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ABSTRACT 

Introduction: Prostate cancer (PCa) is a very common, but particularly heterogenic cancer 

form. Whilst some patients have an aggressive course with a fatal outcome, the majority of 

patients have slow-growing disease with low risk of death or significant symptoms. 

Unfortunately, doctors do not possess sufficient prognostic tools, leading to a high risk of 

overtreatment with unnecessary side-effects. We set out to find new biomarkers for 

prognostic stratification of PCa patients, and possibly at the same time generate hypotheses 

for potential therapeutic targets. We chose to analyze different immune system markers as the 

immune system is known to be a key player in cancer development. Materials and methods: 

Patient data and prostatectomy specimens from 535 Norwegian patients with primary PCa 

was collected retrospectively. Tissue microarrays were constructed from representative tumor 

areas as well as surrounding non-malignant areas. Immunohistochemistry was used to 

evaluate proportions of intratumoral CD3+, CD4+, CD8+, CD20+ and PD-1+ lymphocytes as 

well as expression of PD-L1, CXCR6 and CXCL16 on both tumor epithelial cells and tumor 

stromal cells. Further, we investigated the independent prognostic impact of each biomarker, 

as well as their correlation with each other, and well-known clinical- and histopathological 

parameters. We also performed experimental assays to explore pro-tumorigenic properties of 

CXCL16 in PCa cell lines. Results: A high density of intratumoral CD8+ lymphocytes 

independently predicted a shorter time to disease relapse in form of biochemical failure. A 

high density of intratumoral PD-1+ lymphocytes independently predicted a shorter time to 

disease relapse in form of clinical failure, and a high density was also associated with a worse 

prognosis in most subgroups related to poor prognosis. PD-L1 expression was commonly 

seen in tumor epithelial cells and was consistently correlated to worse prognosis, although 

was not statistically significant. A high expression of CXCR6 by tumor epithelial cells or 

when analyzed in tumor tissue as a whole, independently predicted a shorter time to both 

biochemical- and clinical failure. A high expression of CXCL16 by tumor epithelial cells, and 

CXCR6/CXCL16 co-expression in tumor tissue as a whole, independently predicted a shorter 

time to clinical failure. Conclusions: Based on our observations, we propose further 

investigation of the biological mechanisms and prognostic effect of CD8+, PD-1+, PD-L1+ 

cells and CXCR6 and its ligand CXCL16 in PCa. Hopefully one or more of these markers 

may improve risk stratification of PCa patients and may even be of value as targets of therapy 

in future PCa treatment. 

 



 

 

1. INTRODUCTION  

When we started our research approximately ten years ago, our general aim was to contribute 

to reduce challenges in prostate cancer (PCa) clinical decision making, by improving 

prognostication, as well as generate hypotheses on PCa biology and possible therapeutic 

targets. 

 

PCa represents an especially heterogenous group of cancerous disease. Some individuals will 

have a very aggressive course with a fatal outcome, whilst the majority of patients have 

indolent disease and succumb to other conditions (1). In the last few decades, the detection 

rate of indolent cases has increased, caused by uncritical PSA-testing in what we call the 

“PSA Era”. Unfortunately, available prognostic tools are inadequate to precisely predict the 

fate of each individual patient. This leads to both under- (2), but mainly, overtreatment (3) 

with subsequent side-effects. This situation, combined with the relatively high incidence and 

low mortality of PCa (4) generates a substantial group of men who have undergone radical 

PCa treatment, are under surveillance, or are long-term survivors of metastatic PCa. At a 

societal level, this causes socioeconomic concerns, with decreased revenue from income taxes 

and increased pension- and sick leave expenses, as well as high health system expenses. But, 

even more important, at a personal level, the diagnosis and its consequences create  

economic-, health-, social- and sexual challenges for the affected individuals.  

 

In oncology today, there is a shift towards precision medicine (also referred to as personalized 

medicine), where the goal is to optimize treatment response based on the individual tumor 

biology and host characteristics rather than organ origin, whilst at the same time decreasing 

side-effects. This is of utmost importance in cancer types with heterogenic behaviour such as 

PCa. Complementary to precision medicine is immunotherapy, in which the individual’s 

immune system is manipulated to exercise a significant anti-tumor immune response. 

However, the biological mechanisms of immuno-oncology are complex, as different immune 

components can have opposite roles in tumorigenesis. Namely, immune cells can eliminate 

cancer cells (5–8), but inflammatory components are also known promotors of cancer 

development and progression (9). In addition, for some cancers the immune system seems to 

not play an important role at all.  
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Biomarker studies are a way of quantifying biological differences between tumor samples. If 

put together with patient clinical outcome data, biomarker expression may possibly be 

translated into clinically relevant information. The goal can be to find prognostic and/or 

predictive markers, as well as therapeutic targets. Compared to other high-incidence cancer 

types, such as breast cancer (HER2, estrogen- and progesterone receptor etc.), colon cancer 

(NRAS, KRAS, BRAF, MSI etc.) and lung cancer (EFGR, PD-1/PD-L1, ALK, ROS1 etc.), 

PCa biomarker studies have so far unfortunately yielded few clinically relevant results. Thus, 

we set out to contribute to finding prognostic markers in a cancer type in a great need of such.  

 
 
1.1. PROSTATE CANCER 
 
1.1.1. Epidemiology 

Incidence and prevalence 

PCa is the fourth most common cancer form worldwide, with an estimated 1.3 million cases 

in 2018 (10). For men only, PCa is the second most common cancer form worldwide, but the 

most common in majority of countries in the Americas, Northern- and Western Europe, 

Oceania and much of Sub-Saharan Africa (Figure 1). The incidence is relatively low in 

Northern Africa and Eastern- and South-Central Asia, where cancers related to viral 

infections are more common, and sometimes endemic. In Norway, PCa is the most commonly 

diagnosed cancer, accounting for approximately 30% of cancer cases in men. Almost 1 in 8 

men will be diagnosed with the disease before the age of 75 (4). 

 
Figure 1. Age-standardized incidence rates for PCa, all ages, world, 2020 (11). Reprinted 
with permission from GLOBOCAN© 2020  
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In high/very high Human Development Index (HDI) countries, incidence rates have increased 

steadily in the 1970’ties and -80’ties. Some of these cases were possibly diagnosed 

incidentally by finding PCa in tissue material from transurethral resections of the prostate 

(TUR-P), performed to relieve symptoms related to enlargement of the prostate gland (Figure 

2). A dramatic increase was seen in the early 1990’ties, mainly because of prostate-specific 

antigen (PSA) testing becoming available (12), and leading to massive, unorganized 

screening. The dramatic increase in incidence has mainly been explained by higher life-

expectancy causing an aging population, as well as overdiagnosis of indolent cancers and 

“pulling diagnosis forward in time” caused by PSA-testing. Rates are now stable or declining 

in high/very high HDI countries, partly because the pool of prevalent cases has diminished 

because of earlier detection by PSA-testing (4,10). 

 

Figure 2. Age-standardized incidence and mortality rates of PCa in Norway (left) and the 
Nordic countries (right) from 1954 to 2014. Incidence (red) and mortality (green). All ages. 
Curves are smoothed with use of 3-year average. Curves made by a tool in the NORDCAN 
database (13). 

 
 

Mortality 

PCa in general has a low mortality, but affected by the high incidence rate, it is still a huge 

contributor to cancer-related death. In 2018, PCa was the fifth leading cause of cancer-related 

death in men, with a worldwide total of 359 000 deaths (10). In 46 countries, mainly in Sub-

Saharan Africa and the Caribbean, PCa mortality rates are higher compared to other high-

incidence countries, and it is the leading cause of cancer death in males (Figure 3). In 

Norway, PCa is the third most common cause of cancer mortality (8% of all cancer related 

deaths, both sexes) (4).  
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In high/very high HDI countries, mortality rates are now decreasing (Figure 2), which can be 

due to diagnosis in early stages of disease because of PSA-testing, as well as improvements in 

treatment. Some of the explanation may also be due to detection of a considerable proportion 

of indolent tumors through PSA-testing that otherwise would not have been detected (length-

time bias). In low/medium HDI countries, mortality rates are increasing, which may possibly 

be explained by an increasing incidence due to exposure to risk factors such as a more 

Westernized lifestyle, in combination with limited access to effective treatment (14,15). 

 

Figure 3. Age-standardized mortality rates for PCa, all ages, world, 2020 (11). Reprinted 
with permission from GLOBOCAN© 2020. 

 
 

In Norway, a PCa diagnosis is usually associated with a good prognosis; The overall 5-, 10- 

and 15-year relative survival is approximately 95%, 90% and 80% respectively. For men with 

distant metastases at time of diagnosis, the 5-year survival is only around 40% (4), and 

average survival time is 3 years. However, some patients with distant metastases are long-

term survivors and may not die from the disease – a concept known as “statistical curation” 

(16,17). 

 

1.1.2. Etiology and risk factors  

The development of PCa is most likely complex and multifactorial, caused by both hereditary 

and environmental factors. Age, ethnicity and familial accumulation are the most established 

risk factors. Unfortunately, we yet do not know enough about the causalities of the disease to 

prevent it from occurring.  
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Age 

The most well-known risk factor for developing PCa, is a high age. By many, PCa is almost 

considered a normal aging process. Diagnosis under the age of 40 is extremely rare, with a 

progressively increasing incidence after the age of 55 (Figure 4) (4). In Norway, over 70% of 

patients are 65 years or older at the time of diagnosis. Autopsy studies have confirmed this 

pattern, with cancer prevalent in only 5% of men under 30 years, and in approximately 60% 

of men over 79 years (18).  

 

Figure 4. PCa incidence rates (per 100 000 person years) in different age-groups in 
Norway. Reprinted with permission from Oslo: Kreftregisteret, 2016 (19) 

 
 

 

Race and ethnicity 

Migration studies have shown that when men move from low-incidence- to high-incidence 

areas, their risk of PCa diagnosis increase considerable (20,21). One of the most well studied 

groups in this aspect are Japanese Americans, who have an incidence rate 43 times higher 

compared to their counterparts in Japan (22,23). This variations in incidence rates may be 

explained by environmental factors and different strategies in diagnostics and screening. 

However, within the USA, the incidence rates are very different between different ethnic 

groups (24), which does indicate inheritable, genetic variation (25). Worldwide, the 

cumulative risk of being diagnosed with PCa is lowest in South-Central and Eastern Asia, and 

Northern Africa (between 0.6-1.7%), and highest in Australia, New Zealand, Northern Europe 

and North America (between 9.5-10.9%) (Figure 1) (11). The rates are highest among men of 
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African descent in the Caribbean and in the US. PCa in these individuals often occurs at a 

younger age and have a more aggressive behavior compared to other ethnic groups (10,26). 

 

Inheritance 

A positive family history of PCa is established as one of the most important risk factors for 

disease development. Men who have a first-degree relative with PCa have at least a 2-fold 

increased risk of disease compared to the general population. The risk increases with 

increasing number of affected relatives, and also with low age at the time of their diagnosis 

(27–29). Twin studies in a Nordic population have indicated that in patients affected with 

PCa, the heritability, which means proportion of PCa variation attributed to germline genetics, 

is as much as 58% (30). This makes it one of the most heritable cancers we know. A positive 

family history of PCa is not necessarily enough to meet the proposed criteria of hereditary 

PCa (HPC), which are (a) nuclear family with three (or more) cases of PCa, (b) PCa in three 

successive generations, or (c) at least two men in a pedigree diagnosed with the disease before 

the age of 55 years (31). Familial clustering of cases that do not fulfill these criteria are 

defined as familial PCa. Thus, HPC and familial cancer is most likely a heterogenic group, 

with different mutations and inheritance patterns accounting for the increased risk of disease. 

It is disputed whether HPC is more aggressive than sporadic PCa (32,33). The worse 

prognosis observed in PCa families may be due to an earlier onset of disease, combined with 

a delayed diagnosis (34,35). In Norway, diagnostic monitoring in terms of PSA-testing is 

recommended in PCa families. These men should also be offered genetic counselling, and 

genetic germline testing (for further information on genetics, see section «1.1.4. Biological 

characteristics of prostate cancer»). Additionally, also men with PCa with Gleason grade ≥ 7 

if 60 years old or younger, men with high-risk disease, men with metastatic PCa, men with 

relapse after radical treatment, and men with both PCa and another form of cancer before 60 

years old should be presented with this offer (36). 

 

Lifestyle and diet 

Multiple lifestyle choices have been proposed as risk factors for PCa development. Factors 

associated with a possible decreased risk are exercise (37), a high intake of lycopene (38), and 

vitamin D (39). Suggested risk-increasers are high intake of dairy products/calcium (40), high 

calorie diet (41), alcohol (42), cigarette smoking (43) and obesity (44). However, though there 

is some evidence for these factors in the literature, they appear to be limited. Comparable 

studies have not been able to reproduce similar correlations, or in some cases have produced 
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conflicting results. In Norway, the conclusion is that there is no evidence for giving lifestyle 

advices beyond the general national advices for diet, exercise, smoking and alcohol (36). 

  

1.1.3. The normal prostate gland 

Anatomy 

The prostate gland is an exocrine organ lying in the human midline, between the pelvic floor 

and the base of the bladder, surrounding the bladder neck and the first part of the urethra 

where it is joint with the ejaculatory ducts. The proximal part is referred to as the base, and 

the distal part as the apex (45). Of importance in the surgical field are the location of the 

dorsal vein complex (46) and neurovascular bundle (47), both necessary for penile erectile 

function (Figure 5). In women, Skene’s gland is an anatomical homolog, but is a rare location 

of pathology in comparison to its male counterpart (48). 

 

Figure 5. The anatomy of the prostate in relations to surrounding organs (49). Reprinted 
with permission from Elsevier© 2014. 
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Histology 

The normal prostate gland consists of glandular tissue (parenchyma) and non-glandular 

stromal tissue fused together inside a common fibromuscular, capsular structure. In addition, 

the anterior part of the gland consists of a purely stromal compartment known as the anterior 

fibromuscular stroma, which is not covered by the capsular structure. The glandular 

component is composed of multiple secretory acini, connected to a draining system of 

branching epithelial ducts and tubular structures, that eventually end in the prostatic urethra. 

Each acinus is organized as a lumen, surrounded by a simple columnar-, and regions of 

pseudostratified columnar, epithelium. The epithelium is lined by a layer of basal cells, and a 

small number of neuroendocrine cells, resting on the basal lamina separating the acini from 

the surrounding stromal tissue (Figure 6). The surrounding stromal tissue is composed of 

fibroblasts, smooth muscle cells, endothelial cells, autonomic nerve cells, immune cells and 

extracellular matrix (ECM) (Figure 6) (50,51). 

 

Figure 6. Cellular components of the normal human prostate gland (51). Reprinted with 
permission from BioScientifica Limited© 2012. 
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The prostate is usually divided into four distinct zones (Figure 7); (a) The transition zone 

surrounds the proximal urethra and is site of origin for benign prostatic hyperplasia (BPH) as 

well as 20% of PCa cases, (b) the central zone encloses the ejaculatory ducts, (c) the 

peripheral zone account for 70% of the gland, and is where 70-80% of cancers origin, and (d) 

the anterior fibromuscular stroma zone which contain no glandular tissue.  

 

Figure 7. Zones of the prostate (49). Reprinted with permission from Elsevier© 2014. 
 

 
 

Physiology 

The main biological role of the prostate is to produce, temporary store and secrete prostatic 

fluid during ejaculation. The fluid contains high levels of zinc and citrate in addition to other 

electrolytes, free amino acids, and numerous different proteolytic enzymes all important for 

the function and transportation of spermatozoa (52). Through activation of androgen receptors 

(ARs), androgens such as testosterone and its more potent metabolite 5α-dihydrotestosterone, 

are the most important regulators of the glands’ development, growth and function (45). 

 

1.1.4. Biological characteristics of prostate cancer 

The development of solid tumors is generally thought to be a multistep process, whereby 

successive genetic events occur in a normal cell, rendering it with increasingly malignant 

characteristics. The collection of traits a cell must acquire to become a successful cancer cell 

are known as “the hallmarks of cancer” (Figure 8). The term became wildly known by a 

seminal article by D. Hanahan and R. Weinberg published in 2000 (53) and its update in 2011 
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(54). It has since been proposed expanded and revised by others (55–57). Development of 

PCa has been suggested to depend on the classic hallmarks, in addition to some PCa-unique 

ones, especially related to androgen signaling (58). 

 

Figure 8. Hallmarks of cancer (54). Reprinted with permission from Elsevier© 2011. 

 
 

 

Heterogeneity and multifocality 

One typical trait of PCa is multifocality. Somewhere between 56-87% of cases presents with 

more than one tumor foci in the gland at time of diagnosis (59,60). Recent studies have found 

that multifocal PCa represents different clones without a shared mutational profile, and thus 

each focus is thought to have independent origin (61–64). With respect to metastatic potential, 

studies have shown that different foci in the prostate gland have different degrees of 

aggressiveness, and that metastatic disease do not necessarily develop from the index tumor 

(65). This creates a lot of possible clinical issues. One the one hand, tumor tissue sampled by 

biopsy and used to decide treatment strategy may not be representative for biological 

aggressiveness. On the other, the heterogeneity makes the tumor able to develop treatment 

resistance through evolution. In addition, heterogeneity and multifocality are also huge 

obstacles for precision treatment, as well as focal treatment. A more well-known, but 

nonetheless problematic, observation is the heterogeneity in tumor aggressiveness from 

patient to patient, as commented in the introduction chapter.  
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Androgen dependence 

The growth and maintenance of both normal and cancerous prostatic cells is stimulated by 

androgens (66), mainly testosterone and 5α-dihydrotestosterone. Most androgens are 

produced in the testicles and additionally a smaller amount in the adrenal glands. Further, PCa 

cells and stromal cells in the tumor microenvironment (TME) may acquire the ability to make 

androgens from cholesterol (67). PCa cells natural androgen dependence is exploited in 

cancer treatment (see further information in section “1.1.7. Disease management and 

treatment principals”).  

 

Genetic alterations 

Somatic genomic alterations 

As earlier stated, PCa is a very heterogenic disease group, and thus few somatic genomic 

alterations are recurrent. However, recurrent alterations include loss of function mutations on 

tumor suppressor genes such as TP53 (68), phosphatase and tensin homolog (PTEN) (which 

leads to activation of PI3K/AKT/mTOR pathway which is an important signaling pathway in 

PCa pathogenesis) (68), NKX3.1 (69), and/or retinoblastoma protein gene (RB1) (68). 

Mutations in oncogene C-MYC is also relative common, and more so in metastatic than in 

primary PCa tumors (70). One of the most recurrent genomic alteration, are structural 

rearrangements that fuse androgen-regulated promoters with ERG and other members of the 

erythroblast transformation-specific/ETS family of transcription factors. One example is 

ERG:TMPRSS which is present in approximately 50% of PCa patients, and associated with 

protein expression of the oncogene ERG (71,72). Mutations related to the AR and its pathway 

are also common, mainly in castrate-resistant PCa (CRPC) where it is a mechanism of 

resistance to hormone therapy (68). Missense-mutations in SPOP are the most common point 

mutations in primary PCa, occurring in about 10% of both clinically localized and metastatic 

CRPC. PCa with SPOP mutations often have characteristic genomic alterations, defining 

them as a distinct subclass of PCa (73). 

 

Germline genomic alterations 

Multiple inherited germline mutations have been reported to be associated with HPC and 

familial cancer (see further information in section “1.1.2. Etiology and risk factors”). 

Familial cancers may be due to inheritance of multiple, common low-to-moderate-penetrance 

risk alleles that in combination causes a predisposition for developing cancer (74,75). 

Contrary, it is proposed that HPC is probably caused by rare mutations in different genes, 
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often involved DNA-repair, which have an autosomal, dominant hereditary pattern, with a 

high penetrance and early onset of disease. Proposed examples are breast cancer gene 

(BRCA) 1 or 2 (76,77), Partner and localizer of BRCA2 (PALB2) (78), miss-match repair 

(MMR) genes (MLH1, MSH2, MSH6, and PMS2) (79), homeobox B13/HOXB13 (80), 

Ataxia-Telangiectasia Mutated (ATM) (81), checkpoint kinase 2/CHEK2 (82), RAD51 

paralog D/RAD51D (83), elaC homolog 2/ELAC2 (84), Ribonuclease L/RNASEL (85), 

Nibrin/NBN (also known as Nijmegen breakage syndrome 1 (NBS1)) (86), and macrophage 

scavenger receptor 1/MSR1 (87). In men with metastatic CRPC (mCRPC), there is an 

approximately 12% incidence of germline mutations in DNA-repair genes (83). In Norway, 

proposed genetic germline testing for the time being focuses on BRCA1/2, miss-match repair 

genes and HOXB13 (36). 

 

Metastatic disease 

PCa dissemination can be lymphogenic to lymph nodes, or hematogenic to distant organs. 

The most common place for hematogenic metastases is red bone marrow in the axial skeleton, 

and bone lesions are primarily osteosclerotic (also known as osteoblastic) (Figure 9) (88). 

One study found that 72% of PCa patients had disseminated cancer cells in the bone marrow 

prior to radical prostatectomy (RP) (89), which suggest that PCa cells disseminate early on 

from the primary tumor but does not necessarily cause clinically relevant disease. Visceral 

metastases are less common, and mainly to lung/pleura, liver and adrenal glands (90). The 

biology differs from that of bone metastases, and patients with visceral metastases (especially 

liver metastases) have a worse prognosis than patients with bone-only metastases (91,92). In 

one study on primary metastatic patients, median cancer-specific survival time was 43 months 

for lymph node metastasis, 24 months for bone-only metastases, and 16 months for visceral 

metastases (93). 
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Figure 9. Hematogenic, metastatic pattern of PCa (90). Of patients with hematogenous 
metastases, 90% had bone-, 46% had lung-, 25% had liver-, 21% had pleura-, and 13% had 
adrenal gland metastases. Reprinted with permission from Elsevier© 2000. 
 
 

 
 

1.1.5. Clinical presentation and diagnostics  

The first step in diagnosing PCa is usually an elevated PSA and/or a suspect finding with 

digital rectal examination (DRE). Such examinations may be performed because of lower 

urinary tract symptoms (LUTS) or based on the individual patients wishes and perhaps 

concerns. The definite diagnosis is based on histopathological evaluation of prostate tissue, 

usually sampled from biopsies or in some cases TUR-P or prostatectomy performed in 

suspicion of BPH.  

 

Symptoms 

From US-based data, 77% of patients have localized cancer at time of diagnosis, 13% have 

lymph node metastases, 6% have distant metastatic spread, and 4% unknown metastatic status 

(94). With localized disease, some patients experience nonspecific LUTS with problems 

related to storage of urine, voiding and/or post-micturition symptoms (95). However, most 

patients in early stages are usually asymptomatic, and LUTS are often due to nonmalignant 

conditions such as BPH. If the primary tumor or lymph node metastases infiltrate or compress 

nearby structures, related symptoms such as hematospermia, hematuria, pain, and urine 
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retention with the possibility for post-renal kidney failure, may occur. Bone metastases 

usually leads to pain due to the pressure on the periosteum from metastatic volume, or 

pathologic fractures. A feared complication is spinal cord compression caused by bone 

metastases in the spine, potentially causing permanent neurological paresis. General 

symptoms can include weight loss and fatigue. 

 

Prostate-specific antigen testing in diagnosing prostate cancer 

PSA is a proteolytic enzyme produced almost exclusively by prostatic epithelial cells as a part 

of the seminal fluid. It is present in small quantities in the serum of healthy men, but the 

quantity increases with cellular disruption of the prostate epithelium and/or an increased 

number of epithelial cells. Thus, an elevated PSA-level in serum can be present in both 

benign and malignant conditions of the prostate but can also have less sinister causes such as 

moderate perineal trauma from a long bike ride. Since the first article on its use as a 

diagnostic test was published in 1987 (12), it has become the most used and valuable test for 

early detection of PCa. Still, PSA-testing is not without challenge. Specificity is decreased 

because benign conditions such as BPH, prostatitis, urinary tract infections and urinary 

retention are frequent reasons for PSA elevation. Sensitivity is challenged by the fact that in 

cases with high grade PCa (typically Gleason 5+5) where cellular differentiation is low and/or 

in cases with neuroendocrine trans-differentiation (see further information in section on 

“1.1.7. Disease management and treatment principals”), cancer cells do often not produce 

PSA. Thus, serum levels may be normal despite a severe condition. Moreover, local forms of 

PCa may not elevate systemic PSA levels and 5α-reductase inhibitors used for BPH decrease 

the PSA-level. An additional challenge is the fact that an elevated PSA may help detect a 

large group of cancers that are clinically irrelevant (96). 

 

Studies have not conclusively identified one single threshold for defining an abnormal PSA-

value applicable to every patient. Different approaches can be used in each case; the PSA-

value can be compared to what is considered normal in a given age group (Table 1), the value 

can be compared to the patients’ prior values, for example if the PSA-increase of more than 

0.75 ng/mL in one year. The generally accepted cut-off value for all age groups is 4 ng/mL. 

Still, with a PSA value under 10 ng/mL, BPH is statistically more likely than cancer. For a 

PSA value in a range between 10 to 30 ng/mL PCa is the most likely reason, and a PSA value 

over 100 ng/mL is almost always due to disseminated PCa (36). PSA density refers to the 

level of serum-PSA divided by the transrectal ultrasound (TRUS)-determined volume and can 
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be used to evaluate how likely it is that PCa is the cause of an elevated PSA-value (97). An 

elevated PSA-test needs to be verified with a new test after 2-3 weeks. In addition to 

diagnostic value, PSA-testing is used in risk stratification of PCa patients (see further 

information in section “1.1.6. Prognostication”), and monitoring of patients treated for, under 

active treatment or under active surveillance for PCa (see further information in section on 

“1.1.7. Disease management and treatment principals”). 

 
Table 1. Proposed cut-off values for PSA. Adapted from the Norwegian Guidelines for PCa (36) 

Age PSA value 
< 50 years 3.0 ng/mL 
50 – 59 years 3.5 ng/mL 
60 – 69 years 4.5 ng/mL 
> 69 years 6.5 ng/mL 

 

Digital rectal examination 

DRE is used to identify possible changes in consistency or volume on the posterior and lateral 

surface of the prostate gland. Not all tumors can be detected with DRE, as some are T1 

tumors who by definition are not palpable, and others are in regions not reachable via the 

rectum (98). Depending on the level of fitness of the individual patient, suspicious findings 

for PCa such as nodules, induration, or asymmetry, are almost always indications of further 

examinations such as biopsies, regardless of the PSA-level. 

 

New diagnostic tools 

It is of utmost importance to avoid overdiagnosis of clinically irrelevant PCa cases. To help 

decide if biopsies should be conducted, tests (Table 2), and risk calculators such as the 

European Randomized Study of Prostate Cancer risk calculators/ERSPC-RCs (99), the 

Prostate Cancer Prevention Trial calculator (100) or the Montreal model has been developed 

(101). 

 

Table 2. New diagnostic tools in PCa 
Test Description 
Prostate cancer 
antigen 3 (PCA3) 
(urine) 

A non-coding mRNA highly overexpressed in PCa tissue, that can be detected in 
urine obtained after DRE. Indicates cancer risk before biopsy and after a negative 
biopsy, but has low correlation to clinically relevant cancer (102). 

TMPRSS2:ERG 
fusion (urine) 

Gene fusion present in approximately 50% of PCa cases (see section “1.1.4 
Biological characteristics of prostate cancer”). mRNA can be measured in urine 
(103). 

Kallikrein panel 
(4k-panel serum) 

A panel of total PSA, free PSA, intact PSA, and human kallikrein 2 in serum (102). 

Prostate Health 
Index (PHI) (serum)  

Serum measurement of total PSA, free PSA and p2PSA, combining them into a total 
score (104). 
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Biopsies 

After a magnetic resonance imaging (MRI) of the prostate is performed, biopsies are the next 

diagnostic step. Biopsies are usually performed transrectal under guidance of TRUS and the 

standard is a total of 10-12 systematic biopsies from the gland (105). Additional biopsy cores 

should be sampled from areas deemed suspicious by DRE, TRUS and/or MRI. The patient 

receives prophylactic antibiotics to minimize the risk of infection, but still approximately 1-

3.5% of patients still need treatment for sepsis (106). Other side-effects include 

haematospermia, haematuria, rectal bleeding, prostatitis, epididymitis, and urinary retention. 

It is recommended to do re-biopsies in patients with initial negative biopsies if DRE, MRI 

and/or PSA leves are suspicious for cancer, and/or if the histopathological pattern is 

suggestive but not conclusive of malignancy at initial biopsy. 
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Histopathological assessment for diagnosis 

The prostate is place for both cancerous and non-cancerous conditions (Table 3), and 

neoplastic conditions are classified according to the 2016 World Health Organization (WHO) 

Classification of Tumours (107). 

 
Table 3. Disease categories and histopathological classification of prostatic disease. Based on 
a table from the 2016 WHO Classification of Tumours (107) 

Disease category Disease Subtypes 
(A) Prostatitis Acute bacterial prostatitis 

Chronic bacterial prostatitis 
Chronic pelvic pain syndrome 
(CPPS)/ (also known as) Chronic 
nonbacterial prostatitis 
Asymptomatic inflammatory 
prostatitis 

 

(B) Benign lesions, precancerous 
neoplasia and neoplasia with 
uncertain malignant potential 

Benign prostatic hyperplasia 
Atypical adenomatous hyperplasia 
(adenosis) 
Low grade intraepithelial neoplasia  
High grade intraepithelial 
neoplasia of the prostate  
Intraductal carcinoma (without 
associated invasive 
adenocarcinoma) 
Atypical small acinar proliferation  
Atrophic lesions 

 

 
(C) Malignant neoplasia Epithelial tumors Glandular neoplasms 

- Acinar adenocarcinoma 
(most common) 
(atrophic, 
pseudohyperplastic, 
microcystic, foamy gland, 
mucinous, signet ring-
like cell, pleomorphic 
giant cell, sarcomatoid) 

- Ductal adenocarcinoma 
(cribriform, papillary, 
solid) 

- Intraductal carcinoma 
(acinar or ductal) 

- Urothelial carcinoma 
(Transitional cell cancer) 

Squamous neoplasms  
- Adenosquamous 

carcinoma 
- Squamous cell carcinoma 

Basal cell carcinoma 

Neuroendocrine tumors Adenocarcinoma with 
neuroendocrine differentiation 
Well-differentiated 
neuroendocrine tumor (carcinoid) 
Small cell neuroendocrine tumor 
Large cell neuroendocrine tumor 

Mesenchymal tumors Different sarcomas etc. 
Haematolymphoid tumors Different lymphomas/leukemias 
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Precancerous neoplasia and neoplasia with uncertain malignant potential 

Prostatic intraepithelial neoplasia (PIN) is defined as a noninvasive, neoplastic proliferation 

of glandular epithelial cells confined to preexisting acinar structures and, contrary to cancer, 

contains basal cells. PIN is commonly divided into low-grade (LGPIN) and high-grade 

(HGPIN), with HGPIN showing cytological atypia in addition to abnormal proliferation. 

HGPIN is a known precursor of cancer, and if found in biopsies, further clinical follow-up 

and possibly repeat biopsies may be indicated due to its association with invasive PCa. 

LGPIN has no clinical significance. Other intraepithelial neoplasia includes intraductal 

carcinoma/IDCP (Table 3) which consist of neoplastic epithelial cells with architectural and 

cytological atypia, present intra-acinar and/or intraductal (107). It is thought to mainly 

represent intraductal spread of aggressive carcinoma into preexisting ducts and acini, but in 

approximately 10% of cases the condition is found without associated invasive 

adenocarcinoma (108). Atypical small acinar proliferation/ASAP is another intraepithelial 

neoplasia, which is a diagnostic term, rather than a biological entity or a premalignant lesion. 

It refers to small focus of atypical glands falling short of the threshold for the diagnosis of 

PCa. If found in biopsies, repeat biopsies are usually recommended as the risk of finding 

adenocarcinoma is 40-50% (109). Sometimes, atrophic lesions can be identified 

microscopically. Atrophy is identified as a reduction in the volume of preexisting glands and 

stroma and can be classified into diffuse (affecting the whole gland) or focal. Diffuse atrophy 

results from a decrease in circulating androgens, whereas focal atrophy does not. Focal 

atrophy may be further divided into sclerotic-, simple-, or postatrophic hyperplasia atrophy 

(110). If there is inflammation in addition to focal simple or focal postatrophic hyperplasia, 

the term “proliferative inflammatory atrophy” (PIA) is used (111). Most atrophic lesions are 

considered benign conditions, but PIA is suggested as a precursor of HGPIN and/or 

adenocarcinoma (see further information in section “1.2.4. The immune system in prostate 

cancer”). 

 

Prostate malignancy 

The diagnosis of PCa is ultimately based on histopathological examination of prostate tissue. 

Adenocarcinoma is the most common type of PCa, comprising 95-99% of PCa cases (Table 

3). In the adenocarcinoma group, acinar adenocarcinoma is the most prevalent, representing 

95-99% of adenocarcinoma cases, and is what is usually referred to as “prostate cancer”. 
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The histopathological diagnosis of PCa relies on a combination of architectural (structural 

changes in the tissue) and cytological (altered cell morphology) features (Figure 10). 

Architectural features (Figure 10 and 11) include an infiltrative growth pattern with 

disorganized arrangement of clusters, single atypical glands or single cells variably scattered 

between more complex benign glands. Malignant glands can be ill-formed, fused, 

glomeruloid or cribriform. They can be closely packed and organized in a crowded linear 

arrangement spanning the whole width of the biopsy core, or as cords of cells (112,113). 

Cytological features consist of nuclear and nucleolar atypia and altered cytoplasm. The 

nucleolus is located inside the nucleus and is an important site in making ribosomes that are 

necessary for protein synthesis. Prominent nucleolus, or two or more nucleoli, is a typically 

visible in cancer. However, it is important to mention that foamy carcinoma is characterized 

by bland nuclear features without prominent nucleoli, and that HGPIN and benign conditions 

may also have prominent nucleoli. The cytoplasm of malignant cells often has a more 

amphiphilic cytoplasm compared to paler color in benign glands. In addition, there are 

different intraluminal contents typical, but not exclusively, for PCa (Figure 10, Table 4) 

(112,113). The histopathological diagnostic criteria for PCa can be divided into major traits, 

minor traits and pathognomonic features (Table 4).  

 

Table 4. Major and minor criteria and pathognomonic histopathological features of PCa. 
Based on a table from (112,114) 

Criteria 
Major criteria Infiltrative growth pattern: Infiltrative small glands or cribriform glands too large or 

irregular to represent high-grade prostatic intraepithelial neoplasia.  
Single layer of epithelium (absence of basal cells). 

Nuclear atypia: Nuclear and nucleolar enlargement 
Minor criteria Intraluminal contents: 

- Wispy blue mucin (blue-tinged mucinous secretions) 
- Pink amorphous secretions 
- Intraluminal crystalloids 

Mitotic figures 
Adjacent HGPIN 
Amphiphilic cytoplasm 
Nuclear hyperchromasia 

Pathognomonic 
features 

Perineural invasion (PNI) 
Extraprostatic extensions 
Invasion of seminal vesicles 
Glomerulation: Glands with a cribiform proliferation attached to only one edge of the 
gland, resulting in a structure resembling the glomerulus of the kidneys.  
Mucinous fibroplasia/collagenous micronodule: Nodules of hypocellular eosinophilic 
stromal tissue that are present within and around malignant glands, often causing 
considerable distortion of their shape. 
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Figure 10. Histopathological features of acinar adenocarcinoma. Pictures reprinted with 
permission from WebPathology.com© 2021. 

 
(A) Architectural features with small, crowded glands and round or oval lumens. (B) Cytological features 
with nuclear enlargement, prominent nucleoli, amphiphilic cytoplasm, and intraluminal blue mucin. (C) 
Perineural invasion (PNI). (D) Glomerulation. (E) Mucinous fibroplasia/collagenous micronodule. (F) 
Intraluminal crystalloids. 
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Immunohistochemistry in diagnostics 

Immunohistochemical (IHC) staining is used to some degree in PCa adenocarcinoma 

diagnostics, but so far not for prognostic purposes. IHC can be used if uncertainty concerning 

presence of basal cells (major cancer criteria, Table 4). To examine if basal cells are present, 

IHC for high molecular weight cytokeratin (detected by 34βE12 antibody binding) and p63 

can be used. Absence of basal cell antibodies in combination with a with positivity for α-

Metylacyl Coenzyme A racemase/AMACR (also known as p504s enzyme) increase cancer 

suspicion. PSA, prostate-specific acid phosphatase (PAP), prostein/P501S, or NKX3.1 can be 

helpful in diagnosing a prostatic acinar cell origin on metastatic tissue with unknown origin. 

Other options for this purpose are ERG:TMPRSS fusion protein which is relatively specific 

for PCa, but only present in about 50% of cases (see further information in section 1.1.4. 

Biological characteristics of prostate cancer) (115). 

