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Mikhail Khadyko . Bjørn Håkon Frodal . Odd Sture Hopperstad

Received: 23 April 2020 / Accepted: 26 November 2020 / Published online: 18 February 2021

� The Author(s) 2021

Abstract In the present study, a hypoelastic–plastic

formulation of porous crystal plasticity with a regu-

larized version of Schmid’s law is proposed. The

equation describing the effect of the voids on plasticity

is modified to allow for an explicit analytical solution

for the effective resolved shear stress. The regularized

porous crystal plasticity model is implemented as a

material model in a finite element code using the

cutting plane algorithm. Fracture is described by

element erosion at a critical porosity. The proposed

model is used for two test cases of two- and three-

dimensional polycrystals deformed in tension until

full fracture is achieved. The simulations demonstrate

the capability of the proposed model to account for the

interaction between different modes of strain local-

ization, such as shear bands and necking, and the

initiation and propagation of ductile fracture in large

scale polycrystal models with detailed grain descrip-

tion and realistic boundary conditions.

Keywords Crystal plasticity � Ductile fracture �
Finite element method � Plasticity integration

1 Introduction

For many types of Al alloys and steels fracture occurs

by ductile fracture mechanisms, namely the nucle-

ation, growth and coalescence of microscopic voids.

Ductile fracture has been studied extensively due to its

practical importance, but also because it is a funda-

mentally interesting complex multiscale process. The

ductile fracture process involves material deforming

plastically around micron-sized particles and voids at

complex stress states.

The problem of plastic deformation in a material

containing a void has been approached analytically

since McClintock’s analysis of a cylindrical void in an

infinite plastic medium (McClintock 1968) and Rice

and Tracey’s expression for exponential void growth

due to the hydrostatic stress (Rice and Tracey 1969).

In the seminal work of Gurson (1977), limit analysis

was applied to a spherical void in a von Mises plastic

medium to derive the yield function for the porous

material. A phenomenological approach based on
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continuum thermodynamics was proposed in Rousse-

lier (1981), where ductile damage was introduced as a

pressure-dependent term in the macroscopic plastic

potential. At the same time, the development of the

finite element method allowed for modelling the

behaviour of a void in a medium numerically. One

of the first finite element models of a porous material

unit cell was presented by Needleman (1972). The unit

cell models may predict the behaviour of any complex

non-linear material with voids of arbitrary shape, size

and position relative to each other. It can also provide

both global averaged stresses and strains, and the local

microscopic stress and strain fields around the voids,

including the effects of void interaction and strain

localization (Dæhli et al. 2017a, b). Unit cell simula-

tions provide a way to validate the analytical porous

plasticity models (Guo and Li 2019). The Gurson

model showed some deviations from the unit cell

results and accordingly a phenomenological correc-

tion to the model was proposed in Tvergaard (1981).

Coefficients were introduced to account for the void

shape change from spherical during deformation, void

interactions and work hardening of the material. Other

modifications to the Gurson model were proposed over

the years. Several populations of voids with different

sizes were analysed in Perrin and Leblond (1990) and

void coalescence in Koplik and Needleman (1988).

Other modifications include improved formulation for

matrix material with high work hardening rate

(Leblond et al. 1995), kinematic hardening (Besson

and Guillemer-Neel 2003; Mear and Hutchinson 1985;

Mühlich and Brocks 2003), ellipsoidal void shape

(Benzerga et al. 2004; Gologanu et al. 1993; Pardoen

and Hutchinson 2000), and viscoplastic matrix (Flandi

and Leblond 2005; Moran et al. 1991).

Thermomechanical processing of metals may

reorient the grains and produce certain crystallo-

graphic textures. Texture is the primary source of

plastic anisotropy in metals (Barlat 1987). Several

works combined the porous plasticity model of Gurson

with plastic anisotropy of the matrix material. One

simple way to obtain such a modification is to replace

the von Mises norm of the stress tensor in the Gurson

yield function with the norm of the corresponding

anisotropic yield function. Most often the anisotropic

yield function by Hill (1948) has been used (Doege

et al. 1995; Grange et al. 2000; Rivalin et al. 2001;

Wang et al. 2004). The anisotropic yield function by

Barlat et al. (2005) was used in Dæhli et al. (2017a)

instead. On the other hand in Benzerga and Besson

(2001), Benzerga et al. (2004) and Monchiet et al.

(2008) the porous plasticity model is derived from the

initial assumption of an anisotropic matrix.

A more direct way to include plastic anisotropy into

the modelling of ductile materials is using crystal

plasticity instead of phenomenological anisotropic

plasticity. In the case of ductile fracture in metals, the

voids nucleate and grow inside grains or at the

boundaries between two grains at the micron and

submicron scale. Therefore, it is natural to try using

crystal plasticity to model the ductile crystal grain

behaviour instead of phenomenological plasticity,

which describes the averaged plastic behaviour of

polycrystals. An early attempt to analyse the beha-

viour of voids inside a crystal grain can be found in

Nemat-Nasser and Hori (1987) for a 2D case. Analyt-

ical derivation of a porous plasticity model is not

trivial even for a von Mises material. It is even more

challenging for the complex plasticity description of

crystals. Several approaches exist that allowed such

derivations. One approach uses limit analysis, in the

same vein as Gurson (1977). An example of this

approach is presented in Han et al. (2013), which also

adds the additional free parameters to fit the behaviour

of the model to unit cell simulations, analogous to

Tvergaard’s extension of the Gurson model. The

model was reformulated for finite deformations by

Ling et al. (2016). Other examples of this approach

include Paux et al. (2015) and Paux et al. (2018).

Another approach, called the non-linear variational

homogenization method, was developed by Ponte

Castañeda (1991). It is a general approach of mod-

elling heterogeneous plastic materials, which was

subsequently applied to voided crystals with ellip-

soidal voids (Mbiakop et al. 2015a, b). Interestingly,

when this approach is combined with unit cell

simulation results, it produces yield functions that

are quite similar to the one derived in Han et al. (2013).

