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Abstract

Background: Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic
profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was
therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging
(MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be
related to the histology of the same section.

Methods: Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types
using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion
mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15
patients). Mass identification was performed with tandem MS.

Results: Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences
between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer,
including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks
needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc,
and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher
levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine
compared to cancer and non-cancer epithelium.

Conclusions: This study shows that specific tissue compartments within prostate cancer samples have distinct
metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk
analysis. We identified several differential metabolites and lipids that have potential to be developed further as
diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes
showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic.
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Introduction
Molecular characterization of prostate cancer tissue is
important in the quest of finding new biomarkers, valid-
ate previously suggested clinical biomarkers and to iden-
tify potential treatment targets. However, prostate tissue
samples are highly heterogeneously composed, contain-
ing a mix of normal epithelium, hyperplasia, stroma, and
cancer. Due to inherent functional and molecular differ-
ences between these tissue components, methodological
approaches based on bulk measurements result in aver-
age measurements and lost information from the differ-
ent tissue types. Stromal content in particular can be a
confounder in bulk measurements due to the marked
difference in the morphological and functional roles of
epithelial and stromal cells, where the epithelial cells are
responsible for producing the prostatic fluid and stroma
offers physical support and contraction of the gland [1].
Understanding the molecular processes specific to each
tissue type may provide novel and clinically important
insights into the molecular mechanisms of prostate can-
cer compared to healthy prostate epithelium. Mass spec-
trometry imaging (MSI) allows for spatial detection of
several different classes of potential cancer markers on
tissue sections, including metabolites [2, 3], lipids [4, 5],
peptides [6], glycans [7], and metals [8], which can be
matched to corresponding histology images.
Altered metabolism is a hallmark of cancer [9] and

several metabolites and metabolic pathways are differ-
ently expressed in prostate cancer [10]. Molecular com-
ponents associated with healthy prostatic function, such
as the metabolites spermine and citrate, and the metal
zinc, have long been known to have reduced levels dur-
ing cancer progression [11, 12], and to be associated
with a worse clinical outcome [13, 14]. Lower levels of
citrate in prostate cancer compared to normal tissue
have also been observed with MSI using desorption elec-
trospray ionization (DESI) [15, 16]. We have recently
demonstrated reduced levels of citrate and aspartate,
along with the metal zinc, in prostate cancer tissue using
matrix-assisted laser desorption ionization (MALDI)
MSI [17]. Lipid metabolism is another key metabolic al-
teration in prostate cancer, including both increased
fatty acid synthesis (FAS) and energy utilization of lipids
through β-oxidation. Components of the carnitine shut-
tle, a system to transport fatty acids into the mitochon-
dria for β-oxidation, are reported to have higher levels in
cancer compared to normal tissue [18], which is also
shown by MSI [19, 20]. FAS is needed for membrane
production for cell growth, and increased levels of build-
ing blocks required for phospholipid synthesis, such as
choline, phosphocholine, glycerophosphocholine, and
phosphoethanolamine are reported in prostate cancer
[12, 21, 22]. Phospholipid mapping by MSI is particularly
beneficial due to their high metabolic stability,

amphiphilic chemistry, and confinement to membranes,
making them robust against diffusion. Several studies
using MSI have demonstrated alterations in phospho-
lipid composition in prostate cancer compared to
healthy prostate tissue [3, 4, 15, 16, 19, 23].
The aim of the presented study was to investigate and

compare the metabolic and lipidomic profile of different
tissue types, including non-cancer epithelium (NCE),
stroma, and cancer of prostate tissue samples using
MALDI-TOF MSI. Using both negative and positive ion
detection mode on serial tissue sections allowed us to
simultaneously analyze a range of different metabolites
and lipids for the same samples.

