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Abstract: Infrastructure systems, such as wind farms, are prone to various human-induced and
natural disruptions such as extreme weather conditions. There is growing concern among decision
makers about the ability of wind farms to withstand and regain their performance when facing
disruptions, in terms of resilience-enhanced strategies. This paper proposes a probabilistic model
to calculate the resilience of wind farms facing disruptive weather conditions. In this study, the re-
silience of wind farms is considered to be a function of their reliability, maintainability, supporta-
bility, and organizational resilience. The relationships between these resilience variables can be
structured using Bayesian network models. The use of Bayesian networks allows for analyzing
different resilience scenarios. Moreover, Bayesian networks can be used to quantify resilience,
which is demonstrated in this paper with a case study of a wind farm in Arctic Norway. The results
of the case study show that the wind farm is highly resilient under normal operating conditions,
and slightly degraded under Arctic operating conditions. Moreover, the case study introduced the
calculation of wind farm resilience under Arctic black swan conditions. A black swan scenario is an
unknowable unknown scenario that can affect a system with low probability and very high ex-
treme consequences. The results of the analysis show that the resilience of the wind farm is signif-
icantly degraded when operating under Arctic black swan conditions. In addition, a backward
propagation of the Bayesian network illustrates the percentage of improvement required in each
resilience factor in order to attain a certain level of resilience of the wind farm under Arctic black
swan conditions.

Keywords: wind farms; wind turbines; Arctic conditions; Arctic black swan; resilience; Bayesian
network

1. Introduction

Infrastructure systems in the Arctic are prone to disruptions in their operation
caused mainly by the harsh weather conditions they face. The resilience of infrastructure
systems in the face of disruptions and the resulting consequences has become a signifi-
cantly recognized topic among project owners. The author in [1] defined system resili-
ence as the extent to which a system maintains a minimum level of performance in the
face of disruptions. Wind farms (WFs) are among the infrastructure systems installed in
the Arctic that are prone to disruptions resulting from the weather conditions in the
region. Ice accretion on the blades of wind turbines (WTs), snow accumulation that
blocks the roads to WFs and prevents maintenance procedures, and cold temperatures
that limit the dexterity of the WF staff are among the disruptions that affect the resilience
of WFs in the Arctic.

When uncertainties are taken into consideration in resilience analyses, probabilistic
resilience measures that normally have a probability value between 0 and 1 can be used
[2]. For example, a system that possesses a resilience estimate of 0.8 can indicate that the
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system is, in general, 80% resilient against a specific disruptive event. Furthermore, it
could reflect an 80% probability that the system will continue to perform under a defined
disruptive event, or recover to an acceptable system performance level, within a given
time interval after the disruptive event disappears.

Due to the uncertainty in energy system applications such as WFs, there are several
variables that have to be determined and many explicit pieces of evidence that can be
linked together through the application of Bayesian networks (BNs), which depend on
the concept of probability to compute uncertainties. BNs have been used for modeling
infrastructure resilience [3-5], post-disaster infrastructure recovery [6], and in applica-
tions of infrastructure system reliability [7,8].

According to Aven [9], resilience is event-dependent, and can be assessed based on
the description of the disruptive event that the infrastructure system is facing. In that
sense, there is a need to define the type of events that the system deals with, in order to
decide whether it is resilient to them or not. Therefore, the approach adopted in this pa-
per is to define three separate scenarios against which the resilience of a WF can be test-
ed. The first scenario is the baseline scenario, where the WF is operating under normal
operating conditions, while the second scenario tests the WF’s resilience to Arctic oper-
ating conditions on the WF site. The third scenario is an imaginable scenario, defined as
an Arctic black swan scenario, where the impacts of the disruptions are extreme.

The black swan concept was defined and popularized by Nassim Nicholas Taleb in
his book The Black Swan [10], in which he identified three main attributes of a black swan
event: 1) a black swan event is an outlier and unexpected, in the sense that nothing in the
past can indicate the likelihood of it occurring; 2) its impact is extreme; and 3) after a
black swan event has occurred, humans are able to find an explanation for it, making it
explainable and predictable despite its outlier nature. According to Aven [11], black swan
events are seen as extreme events relative to current knowledge and beliefs. Furthermore,
Aven and Krohn [12] pointed out that black swan events can be events that are known to
the risk analysts, but assessed to have a negligible probability of occurrence, and thus not
anticipated to happen. Therefore, testing a WF’s resilience to black swan events helps the
WEF operator to be prepared for worst-case scenarios.