 

Image diagnostics 

Magnetic resonance imaging 

In Norway, MRI is the first step for patients referred to a urologist with suspicion of PCa. It is 

used for detection of suspicious lesions (116), localization of suspicious lesions which can 

guide targeted biopsies (117), and mapping pelvic extent of disease for TNM-staging. A 

negative MRI is not sufficient to rule out PCa and therefore is not advised as an initial 

screening tool (36,118,119). Diffusion-weighted whole-body and axial MRI is also more 

sensitive and specific than most other imaging techniques for bone metastasis, with the 

probable exception of Prostate-specific membrane antigen-Positron emission tomography 

(PSMA-PET) (119,120). 

 

Transrectal Ultrasound 

Grayscale TRUS is not reliable in detecting PCa but used in guiding biopsies and calculating 

size (121). Sonographic modalities such as contrast-enhanced ultrasound (122) and 

sonoelastography (123) for detection and use in ultrasound-targeted biopsies is under 

investigation.  

 

Radionuclide bone scan 

A radionuclide bone scan (also known as bone scintigraphy) has been the preferred technique 

for identifying bone metastases in newly diagnosed PCa patients, however PSMA-PET is 

increasingly used for this purpose (see below). A radionuclide bone scan has a 78% 
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sensitivity and an 85% specificity for bone metastases (124). Conditions such as arthritis and 

bone trauma can cause false positive results. Adding single-photon emission computed 

tomography/SPECT to plain bone scan has been shown to reduce the number of equivocal 

lesions (125). 

 

Positron emission tomography 

PET, usually in combination with a computed tomography/CT unit, can produce images that 

locate cancer-suspicious areas. To achieve this, the patient is given a radiotracer designed to 

accumulate in cancerous tissue. Common tracers, such as 11C- or 18F-choline which detects 

tissues with a high metabolic activity, has low sensitivity in PCa probably because of its slow-

growing nature. In addition, accumulation in the bladder can disturb visualization of the 

prostate gland and/or regional lymph nodes (126). PSMA is a receptor on PCa cells expressed 

in 90-95% of cases. Thus, a ligand for PSMA labelled with 68Ga or 18F has a relatively high 

detection rate for PCa cells (127,128). PSMA-PET is increasingly used as a staging-tool for 

treatment strategy. It is also important as a diagnostic tool in cases with biochemical 

recurrence after radical treatment, but only if the patient may be candidate for radical 

locoregional treatment and has a life-expectancy > 10 years. 18F-Fluciclovine is another 

relevant tracer for PCa with the same purpose as PSMA. The radiotracer 18F-sodium fluoride 

(18F-NaF) can be used for detecting bone metastases but does not detect nodal or soft tissue 

metastases (129). 

 

1.1.6. Prognostication 

Because of disease heterogeneity, it is of utmost significance to risk-stratify cases to avoid 

over- or undertreatment. 

 

Staging 

PCa is staged using the TMA-system, which describes the anatomical extent of disease (Table 

5). The letters stand for what they describe; primary tumor (T), dissemination to regional 

lymph nodes (N), and distant metastases (M). The initial staging is a clinical staging where T 

stage is based on DRE (MRI and other imaging techniques should not be used according to 

the 8th AJCC edition (130), while other guidelines open up for MRI for this use 

(36,119,131,132). Patients who undergo RP as cancer treatment are in addition assigned a 

pathological T stage (pT) (Table 5) which is considered more accurate. N and M-stage is 

decided through clinical examination and/or image diagnostics.  
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Table 5. The TNM classification system. Developed jointly by the American Joint 
Committee on Cancer (AJCC) and the International Union Against Cancer (UICC). Adapted 
from (130) 

Primary tumor (T) 
Clinical T (cT) 
T category T criteria 
TX Primary tumor cannot be assessed 
T0 No evidence of primary tumor 
T1 Clinically inapparent tumor that is not palpable 
   T1a Tumor incidental histologic finding in 5% or less of 

tissue resected 
   T1b Tumor incidental histologic finding in more than 5% 

of tissue resected 
   T1c Tumor identified by needle biopsy found in one or 

both sides, but not palpable 
T2 Tumor is palpable and confined within prostate 
   T2a Tumor involves one-half of one side or less 
   T2b Tumor involves more than one-half of one side but not 

both sides 
   T2c Tumor involves both sides 
T3 Extraprostatic tumor that is not fixed or does not 

invade adjacent structures. 
   T3a Extraprostatic extension (unilateral or bilateral) 
   T3b Tumor invades seminal vesicle(s) 
T4 Tumor is fixed or invades adjacent structures other 

than seminal vesicles, such as external sphincter, 
rectum, bladder, levator muscles, and/or pelvic wall. 

Pathological T (pT) 
T category T criteria 
T2 Organ confined 
T3 Extraprostatic extension 
   T3a Extraprostatic extension (unilateral or bilateral) or 

microscopic invasion of bladder neck 
   T3b Tumor invades seminal vesicle(s) 
T4 Tumor is fixed or invades adjacent structures other 

than seminal vesicles such as external sphincter, 
rectum, bladder, levator muscles, and/or pelvic wall 

Regional lymph nodes (N) 
N category N criteria 
NX Regional nodes were not assessed 
N0 No positive regional nodes 
N1 Metastases in regional node(s). Regional lymph nodes 

include pelvic nodes located below the bifurcation of 
the common iliac arteries and can be uni- or bilateral. 

Distant metastasis (M) 
M category M criteria 
M0 No distant metastasis 
M1 Distant metastasis 
   M1a Nonregional lymph node(s) 
   M1b Bone(s) 
   M1c Other site(s) with or without bone disease 
NOTE: When more than one site of metastasis is present, the most advanced category (M1c) is 
used. 
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Prostate-specific antigen in prognostication of prostate cancer 

In addition to being used for screening and diagnosing PCa, PSA-testing is an important part 

of prognostic assessment. Two methods of measuring PSA kinetics, namely PSA velocity and 

-doubling time, have limited diagnostic use, but may guide treatment strategy (133). PSA 

velocity measures the absolute annual increase in serum PSA (ng/mL/year) and tells us how 

quick PSA is rising (134). PSA doubling time measures the exponential increase in serum 

PSA over time and estimate how much time it will take for the PSA-value to double (135). 

 

Histopathological assessment for prognostication 

Gleason grading and ISUP Grade Groups 

The Gleason grading system was developed between 1966 and 1977 by American pathologist 

Dr. D. Gleason and his colleagues at the Veterans Administration Cooperative Urologic 

Research Group (136–140). It is still regarded as one of the most important prognostic tools 

for PCa. The system has been revised multiple times since it was first reported (141), and 

today the most used version is the “2005 International Society of Urological Pathology 

(ISUP) Modified Gleason system” (142) in combination with the “2014 ISUP Contemporary 

Gleason Grading system” (143–145). The Contemporary Gleason Grade Group system have 

been incorporated into the 8th edition TNM PCa staging (Table 5) (130) as well as the 2016 

WHO classification of genitourinary tumours (Table 3) (107). The Gleason system is based 

solely on architectural pattern of cancerous glands, and the patterns are graded 1-5, where 5 

refers to the most dedifferentiated glandular tissue (Figure 11). A tumor is always assigned 

with two grades that can be summed up to a Gleason score and categorized in a designated 

ISUP Grade Group (Table 6).  

 

Both biopsies and RP specimens, but not metastatic tissue, are graded according to the 

Gleason system. When grading tumor material from needle biopsies, the Gleason score is the 

summation of the most common plus the highest grade pattern, regardless the amount of the 

latter. The reason for this is that any amount of high-grade tumor sampled on needle biopsy is 

likely an indication of a more significant amount of high-grade tumor present within the 

prostate. In addition, Gleason scores 2-4 should not be assigned to cancer on needle biopsy, 

mainly because there is likely more high-grade cancer present. Thus, most of the lesions that 

appear to be very low grade on needle biopsies are currently diagnosed by uropathologists as 

Gleason score 3+3 = 6 (146). Grading tumor material from RPs is different. As a general rule, 

the most- and second-most common grade pattern is reported. However, if grade pattern 4 is 
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present to a lesser degree, even if not second-most common, this shall be reported as the 

second-grade pattern anyways. A comment should be added if the percentage is under 5%. If 

there is a grade pattern 5 present as the third most common pattern, and the amount is under 

5% of the tumor, this should be reported as “a minor high-grade pattern” (also known as a 

tertiary pattern). If there is more than 5% grade pattern 5 present, this should be reported as 

the second-grade pattern (141,147). The minor high-grade pattern is not yet incorporated with 

the ISUP Grade Groups-system.  

 

Figure 11. Gleason patterns. Figure (148) by Dr. D. Grignon reprinted with permission from 
Indiana University School of Medicine© 2015 
Gleason 
grade 

Gleason pattern Visuals 

Grade 1 Circumscribed nodule of closely 
packed but separate, uniform, 
rounded to oval, medium-sized acini 
(larger glands than pattern 3). 
 
 
 

 

Grade 2 Like pattern 1, fairly circumscribed, 
yet at the edge of the tumor nodule 
there may be minimal infiltration. 
Glands are more loosely arranged and 
not quite as uniform as Gleason 
pattern 1. 

Grade 3 Discrete glandular units. Smaller 
glands than seen in Gleason pattern 1 
or 2. Infiltrates in and among non-
neoplastic prostate acini. Marked 
variation in size and shape.  
 

Grade 4 Fused microacinar glands. Ill-defined 
glands with poorly formed glandular 
lumina. Large cribriform glands. 
Cribriform glands. Glomeruloid 
glands. 
 

Grade 5 Essentially no glandular 
differentiation, composed of solid 
sheets, cords, or single cells. 
Comedocarcinoma with central 
necrosis surrounded by papillary, 
cribriform, or solid masses. 
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Table 6. Histologic grade groups. Adapted from (145) 
ISUP Grade Group Gleason score Gleason grade 
1 ≤6 ≤3+3 
2 7 3+4 
3 7 4+3 
4 8 4+4, 3+5, 5+3 
5 9 or 10 4+5, 5+4, or 5+5 

 

Both Gleason scores (139,149) and ISUP Grade Groups (143,144) are strongly associated 

with clinical outcome in terms of a greater likelihood of having disseminated disease, as well 

as a worse outcome after treatment of localized disease. The higher the score/group, the worse 

the prognosis.  

 

Other histopathological assessments of prognostic value 

The histopathological evaluation of biopsies should include an estimate of tumor volume. 

Both the number of involved biopsy cores, and the extent of tumor tissue within each biopsy 

core should be reported. A high estimated tumor volume in biopsies, have been linked to a 

worse prognosis after primary curative treatment, especially in the intermediate risk group 

(Table 8) (150,151) and is a predictor of other negative prognostic histopathological variables 

(152,153). More controversial however, is the independent prognostic value of PCa volume in 

RP specimens (154,155). Some report that the largest diameter of the index tumor is highly 

correlated to total PCa volume (156) and is an important prognostic factor (154,157). 

 

Perineural invasion (PNI) (Figure 10) can be defined in slightly different ways (158,159) but 

referrers to circumferential growth of cancer cells within the perineural space. It is believed to 

be a major mechanism for local advancement of PCa, with cancer cells growing along the 

nerves and using them as a bridge from the inside to the outside of the prostate capsular 

structure (160). If extensive, the likelihood of finding PNI in a biopsy core increases. Thus, 

this is thought to explain why PNI found in biopsies is a pre-operative predictor of adverse 

pathologic features, such as extraprostatic extension (EPE), seminal vesicle invasion, and 

positive surgical margins (161,162). To the contrary, the prognostic impact of PNI in 

prostatectomy specimens is disputed (159,163). 

 

Lymphovascular invasion (LVI) is defined as the presence of cancer cells within a vascular or 

lymphatic, endothelium-lined space, and if present, should be reported in pathology reports on 

both biopsies and RP specimens (164) as it is stated to be an independent negative prognostic 
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factor (165,166). The most likely biological explanation for this is that LVI is an indicator of 

lymphatic or hematogenous dissemination of disease. 

 

Extraprostatic extension (EPE), and thus a pT3a tumor, is a known negative prognostic factor 

for PCa (167,168). It can sometimes be found in biopsy material; however, it is usually 

diagnosed on RP specimens. It is defined as cancer cells beyond the confines of the prostatic 

capsular structure, and into periprostatic adipose tissue, and/or extending into/around the 

neurovascular bundle, and/or beyond the anterior prostate, as well as microscopic invasion of 

smooth muscle fibers in bladder neck (it is a pT4 if the tumor invades the bladder muscle wall 

macroscopically). At the apex of the prostate, tumor mixed with skeletal muscle does not 

constitute EPE (164).  

 

Seminal vesicle invasion (SVI), and thus a pT3b tumor, can sometimes be diagnosed in biopsy 

material, and should always be addressed in RP reports. It is predictive of both local relapse 

and disseminated disease (168,169). 

 

A positive surgical margin (PSM) is defined as cancer cells present at the edge of the RP 

resection specimen (170). In PCa, the location of the PSM is of relevance in relation to 

prognosis, with PSM in the apical parts of the prostate being a better prognostic feature than 

other locations (159,171,172). 

 

Some histological classifications of acinar adenocarcinoma are correlated with a worse 

prognosis, such as signet ring-like, sarcomatoid and pleomorphic giant cell acinar 

adenocarcinoma (Table 3) (173). Also of prognostic relevance is neuroendocrine trans-

differentiation (see further information in section on “1.1.7. Disease management and 

treatment principals”), which have a significantly poorer prognosis. 

 

Genetic analyses of tumors 

In PCa patients, as for most other cancers, there are increasing recommendations and 

possibilities to do genomic profiling (36,119,131,132). Testing of both germline mutations 

and tumor genomics are probably necessary for precision treatment, as different mutations 

predict sensitivity or resistance towards certain therapies. For example, mismatch repair 

deficiency (dMMR) which can lead to high microsatellite instability (MSI-H) may indicate 

eligibility for immune checkpoint-inhibitors, and mutations in BRCA1, BRCA2, ATM, 
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PALB2 or FANCA may imply that treatment with a poly (ADP-ribose) polymerase (PARP) 

inhibitor can be effective (see further information in section “1.1.7. Disease management and 

treatment principals”) (174). The European Society for Medical Oncology (ESMO) 

recommend next generation sequencing of PCa tissue for metastatic PCa patients, and as a 

minimum testing for somatic mutations in BRCA1/2 and MSI-status (175). 

 

Summary prognostication 

In combination, prognostic data allow for stage-grouping (Table 7) and stratification of 

patients into risk categories (Table 8), in order to guide initial treatment strategy. Different 

risk classification systems have been developed by various cancer- and urological 

organizations (176), including the National Institute for Health and Clinical Excellence 

(NICE, UK), ESMO, National Comprehensive Cancer Network (NCCN, USA), American 

Urological Association (AUA, USA), the European Association of Urology (EAU) – the last 

two as adaptions of D’Amico’s classification system (177). Additionally, the patients’ overall 

fitness, life-expectancy and individual preferences are also important in guiding treatment. 

 
Table 7. Prognostic Stage Groups constructed by AJCC. Adapted from (130) 

When T is And N is And M is And PSA is And ISUP 
Grade Group 
is 

The stage is 

cT1a-c, cT2a N0 M0 < 10 1 I 
pT2 N0 M0 < 10 1 I 
cT1a-c, cT2a, pT2 N0 M0 ≥ 10 < 20 1 IIA 
cT2b-c N0 M0 < 20 1 IIA 
T1-2 N0 M0 < 20 2 IIB 
T1-2 N0 M0 < 20 3 IIC 
T1-2 N0 M0 < 20 4 IIC 
T1-2 N0 M0 ≥ 20 1-4 IIIA 
T3-4 N0 M0 Any 1-4 IIIB 
Any T N0 M0 Any 5 IIIC 
Any T N1 M0 Any Any IVA 
Any T Any M1 Any Any IVB 
Note: When neither PSA nor ISUP Grade Group is available, grouping should be determined by T category 
and/or either PSA or ISUP Grade Group as available. 
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Table 8. Risk Stratification for clinically localized disease. Based on parts of the NCCN 
Guidelines 4.2019 PROS-2 (178) 

Risk group Clinical/pathologic features 
Very low T1c AND  

Gleason score ≤ 6/ISUP Grade Group 1 AND 
PSA < 10 ng/mL AND 
Fewer than 3 prostate biopsy cores positive, ≤ 50% cancer in each core 
AND 
PSA density < 0.15 ng/mL/g 

Low T1-T2a AND 
Gleason score ≤ 6/ ISUP Grade Group 1 AND 
PSA < 10 ng/mL 

Favorable intermediate T2b-c OR 
Gleason score 3+4=7/ ISUP Grade Group 2 OR 
PSA 10-20 ng/mL  
AND 
Percentage of positive biopsy cores < 50% 

Unfavorable intermediate T2b-c OR 
Gleason score 3+4=7/ ISUP Grade Group 2 or Gleason score 4+3=7/Grade 
Group 3 OR 
PSA 10-20 ng/mL 

High T3a OR 
Gleason score 8/ ISUP Grade Group 4 or Gleason score 4+5=9/ ISUP Grade 
Group 5 OR 
> 4 cores with Gleason score 8-10/ ISUP Grade Group 4 or 5 

Regional Any T, N1, M0 
Metastatic Any T, any N, M1 

 

1.1.7. Disease management and treatment principals 

As cancer treatment is an ever-evolving field, and treatment guidelines vary between 

countries, this chapter aims to give an overview of treatment strategies, without being too 

specific. 

 

Deferred treatment 

Because of the frequent indolent nature of PCa, many patients will not benefit from curative 

PCa treatment (1). For the purpose of avoiding unnecessary treatment and treatment-related 

side-effects and costs, two conservative regimes with different intentions are used. Active 

surveillance is a structured monitoring of patients using PSA, DRE, re-biopsies and MRI 

(179–182). If progression occurs, or sometimes on a patient’s request, active, curative 

treatment may be initiated. The strategy may be suitable for patients with very low, low, or 

subgroups of favorable intermediate risk PCa. Contrary, watchful waiting is used for patients 

who are not willing to, or suitable for, receiving treatment with curative intent (180,183,184). 

It is a palliative strategy where the aim is to only give treatment to relieve cancer related 

symptoms. 
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Surgical procedures 

Curative surgery 

Radical prostatectomy (RP) consists of surgical removal of the whole prostate gland and 

partial or total excision of the seminal vesicles. RP is a primary, curative treatment option 

applicable for patients in the low/intermediate risk group, especially for men with urinary 

obstruction or relative contraindications for radiation, such as inflammatory bowel disease, 

very aggressive but localized disease, a large prostate volume, low age with a risk of 

developing secondary cancer if radiated etc. In addition, cT3 tumors can in some cases be 

suitable for RP instead of radiation therapy (often together with extended lymph node 

dissection) (185). Life-expectancy should be over 10 years. Although RP is considered 

standard care for localized PCa in fit patients, its documented survival benefit is based on 

surprisingly few high-quality studies (179,180,184), and number needed to treat is relatively 

high for many subgroups of prostate cancer patients (184,186,187). In addition to low peri- 

and postoperative risks (0-1,5% mortality), the most important long-term side-effects include 

urinary stress incontinence, erectile dysfunction and stricture of the vesico-urethral 

anastomosis (188). Hence, unilateral or bilateral nerve-saving surgery to reduce risk for side-

effects should be offered if oncological safety can be preserved (36). RP can be performed by 

open or by minimal invasive techniques such as traditional laparoscopy or robot-assisted 

laparoscopy. Open surgery is done through a retropubic, or more rarely, a perineal access. For 

many centers in high/very high HDI countries, robotic-assisted laparoscopic radical 

prostatectomy (RALP) is now the most commonly used method. In materials with a short 

follow-up, open RP and RALP have been reported to give equivalent early oncological 

outcomes (189,190). Some studies report the rate of PSM is to be lower for RALP patients 

compared to open RP (191,192) which may have a long-term oncological effect, while others 

have not found such correlations (190,193). RALP and open RP have approximately the same 

rate of long-term side effects such as stress incontinence and erectile dysfunction, however, 

RALP is reported to be superior when it comes to perioperative side-effects such as shortened 

hospitalizations and reduced risk for transfusions and strictures (189,190).  

 

Extended pelvic lymph node dissection (ePLND) should be performed in addition to RP for 

patients with T3 tumors, if high-risk cancer, or if intermediary-risk cancer with > 5% risk of 

lymph node metastases assessed pre-operatively by nomograms such Briganti (194,195). 

There is no proven oncological effect of ePNLD (196), but node-positive disease can guide 

adjuvant androgen treatment. Side-effects include lymphocele and lymphedema (197).  
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Palliative surgery 

Palliative surgery options focus on symptomatic relieve in locally advanced disease. 

Alternatives are adenectomy procedures designed for BPH which can be performed 

transurethral (e.g. TUR-P) or open (e.g. Millin’s technique), and sometimes palliative RP or 

palliative radical cystoprostatectomy (198). 

 

Radiation therapy  

Primary curative radiation therapy (RT) 

External beam radiation therapy (EBRT) is a primary, curative treatment option applicable 

for all risk groups of non-metastatic PCa and life-expectancy over 10 years. It is standard 

treatment for locally advanced tumors (T3N0M0), but there are ongoing clinical trials for RP 

versus RT for these patients (185). Standard fractions are 1.8-2.2 Gray up to 78 Gray in 

intermediate and high-risk patients, but hypofractionated regimes seems to be equally 

effective (199,200). For patients in the intermediate- and high-risk group, or patients with 

locally advanced disease treated with EBRT, hormone therapy is added neoadjuvant, 

concomitantly and/or adjuvant to RT. The treatment time for hormone therpy should be 6 

months for the intermediate risk group, and up to 2-3 years for the high-risk group and for 

patients with locally advanced tumors (201–203). Most prominent long-term side-effects of 

EBRT include gastrointestinal complications such as fecal incontinence, fecal urge, rectal 

bleeding (204), urinary incontinence (205) and erectile dysfunction (though more rarely than 

with RP) (206). However, it is important to be aware of an increased risk of development of 

secondary cancers, mainly bladder and colorectal cancers (207). 

 

Brachytherapy is a form of “internal” radiotherapy where a sealed radiation source is placed 

inside, or next to, the area requiring treatment. This gives the benefit of a higher radiation 

dosage to the central parts of the prostate, and lower radiation to surrounding structures 

compared to EBRT. There are two types of brachytherapy used in PCa patients. The low dose 

brachytherapy/LDR-BT procedure is done by TRUS-assisted placement of permanent 

radioactive seeds in the prostate gland where the radiation is delivered over weeks or months 

(208). In high dose brachytherapy/HDR-BT a temporary placement of a radioactive source is 

placed in the prostate gland, delivering the radiation over a few minutes. It is often combined 

with EBRT (209). In Norway, brachytherapy is a relatively new treatment modality, and at 

the time only offered as HDR-BT at The Norwegian Radium Hospital in Oslo. 
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Adjuvant and salvage radiation therapy 

Patients who have undergone RP as primary curative treatment, but have a pT3 cancer and/or 

PSM, can be offered adjuvant EBRT against the prostate bed (210,211). Alternatively, one 

can wait for biochemical failure with assumed local recurrence, and then give salvage EBRT 

with a possibility for curation (212,213). Salvage RT should start early (before the PSA-levels 

increase to > 0.4 ng/mL) (214). 

 

Radiation therapy in metastatic disease 

For men with regional lymph node metastases (N1M0), RT of pelvic lymph nodes (and 

prostate) can increase survival in comparison to hormone therapy alone (17,215). In cases 

with de novo hormone-naïve metastatic PCa, life-long castration-treatment is initiated as first 

line treatment, followed by consideration for chemotherapy (see section below). Patients with 

low metastatic burden (< 3-5 bone metastases and no visceral metastases), should additionally 

be considered for RT to the prostate to achieve local control of the primary tumor, as this has 

shown improved overall survival (216,217). In patients diagnosed with oligometastatic 

disease after initial curative local treatment, metastases-targeting RT as a mean to delay 

systemic treatment can be considered but is still regarded as experimental (218). In patients 

with painful bone metastases, or metastatic spinal cord compression, palliative RT can give 

symptomatic relief (219). 

 

Hormone therapy 

In 1966 Dr. C. Huggins received the Nobel Prize in Physiology or Medicine for his 

discoveries concerning hormone therapy for PCa (220). Namely, that decreasing the effect of 

androgens on PCa cells, inhibits their growth and proliferation by inducing androgen 

deprivation-induced senescence. This is exploited therapeutically in different ways. 

 

Castration is suppression of the testicular production of androgens, and may be achieved by 

surgical bilateral orchiectomy, or by drugs such as estrogens, luteinizing-hormone-releasing 

hormone (LHRH) agonists, or LHRH antagonists. Definition is serum testosterone < 1.7 

nmol/L. In time, usually 2-3 years, the cancer may progress despite effective castration into a 

phase called CRPC (221). Even though CRPC proliferate despite castration-level androgens 

in the blood, a large proportion of cases are still androgen-dependent. Thus, CRPC cases can 

for simplicity be divided into AR-independent and AR-dependent (66,222). For AR-

dependent cases, it can be effective to add further hormone therapy. 
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Antiandrogens inhibit the effect of circulating androgens at the level of their receptor. They 

can be steroidal and non-steroidal. First-generation, non-steroidal antiandrogens include for 

example flutamide and bicalutamide. Second-generations antiandrogens have a higher affinity 

for the AR, block the transfer of the AR to the cell nucleus (thus serve an exclusively 

antagonist effect), and have an increased specificity to the AR over other steroid receptors. 

Examples are apalutamide, enzalutamide and darolutamid (223,224). 

 

Androgen synthesis inhibitors suppresses testosterone synthesis in the adrenal glands, testis 

and inside cancer cells, resulting in a significant decrease in endogenous androgen levels, thus 

inhibiting transcription of AR-targeted genes. One example is abiraterone which inhibit 

CYP17 (225). Because abiraterone also inhibits cortisol synthesis, it must be used together 

with a corticosteroid to prevent negative feedback-related rice in adrenocorticotropic 

hormone/ACTH-levels and subsequent hyperaldosteronism. 

 

Traditionally, androgen deprivation therapy (ADT) has referred to castration and/or use of 

non-steroidal, first-generation antiandrogens such as bicalutamide. When used in 

combination, treatment has been known as combined androgen blockade (CAB). Newer 

hormonal therapies such as abiraterone, apalutamide and enzalutamide in combination with 

castration have thus far mostly been used in a mCRPC-setting but are increasingly being 

introduced in earlier treatment lines. 

 

For mCRPC, adding a low dose of dexamethasone which decrease adrenal production of 

androgens (226), or a non-steroid, first-line antiandrogen to the castration treatment (227), can 

give a PSA-response and symptomatic effect in approximately 20-30%. However, there is 

only a marginal or no additional benefit on overall survival. Non-steroid, first-line 

antiandrogens should always be discontinued if disease progression because of a potential of 

agonistic effect. In general, adding second-generations antiandrogens to castration should be 

the preferred hormonal therapy in this setting (36). 

 

Side-effects of hormone therapy include fatigue, cardiovascular risk, hot flashes, sexual 

dysfunction, liver failure and osteoporosis. Regular exercise can reduce fatigue and improve 

quality of life (228). 
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In the case of CRPC independent of AR-signaling, increasing evidence suggest that 

neuroendocrine trans-differentiation represents one of the major mechanisms (229). This is a 

process whereby adenocarcinoma cells trans-differentiate into neuroendocrine-like cancerous 

cells. As such, they secrete hormones, lacks expression of AR and PSA, and is thus resistant 

to traditional PCa treatment. There is evidence that neuroendocrine trans-differentiation 

happens in response to PCa treatment such as hormone therapy, chemotherapy and 

radiotherapy (230). It is important to mention, that in addition to being considered a 

dedifferentiated form of adenocarcinoma, pure neuroendocrine small-cell carcinoma can also 

occur as a primary cancer in the prostate (Table 3) (173). Adenocarcinoma with 

neuroendocrine trans-differentiation should be suspected in patients with progressing, 

disseminated disease combined with low PSA values. Neuroendocrine tumor markers 

chromogranin A/CgA and neuron-specific enolase/NSE are often elevated in serum or present 

in tissue. These patients have a significantly poorer prognosis compared to “regular” PCa 

patients and may be considered for platinum-based chemotherapy regimens similar to 

regimens for treating other neuroendocrine carcinomas (132). 

 

Chemotherapy 

PCa is not a typically chemo-sensitive disease, but the taxane docetaxel has several 

indications. It is recommended for patients with de novo hormone-naïve metastatic PCa. For 

this group an initial treatment of six, three-weekly courses of docetaxel, in addition to 

initiation of life-long castration, has shown improved overall survival compared to castration 

alone (231). The biological explanation may be that early chemotherapy can potentially 

eradicate present castration-resistant subpopulations, and delay CRPC-transition (232). In 

addition, docetaxel is commonly used in a palliative setting for patients with progressive 

mCRPC in combination with prednisolone and castration. It has shown significant increased 

survival and can be used continuously until progression, or intolerable toxicity (233). 

Cabazitaxel is a novel taxane with effect for some patients with docetaxel-resistant cancers in 

terms of overall survival (234). 

 

Immunotherapy 

Sipuleucel-T is an U.S. Food and Drug Administration (FDA)-approved, autologous, cancer 

treatment vaccine. It is made by harvesting autologous peripheral-blood mononuclear cells 

(mainly antigen-presenting dendritic cells) from the patient. These cells are further activated 

ex vivo with prostatic acid phosphatase (PAP) antigen which is present in 95% of PCa cells, 

34



 

 

and matured with granulocyte-macrophage colony stimulating factor/GM-CSF. The vaccine 

is then reinfused into the patients’ blood stream where it is designated to stimulate an immune 

response against PAP-expressing PCa cells. It has shown a 3,3 – 4,5 months increased overall 

survival in patients with mCRCP, but no change in progression-free survival, and no 

significant impacts on PSA, tumor burden, or symptoms (235).  

 

The last decade, immune checkpoint inhibitors (see further information in section 1.2.5. 

Clinical use of immuno-oncology) has proven revolutionary for multiple cancer types, 

however, PCa is not one of them. Nonetheless, it is worth noting that there are reported cases 

which do show response to immune checkpoint-inhibitors; hence it may be effective treatment 

for subgroups of PCa patients (236–240). One such subgroup is patients with dMMR/MSI-H, 

which applies to approximately 3-12% of prostate cancer patients, and where immune 

checkpoint-inhibitor Pembrolizumab is FDA approved (241,242). Damage in DNA repair 

genes (such as BRCA1/2 or ATM), PD-L1 (236,237) and loss-of-function CDK12 mutations 

(243,244) are other suggested predictive markers for responsiveness to immune checkpoint-

inhibitors. In addition, there is ongoing research into targeting lesser-known immune 

checkpoint V-domain Ig suppressor of T-cell activation (VISTA) in PCa patients (245).  

 

Other treatment modalities 

Ablative procedures using heating or freezing  

High Intensity Focused Ultrasound/HiFU consists of a rectal probe sending focused 

ultrasound waves into the prostate, generating high temperatures which destroys tissue. 

Cryoablation is a procedure where cryoneedles with circulating Argon gas is placed in the 

prostate through the perineum. The gas generates a low temperature that destroys tissue 

through freezing. Treatments can be focal, or alternatively the whole gland can be treated 

(246). However, improved outcomes with these intriguing therapies are not sufficiently 

proved to mandate a role in standardized localized treatment. 

 

Radionuclide therapy 

Radium-223 is a radionuclide therapy which has shown survival benefit and can be used in 

patients with symptomatic bone metastases, and no additional visceral metastases (247). It is a 

calcium mimetic, targeting areas with increased bone turnover. As reviewed in section 1.1.5. 

clinical presentation and diagnostics, PSMA is commonly expressed by PCa cells, and this 

can be utilized in PSMA-targeted radionuclide therapy. Namely, molecules with a high 
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affinity for the PSMA-receptor can be labelled with radioisotope molecules such as Lutetium, 

which through binding and endocytosis leads to local radiation of the PSMA-expressing cell 

(248). PSMA-targeted radionuclide therapy it is not yet implemented as a treatment option in 

Norway.  

 

Poly-ADP ribose polymerase inhibitors 

PARP inhibitors are currently evaluated in patients with mCRPC. Promise is shown for 

patients with either germline or somatic tumor mutations in DNA repair genes such as 

BRCA1, BRCA2 and/or PALB2. PARP1 and -2 are proteins important for repairing single-

strand breaks in DNA. If they are inhibited, double-strand breaks will accumulate with time. 

Cancer cells with BRCA1, BRCA2 and/or PALB2 mutations, cannot use homologous 

recombination to repair these breaks, thus leading to death of the affected cancer cell (174). 

 

 

1.2. IMMUNO-ONCOLOGY 

 

1.2.1. The tumor microenvironment 

Cancer is more than just the cancerous cells themselves. In recent decades, the cancer 

research field has shifted from studying the nature of the malignantly transformed 

parenchymal cells in a tumor, to investigating all of the different components of the TME. In 

addition to cancer cells, the TME consist of a stromal compartment of ECM and stromal cells 

such as cancer associated fibroblasts (CAFs), different subsets of immune cells, and the cells 

that constitute lymph- and blood vessels (Figure 12) (249). In many ways, the tumors have 

structures as if they were an organ on their own, with chronic tissue alterations resembling 

those accompanying normal wound healing (250). Tumor stromal cells does not themselves 

contain genetic mutations but are in many TMEs skewed into a subtype of cells not seen in 

healthy tissues. Through interaction with the cancer cells, and amongst themselves, they 

function as important contributors to tumorigenesis. Contrary, some tumor stromal cells are 

also involved in suppression and elimination of cancer cells. Knowledge of the tumor stromal 

compartment have led to multiple anti-cancer therapies which target tumor stromal cells 

rather than the cancer cells directly (251). 
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Figure 12: The tumor microenvironment. Multiple stromal cell types converge to 
support a tumorigenic primary niche (252). Reprinted with permission from Springer 
Nature© 2014.  
 

 
Abbreviations: Ag = Antigen; CAFs = Cancer associated fibroblasts; ECM = Extracellular matrix; FGF 
= Fibroblast growth factor; MSC = Mesenchymal stem cell; MMP = Matrix metalloproteinase; NK cell = 
Natural killer cell; PDGF = Platelet derived growth factor; TAM = tumor associated macrophage; TGF-b 
= Tissue growth factor b; Treg cell = regulatory T-cell; VEGF = Vascular endothelial growth factor 

 

1.2.2. Cancer immunoediting 

In 1909 Dr. P. Ehrlich laid the grounds for modern immunology when he defined the immune 

system as the individual’s defense mechanism towards “not-self”, in which he also included 

cancerous cells (253). Since then, it has been heavily debated if, and how, the immune system 

is able to eliminate pre-malignant and malignantly transformed cells in a similar fashion they 

do infectious agents. In the 50ties and 60ties Dr. L. Thomas and Sir F. Macfarlane Burnet 

formed the hypothesis of “Cancer immunosurveillance”, in which they postulated that 

malignant transformation of cells occurs in different tissues at a regular basis, but that the 

immune system actively patrols, and in most cases, recognize and eliminate such neoplasms 

(254–256). The hypothesis was later refuted and contradicted by many throughout the years, 

before a Renaissance in the 1990ties where multiple studies linked various forms of 

immunosuppression with an increased risk of developing cancer, especially virally-, radiation- 

and carcinogen associated cancers (257–261). Today, most research communities recognize 

avoiding immune destruction as a hallmark of cancer (Figure 8) (54), and this knowledge is 

utilized in what is perhaps the greatest progress in cancer research in recent years; namely 

immune checkpoint-inhibitors (see further information in section 1.2.5. Clinical use of 

immuno-oncology). In the early 2000s, Prof. R. Schreiber with collogues further developed 

the “Cancer immunosurveillance”-hypothesis to the cancer immunoediting-theory which 
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gives a more wholesome picture of the relationship between cancer cells and the immune 

system (5–8). Cancer immunoediting is described as a process of three phases: Elimination, 

equilibrium and escape, often referred to as “The three E’s of cancer immunoediting” (Figure 

13).   

 

Figure 13. The three E’s of cancer immunoediting (262). Reprinted with permission from 
ANNUAL REVIEWS© 2011.  
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Elimination 

The term “immune elimination” refers to the same process as immunosurveillance, where the 

immune system (Figure 14) identifies transformed cells that have escaped cell-intrinsic 

tumor-suppressor mechanisms and eliminates them before they can establish a clinically 

relevant malignant tumor.  

 

The growing tumor disturbs tissue-homeostasis and damages surrounding tissue, leading to 

releasement of proinflammatory factors by tissue-resident macrophages and mast cells. This 

subsequently attract additional innate immune cells (Figure 14). Natural killer (NK)-cells can 

recognize and cause apoptosis of cancer cells through multiple mechanisms, such as (a) by 

detecting downregulation of human leukocyte antigen (HLA)-I-molecules, or (b) by 

recognizing stress-molecules (e.g MICA7B, ULBP and Letal) on cancer cells via binding to 

their NKG2D-receptors (263). 