In recent works (Song and Ponte Castañeda

2017a, b, c), the evolution of the void shape and the

subsequent morphological anisotropy of the porous

material were included in the model. A third approach,

based on sequential laminates of infinite rank, was

used to derive the yield function of a porous crystal in

Joëssel et al. (2018). Another approach to studying

fracture in polycrystals, which is currently developing,

is the combination of phase field modelling and crystal

plasticity (De Lorenzis et al. 2016; Diehl et al. 2017;
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Padilla and Markert 2017). In addition, some works try

to formulate and implement micromorphic size-de-

pendent porous crystal plasticity (Ling et al. 2018) or

add a void coalescence criterion (Hure 2019; Siddiq

2019).

In these studies, the porous crystal plasticity models

were developed and, in some cases, validated using

unit cell models. Very few works have attempted to

further use the models to investigate fracture phenom-

ena in crystals, although in Ling et al. (2016) and Ling

et al. (2018) 2D single crystal tensile tests were

simulated. The crystal plasticity models are computa-

tionally heavy by themselves, and introducing porous

plasticity introduces another layer of complexity.

Porous crystal plasticity models derived based on

limit analysis (Han et al. 2013) or variational homog-

enization (Song and Ponte Castañeda 2017a) require

iterative calculations in each timestep of the temporal

integration of the rate constitutive equations. On the

other hand fracture in a polycrystal is preceded by a

complex stress and strain history with a combination

of different types of strain localization (necking and

shear banding), crystal orientation evolution and

heterogeneous stress fields (Di Gioacchino and da

Fonseca 2015; Guery et al. 2016; Lim et al. 2014).

Modelling these processes requires finite element

models of the grain structure with a high resolution

that are stable for large deformation processes.

Therefore, an accurate, robust and computationally

effective numerical implementation of porous crystal

plasticity models for finite element analysis is an

important task.

In the present study, an implementation of the

porous crystal plasticity model in the finite element

solver LS-DYNA is described, where the regulariza-

tion of Schmid’s law proposed by Zamiri and Pour-

boghrat (2010) is adopted for the porous crystal

plasticity model proposed by Han et al. (2013). The

main equation of the porous crystal plasticity model is

modified to allow explicit solution for the effective

resolved shear stress. The proposed constitutive model

is implemented in the commercial finite element code

with an element erosion criterion based on critical

porosity. It is then used to simulate the deformation

until fracture of polycrystals in plane-strain tension

(2D) and uniaxial tension (3D), demonstrating the

complex interaction between the heterogeneous grain

structure, different modes of strain localization and

fracture initiation and propagation in polycrystals with

realistic grain structures and boundary conditions.

2 Regularized porous crystal plasticity model

The plastic deformation of crystals is assumed to be

due to plastic slip on a set of crystallographic slip

systems, defined by the slip plane normal n að Þ and slip

direction m að Þ, where n að Þ and m að Þ are unit vectors,

a 2 1; . . .;N½ � signify the slip system, and N is the

number of slip systems. Twinning, grain boundary

sliding, and other deformation types are not consid-

ered. The FCC lattice is assumed, with N ¼ 12

independent slip systems of the 111f gh110i family.

The elastic deformations are assumed to remain small,

while the plastic deformations and rotations can be

finite. For a detailed description of crystal plasticity,

the reader is referred to Roters et al. (2010).

The velocity gradient tensor L of the crystalline

material can be additively decomposed into elastic Le

and plastic Lp parts:

L ¼ _F � F�1 ¼ Le þ Lp ð1Þ

where F is the deformation gradient tensor. The

velocity gradient tensor may be decomposed into the

symmetric rate-of-deformation tensor D and the skew-

symmetric spin tensor W:

L ¼ D þ W; D ¼ 1

2
L þ LT
� �

¼ sym Lð Þ;

W ¼ 1

2
L � LT
� �

¼ skew Lð Þ
ð2Þ

The and operations produce

correspondingly the symmetric and skew-symmetric

parts of the tensor. The total rate-of-deformation and

spin tensors can also be decomposed into elastic and

plastic parts:

D ¼ De þ Dp; W ¼ We þ Wp ð3Þ

It will be assumed here that the elastic deformations

are infinitesimal, which is a reasonable assumption for

metals. Accordingly, the elastic spin tensor We

consists of an infinitesimal elastic contribution and

rigid spin of the crystal lattice, whereas the plastic spin

tensor Wp is caused by plastic slip.

The crystal lattice undergoes finite rotations during

the deformation. Therefore, it is convenient to define a

co-rotational coordinate system that rotates with the
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crystal lattice. The orthogonal rotation tensor R

defines the rotation from the global (fixed) basis ei to

the co-rotational basis êi. In the following, denotes

vectors and tensors defined in the co-rotational

system:

êi ¼ R � ei ð4Þ

where RT � R ¼ R � RT ¼ I and I is the second-order

identity tensor. By definition, the plastic spin Wp does

not affect the slip system vectors n að Þ and m að Þ, which

rotate with the elastic spin We:

_ma ¼ We � ma; _na ¼ We � na ð5Þ

Accordingly, the rotation tensor evolves with the

elastic spin:

_R ¼ We � R ð6Þ

The slip system vectors in the global system are

then related to the same vectors in the co-rotational

coordinate system as:

ma ¼ R � m̂a; na ¼ R � n̂a ð7Þ

Similarly, the rate-of-deformation and spin tensors

in the two basis systems are related as:

D ¼ R � D̂ � RT; W ¼ R � Ŵ � RT ð8Þ

The inverse transformations from the global to the

co-rotational system are readily obtained by the

orthogonality of the rotation tensor. A description of

the co-rotational formulation of hypoelastic crystal

plasticity may be found in Zhang et al. (2014).