This study is motivated by the observation that uncertainties emerging from the
changing climate conditions might open up the possibility for unexpectedly harsh
weather conditions, characterized as a black swan, to take place in regions such as the
Arctic. The effects of such a scenario taking place, and affecting the operation of WFs in
the Arctic, are not well addressed in the literature. Using BNs to model an uncertainty
scenario and calculating the resulting resilience is effective as a BN is a practical tool for
calculating conditional probabilities, and it is easy to understand its models. Most studies
that have implemented BNs for applications in the Arctic are concerned with risks posed
to ship transportation and collisions with ice in Arctic waters [13-15]. WF systems are
relatively new in the Arctic, and as there is a corresponding lack of data in the field, the
use of BNs to describe Arctic scenarios and their effects on WFs can be an interesting
application.

This paper utilizes BNs to estimate the resilience of WFs located in the Arctic region
of Norway, which will contribute towards enriching the literature with a unique meth-
odology, to create multiple scenarios and assess the WF resilience against each scenario.
The paper includes and assesses the WEF’s resilience against three main scenarios, which
are the normal operating conditions scenario, the Arctic operating condition scenario,
and the Arctic black swan scenario.

The remaining sections of this paper are organized as follows: Section 2 presents a
conceptual definition of engineering resilience. Section 3 introduces the methodology
adopted, while Section 4 explains the design and modeling of the BN. Section 5 demon-
strates the use of the proposed BN by applying it to a case study of a WF in the Norway
Arctic region. The conclusions of the study are then presented in Section 6.
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2. Conceptual Definition of Engineering Resilience

Youn et al. [16] proposed a theoretical definition of engineering resilience, which
derives its generic formula from the system reliability and the three key attributes of
prognostics and health management (PHM) efficiency, which are diagnostics, prognos-
tics, and condition-based maintenance [17]. The definition concluded that resilience can
be mathematically measured as the sum of reliability and restoration, as per Equation (1)
[16].

Resilience (W) = Reliability (R) + Restoration (o) 1)

Restoration (p) is defined as “the event at which the “up’ state is re-established after
failure” [18], which according to [16] depends mainly on the attributes of PHM efficiency
and system reliability, by focusing on transforming the system into a resilient system and
minimizing its life-cycle cost (LLC). Based on that, restoration can be expressed as the
joint probability of a system failure event (i.e., the reliability of the system) (Esf), and the
three PHM attributes, which are a correct diagnosis event (Ecd), a correct prognosis event
(Ecp), and a mitigation/recovery (M/R) action success event (Emr), expressed in Equation
(2) [16].

Restoration (Q) = P (Est Ecd Ecp Emr) (2)

The authors in [19] proposed that the most important factors for consideration in
assessing the resilience of a system in the Arctic are: (I) reliability of the system’s com-
ponents, (II) maintainability of disrupted components, (III) supportability of maintenance
activities, (IV) the organizational resilience, and (V) the PHM efficiency of the system.
However, the PHM elements, namely diagnosis, prognosis, and M/R action, are embed-
ded in the maintainability, supportability, and organizational factors of restoration. This
is because the organization has to gather and analyze data in order to define the potential
hazards (diagnosis), estimate the remaining useful life of the impacted WT components
(prognosis), and take the required M/R measures in a condition-based maintenance
(CBM) sense, where the latter can be reflected by the maintainability and supportability
of the WF. Based on that, and by referring to restoration equation in [19], restoration can
be expressed as in Equation (3).

Restoration (0) =(1-R) x M x5 xO 3)

where R, M, S, and O are the conditional probabilities of reliability, maintainability,
supportability, and organizational resilience, respectively, which are the main factors of
resilience that are important for WFs to maintain and regain their resilience during and
after a disruptive event. These factors can be denoted as output variables that will de-
pend on other input variables in determining their values. Figure 1 illustrates the input
and output variables that will shape the resilience of WFs, considering Equations (1) and
(3), and that will be used in establishing the Bayesian network (BN) for calculating the
resilience of the WFs.
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Figure 1. Input and output variables of the resilience of WFs.