 

Furthermore, a more specific anti-cancer immune response can be put in place through 

activation of the adaptive immune system (Figure 14). In order for the adaptive immune 

system to be able to generate an anti-cancer immune response, cancer cells must express 

antigens so different from normal cells, that the individual's immune system has not 

developed immunotolerance for them during development. Tumor antigens recognized can be 

(a) tumor-specific antigens (TSAs) which are neoantigens not expressed by normal cells, e.g. 

oncogenes (such as fusion protein BCL-ABL in chronic myelogenous leukemia) or products 

of oncoviruses. Or they can be (b) tumor-associated antigens (TAAs) which are structures not 

limited to cancer cells, but e.g. overexpressed by the cancer cell (HER2 in breast- and gastric 

cancer), or normally only expressed on cells during stages of fertilization and embryonal 

development (for example carcinoembryonic antigen/CEA occurring in ovarian- and colon 

cancer) (264).  

 

The T cell receptor (TCR) of naïve CD4+ and CD8+ T lymphocytes, cannot recognize natural 

forms of antigens, and depend on antigen presentation by dendritic cells (DCs) arriving in 

secondary lymphoid tissue. Antigens can be presented on either HLA-I or HLA-II molecules. 

Intracellular antigens (degraded in the cytosol) are presented on HLA-I which all cells in the 

body express, and extracellular antigens (degraded in phagosomes) is presented on HLA-II 

which is only expressed by phagocytic cells (265). 
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In adaptive, cellular anti-cancer immune response, DCs ingest tumor debris through the 

process of phagocytosis, and migrate to secondary lymphoid tissues where they serve as 

specialized antigen presenting cells. To become activated, the TCR of naïve CD8+ cytotoxic 

T lymphocytes must specifically recognize and bind to the tumor antigen presented on HLA-I 

on the DC. In addition, CD28 on the T lymphocyte bind to B7 on the DC, which provide a 

necessary costimulatory signal. Activated CD8+ T lymphocytes home to the tumor site, and 

cytotoxic mediated cancer cell murder is activated upon reencounter with cancer cells 

expressing the same HLA-I-tumor-antigen-complex as it was presented with in lymphoid 

tissue. Naïve CD4+ T lymphocytes are activated in secondary lymphoid tissue by DCs 

presenting HLA-II-tumor antigen complexes, and develop into Th1 lymphocytes, which main 

job is to increase effectiveness of CD8+ cytotoxic T lymphocytes and macrophages at the 

tumor site (265,266). 

 

Relative to the above described cellular anti-cancer immune response driven by CD8+ 

cytotoxic T lymphocytes, the role of adaptive humoral immune response generated by B 

lymphocytes and CD4+ Th2-lymphocytes in cancer is still not fully understood. However, 

there are multiple indications it plays a role in cancer immune elimination. Tumor-specific 

antibodies are found in multiple cases, and presumably, Fc receptor-bearing effector cells 

such as NK cells and macrophages can recognize and kill antibody-coated cancer cells by 

phagocytosis. Furthermore, B lymphocytes and plasma B cells can in some cases be found in 

tumors and tumor-draining lymph nodes where they are thought to interact with both T 

lymphocytes and innate immune cells e.g., by HLA-II-antigen presentation and cytokine 

production (263,267). 

 

Other cancer immune elimination mechanisms include upregulation of death ligands such as 

TRAIL, FasL or membrane-displayed TNF-α on cytotoxic immune cells such as CD8+ T 

lymphocytes and NK cells, which binds to, and activate apoptosis of cancer cells expressing 

DR4/DR5, Fas or TNFR1 respectively (268). In addition, natural killer T (NKT) cells and γδ 

T lymphocytes are contributing cytotoxic T lymphocytes with both innate and adaptive 

qualities which may be contributors to cancer immune elimination (Figure 14) (269). 
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Figure 14. Components of the innate and adaptive immune system (269). Reprinted with 
permission from Springer Nature© 2004.  
 

 
 

Equilibrium 

Tumor dormancy is a term relating to malignant tumors in a latent phase where they do not 

grow in size. It has been proposed that this, in a non-treatment setting, can be due to the 

immune system and the cancer cells joining in a dynamic balance where the cancer cell 

proliferation is equal to the immunological elimination (262). According to the theory of 

cancer immunoediting, there are three different outcomes of this phase, namely (a) 

elimination of the malignant neoplasm, (b) permanent equilibrium-phase, or (c) immune 

escape (6). 

 

Escape 

Cancer cells can evade immune elimination by going through biological changes. One main 

mechanism is developing decreased immunogenicity. Because cancer cells are genetically 

unstable (54), new mutations are bound to happen in a proliferating tumor, causing a 

heterogenic cell population. This gives a basis for a Darwinist TME, where immune 

elimination may select for a non-immunogenic cancer cell population, able to escape the 

immune system (7,8). Another important mechanism of immune escape is the establishment 

of an immune privileged TME (270). This can happen partly by exploiting normal, 

physiological mechanisms involved in inducing immunotolerance to avoid development of 
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autoimmune disease, and/or activation of systems already in place at immune privileged sites 

(e.g placenta, testicles) (265). 

 

To avoid NK cell mediated elimination, some cancer cells produce proteases, cutting of their 

stress-induced molecules normally recognized by NKG2D-reseptors. Also, soluble forms of 

stress-molecules such as MICA can bind to NKG2D-receptors thus inhibiting its function 

(271). Cancer cells can also inhibit NK cells by expressing ligands which stimulate the NK 

cells’ inhibiting receptor, killer-cell immunoglobulin-like receptor/KIR (272). 

 

CD8+ cytotoxic T lymphocytes are conceivably the most important protagonist in cancer 

immune elimination, and thus mechanisms preventing their activation, as well as evading 

their attack, are crucial parts of the immune escape process. Mechanisms for halting adaptive 

cellular anti-cancer immune response, include preventing successful antigen presentation. A 

decreased level of functional DCs have been observed in multiple cancers (273). Also, 

phagocytosis of apoptotic cancer cells by DCs in the absence of the right danger signals, 

generally leads to development of immune tolerance instead of activation of immune 

response. Further, impairment of antigen presentation can be elicited through inactivating 

mutations or downregulation of HLA-molecules, or defects in other parts of the antigen-

presentation machinery in the cancer cell (274). 

 

Another way cancer cells can evade immune mediated killing, is to recruit immune cells with 

immunosuppressive qualities. The most well-known is perhaps regulatory T cells (Tregs, 

characterized as CD4+CD25+FoxP3+ cells), assumed essential for maintaining tolerance to 

self-antigens under normal physiological conditions. Tregs are able to inhibit activation of 

naïve T lymphocytes and suppress activated T lymphocytes (275). Studies have implicated 

that a high density of Tregs in the TME in most, but not all, cancers is indicative of a poor 

prognosis, probably through suppressing cancer immune elimination (276). Additionally, 

different tumor associated immune cells of myeloid origin are described to elicit 

immunosuppressive qualities on both innate and adaptive cancer-eliminating immune cells. 

Examples are myeloid-derived suppressor cells (MDSCs), a heterogenous population of 

immature cells of myeloid lineage (277), tumor associated neutrophils (TANs) (278) and 

tumor associated macrophages (TAMs). Though under further investigations, TAMs which 

are skewed towards an immunosuppressive phenotype is often referred to as M2-like, 

contrary to M1-like TAMs which is considered enhancing cancer immune elimination (279). 
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Some studies have also proposed subsets of CD8+ T lymphocytes (280–282) and B 

lymphocytes (283) to have immunosuppressive properties in cancer, and the picture is 

probably both complex and diverse for different TMEs. 

 

Another important tactic cancer cells use to avoiding T lymphocyte mediated cancer 

elimination, is through exploitation of their immune checkpoint pathways. During the 

physiological activation phase of naïve T lymphocytes in secondary lymphoid tissues, the T 

lymphocyte will after a while start expressing Cytotoxic T lymphocyte antigen 4 (CTLA-4) 

instead of CD28, which can bind to B7 on the DC with a higher affinity. In contrast to 

CD28/B7-binding, CTLA-4/B7-binding leads to immunosuppressive signals in the T 

lymphocytes, preventing immune hyperactivation (284). For activated T lymphocytes, the 

Programmed cell death 1 (PD-1) pathway is the most well-known immune checkpoint 

receptor. PD-1 (also referred to CD279) is expressed on activated forms of T lymphocytes, as 

well as B lymphocytes, NK cells and MDSCs. Binding of ligands PD-L1 (also referred to B7-

H1 or CD274) or PD-2 (B7-DC), to PD-1 on cytotoxic CD8+ T lymphocytes leads to 

apoptosis, anergy and exhaustion. Contrary, ligand binding to PD-1 on Tregs leads to 

stimulatory signals. PD-L1 is expressed on the surface of hematopoietic cells, healthy cells of 

certain organs, and some cancer cells, whilst PD-L2 seems more restricted to hematopoietic 

cells (285,286). Other immune checkpoint receptors on T lymphocytes include T-cell 

immunoglobulin and mucin-domain containing-3/Tim3, Lymphocyte-activation gene 3/LAG3 

and VISTA. Cancer cells can utilize these physiological checkpoint mechanisms and drive 

cytotoxic CD8+ T lymphocytes into a state of anergy, exhaustion, or senescence, whilst 

having the opposite effect on Tregs (turning them off) (287). 

 

Cancer cells can also directly produce different immune-suppressive molecules, such as 

indoleamine 2,3-dioxygenase/IDO, an enzyme necessary for T lymphocyte proliferation 

(288), Fas ligand which stimulate apoptosis in immune cells (289), as well as 

immunosuppressive cytokines such as tumor growth factor β/TGF-β (290) and interleukin-

10/IL-10 (273). 
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1.2.3. Inflammation and tumorigenesis 

Even though some immune cells fight cancer development, others have the opposite effect 

(9). As early as in 1863, pathologist Dr. R. Virchow discovered malignant tumors to have a 

high rate of immune cells compared to normal tissue and proposed chronic irritation as a 

driver of tumorigenesis (291,292). Another indication for cancer promoting inflammation, is 

that approximately 15% of the cancer cases worldwide are caused by commensal or infectious 

microbes or viruses (293). A considerable fraction of cases is caused by oncogenic viruses. A 

well-known example is human papillomavirus (HPV) 16 and 18, containing oncogenes E6 

and E7 in their genome, which inactivate tumor suppressor proteins p53 and pRb respectively, 

causing cancers of the cervix, vagina, penis, anus and certain head and neck tumors (294). 

However, not all microbes and viruses associated with cancer development have equally 

unequivocal oncogenic properties, and thus their development of chronic inflammation is 

assumed to be a main mechanism for driving cancer development. Common examples are 

hepatitis virus B and C in liver cancer (295,296), Helicobacter pylori in gastric cancer (297), 

Schistosoma haematobium in bladder cancer (293), and Epstein Barr virus which is linked to 

multiple cancers for example Burkitt’s lymphoma and gastric cancer (298). In addition, the 

microbiota is probably involved in supporting colon cancer development (299). In general, 

whilst the ability to generate acute inflammation is essential both in fighting infection and 

cancer, chronic inflammation is a driving factor in multiple diseases, including cancer, where 

it is acknowledged as an enabling hallmark (54). 

 

Cancer-promoting inflammation differs from cancer-eliminating inflammation in terms of 

immune content. In a tumor where immune elimination dominates, the typical immune cell 

types present are those of acute inflammation such as NK cells, DCs, CD4+ Th1 T 

lymphocytes, CD8+ T lymphocytes, and TAMs of M1-subset. Contrary, in a pro-malignant 

TME, immune cells typical of chronic inflammation dominate, such as Tregs, MDSCs, 

chronically activated B lymphocytes, CD4+ Th2 lymphocytes, and TAMs of M2 subset 

(300,301). However, every TME is unique, and other stromal cells with pro-tumorigenic, and 

often pro-inflammatory properties, can reside, such as TANs (278), mast cells (302), and 

CAFs. CAFs differs from normal fibroblasts, and a high tumor density of CAFs in the TME 

usually indicates a poor prognosis (303). 
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Immune cell mechanisms for promoting cancer 

Immune cells are vital helpers in tumorigenesis through multiple mechanisms. An 

inflammatory TME will generate reactive oxygen- and nitrogen species that can drive 

mutations through DNA damage (292), and lead to epigenetic changes such as DNA 

methylation and transcriptional silencing of certain gene promotors (304). 

 

In addition, chronic inflammation leads to apoptosis and necrosis, and in the quest of 

replacement of lost tissue, cell proliferation-rate increase. Since most spontaneous mutations 

occurs in the DNA replication phase, an escalated proliferation rate increases risk of 

potentially oncogenic mutations. Additionally, it gives the DNA-repair system less time to 

repair DNA-damage, thus elevating the risk of malignant mutations being passed on to 

daughter cells (305). Immune cells, together with CAFs, can also in a more direct way 

support tumorigenesis by supporting most of the hallmarks of cancer (Figure 8) (54). They are 

able to produce mitogens, growth factors, survival signals, hormones and cytokines that 

stimulate proliferation as well as inhibits apoptosis of the cancer cells. They can mediate 

immunosuppression, enhance the migration of tumor promoting immune cells into the tumor, 

and activate transcription factors such as NF-κB and STAT3 which act as further drivers of 

inflammation and tumorigenesis. They contribute to invasive growth, motility and metastasis 

by stimulate angiogenesis and lymphangiogenesis, remodeling of the ECM (which 

additionally will release mitogens and growth factors who previously have been inactivated 

by binding here), and supporting cancer stemness and/or activation of epithelial-mesenchymal 

transition/EMT-programs in the cancer cells (249,300,306–308). 

 

Chemokines in cancer development and metastasis 

Chemokines are a group of cytokines that regulate cell trafficking through chemotaxis. They 

are required in (a) guiding immune cells throughout the body as part of immunosurveillance, 

(b) stimulating migration of immune cells to sites of tissue injury, (c) generation of immune 

response, (d) formation of immunological memory, and (e) homeostatic homing causing 

accumulation of immune cells in specific organs and lymphoid tissues (309). Chemokines are 

subclassified into four main subfamilies, namely CC, CXC, C, CX3C, and bind to chemokine 

receptors – a large family of seven-transmembrane G-coupled proteins (310). 

 

In cancer, chemokines and their receptors can be expressed by both cancer cells and tumor 

stromal cells. They can induce a tumor-friendly environment by recruiting certain types of 
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immune cells into the TME, modifying their phenotypes and shaping their biologic functions, 

thus making them pro-tumorigenic. Chemokines can stimulate angiogenesis and 

lymphangiogenesis. They are important mediators in cancer cell migration, invasion, adhesion 

and metastasis, and may be part of the explanation as to why different cancers types seems to 

prefer certain organs as their metastatic destination (metastatic homing). Additionally, they 

can activate cell proliferation, and anti-apoptotic pathways. However, chemokines are also 

necessary in attracting immune cells that generate an anti-cancer immune response, and thus 

can suppress tumorigenesis and metastasis (310–312). 

 

1.2.4. The immune system in prostate cancer  

Based on its position, the prostate is proposed to inhibit the urinary microbiome and 

pathogens from the bladder or distal urethra entering the male reproductive system. As the 

aging prostate inherently develop pathology, glands without pathology are rarely studied. 

However, autopsy studies, as well as normal areas in prostates with pathology, indicate that 

healthy prostate tissue contains both stromal and intraepithelial lymphocytes, mainly T 

lymphocytes (313,314). Resident innate immune cells such as mast cells and macrophages are 

also present, mainly in the stromal compartment. Other innate immune cells such as 

neutrophils, basophils and eosinophils are rarely seen in the normal prostate (315,316). 

 

Studies have concluded that the TME in PCa is heterogenic in composition, but typically 

characterized by the presence of CAFs (317) and immune cells such as CD3+ T lymphocytes 

(mainly of CD4+ subset), CD20+ B lymphocytes and TAMs (318). ARs are found on both 

tumor epithelial cells and tumor stromal cells, depicting that androgens exerts stimulating and 

possible pro-tumorigenic effects on both compartments (319). The contribution of the 

immune system in PCa tumorigenesis – either in a positive or a negative direction – is 

however controversial. 

 

By mechanisms described previously, longstanding, chronic inflammation is an enabling 

hallmark for cancer development (54). As areas of inflammation is relatively common in the 

aging prostate, its relation to tumorigenesis is difficult to examine without bias. However, 

there are multiple circumstantial evidence on inflammation as a driver for prostate 

tumorigenesis. One study sampled biopsies form presumably healthy prostates, and after 

follow-up concluded that inflammation in these benign glands was positively associated with 

later development of PCa (320). Another example is the fact that the long-term use of 
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nonsteroidal anti-inflammatory drugs/NSAIDs may reduce risk of PCa development (321), as 

also seen for colon cancer. In addition, PIA is suggested as a precursor of HGPIN and/or 

adenocarcinoma. PIA is a condition which consist of atrophic prostate epithelial cells with 

increased proliferative rate and associated inflammation. The epithelial cells in PIA have 

genetic changes theoretically making them susceptible for tumorigenesis (111,322). Their 

increased proliferation rate is proposed as a reaction to cell loss caused by prostate epithelial 

injury and inflammatory stress (315). There are multiple different proposed causes of prostate 

epithelial injury and subsequent inflammation, e.g., urine reflux inducing chemical and 

physical trauma, environmental toxins (for example dietary factors), hormonal imbalances, 

corpora amylacea and bacteria. When it comes to the latter, both sexually transmitted bacteria 

(e.g Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Treponema 

pallidum), urinary infections (Escherichia coli and other species of Enterobacteriaceae) 

(323,324) and/or certain compositions of the urinary microbiome (such as Propionibacterium) 

has been suggested (325). Infections with viruses such as HPV, human herpes simplex virus 

type 2/HSV2, cytomegalovirus/CMV and human herpes virus type 8/HHV8 is also observed 

in the prostate, but it is not clear if they cause inflammation and/or cancer (323,324). 

 

Even more controversial than the role of inflammation as an enabling hallmark for PCa 

development, is the role of the immune system in PCa elimination. In general, PCa is viewed 

as a non-immunogenic cancer. 

 

1.2.5. Clinical use of immuno-oncology 

Immune markers in prognostics 

Today, prognostic evaluation for guiding treatment strategy for most solid cancers, relay on 

clinical- and radiological examination and histopathological qualities of the biopsy or 

surgically removed tumor tissue. Almost all solid tumors are staged using the TNM-system, 

giving information on invasiveness and metastatic status. The main histopathological features 

evaluated are tumor size, differentiation grade, grade of atypia, number of lymph node 

metastases/perinodal growth, resection margins, PNI, vascularization and for some cancer 

types; abnormal expression of specific proteins and/or genetic markers (tumor biomarkers). 

However, these tools often do not give enough information to fully stratify patients into the 

right risk group, hence patients within the same group often have different clinical outcomes. 

One reason may be that histopathological evaluation systems mainly concentrate on the 

cancer cells and does not adequately assess the stromal compartment of the tumor (326,327). 
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Multiple scientists have reported that immune cells in the TME is correlated to clinical 

outcome (326). Some immune cells are found to be good prognostic factors, while others are 

associated with a worse prognosis. These correlations vary in different cancer types. Over a 

decade ago, Dr. J. Galon and collegues, proposed using a prognostic scoring system based on 

the arrangement and density of tumor infiltrating lymphocytes (TILs) in colon cancer, simply 

referred to as Immunoscore® (328). For colon cancer, where high densities of CD3+ T 

lymphocytes, CD8+ cytotoxic T lymphocytes, and CD45RO+ memory T lymphocytes are 

associated with improved prognosis after surgical resection of the primary tumor, 

Immunoscore® have proven better than the TNM-system in predicting prognosis (329). A 

global initiative called The Society for Immunotherapy of Cancer Immunoscore® Validation 

Project aims to evaluate Immunoscore® for all solid cancer types (330). 

 

Cancer immunotherapy 

The traditional cancer therapies include surgery, radiation and chemotherapy (also known as 

“slash, burn and poison”) and are obviously not sufficient to cure every cancer case. In 

addition, especially radiation and chemotherapy, are non-specific and often damage healthy 

tissue in addition to cancer cells, causing harmful side effects. To solve this, recent years of 

cancer research have focused on finding more specific and individual forms of cancer 

treatment. Some of the treatment modalities investigated, utilizes the knowledge of 

immunological mechanisms in cancer. Cancer immunotherapy refers to treatment that 

manipulates and/or enhances the patient’s own immune system in elimination of cancer cells 

(331). Compared to traditional cancer treatment, immunotherapy depend on both tumor 

biology, and the immune system of the individual. Advantages includes specificity, systemic 

reach and creation of memory preventing relapse. Disadvantages are autoimmune side-effects, 

high costs, and that at least so far, immunotherapy only seems beneficial for some cancer 

forms and subsets of patients. In addition, therapeutic resistance can evolve because of the 

possibility for immune escape. 

 

Monoclonal antibodies 

Monoclonal antibodies (mAbs) in cancer treatment, are lab-produced antibodies designed to 

attach to specific tumor antigens (TSAs or TAAs), or on targets in the TME. Some mAbs act 

through the mechanism of passive immunization, inducing an immune mediated killing of 

cancer cells through activation of the complement cascade and facilitating antibody dependent 

cell cytotoxicity. One example is rituximab which binds to CD20 on B lymphocytes and used 
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in Non-Hodgkin B cell lymphoma. However, most mAbs used in cancer treatment does not 

have a predominantly immunologic effect, but rather by blocking signaling pathways, and are 

thus considered to be target treatment rather than immunotherapy (332). Well-known 

examples of the latter are trastuzumab which binds to HER2 on cancer cells, or bevacizumab 

binding to VEGF-receptors on endothelial cells (thus inhibiting angiogenic effect).  

 

Immune checkpoint-inhibitors 

As described earlier, cancer cells can activate immune checkpoint-pathways, turning off T 

lymphocyte-mediated elimination. Immune checkpoint-inhibitors are mAbs blocking this 

possibility for the cancer cells. In other words, immune checkpoint-inhibitors cut the brakes 

on T lymphocytes. The 2018 Nobel Prize in physiology or medicine was awarded to Dr. J. 

Allison and Prof. T. Honjo "for their discovery of cancer therapy by inhibition of negative 

immune regulation" (333). Today, there are inhibitors of both CTLA-4 (e.g. ipilimumab), PD-

1 (e.g. nivolumab and pembrolizumab) and PD-L1 (e.g. atezolizumab and durvalumab) in 

clinical use, both in monotherapy or in combination, and ongoing trials for inhibitors of other 

immune checkpoint pathways. Immune checkpoint-inhibitors have so far mostly shown effect 

in patients with cancers caused by external factors such as radiation, carcinogens or microbes 

and/or tumors with dMMR/MSI-H (334). These kinds of tumors often have a high mutational 

burden and/or are immunologically “hot” tumors, namely they are T lymphocyte inflamed 

(Figure 15) (335,336). There is ongoing research to increase immune checkpoint-inhibitors 

effectiveness in non-responding tumor groups, for example by combining them with other 

immunotherapies, chemotherapy, radiation or tyrosine kinase inhibitors. It is also evident that 

the microbiome, especially in the intestines, is important in mediating both response and 

toxicity to immune checkpoint-inhibitors, and also that immunosuppressants, antibiotics, 

proton inhibitors (337,338), radiation and chemotherapy may also influence the effect. The 

main harmful and potentially lethal side-effects are autoimmune attacks of healthy organs. 

CTLA-4 inhibitors often show more severe autoimmune side effects, as they turn of the 

breaks on activation of all types on T lymphocytes no matter what antigen they may react to, 

while PD-1/PD-L1 inhibitors mainly boost an immune reaction peripherally that is already in 

place. In this regard, it is worth noticing that anti-PD-1/PD-L1 antibodies have the potential to 

re-invigorate tumor-reactive T lymphocytes, but do not induce their formation. Immune 

checkpoint-inhibitors have been revolutionary, as some patients with e.g. metastatic 

malignant melanoma and non-small cell lung cancer have shown long-term survival, and 

probably curation (339,340) 
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Figure 15. High and low mutational burden tumors versus immunologically hot and cold 
tumors and response to immune checkpoint-inhibitors (335). Reprinted with permission 
from BMJ Publishing Group Ltd. 2018. 

 
Abbreviations: HNSCC = Head and neck squamous cell carcinoma; HPV = Human Papilloma virus; 
MCC = Merkel cell carcinoma; MMR CCR; Miss-match repair deficient colorectal cancer; MSS CCR = 
Micro satellite stabile colorectal cancer; NSCLC = Non-small cell lung cancer; RCC = Renal cell cancer; 
TMB = Tumor Mutational Burden 

 

Adoptive cell transfer 

Adoptive cell transfers/ACT utilize allogenic, or usually autologous, tumor-specific T 

lymphocytes in cancer treatment. There are multiple different approaches. Tumor-specific 

TILs can be harvested from the patient’s tumor (TIL therapy) or peripheral blood 

(endogenous T-cell therapy), increased in numbers by cytokine stimulation before transferring 

them back into the patient. In chimeric antigen receptor CAR T-cell/CAR-T therapy, an 

artificially made TCR independent of HLA-molecules for activation – called CAR – is added 

to autologously harvested T lymphocytes and reintroduced to the patient. Because of its 

independence of HLA-molecule, it can only detect extracellular antigens. CAR-T treatment is 

mainly relevant for hematological cancers at the moment. Another method is TCR transduced 

T cells, where harvested T lymphocytes ex vivo is genetically modified into expressing certain 

TCRs (341). 
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Chemokines 

There is ongoing research to block certain chemokine signaling pathways, often in 

combination with traditional chemotherapy regiments, tyrosine kinase inhibitors or immune 

checkpoint-inhibitors. The promise is that this might inhibit metastatic mechanisms or 

modulate the tumor stromal compartment to become less tumor-friendly (312). One example 

that has shown promise is the CXCR4 inhibitor BL-8040 in combination with PD-1 

antagonist pembrolizumab for metastatic pancreatic cancer (342). 

 

Cancer vaccines 

There is an important distinction between preventative- and treatment vaccines in cancer. 

Whereas preventative vaccines are vaccines against oncogenic viruses (for example some 

strains of HPV), the goal of cancer treatment vaccines is to induce a tumor-specific immune 

response in an individual with already developed cancer. There are two main approaches: (a) 

Transfer tumor-antigens or attenuated cancer cells directly or by using microbial vectors, or 

(b) harvest autologous antigen presenting cells, expose them to tumor antigens ex vivo, 

subsequently re-introducing them back in the blood stream where they can activate an 

adaptive immune response (343). One example of the latter is Sipuleucel-T used in mCRPC 

(see further information in section 1.1.7. Disease management and treatment principals”). 

Thus far, cancer treatment vaccines have shown promise in initiating an immune response but 

will probably have to be combined with other immunotherapies for maintenance of immune 

response.  

 

Oncolytic virus therapy 

Oncolytic virus therapy, refers to the use of genetically modified viruses, engineered to only 

infect cancer cells. The virus is injected directly into the tumor, inducing an anti-cancer 

immune response by both lytic releasement of tumor antigens, and immunogenic cell death. 

Immunogenic cell death is a process where cancer cell stress leads to extracellular 

presentation of damage‐associated molecular patterns/DAMPs. DAMPs attract and activates 

immature DCs, which by phagocytosis and antigen presentation stimulate adaptive immune 

response (344). The FDA have thus far approved one oncolytic virus therapy called 

talimogene laherparepvec/T-VEC for in use in malignant melanoma. 
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Microbes as non-specific immunotherapies 

As far back as the 1700s, it has been observed that initiating an immune response towards 

infectious microbes, can have anti-tumor side-effect (345–347). One well known example still 

in clinical use today, is Bacillus Calmette–Guérin/BCG-installation in superficial bladder 

cancer. The injection of attenuated Mycobacterium Bovis into the bladder, creates an immune 

response against the bacteria, causing an additional anti-cancer immune response in the same 

area (348,349). However, it is important to be aware of the more common scenario, where 

infection cause cancer development (see further information in section “1.2.3. Inflammation 

and tumorigenesis”). 

 

Other non-specific immuno-modulating drugs 

Cytokines such as interferons and interleukins were previously often used in treatment of 

solid cancers such as metastatic melanoma and renal cancer, causing an unspecific boost of 

the immune system (350). Thalidomide, lenalidomide, and pomalidomide used in e.g. 

multiple myeloma, are other examples of non-specific immunomodulating drugs (351). 

Imiquimod is a drug applied to early-stage non-melanoma skin cancers inducing immune 

response e.g. by inducing interferon-a and other cytokines (352). 

 

The presence and future of cancer immunotherapy 

Even though immunotherapy has been revolutionizing for some patients the last decade, it 

still has challenges to overcome. Unfortunately, it has not yet generally worked well in 

common cancer groups such as glioblastoma, prostate-, colorectal-, breast- and pancreatic 

cancer. However, new immunotherapy approaches aims to (a) make immunologically “cold” 

tumors, “hot”, using e.g. oncolytic virus therapy, and conventional cancer therapies such as 

chemotherapy and radiation, (b) strengthening adaptive, T lymphocyte immunity by 

enhancing innate immunity and neutralizing immunosuppressive tumor stromal myeloid cells 

and Tregs, (c) blocking multiple different immune checkpoints pathways at the same time, 

and (d) immunotherapy used in combination with targeted treatment. It is now also apparent 

that the individual’s microbiome plays an important role in immunotherapy effectiveness, and 

more research is needed to possibly manipulate the microbiome to our advantage (353,354). 

 

 

52



 

 

2. AIM OF THESIS 

Our general aim was to contribute to reduce challenges in prostate cancer (PCa) clinical 

decision making, by improving prognostication, as well as generate hypotheses on PCa 

biology and possible therapeutic targets. Based in this, we formed the following specific aims 

for this thesis: 

• Establishment of a PCa cohort from the PSA Era, using resected PCa specimens in 

connection with relevant patient data. 

• By immunohistochemistry, investigate the in situ prevalence and expression patterns 

of relevant immune biomarkers in PCa tissue. 

• By appropriate statistical analyses, examine the prognostic impact of these immune 

biomarkers, and if possible, back-up our results by experimental research methods. 

• Assess the prognostic impact of the immune biomarkers in relation to other 

established prognostic factors in PCa. 

• If possible, generate hypotheses for possible therapeutic targets. 
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3. MATERIALS AND METHODS  

3.1. PROSTATE CANCER PATIENT COHORT AND PROGNOSTIC BIOMARKERS  
To study possible prognostic biomarkers for PCa, we established a contemporary, well-

described cohort with relevant outcome data. 

 

3.1.1. Ethics  

The ethics of this study was approved by The Regional Committees for Medical and Health 

Research Ethics, REK Nord (Protocol ID: 2009/1393) with extended approval in 2016 and 

2019. The Data Protection Official for Research (Norwegian Centre for Research Data, NSD) 

approved the assembly of the database. The REMARK guidelines (355) were used as 

reference when reporting material, methods and results. 

 

3.1.2. Prostate cancer patient cohort 

Study population  

We wanted to establish a cohort of PCa patients representing the PSA era and with a 

relatively long follow-up enabling survival analyses. It was also vital that each patient had 

available PCa tissue for biomarker analyses. Hence, the inclusion criteria were men who 

underwent RP as initial treatment for prostate adenocarcinoma between 01.01.1995 to 

31.12.2005. Consequently, we carried out a retrospective search in the databases of the 

pathological departments of Norway’s three most northern hospitals where RPs are 

performed, serving about 1/5 of Norway’s total population for this procedure 

(http://www.SSB.no/befolkning). We identified 671 patients: 267 at the University Hospital of 

Northern Norway (UNN), 63 at the Nordland Hospital (NLSH), and 341 at the St. Olavs 

Hospital (of which 11 cases underwent the surgical procedure at the local hospital of 

Levanger by surgeons from St. Olavs Hospital). 136 patients were excluded (complete 

information presented in Figure 16) and thus a total of 535 patients with complete medical 

records and available tumor specimens were included in the cohort.  
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Figure 16. Patient inclusion and exclusion. 

 
 

Patient characteristics and clinical data  

Complete demographic and clinical data were obtained retrospectively through review of 

medical records at the operation site and local hospitals by two medical doctors (Y. Nordby 

and S. Andersen) and myself as a trained medical research student. Prostatectomies were 

retropubic in 435 cases and perineal in 100 cases, and median age at surgery was 62 years 

(range 45–75 years). Preoperative clinical TNM staging was not routinely stated in the 

medical files, and data was therefore not obtained. Preoperative PSA measured when admitted 

to the hospital for surgery was available for 529 of 535 (99%) patients, while the last percent 

had PCa as an incidental finding at TUR-P before RP was performed. The median 

preoperative PSA value was 8.8 ng/ml (range 0.7-104.3 ng/ml). For patients with biochemical 

failure after RP, PSA doubling time (PSA-DT) was calculated using an online calculator 

(356). The first collection of clinical variables was done in 2011/2012, and a second update 

was conducted in December of 2015. Clinical variables, patient characteristics and results 

from univariate survival analyses of these variables are presented in Table 10. 

 

 

 

 

 

Prostatectomy, curative intent
1995-2005
N = 671 (St.Olav 330, Levanger 11 
UNN 267, NLSH 63)

Excluded
N = 136

No available tissues
N = 130 (St.Olav 112, NLSH 3, 
UNN 16 )

Other non-superficial cancer 
within 5 years of diagnosis
N = 4 (UNN 4)

Previous RT or Cx
N = 1 (NLSH 1)

Patients included
N = 535 (St.Olav 217, Levanger 11 
UNN 248, NLSH 59)

No	available Follow up	data
N	=	1	(St.Olav 1)
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Follow-up and endpoints 

Biochemical failure (BF), clinical failure (CF) and PCa-specific death (PCD) were registered 

as endpoints. We defined BF as a PSA-value ≥ 0.4 ng/ml and rising in a minimum of two 

different blood samples postoperatively. Biochemical failure-free survival (BFFS) was 

calculated from the date of surgery to the first measured PSA ≥ 0.4 ng/ml, or the last follow-

up date without BF. CF was defined as verified, symptomatic local recurrence in the prostatic 

bed, or radiologically verified metastasis to bone, visceral organs or lymph nodes after 

prostatectomy. Clinical failure-free survival (CFFS) was calculated from the date of surgery 

to the date of CF, or last follow-up date without CF. PCD was defined as death by progressive 

mCRPC. PCa death-free survival (PCDFS) was calculated from the date of surgery to the date 

of death, or the last follow-up date without PCD. For Paper I and III, last follow-up was 

November 2012, and for Paper II, last follow-up was December 2015. Detailed information 

on follow-up and endpoints are presented in Table 9.  

 
Table 9. Information on follow-up and endpoints 

Last follow-up November 2012 (Paper I and III) December 2015 (Paper II) 
Median follow-up of survivors in 
months 

89 (range 6-188)  150 (range 17-245)  

Postoperative hormonal therapy, n (%) 83 (15.6) 89 (16.6) 
Postoperative radiation therapy, n (%) 90 (17.2) 103 (19.2) 
Patients with BF, n (%) 170 (31.8) 200 (37.4) 
Patients with CF, n (%) 36 (6.7) 56 (10.4) 
Patients with PCD, n (%) 15 (2.8) 18 (3.4) 
5-year BFFS, % 74 74 
10-year BFFS, % 63 62 
5-year CFFS, % 96 96 
10-year CFFS, % 91 93 
10-year PCDFS, % 97 98 
Abbreviations: BF = biochemical failure; BFFS = Biochemical free survival; CF = clinical failure; CFFS = clinical 
failure free survival; PCD = Prostate cancer death; PCDFS = prostate cancer death free survival 

 

Tumor material and histopathological evaluation 

Formalin-fixed and paraffin-embedded (FFPE) prostatectomy specimens were retrieved from 

the pathology department archives at UNN, NLSH and St. Olavs Hospital, respectively. 

Representative whole H/E stained sections from each case were evaluated by two experienced 

pathologists (E. Richardsen and L.T. Rasmussen Busund). If needed, new whole sections were 

cut, mounted and H/E stained. Tumors were histologically classified as adenocarcinomas 

according to WHO 2004 guidelines (357) and assigned a pathological TNM-stage in 

agreement with UICC guidelines (358). The Modified Gleason grading system (142,359,360) 

was used for grading tumors. In 2015, the database was additionally recoded to include the 

new ISUP Grade Groups (144), and thus both grading systems are presented (Table 10). 
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Further, the pathologists (E. Richardsen and L.T. Rasmussen Busund) registered primary 

tumor burden as the largest diameter of the index tumor, defined as the largest tumor present 

(median tumor size was 20 mm, range 2-50 mm). PNI was defined as cancer cells infiltrating 

the perineural space outside of the prostatic capsular structure, and if cancer cells were 

observed within a vascular or lymphatic, endothelium-lined space this was defined as LVI. 

When the tumor extended to the stained surface of the resected specimen, this was registered 

as PSM. Histopathological variables and results from univariate survival analyses of these 

variables are presented in Table 10.  

