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Dichotic listening while walking: A dual-task paradigm examining gait 
asymmetries in healthy older and younger adults
Marta Maria Gorecka, Olena Vasylenko and Claudia Rodríguez-Aranda

Department of Psychology, UiT- the Arctic University of Norway, Tromsø, Norway

ABSTRACT
Dual-task studies have employed various cognitive tasks to evaluate the relationship between gait and 
cognition. Most of these tests are not specific to a single cognitive ability or sensory modality and have 
limited ecological validity. In this study, we employed a dual-task paradigm using Dichotic Listening 
(DL) as concomitant cognitive task to walking. We argue that DL is a robust task to unravel the gait- 
cognition link in different healthy populations of different age groups. Thirty-six healthy older adults 
(Mean = 67.11) and forty younger adults (Mean = 22.75) participated in the study. DL consists of three 
conditions where spontaneous attention and attention directed to right or left-ear are tested while 
walking. We calculated dual-task costs (DTCs) and percent of baseline values for three spatio-temporal 
gait parameters as compared to single-walking during three DL conditions. Results showed that both 
groups had larger DTCs on gait during volitional control of attention, i.e., directing attention to one 
specific ear. Group differences were present across all DL conditions where older adults reported 
consistently less correct stimuli than younger participants. Similar findings were observed in the 
neuropsychological battery where older participants showed restricted abilities for executive function
ing and processing speed. However, the main finding of this investigation was that younger adults 
exhibited unique adjustments in step length variability as shown by changes in DTCs and percent of 
baseline values. Particularly, an asymmetric effect was observed on the young group when attending 
right-ear stimuli. We interpreted this gait asymmetry as a compensatory outcome in the younger 
participants due to their optimal perceptual and motor abilities, which allow them to cope suitably with 
the dual-task situation. Many studies suggest that gait asymmetries are indicators of pathology, the 
present data demonstrate that gait asymmetries arise under specific constraints in healthy people as an 
adaptation to task requirements.
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Introduction

Aging is associated with changes in cognition and motor 
functions. Specifically, these changes affect gait in older 
adults (Montero-Odasso et al., 2012; Morris et al., 2016). 
In order to address the interrelation between walking 
and cognition, a classical method known as dual-task 
paradigm has been employed. Dual-task experiments 
require subjects to perform two tasks simultaneously 
in order to measure the influence of a primary task on 
a secondary task. Thus, the dual-task paradigm is uti
lized in gait studies by simply asking individuals to walk 
while they perform in parallel a cognitive task (Pashler, 
1994). A challenge in this line of research is the fact that 
numerous cognitive tasks have been used as concurrent 
tasks in dual-tasking and these are either not specific to 
one cognitive function or too intricate that findings 
cannot be generalized to everyday situations (for review 
Beauchet et al., 2005; Boisgontier et al., 2013; Patel et al., 
2014).

Al-Yahya et al. (2011) showed that the cognitive tasks 
most recurrently employed to challenge gait were those 
requiring mental tracking. However, mental tracking tasks 
exist in various sensorial modalities and in a diversity of 
type of tasks that it becomes challenging to unravel how 
specific cognitive demands affect specific gait parameters 
(Shumway-Cook et al., 1997). For this reason, our group 
has applied a Dichotic Listening (DL) task, which is 
a robust test for the assessment of central auditory lan
guage processing, laterality, and interhemispheric interac
tions as well as divided and sustained attention.

DL and aging effects

In general, DL tasks consist in applying different stimuli 
(e.g., words, numbers, or syllables) to each ear at the same 
time (Bryden, 1988). One dichotic listening approach 
widely employed is the Bergen Dichotic Listening Task 
(Hugdahl & Andersson, 1986), which we have selected. In 
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this task, different consonant-vowel syllables are pre
sented simultaneously to each ear in three conditions. 
In the first condition (Non-Forced, NF) participants 
report freely the stimuli that seem most salient. Then, in 
the other two conditions subjects are asked to either 
report stimuli from right or left-ear while inhibiting sti
muli from the opposite ear (Forced Right/Left, FR/FL). 
Due to the decussation of the auditory pathways, right- 
handed persons report more likely responses from the 
right ear and such a phenomenon is known as the “Right 
Ear Advantage” (REA), which reflects a dominant left- 
hemisphere processing for language (Asbjørnsen & 
Hugdahl, 1995; Bryden, 1988; Kimura, 1967). This pecu
liarity in right-handed individuals causes that attending 
to the left side becomes more demanding. Thus, the 
increment in cognitive demands in DL, from NF to the 
FR and FL condition, makes possible to manipulate atten
tional demands on three levels in the same sensory mod
ality (Hugdahl et al., 2009). For this reason, DL is 
a valuable tool to assess attentional functions across the 
life span. In fact, there exists an undisputable age-related 
effect in DL performance, where younger adults outper
form older adults even when controlled for hearing loss 
(Hommet et al., 2010). In fact, younger adults are more 
capable to attend to one side and inhibit stimuli from the 
other. However, older adults do not differ from younger 
subjects when instructed to report from the right side. 
The main age-related difference is that older adults dis
play reduced ability to report stimuli presented to the left- 
ear. (Andersson et al., 2008; Hällgren et al., 2001; Jerger 
et al., 1994; Martin & Jerger, 2005; Westerhausen et al., 
2015). Accordingly, evaluation of DL has proved helpful 
in studying attentional and executive processes in aging 
(Takio et al., 2009; Westerhausen et al., 2015).

Application of DL in dual-task studies of gait

The use of DL gives several advantages to understand 
gait changes in aging populations as there exists con
siderable knowledge on the neuroanatomical mechan
isms behind DL. Nonetheless, few studies have applied 
DL as a cognitive task in a dual-task paradigm. Gadea 
and coworkers (Gadea et al., 1997) applied it in 
a manual dual-task, while only two other studies have 
used it in association with walking (Decker et al., 2017; 
Gorecka et al., 2018). An important peculiarity of apply
ing DL to dual-task while walking, is that such 
a situation resembles the daily event in which people 
walk beside someone else and need to inhibit noise from 
the environment in order to talk to the near person from 
one specific side. Thus, we use The Bergen Dichotic 
Listening Test not only to test how auditory attention 

disturbs gait, but also to obtain an ecological valid 
alternative to current dual-task paradigms.

In the past, Decker et al. (2017) used the Bergen 
Dichotic Listening Task as the cognitive task in a dual- 
task experiment where young and older participants 
walked on a treadmill. However, because dual-tasking 
performed on a treadmill is not equivalent to regular 
walking (Lazzarini & Kataras, 2016), our group decided 
to carry out this dual-task paradigm on over-ground 
conditions. In this way, in 2018 we evaluated how 
a group of right-handed healthy older adults with vary
ing levels of hearing loss performed DL during walking 
over-ground (Gorecka et al., 2018). Results showed 
asymmetrical effects on spatio-temporal measures of 
gait (i.e., step width, stride length, and gait speed) 
mainly on the right foot, which were modulated by 
hearing status. Such alterations occurred when partici
pants focused their attention to the left-ear.