Materials and methods
Patient inclusion and sample collection
This study was approved by the regional ethical commit-
tee of Central Norway (identifier 2017/576), and all
methods were performed according to national and EU
ethical regulations, as well as the principles of the Dec-
laration of Helsinki. All patients gave a written informed
consent before tissue specimens were collected.
Specimens were collected from 15 prostate cancer pa-

tients undergoing radical prostatectomy at St. Olav’s
University Hospital in the period 2007–2008. The pa-
tients had a mean age of 63.7 (range 48−69) at the time
of surgery, median post-operative T-stage T2c (range
T2c−T3b), median post-operative Grade Group 3 (range
2−5) and mean pre-operative serum PSA of 11.09 ng/
mL (range 5.2−21.4). Further clinical details can be
found in Supplementary Table S1. A 2-mm-thick tissue
slice was removed from the middle of the prostate, snap
frozen, and stored at – 80 °C as described by Bertilsson
et al. [24]. A range of 1 to 6 fresh frozen tissue core
samples (3 mm in diameter) were drilled from each slice,
giving a total of 45 samples. The samples included in
this study were originally collected as part of a previous
sample cohort [12, 13, 21, 24, 25], but were not used for
analysis at that time.

Sample preparation
The tissue samples were cryosectioned with 4 μm thick-
ness and sections were thaw-mounted onto indium tin
oxide (ITO) coated glass slides (Bruker Daltonics, part
nr. 9237001, Bremen, Germany). Two sections were cut
from each sample to give two sets, one for positive and
one for negative ion mode (n = 90 sections in total), and
four to five sections were placed on each ITO-slide in a
randomized order and were stored at – 80 °C until fur-
ther use. Performing analysis in both ion modes allowed
us to detect a wider number of molecules. This is related
to the different chemical properties of biological ana-
lytes, which leaves certain masses to be exclusively de-
tected with MS in either positive or negative ion mode.
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All ITO-slides with tissue sections were moved dir-
ectly from – 80 °C storage to a vacuum chamber and
dried for a minimum of 20 min prior to matrix applica-
tion. Two different matrixes, 2,5-dihydroxybenzoic acid
(DHB) and N-(1-naphthyl) ethylenediamine dihy-
drochloride (NEDC) were prepared; DHB (20 mg/ml)
was dissolved in 70% methanol/0.1% trifluoroacetic acid
and NEDC (7 mg/ml) was dissolved in 70% methanol.
Matrix was sprayed onto the tissue sections with the
HTX TM-SprayerTM system (HTX Technology), with 10
and 14 layers of matrix for DHB and NEDC, respect-
ively. Details of spraying parameters can be found in
Supplementary Table S2. All tissue sections coated with
the same matrix were prepared and measured with
MALDI-TOF MSI on the same day to minimize day-to-
day variation.

MALDI-TOF measurement
All tissue sections were measured on a rapifleXTM

MALDI TissuetyperTM (Bruker Daltonics) equipped with
a 10 kHz laser shooting 200 shots per pixel at a 10 kHz
frequency with a spatial resolution of 30 μm. Red phos-
phorus was used to calibrate the instrument prior to all
measurements. The tissue sections covered with DHB
matrix were measured in positive ion mode with a mass
range of m/z 100–1000, while tissue sections covered
with NEDC matrix were measured in the mass range
m/z 40–1000 in negative ion mode. Separate matrix-
only regions were recorded for all measurements. After
data acquisition, the slides were stored at 4 °C until
staining with hematoxylin and eosin (H&E).