 

All demographic-, clinical- and histopathological data were registered in a SPSS datafile and 

patients were de-identified. The details of our cohort and clinicopathological variables were 

published in 2014 (159). 
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Table 10: Patient characteristics and clinicopathological variables as predictors of biochem
ical failure, clinical failure and PCa death in PCa patients (n = 535), (univariate analysis; log-rank test) 
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3.1.3. Prognostic biomarkers 

A prognostic biomarker is defined to be a molecule or combination of molecules, that 

separates populations with regard to clinical outcomes. This is different from predictive 

biomarkers who predicts which patients will have effect of a specific treatment (361). For 

assessment of possible prognostic biomarkers in the collected tumor specimens, we chose to 

arrange the tumor tissue in tissue microarrays (TMAs) followed by IHC for detection. 

 
Tissue microarray  
The TMA method was first described by Dr. J. Kononen et al. in 1998 (362). TMAs has made 

it possible to use small amounts of cancer tissue for time- and cost-effective, depersonalized 

assessment of biomarkers (Figure 17) (363). To select areas for TMA sampling, a 

uropathologist (E. Richardsen) viewed the H&E-stained whole sections from each case using 

a light microscope, and with different color ink, circled separate areas of the most 

representative tumor epithelial tissue (meaning the most common Gleason pattern, plus also 

from areas with higher Gleason grades if present), adjacent tumor stromal tissue, normal 

epithelial tissue, and normal stromal tissue for each case. An experienced technician (M. 

Persson) used a manual tissue-arraying instrument (Beecher Instruments Inc, Sun Prairie, WI, 

US) with a recommended 0.6 mm diameter needle (364,365) to harvest a total of 6 cores (two 

tumor epithelial, two tumor stromal, one normal epithelial and one normal stromal) from each 

case from the corresponding FFPE tissue blocks. Because of natural variation of tumor tissue 

in the depth of a specimen, the labels had to be re-defined later in the process (see further 

information in section on evaluation of IHC staining below). The harvested cores were 

inserted into an empty recipient paraffin block, and each cores coordinates were linked to the 

right case using a digital map. To include all cores, twelve tissue array blocks were 

constructed. In addition, a TMA multi-block of various solid tumors and normal tissues was 

constructed and used as controls for the IHC procedure. Before staining with IHC, 4 µm 

sections were cut with the HM 355S Rotary Microtome (MICROM International GmbH, 

Walldorf, Germany) form each block, dried over night at 60°C to remove endogenous water, 

affixed to glass slides and sealed with paraffin to minimize the risk of antigen loss. Paraffin 

coated sections were stored in 4°C and discarded if not used for IHC within 12 months. If the 

literature for the antibody stated a need for fresh sections for IHC, such was performed.  
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Figure 17. Illustration of tissue microarray construction (366) Reprinted by permission 

from Royal Society of Chemistry© 2012. 

 
 

Immunohistochemistry procedure and antibodies 
Since seminal articles by Dr. PK. Nakane (367) and Dr. CR. Taylor and Dr. J. Burns (368) 

demonstrated the potential of IHC to detect protein biomarkers on archival FFPE material, the 

method has become fundamental in both clinical practice and research. IHC constitutes of 

detecting specific antigens through the use of antibodies (immunoglobulins) which can be 

visualized by chemical reactions yielding a specific color in situ where the antigen/antibody-

complex is detected. The technique is relatively time- and cost-effective and have the 

advantages of enabling both quantification and identifying localization of the protein 

expression in question. Also, through protein profiles it can be used to determine cell type 

with greater certainty than morphological assessment alone.  

 

The IHC-staining for each marker in this thesis has been thoroughly described in Papers I-III, 

and the method will thus only be schematically described herein, with detailed information on 

antibodies and IHC protocols presented in Table 11. All IHC staining was done by 

experienced technicians (M. Rakaee, M. Pedersen, M. Nilsen). Most of the markers were 

stained using automated slide-stainers (Table 11). Sections were deparaffinized and 

rehydrated. Subsequently, heat induced epitope-retrieval/HIER with retrieval solutions was 

performed to reverse molecular modifications produced by formalin-fixation which 

potentially mask antigens (369). Further, all antigens were detected through indirect IHC, 

namely the use of an unlabeled primary antibody to detect the desired antigen (biomarker), 

and then a secondary labeled antibody that binds to immunoglobulins of the animal species in 

which the primary antibody was raised. This differs from direct IHC, in which the primary 

antibody itself is labeled. The label can be an enzyme (for example horseradish 

peroxidase/HRP) which can react with a substrate (for example 3,3'-Diaminobenzidine/DAB) 

to yield color, or a linker molecule (for example biotin) which can recruit complexes of 

enzymes (for example avidin) enabling amplification of a color reaction. Indirect IHC has the 
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benefits of being more sensitive due to the signal amplification provided by binding of 

multiple secondary antibodies to each primary antibody (370). To avoid unspecific 

background staining there are typically two different approaches applied before incubation 

with antibodies; namely blocking of endogenous peroxidases, and blocking endogenous Fc 

receptors with e.g. serum from the animal species the antibodies are retrieved from (371). 

Finally, slides were counterstained to visualize the nuclei and tissue architecture, dehydrated 

through ethanol series, cleared with Xylene and mounted. 

 

Table 11. Information on primary antibodies used for immunohistochemistry 
Target Clone Catalog# Type Manufacturer Procedure Dilution Incubation Detection 

technique 
Antigen 
retrieval 

CD3 PS1 790-2921 Mouse 
mAb 

Ventana1 Ventana 
Benchmark 
XT1 

Predilute
d 

24 min 
37°C 

iView 
DAB 

CC1 

CD4 1F6 NCL-CD4-
1F6 

Mouse 
mAb 

Novocastra2 Ventana 
Benchmark 
XT1 

1:5 20 min 
37°C 

iView 
DAB  

CC1 

CD8 1A5 250-2714 Mouse 
mAb 

Ventana1 Ventana 
Benchmark 
XT1 

Predilute
d 

32 min 
37°C 

iView 
DAB 

CC1 

CD20 L26 760-2531 Mouse 
mAb 

Ventana1 Ventana 
Benchmark 
XT1 

Predilute
d 

16 min 
37°C 

iView 
DAB 

CC1 

PD-1 NAT105 ab52587 Mouse 
mAb 

Abcam3 Ventana 
Benchmark 
XT1 

1:50 32 min 
37°C (ds) 
 
32 min 
37°C (ss) 

AP-
Ultraview 
Red (ds) 
 
HRP-
Optiview 
DAB (ss) 

CC1 30 
min 

PD-L1 E1L3N 13684 Rabbit 
mAb 

Cell Signaling 
Technology4 

Ventana 
Discovery-
Ultra1 

1:25 32 min 
37°C 

HRP-DAB 
AMP: 8 
min 

CC1 64 
min 

CD8 (ds) SP57 790-4460 Rabbit 
mAb 

Ventana1 Ventana 
Benchmark 
XT1 

Predilute
d 

12 min 
RT 

HRP-Ultra 
DAB 

CC1 30 
min 

CXCL16  Ab101404 Rabbit 
pAb 

Abcam3 Manually 
IHC 

1:100 Overnight 
4°C 

Vectastain 
ABC 
Vector 
NovaRed 

Citrate 
buffer pH 
6.0  
MW 20 
min 450W 

CXCR6  Ab125115 Goat 
pAb 

Abcam3 Manually 
IHC 

1:100 Overnight 
4°C 

Vectastain 
ABC 
Vector 
NovaRed 
 

Citrate 
buffer pH 
6.0  
MW 20 
min 450W 

 

Antibody sensitivity and specificity  

Both monoclonal and polyclonal antibodies have been used in this thesis (Table 11). 

Antibodies are made by immunizing animals (e.g. mouse, rabbit, goat etc.) with the antigen in 

question. Monoclonal antibodies are made from one clone of plasma B cells, immortalized by 

creating a hybridoma through fusion with a myeloma cell, which produce antibodies 

recognizing one single epitope of the antigen. Polyclonal antibodies are extracted from 

purified serum of the infected animal, and made from different clones of plasma B cells, each 

61



 

 

producing their own antibody, which together can detect different epitopes on the antigen. 

Hence, monoclonal antibodies have a higher specificity compared to polyclonal antibodies 

(lower risk of false positive results), but polyclonal antibodies have a higher probability of 

detecting the antigen (lower risk of false negative results).  

 

For IHC to be a valid method for biomarker assessment, it is important to solely use 

antibodies that are highly sensitive (only positive staining if antigen/biomarker is present, 

avoiding false negative signals) and specific (no positive staining if antigen/biomarker is not 

present, avoiding false positive signals), and reproducible in the context for which they are 

used. Thus, before an antibody is selected for further analysis, validation is necessary. 

Although no uniformly accepted guideline for antibody validation exists, there are several 

similar recommendations (372–374). At the time of our study, antibodies CD3, CD4, CD8, 

and CD20 (Paper I and II, Table 11) were already implemented and used in the clinical 

routine in our laboratory. As these antibodies are considered well-established and trusted for 

IHC, we performed no further antibody validation (373). Antibodies PD-L1 and PD-1 (Paper 

II, Table 11), and CXCL16 and CXCR6 (Paper III, Table 11) were chosen after thorough 

review of current literature. Even though these antibodies had been subjected to in-house 

validation by their manufacturer, we used multiple steps to assure antibody specificity and 

sensitivity, including western blot of transfected cell lines, tissue controls and negative 

staining controls.  

 

Western blots determine antibody specificity against target protein based upon molecular 

weight and is the standard first step in antibody validation (374). The method has been 

thoroughly described in Papers II and III and will thus just schematically be described herein. 

In short, cell lysates with overexpression of the antigen in question were applied onto a gel (4 

to 12 % Bis-Tris gel, Cat# NP0322; Thermo Fisher Scientific, Waltham, MA, US), and 

electrophoresis was run to separate proteins by their molecular weight, as smaller proteins 

migrate faster through the gel. The formed protein bands were then transferred onto a 

membrane (Odyssey nitrocellulose membrane, Cat# 926-31092; LI-COR Biosciences, 

Lincoln, NE, US), blocked (Odyssey blocking buffer Cat# 927-40000; LI-COR Biosciences, 

Lincoln, NE, US), and incubated with primary and secondary antibodies respectively with 

washing procedures in-between (Tris-buffered saline containing 0.05% Tween 20, Cat# 

T9039, Sigma-Aldrich AS, Oslo, Norway). The procedure confirmed antigen-detection in size 

bands expected in terms of molecular weight of the antigen in question. Rabbit anti-actin 
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(Cat# A2066, Sigma-Aldrich AS, Oslo, Norway) was used for internal control and all lanes 

showed 42 KDa molecular weight protein load as expected. 

 

Because validation using western blot only guarantees that the antibody will provide valid 

results with this exact analysis, the antibody needs to be further validated for IHC on tissues 

(374). This can be managed through using positive control tissue, namely a specimen known 

to contain the antigen in a given location or structure (372), and negative control tissue using 

a specimen known to not express the antibody (373). With every run of IHC, we included a 

slide from a TMA multi-block of various solid tumors and normal tissues in which staining 

was checked to correspond with literature.  

 

Negative staining controls are applied to validate sensitivity of the antibody by examining if 

positive staining may be due to interactions between the IHC components with endogenous 

Fc-receptors or other non-specific proteins (372,373). Negative control of non-specific 

staining was performed through (a) omission of the primary antibody, which controls for 

nonspecific binding of the secondary antibody, and (b) for monoclonal antibodies, incubation 

with a subclass isotype-matched control antibody instead of primary antibody. 

 

Evaluation of immunohistochemical staining 

All cores were scored by two trained observers (all medical doctors, and always a minimum 

of one experienced pathologist, Table 12). Before initiating scoring, cores were reviewed to 

examine IHC quality, agreeing on which tissue compartments to score and deciding on a 

semiquantitative scoring scale. There are multiple reported scoring systems for quantification 

of IHC reactivity, such as intensity, density or combined scoring systems like Allred-score, 

immunoreactive score/IRS and H-score (375). For PD-L1 in clinical use as a predictive 

marker, many different approaches are used, such as tumor proportion score/TPS (percentage 

of viable cancer cells with positive membranous staining), combined positive score/CPS 

(number cancer cells, lymphocytes and histiocytes with positive membranous staining, 

divided by the total number of viable tumor cells x 100%), and immune cell score/ICS (the 

percentage of tumor area consisting of immune cells with positive staining) (376). 

 

If staining was homogenous for the tissue compartment in question, a three-level intensity 

scoring scale was used, and in the case of heterogeneous staining we used a density scale 

(Table 13). Observers were independent of each other and blinded to clinicopathological data 
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and patient outcome. In case of major disagreement (scoring difference >1), the core was re-

examined until consensus was reached. The intra-class correlation coefficient (reliability 

coefficient, r) by use of a two-way random effect model with absolute agreement definition, 

was calculated to examine scoring agreement between observers (Table 12). For markers 

CD3, CD4, CD8 and CD20 (Paper I) as well as PD-1 (Paper II) only positive, lymphocyte-

like cells was scored. If possible, positive lymphocytes located intraepithelial and in tumor 

stromal areas were scored separately. For markers PD-L1 (Paper II) and CXCL16 and 

CXCR6 (Paper III) expression in tumor epithelial cells and tumor stromal cells was scored 

separately within the same cores. We defined tumor stroma as stromal cells adjacent to tumor 

epithelial cells. Stroma was only assessed as a whole, not for subgroups of tumor stromal 

cells. The scoring value for each core was found by calculating the mean of the two observers 

scores. The scoring value for each tissue compartment was then found by calculating the 

mean scoring value of all cores of the same tissue type. 

 

Table 12. Information on observers and reliability 
Biomarker Scorers Reliability coefficient (r) Range p 

CD3, CD4, CD8, 
CD20 

Elin Richardsen* Andrej 
Valkov* 

0.95 0.90-0.97 < 0.001 

PD-1 Elin Richardsen* Nora 
Ness 

0.96 0.95-0.96 < 0.001 

PD-L1 Andrej Valkov * Cecilie 
V Nordbakken* 

0.93 0.92-0.93 < 0.001 

CXCL16, CXCR6 Elin Richardsen* Samer 
Al-Saad* 

0.95  
 

0.90-0.97  
 

< 0.001 

* Pathologist 

 

IHC staining can be assessed manually by qualified individuals or with the use of automated 

systems. To eliminate subjectivity and variability of observers, automated scoring systems are 

announced as the future. Although the TMA method greatly facilitates automated scoring, at 

the time we conducted our analyses there were challenges with automated scoring systems 

regarding ability to recognize artifacts and separate different tissues and cell types. We had 

the intention of automated scoring, but our in-house ARIOL imaging system (Applied 

Imaging Corp., San Jose, CA) did not meet our expectations. Thus, we chose to score 

manually in a semiquantitative matter. We did this in two ways – both by digitalizing the 

slides and viewing the cores on a computer screen (Paper I and III) and by using a manual 

light microscope (Paper II).  

 

 

64



 

 

Scoring of digitalized TMA slides 

For Paper I and III the ARIOL imaging system was used to scan and digitalize IHC-stained 

TMA slides. Before the procedure a uropathologist (E. Richardsen) reviewed each TMA-core 

and registered the most prominent tissue in a corresponding slide map. As a result, we ended 

up with six different tissue types somewhat different than what they initially were chosen as 

when making the TMAs. Namely, tumor epithelia, tumor stroma, HGPIN, BPH, normal 

epithelia, and normal stroma. Next, slides were loaded in the SL 50 automated slide loader 

and scanned at a low resolution (1.25x) and high resolution (20x) using an Olympus BX61 

microscope with an automated platform (Prior Scientific, Cambridge, UK). Images of the 

cores were uploaded into the Ariol Software, and the observers scored the samples manually 

by viewing the cores on a computer screen. A core was scored as missing if the core was 

physically missing, did not contain the tissue it was labeled as, or considered to be of 

insufficient quality. For lymphocyte-markers (Paper I), positive lymphocyte-like cells were 

scored, and location (intraepithelial or in stromal areas) was based on the label of the core. 

For CXCR6 and CXCL16 (Paper III), all cores were scored in two rounds, one for epithelial 

cells, and one for stromal cells. 

 

Manual scoring with light microscope 

For Paper II, a manual light microscope was used for scoring the IHC-stained TMA slides. A 

pathologist histologically assured the tissue type for each core and if possible, two cores 

containing prostate tumor tissue and one core containing normal tissue was scored for each 

case. When scoring tumor tissues, the investigator ignored any non-cancerous elements in the 

core and assigned a biomarker score based solely on the present tumor epithelial cells and 

tumor stromal cells respectively.  
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3.1.4. Statistical analysis 

All statistical analyses were performed using the statistical package IBM SPSS, version 21 

(Paper I), 22 (Paper III) and 23 (Paper II) (SPSS Inc., Chicago, IL). The significance level 

was set as p ≤ 0.05 for all analyses. A Wilcoxon signed rank test was used to check for 

differences in expression of the biomarkers between different tissue types (Paper I and III). 

Spearman’s rank-correlation test was used to calculate correlations between variables, and 

moderate or strong correlations (r > 0.2) was emphasized. All survival analyses were carried 

out using both BF, CF and PCD as endpoints. Univariate survival curves were drawn by using 

the Kaplan–Meier method, and the statistical difference between curves was assessed by the 

log-rank test. The survival curves were terminated at 134 months for Paper I and 192 months 

for Paper II and III, due to less than 10% of patients at risk after this point. In order to assess 

the independent prognostic value of the tested biomarkers in regard to endpoints, we used a 

multivariate backward stepwise Cox regression model with a probability for stepwise entry or 

removal at both p = 0.05 and 0.10. For Paper I and III, significant biomarkers and 

clinicopathological variables (p < 0.05) were entered into the multivariate analysis. For Paper 

II biomarkers and clinicopathological variables with p < 0.10 from the univariate analysis was 

entered. 

 

 
3.2. EXPERIMENTAL STUDIES 
For Paper III we did experimental in vitro studies in addition to using the patient cohort 

design. Methodological details are published in Paper III and will thus only briefly be stated 

herein. The goal was to investigate if knockdown of chemokine CXCL16 in PCa cells would 

affect cancer cell proliferation and -migration.  

 

3.2.1. Cell culture 

Two PCa cell lines (DU145 Cat# HTB81 and PC-3 Cat# CRL-1435 both from ATCC, 

Manassas, VA, US) were verified by the Department of Forensic Medicine at UiT The Artic 

University of Norway, and cultured (details in Paper III). The DU145 cell line was originally 

derived from a central nervous metastasis and cells are castration resistant, AR-negative, does 

not express PSA, and has a moderate metastatic potential. The PC3 cell line was originally 

derived from a metastatic bone lesion and cells are castration resistant, AR-negative, does not 

express PSA, and have a high metastatic potential. PC3 cells have characteristics of 

neuroendocrine carcinoma rather than adenocarcinoma (377). 
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3.2.2. RNA Interference 

Cells were transfected with CXCL16 siRNA (Cat# 4392420, s33809, Silencer Select CXCL16 

siRNA, Ambion, Carlsbad, CA, US). A Cy3-labeled negative control scrambled siRNA (Cat# 

AM4621, Silencer Cy3-labeled Negative Control No. 1 siRNA, Ambion, Carlsbad, CA, US) 

was used as negative control in all experiments. Transfection efficiency was typically 

assessed at 85% to 100%. 

 

3.2.3. Proliferation Assay 
Trypsinization was used to detach transfected cells, before resuspension in complete growth 

media. Cells were counted, and with initial titration experiments, optimal cell number per 

well was determined to be 5000. After baseline measurement, cells were seeded in 

quadruplicate into the E-plate 16 (Cat# 05469830001; Roche, Oslo, Norway) according to the 

manufacturers protocol. The plate was incubated for 30 minutes at room temperature before 

positioned in the real-time cell analyzer system xCELLigence RTCA DP instrument (Real-

Time Cell Analyzer Dual-Plate, Cat# 05469759001, Roche, Oslo, Norway) located in an 

incubator preserving the same conditions used for routine cultivation of the PCa cell lines. 

The instrument denoted the cellular growth rate as Cell Index, which is an arbitrary unit 

reflecting the cell-sensor impedance. The cell index was measured every 15 minutes for the 

first 24 hours and then every 30 minutes. Growth curves and doubling times were calculated 

with the RTCA software version 1.2.1 (Roche, Oslo, Norway). For each cell line, three 

independent experiments were performed. 

 
3.2.4. Migration Assay 
Ibidi Culture-Inserts (Inter Instrument AS, Høvik, Norway) were used to assess migration. The 

inserts, consisting of two chambers with a 0.5 µm divider, were planted into a 12-well tissue 

culture dish (one insert per well) using sterile tweezers. 70 µL suspensions containing 4-6 × 

105 transfected cells/mL were added to each chamber. The cells were left to adhere before the 

insert was removed and fresh media added. Using a light microscope, images were acquired 

along the cell-free gap made by the divider at time points 0, 6, and 24 hours. The migration 

rate into the gap was calculated using the free software TScratch version 1.0 (Computational 

Science and Engineering Laboratory, Zurich, Switzerland). For each cell line, three 

independent experiments were performed.  
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4. RESULTS 

 
4.1. PAPER I 

The adaptive immune system can potentially have dual roles in cancer development and 

progression, by either stimulating, or suppressing tumorigenesis. Hence, the aim of this study 

was to evaluate the prognostic impact of adaptive immune cells residing in different tumor 

compartments in PCa. For this paper, the density of CD3+, CD4+, CD8+ and CD20+ 

lymphocytes were analyzed in relation to outcome, as well as their relations to each other and 

clinicopathological variables.  

 

4.1.1. Expression  
Of the total cohort of 535 patients, evaluation of IHC-staining of tumor tissue was possible 

for 472/535 (88%) cases for CD3, 521/535 (97%) for CD4, 473/535 (88%) for CD8, and 

469/535 (87%) for CD20. Lymphocytes were observed microscopically and scored in both 

intraepithelial and in tumor stromal areas. In statistical analyses we also combined the two 

locations as an intratumoral score. By quantitative assessment of CD3+ and CD20+ stained 

lymphocytes – considered to be T lymphocytes and B lymphocytes respectively – 

intratumoral lymphocytes were found to mainly constitute T lymphocytes (CD3+). There 

were significantly higher densities of intratumoral CD3+ (p = < 0.001), CD4+ (p = 0.006) and 

CD8+ (p = 0.008) lymphocytes compared to in non-malignant tissue areas from the cancer 

patients. There was no such difference observed for CD20+ lymphocytes. The density of 

intratumoral CD3+ lymphocytes was significantly higher in the intraepithelial compartment 

compared to tumor stromal areas (p < 0.001). For CD4+, CD8+, and CD20+ lymphocytes, no 

such difference was found.  

 

4.1.2. Correlations 
There was no correlation between investigated lymphocyte markers and clinicopathological 

variables.  

 

4.1.3. Univariate survival analysis 
In univariate survival analysis, a high density of intratumoral CD3+, CD4+ and CD8+ 

lymphocytes were associated with significantly shorter BFFS (p = 0.046, p = 0.026, p = 0.003 

respectively). In separate analyses of intraepithelial lymphocytes, the same pattern was 
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apparent for CD3+ (p = 0.037) and CD8+ lymphocytes (p = 0.010). Even though showing the 

same negative prognostic tendencies, there were no significant associations between 

lymphocyte densities and CF or PCD. CD20+ lymphocytes were not associated with 

outcome. Results presented in Table 14a. 

 

5.1.4. Multivariate survival analysis 
In multivariate analysis, a high density of intratumoral CD8+ lymphocytes were an 

independent, negative predictor of BF (HR = 1.6, CI 95% 1.1-2.2, p = 0.007) together with 

pT-stage, Gleason score, non-apical PSM and apical PSM. The same association was present 

when analyzing intraepithelial CD8+ lymphocytes alone (HR = 1.5, CI 95% 1.0-2.0, p = 

0.032). Results presented in Table 14a. 

 

4.2. PAPER II 

For our next paper we wanted to investigate possible explanations as to why intratumoral 

CD8+ lymphocytes seemed to be of negative prognostic importance in our cohort. We 

hypothesized that the lymphocytes we had detected in earlier work (Paper I) indeed were 

tumor-specific T lymphocytes attracted to especially aggressive tumors, but lacking 

functionality due to immunosuppression. The PD-1 pathway in intratumoral lymphocytes had 

recently gained massive attention as an important immunosuppression pathway involved in 

cancer immune escape, and excitingly, can be targeted by different immune checkpoint-

inhibitors. Hence, for this paper we evaluated the expression pattern and prognostic impact of 

PD-1 and its ligand PD-L1 in our cohort of primary PCa cases. 

 

4.2.1. Expression  
Of the total cohort of 535 patients, evaluation of IHC-staining of tumor tissue was possible 

for 402/535 cases (75%) for PD-L1, and 396/535 (74%) for PD-1.  

 

In general, intratumoral PD-1+ cells were relatively rare (found in 156/396, 39% of patients) 

and had the morphology of lymphocytes. Additionally, we observed a few intraepithelial PD-

1+ cells. Some of these resembled tumor cells, but unfortunately, we were not certain these 

were tumor cells using morphological assessment alone, and this, in addition to very low 

numbers, made them impossible to quantify by scoring. Thus, we scored PD-1+ lymphocytes 

as a whole independently of which tumor department they were located in. 43/396 (11%) 

cases were categorized as having a high density of PD-1+ lymphocytes. PD-1 and CD8 
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double staining showed co-expression of CD8 and PD-1, but also lymphocytes with single 

expression of each marker. However, the brown CD8 staining overpowered the red stain of 

PD-1, making quantification by scoring very difficult. 

 

PD-L1 expression was both cytoplasmatic and membranous. Intraluminal secretions and some 

intracellular granules seemed to stain intensively and were disregarded as artifacts. PL-L1 

expression by tumor epithelial cells was seen in 92% of cases (371/402), and 236/402 (59%) 

cases were categorized as having a high PD-L1 expression. In addition, 66% (267/402) of 

patients had PD-L1+ tumor stromal cells.  

 

4.2.2. Correlation 
PD-1 and PD-L1 expression did not correlate to clinicopathological variables, nor to CD3+, 

CD4+, CD8+ and CD20+ lymphocytes examined in Paper I. The expression of PD-L1+ 

tumor stromal cells correlated significantly with PD-L1+ tumor epithelial cells (r = 0.36, p = 

< 0.001), and had a weak correlation with PD-1+ lymphocytes (r = 0.21, p = < 0.001).  

 

4.2.3. Univariate survival analysis 

In univariate survival analysis, a high density of PD-1+ intratumoral lymphocytes was 

associated with significantly shorter CFFS in subgroups known to indicate unfavorable PCa 

prognosis, namely Gleason grade 9 (p = <0.001), age at diagnosis < 65 years (p = 0.025), 

preoperative PSA > 10 (p = 0.039) and stage pT3 disease (p = 0.011). For the whole group the 

association was limited to a trend only (p = 0.084). Expression of PD-L1 by neither tumor 

epithelial cells nor tumor stromal cells reached statistical significance for predicting BF, CF, 

or PCD, but there was a trend towards association between a high expression of PD-L1+ 

tumor epithelial cells and worse outcome, most prominently for shorter BFFS (p = 0.078). 

Results presented in Table 14a and 14b. 

 

4.2.4. Multivariate survival analysis 
In multivariate survival analysis, a high density of PD-1+ intratumoral lymphocytes was an 

independent, negative prognostic factor for CF (HR = 2.5, CI 95% 1.1-5.5, p = 0.025) 

together with Gleason grade and PNI. Results presented in Table 14a and 14b. 
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4.3. PAPER III 

Chemokines and their receptors are important contributors in tumorigenesis as well as in 

creating anti-cancer immune response. Chemokine CXCL16 and its receptor CXCR6 are 

important for lymphocyte function and can also affect tumorigenesis through different 

pathways. Hence, for our next paper we wanted to examine their prognostic significance in 

our cohort of primary PCa tumors. We analyzed the intensity of expression in both tumor 

epithelial cells and tumor stromal cells in addition to non-malignant tissue areas.  

 

4.3.1. Expression 

CXCR6- and CXCL16 expression was observed on both tumor epithelial and tumor stromal 

cells microscopically. CXCR6 staining was both granular and cytoplasmic whilst CXCL16 

staining was predominantly cytoplasmic, with some membranous staining. There was a 

significantly higher expression of CXCR6 in tumor tissue compared with non-malignant 

tissue areas from the cancer patients (p < 0.001). CXCR6 was significantly more expressed by 

tumor epithelial cells compared to tumor stromal cells (p = 0.008). There was also 

significantly higher expression of CXCL16 in tumor tissue compared with non-malignant 

tissue areas (p < 0.001), but no significant difference in expression levels by tumor epithelial 

cells compared to tumor stromal cells. Co-expression of CXCR6 and CXCL16 was common 

in tumors (p < 0.001) and was significantly higher in tumor tissue compared with non-

malignant tissue areas (p < 0.001). 

 

4.3.2. Correlation 
Co-expression of CXCR6 and CXCL16 in tumor tissue correlated weakly with Gleason score 

>7 (p = 0.009), LVI (p = 0.020), and PSM (p = 0.014). CXCR6 expression was not correlated 

to CD3+, CD4+, CD8+ and CD20+ lymphocytes. CXCL16 expression correlated moderately 

with CXCR6 expression (p = 0.000) and there was a weak correlation to CD3+ lymphocytes 

(p = 0.034). R-values below <0,2 (weak) are omitted. 

 

4.3.3. Univariate survival analysis 
A high expression of CXCR6 by tumor epithelial cells was associated with significantly 

shorter BFFS (p = 0.027), as well as CFFS (p = 0.000) (unpublished results). CXCR6 

expression by tumor stromal cells alone did not reach statistical significance for any 

endpoints. A high expression of CXCR6 in tumor tissue (epithelial and tumor stromal cells 

analyzed as one compartment) was associated with significantly shorter BFFS (p = 0.003). 
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The same trend was apparent for CFFS but did not reach significance (p = 0.063). A high 

expression of CXCL16 by tumor epithelial cells was associated with significantly shorter 

CFFS (p = 0.017). CXCL16 expression by tumor stromal cells alone did not reach statistical 

significance for any endpoints. A high co-expression of CXCL16 and CXCR6 in tumor tissue 

was associated with significantly shorter BFFS (p = 0.016) and CFFS (p = 0.023). Results 

presented in 14b. 

 

4.3.4. Multivariate survival analysis 
A high expression of CXCR6 by tumor epithelial cells was an independent negative 

prognostic factor for both BF (HR = 1.5, CI 95% 1.1-2.1, p = 0.010) together with Gleason 

score, PSM, pT-stage and PNI (unpublished results), and CF (HR = 7.1, CI 95% 2.5-20.4, p = 

0.000) together with Gleason score, PSM and PNI (unpublished results). A high expression of 

CXCR6 in tumor tissue was an independent, negative prognostic factor for both BF (HR = 

1.7, CI 95% 1.3-2.4, p = 0.001) together with Gleason grade, PNI, PSM and pT-stage, as well 

as CF (HR = 2.3, CI 95% 1.1-4.8, p = 0.028) together with Gleason grade, PNI and PSM. A 

high expression of CXCL16 by tumor epithelial cells was an independent, negative prognostic 

factor for CF (HR = 2.5, CI 95% 1.2-5.7, p = 0.025) together with Gleason grade, PNI and 

PSM. A high co-expression of CXCR6 and CXCL16 in tumor tissue was an independent, 

negative prognostic factor for CF (HR = 5.1, CI 95% 1.6-15.9, p = 0.005) together with 

Gleason grade, LVI and PSM. Results presented in 14b. 

 

4.3.5. Migration and proliferation assay 
PCa cell lines DU145 and PC3 were used for CXCL16 siRNA knockdown analysis. We 

repeatedly observed that such silencing caused activation of proliferation and an increased 

migration rate compared to negative controls. 
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5. DISCUSSION 

5.1. METHODOLOGICAL CONSIDERATIONS 

 

5.1.1. Ethical considerations 

The clinical data and tissues used in our cohort was initially collected and stored in a 

therapeutic context, and our research has been performed without obtaining informed consent 

from the patients or their relatives. This presents an important ethical issue. One of the main 

ethical guidelines for medical research involving human subjects, is the Helsinki Declaration 

by the Word Medical Association/WMA, which states that physicians performing medical 

research using identifiable human material or data must seek informed consent for its 

collection, storage and/or reuse (pt.32, 378). Additionally, Norwegian law binds the 

researcher to obtain informed, voluntary, explicit and verifiable consent from subjects in 

medical research (chapter 4, §13, 379). However, both the Declaration of Helsinki (pt.32, 

378) and the Norwegian health research law (chapter 6, §28, 379) opens up for exceptions 

from informed consent if the research is approved by a research ethics committee, which is 

the case for the herein presented research project. There are multiple arguments as to why 

informed consent sometimes is not obtained. (a) For big materials it is time consuming, and 

confiscates time that could otherwise be used for research, (b) cases not consenting could 

cause a potential bias, (c) majority of cases are dead by the time the research is initiated, (d) it 

can be considered more compassionate to not contact cases or their relatives to prevent 

reminding them of a tragic cancer diagnosis, and/or (e) information on the research project 

may lead to false hope that the research may directly affect the outcome of their cancer 

disease in a positive way. For medical research to be ethical, the benefit of the study must 

outweigh the risks. As our data is collected retrospectively, our research has not inflicted the 

subjects to any physical risk by exposing them to modified or additional procedures (380). 

Nonetheless, reading, collecting and storing private and sensitive health information poses a 

potential psychosocial risk if these data were to fall into the hands of outsiders. We 

minimized the potential risk of this by high standards of data protection, such as complying 

with the law of confidentiality, including no identity details in publications, and working only 

with de-identified version of the data and with the original database including the identifiable 

details locked away with only the research groups leaders (E. Richardsen and S. Andersen) 

having direct access. 
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5.1.2. Reliability, validity and representativeness of the data material 

Reliability refers to the data material being trustworthy, authentic, dependable, accurately 

recorded and without systemic bias. In our case, the data material benefits from the fact that 

the same experienced pathologists (E. Richardsen and L.T. Rasmussen Busund) registered all 

histopathological data afresh, not trusting previously stated journals. For clinical data, it is an 

advantage that an oncologist (S. Andersen) was in charge of collection, there was no loss of 

patients during follow-up, and that data was collected from comprehensive journals as 

Norway has a strong public health care system with little to no loss of patients to a private 

system. However, a retrospective study design has some limitations, and will increase the risk 

of information bias, as verifying information in patient journals is difficult.  

 

When it comes to the reliability issues regarding biomarker analyses, some is described for 

the pre-analytical handling of tumor specimens in section 5.1.5. Tissue quality and pre-

analytical considerations. Also, a potential problem is the fact that after the IHC procedure, 

not all cases had viable tumor tissue to assess biomarker expression. This can be due to errors 

in selection of tissue for the TMA, technical issues during the TMA process, or because of 

normal, random loss of cores with deeper sectioning of the tissue blocks or during IHC 

procedures. Another possible negative influencer of reliability is the semiquantitative 

evaluation of biomarker expression, which, even though optimized, is still a subjective 

method. Sadly, a potentially considerable reliability issue occurred during collection of the 

material, when it became apparent that a relatively large proportion of patients from St. Olavs 

Hospital had to be eliminated because their tumor material was already in use by another 

research group (Figure 16). Best case scenario, the other research group have chosen their 

tumors randomly. Worst case, they have chosen the most “biologically interesting” tumors, 

and/or tumors from patients with hard endpoints, and thus this is a source of uncontrolled 

selection bias in our material. When comparing clinicopathological variables (Table 15), we 

found that patients at UNN and NLSH had a higher share of patients with BF compared to St. 

Olavs Hospital, but there were no significant differences in CF and PCD. In addition, when 

performing survival analyses for the biomarkers, we sub-stratified for the three hospitals 

involved as a form of internal validation, and the results as a general rule showed the same 

tendencies. To validate the analytical and post-analytical condition of our data material, we 

should ideally have conducted all steps of the analysis first in a training set (hypothesis 

generating), and then a test set (hypothesis testing). 
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Validity (also referred to as internal validity), encompasses whether the observed results 

represent the truth in the study population, and thus, are not due to material- or 

methodological errors. In other words, if we observe a biomarker to be prognostic for an 

endpoint, is it likely that this is a genuine relationship? To reduce the risk of erroneous 

influence, we excluded patients where external factors probably could have influenced the 

TME. In addition, we wanted a very high probability that progression of disease was 

attributed to primary prostate cancer by avoiding metastases from other malignancies to be 

wrongly interpreted as prostate cancer CF or PCD. Thus, we excluded patients who had 

undergone radiotherapy to the pelvic region prior to RP, patients who had received pre-

operative hormonal therapy, and patients who had had another malignancy (except basal cell 

carcinoma, a superficial skin cancer) within 5 years previous to the PCa diagnosis. 