2.1. Reliability

WEF reliability reflects the ability of the WTs to operate as required, without failure,
for a given period under given conditions. Reliability can be expressed in terms of the
probability of failure [20], as in Equation (4):

R(t) =1 - F(t) “4)

where F(t) is the probability at which the WTs stop operating due to the hazards, which
can be due to Arctic operating conditions or component degradation. Different statistical
models have been developed for reliability modeling of complex systems like WTs, such
as the Power law process (PLP), which is a special case of the Poisson process [21], and
the Poisson process with covariates [22]. For the sake of simplicity, in this paper the
Poisson distribution is used to represent the probability of the WT stoppage events, as
shown in Equation (5) [23]:

P00, A) = E2 g2t )

where k is the number of WT stoppage events the Poisson distribution tries to find the
probability of, over a fixed time interval (0, t). A is the mean value of the distribution and
is equal to the number of WT stoppage events over a specific period (e.g., a month).

2.2. Maintainability

The maintainability of an item is the ability to keep performing, or restored to a state
to perform as demanded, under given conditions of operation and maintenance [18].
Maintainability is influenced by the design of the system, in terms of how easy it is to
maintain it. From a different angle, the maintainability of a WF can be expressed in terms
of two factors, which reflect the ability to restore the functionality of the WE: the level of
labor dexterity when carrying out the maintenance activities, and the accessibility to the
WE; both factors are affected by the Arctic operating conditions. In order to maintain
access to the WTs, WFs can utilize snow-removing strategies, which might be costly, or
equip the service team with specialized vehicles. A cost/benefit analysis must be carried
out in order to determine which option is better. However, most WFs employ a combi-
nation of both solutions [24].
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2.3. Supportability

Supportability is defined as the ability of a system to be supported to maintain a
certain level of availability under defined operational conditions and given logistic and
maintenance resources [18]. Based on this definition, the supportability of a WF involves
the provision and availability of spare parts and tools that will help the service team to
restore the WF’s performance and availability, during and after a disruptive event. To
this end, supportability depends on the redundancy of spare parts, and the accessibility
of roads and routes, via which spare parts and tools can be delivered by suppliers.

2.4. Organizational Resilience

According to the BS-65000 standard [25], organizational resilience implies the ca-
pacity of the organization to prepare for disruptive events, respond and adapt to them,
whether they take the organization by surprise or unfold gradually. Cutter et al. [26]
argue that organizational resilience requires an assessment of the physical properties of
the organization, such as communication technology, number of members, and emer-
gency assets. Hence, the resilience of a WF can be measured in terms of (I) communica-
tion availability and (II) on-time response to events.

I.  Communication availability (CA) covers the communication between staff members
and the WF. Incidents involving loss of connection with WTs, which lead to loss of
data, are stored in the SCADA system. A Poisson distribution can be used to esti-
mate the probability of loss of connection events (x), taking place over a specific in-
terval (0, t), considering an average number of loss of connection incidents (A).
Hence, the probability of connection availability can be represented as per Equation
(6) [23];

CA=1-p(x(0,t), A)=1- L=t ©6)

II.  On-time response to events covers the responsiveness of the operator to disruptive
events and is a measure of the WF’s resilience, which can be assessed by the proba-
bility of an on-time response to the events that have led to WT stoppage. For exam-
ple, if 85% or more of the disruptive events that lead to or require stopping the WTs
are being handled and treated by the WF operator, within the first hour of their oc-
currence, the WF operator can be described as resilient, and the on-time response
variable can be set at 100%, and considered successful [3]. This can also include
corrective maintenance activities if the treatment of the failure starts within the first
hour of its occurrence.

3. Methodology

The methodology adopted to calculate resilience using the proposed BN is illus-
trated in Figure 2. The probability values of the input variables in the BN will either be
extracted from historical data gathered from WFs or, in the event of a lack of data, from
expert assessments. Afterwards, the BN is compiled to provide the posterior probabilities
of the output variables, including resilience. Upon calculating the resilience value of the
WEF, the BN will show the probability of urgency to take measures to improve the WF
resilience.
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Figure 2. Methodology followed to estimate the resilience of WFs using BN.

4. Designing the Bayesian Network

Graphically, a BN consists of nodes, and links that connect the nodes together. The
nodes represent the variables, which can be an event or the state of a specific component,
such as the state of failure or no failure of that component. Each node contains the
probability of the occurrence of an event or state. The nodes are classified into parent
nodes and child nodes, depending on how they are connected to each other in the graph,
and which node is the predecessor (parent), and which the successor (child). The links in
the BNs denote the causal relationship between the nodes. For example, in Figure 3, the
nodes X1 and X2 are the parents of node X3, which is the child of both nodes. Likewise,
node X3 is the only parent of node X4, which is its child.
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P(X)) X1 X2 P(X3)
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P (X3 | X;1, X2) X3
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P (X4 | X3) X4

Figure 3. An example of a BN with four variables.