The co-rotational stress tensor r̂ is obtained from

the rate form of the generalized Hooke’s law in the co-

rotational coordinate system:

_̂r ¼ Ĉ : D̂
e ð9Þ

where Ĉ is the fourth-order elasticity tensor in the co-

rotational system, which may be assumed constant,

and D̂
e

is the elastic part of D̂. For the FCC lattice, the

elasticity tensor has three independent constants, ĉ11,

ĉ12 and ĉ44, which describe the elastic anisotropy of

the crystal. In Voigt notation Ĉ may be written as

Ĉ ¼

ĉ11 ĉ12 ĉ12 0 0 0

ĉ12 ĉ11 ĉ12 0 0 0

ĉ12 ĉ12 ĉ11 0 0 0

0 0 0 ĉ44 0 0

0 0 0 0 ĉ44 0

0 0 0 0 0 ĉ44

2

6666664

3

7777775

ð10Þ

The resolved shear stress sa is defined as the

projection of the co-rotational stress tensor r̂ onto slip

system a:

sa ¼ m̂a � r̂ � n̂a ð11Þ

The porous crystal plasticity model proposed by

Han et al. (2013) and reformulated for finite deforma-

tions in Ling et al. (2016) is applied in this study, using

the co-rotational stress formulation. The void volume

fraction denoted f is the evolving material parameter.

The effective resolved shear stress saeff on slip system

a, which accounts for the effects of the voids, is

defined by:

sa

saeff

� �2

þa
2

45
f

rvM

saeff

� �2

þ2q1f cosh q2

ffiffiffiffiffi
3

20

r
rH

saeff

 !

� 1 � q2
1f

2 ¼ 0

ð12Þ

where a, q1 and q2 are the parameters, like those

introduced into the Gurson model by Tvergaard

(1981), that improve the global accuracy and bring

the predictions closer to unit cell simulation results.

The von Mises norm of the Cauchy stress is denoted

rvM and the hydrostatic stress is denoted rH. The sign

of the effective resolved shear stress saeff is the same as

the sign of the corresponding resolved shear stress sa

on slip system a.

An iterative process, e.g. a Newton–Raphson

scheme, is required to find saeff for each time step

because Eq. (12) cannot be solved analytically, and

this is considered a disadvantage in the numerical

implementation of the porous crystal plasticity model.

To circumvent this problem, the hyperbolic cosine in

Eq. (12) is here approximated by the first four

members of the Taylor polynomial:

cosh q2

ffiffiffiffiffi
3

20

r
rH
saeff

 !

� 1 þ
X4

k¼1

1

2kð Þ! q2

ffiffiffiffiffi
3

20

r
rH

saeff

 !2k

ð13Þ
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The polynomial approximation allows solving for

saeff explicitly. The resulting expression is a quartic

equation with respect to 1=saeff

� �2
. Using more terms

in the series expansion leads to higher-order polyno-

mial equations, which have no known analytical roots.

Using less terms would result in less computations but

becomes a compromise with accuracy.

In Zamiri and Pourboghrat (2010), a regularized

yield function for crystal plasticity is proposed, which

is used in this study. The problem of elastoplastic

deformation is interpreted as a constrained optimiza-

tion problem, where the slip increments (or slip rates)

are the Lagrange multipliers and the constraints are

defined by:

Ua ¼
saeff

�� ��

sacr

� 1� 0; a ¼ 1; . . .; 12 ð14Þ

According to Kreisselmeier and Steinhauser

(1980), the set of the 12 exact constraints can be

replaced by the following form also known as the KS-

function:

U ¼ 1

q
ln

X12

a¼1

exp q
saeff

�� ��

sacr

� 1

� �� 	( )

� 0 ð15Þ

which is a domain enclosed by a smooth envelope of

the convex polytope. The parameter q defines how

close the envelope approaches the polytope.

The plastic velocity gradient tensor L̂
p

is obtained

from the yield function and the normality rule:

L̂
p ¼ 1 � fð Þ _k oU

or̂
ð16Þ

where _k is the plastic parameter and the factor 1 � f

reflects the volume fraction of the single crystal in

which plastic dissipation occurs (Besson 2009). Note

that the symmetry of r̂ was not enforced in the

differentiation to obtain the generally non-symmetric

tensor L̂
p

by means of the normality rule, see Ling

et al. (2016). The plastic rate-of-deformation tensor D̂
p

and the spin tensor Ŵ
p

are then defined as the

symmetric and skew-symmetric parts of L̂
p
, respec-

tively. Using the chain rule, we get:

L̂
p ¼ 1 � fð Þ

X12

a¼1

_ca
osaeff

or̂
ð17Þ

where the slip rates _ca are expressed as:

_ca ¼ _k
oU
osaeff

¼ _k

sgn sað Þ
sacr

exp q
sa

effj j
sacr

� 1

� �� 	

P12
b¼1 exp q

sb
effj j
sbcr

� 1

� �� 	 ð18Þ

The partial derivative osaeff=or̂ for the adopted

polynomial approximation is given in Appendix 1.

The plastic dissipation of the porous single crystal

takes the form:

P ¼ r̂ : D̂
p ¼ 1 � fð Þ

X12

a¼1

saeff _c
a

¼ 1 � fð Þ _k
X12

a¼1

sa
effj j
sacr

exp q
sa

effj j
sacr

� 1

� �� 	

P12
b¼1 exp q

sb
effj j
sbcr

� 1

� �� 	 ð19Þ

where it was used that saeff is a homogeneous function

of degree one in r̂ (Han et al. 2013). We note that the

plastic dissipation is non-negative for f � 1 and

sacr [ 0. By assuming a plastically incompressible

matrix material, the evolution of the void volume

fraction due to growth of existing voids is given by:

_f ¼ 1 � fð Þtr D̂
p


 �
ð20Þ

In the current version of the regularized porous

crystal plasticity model, we have neglected void

nucleation and void coalescence, but these phenomena

can be readily included at the cost of adding some

extra material parameters.