The present study

The above findings are of relevance to better understand 
how control of focus of attention in the auditory modality 
affects gait in older persons. Nevertheless, this over- 
ground experimental procedure has not been assessed 
with younger individuals. From a developmental perspec
tive, it is important to settle the effects of an experimental 
situation in individuals at their highest performance 
capacity, which for most abilities strongly relying on 
sensory-motor functions is around the second and third 
decades of life (e.g., Leversen et al., 2012). Therefore, 
younger people need to be tested in this dual-task para
digm. This will allow us to broader our understanding of 
the methodology as well as give us a point of comparison 
for the effects observed in older adults.

For these reasons, in the present study, we aim to 
investigate possible age-related differences on this dual- 
task paradigm among right-handed healthy participants. 
To this end, we will carry out the same methodology as in 
our previous studies where DL is the concomitant task to 
over-ground walking. More specifically, we wish to inves
tigate whether there are differences between young and 
older adults in the cost of the dual-task and on the percent 
of baseline values across the different DL conditions. 
Literature in the field suggest that gait parameters of 
younger adults are not seriously compromised by complex 
executive tasks, such as the go/no-go task (Beurskens et al., 
2016), which could be regarded as equally demanding as 
the DL task. Thus, it is reasonable to expect that due to the 
well-functioning of sensory-motor capacities of younger 
adults, this group would be able to display high perfor
mance in the dual-task paradigm. Notwithstanding, the 
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present study is exploratory in nature and DL has not been 
studied in over-ground conditions among younger adults. 
Thus, results will answer the question of whether this dual- 
task paradigm challenges healthy people in the same way 
regardless of age or whether the observed gait alterations 
from our previous investigation only arise in older 
individuals.

Method

Participants

Thirty-six healthy older adults between 63 and 80 years 
(M = 67.11, years, SD = 5.08) and forty younger controls 
between 19 and 35 years (M = 22.75 years, SD = 2.84) 
were recruited for the study. All the participants were 
involved in a larger umbrella project of motor functions 
and cognition at our institution. All were right-handed 
volunteers, native Norwegian speakers. Participants 
were free from any musculoskeletal, neurological, or 
cardiovascular disease with no walking difficulties, no 
dementia or cognitive impairment, and no history of 
depression. In order to control for adequate hearing 
function, those participants with a hearing threshold 
of pure tone average (PTA) of >25 dB were excluded. 
In addition, all participants enrolled in the study scored 
above 27 points in the The Mini Mental Status 
Examination – Norwegian version (MMSE-NR; 
Folstein et al., 1975; Strobel & Engedal, 2008), which 
ensure the inclusion of persons with normal cognitive 
status. Likewise, the Beck Depression Inventory II (BDI- 
II; Beck et al., 1988) was used in order to exclude 
possible depressive participants, though none of them 
scored within the ranges of depressive symptoms. Older 
adults were recruited through advertisements at the 
local senior citizens’ center, flyers, and as well as by 
means of word of mouth. Younger adults were recruited 
from the University campus. Written informed consent 
was obtained from all participants. The study was 
approved by the local Research Ethics Committee.

Materials

Neuropsychological tests
A battery of tests was used to obtain a complete profile of 
the cognitive abilities of both age groups which enables to 
appraise the cognitive capacities of the participants and 
hence, better understand the results of the dual-task. 
Thus, the Clock Drawing Test (CDT; Shulman, 2000) 
was used to examine visuo-constructive abilities. To 
examine memory, Logical Memory I and II from 
Wechsler Memory Scale III (Wechsler, 1997) were used. 
The subtest Digit Span forwards and backwards from 

WAIS-IV (Wechsler, 2014) were used to examine atten
tion and working memory. The Stroop Word Color Test 
(Golden, 1978) and Trail Making Test A and B (TMT; 
Reitan & Wolfson, 1993) were used to examine proces
sing speed and executive functions, like inhibition and 
cognitive flexibility.

Background variables
Participants were interviewed about their background 
including education, health and disease, and daily func
tioning. Participants filled out the following question
naires for laterality measures: Annett Handedness 
Inventory (Briggs & Nebes, 1975), and the Waterloo 
Footedness Inventory (Elias et al., 1998). To assess sub
jective assessment of physical health each subject 
responded to the 36 – item Health Survey (SF-36) 
(Loge et al., 1998; Ware & Sherbourne, 1992).

Audiometric screening
All participants completed audiometric screening using 
pure tone audiometry (Madsen Itera II, GN Otometrics, 
Denmark). Hearing sensitivity was measured calculat
ing the Pure Tone Average (PTA) from hearing thresh
olds of the frequencies 500 Hz, 1000 Hz, 2000 Hz and 
4000 Hz. PTA scores above 25 dB as well as an interaural 
difference larger than 15 dB was used for exclusion of 
participants.

Gait assessment
Spatio-temporal parameters were acquired using the 
Optogait System (Optogait, Microgate, Bolzano, Italy). 
The system quantifies gait parameters using photoelec
tric cells that register interference in light signals. The 
sensors in the Optogait system are placed over ground 
creating a seven meter long x 1.3 meter wide rectangular 
corridor where subjects walk in loops counter- 
clockwise. Ninety-six LED diodes are positioned on 
each bar one centimeter apart at three millimeters 
above the ground. When subjects pass between two 
bars positioned in parallel with the ground, transmis
sion and reception are blocked by their feet. Timing, 
size, and distance are sensed, and spatio-temporal para
meters are automatically calculated. Data were extracted 
at 1,000 Hz and saved on a PC using OptoGait Version 
1.6.4.0 software. Gait parameters examined were gait 
speed, step length, and step width, for both feet (i.e., 
bilateral) and by foot. Variability was calculated for each 
parameter using coefficient of variability (CoV). All 
walking conditions were recorded with two Logitech 
web cameras from different angles to overlook any dif
ficulties or changes during walking condition. The 
Optogait system has proved to be a highly reliable and 
valid instrument (Lee et al., 2014; Lienhard et al., 2013).
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Dichotic Listening task
We applied the Bergen Dichotic Listening Test 
(Hugdahl & Andersson, 1986). The paradigm consists 
of six consonant-vowel (CV) presentations:/ba//ta//pa// 
ga//da//ka/where different CVs were presented simulta
neously and randomized, each syllable of 350 millise
conds duration. The syllables were paired with each 
other in all possible combinations to form 36 different 
syllable pairs. From these, six homonyms pairs (e.g., ba– 
ba) were included in the test as perceptual control. The 
CVs were read by a Norwegian-speaking male voice 
with constant intonation and intensity with a time inter
val of 4000 milliseconds. The total duration of each DL 
condition was three minutes. DL-responses were 
recorded with a digital voice recorder hanging around 
the participants’ neck. The syllables were presented 
using wireless noise-canceling headphones. E-prime 
2.0 Software (Psychology Software Tools, Inc., 
Pittsburgh, PA, USA) was used to present the stimuli. 
The DL procedure has three conditions: The Non- 
Forced condition (NF) was always performed first, 
where participants were instructed to report the syllable 
they heard the clearest. For the following conditions, 
participants were instructed to pay attention and loudly 
report stimuli from either right (Forced-Right, FR) or 
left (Forced-Left, FL) side, while ignoring information 
from the opposite ear. The order of the FR and FL were 
counterbalanced across subjects depending on their ID 
number.