BNs are described as directed graphs, which means that the relationships between
the nodes are directed in one direction, with no cycles or links going backwards to the
original (parent) node. A BN is an efficient tool for calculating the posterior probability of
uncertain variables (the probability of the child nodes), depending on the known condi-
tion or the evident probability of other variables (the parent nodes), in what is known as
the conditional probability, which updates the probabilities of events when given a cer-
tain condition or evidence.

The conditional relationships between the variables in a BN are measured by condi-
tional probability distributions. Equation (7) presents the full joint probability distribu-
tion of a BN consisting of n variables Xi; Xz; ...; Xa [3].

P (X1, Xz,..., Xn) = [[i=; P(X; | Parents(X;)) (7)

The variables/nodes used in modeling the BN are Boolean discrete variables, having
values of (Yes/No), where the Yes state represents the success state of a specific variable,
and the No state represents the fail state of that variable. For example, labor dexterity,
which contributes to the successful maintenance of WTs, is reduced by 70% during the
presence of extreme Arctic operating conditions. Therefore, assuming that labor dexterity
has a 100% probability of being successful under normal operating conditions, the
probability of successful labor dexterity is reduced to 30% under extreme Arctic condi-
tions, which will consequently reduce the probability of carrying out successful mainte-
nance on the WTs and, therefore, reduce the resilience of the WE.

A graphical depiction of the proposed BN, which illustrates the interactions between
the input and output variables, is shown in Figure 4. User-friendly software called Neti-
ca, which is not open source, was used to build the BN to assess the resilience of WFs
under Arctic operating conditions. Netica allows for entering equations and probability
distributions and converting them into conditional probability tables (CPTs).
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Figure 4. Graphical depiction of the proposed BN for WF resilience calculation.

In addition to the Poisson distribution function used to design the WT stoppage and
communication availability nodes, two other main functions were used to design the BN
nodes, which have two or more input nodes each, such as the maintainability, supporta-
bility, and organizational resilience nodes. These two functions are the NoisyOrDist and
the NoisyAndDist functions.

The NoisyOrDist function is used when there are n input nodes X1, ..., X» of an
output node, Y, where the probability value for Y being true takes place when one and
only one Xi is true, and all input nodes other than Xi are false. The NoisyOrDist function,
based on [27], is expressed as shown in Equation (8):

NoisyOrDist (I, X1, v1, X2, v2, ..., Xn, Un) 8

Term vi is the probability of the output node, Y, being true if and only if that input
node (Xi) is true, as presented in Equation (9) [27]:

vi=P (Y=True | Xi=True, X;=False, for each j #i) 9)

Term [ is called the leak probability, and it represents the probability that Y will be
true when all of its input nodes are false, as expressed in Equation (10) [27]:

=P (Y=True |X1=False, X2=False, ..., Xn=False) (10)

Generally, the conditional probability of Y obtained using the NoisyOrDist function,
based on [3], can be expressed as in Equation (11):
P (Y =True lX, ..., Xn)=
1-[A-PM)ITL(Q — P(Y = True|Xi = True))] (1)
The NoisyAndDist function is used when the true state of the output node Y is
caused by more than one input node X being true. The NoisyAndDist can be expressed as
the complement of the NoisyOrDist, as in Equation (12) [27]:

P (Y =TruelXy, ..., Xn) =1 - NoisyOrDist (12)