The crystals work-harden during the plastic defor-

mation due to dislocation accumulation. This is

reflected in the model by the slip resistance increasing

with the accumulated slip. The evolution of the slip

resistance is described by the equation:

_sacr ¼
X12

b¼1

hab _cb
�� �� ð21Þ

where hab is the instantaneous hardening matrix.

Various work hardening rules for single crystals are

described in the literature. In the present study, the

exact form of the work hardening rule is not important,

thus for simplicity the Voce hardening rule is used.
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The instantaneous hardening matrix is decomposed

into the latent hardening matrix qab and the self-

hardening rate of slip systems H Cð Þ:

hab Cð Þ ¼ qabH Cð Þ ð22Þ

where C is the total accumulated slip defined as:

C ¼ r
t

0

X12

a¼1

_caj jdt ð23Þ

The latent hardening matrix is defined by:

qab ¼ 1; if a ¼ b
q; if a 6¼ b

�
ð24Þ

where a commonly used value of q ¼ 1:4 is assumed.

The self-hardening rate is equal to:

H Cð Þ ¼
XNV

k¼1

hkexp � hk
sk

C

� �
ð25Þ

where NV is the number of terms describing the work

hardening, hk and sk are the material parameters,

which are usually fitted to the experimental stress–

strain curve. The initial slip resistance is assumed the

same for all slip systems and is denoted scr;0.

The loading–unloading conditions of the regular-

ized porous crystal plasticity model are defined in

Kuhn–Tucker form as

U� 0; _k� 0; _kU ¼ 0 ð26Þ

and used to determine the plastic parameter _k.

3 Temporal integration algorithm

In the following, a stress-update algorithm is devised

for explicit finite element simulations (Hallquist

2006), assuming that the time increments are small.

The stress state and all state variables are updated by

the cutting plane algorithm (CPA). It is assumed that

all quantities at time tn are known, e.g. Fn, r̂n, Cn, sacr;n,

fn and Rn, and in addition the deformation gradient

Fnþ1 at time tnþ1 is known. The rotation tensor R0 is

initialized at the start of the simulation using the initial

Euler angles of the crystal and the slip resistances are

all given the same initial value, i.e., sacr;0 ¼ scr;0. The

initial value of the void volume fraction is f0.

The velocity gradient L at time

tnþ1=2 ¼ ð1=2Þ tn þ tnþ1ð Þ, i.e., at the half-step, is

estimated as:

Lnþ1=2 ¼ 2

Dtnþ1

Fnþ1 � Fnð Þ � Fn þ Fnþ1ð Þ�1 ð27Þ

where Dtnþ1 ¼ tnþ1 � tn is the time increment, and

thus the rate-of-deformation and spin tensors are given

by:

Dnþ1=2 ¼ sym Lnþ1=2

� �
; Wnþ1=2 ¼ skew Lnþ1=2

� �

ð28Þ

The rate-of-deformation tensor is transformed to

the co-rotational coordinate system according to:

D̂nþ1=2 ¼ RT
n � Dnþ1=2 � Rn ð29Þ

It is useful to introduce the incremental strain and

plastic strain tensors:

Dêp
nþ1 ¼ D̂

p

nþ1=2Dtnþ1;Dê
p
nþ1 ¼ D̂

p

nþ1=2Dtnþ1 ð30Þ

and, analogously, the incremental plastic rotation

tensor:

Dx̂p
nþ1 ¼ Ŵ

p

nþ1=2Dtnþ1 ð31Þ

First, the incremental plastic strain and rotation

tensors Dêp
nþ1 and Dx̂p

nþ1, the slip increments Dcanþ1 ¼
_canþ1=2Dtnþ1; and the iterative change of the plastic

multiplier dk are initialized to zero. The trial stress

tensor is defined by:

r̂trial ¼ r̂n þ Ĉ : Dênþ1 ð32Þ

With the trial stress tensor calculated, the iteration

scheme of the CPA is initialized. The value of the yield

function with the current stress is evaluated. To this

end, the stress tensor r̂i is first used to calculate the

resolved shear stress sai according to Eq. (11), where i

is an iteration counter. Then, after the von Mises stress

rvM;i and hydrostatic stress rH;i are calculated,

Eq. (12) modified according to Eq. (13) is solved to

obtain the effective resolved shear stress saeff;i. The

latter quantity is then used together with the slip

resistances sacr;i to calculate the value of the yield

function Ui. In the first iteration, r̂i ¼ r̂trial i ¼ 0ð Þ. If

the value of Ui is less or equal to a tolerance parameter

(tol ¼ 1:0 � 10�10), then the stress is lying within the

yield surface and the iterations are stopped with the
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current stress value. If Ui is larger than the tolerance

parameter, then the stress is outside the yield surface

and the return map is initiated to re-establish

consistency.

To this end, the yield function is linearized about

the current state of the material and the result is:

Uiþ1 ¼ Ui þ
oU
or̂

� �

i

dr̂iþ1 þ
oU
osacr

� �

i

dsacr;iþ1

þ oU
of

� �

i

dfiþ1 ¼ 0

ð33Þ

where the partial derivatives of U and the iterative

changes of the independent variables are given in

Appendices A and B. Based on this linearization, the

iterative change of the plastic multiplier is calculated

as:

dkiþ1 ¼ Ui

1 � fið Þsym oU
or̂

� �T

i
: Ĉ : sym oU

or̂

� �
i
�Hi

ð34Þ

where the minor symmetry of the elasticity tensor was

used, and the auxiliary variable Hi is introduced as

Hi ¼
X12

a¼1

X12

b¼1

hab Cið Þ oU
osacr

� �

i

oU

osbeff

 !

i

�����

�����

þ oU
of

� �

i

1 � fið Þ2
tr

oU
or̂

� �

i

ð35Þ

With dkiþ1 given, the incremental plastic strain and

rotation tensors and the plastic slip increments are

updated according to:

Dêp
iþ1 ¼ Dêp

i þ dkiþ1 1 � fið Þsym
oU
or̂

� �

i

ð36Þ

Dx̂p
iþ1 ¼ Dx̂p

i þ dkiþ1 1 � fið Þskew
oU
or̂

� �

i

ð37Þ

Dcaiþ1 ¼ Dcai þ
dkiþ1

Ai

sgn sai
� �

sacr;i

exp q
saeff;i

���
���

sacr;i
� 1

0

@

1

A

2

4

3

5

ð38Þ

where

Ai ¼
X12

b¼1

exp q
sbeff;i

���
���

sbcr;i

� 1

0

@

1

A

2

4

3

5 ð39Þ

The accumulated total slip is updated by:

Ciþ1 ¼ Cn þ
X12

a¼1

Dcaiþ1

�� �� ð40Þ

Using Eq. (21) the updated slip resistances sacr;iþ1

are found as:

sacr;iþ1 ¼ sacr;i

þ dkiþ1

Ai

X12

b¼1

hab Ciþ1ð Þ
sbcr;i

exp q
sbeff;i

���
���

sbcr;i
� 1

0

@

1

A

2

4

3

5

ð41Þ

The void volume fraction is updated by:

fiþ1 ¼ fi þ dkiþ1 1 � fið Þ2
tr

oU
or̂

� �

i

ð42Þ

and finally, the stress tensor is updated by the plastic

corrector:

r̂iþ1 ¼ r̂i � dkiþ1 1 � fið ÞĈ : sym
oU
or̂

� �

i

ð43Þ

At this point, the iteration number i is incremented

and the iteration is repeated.

When convergence is reached and the magnitude of

Uiþ1 is below the tolerance value, the iterations are

stopped. The final values of the stress tensor r̂nþ1, the

plastic rate-of-deformation tensor D̂
p

nþ1=2, the plastic

spin tensor Ŵ
p

nþ1=2, the slip resistance sacr;nþ1, the

accumulated slip Cnþ1 and the slip rates _canþ1=2 are

obtained from the values of the last iteration. The

plastic spin tensor is then rotated to the global

coordinate system:

Wp

nþ1=2
¼ Rn � Ŵ

p

nþ1=2 � RT
n ð44Þ

To update the rotation tensor, first the incremental

elastic rotation Dxe
nþ1 is found as:

Dxe
nþ1 ¼ Wnþ1=2 � Wp

nþ1=2


 �
� tnþ1 ð45Þ

The rotation tensor is updated using the second

order update:

Rnþ1 ¼ I � 1

2
Dxe

nþ1

� ��1

I þ 1

2
Dxe

nþ1

� �
Rn ð46Þ

Finally, the stress tensor is rotated back to the

global coordinate system:

rnþ1 ¼ Rnþ1 � r̂nþ1 � RT
nþ1 ð47Þ
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The crystal orientation evolution may then be

analysed by extracting the updated Euler angles from

the rotation tensor.

In finite element simulations, the element is eroded

when the void volume fraction reaches a critical value,

fmax. The magnitude of the effective resolved shear

stress saeff generally increases with increasing void

volume fraction. From Eq. (12) it may be seen that for

very high values of saeff all but the last two terms

approach zero, and the equation degenerates to

1 � q2
1f

2 ¼ 0 ð48Þ

In the simulations, this is reflected by the asymp-

totical growth of saeff when f approaches the value of

q�1
1 . The elements are thus deleted when the void

volume fraction is close to q�1
1 and the numerical

instabilities caused by the asymptotic growth of saeff

are detected, i.e., the high values of saeff

�� ��=sacr start to

produce NaN type values in the yield function

calculations. The value of the critical void volume

fraction in the present model should not be confused

with the critical porosity at coalescence, fc, often used

in fracture studies (see e.g. Frodal et al. (2020)). In this

study, the accelerated void growth, which is com-

monly included into Gurson-type models to account

for coalescence, was not implemented to keep the

number of model parameters as low as possible.

4 Numerical study

The implemented porous crystal plasticity model was

tested for two cases. In the first case, a 2D model of a

polycrystal is subjected to plane-strain tension,

whereas in the second case, a uniaxial tension test of

a 3D polycrystal is simulated.

The square model of a 2D polycrystal consisted of

384,400 plane-strain elements with reduced integra-

tion and Flanagan–Belytschko stiffness-based hour-

glass control (Flanagan and Belytschko 1981). The

explicit solver of the nonlinear finite element code LS-

DYNA (Hallquist 2006) was used in the calculations.

Mass-scaling was applied to reduce the computational

time and the kinetic energy was controlled at every

step to ensure that it was very small compared to the

total energy, ensuring that the simulation remained

quasi-static. The solution converged to the same

values for both the stress and strain fields and the

global force for various time steps tested.

The Euler angles assigned to the 384,400 elements

were taken directly from the calculated Euler angles of

384,400 grid points of an electron backscatter diffrac-

tion (EBSD) scan of an AA7075-T651 alloy specimen

presented in Fourmeau et al. (2015). The results of the

scan are presented in Fig. 1, and the distribution of one

of the Euler angles (u1) in the finite element model is

presented in Fig. 2. The EBSD data is inherently

noisy, which may be seen in Fig. 2, whereas the plot in

Fig. 1 is smoothed.

The polycrystal finite element model in Fig. 2 is

surrounded by a layer of elements governed by von

Mises plasticity with isotropic hardening defined by

the average stress–strain curve of the material taken

from Fourmeau et al. (2015). The hardening param-

eters of the crystals are obtained by a fitting procedure

using the LS-OPT software, as described e.g. in

Khadyko et al. (2017). The material parameters used

in the simulation are summed up in Table 1. The left

edge of the model is fixed, and the velocity of the right

edge is ramped up to a constant value to simulate

plane-strain tension. The isotropic plasticity elements

provide a more natural and softer boundary for the

polycrystal than fixed edges or periodicity as boundary

conditions.