 

Representativeness (also referred to as generalizability or external validation), of the data 

material is necessary for the results to be transferable to other groups of interest, e.g. the 

Norwegian, Nordic or even international population. It is important that the study population 

is homogenous enough so that other factors than what we are supposed to study do not get to 

effect results (high internal validity), but at the same time is heterogenous enough to represent 

a relevant population in “the real world”. As most patients get their cancer treatment at public 

hospitals in their own health region in Norway, the patient cohort presented consist of 

approximately 1/5 of unselected, Norwegian men undergoing RP as treatment for their 

localized PCa from 01.01.1995 to 31.12.2005. Additionally, national cancer guidelines in 

Norway offers a highly standardized, clinical strategy in diagnosis and treatment, which 

makes it likely that the study population reflect the Norwegian population. For the results to 

be relevant, it is also important that the study population is representative of the patients we 

see in the clinic today. Thus, we included patients from the PSA era, which means a relatively 

large proportion of the patients may have asymptomatic and perhaps indolent cancers detected 

by unsystematic PSA screening which is a common initiation to getting a PCa diagnosis 

today.  
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Table 15. Patient characteristics and clinicopathological variables arranged for the different 
pathological centers (n = 535), (Pearson’s Chi-square test, Mann-Whitney U test) significant 
p values in bold (threshold ≤ 0.05). Variables from database updated December 2015 

Variable Surgical center p 
 UNN NLSH St. Olavs Hospital  
Number of patients, n 248 59 228  
BF, % 48 % 46 % 24 % <0.001 
CF, % 12 % 3 % 11 % 0.164 
PCD, % 4 % 2 % 3 % 0.635 
Total mortality, % 24 % 12 % 15 % 0.016 
Mean age at surgery, years 62.8 62.6 60.7 <0.001 
Surgical proc    <0.001 
    Retropubic, % 60 % 100 % 100 %  
    Perineal, % 40 % 0 % 0 %  
Mean preop PSA 13.7 7.4 9.3 <0.001 
Gleason grade / ISUP Grade Group    <0.001 
   3+3 / ISUP Grade group 1, % 29 % 59 % 34 %  
   3+4 / ISUP Grade group 2, % 42 % 31 % 43 %  
   4+3 / ISUP Grade group 3, % 17 % 7 % 16 %  
   4+4 / ISUP Grade group 4, % 4 % 2 % 3 %  
   >8 / ISUP Grade group 5, % 9 % 2 % 5 %  
pT-stage    <0.001 
    pT2, % 61 % 97 % 73 %  
    pT3a, % 26 % 0 % 22 %  
    pT3b, % 13 % 3 % 6 %  
Mean tumor size, mm 15.3 16.8 15.0 0.050 
PNI, % 21 % 71 % 17 % <0.001 
PSM, % 46 % 34 % 67 % <0.001 
Abbreviations: BF = biochemical failure; CF = clinical failure; ISUP = International Society of Urological 
Pathology; NLSH = Nordland Hospital; PCD = Prostate cancer death; PNI = Perineural infiltration; Preop = 
preoperative; PSA = Prostate specific antigen; PSM = Positive surgical margin; pT-stage = pathological tumor 
stage; Proc = procedure; UNN = University hospital of Northern Norway 

 

5.1.3. Endpoints issues 

We made some perhaps controversial decisions regarding endpoint definitions. Firstly, we 

defined PSA threshold for BF as ≥ 0.4 ng/ml. Both the AUA (381) and the EAU (119) have 

recommended defining BF after RP as a serum PSA ≥ 0.2 ng/mL followed by a second 

confirmatory level. However, at least before PSMA-PET became widely available, others 

argued that a higher cut-off value had a higher specificity and was better at predicting 

metastatic progression (382,383). Moreover, we included local recurrence in CF, where most 

only use metastatic relapse as endpoint (384). Even though this may weaken translation of CF 

as an endpoint predicting PCD, we wanted to include local recurrence if it had a symptomatic 

impact on the patient. 

 

Some argue that overall survival is a more meaningful endpoint in cancer research compared 

to disease-specific survival (385). This is especially relevant when researching treatment 

regimes, as overall survival also gives information on the potentially lethal side-effects of 
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cancer therapy. However, in the case of PCa, with such a low mortality rate and a high 

average patient age which increases risk for fatal comorbidities, disease-specific survival will 

probably give a more accurate picture when examining prognostic factors. Another problem 

in retrospective PCa research, is the fact that PCD is in general thought to be overestimated, 

as many patients with indolent metastatic disease who dies of other, cancer-unrelated causes, 

are registered as death caused by PCa. To prevent this problem in our cohort, we did not relay 

on already registered death cause when collecting data. Instead, we thoroughly read the 

journals and bloodwork of patients to interpret the time leading up to death to conclude if this 

was directly caused by their PCa. 

 

PCa patients in general have a high disease-specific survival rate, and those who do die of the 

disease, often do so several years after the initial diagnosis (4). These characteristics prompts 

the need for a large study population and a long follow-up time to get statistically significant 

results in prognostic research. As a result, surrogate endpoints such as BF and CF are often 

used in addition to PCD. This may be problematic as some patients suffering BF after 

prostatectomy, experience rapid progression and early death, while others have an indolent 

course and in combination with high age is at risk of dying of other causes (386,387). The use 

of different endpoints can be confusing and makes it difficult to compare different prognostic 

biomarker studies, as results for different endpoints are not directly comparable. For this 

thesis we always performed all survival analyses for all three endpoints, and they as a general 

rule showed the same tendencies for each variable, even though not always reaching statistical 

significance.  

 

Additionally, retrospective research does not offer the possibility of standardized protocols for 

follow-up, thus if some patients are followed more closely than others, e.g. by PSA 

measurements, this can lead to an earlier detection of BF and/or CF in these patients, affecting 

survival analyses. Also, differences in survival time after BF or CF can be affected by 

confounding factors. This is especially relevant if there is made advances in palliative 

treatment options and/or if new guidelines are implemented during the follow-up, but also 

because factors such as age and comorbidity, as well as patient wishes, and doctors’ 

preferences will influence if, and when, a palliative treatment is introduced for a patient. 

Differences in palliative treatment strategies within the study population can impact disease-

specific survival time, and thus the reliability of results.  
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5.1.4. Advantages and disadvantages using tissue microarray  

The TMA method has both strength and weaknesses (Table 16) compared to whole sections. 

One of the biggest concerns when using the technique in prognostic biomarker research, is 

tumor representativity. Namely, does the expression of the biomarker in the TMA cores 

reflect the expression in the tumor as a whole (363). However, it is important to remember 

that even though the gold standard for in situ analysis is considered to be whole sections, 

these also only represent a small portion of a tridimensional tumor. Representativity is an 

especially relevant concern in a heterogenic, multifocal tumor type such as PCa, but TMA 

have previously been validated (364) and used (388) in PCa research. The area of which the 

cores are sampled from, as well as the number of cores sampled is important for 

representativity. One should also always calculate with a general loss of cores during TMA 

processing and IHC-staining process of approximately 10-15% (389). A general 

recommendation is sampling one to four tumor cores per case (390). PCa researchers have 

recommended that three to four cores from areas of different tumor grades should be sampled. 

Hence, for each case we sampled a minimum of four cores from representative tumor areas – 

two from tumor epithelial areas and two from tumor stromal areas. Our intention when 

making the TMA was to include the most representative tumor tissue for each case, thus we 

have not specifically targeted areas of tumor inflammation and/or immune cells, such as 

tertiary lymphoid structures. This can be a potential weakness when analyzing immune 

markers. However, in general, it is likely that biomarkers of true clinical value will display a 

relatively uniform staining in tumors.  

 
Table 16. Summary of strengths and weaknesses of tissue microarray 

Strengths  Weaknesses 
Tissue saving – Consuming only small parts of 
primary tissue for each analysis. 

Possibility of sampling error during core extraction. 

Quick evaluation of expression – Close proximity of 
cores permits more rapid and consistent biomarker 
evaluation. 

Core loss of 10-15% during sectioning, transfer, and 
staining, leading to lower statistical power. 

Cores are non-identifiable, and thus evaluation is 
blinded from clinical- and outcome data. 

Loss in antigenicity with long time between sample 
preparation and IHC. 

All samples on a TMA slide are stained under 
identical experimental conditions, thereby reducing 
technical variation. 

Small cores may not accurately reflect the whole 
tumor because of tumor- and biomarker 
heterogeneity, and the tissue content may change 
over the length of the core. 

Saving scientific resources and costs: Reduced usage 
of laboratory consumables (IHC) and personnel 
(evaluation) 

Loss of orientation of slide will lead to incorrect 
connection of biomarker data with 
clinicopathological data. 
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5.1.5. Tissue quality and pre-analytical considerations 

Multiple factors influence the validity of IHC results, and there is a need for quality in every 

step when handling of the tumor specimens (Table 17).  

 

Table 17. Analytical variables influencing the reliability of immunohistochemistry 
Pre-analytical variables Surgery time, type and intraoperative conditions 

Tissue fixation method, time, and volume 
Tissue processing 
Storage of blocks 
Sectioning, processing and storage of slides 

Analytical variables Epitope retrieval 
Antibody used, antibody titer, incubation time 
Manual vs. automated staining 
Detection system 
Antibody validation and controls 

Post-analytical variables Interpretation of staining (scoring) 
Choosing cut-off for survival statistics 

 

Biomarker research such as ours, often relies on archival FFPE tissue that initially have been 

collected and preserved for therapeutic reasons. Thus, pre-analytical aspects may not always 

be optimal. For our multicenter, retrospective cohort with a ten-year range, it is only natural 

that all specimens have not had the exact same pre-analytical conditions. There are multiple 

important elements in the pre-analytical phase. Firstly, the activation of tissue enzymes and 

autolysis and degradation of biological molecules instantly start when the surgeon cuts the 

blood supply (391). “Ischemia time” refers to the time between clamping of the arterial blood 

supply, until fixation of the specimen, and is a major influencer of what we are able to detect 

by IHC (392). Different markers, patients and tissues have different tolerance level before 

ischemic degradation begins (393). Another important factor is how fixation is conducted. All 

specimens in our material have undergone fixation with buffered formalin, which stabilizes 

proteins and preserves morphology through molecular modulations (369). Understandably, 

the fixation time in our cohort varied, both between surgical centers, and within each center. 

This poses a potential issue, as both under- and over-fixation increases the likelihood of false 

negative IHC. On the one hand, even though tissue penetration of formalin is relatively quick, 

the chemical reactions responsible for cross-linking and completion of the fixation process is 

very slow and relies on multiple aspects such as temperature, specimen dimension, and 

formalin/specimen-volume ratio, which makes under-fixation a common problem (393). On 

the other hand, prolonged formalin fixation may lead to excessive crosslinking, which makes 

over-fixation a possible issue. However, epitope retrieval used as a part of IHC, may be able 

to reverse this, at least for some epitopes (369). To make sure different fixation times between 

81



 

 

centers did not corrupt our results, we sub-stratified all biomarker survival analyses for 

pathological center, and the results as a general rule showed the same tendencies.  

 

Another pre-analytical consideration is how the FFPE prostatectomy specimens, TMA blocks 

and cut sections are stored pending IHC. Blocks generally has a good durability, but storage 

of cut sections can induce decline in antigenicity, at least for some epitopes. As stated in 

section 3.1.3. Prognostic biomarkers, cut sections were sealed with paraffin, and stored in 

4°C, and not used if older than 12 months. There are no general guidelines on how to store 

sections, but storage in 4 degrees compared to room temperature seems to give a lesser 

decrease in antigenicity (394–397). When it comes to paraffin coating as protection against 

oxidation of epitopes, some studies have found it to have the wanted effect (398) while others 

claim it to not be effective (395), and actually minor adverse effects have been observed 

(396). Some have also pointed out the importance of long enough processing time to remove 

endogenous water before storing the tissue (394), and yet others claims that newer epitope 

retrieval methods have made it possible to detect epitopes on stored slides even if they have 

not been stored in optimal conditions (396). 

 

5.1.6. Choosing evaluation method of immune cells in tumor tissue  

Immune cell content in the TME can be evaluated through IHC, flow cytometry, or gene 

signatures (399). For flow cytometry, potentially technically challenging tumor tissue 

disaggregation is necessary. Gene marker signatures can estimate the contribution of different 

immune cells in the TME based on gene expression (usually RNA). However, many RNAs 

and proteins are associated with more than one immune cell type, thus each immune cell does 

not have a general profile signature that all agrees on (400). IHC has multiple limitations 

(Table 17) but in a prognostic context, mainly because analyses are limited to small areas of 

tissue, and only a few markers can be examined at a time. One advantage of IHC is the 

additional information of the location of immune cells in the TME. For the immune cell 

subgroup of TILs is has been suggested clinically relevant if the location is in central parts of 

the tumor (intraepithelial), in the invasive boarder of the tumor, or in tertiary lymphoid 

structures close by the tumor (326). 
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5.1.7. Cut-off determination 

In order to perform survival analyses for a variable, and later translate results into a clinical 

decision, it is necessary to allocate patients into comparable groups of high and low 

biomarker expression (401). There are different strategies to determine a cut-off point for 

such dichotomization, each with associated advantages and disadvantages. To avoid cut-off 

selection bias, it is common to choose an objective approach, such as categorizing cases by 

mean or median variable expression, or in quartiles. This approach lowers the risk of false 

positive results (type 1 error) and may be easier for other research groups to reproduce. 

However, it does not necessarily always reveal a potential biological relationship between 

biomarker expression and outcome, and thus increases the risk for false negative results (type 

2 error). In addressing this, a minimal p-approach, which goal is to find a cut-off to optimize 

the correlation between biomarker expression and clinical outcome, can be better.  

 

For clinicopathological markers, we mainly based cut-off points on well-known cut-offs from 

research or clinic. For possible biomarkers, in Paper I we mainly used mean as cut-off, and 

for Paper II we used a minimal p-approach (optimal cut-off-approach) while also securing 

statistically sufficient number of cases in each group (Table 13). For Paper III the third 

quartile or higher was used as cut-off (Table 13). The best possible outcome of biomarker 

research is to find a general cut-off value for risk. However, the reproducibility of cut-off 

values is dependent on multiple aspects, particularly how evaluation of IHC is performed. 

Hence, our exact results are mainly hypothesis generating. Still, even though a specific cut-off 

value for a biomarker may not be reproducible in different materials, the same prognostic 

tendency should be. 
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5.2. DISCUSSION OF RESULTS 

 

5.2.1. Prognostic relevance of adaptive immune cells and immune checkpoint markers – 

Paper I and II 

The general notion is that the adaptive immune system, particularly CD8+ cytotoxic T 

lymphocytes, are crucial components in cancer immune elimination. Information on how 

lymphocytes are stimulated and inhibited has further created the foundation for immune 

checkpoint-inhibitors. So far, there have unfortunately not been convincing evidence that 

lymphocytes and cancer immune elimination play an important part in PCa biology. Thus, we 

wanted to explore the prognostic impact of TILs in PCa. 

 

In Paper I, we demonstrated that a high density of lymphocytes positive for the pan T 

lymphocyte marker CD3, as well as subtypes CD8+ T lymphocytes, and CD4+ T 

lymphocytes were associated with shorter BFFS in univariate analyses. However, when 

adjusting for other clinicopathological factors, only high densities of CD8+ T lymphocytes 

was an independent, negative prognostic factor. This made us conclude that the observed 

prognostic effect of T lymphocytes was primarily mediated through CD8+ T lymphocytes 

(Table 14a).  

 

Perhaps surprisingly, our results that intratumoral T lymphocytes, seem to be correlated to 

poor prognosis in PCa, is actually consistent with most other studies for this cancer form 

(402–409). However, others have found no association to outcome (410,411), and some even 

report a high density of intratumoral CD8+ T lymphocytes (412–414) or TILs in general 

(415) to be associated with a good prognosis. Although some studies report B lymphocytes to 

be present in higher numbers in malignant, compared to benignant, prostate tumor tissue 

(416,417), we found no such relationship. Additionally, CD20+ B lymphocytes did not have 

any prognostic impact on patient outcome, which other reports seems to agree with 

(403,408,414). 

 

Our results in Paper I, indicates that T lymphocytes, especially of the CD8+ subset, may 

either act as a direct contributor to prostate tumorigenesis, or is an indirect surrogate marker 

for a more aggressive PCa phenotype. Either way, this could indicate that initiation of cancer 

immune elimination, and consequentially cancer immune escape, are important elements of 

PCa tumorigenesis. 
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One possible direct mechanism for intratumoral T lymphocytes to contribute to 

tumorigenesis, is if they act in an immunosuppressive manner. Multiple studies have 

suggested that CD4+CD25+Foxp3+ Tregs are present and may promote PCa tumor 

advancement (410,418–421). Additionally, others have concluded that a high tumor density 

of Foxp3+ cells in PCa patients is associated with worse clinical outcome, without further 

elucidating which lymphocyte subgroup expressing Foxp3 (411,422–424). Moreover, there 

are also PCa studies suggesting a rare presence of Foxp3-expressing CD8+ lymphocytes, 

giving them immunosuppressive abilities contrary to having the cytotoxic characteristics for 

which they are most known for (280,410,418,424). Henceforth, it could be that at least some 

of the CD8+ lymphocytes we observe may be characterized as CD8+ Tregs, and that this may 

partially explain their negative prognostic effect on outcome.  

 

Contrary, if we postulate that the CD8+ T lymphocytes we observe are in fact tumor-specific, 

cytotoxic lymphocytes, our results could indicate that the most aggressive PCa tumors 

actually have the ability to initiate an anti-cancer immune response, but that this response for 

some reason is inadequate for elimination. This could be logical, as it is well known that 

tumors with a high mutational burden are more likely to cause aggressive disease, as well as 

triggering an immune response. In fact, PCa tumors with certain mutations linked to 

aggressive disease such as ERG positivity and PTEN loss are reported to have higher 

densities of intratumoral T lymphocytes (411). Hence, our results could indicate that CD8+ T 

lymphocyte density is an indirect marker for tumor aggressiveness and may provide 

prognostic information in clinical practice. 

 

Furthermore, this interpretation of our results would indicate that CD8+ T lymphocytes are 

subjected to immunosuppressive mechanisms. PCa research has proposed that tumors actually 

are infiltrated by tumor-specific, cytotoxic T lymphocytes, but that they are dysfunctional, 

and that this may partly be caused by PD-1 expression (425,426). The CD8-marker represent 

a broad population of T lymphocytes with various roles which might weaken its prognostic 

impact. Lymphocytes exposed to a chronic antigen will stably express PD-1, thus PD-1 is by 

some proposed as a better marker for tumor-specific, cytotoxic T lymphocytes than CD8 

(427). Consequently, for Paper II we investigated the prognostic significance of PD1 as well 

as its main ligand, PD-L1, in our PCa cohort. Indeed, we found a high density of PD-1+ 

lymphocytes in PCa tumor tissue to also be an independent, negative prognostic factor, this 
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time for CF which is an even stronger endpoint than BF. The prognostic impact of PD-1 was 

stronger than for any of the renowned clinicopathological features, except for Gleason grade. 

In addition, a high density of PD-1+ lymphocytes were in univariate analyses significantly 

associated with shorter CFFS in most subgroups related to worse PCa prognosis, such as a 

low age at the time of diagnosis, high pT-stage, high preoperative PSA, and high Gleason 

grade (Table 14a).  

 

However, as lymphocyte marker expressions from Paper I did not correlate with PD-1 

expression, we could not conclude PD-1 to be a marker for exhausted, tumor-specific CD8+ 

cytotoxic T lymphocytes. To further explore the relationship between CD8+ and PD-1+ cells, 

we double-stained for both markers. By microscopic examination we detected co-expression 

of CD8 and PD-1 on lymphocytes as suspected, but also lymphocytes with one without the 

other. Another explanation for lack of statistical correlation may be the different scoring 

methods in Paper I and II. Also limiting the ability for comparison, was that markers 

expression analysis in Paper II was performed on TMA cores cut from a much deeper tissue 

level than for Paper I, hampering the ability to correlate these markers in the same tumor 

areas. 

 

To our knowledge, research on the prognostic effects of PD-1 in PCa, is still scarce. In 

agreement with our results, is Nardone et al., who described a low density of PD-1+ TILs to 

be correlated with a longer BFFS in univariate survival analysis (423). Multiple descriptive 

analyses have reported PD-1+ lymphocytes to be present in prostate tumor regions and/or in 

adjacent tertiary lymphoid structures (426,428–430). However, Rådestad et al. detected a 

relatively high proportion of PD-1 positive T lymphocytes in non-malignant prostates, and 

thus suggested that PD-1 may play a role in controlling the homeostasis of prostate tissue 

rather than in contributing to cancer associated immune suppression (416). 

 

Nonetheless, for PD-1 to exert a biological effect, it has to be stimulated by one of its ligands; 

PD-L1 or PD-L2. Of these, PD-L1 is indicated to be the most clinically relevant in solid 

tumors. Its expression, prognostic and predictive value has been researched in essentially 

every malignancy, but at the time we conducted our study, only to a small degree in PCa. In 

our material, PD-L1 expression by tumor epithelial cells was common but produced no 

statistically significant prognostic results. However, both in univariate and multivariate 
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analyses there was a consistent tendency that a high expression of PD-L1 by tumor epithelial 

cells was associated with a worse BFFS (Table 14b).  

 

Since we conducted our study, a meta-analysis (431) with data from five articles (429,432–

435) on the prognostic effect of PD-L1 in PCa has been published. It concluded that PD-L1 

expression (and PD-L1 promotor methylation) are significant, independent negative 

prognostic factors in patients with PCa. However, complicating the interpretation of the 

results, is the fact that the antibody which was used to detect PD-L1 for the largest proportion 

of the patients in this study (434), EPR1161(2) from Abcam, has since been discontinued by 

the manufacturer due to a failure to meet their quality criteria (436). Nonetheless, other 

studies than the ones included in the metanalysis has been performed; Heng Li et al. reported 

that a high expression of PD-L1 was a significant prognostic factor for shorter BFFS in 

patients who received adjuvant hormone therapy after RP (437). Petiprez et al. reported that 

patients with PD-L1 positive tumors in node positive patients had shorter metastasis-free 

survival (407), and Vicier et al. reported that a high PD-L1 expression had statistically 

significant association with biochemical- and metastatic relapse and a trend toward poorer 

overall survival in univariate analysis (413). Contrary, Iocavelli et al. studied tumors from 

patients with de novo hormone-naïve metastatic PCa and concluded that although 47% of 

cases were PD-L1 positive, there was no difference in overall survival between patients with 

PD-L1 positive versus negative tumors (438). Additionally, Zhao et al. used gene expression 

data from a large number of RP samples, and reported that PD-L1 did not have prognostic 

significance (408). 

 

In general, studies on PD-L1 expression and its potential role as a prognostic marker, 

illustrate how challenging it can be to generate general wisdom in translational research 

questions. This problem is largely caused by variances in study design, making results from 

different publications hard to compare and combine. Particularly for a heterogenic disease 

such as PCa different studies often show substantial diversity in design; there are different 

ways of sampling tumor tissue (RP, TUR-B, biopsy), there is a wide range of disease stages 

with biological differences (e.g. hormone-naïve versus castration-resistant), and patients may 

have received treatment prior to baseline which can alter their TME. When it comes to 

detection assays for PD-L1, which is a relatively new marker in clinical use, different studies 

often use different antibodies. Even for PD-L1 antibodies regarded as validated, the detection 

rate for each antibody will differ to some degree, which again can affect the comparability of 
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results (439). Adding to this, IHC expression can be evaluated in different ways (see further 

information in section 3.1.3. Prognostic biomarkers – Evaluation of immunohistochemical 

staining). For instance, a PCa study using the E1L3N antibody, reported PD-L1 expression in 

tumor associated nerves to be a negative prognostic factor (440), even though this is a known 

unspecific staining for this antibody (433). Further, dichotomization of marker expression is 

needed for survival analyses, and such cut-off values commonly varies between different 

reports. In addition, patients have a relatively long life-expectancy causing use of different, 

uncomparable surrogate endpoints for outcome analyses. 

 

The lack of common guidelines when it comes to PD-L1 is also evident in the clinical use of 

PD-L1 as a predictive marker for immune checkpoint-inhibitors. Generally, response to 

immune checkpoint-inhibitors is observed for several cases with low/negative PD-L1, as well 

as a lack of response despite PD-L1 tumor expression. Different immune checkpoint-inhibitor 

drugs and cancer types have a diversity of protocols for PD-L1 analyses, both related to clone 

of antibody, how the expression is evaluated, and threshold for what is known as PD-L1 

positivity (see further information in section 3.1.3. Prognostic biomarkers – Evaluation of 

immunohistochemical staining) (441). 

  

5.2.2. Prognostic relevance of chemokine receptor CXCR6 and its ligand CXCL16 – 

Paper III 

For our final paper, we wanted to examine another possible influencer of lymphocyte function 

in PCa, by studying the chemokine receptor CXCR6 and its only known ligand, CXCL16. 

Initially, CXCL16 and CXCR6 were known from inflammatory conditions. CXCR6 is a G-

protein-coupled receptor which signals through the AKT/mTOR pathways, and is expressed 

on several different T lymphocyte subsets, in addition to NKT cells, NK cells, and plasma B 

cells (Figure 14) (442). CXCL16 exists in a transmembrane-bound form, which can be 

cleaved of the cell surface by metalloproteases, forming a soluble version (443). The 

biological effect of CXCL16 can be induced in different ways, namely (a) by binding to 

CXCR6, activating downstream pathways in the cell expressing the receptor, (b) reverse 

signaling, where binding of transmembrane CXCL16 to CXCR6 transduce signals exerting 

biological effect in the ligand-expressing cell, enabling a bidirectional signaling between 

ligand- and receptor-expressing cells, and (c) inverse signaling, where soluble CXCL16 bind 

to transmembrane CXCL16, transducing signals via its intracellular domain (444). 
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In many inflammatory diseases, CXCL16 can be upregulated by both parenchymal cells, 

endothelial cells, and immune cells at the inflamed site (445–447). As a soluble form it causes 

chemotactic homing of CXCR6-expressing immune cells. As a transmembrane form it can 

serve as an adhesion molecule for cells expressing CXCR6, as well as a scavenger receptor on 

phagocytotic cells such as DCs, macrophages/monocytes and B lymphocytes (448). 

 

With their diverse skill sets, chemokines are important in many cancer forms. In PCa, CXCR6 

and CXCL16 are expressed on both tumor epithelial and tumor stromal cells (449). This is of 

interest, as they are related to both inflammatory, and non-inflammatory pro-tumorigenic 

properties. Upregulated CXCR6 and CXCL16 is proposed as a driving factor of cancer 

development at sites of inflammation (449,450). CXCR6-CXCL16-interaction can further 

fuel the pro-inflammatory environment by activating NF-kB and a pro-inflammatory gene 

expression (451,452). CXCR6-CXCL16-interaction can also serve many other, non-

inflammatory, pro-tumorigenic effects, such as shaping the non-inflammatory component of 

tumor stroma (453), stimulate angiogenesis (454,455), increase proliferation, and induce 

cellular changes in tumor cells necessary for migration and invasion (450,454,456,457). In 

addition, it has been proposed that CXCL16-expression by for example bone marrow cells 

can induce bone metastases of CXCR6-expressing tumor epithelial cells in a seed-and-soil 

specific manner (456,458,459). 

 

As a deduction, for Paper III we set out to examine the prognostic effect of CXCR6 and 

CXCL16 in our cohort. We hypothesized that CXCL16 expressed by tumor cells could, as in 

inflammatory conditions, attract CXCR6-expressing immune cells such as T lymphocytes, 

which may serve as pro-tumorigenic tumor stromal cells as proposed in Paper I. 

 

We found markers CXCR6 and CXCL16 to be relatively commonly expressed in tumor tissue 

and more so in tumor tissue compared with non-malignant tissue. This is in agreement with 

others (450,457,458) and suggest that CXCL16/CXCR6 is increased during prostate 

tumorigenesis. Cases often had co-expression of markers in their tumor tissue, and a high co-

expression was weakly correlated with Gleason score >7, PSM, LVI, and PNI, indicating an 

association between CXCR6/CXCL16 expression and a more aggressive phenotype of PCa. 

This is in agreement with other reports (449,458), though some only describe this relationship 

for CXCR6 and not its ligand (450,454,456). 
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Further, we found that a high expression of CXCR6 by tumor epithelial cells, and in tumor 

tissue as a whole, were independent, negative prognostic factors for both BFFS and CFFS. A 

high expression of CXCL16 by tumor epithelial cells, as well as a high co-expression of 

CXCL16 and CXCR6 in tumor tissue were independent negative prognostic factors for CFFS 

(Table 14b). 

 

Despite hypotheses made from tumor biology, CXCR6 was more commonly expressed on 

tumor epithelial cells than tumor stromal cells, and CXCR6 on stromal cells did not correlate 

with lymphocyte makers published in Paper I. Thus, the negative prognostic effect we 

observe is not, at least exclusively, related to TILs. Regrettably, we did not score CXCR6-

expression for lymphocyte-like cells only, as this could have made us wiser as to which tumor 

stromal cells express CXCR6. However, CXCL16 expression was weakly related to 

intratumoral T lymphocytes (CD3+), indicating tumor expression of CXCL16 may contribute 

to recruitment of T lymphocytes to the tumor site.  

 

Most other reports have focused on the migration- and invasion properties of CXCR6 when 

expressed by PCa cell lines (450,454,456,457). Thus, we wanted to test if the negative, 

prognostic effect of CXCL16 could stem from of stimulation of migration and proliferation of 

cancer cells. However, contrary to the results from our TMA cohort, our in vitro assays 

showed that silencing of CXCL16 caused increased proliferation and migration in two 

different PCa cell lines (DU145 and PC3). This can have multiple different explanations, but 

most likely show the complexity of the TME, and influence of crosstalk between tumor 

epithelial cells and the stromal compartment. Our in vitro assays also eliminate the CXCR6-

CXCL16 interaction. Additionally, both cell lines are from metastatic sites, are castration-

resistant, and does not express PSA. These are characteristics which tend to be associated 

with a high degree of independence from origin, whereas tumor cells in primary tumors such 

as the ones in our TMA, are more dependent on the nutritional and chemical signaling in the 

milieu of their origin organ (460). Further, neither for our in vitro studies, nor in our TMA, 

did we differentiate between transmembrane and soluble CXCL16. It is proposed that 

transmembrane and soluble CXCL16 have different biological functions, and that signaling 

initiated by transmembrane CXCL16 may be anti-oncogenic, whereas soluble CXCL16 may 

be more pro-oncogenic (461). Even with some shortcomings, we evaluate our results as a 

relatively strong indicator that CXCR6 and CXCL16 can serve as negative prognostic factors 

in PCa.  
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6. CONCLUSIONS 

Key discoveries in this thesis 

• We were able to establish a largely unselected cohort from the PSA era with a long 

follow-up. 

• Intratumoral lymphocytes was mainly of T lymphocyte subset, and the density of T 

lymphocytes, as well as subtypes CD4+ and CD8+ T lymphocytes, was more 

common in tumor tissue than in non-malignant tissue. There was no such difference 

observed for B lymphocytes (Paper I).  

• A high density of intratumoral CD8+ T lymphocytes independently predicted a 

shorter time to disease relapse in form of biochemical failure (Paper I).  

• A high density of intratumoral PD-1+ lymphocytes independently predicted a 

shorter time to disease relapse in form of clinical failure. In addition, high density of 

intratumoral PD-1+ lymphocytes were associated with worse prognosis in most 

subgroups related to poor prognosis, such as low age at the time of diagnosis, high 

pT-stage, high preoperative PSA, and high Gleason grade (Paper II).  

• The very clinically relevant marker PD-L1 was commonly expressed by prostate 

tumor epithelial cells. Even though a high expression was consistently associated 

with worse prognosis, these results did not reach statistical significance (Paper II). 

• Chemokine receptor CXCR6 and its ligand CXCL16 was more commonly 

expressed intratumoral compared to in non-malignant tissue (Paper III).  

• A high expression of CXCR6 by tumor epithelial cells, and in tumor tissue as a 

whole, independently predicted a shorter time to disease relapse in form of both 

biochemical- and clinical failure. 

• A high expression of CXCL16 by tumor epithelial cells independently predicted a 

shorter time to disease relapse in form of clinical failure. 

• A high co-expression of CXCL16 and CXCR6 in tumor tissue independently 

predicted a shorter time to disease relapse in form of clinical failure. 

• Silencing of CXCL16 in aggressive, metastatic prostate cancer cell lines increased 

proliferation and migration in ex vivo essays. 

 

The immune system has dual roles in cancer. Immune markers show promise as prognostic 

and predictive markers in multiple cancer types, and immune checkpoint inhibitors are 

perhaps the biggest breakthrough in cancer research the last decade. PCa is in need of both 
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better prognostic tools as well as more personalized treatment options. To achieve this, the 

biological characteristics that separates indolent from aggressive disease needs to be explored. 

Thus, our general aim was to investigate immune biomarkers as potential prognostic factors, 

as well as generate hypotheses on PCa biology and possible therapeutic targets.  

 

The basis for our investigation was our comprehensive, retrospective cohort of 535 patients 

with primary PCa and their associated primary PCa tumors. We used this material to study the 

expression of immune markers CD3, CD4, CD8, CD20, PD-1 on intratumoral lymphocytes, 

as well as PD-L1, CXCR6 and CXCL16 by tumor epithelial cells and tumor stromal cells. We 

analyzed these markers in relations to patient outcome as well as their association to each 

other, and well-known clinical- and histopathological parameters for PCa. The main strengths 

of our study design are a long follow-up, relatively high number of cases, representativeness 

of cases, multicenter inclusion, and in situ evaluation of biomarkers in both tumor epithelial-, 

tumor stromal and non-malignant compartments. Additionally, we preformed experimental 

assays examining the role of CXCL16 expression on proliferation and migration in PCa cell 

lines. 

 

To conclude, the results of our exploratory research suggest that components of the immune 

system may be important participants in PCa biology. We hope that the results presented 

herein can contribute to better patient risk stratification, helping doctors and patients 

regarding treatment strategy, as well as be explored as targets of therapy in future PCa 

treatment. However, our results need to be investigated in experimental models, and validated 

in independent patient cohorts, preferably in prospective studies with predefined scoring cut-

offs.  
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BACKGROUNDS. The adaptive immune system can potentially have dual roles in cancer
development and progression by contributing to or suppressing tumor progression and
metastasis. The aim of this study was to evaluate the prognostic impact of adaptive immune
cells residing in different tumor compartments in prostate cancer.
METHODS. Tissue microarrays from 535 patients were constructed from viable and
representative tumor epithelial and stromal areas of primary PC tumors, as well as from
normal epithelial and stromal areas. Immunohistochemistry was used to evaluate the density
of CD3þ, CD4þ, CD8þ, and CD20þ lymphocytes in both tumor epithelial and tumor stromal
areas.
RESULTS. In univariate analysis, a high density of CD3þ (P¼ 0.037) and CD8þ lymphocytes
(P¼ 0.010) in tumor epithelial areas was associated with significantly shorter biochemical
failure-free survival. When analyzing both tumor epithelial and stromal tissue compartments
as one entity, similar relationships were observed for CD3þ (P¼ 0.046), CD4þ (P¼ 0.026), and
CD8þ (P¼ 0.003) lymphocytes. In multivariate analysis, high densities of CD8þ lymphocytes
limited to tumor epithelial areas (HR¼ 1.45, P¼ 0.032), as well as in the total tumor tissue
(HR¼ 1.57, P¼ 0.007), were independent negative prognostic factors for biochemical failure-
free survival.
CONCLUSIONS. A high density of CD8þ lymphocytes, especially in tumor epithelial areas,
is an independent negative prognostic factor for biochemical failure-free survival. Prostate
# 2014 Wiley Periodicals, Inc.
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INTRODUCTION

In developed countries, prostate cancer (PC) is the
most common male malignancy and the second most
common cause of male cancer death [1,2]. There is an
increasing use of prostate specific antigen (PSA)
testing and, when indicated, follow-up biopsies are
performed. The treatment strategy after identifying
tumor cells in the biopsy material is still primarily
based on risk stratification by use of the preoperative
PSA value, Gleason score and cTNM-classification,
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which have not proved adequate for predicting the
clinical outcome. A consequence is that a major
proportion of patients will receive therapies they in
reality do not need [3–5]. To avoid unnecessary costs
and side effects, and improve efficacy of treatment,
there is a need to develop better prognostic tools as
well as more specific treatment methods.

During recent years cancer research has increasingly
focused on oncoimmunology [6] and there is compel-
ling evidence of two immunology related areas in this
field: (i) the immune system’s ability to eliminate
premalignant and malignant transformed cells in a
process called cancer immunoediting [7], and (ii) the
tumor promoting effects of chronic inflammation [8].
Knowledge within these fields has already resulted in
practical changes with respect to both prognostic and
therapeutic issues. In colorectal cancer, immune scores
(IS) [9] appear to be a better prognostic indicator than
the TNM system [10], and may be applicable in other
cancer types as well. The use of the autologous cellular
cancer vaccine Sipuleucel-T has increased survival in
metastatic castration-resistant PC [11], suggesting a
favorable impact of an anti-tumor immune response
towards PC cells.

