også lagres 
hos leverandøren av aktivitetsmåleren. 

• Aktivitetsmåleren må kobles til tilhørende app på din mobiltelefon. 
• Datainnsamling for dette forskningsprosjektet må godkjennes via tilsendt nettlenke. 

 
I måleperioden 

• Aktivitetsmåleren må lades med jevne mellomrom. 
• Aktivitetsmåleren må være koblet til din telefon via tilhørende app. 
• Aktivitetsmåleren bæres helst hele døgnet  
• Aktivitetsmåleren bæres over så mange dager og måneder som mulig  

 

Generell informasjon 

Hvem er ansvarlig for forskningsprosjektet? 
UiT Norges arktiske universitet er ansvarlig for prosjektet. 
 

Det er frivillig å delta 

Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykket 

tilbake uten å oppgi noen grunn. Datainnsamlingen for dette forskningsprosjektet vil da 

opphøre. 

 
Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger  

Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi 

behandler opplysningene konfidensielt og i samsvar med personvernregelverket. 

Kontaktinformasjon oppbevares så lenge du er deltaker. Kun prosjektansvarlig har tilgang til din 

kontaktinformasjon. Navn og kontaktinformasjon lagres ikke sammen med øvrig data. Innsamlet 

data er avidentifisert.  

 

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet? 

Opplysningene anonymiseres når prosjektet avsluttes og/eller måleutstyret leveres tilbake. 

 

Dine rettigheter 

Så lenge du kan identifiseres i datamaterialet, har du rett til: 
- innsyn i hvilke personopplysninger som er registrert om deg, og å få utlevert en kopi av 

opplysningene, 
- å få rettet personopplysninger om deg,  
- å få slettet personopplysninger om deg, og 
- å sende klage til Datatilsynet om behandlingen av dine personopplysninger. 

 
Disse rettighetene omfatter de opplysninger forskningsprosjektet har kontroll over. For innsyn, 
sletting og retting av øvrig informasjon som lagres hos leverandøren av aktivitetsmåleren, må 
det tas direkte kontakt med relevant leverandør. Vi oppfordrer deltakere til å lese 
personvernerklæringen til den relevante leverandøren (https://mspider.org/tos).  

 

Hva gir oss rett til å behandle personopplysninger om deg? 

Vi behandler opplysninger om deg basert på ditt samtykke.  

På oppdrag fra UiT Norges arktiske universitet har NSD – Norsk senter for forskningsdata 

vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med 

personvernregelverket.  

 

https://mspider.org/tos
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Hvor kan jeg finne ut mer? 

Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med: 
• UiT Norges arktiske universitet ved André Henriksen 
 andre.henriksen@uit.no, +47 91 36 83 82 
• UiTs personvernombud Joakim Bakkevold 

personvernombud@uit.no, +47 77 64 63 22/+47 97 69 15 78 

 

Hvis du har spørsmål knyttet til NSD sin vurdering av prosjektet, ta kontakt med:  
• NSD – Norsk senter for forskningsdata  

personverntjenester@nsd.no, +47 55 58 21 17 

 

 

Med vennlig hilsen 

 

 

 

André Henriksen 

Prosjektansvarlig 

mailto:andre.henriksen@uit.no
mailto:personvernombud@uit.no
mailto:personverntjenester@nsd.no




 

 

Appendix I 

Correlations and Bland-Altman plots, with separate colours for each participant, for steps, 

MVPA, and total energy expenditure (Paper III) 
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