Procedure

The study took place at Department of Psychology, UiT 
Arctic University of Norway. Participants were inter
viewed initially to acquire their demographic back
ground and health history. Afterward, all subjects 
underwent audiometric screening and neuropsycholo
gical testing in a sound-attenuated room. The dual-task 
experiment was conducted in a rectangular-shaped, 
sound-attenuated room. Participants walked within the 
Optogait system in a self-selected, comfortable walking 
speed counter-clockwise. The experimenter showed 
beforehand the direction of walking within the assigned 
area. The Optogait system started recording gait as the 
subject took the first footstep, initiated by a verbal sig
nal. In the baseline condition, participants were asked to 
walk for one minute within the corridor. Baseline- 
condition was shorter than the rest of the dual-task 
conditions to assure that subjects did not get tired or 
lightheaded while allowing acquisition of enough gait 
data to obtain spatio-temporal parameters in the control 
condition. Prior to dual-task conditions, participants 
were given a demonstration trial of the experimental 

procedure. Also, participants were required to listen 
and respond to three CV-presentations while wearing 
headphones without walking, to ensure comprehension 
of the instructions. In the dual-task condition, subjects 
were asked to walk continuously and execute the DL 
task as accurate as possible. The instructions given were: 
“We ask you to say loudly the syllables that you per
ceived a) the clearest (in Non-Forced condition), b) 
from right-ear (in Forced-Right condition), c) from left- 
ear (in Forced-Left condition), while you walk in rounds 
in the designated area as previously demonstrated. 
Please keep walking and reporting the syllables during 
the entire trial as well as you can”. It is important to 
highlight that the experimental situation did not open 
for any beforehand task prioritization, but rather 
instructions denote equal prioritization for both tasks. 
The dichotic stimuli was initiated simultaneously as the 
subject lifted a foot to initiate walking, again when the 
experimenter gave a verbal cue. Finally, careful adjust
ment of the volume was ensured for each person. Data 
acquisition for gait parameters in the present study were 
aggregated scores based on the 1-minute trial for base
line and on each 3-minute trial of the three DL condi
tions. Short breaks were given between conditions. The 
oral responses were recorded and written down by one 
experimenter. Afterward, the recorded responses were 
listened and manually inserted in the E-prime software 
by a second experimenter, which ensure reliable data. 
Laterality indexes and correct responses were calculated 
by the DL software. Duration of test session was 
approximately two hours.

Statistical analyses

All analyses were performed with the statistical package 
IBM SPSS Statistics 26 for Windows (IBM Corp., 
Armonk, N.Y., USA). Group comparisons for demo
graphics, background variables, cognitive tests and 
questionnaires were performed with independent 
t-tests. The assessment of the effects of DL on gait was 
conducted through two approaches. First, we analyzed 
the absolute differences in raw scores by calculating 
dual-task cost scores (DTCs) on the mean (DTCM) 
and CoV (DTCCoV) of all spatiotemporal parameters. 
DTCs were calculated by determining the difference 
between gait parameters in single walking and gait para
meters during the three dual-task conditions (e.g., gait 
scores in Baseline minus gait scores in NF, FR and FL). 
Then, DTC scores were used in statistical analyses. This 
first approach relying on the use of DTCs allows for 
a straightforward understanding of the effects of the 
experimental situation in raw scores, which is important 
for clinical application (Baker et al., 2009). The second 
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approach adopted for the analysis of group differences 
was based on the evaluation of “percent of baseline 
values”, which allows for group comparisons on the 
proportion of performance affected by the DL conditions. 
Percent of baseline values were calculated by dividing 
each gait parameter obtained under each DL condition 
by baseline gait scores and multiplied by 100, e.g.: 

Percent of baseline gait speed in NFcondition

¼
gait speed in NFcondition

gait speed in baseline
X100 

A series of factorial analyses of variance with repeated 
measures in one factor were carried out to assess DL, 
DTCs, and percent of baseline values. For DL, we had the 
Group (Young, Old) as between-subjects factor while Ear 
(right, left) and Condition (NF, FR, FL) were the within- 
subjects factors. For gait data, the Group (Young, Old) was 
the between-subjects factor while Foot (right, left) and 
Condition (NF vs Baseline, FR vs Baseline, FL vs 
Baseline) were the within-subjects factors. In case of 
a significant omnibus test, univariate tests were performed. 
In case of significant interactions, analyses for simple main 
effects were carried out. For gait, we analyzed the mean and 
CoV separately by gait parameter as both descriptors are 
important to evaluate in linear measures of gait outcomes 
(Hamacher et al., 2011). Also, we analyzed first bilateral 
outcomes and then lateralized outcomes. Since asymme
tries were found among older adults in our previous study 
(Gorecka et al., 2018), we adopted this approach to inves
tigate possible asymmetric effects on gait parameters by DL 
condition. In all analyses, Greenhouse-Geisser corrections 
were chosen when the sphericity assumption was not met. 
Significant interactions or main effects involving group 
differences were followed up with appropriate post-hoc 
analyses. Due to multiple comparisons across all factorial 
ANOVAs, the Bonferroni correction was applied.