The porous plasticity model parameters are partly

taken from Han et al. (2013) and summarized in

Table 2. The critical void volume fraction was taken as

fmax ¼ 1=q1 � 0:67. Element erosion is used to

describe crack propagation and the element is eroded

when f ¼ fmax in the single integration point of the

finite element or when the aspect ratio (i.e., the ratio

between the longest and the shortest diagonal) of an

element became greater than 10. The latter criterion

was used to remove elements that were heavily

deformed without developing sufficiently high poros-

ity for fracture to occur.

Plots of the von Mises equivalent plastic strain

(defined as the time-integrated von Mises norm of the

plastic strain rate tensor D̂
p
) are presented in Fig. 3.

Initially the polycrystal deforms plastically with a

strong tendency to form shear bands, which may start

as smaller local bands and then coalesce into larger

bands shearing through multiple grains. The first

elements reach the critical void volume fraction fmax in
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the point of intersecting shear bands. After that, the

crack propagates along one of the shear bands.

The simulation was run utilizing eight cores of a

computer cluster node (Intel Xeon X5680). The

fracture initiation was reached relatively fast, in

approximately 20 h. After that point though, the

simulation slowed down significantly and took

approximately 4 days until the specimen was sepa-

rated in two halves. At the point of fracture initiation,

all elements were eroded due to void growth, i.e.,

Fig. 1 EBSD scan of a

rolled AA7075-T651

aluminium alloy in the TD-

ND plane (TD is horizontal),

where ND is the normal

direction of the rolled plate

and TD is the in-plane

transverse direction. Taken

from Fourmeau et al. (2015)

Fig. 2 Plot of the first Euler angle (u1 in degrees) in the whole 2D finite element model of the polycrystal on the left and an enlarged

plot of a part of the model on the right, showing the mesh resolution

Table 1 Material parameters for elasticity, yielding and work-hardening (NV = 1) used in the finite element simulations

c11 (MPa) c12 (MPa) c44 (MPa) q q scr;0 (MPa) s1 (MPa) h1 (MPa)

106,430 60,350 28,210 300 1.4 200.0 38.8 160.0

Table 2 Parameters of the porous plasticity model

a q1 q2 f0 fmax

6.5 1.5 1.3 0.01 0.67
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f ¼ fmax, but as the simulation progressed the propor-

tion of elements eroded due to high aspect ratio

increased and a majority of the elements eroded at the

later stages of fracture were removed due to a high

aspect ratio. Overall, almost 40% of all elements was

eroded by the aspect ratio criterion. This criterion is

further discussed in Sect. 5.

The second test case is a 3D model of a polycrys-

talline specimen with rectangular cross-section sub-

jected to uniaxial tension along ED. The cross-section

thickness to width ratio is 1:3, while the length of the

polycrystal along the tensile axis is equal to two times

the thickness. The polycrystal structure was generated

as a Voronoi tessellation with 3000 equiaxed grains.

The model consists of 750,000 8-node brick elements

with reduced integration and Flanagan–Belytschko

stiffness-based hourglass control. Each grain is repre-

sented on average by 250 elements and there are on

average 8 grains through the thickness direction of the

model. The grains are approximately equiaxed due to

isotropic seeding and propagation of the Voronoi

tessellation. The chosen set-up provides relatively

coarse realization of the grains and jagged ‘‘stair-

case’’-like grain boundaries, but the goal was here to

simulate the tensile behaviour of a more realistic

polycrystalline sample with a multitude of grains in

the thickness direction and realistic boundary

conditions instead of a smaller scale, high resolution

model of a partial microstructure. The description of

the intragranular fracture propagation could be

improved with a high-resolution model, but the effects

of localization on the fracture process would require

an unfeasibly large model.

The model is presented in Fig. 4. The Euler angle

data for the grains is taken from Khadyko et al. (2017).

The texture is a Cube texture with a minor Goss

component, typical for recrystallized aluminium

Fig. 3 Contour plots of the

von Mises equivalent plastic

strain at a 14.1%, b 17.5%,

c 21.6% global logarithmic

strain and d after fracture

obtained in the finite

element simulation of plane-

strain tension

Fig. 4 Finite element model of a uniaxial tension test of a 3D

polycrystal
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alloys. The material parameters governing elasticity,

yielding and work-hardening are the same as in the

first case, see Table 1, and the same holds for the

parameters governing porous plasticity, see Table 2.

Considering that we were mostly interested in testing

the regularized porous crystal plasticity model and

observing trends, rather than trying to quantitatively

model the experimental data, we decided to use the

same material parameters for the whole study. The

said parameters describe an alloy with high yield

strength and low work hardening, providing an early

strong localization, which is more illustrative. The left

and right sides of the model are again connected to

parts with von Mises plasticity, which are in turn fixed

on the left edge and displaced with a constant velocity

on the right edge. This provides more realistic

boundary conditions and helps to initiate necking in

the middle of the model. Element erosion is applied to

model crack propagation when f ¼ fmax in the single

integration point of the hexahedral elements.

The results of the simulation are presented in Fig. 5.

In this case, the distinct sharp shear bands do not form,

because of the less constrained plastic flow, and

instead diffuse necking in the thickness direction is

observed. Fracture initiates at one location on the right

side of the specimen and progresses towards the left

side, capturing in a realistic way the crack propagation

process in polycrystalline materials under tension. The

fracture surface in Fig. 6a may be compared to the

fracture surface of an AA6063 aluminium alloy with

the same texture (but different strength and work

hardening characteristics) subjected to uniaxial ten-

sion using flat specimens with the same width to

thickness ratio, obtained in Khadyko et al. (2019) and

presented in Fig. 6b. The overall proportions of the

fracture surface for the specimen lying in the ED

direction were reproduced quite well. The simulation

was run on the same eight-core node of a cluster and

took about 6 days. In the 3D simulation, there were

only some few elements that were eroded due to an

extreme aspect ratio.