Data preprocessing and peak selection
Due to spectral shifts between all imaging experiments
in positive ion mode, a ‘Cubic Enhanced’ recalibration
(also termed peak-realignment) was performed in FlexA-
nalysis (Bruker Daltonics) to align spectra to each other.
Seven masses were used to calibrate, of which four were
matrix-related (m/z 155.08, 273.08, 348.23, and 439.12)
and present on all spectra, while three were present on
tissue spectra (m/z 104.17–choline, m/z 496.12–uniden-
tified, and m/z 782.65–phosphatidylcholine 16:0_18:1). A
maximum tolerance of 400 ppm was used for m/z
104.17 and 200 ppm was used for the other calibrant
masses.
Stained H&E images were co-registered with the

MALDI MSI data in FlexImaging v4.1 (Bruker Dal-
tonics). Histopathology was performed by a trained uro-
pathologist (E.R.) resulting in digital annotations for
stroma (including stroma from benign areas and tumor),
NCE (including normal glands and hyperplasia), and
cancer.
Measurements with the same matrix and ion mode

were merged into one dataset in the MSI data analysis

environment SCiLS Lab 2020a (Bruker Daltonics), where
each spectrum was normalized on its total ion count.
Global, cross-patient mean spectra were calculated for
stroma, NCE, cancer, and matrix-only spectra separately
and uploaded into mMass v.5.5.0 [26] for peak detection.
In mMass, all mean spectra were baseline corrected
(precision = 20, relative offset = 25) before the mean
matrix spectrum was subtracted from the other NCE,
cancer, and stroma mean spectra. Peak selection was
then performed on the resulting mean-spectra (with
matrix peaks removed) with a minimum S/N of 2, deiso-
toping and an absolute intensity threshold of 0.2 and
0.25 for negative and positive ion mode spectra, respect-
ively. Isotopes not automatically removed by mMass
were removed through manual assessment. In addition,
lipid fragments identified from the MS/MS spectra were
also removed from the mass list. The peaks selected
from the mean spectra of stroma, NCE, and cancer were
combined and duplicate peaks were removed, resulting
in two final peak lists of 167 and 136 for the positive
and negative ion mode datasets, respectively.
All spectra were exported from SCiLS Lab and an in-

house build script in R was used to reduce each
spectrum by selecting the highest data point within each
peak interval. Due to minor mass shifts from spectrum
to spectrum, the intervals were 200 and 150 ppm for
negative and positive ion mode spectra, respectively, and
were used to locate the peaks and their highest data
point.

Data analysis and statistics
The reduced data was imported into MATLAB v.9.3
(MathWorks, Natick, USA), and multivariate analysis
was performed on auto scaled data using PLS_Toolbox
v.8.6.2 (Eigenvector Research Inc., Manson, USA). Un-
supervised principal component analysis (PCA) was ap-
plied to investigate the presence of any natural
clustering based on histology type and/or patient origin.
Two PCA models were created, one for each ion mode,
which were necessary as the data sets were acquired
from separate tissue sections which could not be exactly
overlaid. Further, the supervised multivariate method
Orthogonal Partial Least Squares Discriminant Analysis
(OPLS-DA) was applied to pairwise compare NCE,
stroma, and cancer, for both ion mode datasets separ-
ately, producing a total of six different models. The
leave-one-patient-out approach was used for cross-
validation, meaning that all spectra originating from the
same patient were left out during a cross-validation
cycle. Permutation testing (1000 iterations) was per-
formed to test significance, defined as p ≤ 0.05, of all six
OPLS-DA models. Variable importance on the projec-
tion (VIP) score was used to identify the main differing
masses between the tissue types. The VIP score indicates
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the importance of specific variables (in this case masses)
when creating a supervised PLS model, and variables
with VIP ≥ 1 are generally considered important for dis-
crimination [27].
Univariate linear mixed models (LMM) were also ap-

plied to the reduced datasets with extracted masses in R
using the nlme v3.1-137 package [28]. We used a
fraction-based iterative adaption of LMM to account for
spatial autocorrelation common to MSI [29]. With this
approach, 0.5% of all spectra are randomly selected and
used for LMM to minimize the number of neighboring
spectra being analyzed in the same model. This step was
repeated 1000 times and the reported Benjamini-
Hochberg adjusted p value (< 0.05 were considered sig-
nificant) is the average p value from all 1000 iterations.
Further details and the full R script is provided in a pre-
vious publication [17]. Additionally, log2 fold changes
(log2FC) were calculated to show the differences in levels
between the tissue types for all extracted masses.