Statistical analyses for supplementary material
Finally, for a better appraisal of the findings reported in 
this study, we present raw scores for bilateral and later
alized gait outcomes as supplementary material. These 
data were analyzed with a set of mixed repeated measures 
ANOVAs using the design 4 x Condition (Baseline, NF, 
FR, FL) as the within-subjects factor x 2 Group (Young, 
Old) as the between-subjects factor. Thereafter, and in 
accordance with our earlier study (Gorecka et al., 2018) 
we conducted a series of ANCOVAs on these raw data 
that corrected for hearing status. The reason for focusing 
on hearing loss relates to various important aspects of our 
study. To begin with, the sensory modality of the con
comitant cognitive task (DL) is hearing and older adults 
over 60 years of age show substantial hearing loss that 
need to be taken into account (Bush et al., 2015). Second, 
age-related hearing loss affects greatly balance and walk
ing in the older adult (Lin et al., 2011) and third, hearing 
loss is tightly related to cognitive deficiencies in aging 
(Dupuis et al., 2015). Based on the above, “pure tone 
averages” (PTA) of the frequencies 500, 1000, 2000 and 
4000 Hz were calculated and used as covariate in the gait 
analyses presented in Supplementary material.

Results

Results from demographic variables are shown in Table 1. 
As commonly reported, young adults had significantly 
more years of education than older adults. Positive mea
sures from the Handedness Inventory and Footedness 
Inventory confirmed that both the old and young parti
cipants had a preference for right hand. However, we 
found significant group differences only on the 
Handedness Inventory where older adults reported to 
prefer the use of right hand significantly more than 
younger adults. No group differences were found in 
terms of self-reported health status or depression.

Table 1. Demographics and subjective assessments of hand and foot preference, depression 
scores and health status.

Young adults (N = 40)
Older adults 

(N = 36)

14/26 10/26
Gender (men/women) M (SD) M (SD) t

Age 22.81(2.86) 67.11(5.09)
Education (years) 15.40 (2.27) 13.59 (2.27) 2.77*
BDI-II 5.36 (5.84) 5.11 (4.31) 0.21

Handedness 16.63(12.25) 21.06 (3.71) −2.08*
Footedness 7.88 (9.15) 10.86(7.72) −1.51

SF-36 106.27 (6.68) 103.69 (6.87) 1.61

M = mean, SD = standard deviation (* p < .05). BDI-II = Becks Depression Inventory. SF-36 = Short Form Survey 36 
items
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Neuropsychological scores

Results from neuropsychological assessments are dis
played in Table 2. Older adults presented significantly 
lower performance than the younger group on TMT 
A and B, as well as on all Stroop conditions. In addition, 
older adults recalled less information on delayed mem
ory measures.

Hearing Thresholds
Table 3 shows hearing thresholds interaurally for both 
groups. As portrayed, all PTA scores were below 25 dB. 
Though, older adults had significantly higher hearing 
thresholds as compared to younger adults across all out
comes. Worst-PTA indicates actual auditory dysfunction, 
while best-PTA shows auditory compensation (Linssen 
et al., 2014).

Dichotic listening results. Three-way MANOVA 
showed a statistical significant main effect for Ear 
(F [1,74] = 60.81, p <.001, η2p = 0.45) and Group 
(F [1,74] = 9.59, p < .01, η2p = 0.12). No significant effect 
was seen for Condition. There was also a significant inter
action effect between Condition x Ear, naturally due to the 
change in focus of attention driven by the instructions, 

which was expected, (F [2,73] = 17.99, p < .001, η2p = 0.33). 
However, the results showed a significant interaction effect 
of Condition x Group (F [2,73] = 3.76 p < .05, η2p = 0.09), 
indicating significant differences between older adults and 
young adults on some of the DL conditions. Post hoc 
analysis showed no significant group difference in right 
ear responses in any of the three conditions (see Figure 1). 
However, a significant group difference for correct 
responses from the left ear was seen in FL condition 
(F [1,74] = 8.38, p < .05, η2p = 0.10, see Figure 2). The 
younger adults showed a REA in NF and FR and a left-ear 
advantage (LEA) in FL. In contrast, older adults showed 
REA in all three conditions.

Since hearing acuity differed signficantly between 
groups and this condition affects the perceptual abil
ity of older participants as well as their cognitive 
abilities (Bush et al., 2015), we decided to control 
for hearing differences by conducting a factorial 
MANCOVA. Thus, worst-PTA, e.g., highest thresh
old in hearing acuity, was entered as a covariate to 
evaluate whether auditory deterioration influenced 
the observed group differences. In fact, results 
showed that when controlling for worst-PTA, the 
interaction effect on NF was no longer present 
(F [2,72] = 1.08, p = NS, η2p = 0.02). However, the 

Table 3. Mean and standard deviations for hearing thresholds in decibels (dB).

Young (N = 40) Old (N = 36)

M (SD) M (SD) t

PTA Right 8.09 (3.95) 14.81 (4.73) −6.8***
PTA Left 7.03 (5.01) 14.98 (4.13) −7.41***
PTA Best 5.85 (4.03) 13.59 (4.15) −8.23***

PTA Worst 9.26 (4.47) 16.19 (4.32) −6.86***

PTA = Pure Tone Average. PTA Best = Lowest threshold for both ears. PTA Worst = Highest threshold for both ears 
(*** p < .001)

Table 2. Means and standard deviations from neuropsychological tests.

Young (N = 40) Old (N = 36)

Measure M (SD) M (SD) t

MMSE-NR 29.28 (1.43) 28.92 (1.46) 1.8
CDT 6.95 (0.22) 6.81 (0.57) 1.5

TMT A 25.30 (8.2) 35.50 (17.70) −3.28*
TMT B 65.07 (23.45) 80.04 (27.50) −2.55*

Stroop W 107.38 (15.00) 89.08 (18.27) 4.58***
Stroop C 86.83 (11.73) 62.19 (12.06) 8.99***
Stroop WCI 59.73 (13.68) 33.83 (8.06) 9.90***

DigitSpan F 9.78 (2.14) 9.08 (2.06) 1.55
DigitSPan B 8.90 (1.65) 8.25 (2.13) 1.43

Log Mem I 11.54 (4.09) 11.36 (3.10) .21
Log Mem II 10.54 (4.28) 15.22 (3.49) −5.16**

M = Mean, SD = Standard deviation. MMSE-NR = Mini Mental Status Examination Norwegian Version. CDT = Clock 
Drawing Test. TMT = Trail Making Test. Stroop W = Stroop Word, Stroop C = Stroop Color, Stroop WCI = Stroop 
Word-Color Interference, DigitSpan F = Digit span forwards, DigitSpan B. Log Mem = Logical memory. (* p < .05, 
** p < .01, *** p < .001)
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group differences were still present F [1,73] = 3.92, 
p < 0.05, η2p = 0.05). Post Hoc analysis showed 
a trend toward older adults reporting less from the 
left side in the FL condition (p = NS). In summary, 
variation in hearing acuity played a significant role in 
the performance of DL executed while walking.

Gait Although, the focus of all analyses in this study 
is on the DTCs and percent of baseline values, the 
bilateral raw data for gait parameters are also 
reported in the Supplementary Material. We high
light that results for DTCM, DTCCoV and percent 
of baseline values for bilateral (i.e., right and left- 
foot data together) outcomes and outcomes by foot 
(i.e., right-foot vs left-foot) were calculated and ana
lyzed separately.