Table 1 summarizes the equations used to model the main nodes in the BN to cal-
culate the resilience of WFs.
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Table 1. Summary of the modeled equations used by Netica in the designed BN.
Equati
Node Notes Netica Equation Entered in the BN Nodes quation
Number
WT stoppage A Poisson distribution of the number of P (WT stoppage | ArcticConditions) = Equation
ppag WT stoppages ArcticConditions == Yes? PoissonDist (k, A) (13)
E .
Reliability R(H=1-F() R(H=1-F() q‘:;lon
P (Access strategy | Snow removal,
Dependent on the snow removal and the Specialized vehicles) = NoisyAndDist (Access Equation
Access strategy . 1 . ‘1
specialized vehicles nodes strategy, 0, Snow removal, 0.5, Specialized (14)
vehicles, 0.5)
P (Maintainability | WF accessibility, Labor
e Dependent on WF accessibility, labor dexterity, Supportability) = NoisyAndDist Equation
Maintainability . . T s
dexterity, and supportability nodes (Maintainability, 0, Accessibility, 0.33, Labor, (15)
0.33, Supportability, 0.33)
P tability | Red Deli =
. Dependent on the redundancy and the (tSuppor. ability | Re qr}dancy, elivery) Equation
Supportability . NoisyOrDist (Supportability, 0, Redundancy,
delivery of spare parts ) (16)
1, Delivery, 1)
The complement of the Poisson P (Communication | ArcticConditions) = Equation
Communication distribution for the number of lost ArcticConditions == Yes? 1-PoissonDist (k, A): d a7
communication events 0
P ation | ication. R
Organizational Dependent on the communication and the (Organlze.ltlon CO'mmUHIC&.ltIOI'l, esponse) Equation
. . = NoisyAndDist(Organization, 0,
resilience on-time response of the WF L7 . (18)
Communication, 0.5, On-time response, 0.5)
Conditional probability of WF reliability, Equation
Restoration maintainability, support-ability, and Restoration ()= (1 -R) x M xSx O d 3)
organizational resilience
Resilience The addition of reliability and restoration Resilience (*¥) = Rehezl;hty (R) + Restoration Equg’)uon
If the calculated resilience is higher than
Resilience the desired level, then there is no need for Improve (Resilience, Desired) = Resilience >= Equation
Improvement improvements; otherwise, improvements Desired? No: Resilience < Desired? Yes: No (19)

are needed.

5. Case Study: A Wind Farm in Arctic Norway

A WEF in Arctic Norway was selected for the case study, comprising three different
scenarios for calculating the resilience of the WF, using the BN. The first scenario is a
baseline scenario, through which the resilience of the WF is calculated under normal
operating conditions, and where the Arctic conditions are not included in the analysis.
The second scenario is the Arctic operating conditions scenario, which calculates the re-
silience of the WF under the Arctic conditions that the WF normally experiences in its
location. The third scenario is an imaginable scenario, called the Arctic black swan sce-
nario, aimed at calculating the resilience of the WF under suggested extreme Arctic
events, which has a low probability of occurring, but in the event of which, the impact on
the WF would be immense. In connection with the Arctic black swan scenario, a back-
ward propagation of the BN was used to determine which resilience factors would need
to be improved in order to reach a certain level of resilience, in the light of Arctic black
swan events.
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The data gathered from WF operators included ice detection incidents on the WTs
with resulting downtime, events concerning a loss of communication between the WTs
and the WF staff, the duration of each event, as well as data related to WT maintenance
and service activities. In addition, data regarding the performance of the WF such as
generated power, wind speed, and rotor and generator speed were gathered. However,
these latter types of data were not utilized in this study.

5.1. Baseline Scenario Analysis

The baseline scenario analysis concerns the resilience of the WF when it operates
under normal operating conditions (no presence of Arctic disruptive events). Figure 5
illustrates the baseline scenario with the probability of occurrence of Arctic operating
conditions set to 0%. Based on the available data, the resilience of the WF and the con-
tributing factors were calculated probabilistically as follows:

On-time response
No ofi i1
Yes 100
Communication Organizational resilience
No 175} | | No AT
Yes 825 Yes 912
WT Stoppage Reliability \
No SSbF No 11-4=E P R i Desired resilience
Yes 114 o No 59,6 |mmmm— No 100f0 1]
Yes 104@) | | Yes 900
Arctic operati qcond.iﬂon:J Labor dexterity Maintainability
No 100 No of i No of & i
Yes o] { i} Yes 100 Yes 100
* Resilience Resilience improvement? ]
Wind farm Accessibility Supportability No 1.00 [N No 99.1”
] [Ne of i i i No ol Yes 990 Yes oso| i %
= T Yes 100 Yes 100 —
. Y
= = T Access strategy
Spenaluzdt'zh‘l(lfi | | No a38 e
No 500 mmmm Yes 56.3 |
Yes 500 H Delivery of spare parts/ Equipment Redundancy of spare parts/ Equipment
No o[l No 50.0 j—
Yes 100 Yes 50.0 H

Figure 5. Baseline Bayesian network for calculating the resilience of wind farms.