The prostate is considered an immune-competent
organ, meaning it is populated by small numbers of
scattered leucocytes, mainly stromal and intraepithe-
lial T and B lymphocytes, macrophages, and mast
cells [12–14]. In different conditions such as benign
prostatic hyperplasia (BPH), prostatitis, proliferative
inflammatory atrophy (PIA), as well as in adenocarci-
nomas, the immune cell content is often increased and
altered compared to normal prostate tissue [12,13].
Comprehending the different immune cells roles and
mechanisms in these conditions may lead to valuable
knowledge towards better therapeutic management.

The effects of tumor infiltrating lymphocytes (TILs)
in cancer development are complex and their prognos-
tic value is determined by several factors including
density, subtype, and localization [15,16]. A better
understanding of the role of TILs in PC is expected to
improve both diagnostic procedures and therapy.
Herein, we investigate the prognostic significance of
adaptive immune cells in 535 resected primary pros-
tate cancers. We have assessed the prognostic associa-
tions of the localization and the density of CD3þ,
CD4þ, CD8þ, and CD20þ lymphocytes to biochemi-
cal failure (BF)-free survival, as well as their relations
to other clinicopathological variables.

MATERIALS AND METHODS

Patients,Clinical and Histopathological Data

Six hundred and seventy one patients who under-
went radical prostatectomies as initial treatment for

adenocarcinoma from 1995 to 2005 were retrospective-
ly identified from the Departments of Pathology at the
University Hospital of Northern Norway (n¼ 267),
Nordland Hospital (n¼ 63), St. Olavs Hospital
(n¼ 330), and Levanger Hospital (n¼ 11). Of these, a
total of 136 patients were excluded due to: (i) radio-
therapy to the pelvic region prior to surgery (n¼ 1),
(ii) other malignancies within 5 years prior to the PC
diagnosis (n¼ 4), (iii) inadequate paraffin-embedded
tissue blocks (n¼ 130), and (iv) lack of follow-up data
(n¼ 1). Thus 535 patients were included in this study.
Median follow-up of survivors was 89 (range 6–188)
months. Complete demographic and clinical data were
obtained from medical records, and histopathological
data were registered by two experienced pathologists
(ER and LTB) reviewing all cases. The tumors were
graded according to the modified Gleason grading
system [17,18], and staged according to the WHO
guidelines [19]. All demographic-, clinical- and histo-
pathological data (Table I) were recorded in a SPSS
data file and patients were de-identified. Last follow-
up was 21.11.12.

The Regional Committee for Medical and Health
Research Ethics (2009/1393), the Data Protection
Official for Research (NSD), and the National Data
Inspection Board have approved this study.

MicroarrayConstruction

Tissue microarray (TMA) construction was chosen
for high-throughput molecular pathology analysis. For
each case, a pathologist (ER) histologically identified
and marked two cores with areas of tumor epithelial
cells, two cores with tumor-surrounding stromal tis-
sue, one core from areas with normal epithelial cells,
and one core with normal stromal tissue. The TMAs
were assembled using a tissue-arraying instrument
(Beecher Instruments, Silver Springs, MD). Briefly, we
used a 0.6mm diameter needle to harvest the marked
tissue areas from the corresponding paraffin-embed-
ded tissue blocks. The samples were inserted into a
recipient paraffin block according to a coordinate
pattern. To include all core samples, twelve tissue
array blocks were constructed. Multiple 4mm sections
were cut with a Micron microtome (HM355S), affixed
to glass slides, and sealed with paraffin. The detailed
methodology has been reported previously [20].

Immunohistochemistry (IHC)

The antibodies used in this study were as follows:
(i) CD3 (clone PS1), (ii) CD8 (clone 1A5), (iii) CD20
(clone L26) from Ventana Medical (Tucson, AZ), and
(iv) CD4 (clone 1F6) from Novocastra Laboratories
Ltd. (Newcastle upon Tyne, UK). The applied anti-
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bodies had been subjected to in-house validation
according to the manufacturer’s recommendation
for immunohistochemistry (IHC) analysis on paraffin-
embedded material. Ventana Benchmark XT automat-
ed slide stainer (Ventana Medical System, Illkirch,
France) was used for IHC. TMA slides were deparaffi-
nized with xylene and rehydrated with ethanol.
Antigen retrieval was done by placing the specimens

in 0.01mol/L citrate buffer (pH 6.0) and exposing
them to two repeated microwave heatings of 10min
at 450W. The DAKO EnVisionþ System-Horseradish
Peroxidase [diaminobenzidine (DAB)] kit (Dako,
Glostrup, Denmark) was used as endogen peroxidase
blocking. As negative staining controls, the primary
antibodies were replaced with the primary antibody
diluents. Primary mouse monoclonal antibodies were

TABLEI. Patient Characteristics and Clinicopathological Variables as Predictors of Biochemical Failure-Free Survival,
Clinical Failure-Free Survival andDisease-Specific Survival (univariate analysis; log-ranktest) (N¼ 535)

Characteristic
Patients

(n)
Patients

(%)

BF (170 events) CF (36 events) PCD (15 events)

5-year EFS (%) P 10-year EFS (%) P 10-year EFS (%) P

Age 0.55 0.085 0.600
�65 years 357 67 76 92 97
>65 years 178 33 70 88 96

pT-stage <0.001 <0.001 0.027
pT2 374 70 83 96 98
pT3a 114 21 60 86 98
pT3b 47 9 43 73 89

Preop PSA <0.001 0.085 0.061
PSA<10 308 57 80 93 99
PSA>10 221 42 67 88 95
Missing 6 1 – – –

Gleason score <0.001 <0.001 0.001
3þ3 183 34 83 98 99
3þ4 220 41 76 93 98
4þ3 80 15 69 84 95
4þ4 19 4 63 76 94
>8 33 6 34 67 87

Tumor size <0.001 0.019 0.098
0–20mm 250 47 82 94 99
>20mm 285 53 67 88 96

PNI <0.001 <0.001 0.002
No 401 75 79 95 98
Yes 134 25 60 81 93

PSM 0.04 0.038 0.697
No 249 47 81 94 97
Yes 286 53 69 89 97

Circumferential PSM <0.001 <0.001 0.029
No 381 71 81 95 98
Yes 154 29 57 81 94

Apical PSM 0.04 0.484 0.31
No 325 61 73 90 96
Yes 210 39 77 92 98

Vasc inf <0.001 <0.001 0.009
No 492 92 77 93 98
Yes 43 8 46 71 88

Surgical proc 0.23 0.41 0.581
Retropubic 435 81 76 90 97
Perineal 100 19 67 95 98

BF, biochemical failure; CF, Clinical failure; EFS, event free survival in months; PCD, prostate cancer death; NR, not reached; P¼P-
value for log rank statistic for difference in event free survival; PC, Prostate cancer; PNI, Perineural infiltration; Post op RT,
postoperative radiotherapy; Preop, preoperative; PSA, Prostate specific antigen; PSA DT, PSA doubling time; PSM, Positive surgical
margin; Surgical proc, surgical procedure; Vasc inf, Vascular infiltration.
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incubated for 24min (CD3), 20min (CD4), 32min
(CD8), and 16min (CD20) at room temperature.
The Ventana antibodies were pre-diluted by the
manufacturer; CD4 was diluted 1:5 in-house. Biotiny-
lated goat anti-mouse IgG and mouse anti-rabbit IgM,
both 200 lg/ml, were used as secondary antibodies.
The DAB kit was used to visualize the antigens by
application of liquid DAB and substrate substrate-
chromogen, yielding a brown reaction product at
the site of the target antigen. Finally, slides were
counterstained with haematoxylin to visualize the
nuclei.

Scoringof IHC

The ARIOL imaging system (Applied Imaging
Corp., San Jose, CA) was used to scan and digitalize
the IHC stained TMA slides. The slides were loaded in
the SL 50 automated slide loader and scanned at a low
resolution (1.25x) and high resolution (20x) using an
Olympus BX61 microscope with an automated plat-
form (Prior Scientific, Cambridge, UK). Images of the
cores were uploaded into the Ariol Software. All
samples were de-identified and scored manually by
two pathologists (ER and AV) independent of each
other. Representative viable tissue sections were
scored semi-quantitatively for density as follows: (i) 0
(0–5% cells), (ii) 1 (5–25% cells), (iii) 2 (26–75% cells), or
(iv) 3 (75%þ cells) per 0.6mm tissue core (Fig. 1). In
case of major disagreement (scoring difference> 1),
the slides were re-examined until consensus was

reached. The scoring values for each patient were
calculated as the mean of the patients scoring values
for each tissue compartment.

To achieve maximal reproducibility in all cases all
immune cell scoring-values where dichotomized (low
and high density of stained cells). Optimal cut-offs for
high and low expression for each marker were chosen
at levels securing statistically sufficient numbers in
each group. These cut-offs corresponded to mean
expression levels for most markers. Hence, the cut-off
values varied as follows among the different markers:
(i) for CD3þ lymphocytes 0.50 in tumor epithelial
areas, 0.62 in tumor stromal areas and 0.50 in tumor
tissue as an entity; (ii) for CD4þ lymphocytes 0.44 in
tumor epithelial areas, 0.36 in tumor stromal areas
and 0.50 in tumor tissue as an entity; (iii) for CD8þ
lymphocytes 0.42 in tumor epithelial areas, 0.35 in
tumor stromal areas and 0.41 in tumor tissue as an
entity; and (iv) for CD20þ lymphocytes 0.20 in tumor
epithelial areas, 0.25 in tumor stromal areas and 0.21
in tumor tissue as an entity.

There was good scoring agreement between the two
investigating pathologists for all four markers. The
intra-class correlation coefficient (reliability coefficient,
r) was 0.95, range 0.90–0.97 (P< 0.001).

StatisticalMethods

All statistical analyses were performed using the
statistical package IBM SPSS, version 21 (SPSS Inc.,

Fig. 1. TMA sections fromprimary prostate cancer tumors IHC stained for CD8. (A) Tumor epithelial area,CD8 low density; (B) tumor
epithelialarea,CD8highdensity; (C) tumor stromalarea,CD8lowdensity; (D) tumor stromalarea,CD8highdensity.Magnificationx400.
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Chicago, IL). The IHC scoring values from each
pathologist were compared for inter-observer reliabili-
ty by use of a two-way random effect model with
absolute agreement definition. A Wilcoxon signed
rank test was used to assess the difference in lympho-
cyte density in tumor tissue compared to normal
prostate tissue in the cancer patients. The x2 test was
used to examine the associations between molecular
marker expressions and the clinicopathological
markers. Univariate survival analyses were done by
using the Kaplan–Meier method, and the difference
between survival curves was assessed by the log-rank
test. The survival curves were terminated at
134months, due to less than 10% of patients at risk
after this point. Significant variables from the univari-
ate analyses were further assessed in a multivariate
survival analysis using a backward stepwise Cox
regression model with a probability for stepwise entry
or removal at 0.05 and 0.10, respectively.

The significance level used was P< 0.05 for all
analyses. All survival analyses were carried out using
three different end-points as follows: (i) biochemical
failure (BF), (ii) clinical failure (CF), and (iii) PC death
(PCD). BF was characterized as a PSA � 0.4 ng/ml
and rising in a minimum of two different blood
samples postoperatively [21]. CF was defined as
verified local symptomatic progression and/or radio-
logically verified metastasis to bone, visceral organs or
lymph nodes. PCD was defined as death caused by
progressive PC. Survival times were calculated from
day of surgery to event.

RESULTS

Clinicopathological Variables and
Patient Characteristics

An overview of the demographic, clinical, and
histopathological characteristics is presented in Table I.
Median age at surgery was 62 (range 45–75). The
prostatectomies were retropubic in 435 cases and
perineal in 100 cases. At the last follow-up, 170
patients had BF, 36 patients had CF, and 15 patients
were dead of PC.

Lymphocyte Inf|ltration
andCorrelations

TILs were observed microscopically in both tumor
epithelial areas and tumor stromal areas. By quantita-
tive assessment of CD3 and CD20 stained lympho-
cytes, respectively, tumor lymphocytes were found
to be mainly T-lymphocytes (CD3þ). There were
significantly higher densities of CD3þ (P< 0.001),
CD4þ (P¼ 0.006), and CD8þ (P¼ 0.008) lymphocytes

in tumor tissues compared with non-malignant tissues,
whereas no difference was observed for CD20þ
lymphocytes. The density of CD3þ lymphocytes was
significantly higher in tumor epithelial areas compared
to tumor stromal areas (P< 0.001). For CD4þ, CD8þ,
and CD20þ lymphocytes, no differences in density
levels were found between tumor epithelial and tumor
stromal areas.

Expressions of the investigated markers in tumor
epithelial or stromal areas did not correlate to pT
stage, preoperative PSA (dichotomized at 10 ng/dL),
Gleason score, tumor size (dichotomized at 20mm),
perineural infiltration, vascular infiltration or circum-
ferential positive surgical margin (PSM).

Univariate Survival Analysis

The clinicopathological variables pT-stage
(P< 0.001), preoperative PSA (P< 0.001), Gleason
score (P< 0.001), tumor size (P< 0.001), perineural
infiltration (P< 0.001), PSM (P¼ 0.04), circumferential
PSM (P< 0.001), apical PSM (P¼ 0.04), and vascular
infiltration (P< 0.001) were all significantly correlated
to BF-free survival in the univariate survival analyses
(Table I).

When analyzing both tumor epithelial and tumor
stromal areas as one entity, high densities of CD3þ,
CD4þ, and CD8þ (P¼ 0.046, P¼ 0.026, and P¼ 0.003,
respectively), but not CD20þ lymphocytes, were asso-
ciated with significantly shorter BF-free survival
(Table II, Fig. 2 panel B and C, Fig. 3 panel B). In
separate analyses of tumor epithelial areas, the same
pattern was apparent for CD3þ (P¼ 0.037) and CD8þ
lymphocytes (P¼ 0.010) (Table II, Fig. 2 panel A, Fig. 3
panel A). In tumor stromal areas, CD3þ, CD4þ,
CD8þ, or CD20þ lymphocytes did not predict BF-
free survival. There were no significant associations
between CF or PCD and the respective immune cell
markers.

Multivariate Survival Analysis

Significant clinicopathological variables and im-
mune cell markers from the univariate analyses
(Tables I and II) were entered into the multivariate
analyses. When analyzing data from tumor epithelial
and tumor stromal areas as one entity, high CD8þ
density was an independent significant predictor of
BF-free survival (HR¼ 1.565, CI 95% 1.132–2.165,
P¼ 0.007), in addition to pT stage, Gleason score,
circumferential PSM and apical PSM. (Table III).
High CD8þ density also had an independent signi-
ficant impact when analyzed in the tumor
epithelial areas alone (HR¼ 1.445, CI 95% 1.028–2.032,
P¼ 0.032).
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TABLEII. Epithelial and Stromal Lymphocyte Subsets andTheir Prediction for Biochemical Failure-Free Survival in
PCPatients (univariate analysis; log-ranktest) (N¼ 535)

Marker expression Patients (n) 5-year EFS (%) 10-year EFS (%) P

CD3
Epithelial compartment 0.037
Low expression 217 80 65
High expression 218 70 60
Missing 100

Stromal compartment 0.65
Low expression 115 70 60
High expression 69 67 55
Missing 383

Both compartments 0.046
Low expression 239 80 65
High expression 233 70 60
Missing 63

CD4
Epithelial compartment 0.89
Low expression 244 75 62
High expression 194 74 64
Missing 97

Stromal compartment 0.42
Low expression 118 72 61
High expression 69 67 50
Missing 348

Both compartments 0.026
Low expression 383 76 66
High expression 138 70 55
Missing 14

CD8
Epithelial compartment 0.010
Low expression 254 80 67
High expression 182 66 57
Missing 99

Stromal compartment 0.45
Low expression 127 72 61
High expression 65 67 54
Missing 343

Both compartments
Low expression 279 78 67 0.003
High expression 194 66 54
Missing 62

CD20
Epithelial compartment 0.14
Low expression 316 76 65
High expression 115 67 58
Missing 104

Stromal compartment 0.86
Low expression 144 70 58
High expression 44 71 56
Missing 347

Both compartments 0.38
Low expression 334 75 71
High expression 135 64 58
Missing 66

EFS, event free survival in months; P¼P-value for log rank statistic for difference in event free survival; Epithelial areas¼Numbers
based on scoring of TMA cores containing mainly tumour epithelial cells; Stromal areas¼Numbers based on scoring of TMA cores
containing mainly tumour stromal tissue; Both compartments¼Tumour epithelial and tumour stromal tissue cores analysed as an
entity.
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DISCUSSION

In this study, we found that high densities of CD8þ
lymphocytes in PC tumor tissue predict BF-free sur-
vival after adjustment for clinicopathological prognos-
tic factors. These findings are consistent with results
from most previously published studies in the field.
K€arj€a et al. reported that a high density of TILs was an
independent predictor of a shorter BF-free surviv-
al [22]. Besides, Richardsen et al. found that a high
density of CD3þ lymphocytes in PC primary tumor
tissue correlated with metastatic disease [23]. Recently,
Flammiger and coworkers published the largest cohort
on TILs’ prognostic effects in PC [24]. They concluded
that patients with either a high or very low number of

CD3þ lymphocytes in tumor epithelial areas had a
shorter BF-free survival. They did not, however,
investigate how the different subsets of T lymphocytes
contributed to the clinical outcome. Our findings
indicate that the prognostic effect may be mediated
primarily through CD8þ lymphocytes rather than the
overall density of T lymphocytes as measured by CD3
positivity. In agreement with Flammiger et al. [24],
CD20þ lymphocytes did not have any prognostic
impact on patient outcome in our cohort.

Conflicting with our findings was a case-control
study by Davidsson et al. In this study the researchers
evaluated the tumor content of CD4þ and CD8þ
lymphocytes, but they did not observe any associa-
tions with survival [25]. Instead, they reported that

Fig. 2. Biochemical failure-free survival curves for CD3þ lymphocytes in tumor epithelial areas, and CD3þ and CD4þ lymphocytes in
tumor epithelial and stromal areas analyzed as one entity.Grey lines indicate low density, whereas black lines indicate high density. (A) CD3
epithelialcompartment, (B)CD3both tumor tissuecompartments, (C)CD4bothtumor tissuecompartments.

Fig. 3. Biochemical failure-free survival curves for CD8þ lymphocytes in tumor epithelial areas and in tumor epithelial and stromal areas
analyzed as one entity.Grey lines indicate low density, whereas black lines indicate high density, (A) CD8 epithelial compartment, (B) CD8
both tumor tissuecompartments.
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patients with higher numbers of regulatory T cells
(CD4þFOXP3þ) had an increased risk of dying of PC.
The diverging results by Davidsson et al. may be
explained by the differences in study design, as their
samples were from patients diagnosed with PC before
the PSA era, and based on tissue from transurethral
resection or adenoma enucleation. This may lead to
bias, since the patients were selected based on clinical
symptoms indicating more advanced disease than
what is the relevant clinical picture of today.

The association between CD8þ lymphocytes and
poor prognosis in PC may not necessarily account for
causality, but may rather be a covariance due to other
mechanisms. One explanation may be that tumor cells
with a high degree of malignant mutations are further
transformed and thus more immunogenic, while the
triggered immune response is inadequate for elimina-
tion. The more malignant mutations a tumor cell
accumulates, the more possibilities it has to mediate
life threatening malignant disease. This could mean
that a high density of CD8þ lymphocytes reflects
highly transformed cells, and thus indirectly apply as
a prognostic factor. If this is the case, T lymphocyte
density in PC tumors may be a valid prognostic factor
in separating aggressive from indolent tumors in clini-
cal practice. Most PC patients are immune-competent,
but it seems that they do not have the ability to
generate an effective anti-tumor immune response. The

Sipuleucel-T vaccine’s effect in patients with metastatic
castrate-resistant PC is most likely mediated by trigger-
ing a “halted” immune system to exert a more effective
anti-tumor immune response. It is still unknown why
the immune system is not effective in the first place,
and why Sipuleucel-T apparently seems to be effective
in patients with metastatic castrate-resistant cancer [11].
Our findings may indicate that the adaptive anti-cancer
immune response is halted in some way and thus
facilitates tumor escaping immune surveillance. A
study by Sfanos et al. in 2009 suggested that CD8þ T
lymphocytes in PC tumors undergo a clonal expansion
in response to an antigen, but also show a high
expression of programmed cell death protein 1 (PD-
1) [26], a receptor that upon activation can lead to
abnormal activation of the T lymphocytes, as well as
apoptosis of CD8þ cytotoxic T lymphocytes [27]. If the
CD8þ lymphocytes we detect are in fact impaired
CD8þ cytotoxic T lymphocytes, they may be activated
with use of immune therapies like Sipuelucel-T, or by
attacking specific immunosuppressive mechanisms. To
further elucidate these possible immune related mecha-
nisms, experimental studies to investigate lymphocyte-
mediated mechanisms in PC are needed.

In contrast, our findings could imply that CD8þ
T lymphocytes have immunosuppressive abilities.
In an experimental study using TILs from human PC
tumors, Kiniwa et al. concluded that both CD4þ and
CD8þ T-lymphocyte subpopulations possessed potent
immune suppressive activity, and that a subtype of
CD25þCD8þ Treg cells expressed FOXP3, and sup-
pressed na€ıve T-lymphocyte proliferation [28]. A re-
cent study by Flammiger et al. indicates that a high
tumor density of FOXP3þ cells in PC patients is
associated with a worse clinical outcome, indicating
that immunosuppression and subsequent tumor im-
mune escape is an important mechanism for PC
development [29]. However, the authors did not use
double or triple staining methods to elucidate the cell
type harboring the transcription factor. This should be
considered to determine which exact cells express
FOXP3 in PC tumor tissue. There is also a need to
determine the extent to which the different T lympho-
cyte subpopulations contribute to immunosuppression
in different cancer types, and further which ones are to
be classified as Tregs.

To our knowledge, this is the first large multicenter
cohort assessing the prognostic role of CD4þ and
CD8þ lymphocytes in a PC patient material from the
PSA era. Furthermore, we investigated the lymphocyte
density in tumor epithelial and tumor stromal areas
both separately and as one entity. Endpoint issues
present one of the main limitations in this study
design. Since PC in general have a relatively long
expected survival, with disease specific death often

TABLEIII. CoxRegressionAnalysis Summarizing
Prognostic Factors for Biochemical Failure-Free
Survival

Factor HR 95% CI P

pT-stage <0.001
T2 1.00
T3a 1.781 1.185–2.676 0.005
T3b 2.649 1.598–4.392 <0.001

Gleason score 0.042
3þ3 1.00
3þ4 1.002 0.663–1.512 0.994
4þ3 1.540 0.953–2.488 0.078
4þ4 1.443 0.660–3.156 0.358
>8 2.323 1.249–4.321 0.008

Circumferential PSM 0.002
No 1.00
Yes 1.775 1.242–2.535

Apical PSM 0.008
Yes 1.00
No 1.637 1.135–2.360

CD8 both tumor tissue
compartments

0.007

Low 1.00
High 1.57 1.132–2.165

PSM, Positive surgical margin.
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several years after diagnosis, BF is commonly used as
endpoint in survival analyses. Although BF is an
important prognostic factor, not all patient with BF
experience increased morbidity or mortality [30]. In
our study, CD8þ density was a strong predictor for
BF. When analyzing the association of CD8þ density
and CF- and PCD-free survival, the associations
showed the same tendency, but did not reach statistical
significance in our cohort, probably due to the scarcity
of those events during our follow up.

CONCLUSIONS

We report that a high density of T lymphocytes in
primary PC tumors, especially of the CD8þ subset, is
associated with shorter BF-free survival. Our findings
is of clinical significance as a prognostic tool, but also
highlights the importance of the adaptive immune
system as a target for novel treatment strategies
in PC.

ACKNOWLEDGEMENTS

We thank the participating laboratory technicians
at the Department of Pathology, UNN for their
support and technical skills. Especially we wish to
thank Magnus Persson, Christian Melbø-Jørgensen,
Mona Pedersen, and Marit Nilsen for their devoted
lab work. We also thank Professor Tom Wilsgaard
for his guidance with the statistics. This study
was supported by grants from The Northern
Norway Regional Health Authority and UiT The
Arctic University of Norway.

REFERENCES

1. D€orr M, Schlesinger-Raab A, Engel J. Epidemiology of prostate
cancer. In: Hamilton G, editor. Advances in prostate cancer, vol.
1. InTech; 2013. pp. 4–17.

2. Ferley J, Shin H, Bray F, Forman D, Mathers C, Parkin D.
Globocan 2008: Cancer incidence and mortality worldwide.
Lyon, France: IARC; 2010.

3. Schr€oder FH, Hugosson J, Roobol MJ, Tammela TLJ, Ciatto S,
Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M, Denis LJ,
Recker F, Berenguer A, M€a€att€anen L, Bangma CH, Gunnar A,
Villers A, Rebillard X, van der Kwast T, Blijenberg BG, Moss SM,
de Koning HJ, Auvinen A. Screening and prostate-cancer
mortality in a randomized European study. N Engl J Med
2009;360:1320–1328.

4. Steyerberg EW, Roobol MJ, Kattan MW, van der Kwast TH, de
Koning HJ, Schr€oder FH. Prediction of indolent prostate cancer:
Validation and updating of a prognostic nomogram. J Urol
2007;177:107–112.

5. Bill-Axelson A, Holmberg L, Fil�en F, Ruutu M, Garmo H, Busch
C, Nordling S, H€aggman M, Andersson SO, Bratell S, Spa

�
ngberg

A, Palmgren J, Adami HO, Johansson JE. Radical prostatectomy
versus watchful waiting in localized prostate cancer: The

Scandinavian prostate cancer group-4 randomized trial. J Natl
Cancer Inst 2008;100:1144–1154.

6. Hanahan D, Weinberg R. Hallmarks of cancer: The next genera-
tion. Cell 2011;144:646–674.

7. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural
innate and adaptive immunity to cancer. Annu Rev Immunol
2011;29:235–271.

8. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation,
and cancer. Cell 2010;140:883–899.

9. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune
contexture in human tumours: Impact on clinical outcome. Nat
Rev Cancer 2012;12:298–306.

10. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G,
Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pagès F,
Galon J. Histopathologic-based prognostic factors of colorectal
cancers are associated with the state of the local immune
reaction. J Clin Oncol 2011;29:610–618.

11. Rajarubendra N, Lawrentschuk N, Bolton DM, Klotz L, Davis
ID. Prostate cancer immunology - an update for Urologists. BJU
Int 2011;107:1046–1051.

12. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gr€onberg H, Drake
CG, Naki Y, Isaacs WB, Nelson WG. Inflammation in prostate
carcinogenesis. Nat Rev Cancer 2007;7:256–269.

13. De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W,
Schr€oder F, Sciarra A, Tubaro A. The controversial relationship
between benign prostatic hyperplasia and prostate cancer: The
role of inflammation. Eur Urol 2011;60:106–117.

14. Di Carlo E, Magnasco S, D’Antuono T, Tenaglia R, Sorrentino C.
The prostate-associated lymphoid tissue (PALT) is linked to the
expression of homing chemokines CXCL13 and CCL21. Prostate
2007;67:1070–1080.

15. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM,
Busund LT. Prognostic effect of epithelial and stromal lympho-
cyte infiltration in non-small cell lung cancer. Clin Cancer Res
2008;14:5220–5227.

16. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-
Shibli K, et al. Prognostic impact of lymphocytes in soft tissue
sarcomas. PLoS One 2011;6:e14611.

17. Helpap B, Egevad L. Modified Gleason grading. An updated
review. Histol Histopathol 2009;24:661–666.

18. Epstein JI. An update of the Gleason grading system. J Urol
2010;183:433–440.

19. Eble J, Sauter G, Epstein JI, Sesterhenn IA. World Health
Organization. Classification of tumours. Pathology and genetics
of tumours of the urinary system and male genital organs. Lyon,
France: IARC Press; 2004.

20. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis
L, Gemmill RM, Drapkin HA, Franklin WA. High-throughput
tissue microarray analysis used to evaluate biology and prog-
nostic significance of the E-cadherin pathway in non-small-cell
lung cancer. J Clin Oncol 2002;20:2417–2428.

21. Stephenson AJ, Kattan MW, Eastham JA, Dotan ZA, Bianco FJ,
Lilja H, Scardino PT. Defining biochemical recurrence of prostate
cancer after radical prostatectomy: A proposal for a standard-
ized definition. J Clin Oncol 2006;24:3973–3978.

22. K€arj€a V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R.
Tumour-infiltrating lymphocytes: A prognostic factor of PSA-
free survival in patients with local prostate carcinoma
treated by radical prostatectomy. Anticancer Res 2005;25:4435–
4438.

CD8þ Lymphocytes in Prostate Cancer 9

The Prostate



23. Richardsen E, Uglehus RD, Due J, Busch C, Busund LT. The
prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in
prostatic carcinoma. Histopathology 2008;53:30–38.

24. Flammiger A, Bayer F, Cirugeda-Kühnert A, Huland H, Tenn-
stedt P, Simon R, Minner S, Bokemeyer C, Sauter G, Schlomm T,
Trepel M. Intratumoral T but not B lymphocytes are related to
clinical outcome in prostate cancer. APMIS 2012;120:901–908.

25. Davidsson S, Ohlson AL, Andersson SO, Fall K, Meisner A,
Fiorentino M, Andrèn O, Rider JR. CD4 helper T cells, CD8
cytotoxic T cells, and FOXP3(þ) regulatory T cells with respect to
lethal prostate cancer. Mod Pathol 2013;26:448–455.

26. Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB,
Drake CG. Human prostate-infiltrating CD8þ T lymphocytes
are oligoclonal and PD-1þ. Prostate 2009;69:1694–1703.

27. Facciabene A, Motz GT, Coukos G. T-regulatory cells: Key
players in tumor immune escape and angiogenesis. Cancer Res
2012;72:2162–2171.

28. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM,
Thompson TC, Old LJ, Wang RF. CD8þ Foxp3þ regulatory T
cells mediate immunosuppression in prostate cancer. Clin
Cancer Res 2007;13:6947–6958.

29. Flammiger A, Weisbach L, Huland H, Tennstedt P, Simon R,
Minner S, Bokemeyer C, Sauter G, Schlomm T, Trapel M. High
tissue density of FOXP3þ T cells is associated with clinical
outcome in prostate cancer. Eur J Cancer 2013;49:1273–1279.

30. Bruce JY, Lang JM, McNeel DG, Liu G. Current controversies in
the management of biochemical failure in prostate cancer. Clin
Adv Hematol Oncol 2012;10:716–722.

10 Ness et al.

The Prostate



Paper II 
Ness, N., Andersen, S., Khanehkenari, M.R., Nordbakken, C.V., Valkov, A., Paulsen, E.E., … 
Richardsen, E. (2017).  

The prognostic role of immune checkpoint markers Programmed cell death protein 1 (PD-1) 
and Programmed death ligand 1 (PD-L1) in a large, multicenter prostate cancer cohort.  

Oncotarget, 8(16), 26789-26801.  

https://doi.org/10.18632/oncotarget.15817 

 

  



Oncotarget26789www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 16), pp: 26789-26801

The prognostic role of immune checkpoint markers programmed 
cell death protein 1 (PD-1) and programmed death ligand 1 
(PD-L1) in a large, multicenter prostate cancer cohort
Nora Ness1, Sigve Andersen2,3, Mehrdad Rakaee Khanehkenari1, Cecilie V. 
Nordbakken4, Andrej Valkov4, Erna-Elise Paulsen2,3, Yngve Nordby2,5, Roy M. 
Bremnes2,3, Tom Donnem2,3, Lill-Tove Busund1,4, Elin Richardsen1,4

1Department of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway
2Department of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway
3Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
4Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromso, Norway
5Department of Urology, University Hospital of North Norway, N-9038 Tromso, Norway

Correspondence to: Nora Ness, email: nora.ness4@gmail.com

Keywords: prostate cancer, PDL-1, PD-1, immunohistochemistry, prognostic marker

Received: May 27, 2016        Accepted: February 20, 2017        Published: March 01, 2017

Copyright: Ness et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Programmed cell death protein 1 (PD-1) and its ligand Programmed death ligand 

1 (PD-L1) have gained massive attention in cancer research due to recent availability 
and their targeted antitumor effects. Their role in prostate cancer is still undetermined. 
We constructed tissue microarrays from prostatectomy specimens from 535 prostate 
cancer patients. Following validation of antibodies, immunohistochemistry was used to 
evaluate the expression of PD-1 in lymphocytes and PD-L1 in epithelial and stromal cells 
of primary tumors. PD-L1 expression was commonly seen in tumor epithelial cells (92% 
of cases). Univariate survival analysis revealed a positive association between a high 
density of PD-1+ lymphocytes and worse clinical failure-free survival, limited to a trend 
(p = 0.084). In subgroups known to indicate unfavorable prostate cancer prognosis 
(Gleason grade 9, age < 65, preoperative PSA > 10, pT3) patients with high density 
of PD-1+ lymphocytes had a significantly higher risk of clinical failure (p = < 0.001, 
p = 0.025, p = 0.039 and p = 0.011, respectively). In the multivariate analysis, high 
density of PD-1+ lymphocytes was a significant negative independent prognostic factor 
for clinical failure-free survival (HR = 2.48, CI 95% 1.12–5.48, p = 0.025).

INTRODUCTION

Prostate cancer is a major contributor to cancer 
burden and death among men worldwide [1, 2], and issues 
multiple challenges regarding diagnostics and disease 
management. There is a lack of molecular markers 
suitable for determining the prognosis and thus intensity 
of treatment, resulting in overtreatment with unnecessary 
side effects on the one hand and undertreatment and 
disease progression on the other [3]. Once a patient 
reaches a state of metastatic castration-resistant disease, 
no curative treatment options are available. Hence, there 
is an urgent need for new prognostic markers, as well as 
better treatment options, for both confined and widespread 
disease in prostate cancer.

It has become evident that for a cancerous tumor to 
develop and metastasize it has to escape anti-tumor immune 
response, especially CD8+ cytotoxic T cell mediated 
elimination [4]. Multiple mechanisms have been identified, 
including the exploitation of natural immunosuppressive 
pathways such as the programmed cell death protein 1  
(PD-1) pathway [5, 6]. In healthy individuals, this pathway 
is important for maintaining self-tolerance, as well as 
curbing T cells during an immune response, preventing 
collateral damage to healthy tissues [7]. The pathway 
consists of the receptor programmed cell death protein 1 
(known as PD-1 or CD279) and its ligands programmed 
death ligand 1 (known as PD-L1, CD274 or B7-H1) 
and programmed death ligand 2 (known as PD-L2, B7-
DC or CD273), where the former is believed to be of 
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greatest significance. PD-1 can primarily be found on 
T cells, but also B cells, Natural Killer T (NKT) cells, 
activated monocytes, and dendritic cells (DCs) [7]. PD-L1  
is typically found on antigen-presenting cells such as 
macrophages, but can be found on a wide range of cells, 
including human cancer cells [5, 6]. It is proposed that 
malignant cells express PD-L1 through genetic mutations 
or epigenetic changes, and as a response to an inflammatory 
environment [5]. This enables them to directly inactivate 
tumor infiltrating lymphocytes (TILs), and hence escaping 
immune destruction. In addition to activating PD-1, PD-L1  
also has immunomodulatory effects within the cell on 
which it is expressed [5]. 

Knowledge about the PD-1 pathway’s 
immunosuppressive effects lead to the notion that its 
inhibition could restore T cell mediated immunity towards 
tumor cells [8]. Currently, drugs that target PD-1 have been 
approved by the US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) for malignant 
melanoma and non-small cell lung cancer (NSCLC), 
and there are currently ongoing trials for drugs targeting  
PD-L1 [9, 10]. Disappointingly, three recent trials, 
including a total of 27 patients with metastatic castration-
resistant prostate cancer (mCRPC) receiving the PD-1 
inhibitor drug nivolumab, demonstrated no clinical benefit 
[11–13]. In light of the use and development of new PD-1 
pathway inhibitors, it is vital to gather information that can 
shed light on the expression of these immune checkpoint 
molecules in prostate cancer, and whether their expression 
is associated with prostate cancer survival. This might aid 
patient treatment decision-making as well as contributing 
to future research in PD-1 pathway directed therapies in 
prostate cancer patients.

Herein, we aimed to examine the potential 
prognostic significance of PD-1 and/or PD-L1 expression 
in prostate cancer. Consequently, we investigated 535 
primary prostate cancer tumors for expression of PD-L1 
in stromal and epithelial cells, as well as the expression of 
PD-1 and co-expression of PD-1 and CD8 in lymphocytes, 
and their associations with biochemical and clinical 
failure-free survival.

RESULTS

Patient characteristics and clinicopathological 
data 

Detailed clinical and histopathological 
characteristics are presented in Table 1. Median age at 
surgery was 62 (range 47–75). The prostatectomies were 
retropubic in 435 cases and perineal in 100 cases. At 
the last follow-up in December 2015, 200 patients had 
experienced BF, 56 patients had CF, and 18 patients were 
dead of prostate cancer. Elaborate information on the 
cohort has been previously published [14].