Bilateral results DTCM
Two-way MANOVA showed only a significant main 
effect of Condition for DTCM gait speed 
(F [2,73] = 12.43, p < .001, η2p = 0.25, see Figure 3) 
and DTCM step length (F [2,73] = 11.130, p < .0001, 
η2p = 0.20, see Figure 4). Additionally, a main effect for 
Group (F [1,74] = 43.23, p < .0001, η2p = 0.36) was also 
found in DTCM step length (see Figure 4). No signifi
cant main effects or interactions were found for DTCM 
step width.

Bilateral results for DTCCoV
For bilateral variability data we did not find any signifi
cant effect or interaction in any of the gait parameters.

Figure 2. Mean and ± SEM for correct left-ear responses across three dichotic listening conditions. (* p <.05).

Figure 1. Mean and ± SEM for correct right-ear responses across three dichotic listening conditions.
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Lateralized results for DTCM
Not surprisingly, lateralized data showed similar results as 
in the bilateral outcomes. This regards gait speed, in 
which only a main effect of Condition was found 
(F [2,73] = 10.50, p < .001, η2p = 0.22). As in the bilateral 
data, the change from baseline to NF on both right and left 
feet was significantly lower than the cost of the dual-task 
in the FR and FL conditions. However, on step length we 
found a main effect of Group (F [1,74] = 30.79, p < .001, 
η2p = 0.29, see Figure 5) where younger adults displayed 
larger costs of the dual-tasks condition than older adults. 
No significant findings were found for step width.

Lateralized results for DTCCoV
As in the bilateral data, there were no significant 
findings for gait speed DTCCoV or step width 
DTCCoV. Though, step length DTCCoV showed 
a significant interaction between Foot and Group 
(F [1,74] = 7.78, p < .001, η2p = 0.10). Analyses of 
simple main effects demonstrated the existence of 
a change in variability in the young group. As 
depicted in Figure 6, the variability in the younger 
participants increased significantly on their left foot 
during the Forced Right condition (F [1,74] = 11.65, 
p < .001 η2p = 0.14, see Figure 6).

Figure 4. Mean and ± SEM for DTCM for step length. DTCM = dual-task costs of mean values for bilateral outcomes. *** p <.001 
significant differences between conditions. † p <.001 significant differences between groups.

Figure 3. Mean and ± SEM for DTCM for gait speed. DTCM = Dual-task costs of mean values for bilateral outcomes (m/s). 
*** = p < .001.
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Bilateral results for percent of baseline values
Mean: From these analyses, only the percent of baseline 
values of the mean for step length showed a main effect 
of Condition (F [2,73] = 8.58, p < .0001, η2p = 0.19) and 
a main effect of Group (F [1,74] = 44.2, p < .0001, 
η2p = 0.37). The group difference is denoted by the 
preserved ability of older adults in step length across 
DL conditions, while the younger group had a reduction 
of almost 5% across DL conditions. Specifically, the 
proportion of step length execution was mostly reduced 
in younger adults during the conditions where volun
tary control of attention was required (FR and FL con
ditions). In addition, we also found a main effect of 
Condition for the percent of baseline values of the 

mean for gait speed (F [2,73] = 13.35, p < .0001, 
η2p = 0.27). No further significant findings were 
obtained for the percent of baseline values of the mean 
for step width, see Table 4.

CoV: In these analyses we obtained a main effect of 
Group in the percent of baseline values of CoVs for step 
length (F [1,74] = 8.09, p < .006, η2p = 0.10) and gait 
speed (F [1,74] = 7.38, p < .008, η2p = 0.09). In the 
former, it was observed that older participants incre
mented their step length variability by 27% in the NF- 
condition as compared to baseline, while the increment 
for the FR and FL-conditions was of 36%. In contrast, 
the younger group basically preserved their step length 
variability across DL conditions. As for gait speed 

Figure 5. Mean and ± SEM for DTCM for step length by foot. DTCM = dual-task costs of mean values. *** p <.001 Note: Right/left 
denote right foot and left foot.

Figure 6. Mean and ± SEM for DTCCoV for step length by foot. COV = coefficient of variation; DTCCoV = Dual-task costs of coefficient of 
variation. *** = p <.001. Right/left denote right foot and left foot. Negative values indicate increased variability and positive values 
indicate decreased variability
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variability, we found that older adults augmented this 
feature by 53.7% in the NF-condition, while their incre
ment for FR-condition was of 67.2% and of 89.5% in the 
FL-condition. The younger group once more showed 
rather a preservation of their gait speed variability 
across DL conditions as compared to baseline, see 
Table 4.

Lateralized results for percent of baseline values
Mean: These analyses showed one significant main 
effect of Condition for the percent of baseline values of 
the mean for gait speed (F [2,73] = 12.09, p < .0001, 
η2p = 0.25). A reduction in performance of 6–7% 
occurred in the NF-condition, which was further 
reduced by 10% in the directed attention conditions 

FR and FL in both groups. Additionally, a significant 
main effect of Group on the percent of baseline values 
for the mean of step length was found (F [2,73] = 12.09, 
p < .0001, η2p = 0.25). This finding replicates in much 
the data obtained in the bilateral analyses where the 
older group showed preserved execution and the 
younger group had decreased performance across all 
DL conditions, see Table 5.

CoV: In these analyses we only obtained a significant 
main effect of Group for the percent of baseline values for 
the CoV of step length (F [1,74] = 8.76, p < .004, η2p = 0.11). 
Even though no significant interaction was observed, it was 
clear that some of the older adults increased their step 
length variability of their left foot by almost 50% and, as 
observed in the bilateral analyses, this group demonstrated 

Table 4. Average percent of baseline by DL condition for bilateral gait parameters.