Identification of masses
Separate tissue sections, originating from samples that
were equivalent (same collection method, storage time
and sectioning conditions) to those used for the
MALDI-TOF MSI, were prepared and sprayed with the
same protocol as described above. Based on previous
biological knowledge, visual mass distributions and VIP
scores from the OPLS-DA models, a subset of masses
were selected for identification through tandem mass
spectrometry (MS/MS). MS/MS were performed on a
high mass resolution Q Exactive HF Hybrid
Quadrupole-Orbitrap (Thermo Fisher Scientific GmbH,
Bremen, Germany) coupled to a MALDI-ESI injector
(Spectroglyph, LLC, Kennewick, WA, USA). MS/MS
spectra were acquired in both polarities using a high-
energy collisional dissociation cell with a ± 0.5 Da isola-
tion window, normalized collision energy (range 10–80,
manufacturer units), 1000 Hz laser frequency, and a
mass resolution of 240,000 (FWHM at m/z 200). For
each precursor mass, 20 spectra were acquired for with
an injection time of 2000 ms per scan while continu-
ously moving the MALDI stage. Due to lower intensities
of the nucleotides AMP, ADP, and ATP, these masses
were identified through MS/MS acquisition on a tims-
TOF flex (Bruker Daltonics) using MALDI-2, an isola-
tion window of 1 Da and 25 eV collision energy. A total
of 175, 125, and 250 laser shots were fired at a 1 kHz
frequency for AMP, ADP, and ATP, respectively. All
metabolites and lipids were identified by accurate mass
from Orbitrap acquisition and by manually assessing the
fragment pattern and comparing the averaged MS/MS
spectra to those in the data bases METLIN [30], the Hu-
man Metabolome Database (HMDB) [31], and Alex123

Lipid Calculator [32]. The metal zinc (in form of ZnCl3
-)

was identified through isotopic peak pattern, accurate
mass, and laser ablation inductively coupled plasma (LA-
ICP) MSI as described in our previous publication [17].

Results
Sample and analysis overview
MALDI-TOF MS imaging of 45 fresh frozen prostate
tissue sections resulted in a total of ~ 188,000 spectra
for both negative and positive ion mode with ~ 83,000
spectra from stroma, ~ 65,000 spectra from cancer, and
~ 40,000 spectra for NCE (Supplementary Table S3).
After removal of matrix and isotopic signals, 167 and
136 detected peaks remained in the mean spectra for
positive and negative ion mode measurements, respect-
ively. Of the selected peaks, a total of 27 metabolites and
44 lipids were successfully identified for both ion modes
(Supplementary Table S4). The mean peak height for
each mass in stroma, NCE, and cancer tissue are pre-
sented in Supplementary Table S5 and S6.
Unsupervised PCA shows some degree of clustering

based on histology type, NCE, cancer, or stroma (Fig. 1).
According to both PCA models (negative and positive
ion mode), NCE and cancer cluster closer together,
while stroma is a slightly more separate cluster. Some
clustering was additionally observed for patient origin as
shown in Supplementary Figure S1, which also show the
PCA loading plots. The six different supervised OPLS-
DA models, pairwise comparing the three different tis-
sue types in both ion mode data sets, all showed signifi-
cant differentiation after permutation testing (p < 0.001)
with prediction accuracies ranging from 71.9 to 87.1%
(Supplementary Table S3). The first latent variable in
each OPLS-DA model represents the variance showing
the best separation between the tissue types, and the
VIP-score was calculated to determine discriminatory
importance of each variable, both of which are plotted
for each model in Fig. 2. Variables with VIP score > 1
were considered important for separation. Scores plots
are presented in Supplementary Figure S2, and VIP
scores for all masses are reported in Supplementary
Table S5 and S6. These OPLS-DA models reveal several
metabolic alterations between the different tissue types
in our prostate tissue samples. Additionally, univariate
LMM supported the finding of several masses being sig-
nificantly different between the tissue types (Supplemen-
tary Table S5 and S6). Identified metabolites and lipids
with significantly different levels between NCE and can-
cer are shown in Table 1.