The global nominal stress–strain curves for the

simulations are presented in Fig. 7. The reduction of

the nominal stress (force) in these curves reflect both

the strain localization (necking and shear banding),

texture evolution and damage softening. The fracture

surface and force reduction could be obtained also by

the phenomenological plasticity models but using the

crystal plasticity model allows for including texture

evolution effects and microstructure heterogeneity in a

natural way. The nominal stress for the plane-strain

tension simulation does not fall to zero due to the

elements along the boundary governed by von Mises

plasticity that were not eroded. The differences in

stress level and global failure strain are mostly caused

by the higher constraint level in plane-strain tension

than in uniaxial tension and the subsequent difference

in localization type, but may also be influenced by the

Fig. 5 Contour plots of the von Mises equivalent plastic strain

for the 3D finite element model of the uniaxial tensile test of the

3D polycrystal a before fracture at 41.2% global logarithmic

strain, b during the fracture process, and c after full fracture
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difference in the crystallographic texture applied in the

two cases.

5 Discussion

The longstanding problem of rate-independent crystal

plasticity is the Taylor ambiguity, or a situation where

several sets of active slip systems are equally valid

decompositions of the plastic strain rate. This problem

is most often circumvented by using a power law type

of viscoplasticity, which in geometric terms replaces a

sharp vertex of the yield surface polytope with a

smooth curved ‘‘vertex’’. By choosing a very low

value of the rate sensitivity parameter, rate-indepen-

dent behaviour can be closely approximated (Mánik

and Holmedal 2014). In Paux et al. (2015), another

step was made and the power law was used to combine

all slip systems in a single regularized yield function

with a single plastic multiplier. The variation of yield

function regularization for crystals proposed in Zamiri

and Pourboghrat (2010) uses the KS-function (Kreis-

selmeier and Steinhauser 1980), instead of a power

law. In all these models the sharp vertex is replaced by

a smooth one, which means that if the stress is lying

exactly in the vertex of the yield locus, producing the

same resolved shear stress on adjacent slip systems, it

will activate all of these slip systems simultaneously,

unlike the rate independent Schmid’s law, where a

Fig. 6 a Fracture surface

with superimposed von

Mises equivalent plastic

strain field from the 3D finite

element model of the

uniaxial tensile test, and

b SEM image of the fracture

surface of a flat test

specimen with the same

texture which was loaded in

tension to fracture along the

same material direction

(ED). Taken from Khadyko

et al. (2019)

Fig. 7 Global nominal stress–strain curves from the finite

element simulations of 2D plane-strain tension (PST) and the 3D

uniaxial tension test (UT)
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choice has to be made. Thus, these models avoid the

Taylor ambiguity altogether. According to the results

in Zamiri and Pourboghrat (2010), the KS-function

regularization provides both less computational time

and better stability even for large values of the

closeness parameter q, than the equivalent viscoplastic

rate insensitive formulation.

The authors tried using the more usual hyperelastic

viscoplastic rate insensitive CP model with the Gurson

type damage but encountered excessive substepping

and non-convergence for many cases of fracture

simulations of polycrystals. This was the motivation

for creating the present model. In addition, in the test

simulations the hypoelastic model was at least 10%

faster than the equivalent hyperelastic model imple-

mentation that the authors used previously.

The porous plasticity law from Han et al. (2013)

has, as already mentioned, no explicit analytical

solution for the effective resolved shear stress. To

avoid the need for an iterative solution method, the

hyperbolic cosine term was replaced here with poly-

nomial terms of the Taylor series. An advantage of the

polynomial solution is that it requires no initial

condition or starting point for iterations, which may

cause convergence problems that must be identified

and mended for the iterative solution method to

converge. The hyperbolic cosine function is approx-

imated very well by the polynomial, producing very

accurate solutions of Eq. (12), even with just 4 terms.

The approximation is illustrated by plots of the

hyperbolic cosine and the truncated Taylor series,

presented in Fig. 8.

As may be seen from the figure, the error is

increasing at higher values of the argument

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=20Þ

p
ðrH=saeffÞ of the hyperbolic cosine function

in Eq. (12). In the extreme case when the von Mises

stress and resolved shear stress are assumed to be

negligibly small, compared to the hydrostatic stress in

Eq. (12), the hyperbolic cosine term is limited by

ð1 þ q2
1f

2Þ=2q1f , which may become quite large for

small values of void volume fraction f . On the other

hand, at small values of the void volume fraction, the

equation should degenerate to saeff ¼ sa. This limits the

values of the hyperbolic cosine term and correspond-

ingly the error. The effective resolved shear stress

found from the polynomial equation for some combi-

nations of void volume fraction, von Mises stress and

hydrostatic stress was compared to the iterative

solution of the original equation and it was found that

for realistic combinations, the solutions differed by

less than 2%. The error increased only beyond that for

some special cases with extremely high hydrostatic

stresses and small void volume fractions. To further

investigate this error, some smaller test simulations

were performed with both polynomial and iterative

solution of Eq. (12). The stress, plastic strain and

porosity fields produced by the two methods were

practically identical. However, the simulations pro-

duced only a limited set of stress–strain histories for

the elements and situations might occur for which the

errors are significant. Several variations of the equa-

tion for the effective resolved shear stress exist,

derived by different methods, as described in Sect. 1.

Also, Eq. (12) contains free parameters fitted to unit

cell simulation results, and the error introduced by the

polynomial expansion is thus not considered

significant.

Some numerical aspects of the fracture simulations

with crystal plasticity require further investigation.