Programmed cell death protein 1 and programmed 
death ligand 1 expression in prostate tumor tissue

Of the total cohort of 535 patients, 
immunohistochemistry (IHC) tumor scoring was 
possible for 402 cases for PD-L1, and 396 for PD-1. 
PD-L1 expression (Figure 1) was both cytoplasmatic 
and membranous. Intraluminal secretions and some 
intracellular granules seemed to stain intensively and were 
disregarded as artifacts. PD-L1 staining in tumor epithelial 
(TE) cells was positive in 371/402 (92%) cases, and 
236/402 (59%) cases had a high PD-L1 intensity score. In 
addition, 267/402 (66%) of patients had PD-L1+ stromal 
cells. In general, PD-1+ cells were sparse (Figure 1) and fit 
the morphology of lymphocytes. In total, 156/396 (39%) 
cases had such intratumoral PD-1+ lymphocytes, and 
43/396 (11%) cases had a high density. In addition, we 
observed few intraepithelial PD-1+ cells. Some of these 
resembled tumor cells, as recently described for malignant 
melanoma [15]. Unfortunately, we were not certain these 
were tumor cells using only morphological assessment, and 
this, in addition to low numbers, made them impossible to 
quantify by scoring. CD8 and PD-1 double staining showed 
co-expression of CD8 and PD-1, but also lymphocytes 
with single expression of one marker (Figure 1). However, 
the brown CD8 staining overpowered the red stain of  
PD-1, making quantification by scoring difficult.

Correlations between programmed cell death 
protein 1, programmed death ligand 1, lymphocyte 
markers and clinicopathological variables

The expression of PD-L1+ tumor stromal (TS) cells 
correlated significantly with PD-L1+ TE cells (r = 0.36,  
p = < 0.001), and had a weak correlation with intratumoral 
PD-1+ lymphocytes (r = 0.21, p = < 0.001). The 
expression of PD-L1 in TE cells and TS cells, in addition 
to intratumoral PD-1+ lymphocytes did not correlate to 
previously published [16] tumor tissue expression of 
lymphocyte markers CD3, CD4, CD8 and CD20. The 
expression of PD-1+ lymphocytes and PD-L1 in TS and 
TE was not correlated to clinicopathological variables 
(age, pT stage, preoperative PSA, Gleason grade, tumor 
size, perineural infiltration, lymphovascular infiltration 
and non-apical positive surgical margin).

Univariate survival analysis

The results of the univariate survival analyses are 
presented in Table 1 and Figures 2 and 3. Neither PD-
L1+ TE cells nor PD-L1+ TS cells reached statistical 
significance for predicting biochemical failure (BF) 
or clinical failure (CF), but there was a trend towards a 
negative association between PD-L1 expression in TE 
cells and outcome, most prominently for biochemical 
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failure-free survival (BFFS) (HR: 1.34 (CI95%  
0.97–1.85) p = 0.078, Table 1, Figure 2). With regard to 
PD-1+ lymphocytes, there was a trend for worse clinical 
failure-free survival (CFFS) in the entire patient material 
(HR: 1.96 (CI95% 0.90–4.25), p = 0.084, Table 1, 
Figure 3), but subgroups known to indicate unfavorable 
prostate cancer prognosis had a significantly higher risk 
for CF if they had a high density of intratumoral PD-1+ 
lymphocytes: age < 65 (p = 0.025), pT3 stage (p = 0.011), 
preoperative PSA > 10 (p = 0.039), and Gleason grade 9 
(p = < 0.001) (Figure 3). 

Multivariate survival analysis 

Clinicopathological variables and PD-1 and  
PD-L1 variables with p < 0.10 from the univariate 
analyses (Table  1) were entered into three different 
multivariate models and results are presented in Table 2. 
High expression of intratumoral PD-1+ lymphocytes was 

a significant negative independent prognostic factor for 
CFFS (HR = 2.48, CI95% 1.12–5.48), p = 0.025) together 
with Gleason grade and perineural infiltration. 

DISCUSSION

In our large, multicenter cohort of 535 prostate cancer 
cases, we observed a high density of PD-1+ lymphocytes 
in prostate cancer tumor tissue to independently predict 
shorter CFFS. The prognostic impact of PD-1 was stronger 
than for any of the renowned clinicopathological features, 
except for Gleason grade. In addition, a high density of 
PD-1+ lymphocytes was significantly associated with 
shorter CFFS in most subgroups related to worse prostate 
cancer prognosis, such as low age, high pT-stage, high 
preoperative PSA, and high Gleason grade. Furthermore, 
92% of the cases had some level of PD-L1 expression in 
TE cells, but no significant association between the marker 
and outcome was observed. 

Figure 1: Immunohistochemical analysis. (A) Low density PD-L1+ stromal cells, (B) High density PD-L1+ stromal cells, (C) Low 
intensity PD-L1+ tumor epithelial cells, (D) High intensity PD-L1+ tumor epithelial cells, (E) Negative isotype control antibody for PD-L1 
(prostate TMA), (F) Negative control for PD-L1 (brain), (G) Positive control for PD-L1 (placenta), (H) Low density of intratumoral PD-
1+ lymphocytes, (I) High density of intratumoral PD-1+ lymphocytes, (J) PD-1 and CD8 double stain with pink showing PD-1 positivity, 
and brown showing CD8 positivity, (K) Negative isotype control antibody for PD-1, (L) Negative control for PD-1 (brain), (M) Positive 
control for PD-1 (tonsil), (N) Positive control for PD-1 and CD8 double stain (tonsil). Magnification ×400 for all, except (N) which shows 
×50 magnification.



Oncotarget26792www.impactjournals.com/oncotarget

Table 1: Patient characteristics, clinicopathological variables, and molecular markers as predictors 
of biochemical- and clinical failure in prostate cancer patients (n = 535), (univariate analysis; log-
rank test) significant P values in bold (threshold ≤ 0.05)

Variable Patients BF CF
(n) (200 events) (56 events)

5-year EFS (%) p 10-year EFS (%) p
Age 0.237 0.038
≤ 65 years 357 77 94
> 65 years 178 70 91
pT-stage < 0.001 < 0.001
pT2 374 83 97
pT3a 114 61 87
pT3b 47 43 74
Preop PSA < 0.001 0.029
PSA<10 308 81 95
PSA>10 221 68 89
Missing 6 - -
Gleason grade < 0.001 < 0.001
3+3 / Grade group 1 183 83 98
3+4 / Grade group 2 219 77 94
4+3 / Grade group 3 81 70 90
4+4 / Grade group 4 17 58 86
>8 / Grade group 5 35 37 65
Tumor Size < 0.001 0.002
0-20 mm 250 83 96
>20 mm 285 68 90
PNI < 0.001 < 0.001
No 401 80 96
Yes 134 60 83
PSM 0.049 0.198
No 249 69 90
Yes 286 81 96
Non-apical PSM < 0.001 < 0.001
No 381 82 96
Yes 154 57 85
Apical PSM 0.063 0.427
No 325 74 92
Yes 210 77 93
LVI < 0.001 < 0.001
No 492 77 95
Yes 43 47 69
Surgical proc 0.466 0.308
Retropubic 435 77 92
Perineal 100 68 95
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To our knowledge, this is the first study to examine 
the prognostic impact of both PD-1 and its ligand PD-L1  
in the same prostate cancer cohort, and the first to explore 
prognostic effects of PD-1+ lymphocytes in prostate cancer 
altogether. In addition to novelty, two major strengths 
in our study are the large, unselected patient population 
and the long follow-up time enabling us to calculate 

prognoses with regard to relevant clinical endpoints. 
Since no antibody for quantifying PD-1, and especially 
PD-L1, in formalin-fixed paraffin embedded (FFPE) tissue 
is uniformly accepted as standard, the antibodies used 
herein underwent stringent confirmatory validation in 
our laboratory, in addition to the manufacturers in-house 
validation.

PD-1+ lymphocytes in TS 0.489 0.084
Low 353 74 94
High 43 69 87
Missing 139
PD-L1+ TS cells 0.899 0.680
Low 245 28 92
High 157 74 91
Missing 133
PD-L1+ TE cells 0.078 0.603
Low 166 77 92
High 236 71 92
Missing 133

Abbreviations: BF = biochemical failure; CF = clinical failure; EFS = event free survival in months; LVI = lymphovascular 
infiltration; p = p value for difference in event free survival with log rank analysis; PD-1 = programmed cell death protein 1; 
PD-L1 = programmed death-ligand 1; PNI = Perineural infiltration; Preop = preoperative; PSA = Prostate specific antigen; 
PSM = Positive surgical margin; pT-stage = pathological tumor stage; Proc = procedure; TE = tumor epithelial cells; TS = 
tumor stromal cells 

Figure 2: Biochemical failure-free survival curves for PD-L1 intensity in tumor epithelial cells. Grey lines indicate low 
intensity, whereas black lines indicate high intensity.
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Table 2: Independent predictors for biochemical- and clinical failure in prostate cancer patients 
(n = 535), (cox regression analysis, backward conditional model)

Variable Model 1 (clinicopathological) Model 2 (PD-L1+ TE) Model 3 (PD-1+ lymphocytes in TS)

BF CF BF CF

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age NE NS NE NS

≤ 65 years

 > 65 years

pT-stage 0.001 NS 0.003 NS

pT2 1.00 1.00

pT3a 1.48 (1.02–2.14) 0.040 1.50 (1.00–2.27) 0.050

pT3b 2.34 (1.47–3.74) < 0.001 2.41 (1.45–4.00) 0.001

Preop PSA 0.033 NS NS NS

PSA < 10 1.00

PSA > 10 1.37 (1.03–1.84)

Gleason grade 0.040 < 0.001 0.011 < 0.001

3 + 3/Grade group 1 1.00 1.00 1.00 1.00

3 + 4/Grade group 2 1.24 (0.86–1.78) 0.249 3.74 (1.40–9.98) 0.009 1.02 (0.67–1.56) 0.920 4,70 (1,31–16,81) 0.017

4 + 3/Grade group 3 1.73 (1.12–2.68) 0.013 5.08 (1.73–14.88) 0.003 1.98 (1.21–3.25) 0.007 6,26 (1,66–23,63) 0.007

4 + 4/Grade group 4 2.13 (1.06–4.31) 0.035 5.95 (1.41–25.14) 0.015 2.05 (0.96–4.37) 0.063 10,10 (2,04–50,17) 0.005

> 8/Grade group 5 1.92 (1.09–3.39) 0.025 13.09 (4.46–38.40) 0.000 1.83 (1.00–3.36) 0.050 20,34 (5,71–72,48) < 0.001

Tumor size NS NS NS NS

0–20 mm

> 20 mm

PNI 0.045 NS 0.017 0,012

No 1.00 1.00 1.00

Yes 1.40 (1.01–1.94) 1.56 (1.08–2.25) 2,32 (1,21–4,47)

Non-apical PSM 0.001 NS 0.026 NS

No 1.00 1.00

Yes 1.73 (1.25–2.38) 1.50 (1.05–2.14)

Apical PSM 0.026 NE NS NE

No 1.00

Yes 0.71 (0.52–0.96)

LVI NS NS NS NS

No 

Yes

PD-L1 + TE cells NE NE NS NE

Low

High

PD-1 + 
lymphocytes in TS NE NE NE 0.025

Low 1.00

High 2.48 (1.12–5.48)

Abbreviations: BF = biochemical failure; CF = clinical failure; CI = confidence interval; HR = hazard ratio; LVI = lymphovascular infiltration; NE = not entered in analysis; 
NS = not significant; p = p value for difference in survival with Cox regression analysis; PD-1 = programmed cell death protein 1; PD-L1 = programmed death-ligand 1; PNI = 
Perineural infiltration; Preop = preoperative; PSA = Prostate specific antigen; PSM = Positive surgical margin; pT-stage = pathological tumor stage; TE = tumor epithelial cells; 
TS = tumor stromal cells 
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This study was conducted as a further elaboration 
of our previous observation that CD8+ lymphocytes are 
independent negative prognostic markers in prostate 
cancer [16]. Based on this discovery, we proposed that the 
detected CD8+ lymphocytes were indeed tumor-specific 
CD8+ T cells summoned to particularly aggressive tumors, 
but lacking functionality due to immunosuppression, 
for example due to activation of the PD-1 pathway. The 
CD8-marker represents a broad population of T cells with 
various roles, which might weaken its prognostic impact. 
A recent study in melanoma patients concluded that PD-1 
expression on CD8+ T cells identifies the subpopulation of 
tumor-specific effector cells [17] and hence, PD-1 may be 
a more specific prognostic marker than CD8. Surprisingly, 
our previously published lymphocyte marker expressions 
(CD3, CD4, CD8 and CD20) [16] did not correlate with 
PD-1 expression. To further explore the relationship 
between CD8+ and PD-1+ cells, we double-stained for 
both markers. By microscopic examination we detected 
co-expression of CD8 and PD-1 on lymphocytes as 
suspected, but also cells with single PD-1 or CD8 marker 
expression. Another explanation for lack of statistical 
correlations may be the different scoring methods of 
lymphocyte markers and PD-1 [16]. Also limiting the 
ability for comparison, the current study was performed on 

TMA cores cut from a much deeper tissue level than the 
lymphocyte study [16] hampering the ability to correlate 
these markers in the same tissue areas.

So far, translational studies regarding the prognostic 
impact of PD-1 and PD-L1 in human prostate cancer 
are sparse. For PD-1, only descriptive analyses have 
been published, all reporting PD-1+ lymphocytes to be 
present in prostate cancer carcinoma regions and/or in 
adjacent TLS [18–20].  With regard to PD-L1 positive 
tumor epithelial cells, descriptive analyses have been 
conflicting: Some research groups have reported lack 
of tumor epithelial positivity [12, 13, 20], while others 
have observed sparse expression [21] or cases with 
high expressions [18]. In a recent study, Gevensleben 
et al. found a high PD-L1 expression in TE cells to be 
an independent negative prognostic factor of BFFS in a 
cohort of 902 men with prostate cancer [22]. We could 
not fully reproduce this result, but in both univariate and 
multivariate analyses there was a consistent tendency of 
high expression of PD-L1 in TE cells in patients with a 
worse BFFS. In a larger study population, this association 
may have reached statistical significance.

There may be multiple possible biological 
explanations as to why we and others [18, 22] observe 
such high expression levels of PD-L1 in prostate tumor 

Figure 3: Clinical failure-free survival curves for PD-1+ lymphocytes in tumor stromal areas. Grey lines indicate low 
density, whereas black lines indicate high density. (A) All patients, (B) Patients with age < 65, (C) Patients with pTstage = 3, (D) Patients 
with preoperative PSA > 10, (E) Patients with Gleason grade = 9.
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epithelial cells. The most well-known mechanism of 
PD-L1 induction on tumor epithelial cells is cytokines 
such as IFNγ produced by adaptive immune cells in the 
tumor microenvironment (‘adaptive immune resistance’) 
[21, 23, 24]. However, we find that PD-L1 expression 
do not correlate to adaptive immune cell markers, which 
may suggest there is another mechanism at play. Several 
studies in different cancers have demonstrated that intrinsic 
oncogenic pathways may induce PD-L1 expression (‘innate 
immune resistance’). Some examples include EGFR 
mutations [25, 26] and loss of phosphatase and tensin 
homolog (PTEN) [27, 28]. To our knowledge, no such 
relationships have been found between intrinsic pathways 
and PD-L1 expression in human prostate cancer [21]. 

Our finding that an augmentation of the PD-1 
pathway leads to a worse prostate cancer prognosis 
may indicate that tumor immune escape, and thus tumor 
immune elimination, are important mechanisms in prostate 
cancer. CD8+ cytotoxic T cells are proposed to be one 
of the most important protagonists in tumor immune 
elimination, and the mechanisms by which tumor cells 
avoid attack by tumor-specific CD8+ T cells are crucial 
parts of the immune escape process [4]. Different escape 
routes have been proposed. FOXP3+CD25+CD4+ Tregs 
are known suppressors of CD8+ cytotoxic T cells, and are 
observed up-regulated in multiple cancer types, including 
prostate cancer [29–31]. In addition, the process of 
antigen presentation is often impaired in tumors, leading 
to inadequate activation and boosting of T cells [32]. 
Moreover, tumor-specific CD8+ T cells have been found 
to express exhaustion markers such as PD-1 and T-cell 
immunoglobulin and mucin-domain containing-3 (Tim-3) 
indicating that their presence not necessarily implies an 
effective ongoing immune elimination process [33–35]. 
Contributing to this, different tumor cells have been found 
to express molecules such as indoleamine-2,3-dioxygenase 
(IDO) [36] and PD-L1, known to impair function of CD8+ 
cytotoxic T cells [5].

There have been recent breakthroughs in PD-1 
pathway inhibition in other cancer diseases [9]. Our 
study has found the pathway molecules to be present in 
prostate cancer, and their presence to be associated to 
poor prognosis and as such, proposing them as attractive 
targets for inhibition. However, results from prostate 
cancer studies have so far proven mostly disappointing. 
At the time we conducted this study there had been 
published results from three different clinical trials with a 
total of 27 prostate cancer patients treated with the PD-1 
inhibitor nivolumab [11–13]. Unfortunately, no clinical 
benefits were observed for these cases, which may have 
several possible explanations. For an immune checkpoint 
inhibitor to be effective in cancer treatment, the cancer 
in question must be able to evoke an immune response. 
Thus, one possible reason why PD-1 blockage does not 
appear to work in prostate cancer, may be that it is not 
an immunogenic cancer type. However, there are several 

aspects contradicting this proposition. Firstly, prostate 
cancer can express multiple tumor-associated antigens 
necessary in triggering anti-tumor immune response 
[such as prostate-specific antigen (PSA), prostatic acid 
phosphatase (PAP), prostate-specific membrane antigen 
(PSMA), and prostate stem cell antigen (PSCA)] [37, 38]. 
Secondly, the FDA approved autologous dendritic cell-
based vaccine Sipuleucel-T extends survival in patients 
with mCRPC. Though its exact mechanisms are not 
known, the most likely explanation is that it generates a 
tumor-specific T cell mediated immune response [31]. 
Furthermore, the mechanisms by which anti-androgen 
treatment increases survival in prostate cancer are believed 
to be partly explained by its ability to boost a tumor 
specific immune response [38, 40–41]. 

A likely reason why nivolumab-trials have 
failed to show effect in prostate cancer patients may be 
differences in patient and tumor characteristics. Patients 
in both our and Gevensleben et al. [22] cohorts were 
hormone naïve while the mentioned nivolumab trials 
[11–13] only included patients with mCRPC. Hence, 
immunosuppression through the PD-1 pathway may be a 
less efficient mechanism in late stage, widespread cancer 
disease, and/or there may be a more direct relationship 
between androgens and the PD-1 pathway. In addition, all 
prostate cancer patients included in the nivolumab-studies 
was reported to be negative for tumor expression of PD-L1 
(< 5% PD-L1 positive cells) [12, 13]. As no prostate cancer 
patients with a high degree of PD-L1 positive tumor cells 
have received nivolumab, the trials give no genuine data on 
the efficacy of PD-1 pathway inhibitor treatment. However, 
we have, corroborating others [22], demonstrated that such 
expression is common in primary prostate cancer tumors 
from patients with localized disease. Though there is an 
ongoing debate regarding whether PD-L1 tumor expression 
can predict treatment effect, there are multiple indications 
that PD-L1 positivity enrich for response to PD-1 pathway 
inhibitors [43]. Hence, PD-1 pathway inhibitors should not 
be completely disregarded as ineffective in prostate cancer 
treatment, and in a recent trial with pembrolizumab 3/10 
patients had an almost complete PSA regression [44]. 

To conclude, we find PD-1+ lymphocytes in prostate 
cancer tumors to be an independent negative prognostic 
marker in post-prostatectomy hormone naïve patients. 
In addition, our observations imply that PD-1 pathway 
inhibitors may yield therapeutic benefit in selected groups 
of prostate cancer patients.

MATERIALS AND METHODS

Patient characteristics and clinicopathological 
data 

Six hundred and seventy-one patients who 
underwent radical prostatectomy as initial treatment 
for prostate adenocarcinoma from 1995 to 2005 were 
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retrospectively identified from the Departments of 
Pathology at the University Hospital of Northern Norway 
(n = 267), Nordland Hospital (n = 63), St. Olavs Hospital 
(n = 330), and Levanger Hospital (n = 11). One hundred 
and thirty-six patients did not meet the inclusion criteria 
due to: (i) radiotherapy to the pelvic region prior to 
surgery (n = 1), (ii) other malignancies within 5 years 
prior to the prostate cancer diagnosis (n  =  4), (iii) 
inadequate paraffin-embedded tissue blocks (n = 130), 
and (iv) lack of follow-up data (n = 1). Thus, a total 
of 535 patients were included in this study. Complete 
demographic and clinical data were obtained from 
medical records. Two experienced pathologists (ER and 
LTB) reviewed all cases and registered histopathological 
data. Tumors were histologically classified according to 
WHO guidelines [45], graded in accordance with both the 
modified Gleason grading system [46, 47] and the new 
contemporary Gleason grading system [48], and staged 
in agreement with International Union Against Cancer 
(UICC) guidelines [49]. All demographic-, clinical- 
and histopathological data (Table 1) were registered in 
a SPSS data file and patients were de-identified. This 
report includes follow-up data as of December 2015. 
Median follow-up of survivors was 150 (range 17–245) 
months. For extensive information regarding our cohort, 
see our previous report [14]. The ethics of this study has 
been approved by The Regional Committees for Medical 
and Health Research Ethics (Protocol ID: 2009/1393, 
extended approval 2015), The Norwegian Data Protection 
Authority, and The Data Protection Official for Research 
(The Norwegian Social Science Data Service). Informed 
consent was not obtained, but the data was analyzed de-
identified and this report contains no identifiable details. 

Tissue microarray construction 

For each case, a pathologist (ER) histologically 
identified and marked separate areas of the most 
representative TE tissue, adjacent TS tissue, normal 
epithelial (NE) tissue, and normal stromal (NS) tissue. In 
brief, a tissue-arraying instrument (Beecher Instruments, 
Silver Springs, MD) with a 0.6 mm diameter needle was 
used to harvest a total of 6 cores from each case from 
the corresponding paraffin-embedded tissue blocks. The 
samples were inserted into a recipient paraffin block, and 
from each block 4 µm sections were cut with a Micron 
microtome (HM355S), affixed to glass slides, and sealed 
with paraffin. 

Validation of antibody specificity 

The primary antibodies used in this study were 
as follows: (i) PD-L1 rabbit monoclonal antibody 
(Cat#13684, clone: E1L3N, Cell Signaling Technology, 
Danvers, MA, USA), (ii) PD-1 mouse monoclonal 
antibody (Cat#ab52587, clone: NAT105, Abcam, 

Cambridge, UK) and (iii) CD8 rabbit monoclonal antibody 
(clone SP57; Ventana; Cat#790-4460). All applied 
antibodies had been subjected to in-house validation by 
their manufacturer. In addition, we performed confirmatory 
validation for PD-L1 and PD-1 to further accredit antibody 
specificity. Overexpressed human HEK293T cell lysates 
were utilized from OriGene for PD-L1 (#LY415473), 
PD-1 (#LY401555) and HEK293 as empty vector 
(#LY500001/negative control). Cells were incubated with 
2xSDS sample buffer (OriGene) for 10 minutes at 100°C. 
Equal amounts of protein lysates were resolved on to a 
4 to 12% Bis-Tris gel (Cat#NP0322; Life Technologies), 
and transferred onto an Odyssey nitrocellulose membrane 
(Cat#926-31092, LI-COR). The membrane was 
subsequently blocked for 1 hour at room temperature 
using Odyssey blocking buffer (Cat#927-40000, LI-COR). 
For PD-L1 1/1000, and for PD-1 1/50 dilution of primary 
antibody was applied and the membrane incubated 
overnight at 4˚C. PD-L1 (Cat#926-32213, LI-COR), and 
PD-1 (Cat#926-32212, LI-COR) RDye 800CW secondary 
antibodies with 1:1000 dilution was then applied, and the 
membrane incubated 1 hour at room temperature. Between 
antibody incubations, the membrane was washed 3 times 
for 5 minutes, each time in tris-buffered saline containing 
0.05% Tween 20 (Cat#T9039, Sigma-Aldrich). Molecular 
weight markers used were the MagicMark XP Western 
Protein Standard (Cat#LC5603, Invitrogen) and SeeBlue 
Plus2 Pre-stained Standard (Cat#LC5925, Invitrogen). The 
most prominent bands (Supplementary Figure 1) represent 
the observed molecular weight of the detected protein, 
which correspond intimately with the predicted weight. 
Rabbit anti-actin, diluted 1:1000 (Cat#A2066, Sigma-
Aldrich) was used as internal control and all lanes showed 
42 KDa molecular weight protein load as predicted 
(Supplementary Figure 1).

Immunohistochemistry

Prior to IHC analysis, all slides were heated at 
60°C for tissue fixation. PD-L1 IHC was performed on 
a Discovery-Ultra immunostainer (Ventana Medical 
Systems, Tucson, AZ). Slides were deparaffinized on-
board in three 8-minute cycles.  Antigen retrieval was 
done by using the EDTA-based solution (pH 8.0–8.5) 
CC1 reagent (Cat#950-124) at 95°C and incubating for 
64 minutes. Endogenous peroxidase was blocked by 
incubating with Discovery inhibitor (Cat#760-4840) for 
8 minutes. Primary antibody PD-L1 with 1/25 dilution was 
added and slides were incubated for 32 minutes at 37°C. 
Secondary antibody used was UltraMap anti-rabbit HRP 
(Cat#760-4315) incubating for 20 minutes, followed by 
8 minutes HRP amplification. Finally, ChromoMap DAB 
(Cat#760-159) was used to visualize the antigens. 

PD1/CD8 dual and PD1 IHC were performed using 
the Ventana Benchmark XT automated immunostainer 
(Ventana Medical Systems, Tucson, AZ). Antigen retrieval 
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was done for 30 minutes at approximately 100°C with CC1 
reagent (Cat#950-124). Primary CD8 prediluted antibody 
was incubated for 12 minutes and visualized using the 
polymer-based Ventana ultraView DAB detection kit 
(Cat#760-500). The protocol followed by an ultraWash 
step to wash off excess antibody. Antibody denaturation 
for 4 minutes at 90°C was performed to ensure that the 
first primary antibody was completely inactivated before 
applying the second primary antibody. The PD-1 primary 
antibody in a 1/50 dilution was incubated for 32 minutes. 
The primary antibody was visualized using the Ventana 
ultraView Universal Alkaline Phosphatase Red Detection 
Kit (Cat#760-501) for double stain. The single staining of 
PD-1 was performed with same antigen retrieval procedure 
and was visualized with ultraView DAB detection kit.

To visualize the nuclei, all slides were 
counterstained with Ventana Hematoxylin II reagent (Cat# 
790-2208) for 32 minutes, followed by a Bluing reagent 
(Cat# 760-2037) for 8 minutes, and then dehydrated, 
cleared and mounted on glass slides. All double stained 
sections were compared with the corresponding single 
stained slide. Two different controls were applied. First, 
control staining with an isotype-matched control antibody 
without the primary antibody, under the same staining 
protocol as for the primary antibody. Rabbit and mouse 
isotype-matched negative control antibodies were obtained 
from Abcam (PD-L1, Cat#ab27478; PD-1, Cat#ab18443). 
Second, multiple organ TMA as positive and negative 
tissue controls were used to verify the specificity of the 
staining in every staining procedure. The positive tissue 
controls comprised placenta for PD-L1 and tonsil for 
PD-1 (Figure 1). Negative tissue controls were samples of 
normal brain and ventricle for both PD1 and PD-L1.

To confirm staining homogeneity of PD-L1 
throughout the tumor epithelium, we selected six patients 
from TMA slides with different tumoral expression (low, 
moderate, high). Whole tissue sections of these patients 
were further stained with PD-L1 (Cat#13684, clone: 
E1L3N), and analyzed by an experienced pathologist who 
approved staining homogeneity (Supplementary Figure 2). 

Scoring of immunohistochemistry

All tissue samples were scored semi-quantitatively 
by two investigators independent of each other, and 
blinded to clinicopathological data and patient outcome. 
PD-L1 was scored by two experienced pathologists (AV, 
CN) and PD-1 was scored by one experienced pathologist 
(ER) and one trained MD (NN). For each tissue core the 
most experienced pathologist histologically assured the 
tissue type, and if possible 2 cores of TE, 2 of TS, 1 of 
NE and 1 of NS was scored for each case. Because PD-
L1 was uniformly homogenously expressed in epithelial 
cells, an intensity scoring scale was chosen, and were 
as follows: no staining = 0, weak staining = 1, moderate 

staining = 2, and strong staining = 3. PD-L1+ stromal 
cells and PD-1+ lymphocytes were scored as number of 
positive stained cells per 0.6 mm diameter core as follows:  
0 = 0–3, 1 = 4–10, 2 = 11–15, and 3 = > 15. In case of 
major disagreement (scoring difference > 1), the core 
was re-examined and consensus was reached. For each 
case, the mean score was calculated for each tissue 
compartment, and further dichotomized into low and 
high expression. Cut-off values for dichotomization were 
chosen according to a minimal P-value approach (optimal 
cut-off) while also securing statistically sufficient numbers 
in each group, and high scores were defined as follows: (i) 
≥ 0.54 (mean) for PD-L1+ TS cells (ii) ≥ 1.0 for PD-L1 TE 
cells, and (iii) ≥1.25 for intratumoral PD-1+ lymphocytes. 
Scoring agreement between investigators was excellent 
for both markers. The intra-class correlation coefficient 
(reliability coefficient, r) was 0.93 (CI95% 0.92–0.93,  
p < 0.001) for PD-L1 and 0.96 for PD-1 (CI95%  
0.57–0.96, p < 0.001). Slides with CD8 and PD-1-double 
staining were examined, but not quantified by scoring.

Statistical analysis

All statistical analyses were performed using the 
statistical package IBM SPSS, version 23 (SPSS Inc., 
Chicago, IL). The IHC scoring values from each observer 
were compared for inter-observer reliability by use of a 
two-way random effect model with absolute agreement 
definition. Spearman’s rank-correlation was used to 
examine the associations between PD-L1 and PD-1 
expressions, previously published lymphocyte markers 
[15] and clinicopathological markers. Presented r-values 
are the Spearman's rank correlation coefficient. Univariate 
Cox regression analysis was used to generate HR for 
each individual variable. Univariate survival analyses 
were done by using the Kaplan–Meier method, and the 
difference between survival curves was assessed by the 
log-rank test. The survival curves were terminated at 192 
months, as less than 10% of patients were at risk after 
this point. All significant variables from the univariate 
analyses were assessed in multivariate survival models 
using a backward stepwise Cox regression model with a 
probability for stepwise entry or removal at p = 0.05 and 
0.10, respectively. The significance level was p < 0.05 for 
all analyses. All survival analyses were carried out using 
BF and CF as endpoints. BF was characterized as a PSA 
≥ 0.4 ng/ml, and rising in a minimum of two different 
blood samples postoperatively. BFFS was calculated as 
time from surgery to last follow-up date or the date PSA 
was first measured above threshold. CF was defined as 
verified local, symptomatic cancer recurrence and/or 
radiological verified metastasis to bone, visceral organs 
or lymph nodes after prostatectomy. CFFS was calculated 
from date of surgery to last follow-up date without CF or 
to date of CF. 
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The chemokine CXCL16 and its receptor, C-X-C chemokine receptor (CXCR6), affect tumor progression
through different pathways, including leukocyte recruitment and function, cellular senescence, tumor
cell proliferation, survival, invasion, and metastasis. We examined how the expression of CXCL16/CXCR6
in prostate cancer (PC) was related to clinicopathological features and activation of inflammatory cells.
Tissue microarrays from 535 patients were constructed from tumor epithelial and tumor stromal areas of
primary PC. Immunohistochemistry was used to evaluate the expression of CXCL16/CXCR6, CD3þ T cells
(CD4þ, CD8þ), and CD20þ B cells. Survival analyses were used to evaluate their prognostic impact.
Expression of CXCL16 in PC cell lines (DU145 and PC3) and the effect on proliferation and migration
were examined. High expression levels of CXCL16 [hazard ratio (HR), 2.52; 95% CI, 1.12e5.68;
P Z 0.026] and CXCR6 (HR, 2.29; 95% CI, 1.10e4.82; P Z 0.028) were each independent predictors
for clinical failure. High co-expression of CXCL16 and CXCR6 (HR, 5.1; 95% CI, 1e15.9; P Z 0.05) was
associated with negative prognostic factors, such as Gleason grade 4 þ 3, Gleason score �7, vascular
infiltration, and positive surgical margins. As a conclusion, high protein expression of CXCL16 and high
protein co-expression of CXCL16/CXCR6 in PC were independent predictors for a worse clinical outcome.
(Am J Pathol 2015, 185: 2722e2730; http://dx.doi.org/10.1016/j.ajpath.2015.06.013)
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Despite recent advances in treatment and clinical manage-
ment of prostate cancer (PC), it is still a leading cause of
cancer death. To improve the diagnostics and the therapy of
both localized and metastatic PC, identification of molecules
involved in development and progression of this heteroge-
neous disease is vital.

Chemokines belong to a superfamily of chemotactic cyto-
kines. In both physiological and pathological conditions,
activation of the chemokine or chemokine receptor leads to a
coordinated recruitment of leukocytes. This also includes
regulation of cell differentiation, proliferation, survival, and
senescence.1,2 CXCL16 and its receptor, C-X-C chemokine
receptor 6 (CXCR6), belong to the CXC chemokine family,
and CXCL16 exists both in a transmembrane and a soluble
form.3e5 The chemokine receptor, CXCR6 (alias STRL33,
Bonzo, or TYMSTR), is expressed on the surface of CD4þ

and CD8þ T cells,5 natural killer cells,6 plasma cells,7
stigative Pathology.

.

fibroblasts, keratinocytes, and cancer cells of different ori-
gins.8e11 Interaction between the receptor, CXCR6, and its
ligand, CXCL16 (alias SR-PSOX), is involved in a diversity of
biological processes, including selective regulation of
lymphocyte subsets, chronic inflammation, cell adhesion and
survival, tumor development and progression, and antitumor
immunity.4,12e16 Chemokine receptor engagement is known
to enhance tumor cell proliferation and survival through acti-
vation of the mitogen-activated protein/extracellular signale
regulated kinase pathway. This is also the case for soluble
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CXCL16 (S-CXCL16), which up-regulates its own receptor,
CXCR6, resulting in increased cell migration.13 Furthermore,
CXCL16 and CXCR6 are reported to be markers and pro-
motors of inflammation-associated cancer.17e19

The biology of human PC is believed to arise from pre-
cancerous processes associated with inflammation, such as
proliferative inflammatory atrophy.20 Proliferative inflam-
matory atrophy is proposed to lead to prostatic intra-
epithelial neoplasia and cancer.21 In PC cell line studies,
CXCL16 and CXCR6 are up-regulated in proliferative in-
flammatory atrophy, prostatic intraepithelial neoplasia, and
tumor tissue compared with normal tissue, and correlate
with cancer stage and grade.17 CXCL16 and CXCR6 are up-
regulated in aggressive PC and bone cancer metastasis22 and
are associated with poor treatment outcome.23e25

In 535 prostatectomy specimens, we explored the prog-
nostic impact of CXCL16 and CXCR6 expression in
epithelial tumor cells and tumor stromal areas and their
prognostic impact in PC; investigated the impact of
CXCL16 on proliferation and migration in PC cell lines
DU145 and PC3; and correlated the CXCL16/CXCR6
expression with the presence of T lymphocytes (CD3þ,
CD4þ, and CD8þ cells) and B lymphocytes (CD20þ).

Materials and Methods

Patients and Tissue Samples

Primary tumor tissue from 535 radical prostatectomy pa-
tients diagnosed at the University Hospital of Northern
Norway (Tromsø), the St. Olav’s University Hospital
(Trondheim, Norway), and Nordland Hospital (Bodø, Nor-
way), from 1995 through 2005, were used in this study.