Metabolites associated with healthy prostate function
have reduced levels in cancer tissue
We found citrate, aspartate, and zinc, which are mech-
anistically closely related to have lower levels in cancer
tissue compared to NCE through both OPLS-DA and
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LMM modeling (Fig. 2c and Fig. 3, Table 1), similar to
our recent publication [17]. Citrate, aspartate, zinc, and
the polyamine spermine are typical metabolic actors
with particular high levels in the healthy prostate epithe-
lium [11, 33]. Reduced levels of these metabolites are re-
peatedly reported in prostate cancer tissue [12, 14, 34].
The polyamine spermine had reduced levels in cancer
compared to NCE in the OPLS-DA model (Fig. 2d and
Fig. 3, log2FC = −0.657, VIP = 1.20) and was close to sig-
nificant in LMM (p = 0.061). In contrast, the other poly-
amine identified, spermidine, had a slightly, but not
significant, higher level in cancer (log2FC = 0.259, VIP =
0.42, p = 0.45).

Metabolic profiling of prostate stroma shows higher
levels of taurine, glucose, creatine, AMP, ADP, and ATP
As expected, metabolites associated with healthy pros-
tatic epithelial function (citrate, aspartate, zinc and
spermine) had lower levels in stroma compared to NCE
(Fig. 2a, b, Supplementary Table S5 and S6). Stroma also
tended to have lower levels of phospholipids compared
to both cancer and NCE (Fig. 2a, b, e, f). Taurine, which
among other roles functions as an antioxidant, had a sig-
nificantly higher level in stroma compared to NCE
(log2FC = 0.516, p = 1.6 × 10−9, VIP = 1.11, Fig. 2a) and
also showed close to significantly higher levels in stroma
compared to cancer (log2FC = 0.514, p = 0.078, VIP =
1.09, Fig. 2e). Glucose also had significantly higher levels
in stroma compared to both NCE (log2FC = 0.306, p =
1.6 × 10−3, VIP = 0.76) and cancer (log2FC = 0.533, p =

0.024, VIP = 1.10). It should be noted that it is not pos-
sible to differentiate glucose from other sugars of similar
mass using MS/MS, but based on a previous publication,
most of the m/z 215.03 sugars on tissue is glucose [2].
The LMM tests identified significantly higher levels of
the nucleotides, AMP, ADP, and ATP, in stroma. With
the exception of AMP between stroma and cancer (p =
0.065), this was the case for all adenosine phosphates
when comparing stroma to both NCE and cancer (p <
0.05). Lastly, there were higher levels of creatine in
stroma compared to NCE (log2FC = 0.431, p = 1.4 ×
10−4, VIP = 0.90) and cancer (log2FC = 0.583, p = 0.15,
VIP = 1.15).

Higher levels of carnitine shuttle metabolites in cancer
tissue
Carnitine and acetylcarnitine were significantly upregu-
lated in cancer compared to NCE (VIP ≥ 1.93, p <
0.001, Fig. 2d, Fig. 3, and Table 1), in addition to bor-
derline significant higher levels compared to stroma
(VIP = 1.26, p ≤ 0.076, Fig. 2f). Carnitine and acetylcar-
nitine are two crucial metabolites functioning together
in the carnitine shuttle, which transports fatty acid
groups across the mitochondrial membrane for energy
production through β-oxidation (Fig. 4) [35]. Two other
carnitine species were also identified in this dataset,
hydroxybutyrylcarnitine (HBCt) and butyryl-L-
carnitine, with HBCt having significant elevation in
cancer compared to NCE and stroma (Fig. 2d, f, log2FC
> 0.823, p ≤ 0.001, VIP > 1.18).