Based on the gathered data, the WF experienced a total of 1993 WT stoppages during
2019. The reasons for the stoppages mainly concerned servicing and maintaining the
WTs. The stoppages that resulted from Arctic operating conditions, such as icing and
snow accumulations, were excluded. Based on this, the stoppage rate per WT during
each month of that year was approximately 12 stoppages/WT/month. Therefore, the BN
shows, by applying the Poisson distribution over the mean value of the stoppage rate
(i.e., 12 stoppages/WT/month), as discussed in Equation (13), that the probability of WT
stoppage is 11.4%. Consequently, the reliability of the WF, based on the BN, by utilizing
Equation (4), will be 88.6% under normal operating conditions.

Labor dexterity is 100% under normal operating conditions, where the Arctic con-
ditions are not present, which hinder the maintenance activities and limit the ability of
workers to perform their work. In addition, accessibility to the WF is 100% probable since
no snow has accumulated on the roads to the WF.

Regarding the supportability of the WF, the supply and provision of spare parts is
100% successful as roads are open and not affected by the Arctic conditions. Therefore,
the NoisyOrDist function in Equation (16) shows that supportability is calculated to be
100% successful. Consequently, by using the NoisyAndDist function in Equation (15), it
shows that the maintainability of the WF is 100% successful.
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WF data show that the mean value of lost communication events between the WTs
and the operator is five events per month per WT, under normal operating conditions. By
applying Equation (17), the Poisson distribution over the mean value of the lost commu-
nication events shows an 82.5% probability of successful communication during
non-disruptive event conditions.

In addition, by reviewing the timing and duration of the maintenance activities, it is
observed that more than 85% of the maintenance procedures for failures that the WTs
experience are carried out within the first hour of the failure taking place. Based on that,
the on-time response is set to 100% as successful WF responsiveness. The overall organ-
izational resilience, by applying the NoisyAndDist in Equation (18), is calculated to be
successful with 91.2% probability.

By applying Equation (1) to calculate the WF resilience, the BN shows in Figure 5
that the WF is 99.1% resilient under normal operating conditions. Setting the desired re-
silience to be at least 90%, the resilience improvement node, which is modeled using the
expression in Equation (19), in Table 1, shows that there is 99.1% no need for resilience
improvement for the WF.

Table 2 summarizes the values of the BN input and output nodes, and the results of
a forward propagation baseline scenario that could take place, using the modeled BN
shown in Figure 5.

Table 2. Summary of baseline scenario input and output nodes.

Input Nodes Yes Value  Output Nodes Yes Value Resilience
WT stoppage 11.4% Reliability 88.6%
WEF accessibility 100% e o
Labor dexterity 100% Maintainability 100%
Spare parts/equipment
deliver 50% 99%
Y Supportability 100% ’
Spare parts/equipment o
100%
redundancy
Communication 82.5% Organizational
: s 91.2%
On-time response 100% resilience

5.2. Arctic Operating Conditions Scenario Analysis

If the WF was operating under Arctic conditions, its resilience would be degraded
due to the effects of ice accretion on WT blades, cold temperatures that affect the dexter-
ity of the crew staff, and snow accumulation on roads that hinders accessibility to the WF.
Figure 6 illustrates the values of the WF resilience and contributing factors. The data
considered in the analysis of this scenario relate to the month of December as Arctic op-
erating conditions are mostly witnessed during this month.
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On-time response
No o i
Yes 100
Communication Organizational resilience
No 588 . No 294 i
Yes 412 ' Yes 70.6 !
WT Stoppage Reliability \
O 5 T
No 710 i : No 290 ! Restoration Desired resilience
Yes 29.0 sl Yes 710 B

No 525 — No 100@1 0
Yes 172pm} | Yes 90.0
v
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of i i i No 250 | No 15Smi | @
100 Yes 750 Yes 842
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Specialized vehicles
e

No of i i
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Figure 6. Bayesian network for calculating resilience in Arctic operating conditions scenario.

There were 65 WT stoppages altogether due to icing in December 2019. The average

number of WT stoppages due to icing per WT during December is five. The resulting
probability from applying Equation (13) to the average number of WT stoppages due to
icing is 17.56%. By using Equation (20), the total WT stoppage probability is equal to the
probability of stoppage due to icing events added to the stoppage probability calculated
in the baseline scenario, under normal operating conditions, which was 11.4%. This re-
sults in 29% probability of stoppage under Arctic operating conditions. Based on that, by
applying Equation (4), the calculated reliability probability is 71%.