CONDITION

Non-Forced Forced-Right Forced-Left

Young Old Young Old Young Old RMANOVA, p-value, (η2p)

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) Condition/Interaction/Group

Mean
Step length% 95.3 (4.5) 101.4 (3.3) 94.2 (5.7) 99.9 (2.3) 94.0 (5.8) 100.0 (0.0) 0.001 (0.19) /NS /0.001 (0.34)

Gait speed % 93.4 (8.2) 92.9 (9.1) 90.4 (11.2) 90.7 (9.5) 89.7 (11.2) 90.1 (8.7) 0.001 (0.26) /NS /NS
Step width% 100.1 (22.7) 119.9 (100.3) 100.0 (21.3) 116.9 (92.9) 104.2 (24.4) 125.1 (103.7) 0.02 (0.10) /NS /NS

CoV
Step length% 104.8 (16.3) 127.5 (64.6) 101.4 (16.6) 136.1 (79.0) 104.2 (16.4) 136.5 (77.1) NS /NS /.006 (0.1)

Gait speed% 106.1 (36.9) 153.7 (133.9) 101.9 (21.8) 167.2 
(194.1)

100.6 (12.8) 189.5 (231.2) NS /NS /.008 (0.09)

Step width% 101.0 (0.2) 101.0 (0.3) 101.1 (0.2) 101.1 (0.5) 101.0 (0.2) 101.0 (0.1) NS /NS /NS

Abbreviations: M = mean; SD = standard deviation; RMANOVA = repeated measures multiple analysis of variance; CoV = Coefficient of Variation; 
Interac. = Interactions; NS = Non Significant. CoV = Calculated with the formula: [mean/SD] x 100%

Table 5. Average percent of baseline by DL condition for lateralized gait parameters (by foot).

CONDITIONS

Non-Forced Forced-Right Forced-Left

Young Old Young Old Young Old Two-way ANOVA, p-value, (η2p)

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) Condition/Foot/Interaction/Group

Mean
Step length R% 94.8 (4.0) 99.0 (15.8) 93.5 (5.9) 99.8 (2.6) 93.8 (5.7) 100.0 (0.0)
Step length L% 95.8 (5.3) 101.3 (3.4) 94.9 (5.9) 99.9 (2.4) 94.3 (6.2) 100.0 (0.0) NS/ NS/ NS/ 0.0001 (0.29)

Gait speed R% 93.4 (8.3) 94.8 (12.9) 90.7 (11.1) 90.7 (9.6) 90.1 (11.4) 90.1 (8.6)
Gait speed L% 93.2 (8.7) 93.0 (9.2) 90.4 (11.4) 90.7 (9.5) 89.4 (11.6) 90.1 (9.0) 0.001 (0.25)/ NS/ NS/ NS
Step width R% 101.3 (28.5) 95.3 (141.4) 102.3 (28.4) 102.6 (114.8) 106.0 (33.9) 113.4 (127.3)

Step width L% 101.6 (25.1) 126.0 (97.2) 101.4 (27.4) 126.4 (98.9) 105.8 (24.3) 130.7 (106.4) NS/ NS/ NS/ NS
CoV
Step length R% 111.1 (26.6) 110.5 (41.4) 111.2 (29.5) 126.8 (74.7) 109.7 (24.1) 131.7 (74.2)
Step length L% 103.5 (25.1) 149.0 (98.3) 95.8 (21.1) 151.7 (101.5) 103.2 (25.8) 151.4 (95.9) NS/ NS/ NS/ 0.004 (0.10)

Gait speed R% 102.5 (17.2) 161.5 (171.1) 101.0 (16.11) 162.2 (204.8) 100.2 (13.4) 208.7 (291.3)
Gait speed L% 107.6 (48.2) 160.1 (124.6) 102.2 (28.4) 177.7 (245.0) 100.7 (15.5) 193.4 (272.5) NS/ NS/ NS/ NS
Step width R% 101.0 (0.2) 101.0 (0.3) 101.0 (0.22) 101.1 (0.5) 101.0 (0.2) 101.0 (0.1)

Step width L% 101.0 (0.2) 101.0 (0.3) 101.0 (0.2) 101.2 (0.5) 101.0 (0.2) 101.0 (0.1) NS/ NS/ NS/ NS

Abbreviations: M = mean; SD = standard deviation; CoV = Coefficient of Variation; Interac. = Interactions; NS = Non Significant. CoV = Calculated with the 
formula: [mean/SD] x 100%

10 M. M. GORECKA ET AL.



a marked increment in variability across all DL-conditions. 
The younger group showed a higher increment in step 
length variability on their right foot, especially in the NF 
and FR-conditions, see Table 5.

Discussion

Effects on gait
DTC findings. The present study aimed to assess 
whether age-related differences existed in dual-tasking 
when DL was performed simultaneously during over- 
ground walking. As a whole, our findings demonstrated 
similar results in both younger and older adults. For 
instance, both groups showed larger DTCMs in gait 
speed and step length across all three DL conditions. 
Interestingly, this dual-task paradigm did not affect step 
width in any of the groups. Now, the DL conditions 
affected differently DTCM scores in both groups being 
the NF the one that less impacted gait. In contrast, FR 
and FL were more challenging as under these two con
ditions participants presented greater DTCs on speed 
and step lengths than during the NF condition.

Even though the dual-task paradigm affected gait para
meters in both groups in almost the same way, there was 
an important age-related difference. We found that 
younger participants were more affected than older adults 
on their step length DTCM and more remarkably on the 
DTCCoV of the same gait parameter, as it displayed 
a significant lateralized difference on left foot. The bilateral 
data suggest that younger persons had to adjust their step 
length mean more during FR and FL conditions. In addi
tion, the younger group showed a significant change on the 
lateralized DTCCoV scores for their left foot, which 
reflects a noteworthy capacity for diminished variability. 
To understand these results we refer to the standard inter
pretation of DTC scores, where negative values reflect 
worsened performance on dual-tasking relative to single- 
tasking and positive values reflect improved execution 
under dual-task conditions (Plummer & Eskes, 2015). 
Based on the above, our data indicate that younger adults 
are able to better regulate step length variability of their left 
foot when they attend to right-ear stimuli during FR 
condition.

Let us remind that in right-handed persons, reporting 
stimuli from right-ear is expected to be less effortful than 
reporting from left-ear (Hugdal & Westerhausen, 2016). 
Hence, the FR experimental situation may allow younger 
participants to improve their gait in order to cope with the 
task’s demands. In the literature, it is most common to 
encounter that older adults show major changes in gait 
variability than younger people, particularly in demanding 
situations. However, there are data pointing to changes in 
variability in healthy younger adults since a certain degree 

of gait variability reflects a healthy organism (Hollman 
et al., 2016). For example, Plotnik and colleagues (Plotnik 
et al., 2013) showed that bilateral coordination was affected 
in young adults while walking slowly but not in fast walk
ing. In line with these findings, Almarwani and coworkers 
(Almarwani et al., 2016) also showed that either slower or 
faster walking affected in a very peculiar way step varia
bility of younger participants. These authors reported that 
such a change was not observed in older adults under the 
same conditions. Interpretation of these findings was that 
slower walking exerts challenges in younger people as it 
reduces gait automaticity and imposes higher cortical con
trol to regulate muscular activity (Almarwani et al., 2016).