The mesh sensitivity is a known issue in finite element

simulations even for phenomenological porous plas-

ticity simulations and is not considered in this work. In

some elements in the 2D simulation, the crystallo-

graphic orientation and the stress–strain history pro-

duced small hydrostatic stresses and consequently the

Fig. 8 Approximation of the hyperbolic cosine function with

the truncated Taylor series fn xð Þ, where n is the highest power of

the polynomial term
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evolution of the void volume fraction was slow. These

elements continued to deform to extremely large

strains and were artificially eroded using the arbitrarily

chosen critical aspect ratio criterion before they could

develop the critical void volume fraction. The porosity

was evolving almost exclusively in the shear band, and

practically all the elements deleted by the aspect ratio

criterion still developed significant void volume

fraction above 10%. As a possible solution, coales-

cence and accelerated void growth could have been

adopted in the simulation, and then due to the high

porosity in the heavily deformed elements, it is likely

that the elements would be eroded due to ductile void

growth instead of a poor aspect ratio. Another

possibility is to introduce remeshing to improve the

aspect ratio of the deformed elements. Nonetheless,

the effect of the adopted critical aspect ratio on the

results of the simulation should be investigated

further. Whether the observed extreme deformation

of the elements is a physical aspect of the fracture

process or a numerical artefact remains an open

question as well. However, it was found that the

number of elements eroded due to the aspect ratio

criterion was just a few in the 3D simulation of

uniaxial tension and thus much less than in the 2D

simulation of plane-strain tension.

The yield function developed in Han et al. (2013)

has certain limitations. It is derived for spherical voids

and does not account for the void shape evolution

explicitly. Nevertheless, it provides a good approxi-

mation of the plastic behaviour of unit cell models for

spherical voids in single crystals. Its implementation

allows studying complex processes associated with

fracture: various strain localization modes (necking,

shear banding) interacting with damage, softening and

fracture in an anisotropic crystal grain. The efficiency

of the formulation allows for creating large and

detailed high-resolution polycrystal models where

these phenomena occur, as demonstrated in Sect. 4.

While the model may be improved in different ways

(most notable a void coalescence criterion can be

added), even in its present form it can provide some

interesting results in anisotropic fracture studies.

6 Concluding remarks

A numerical implementation of a porous crystal

plasticity model in the explicit finite element method

is proposed. The implementation combines a regular-

ized rate-independent crystal plasticity formulation,

based on the KS-function, with a constitutive equation

for the effective resolved shear stress of the porous

single crystal, which is modified here to allow for an

analytical rather than a numerical iterative solution.

The cutting plane algorithm is applied for the temporal

integration of the rate constitutive equations and the

regularized porous crystal plasticity model is imple-

mented as a user-material model for the explicit solver

of a commercial finite element code. The material

model is tested for two cases of 2D and 3D polycrys-

tals in tension, and promising results in qualitative

agreement with experimental observations were

obtained. The test simulations further showed that

the cutting plane algorithm developed for the porous

crystal plasticity model converges for all stages of

deformation and fracture. In addition, reasonable

computational times are obtained even for relatively

large polycrystal models.
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Appendix 1

For convenience of notation, we introduce the residual
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ga ¼ sa

saeff

� �2

þa
2

45
f

rvM

saeff

� �2

þ 2q1f 1þ
X4

k¼1

1

2kð Þ! q2

ffiffiffiffiffi
3

20

r
rH

saeff

 !2k
0

@

1

A

� 1� q2
1f

2 ¼ 0

ð49Þ

The partial derivative osaeff=or̂ is found using the

implicit derivation, namely

osaeff

or̂
¼ � oga=or̂

oga=osaeff

ð50Þ

where

oga

or̂
¼ 1

saeff

� �2

2sam̂a 	 n̂a þ 2

15
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Here, r̂
0
is the deviatoric part of the co-rotated Cauchy

stress tensor. Note that despite the symmetry of the co-

rotational Cauchy stress tensor r̂, the derivative of the

resolved shear stress is assumed to be non-symmetric,

osa=or̂¼ m̂a	 n̂a, in order to obtain a non-zero skew-

symmetric plastic spin tensor Ŵ
p
. The reader is referred

to Ling et al. (2016) for further details regarding the

extension of the model to large deformations. Simi-

larly, the partial derivative osaeff=of is obtained as

osaeff

of
¼ � oga=of

oga=osaeff

ð53Þ

where

oga
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¼ 2

45
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rvM
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ffiffiffiffiffi
3

20

r
rH

saeff

 !2k
2

4

3

5

þ 2q1 � 2q2
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Appendix 2

Linearization of the yield function gives

dU ¼ oU
or̂

dr̂þ oU
osacr

dsacr þ
oU
of

df ¼ 0 ð55Þ

where

dr̂ ¼ �dk 1 � fð ÞĈ : sym
oU
or̂

� �
ð56Þ

dsacr ¼ dk
X12

b¼1

hab
oU

osbeff

�����

�����

df ¼ dk 1 � fð Þ2
tr

oU
or̂

� �

The partial derivatives of the yield functions are

calculated as

oU
or̂

¼
X12

a¼1

oU
osaeff

osaeff

or̂
ð57Þ

oU
osaeff

¼ 1

A
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ð58Þ
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Mühlich U, Brocks W (2003) On the numerical integration of a

class of pressure-dependent plasticity models including

kinematic hardening. Comput Mech 31:479–488

Needleman A (1972) Void growth in an elastic-plastic medium.

J Appl Mech 39:964–970

Nemat-Nasser S, Hori M (1987) Void collapse and void growth

in crystalline solids. J Appl Phys 62:2746–2757

Padilla CAH, Markert B (2017) A coupled ductile fracture

phase-field model for crystal plasticity. Continuum Mech

Therm 29:1017–1026

Pardoen T, Hutchinson J (2000) An extended model for void

growth and coalescence. J Mech Phys Solids

48:2467–2512

Paux J, Brenner R, Kondo D (2018) Plastic yield criterion and

hardening of porous single crystals. Int J Solids Struct

132:80–95

Paux J, Morin L, Brenner R, Kondo D (2015) An approximate

yield criterion for porous single crystals. Eur J Mech

A-Solid 51:1–10

Perrin G, Leblond J (1990) Analytical study of a hollow sphere

made of plastic porous material and subjected to hydro-

static tension-application to some problems in ductile

fracture of metals. Int J Plast 6:677–699
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