P (WT stoppage| Arctic operating conditions) = (20)

P (WT stoppage due to icing events) + P (WT stoppage under normal operating conditions)

The dexterity of maintenance crews during extreme Arctic conditions is assessed to

be reduced by 70% due to exposure to the cold weather [28], which can lead to decreased
cognitive performance, injuries, dangerously low body temperature, and loss of sensi-
tivity. Such conditions can directly influence the uncertainty of a person’s decision or ac-
tions significantly [29]. Based on this, a simple scale can be developed to assess labor
dexterity under milder Arctic conditions, such as those experienced by the WEF. Table 3
proposes a qualitative scale for assessing the success of labor dexterity under different
degrees of Arctic conditions. Labor dexterity success in the WF area during December
falls within the range of 61-90%. By taking the average value of this range, the labor
dexterity success would be approximately 75%.

Table 3. Labor dexterity success percentage according to operating conditions.

Operating Conditions Labor Dexterity Success
Extreme Arctic conditions 0-30%
Moderate Arctic conditions 31-60%
Mild Arctic conditions 61-90%
Normal conditions 91-100%

Moreover, the WF employs a snow removal strategy to some extent, and uses spe-

cially equipped vehicles to maintain access to the WF. This can guarantee 75% successful
access to the WF when applying the NoisyOrDist function in Equation (14) in the BN. By
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assuming that the spare parts and equipment are redundant, and available at the WF site,
this would indicate 100% successful supportability, according to the NoisyOrDist func-
tion in Equation (16). This will contribute to successful maintainability of 84.2%, by ap-
plying the Noisy AndDist function in Equation (15).

According to the available data, the number of lost communication events between
the WTs and the WF operator has doubled under Arctic operating conditions. In other
words, the probability of successful communication between the WTs and the WF oper-
ator is halved compared to the normal operating conditions in the baseline scenario.
Therefore, the probability of successful communication is reduced to 41.2%. Moreover, it
is observed from the data that the responsiveness of the WF to failures did not change
under Arctic conditions. Therefore, the probability of an on-time response by the opera-
tor to Arctic events remains at 100%. Based on this, the probability of organizational re-
silience is 70.6% when applying the Noisy AndDist function in Equation (18).

By applying Equation (3), the probability of successful restoration under the given
conditions is only 17.2%. This is because the reliability of the WF is still high, even under
Arctic conditions. In addition, by setting the desired resilience node to 90%, the resilience
improvement node shows a slight probability of improvement urgency of 13.1%.

The resilience of the WF under Arctic operating conditions is 88.2% when calculated
using Equation (1). This indicates that the Arctic conditions contributed to a 10.8% re-
duction in resilience, compared to the baseline scenario. Table 4 summarizes the values of
the BN input and output nodes when the WF operates under Arctic conditions, using the
modeled BN shown in Figure 6.

Table 4. Summary of input and output nodes in the Arctic operating conditions scenario.

Input Node Yes Value Output Node  Yes Value Resilience
WT stoppage 29% Reliability 71%
Snow removal strategy 50%
Specialized vehicles 100% Maintainability 84.2%
Labor dexterity 75%
Spare pjgis\/]ee?mpment 50% 88.2%
y . Supportability 100%
Spare parts/equipment
100%
redundancy
Staff communication 41.2% Organizational
. s 70.6%
On-time response 100% resilience

5.3. Arctic Black Swan Scenario Analysis

The resilience of the WF can be tested against a scenario that is unlikely to happen
but which, if it were to happen, would have an immense impact on the performance of
the WF. This is classified as an Arctic black swan scenario. Proposing such a scenario can
help the WF operator to prepare for the worst-case scenario that the WF might face, and
to consider the best measures to take in order to mitigate the impacts of such a scenario.

The imaginable Arctic black swan scenario implies a dramatic increase in the num-
ber of icing events, which are going to be 10 times the number of icing events that the WF
experiences under the Arctic operating conditions scenario. Moreover, the number of lost
connections between the WTs and the WF staff during this scenario would increase ten-
fold compared to the Arctic operating conditions scenario, and the WF’s response to such
scenario events would be reduced to 50%. In addition, accessibility to the WF would be
reduced as the snow removal strategy would not be efficient enough to remove the ex-
cessive accumulated snow, and only 50% of the specialized vehicles would be useable to
access the WEF. Lastly, the scenario suggests that roads to spare part suppliers would be
blocked due to the immense amount of accumulated snow, and that only 50% of the
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spare parts and tools would be redundant at the WF site. Figure 7 illustrates the proba-
bilistic values of the input and output nodes that correspond to the proposed scenario.
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Figure 7. Arctic black swan scenario Bayesian network for resilience calculation.