The above reports are relevant to the present study since 
our younger group indeed walked at a slower pace across 
DL conditions (see raw data in Supplementary Material). 
At the same time, younger participants showed their best 
performance for DL during the FR condition where they 
correctly report the highest number of correct stimuli. 
Taken together, it seems that younger adults recruited 
their available resources in FR condition to compensate 
for demands on walking by reducing step length variability 
on their left foot. This finding brings up the matter of gait 
asymmetries in healthy populations. Even if gait asymme
try has been usually linked to pathological states (Yogev 
et al., 2007; Yogev-Seligmann et al., 2008), reports about 
normal gait asymmetries are not uncommon in healthy 
people. A review by Sadeghi and colleagues (Sadeghi et al., 
2000) suggests that asymmetries in healthy people raised as 
a natural differentiation of function between the limbs and 
reflect compensatory abilities. In particular, these authors 
proposed that the role of right-limb is that of propulsion, 
while the role of the left-limb is of support. Therefore, we 
interpret our data as an indication that younger adults are 
able to better control their ability for support as 
a compensatory process. One speculative explanation to 
this finding, would be that shared neural demands between 
both brain hemispheres exist during focusing to right-ear 
while walking. Roughly, the literature in laterality proposes 
that right-brain hemisphere specializes in language while 
the left-brain hemisphere specializes in non-verbal infor
mation, somatosensory and spatial functions (Zaidel, 
2001). Therefore, it is possible that the findings observed 
in the young group are due to left-brain hemisphere hand
ling automatic attentional focus of right-ear information, 
while right-brain hemisphere is modulating the contralat
eral side of the body to decrease step length variability and 
augment the support during walking. Clearly, our data 
cannot unveil the neural causes behind gait asymmetries 
in healthy people. Still, what is evident is that gait asym
metries arise in individuals without clinical conditions 
depending on task demands (Sadeghi et al., 2000). Our 
previous study with healthy older adults demonstrates this 
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issue (Gorecka et al., 2018). Thus, the present results only 
corroborate that our dual-task paradigm causes asym
metric gait changes in older and younger participants, 
albeit not of the same nature. In older adults, there are 
mixed changes reflecting both deleterious effects as well as 
compensatory outcomes. In the present study, the asym
metric effect found in younger adults seems to be com
pensatory as it improves and stabilizes walking in the dual- 
task context.

The proportion of adjustments across DL conditions 
between groups: Percent of baseline findings.
Complementary to the DTC results are the group differ
ences observed on the percent of baseline values, which 
allow for a different comparison across groups of retained, 
reduced or gained performance relative to baseline execu
tion. These data point to the magnitude of adjustments 
occurring on a specific outcome and condition as com
pared to baseline. The most important result from these 
analyses regards again the step length data. We obtained 
group differences in the mean and CoV of percent of 
baseline values of step length in both the bilateral and the 
lateralized results. The findings indicate that for the mean, 
older adults preserve their ability of step length better than 
the younger group who had a reduction of almost 5% 
across DL conditions, especially during the FR and FL 
conditions. Nevertheless, the results from the lateralized 
analyses showed that the older group presented important 
variations in step length variability that were not present in 
the younger group. These data agrees with a large body of 
literature pointing to increase step length variability in 
older persons (Brach et al., 2001). The bilateral results 
showed an increment of 27% in the NF-condition as 
compared to baseline and of 36% in the directed attention 
conditions for the older adults, while younger participants 
mainly preserved their same step length variability across 
conditions. Additionally, the lateralized results are note
worthy in spite of the lack of significant interactions denot
ing asymmetries. The figures presented in Table 5 suggest 
the existence of important asymmetric alterations on the 
step length variability in some of the participants in both 
groups. This state of affairs is most noticeable for the older 
group. Essentially, our data document that in agreement 
with a vast literature (e.g., Smith et al., 2016) older persons 
experience a deleterious effect of performing a complex 
dual-task paradigm. In this case, older individuals had an 
increment on their step length variability of almost 50% in 
all conditions, being more prominently for their left foot. It 
is broadly acknowledged that increase step length variabil
ity is related to increased risk of falling and a sign of 
deleterious perturbations on gait (Rosso et al., 2014). 
Thus, our data confirm that older persons are more 

challenged from the experimental situation than younger 
adults are, as the younger showed an increase of variability 
of not more that 10% across conditions. Nevertheless, and 
again in spite of significant interactions, the data suggest 
that younger participants experience a lateralized effect on 
step length variability that occurred in the FR condition.

Understanding DTC findings and percent of baseline 
results

In the present study, we decided to employ two 
approaches to investigate the effects of DL during over- 
ground walking. The first approach regarded the evalua
tion of DTCs on raw scores of gait parameters, while 
the second approach considered the evaluation of gait 
modifications in percent of performance relative to 
baseline execution. These two approaches are important 
and complementary. The first approach considers dual- 
task effects directly on untransformed raw scores of gait, 
which is a strategy recommended in the gait literature 
for an easier interpretation and clinical usage (Baker 
et al., 2009). The second approach allows for 
a comparison between groups in terms of magnitude 
of effects relative to baseline due to dual-tasking. Thus, 
taking together information from both approaches, it is 
evident that the most important alteration caused by 
executing DL during over-ground walking is on step 
length variability in both groups. However, the effects 
are quite different. As already explained in the previous 
section, the younger group had a decrement of 
DTCCoVs on left foot that is on the “support action” 
during walking. These decrements on variability need to 
be understood as a strategy of the young group to pre
serve a safe walk. Thus, while DTC data demonstrate 
this decrement, the percent of baseline values showed 
a slight increment in step length variability of the 
younger group’s right foot, which implicates that our 
dual-task environment is a challenging one even for 
young persons in their best functional years. 
Concerning the older group, results from DTCs sug
gested little effects on their mean and CoV of step length 
in terms of differences across conditions in raw data. 
However, the percent of baseline results demonstrated 
that older participants actually undergo deleterious 
effects by performing our dual-task situation, as they 
have a remarkable increment in step length variability 
when compared to the younger participants. These find
ings point to an increased risk of falling (Young & 
Dingwell, 2012) when attending auditory stimuli while 
walking. All in all, the present results confirm our 
hypothesis that that younger persons are more prone 
to adapt appropriately to the dual-task situation created 
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by DL task as this group is able to adjust their step 
length advantageously.

Effects on dichotic listening in relationship with 
neuropsychological performance
Overall results of the DL data demonstrated that 
younger adults showed appropriate ability to control 
their attention to the right or left ear, respectively, dur
ing the FR and FL conditions. They also demonstrated 
a clear REA during the NF condition. Conversely, the 
older participants showed an overall lower execution 
and a clear REA in all three conditions. Interestingly, 
the interaction observed on the FL condition where the 
older group had a greater difficulty to report from left- 
ear, disappeared after controlling for hearing status. 
This finding suggests that sensory loss in the auditory 
modality moderates exacerbated group differences in 
DL. However, controlling for hearing loss did not 
remove the main effect of group across conditions, 
which indicates that age differences on DL are related 
to normal cognitive deterioration occurring in healthy 
aging, such as declined executive functioning in shifting, 
mental flexibility, and response inhibition (Hommet 
et al., 2010; Hugdahl et al., 2009).