Fig. 1 Scores plot from principal component analysis (PCA) of metabolites and lipids detected with MALDI MSI. The three first principal
components (PC) are shown for both a negative and b positive ion mode data sets. Data points represent single mass spectra and are colored
by tissue type: non-cancer epithelium (NCE, blue), cancer (red), and yellow (stroma)
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Fig. 2 Metabolic differences between non-cancer epithelium (NCE), stroma, and cancer identified by orthogonalized partial least squares
discrimination analysis (OPLS-DA). The first OPLS-DA latent variable is the main separator between the different tissue types (indicated by left and
right arrows) and are represented on the x-axis, while the y-axis represents the variable importance on the projection (VIP) score for each mass.
VIP > 1 for a variable is considered an important influence on the model and is indicated as a red dotted line. For visual purposes, the loading
scores in a have been reversed. Identified metabolites and lipids are shown as blue and green circles, respectively. ACho = acetylcholine, ADP =
adenosine diphosphate, AMP = adenosine monophosphate, ATP = adenosine triphosphate, BCt = butyryl-L-carnitine, GPE =
glycerophoshpoethanolamine, HBCt = hydroxybutyrylcarnitine, NAA = N-acetylaspartate, LPC = lysophosphatidylcholines, PCho =
phosphocholine, PE = phosphoethanolamines, PE = phosphatidylethanolamines, PC = phosphatidylcholines, PG = phosphatidylglycerols, PI =
phosphatidylinositols, PS = phosphatidylserine, and SM = sphingomyelin. The particular phospholipids and their chain-composition can be
identified by the number and found in Supplementary Table S4
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Altered lipid metabolism in cancer tissue
Several metabolites related to lipid synthesis and lipid
rearrangement had higher levels in cancer compared
NCE, including choline (log2FC = 0.785, p = 9.6 × 10−4,
VIP = 2.04), acetylcholine (log2FC = 0.537, p = 5.1 ×
10−4, VIP = 1.48), N-acetylaspartate (NAA, log2FC =
0.734, p = 0.22, VIP = 1.59), and glycerophoshoethanola-
mine (GPE, log2FC = 0.818, p = 0.062, VIP = 1.2). A few
other compounds involved in lipid synthesis, phospho-
choline, glycerophosphocholine, and phosphoethanola-
mine, did not have significantly higher levels in cancer
tissue (Fig. 2c, d, Supplementary Table S5 and S6).
Increased lipid synthesis is also showcased by higher

levels of many of its end-products, the phospholipids.
Particularly phosphatidylethanolamines (PE) and phos-
phatidylinositol (PI) measured in negative ion mode had
higher levels in cancer tissue compared to NCE in the
OPLS-DA models (VIP > 1, Fig. 2c). In contrast, all
identified lysophospatidylcholines (LPC) had significantly
reduced levels in cancer compared to NCE (log2FC ≤ −
0.744, p < 0.001, VIP ≥ 1.91, Fig. 2d, Table 1).

Discussion
This study demonstrates clear differences in metabolism
associated with the tissue types, NCE, stroma, and can-
cer in prostate tissue samples. Performing MSI in both
positive and negative ion mode on adjacent sections,

allowed us to detect and identify a wider range of chem-
ically different metabolites and lipids than previous stud-
ies using MSI to investigate prostate tissue [4, 15, 16,
23]. Altered metabolic pathways found between cancer
and NCE are summarized in Fig. 4.
Stroma tissue mainly consists of smooth muscle cells