Adequate paraffin-embedded tissue blocks and complete
demographic and clinicopathological data were obtained
for all patients. The tumors were graded according to the
new modified Gleason grading system and staged accord-
ing to the World Health Organization guidelines.26,27 All
primary tumors were histologically reviewed by two
pathologists (E.R. and L.-T.B.). Follow-up time was
assigned from the date of first examination until the date of
last follow-up, which was November 31, 2012, date of
biochemical failure (BF), or date of clinical failure (CF).
BF was characterized as a prostate-specific antigen (PSA)
�0.4 ng/mL and increasing in a minimum of two different
blood samples postoperatively. CF was defined as pro-
gression of local symptoms or metastasis to bone, visceral
organs, or lymph nodes, verified by computed tomography,
magnetic resonance imaging, bone scan, ultrasonography, or
death due to PC. Data were censored for death from causes
other than PC. The median follow-up of survivors was 89
months (range, 6.3 to 188.3 months). The cohort and the tissue
microarrays (TMAs) are thoroughly described and used in a
previously published article.28 The study has been approved by
The Regional Committee for Medical and Health Research
Ethics (2009/1393), the Data Protection Official for Research
The American Journal of Pathology - ajp.amjpathol.org
(Norwegian Social Science Data Services), and the National
Data Inspection Board.
Microarray Construction

TMA construction was chosen for high-throughput mo-
lecular pathology analysis. For each case, a pathologist
(E.R.) histologically identified and marked two cores with
areas of tumor cells (epithelial tumor cells), two cores with
tumor stromal tissue, one core from areas with normal
epithelial cells, and one core with normal stromal tissue.
The TMAs were assembled using a tissue-arraying in-
strument (Beecher Instruments, Silver Springs, MD).
Briefly, we used a 0.6-mm-diameter needle to harvest the
marked tissue areas from the corresponding formalin-
fixed, paraffin-embedded tissue blocks. The samples were
inserted into an empty recipient paraffin block, according
to a coordinate pattern. To include all core samples, 12
tissue array blocks were constructed. Multiple sections
(4 mm thick) were cut with a Micron microtome (model
HM355S; Thermo Scientific, Oslo, Norway), affixed to
glass slides, and sealed with paraffin. The detailed method
has been reported previously.29
Immunohistochemistry

CXCL16 (rabbit polyclonal, ab101404, 1:100) and CXCR6
(goat polyclonal, ab125115, 1:100) antibodies from Abcam
(Cambridge, UK) were used in the study. The antibodies
were validated by the manufacturer for immunohistochem-
istry on paraffin-embedded material. In addition, in-house
validation by Western blot analysis was performed. Cut
sections were deparaffinized with xylene and rehydrated
with ethanol. Antigen retrieval was performed by placing
the sections in 0.01 mol/L citrate buffer, pH 6.0, before
microwave heating for 20 minutes at 450 W. Endogenous
peroxidase was blocked by incubation in 3% H202 for 10
minutes. Sections were blocked in 5% goat or rabbit serum
for 1 hour before overnight incubation with the primary
antibodies at 4�C. The primary antibodies were visualized
by adding a secondary biotin-conjugated antibody, followed
by an Avidin/Biodin/Peroxidase complex (Vectastain ABC
Elite-kit; Vector Laboratories, Burlingame, CA) and sub-
strate (Vector NovaRed; Vector Laboratories). As negative
staining controls, the primary antibodies were replaced with
the primary antibody diluent. All slides were counterstained
with hematoxylin to visualize the nuclei.

The antibodies were as follows: CD3 (clone PS1), CD8
(clone 1A5), and CD20 (clone L26) from Ventana Medical
(Tucson, AZ), and CD4 (clone 1F6) from Novocastra
Laboratories Ltd (Newcastle upon Tyne, UK). The applied
antibodies had been subjected to in-house validation, ac-
cording to the manufacturer’s recommendation for immu-
nohistochemical analysis on paraffin-embedded material.
The detailed method has been reported previously.30
2723
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Scoring of Immunohistochemistry

The ARIOL imaging system (Applied Imaging Corp, San Jose,
CA) was used to scan and digitalize the immunohistochemical-
stained TMA slides. The slides were loaded in the SL 50 auto-
mated slide loader (Vision BioSystems, Buffalo Grove, IL) and
scanned at a low resolution (�1.25) and high resolution (�20)
using an Olympus BX61 microscope with an automated plat-
form (Prior Scientific, Cambridge, UK). Images of the cores
were uploaded into the Ariol Software version 3.1.2. Two
pathologists (E.R. and S.A.-S.) scored independently and
semiquantitatively viable parts of each anonymized core by light
microscopy. The dominant staining intensity of epithelial tumor
cells (TEs) and tumor stromal cells (TSs) was scored as follows:
0, negative; 1, weak; 2, intermediate; and 3, strong. A core was
scored as missing if the core was missing or considered to be of
insufficient quality to score by both observers. Consequently, all
reported marker expressions are based on the evaluation of two
separate tissue cores. High expression of CXCL16 and CXCR6
was defined as expression at the third quartile or higher (�1.12
and �1.5, respectively) and was measured in the following
manner: 0, no positive cells; 1,<25% positivity; 2, 25% to 50%
positivity; and 3, 51% to 100% positivity. The scoring method
for T and B cells has been reported previously.30

Western Blot Analysis

Cells were washed in ice-cold phosphate-buffered saline, and
lysate was added directly in NuPAGE LDS Sample Buffer
(NP0007; Life Technologies-Fisher Scientific, Oslo, Norway)
with dithiothreitol. Equal amounts of protein lysates were
resolved onto a 4% to 12% Bis-Tris gel (NP0322; Life Tech-
nologies). The resolved proteins were transferred onto an
Odyssey nitrocellulose membrane (catalog number 926-31092;
LI-COR Biosciences, Lincoln, NE), and the membrane was
subsequently blocked for 1 hour at room temperature using the
Odyssey blocking buffer (catalog number 927-40000; LI-COR
Biosciences). Primary and secondary antibodies were diluted in
the Odyssey blocking buffer, and the membrane was incubated
with antibody dilution at room temperature. Antibodies used
were rabbit polyclonal anti-CXCL16 antibody, 1:1000
(ab101404; Abcam), rabbit anti-actin, 1:3000 (A2066; Sigma-
Aldrich AS, Oslo, Norway), and IRDye 800CW donkey anti-
rabbit, 1:10,000 (number 926-32213; LI-COR Biosciences).
Between antibody incubations, the membrane was washed
three times for 5 minutes each time in tris-buffered saline
containing 0.05% Tween 20 (Sigma-Aldrich). Molecular
weight markers used were the MagicMark XPWestern Protein
Standard (catalog number LC5603; Invitrogen-Fisher Scienti-
fic, Olso, Norway) and SeeBlue Plus2 Pre-stained Standard
(catalog number LC5925; Invitrogen-Fisher Scientific).

Cell Culture

The PC cell lines DU145 (HTB-81) and PC3 (CRL-1435),
both from ATCC (Manassas, VA), were cultured in RPMI
2724
1640 media (catalog number R8758; Sigma-Aldrich) supple-
mented with 10% fetal bovine serum (catalog number S0415;
Biochrom, Berlin, Germany) and 1� penicillin-streptomycin
antibiotic mixture (catalog number P0781; Sigma-Aldrich).
Cells were incubated at 37�C in a humidified atmosphere with
5% CO2. The cell line authenticity was verified by the
Department of Forensic Medicine at UiT The Arctic Univer-
sity of Norway (Tromsø).

RNA Interference

Cells were transfected with CXCL16 siRNA (catalog
number 4392420, s33809, Silencer Select CXCL16 siRNA;
Ambion) using the transfection reagent Lipofectamine 2000
(catalog number 11668-019; Invitrogen-Fischer Scientific).
A Cy3-labeled negative control scrambled siRNA (catalog
number AM4621, Silencer Cy3-labeled Negative Control
No. 1 siRNA) was included in all experiments. Transfection
efficiency was typically assessed to 85% to 100%.

Proliferation Assay

The proliferation potential of the cells was measured using the
real-time cell analyzer system xCELLigence, RTCA DP
(catalog number 05469759001; Roche) fitted with the E-plate
16 (catalog number 05469830001; Roche, Oslo, Norway).
Cells were trypsinized until detached, resuspended in complete
growth media, and counted. By initial titration experiments,
optimal cell number per well was determined to be 5000.
According to the manufacturer’s protocol, cells were seeded in
quadruplicate into the E-pale after baseline measurement. The
plate was incubated for 30minutes at room temperature before
positioned in the RTCA DP (Real-Time Cell Analyzer Dual-
Plate; Roche) instrument. The RTCA DP instrument was
located in an incubator preserving the same conditions used
for routine cultivation of the PC cell lines. The instrument
denotes the cellular growth rate as Cell Index, which is an
arbitrary unit reflecting the cell-sensor impedance. The cell
index was measured every 15 minutes for the first 24 hours
(for better resolution at attachment and spreading phase),
and then every 30 minutes. Growth curves and doubling
time were calculated with the RTCA software version 1.2.1
(Roche). For each cell line, three independent experiments
were performed.

Migration Assay

To assess migration, the ibidi culture insert (Inter Instrument
AS, Høvik, Norway) was used. The insert consists of two
0.22-cm2 chambers separated by a 0.5-mm divider. The inserts
were planted into a 12-well tissue culture dish (one insert per
well) using sterile tweezers. To each chamber, 70 mL pre-
transfected cell suspensions containing 4 to 6 � 105 cells/mL
were added. The cells were left to adhere before the insert
was removed and fresh media added. Images were acquired
along the cell-free zone at time points 0, 6, and 24 hours.
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Patient Characteristics, Clinicopathological Variables, and Their Prognostic Variables for BF, CF, and PCD

Characteristic
No. of
patients

% of
Patients

BF (170 events) CF (36 events) PCD (15 events)

5-Year
EFS (%) P value

10-Year
EFS (%) P value

10-Year
EFS (%) P value

Age, years
�65 357 67 76 92 97
>65 178 33 70 88 96

pT stage <0.001 <0.001 <0.05
2 374 70 83 96 98
3a 114 21 60 86 98
3b 47 9 43 73 89

Preoperative PSA <0.001
<10 308 57 80 93 99
>10 221 42 67 88 95
Missing 6 1

Gleason score <0.001 <0.001 <0.05
3 þ 3 183 34 83 98 99
3 þ 4 220 41 76 93 98
4 þ 3 80 15 69 84 95
4 þ 4 19 4 63 76 94
>8 33 6 34 67 87

Tumor size, mm <0.001 <0.05
0e20 250 47 82 94 99
>20 285 53 67 88 96

PNI <0.001 <0.001 <0.05
No 401 75 79 95 98
Yes 134 25 60 81 93

PSM <0.05 <0.05
No 249 47 81 94 97
Yes 286 53 69 89 97

Circumferential PSM <0.001 <0.001 <0.05
No 381 71 81 95 98
Yes 154 29 57 81 94

Apical PSM <0.05
No 325 61 73 90 96
Yes 210 39 77 92 98

Vasc inf <0.001 <0.001 <0.001 <0.05
No 492 92 77 93 98
Yes 43 8 46 71 88

Surgical procedure
Retropubic 435 81 76 90 97
Perineal 100 19 67 95 98

Univariate analysis; log-rank test. N Z 535.
BF, biochemical failure; CF, clinical failure; EFS, event-free survival; PCD, prostate cancer death; PNI, perineural infiltration; PSA, prostate-specific antigen;

PSM, positive surgical margin; Vasc inf, vascular infiltration.

PC, CXCL16, CXCR6, and Immune Cells
The migration rate into the 0.5-mm gap was calculated using
the free software TScratch version 1.0 (Computational
Science and Engineering Laboratory, Zurich, Switzerland).
For each cell line, three independent experiments were
performed.

Statistical Analysis

All statistical analyses were performed using the statistical
package IBM SPSS version 22 (SPSS Inc., Chicago, IL).
Scoring values from each pathologist (E.R. and S.A.-S.) were
compared for interobserver reliability by use of a two-way
The American Journal of Pathology - ajp.amjpathol.org
random-effect model with absolute agreement definition. The
intraclass correlation coefficient (reliability coefficient, r) was
0.95 (range, 0.90 to 0.97; P< 0.001). AWilcoxon signed rank
test was used to check for differences in expression of
CXCL16 and CXCR6 between normal and cancer tissues. A
Spearman correlation test was performed to examine associ-
ations between CXCL16, CXCR6, clinicopathological
markers, and the immune cells (CD3þ, CD4þ, CD8þ T cells,
and CD20þ B cells). All survival analyses were performed
using two different end points: biochemical failure-free sur-
vival (BFFS) and clinical failure-free survival (CFFS). BF was
characterized as a PSA �0.4 ng/mL and increasing in
2725
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Figure 1 Immunohistochemistry microscopic images of tissue microarray
representing expression of CXCL16 in normal prostatic tissue with no expression
(A) and high expression (B) in tumor epithelial cells. C-X-C chemokine receptor
6 is highly expressed in single tumor epithelial cells (C) and in larger areas of
tumor tissue (D). Amounts of CD3þ (E) and CD20þ (F) T cells in one core from
the same area. Original magnification: �100; �400 (insets).

Richardsen et al
minimum of two different blood samples postoperatively. CF
was defined as verified local symptomatic progression and/or
verifiedmetastasis to bone, visceral organs, or lymph nodes on
computed tomography, magnetic resonance imaging, bone
scan, or ultrasonography. The Kaplan-Meier method was used
2726
to make plots of BFFS and CFFS in high versus low expression
of CXCL16 and CXCR6. Statistical differences were tested
with log-rank. Significant variables from the univariate analyses
were included in the multivariate survival analysis using a
backward stepwise Cox regression model with a probability for
stepwise entry removal at 0.05 and 0.10, respectively. The
significance level used was P < 0.05 for all analyses.

Results

Clinicopathological Variables and Patient
Characteristics

The patients’ demographic, clinical, and histopathological
characteristics are presented in Table 1. Their median age at
surgery was 62 (range, 47 to 75) years. The prostatectomies
were retropubic in 435 cases and perineal in 100 cases. The
patients did not receive preoperative hormonal therapy. At
last follow-up, 170 (32%) of the patients had BFFS, 36 (7%) of
the patients had CFFS, and 15 (3%) of the patients were dead
of PC. The median PSA was 8.8 (range, 0.7 to 104) ng/mL.
The median tumor size was 20 (range, 2.0 to 50) mm.

Expression of CXCL16 and CXCR6 and Correlations

The staining of CXCL16 was predominantly cytoplasmic,
with some membranous staining. CXCR6 staining was both
granular and cytoplasmic (Figure 1). There was frequent
co-expression between CXCL16 and CXCR6 (P < 0.001).
Overall, there was a high co-expression of CXCL16/CXCR6
in tumor tissue compared with normal prostatic tissue and
benign hyperplasia (both P < 0.001). When analyzing the
chemokines separately, we found a high expression of
Figure 2 Disease-specific survival according to
biochemical failure (biochemical failure-free sur-
vival) and clinical failure (clinical failure-free sur-
vival) in the total cohort: expression of CXCL16 (A)
and C-X-C chemokine receptor 6 (CXCR6; B). C and
D: Co-expression of CXCL16/CXCR6.

ajp.amjpathol.org - The American Journal of Pathology
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Table 2 Multivariate Models Including Significant Univariate
Analyses for Clinical Failure in All Patients

Factor HR 95% CI P value

Model 1 CF (n Z 36)
Gleason score
3 þ 3 1 <0.05
3 þ 4 2.30 0.72e7.39
4 þ 3 2.78 0.80e9.74
>7 7.04 2.19e22.61 <0.05

Perineural infiltration 2.17 1.04e4.54 <0.05
Positive surgical margin 2.92 1.40e6.08 <0.05
CXCL16 2.52 1.12e5.68 <0.05

Model 2
Gleason score
3 þ 3 1 <0.05
3 þ 4 2.53 0.80e7.98
4 þ 3 3.87 1.12e13.33 <0.05
>7 7.20 2.25e22.99 <0.001

Perineural infiltration 2.39 1.15e4.96 <0.05
Positive surgical margin 2.90 1.39e6.05 <0.05
CXCR6 2.29 1.10e4.82 <0.05

Model 3
Gleason score
3 þ 3 1 <0.05
3 þ 4 2.17 0.68e6.96
4 þ 3 3.52 1.00e12.34 <0.05
>7 6.46 1.96e21.32 <0.05

Vascular infiltration 2.92 1.24e6.89 <0.05
Positive surgical margin 3.36 1.62e6.95 <0.001
CXCL16/CXCR6 (low/low) 1 <0.05
CXCL16/CXCR6 (high/low) 2.23 0.64e7.77
CXCL16/CXCR6 (low/high) 2.50 0.58e10.82
CXCL16/CXCR6 (high/high) 5.11 1.65e15.87

Cox regression, backward conditional; n Z 535.
CF, clinical failure; CXCR, C-X-C chemokine receptor; HR, hazard

ratio.

Figure 3 A: The specificity of the CXCL16 antibody was determined by
Western blot analysis on cell lysate from the prostate cancer cell lines PC3 and
DU45. Actin was used as a loading control. In both cell lines, CXCL16 is detected
at the predicted molecular weight, with relatively small amounts of unspecific
binding. B and C: The silencing of CXCL16 resulted in increased proliferation for
both PC3 and DU145 cells. D: The rate of migration into the open area, after
removing the ibidi insert, increases when CXCL16 is silenced. siSCR, small
interfering scrambled.

PC, CXCL16, CXCR6, and Immune Cells
CXCL16 in tumor tissue compared with normal tissue
(P < 0.001), but there were no differences when comparing
TE with TS (P Z 0.446). High expression of CXCR6 was
found in tumor tissue compared with normal tissue
(P < 0.001). CXCR6 was significantly higher expressed in
TE compared with TS (P Z 0.008).

Co-expression of CXCL16/CXCR6 was correlated with
Gleason score >7 (P Z 0.009), vascular infiltration
(PZ 0.020), and positive circumferentialmargins (PZ 0.014).

We also found correlations between high expression of
CXCL16 in tumor compartment (TE þ TS) and CD3þ

T cells (P Z 0.034). A trend in the same direction was seen
for CD4þ T cells, but did not reach statistical significance
(P Z 0.079). CXCL16 and CXCR6 were not correlated to
CD3þ T cells, CD8þ T cells, or CD20þ B cells.

Univariate Analysis

Clinicopathological variables significant for BFFS were as
follows: pT stage (P < 0.001), preoperative PSA
(P < 0.001), Gleason score (P < 0.001), tumor size
The American Journal of Pathology - ajp.amjpathol.org
(P < 0.001), perineural infiltration (PNI; P < 0.001), pos-
itive surgical margin (PSM; P Z 0.04), circumferential
PSM (P < 0.001), apical PSM (P Z 0.04), and vascular
infiltration (P < 0.001). Clinicopathological variables sig-
nificant for CFFS were as follows: pT stage (P < 0.001), pN
stage (P < 0.001), Gleason grade (P < 0.001), tumor size
(P Z 0.019), PNI (P Z 0.001), PSM (P Z 0.038), non-
apical surgical margin (P < 0.001), and vascular infiltration
(P < 0.001) (Table 1).

When analyzing both tumor epithelial cells and tumor
stromal areas as one compartment, high expression of
CXCL16 was significantly associated with a reduction in
CFFS (PZ 0.017) (Figure 2A). High expression of CXCR6
was associated with a reduction in BFFS (P Z 0.003)
(Figure 2B), and a trend was found for CFFS (P Z 0.063).
High co-expression of CXCL16/CXCR6 was significantly
associated with a reduction in CFFS (P Z 0.023)
(Figure 2C) and BFFS (P Z 0.016) (Figure 2D).
2727
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Figure 4 Enhanced tumorigenesis directly or
indirectly through positive feedback loops be-
tween tumor cells, chemokines, and leukocytes.
Soluble (S)-CXCL16 secreted from cancer cells leads
to a positive feedback loop: directly through cross
talk with tumor cells, or indirectly by generating
inflammatory microenvironment facilitating tumor
cell growth. CXCR, C-X-C chemokine receptor; NK,
natural killer; TH1, type 1 helper T cell; TM,
transmembrane; TNF, tumor necrosis factor.
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When stratifying the analyses for the different surgical
centers (University Hospital of Northern Norway, St. Olav
Hospital, and Nordland Hospital), the results were the same.

Multivariate Analysis

High expression of CXCL16 (hazard ratio, 2.5; 95% CI,
1.2e5.7; P Z 0.025) was an independent predictor for
CFFS in addition to Gleason score >7, PNI, and PSM. High
CXCR6 expression (hazard ratio, 2.3; 95% CI, 1.1e4.8;
P Z 0.028) was also an independent prognostic factor for
CFFS as well as Gleason grade 4 þ 3, Gleason score >7,
PNI, and PSM. High co-expression of CXCL16 and
CXCR6 (hazard ratio, 5.1; 95% CI, 1.6e15.9; P Z 0.005),
Gleason grade 4 þ 3, Gleason score >7, vascular infiltra-
tion, and PSM were independent prognostic factors for
CFFS (Table 2).

Western Blot Analysis

Western blot analysis was used to verify the specificity of
the CXCL16 antibody (Figure 3A). The molecular weight of
the detected protein (strongest bands) corresponded well
with the predicted weight, as with the data provided by the
manufacturers. The weaker extra bands may represent
chemically modified degraded proteins or products of
alternative splicing. siRNA targeted against CXCL16
caused a marked decrease in the intensity of the bands,
compared with scrambled control siRNA. This confirms the
specificity of the antibodies.

Migration and Proliferation Assays

To uncover possible biological effects of CXCL16 in PC
cell lines, we evaluated effects of transient knockdown of
CXCL16 on cell proliferation and migration. To study
proliferation, we used the xCELLigence platform (Roche).
2728
This is a microelectric assay based on changing impedance
of bottom electrodes in the presence of the cells. We
repeatedly observed that knockdown of CXCL16 with
siRNA did cause activation of proliferation compared with
the negative scrambled control. This was evident from both
the growth curves and the doubling time calculations
(Figure 3B). To study migration, we used the ibidi culture
insert. The insert consists of two chambers separated by a
divider, and cells are loaded into the chamber. After cell
adhesion, the insert was removed and the migration rate into
the gap was calculated. Both DU145 and PC3 cells
exhibited increased migration ability after transient knock-
down of CXCL16 (Figure 3, C and D). The experiment was
repeated three times.

Discussion

In this large multicenter-cohort, we found that CXCL16 and
CXCR6, separately or co-expressed, were independent
predictors for CF in PC. Furthermore, CXCL16 and
CXCR6, independently or co-expressed, correlated with
Gleason score >7, positive circumferential margins,
vascular infiltration, and PNI, indicating a more aggressive
PC phenotype. CXCL16 and CXCR6 were both highly
expressed in PC tissue compared with normal epithelial cells
and normal stromal areas. Although positive expression of
CXCL16 was found in both tumor epithelial cells and tumor
stromal areas, CXCR6 was largely restricted to tumor
stromal areas.
The major strength of our study is the large multicenter

cohort and the long follow-up. Our results were internally
validated in three different cohorts. Few previous studies
have reported on the association between CXCL16,
CXCR6, and clinicopathological features in radical prosta-
tectomy specimens.
Consistent with others, we found a correlation between

high expression of CXCL16 and PC,19,22,25 and more
ajp.amjpathol.org - The American Journal of Pathology
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aggressive PC.4e6 There have been conflicting reports
regarding the role of CXCR6 in PC,5,31 and whether
CXCR6 is linked to PC prognosis. We found that high
expression of CXCR6 in tumor stromal areas directly
correlated to an increased risk of having BF, and a more
aggressive cancer. Moreover, we found a high correlation
between CXCL16 and CD3þ T cells.

CXCL16 and CXCR6 are expressed in inflammation-
associated cancers.17,18 The mechanisms are thought to be a
positive feedback loop between CXCL16, CXCR6, and the
tumor microenvironment.17e19 Precancerous or cancer cells
secrete CXCL16, which contributes to CXCR6-mediated
recruitment of leukocytes.31,32 Darash-Yahana et al17

found that CXCL16 and CXCR6 were expressed on
CD3þ T cells in the tumor microenvironment. Others have
reported that CXCR6 is expressed on CD4þ T cells, CD8þ

T cells, natural killer cells, and plasma cells,4e7,11 whereas
CXCL16 is expressed on tumor-associated macrophages,
dendritic cells, and B cells.8e10 We found a positive cor-
relation between CXCL16 and CD3þ T cells, but not B
cells. We found no correlation between CXCR6 and CD3þ

T cells (CD4þ, CD8þ), or CD20þ B cells, which is
consistent with some previous studies,17 but in contrast to
others.3,10 We have previously shown that infiltration of
CD8þ T cells in tumor stromal areas predicts an increased
rate of BF in PC.30 However, in this study, no correlation
between CD8þ T cells and CXCL16/CXCR6 was observed.
Herein, we demonstrated a correlation between CXCL16
and CD3þ T cells, suggesting that this chemokine may
serve as a marker for a relationship between inflammation
and PC.

Experimental studies have shown that CXCL16/CXCR6
induces cell proliferation and migration,13,16,18,33 and that
the ligand and its receptor are expressed in PC cell lines.23,25

Herein, we evaluated the effects of transient knockdown of
CXCL16 using siRNA on cell proliferation and migration in
two PC cell lines (DU145 and PC3). By siRNA-mediated
knockdown, nevertheless, we observed increased cell pro-
liferation and migration. This may be explained in two
ways: CXCL16 exists in a transmembrane form (TM-
CXCL16) and S-CXCL16,8,10 and tumor microenvironment
plays an important role in the cross talk between tumor
epithelial cells and tumor stromal cells (Figure 4).17,31,32 S-
CXCL16 induces immunocyte chemotaxis, whereas TM-
CXCL16 mediates cell-cell adhesion by binding to
CXCR6.18,34 Loss of cell adhesion may, therefore, explain
why CXCL16 knockdown leads to increased cell prolifer-
ation through the loss of contact inhibition. When decreased
cell adhesion takes place, it might promote detachment of
single cancer cells to migrate and establish elsewhere as
metastatic foci and contribute to worse prognosis. Our
immunohistochemistry findings showed that CXCL16 was
located in both cell membrane and cytoplasm, indicating
that CXCL16 was expressed in both the transmembrane and
soluble form. Transmembrane CXCL16 acts like a cell
adhesion molecule for cells expressing CXCR6, whereas
The American Journal of Pathology - ajp.amjpathol.org
S-CXCL16 induces the migration of CXCR6-expressing
cancer cells and enhances the proliferation of these
cells.3,8,10,17 In the functional studies, we did not distinguish
between TM-CXCL16 or S-CXCL16, and this may have
influenced our findings. We can only speculate whether our
results were mediated by TM-CXCL16, S-CXCL16, or
both.

More important, the PC cell lines we studied are not in
contact with any tumor microenvironment. In the absence of
stroma, the cross talk between tumor cells and the micro-
environment cannot take place. A study by Hojo et al34 on
colorectal cancer observed higher levels of CD4þ and CD8þ

T cells in cancer tissue, with high TM-CXCL16 expression.
TM-CXCL16 predicted good prognosis, whereas high
serum-soluble CXCL16 was a signal of poor prognosis.34

However, it still remains to uncover which forms of the
CXCL16 are involved in PC aggressiveness, and how
CXCL16 and CXCR6 contribute in prostate carcinogenesis.

Conclusion

CXCL16 and CXCR6 are highly expressed in aggressive
prostatic tumors and are independent negative predictors for
clinical failure-free survival. Our findings underline the in-
fluence of these chemokines in PC and strengthen the
argument for immunological approaches in its treatment.

Acknowledgments

We thank Mona Pedersen, Magnus Persson, and Mehrdad
Rakaeekhanehkenari for technical help.

References

1. Allavena P, Germano G, Marchesi F, Mantovani A: Chemokines in
cancer related inflammation. Exp Cell Res 2011, 317:664e673

2. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P,
Bonecchi R: The chemokine system in cancer biology and therapy.
Cytokine Growth Factor Rev 2010, 21:27e39

3. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ,
Genovese MC, Greenberg HB, Butcher EC: Bonzo/CXCR6 expression
defines type 1-polarized T-cell subsets with extralymphoid tissue
homing potential. J Clin Invest 2001, 107:595e601

4. Unutmaz D, Xiang W, Sunshine MJ, Campbell J, Butcher E,
Littman DR: The primate lentiviral receptor Bonzo/STRL33 is coor-
dinately regulated with CCR5 and its expression pattern is conserved
between human and mouse. J Immunol 2000, 165:3284e3292

5. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A,
Yoshie O: Cutting edge: profile of chemokine receptor expression on
human plasma cells accounts for their efficient recruitment to target
tissues. J Immunol 2003, 170:1136e1140

6. Heydtmann M, Adams DH: Chemokines in the immunopathogenesis
of hepatitis C infection. Hepatology 2009, 49:676e688

7. Sato T, Thorlacius H, Johnston B, Staton TL, Xiang W, Littman DR,
Butcher EC: Role for CXCR6 in recruitment of activated CD8þ
lymphocytes to inflamed liver. J Immunol 2005, 174:277e283

8. Matloubian M, David A, Engel S, Ryan JE, Cyster JG: A trans-
membrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat
Immunol 2000, 1:298e304
2729

http://refhub.elsevier.com/S0002-9440(15)00383-1/sref1
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref1
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref1
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref2
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref2
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref2
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref2
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref3
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref3
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref3
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref3
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref3
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref4
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref4
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref4
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref4
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref4
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref5
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref5
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref5
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref5
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref5
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref6
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref6
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref6
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref7
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref7
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref7
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref7
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref8
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref8
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref8
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref8
http://ajp.amjpathol.org


Richardsen et al
9. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T,
Yonehara S: Molecular cloning of a novel scavenger receptor for
oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol
Chem 2000, 275:40663e40666

10. Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P,
Andrew DP, Wu L, Briskin M: Expression cloning of the
STRL33/BONZO/TYMSTR ligand reveals elements of CC, CXC, and
CX3C chemokines. J Immunol 2001, 66:5145e5154

11. Tohyama M, Sayama K, Komatsuzawa H, Hanakawa Y, Shirakata Y,
Dai X, Yang L, Tokumaru S, Nagai H, Hirakawa S, Sugai M,
Hashimoto K: CXCL16 is a novel mediator of the innate immunity of
epidermal keratinocytes. Int Immunol 2007, 19:1095e1102

12. Deng L, Chen N, Li Y, Zheng H, Lei Q: CXCR6/CXCL16 functions as
a regulator in metastasis and progression of cancer. Biochem Biophys
Acta 2010, 1806:42e49

13. Hattermann K, Ludwig A, Gieselmann V, Held-Feindt J, Mentlein R:
The chemokine CXCL16 induces migration and invasion of glial
precursor cells via its receptor CXCR6. Mol Cell Neurosci 2008, 39:
133e141

14. Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J, Mitch WE:
Chemokine CXCL16 regulates neutrophil and macrophage infiltration
into injured muscle, promoting muscle regeneration. Am J Pathol
2009, 175:2518e2527

15. van Lieshout AWT, Popa C, Meyer-Wentrup F, Lemmers HL,
Stalenhoef AF, Adema GJ, van Riel PL, van Tits LJ, Radstake TR:
Circulating CXCL16 is not related to circulating oxLDL in patients with
rheumatoid arthritis. Biochem Biophys Res Commun 2007, 355:392e397

16. Diegelmann J, Seiderer J, Niess JH, Haller D, Göke B, Reinecker HC,
Brand S: Expression and regulation of the chemokine CXCL16 in
Crohns disease and models of intestinal inflammation. Inflamm Bowel
Dis 2010, 16:1871e1881

17. Darash-Yahana M, Gillespie JW, Hewitt SM, Chen YYK, Maeda S,
Stein I, Singh SP, Bedolla RB, Peled A, Troyer DA, Pikarsky E,
Karin M, Farber JM: The chemokine CXCL16 and its receptor,
CXCR6, as markers and promoters of inflammation-associated can-
cers. PLoS One 2009, 4:e6695

18. Hu W, Liu Y, Zhou W, Si L, Ren L: CXCL16 and CXCR6 are
coexpressed in human lung cancer in vivo and mediate the invasion of
lung cancer cell lines in vitro. PLoS One 2014, 9:e99056

19. Meijer J, Ogink J, Kreike B, Nuyten D, De Visser KE, Roos E: The
chemokine receptor CXCR6 and its ligand CXCL16 are expressed
in carcinomas and inhibit proliferation. Cancer Res 2008, 68:
4701e4708

20. De Marzo AM, Marchi VL, Epstein JI, Nelson WG: Proliferative in-
flammatory atrophy of the prostate: implications for prostatic carci-
nogenesis. Am J Pathol 1999, 155:1985e1992
2730
21. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG,
Nakai Y, Isaacs WB, Nelson WG: Inflammation in prostate carcino-
genesis. Nat Rev Cancer 2007, 7:256e269

22. Zhou W, Hu W, Wu Z, Zheng X, Wang B: Role of CXCL16/CXCR6
axis in the metastasis of human prostate cancer. Zhonghua Yi Xue Za
Zhi 2010, 90:947e951

23. Hu W, Zhen X, Xiong B, Wang B, Zhang W, Zhou W: CXCR6 is
expressed in human prostate cancer in vivo and is involved in the in vitro
invasion of PC3 and LNCap cells. Cancer Sci 2008, 99:1362e1369

24. Ha HK, Lee W, Park HJ, Lee SD, Lee JZ, Chung MK: Clinical sig-
nificance of CXCL16/CXCR6 expression in patients with prostate
cancer. Mol Med Rep 2011, 4:419e424

25. Lu Y, Wang J, Xu Y, Koch AE, Cai Z, Chen X, Galson DL,
Taichman RS, Zhang J: CXCL16 functions as a novel chemotactic factor
for prostate cancer cells in vitro. Mol Cancer Res 2008, 6:546e554

26. Epstein JI: An update of the Gleason grading system. J Urol 2010, 183:
433e440

27. Helpap B, Egevad L: Modified Gleason grading: an updated review.
Histol Histopathol 2009, 24:661e666

28. Andersen S, Richardsen E, Nordby Y, Ness N, Størkersen O, Al-
Shibli K, Donnem T, Bertilsson H, Busund LT, Angelsen A,
Bremnes RM: Disease-specific outcomes of radical prostatectomies in
Northern Norway: a case for the impact of perineural infiltration and
postoperative PSA-doubling time. BMC Urol 2014, 14:49

29. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L,
Gemmill RM, Drabkin HA, Franklin WA: High-throughput tissue
microarray analysis used to evaluate biology and prognostic signifi-
cance of the E-cadherin pathway in non-small-cell lung cancer. J Clin
Oncol 2002, 15:2417e2428

30. Ness N, Andersen S, Valkov A, Nordby Y, Donnem T, Al-Saad S,
Busund LT, Bremnes RM, Richardsen E: Infiltration of CD8þ lym-
phocytes is an independent prognostic factor of biochemical failure-
free survival in prostate cancer. Prostate 2014, 74:1452e1461

31. Raman D, Baugher PJ, Thu YM, Richmond A: Role of chemokines in
tumor growth. Cancer Lett 2007, 28:137e165

32. De Marzo AM, Nakai Y, Nelson WG: Inflammation, atrophy, and
prostate carcinogenesis. Urol Oncol 2007, 25:398e400

33. Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Marzo AM,
Isaacs WB, Nelson WG: Prostate carcinogenesis and inflammation:
emerging insights. Carcinogenesis 2005, 26:1170e1181

34. Hojo S, Koizumi K, Tsuneyama K, Arita Y, Cui Z, Shinohara K,
Minami T, Hashimoto I, Nakayama T, Sakurai H, Takano Y,
Yoshie O, Tsukada K, Saiki I: High-level expression of chemokine
CXCL16 by tumor cells correlates with a good prognosis and increased
tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res 2007,
67:4725e4731
ajp.amjpathol.org - The American Journal of Pathology

http://refhub.elsevier.com/S0002-9440(15)00383-1/sref9
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref9
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref9
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref9
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref9
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref10
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref10
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref10
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref10
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref10
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref11
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref11
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref11
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref11
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref11
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref12
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref12
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref12
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref12
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref13
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref13
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref13
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref13
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref13
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref14
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref14
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref14
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref14
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref14
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref15
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref15
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref15
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref15
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref15
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref16
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref16
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref16
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref16
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref16
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref17
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref17
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref17
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref17
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref17
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref18
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref18
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref18
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref19
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref19
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref19
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref19
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref19
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref20
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref20
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref20
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref20
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref21
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref21
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref21
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref21
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref22
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref22
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref22
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref22
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref23
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref23
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref23
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref23
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref24
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref24
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref24
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref24
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref25
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref25
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref25
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref25
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref26
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref26
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref26
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref27
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref27
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref27
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref28
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref28
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref28
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref28
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref28
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref29
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref30
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref31
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref31
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref31
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref32
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref32
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref32
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref33
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref33
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref33
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref33
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://refhub.elsevier.com/S0002-9440(15)00383-1/sref34
http://ajp.amjpathol.org


 

 

 
 


	Paper III.pdf
	The Prognostic Significance of CXCL16 and Its Receptor C-X-C Chemokine Receptor 6 in Prostate Cancer
	Materials and Methods
	Patients and Tissue Samples
	Microarray Construction
	Immunohistochemistry
	Scoring of Immunohistochemistry
	Western Blot Analysis
	Cell Culture
	RNA Interference
	Proliferation Assay
	Migration Assay
	Statistical Analysis

	Results
	Clinicopathological Variables and Patient Characteristics
	Expression of CXCL16 and CXCR6 and Correlations
	Univariate Analysis
	Multivariate Analysis
	Western Blot Analysis
	Migration and Proliferation Assays

	Discussion
	Conclusion
	Acknowledgments
	References