The latter statement is substantiated by results of the 
cognitive battery in our study, where younger adults out
performed significantly older participants on measures of 
executive functions and cognitive flexibility, such as the 
Stroop Color/Word interference task and TMT B. In addi
tion, another significant group difference was obtained on 
measures of processing speed where older adults showed 
enlarged time to perform a task (i.e., TMT A) or limited 
abilities due to time restrictions (i.e., Stroop word reading 
and color naming). The observed age-related declines in 
executive function and processing speed explain group 
differences encountered in DL since both cognitive 
domains are needed to select and inhibit auditory stimuli 
form right or left-side during relative short intervals. It is 
possible that the dual-task context contributed to a more 
difficult environment to perform the DL conditions. 
Though, this situation seemed to affect both groups in 
the same way as group differences were constant and 
they agree with findings from single-task DL studies 
(Andersson et al., 2008; Bouma & Gootjes, 2011).

In the past, authors have suggested that poor execu
tive function/attention and processing speed are asso
ciated with many aspects of gait decrements, and that 
the involvement of executive functions becomes stron
ger when the walking task is more challenging (Hobert 
et al., 2017; Martin et al., 2013; Yogev-Seligmann et al., 
2008). Thus, our conjoined data from the test battery 
and DL task reveal that the sample of older adults dis
played normal cognitive deficits on executive functions 

and processing speed, which explain why they had 
higher DTCs on the conditions where “top-down” con
trol was required, namely on the FR and FL conditions. 
In sum, these results stress the importance of applying 
a thorough neuropsychological evaluation in dual-task 
studies in order to disentangle the reciprocal effects of 
the dual-task situation on cognition and gait.

Limitations of the study
Creating a new methodology, such as the use of DL 
during walking, implicates the emergence of unforeseen 
issues. Therefore, several limitations need to be acknowl
edged in the present investigation. To begin with, the lack 
of a single-task for DL where participants only perform 
the cognitive task in a sitting position is a limitation. On 
one hand, we wanted to evaluate the effects of the experi
mental situation without previous exposition to DL, and 
therefore, we intentionally did not assess DL as a single 
task. This solution is frequent in dual-task studies. For 
instance, the majority of the studies reported on the meta- 
analysis by Al-Yahya et al. (2011) did not assess single- 
task performances in cognition. The rationale of avoiding 
single-execution of DL was important to appraise the 
effects of this over-ground dual-task paradigm as 
a novelty situation. On the other hand, since the present 
study was part of a larger umbrella project of motor 
functions and cognition, the number of tasks necessary 
for each part of the investigation were thoroughly 
weighted by the ethical review board. Our argumentation 
about not applying DL as a single-task, was valued by the 
committee, especially since the research aimed to under
stand the effects of an ecological valid design that was not 
relying in previous exposition to the cognitive task. 
However, we acknowledge that future research should 
evaluate the effects on gait and cognition when partici
pants have previous experience on DL as single-task. 
Since the dichotic listening task employed in this experi
ment is assumed not to have training effects, especially on 
populations who fail to show a left-ear advantage during 
FL condition (Hugdahl et al., 2009), the inclusion of 
single-task DL would allow for calculation of DTCs on 
all conditions.

Another potential limitation is that our subjects were 
not instructed to prioritize any task in this dual-task 
experiment. In the absence of specific instructions about 
which task needs to be prioritized, subjects tend to 
allocate attention to their gait at the expense of the 
cognitive test, which is a “posture-first” strategy 
(Shumway-Cook et al., 1997). In our study, the instruc
tions were to perform as well as possible the DL task and 
walking simultaneously, which implies an equal prior
itization. Nevertheless, each single participant might 
have prioritized differently. Further studies with our 
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dual-task paradigm need to control for the effects of task 
instructions. However, we need to keep in mind that 
effects of task prioritization are not similar for younger 
and older adults (Bayot et al., 2018), as these seem to be 
larger in younger persons than in older individuals 
(Yogev-Seligmann et al., 2010). In the same way, sex 
differences with respect of task prioritization have been 
reported (Bayot et al., 2018), which complicates further 
this matter. The unclear effect of task prioritization in 
younger and older adults and in males and females may 
pose an extra challenge to the experimental situation 
when trying to compare outcomes from both groups 
and from both sexes. Because DTC in dual-task experi
ments are influenced by several factors, among them 
instruction of task priority, future experiments need to 
evaluate the effects of task instruction in specific groups 
of individuals, such as for example, younger vs older 
males or younger vs. older females.

Finally, it is necessary to acknowledge a limitation on 
the gait methodology. In most dual-tasks studies with 
gait, subjects are required to walk linearly on a gait 
device, while in our experimental situation subjects 
need to walk straight as well as negotiate the turns to 
follow the path in the walking area. Since the design of 
the present study intended to be as ecologically valid as 
possible, we decided to allow subjects to walk as in real 
life, that is continuously, and obtained global gait mea
surements from this design. Based on the results of the 
present study, we realized that such an environment 
poses different challenges to different populations and 
it is possible that a more traditional setting would show 
different results. Thus, future studies are encouraged to 
apply other dual-task settings to evaluate whether the 
present findings rely on the sole use of DL, independent 
of walking environment, or whether gait alterations due 
to DL are tightly related to the walking situation.

Conclusion

The current study has employed a novel approach to the 
dual-task paradigm using a DL task to investigate the 
interplay between, gait, sensorimotor abilities, and later
alized attentional constraints in healthy younger and 
older adults. The present data reveal that our dual-task 
paradigm induces asymmetric adjustments on gait in 
younger adults. However, these gait asymmetries differ 
from findings reported in our earlier study where older 
adults with different hearing status were assessed. In the 
present study, asymmetric gait changes in younger par
ticipants seem to arise as compensatory mechanisms 
rather than being detrimental for the execution of the 
dual-task. This finding is relevant to expand our knowl
edge about asymmetries in healthy populations. To date, 

gait asymmetries have not been widely studied in 
healthy adults (Morris et al., 2016), and certainly not 
in association with concrete cognitive demands in one 
sensorial modality like DL. Furthermore, the present 
study confirmed that older adults experience consider
ably higher step length variability than younger persons 
in a novel and complex dual-task situation. Future stu
dies are encouraged to employ this paradigm on healthy 
populations on different life phases, such as middle-age 
persons or teenagers in order to expand our under
standing of gait asymmetries and attentional control 
along the life span.
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