By following the same methodology mentioned earlier in the previous two scenari-
0s, it can be seen from the figure that the resilience of the WF is significantly reduced to
43.6%. All resilience factors witnessed a significant reduction in this scenario, but it is the
reliability of the WF that witnessed the highest reduction, as reliability is reduced to 34.6%.
Moreover, due to reduced maintainability, supportability and organizational resilience, the
restoration of the WF is reduced to nearly 9%. Furthermore, the improvement of the WF re-
silience, shown in the resilience improvement node, is increased to 50.8%, indicating a higher
urgency of implementing measures to improve the resilience of the WEF.

5.3.1. Backward Propagation Analysis

Backward propagation is another practical characteristic of BNs. In backward propaga-
tion, observation is conducted of a precise variable, usually an output variable (e.g., the re-
silience node or the restoration node). After that, the BN calculates the marginal probabilities
of unobserved variables by introducing the impact of the observed variables into the net-
work in a backward style. For example, if the resilience value is set at 90%, as shown in Fig-
ure 8, this scenario implies enhancing the reliability of the WF from 34.6% to 72.2%, which
can be achieved, for example, by installing anti/de-icing systems on the blades of the WTs.
However, a cost/benefit study should be carried out to assess the feasibility of installing such
systems [30]. In addition, Table 5 shows the required percentage value for each of the con-
tributing factors to resilience in order to increase the overall WF resilience to 90% when op-
erating under Arctic black swan conditions.

Table 5. Enhancement of variables when enhancing resilience under Arctic black swan events.

Variables/Nodes Resilience = 43.6% Resilience = 90%
Reliability 34.6% 71.4%
Maintainability 51% 59.3%
Supportability 50% 58.5%

Organizational resilience 45.2% 54.5%
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Figure 8. Backward propagation scenario when the expected resilience is set at 90%.

6. Conclusions

Infrastructure systems in the Arctic, such as wind farms, are exposed to different
types of threats ranging from natural hazards to unfriendly human-induced events to
accidents. Under such disruptive events, WFs need to be resilient to withstand and re-
cover quickly and efficiently.

In this paper, resilience was probabilistically modeled using Bayesian networks. The
proposed resilience model consists of variables related to the reliability, maintainability,
supportability, and organizational resilience of the wind farm. The concluded resilience
value is an indication of how resilient the wind farm is in the presence of Arctic disrup-
tive events. A Bayesian network is a qualified tool for calculating prior and posterior
conditional probability, through linking input and output variables in a network.
Bayesian networks can be efficiently used for estimating risks and contributing to deci-
sion-making process in uncertain environments such as the Arctic region.

A WF in Arctic Norway was considered as a case study. Three separate scenarios
were analyzed to calculate the WF resilience under three distinct operating conditions.
The baseline scenario showed that the WF is highly resilient under normal operating
conditions, with a 99% chance of being successfully resilient. The second scenario tested
the resilience of the WF under Arctic operating conditions. The calculated resilience of
the WF under such conditions is still high, with almost 88.2% resilience. On the other
hand, the WF resilience was degraded to 43.6% under an Arctic black swan scenario.
Moreover, the BN indicates that the WF needs urgent improvement actions to enhance its
resilience, with a probability of nearly 51% that the WF's resilience should be improved.

A backward propagation scenario analysis would be particularly beneficial for WF
decision-makers as it provides insights into achieving a specific level of resilience. The
paper illustrated the values of resilience variables in the event that decision-makers want
to enhance resilience to 90% when the WF is operating under Arctic black swan condi-
tions. The enhancement of resilience to such a level requires improving the reliability
significantly by more than 25%, which can be achieved by installing anti/de-icing systems
on the blades of the WTs. Regarding maintainability, supportability, and organizational
resilience, the improvement range is within 10% for each of them.
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Nomenclature

WT Wind turbine

WEF Wind farm

BN Bayesian network

R Reliability

M Maintainability

S Supportability

(@) Organizational resilience

PHM Prognostics and health management

o] Restoration

P Probability

F(t) Probability of stoppage

CBM Condition-based maintenance

k Number of events occurring

A Rate of occurrence of an event
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