in addition to a smaller number of fibroblasts and im-
mune cells and has different functions and metabolic
profiles than epithelial cells. During prostate cancer pro-
gression, the volume of stromal components decreases
as cancer cells invade more space in the tissue. Hence,
the percentage of stroma content is not balanced be-
tween normal and cancer samples, making stroma a
confounding factor for prostate tissue bulk analysis [1].
Previous MSI analysis of prostate tissue have either ex-
cluded stroma tissue from data analysis [4, 15, 23] or
combined stroma tissue together with normal epithelial
tissue [3]. In the latter case, observed metabolic differ-
ences between cancer and normal tissue can be a result
of reduced presence of stroma in cancer tissue rather
than a difference between cancer and healthy glands.
We therefore found it important to investigate the meta-
bolic profile of the often over-looked stroma tissue. Our
unsupervised PCA analysis shows that metabolic mea-
surements from stroma cluster more separately com-
pared to both NCE and cancer measurements (Fig. 1),
demonstrating that stroma is a tissue type with a distinct

Table 1 Identified and significantly different masses between cancer and non-cancer epithelium after univariate linear mixed
models testing. Log2 fold change (Log2FC) is reported comparing cancer to non-cancer epithelium. ‘ID in OPLS-DA’ can be used to
find the analyte on the loadings plot in Fig. 2. The reported m/z values are from MALDI-TOF measurements. LPC =
lysophospatidylcholine, PE = phosphatidylethanolamine, and PS = phosphatidylserine

m/z MALDI-TOF ID ID in OPLS-DA Log2FC p value

104.17 Choline Choline 0.785 9.6 × 10−4

132. 03 Aspartate Aspartate − 0.579 2.5 × 10−6

146.17 Acetylcholine ACho 0.537 5.1 × 10−4

162.16 Carnitine Carnitine 0.747 2.3 × 10−9

167.03 Urate Urate 0.290 2.2 × 10−3

174.83* Zinc (ZnCl3
−) Zinc − 1.054 1.9 × 10−4

175.02** Ascorbate/Glucurone Ascorbate − 0.281 0.010

191.02 Citrate Citrate − 0.892 2.3 × 10−7

204.17 Acetylcarnitine Acetylcarnitine 0.789 1.7 × 10−4

248.19 Hydroxybutyrylcarnitine HBCt 0.888 1.0 × 10−3

426.01 Adenosine diphosphate ADP 0.387 0.025

518.37 LPC (16:0) LPC 82 − 1.384 7.8 × 10−6

534.34 LPC (16:0) LPC 86 − 1.168 1.6 × 10−5

544.39 LPC (18:1) LPC 90 − 0.744 1.0 × 10−4

792.53 PE (20:1_20:4) PE 112 0.590 0.041

838.51 PS (40:4) PS 124 0.326 8.8 × 10−3

*For ZnCl3
-, the isotopes with m/z 174.83 were used to represent zinc due to an overlapping contaminant [17]

**Ascorbate and glucurone have identical masses and MS/MS suggests a mix of the two metabolites, which both belongs to the same Ascorbate and aldarate
metabolic pathway
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molecular profile. Noteworthy, the antioxidant taurine,
reported to have elevated levels at inflammatory sites
[36], was increased in stroma according to our super-
vised analysis (Fig. 2a, c, e). Cell studies also suggest that
taurine may have pro-apoptotic and anti-tumor effects

[37]. Alterations in taurine levels are not widely reported
for prostate cancer tissue samples and a study previously
published by our group did not identify any change in
taurine levels when comparing prostate cancer to benign
tissue samples using whole-sample nuclear magnetic

Fig. 3 Spatial distribution of identified masses in both ion modes on consecutive tissue sections. Masses detected in positive and negative ion
mode are indicated with a red plus and blue minus sign, respectively. These sections derive from patient nr. 11 (Supplementary Table S1). For
clarity, tissue edges are outlined with a black border. Note that the cancer region also contains some stroma finely mixed with cancer cells that
could not be annotated separately. ADP = adenosine diphosphate, ATP = adenosine triphosphate, GPEA = glycerylphosphorylethanolamine, HBCt
= hydroxybutyrylcarnitine, HE = hematoxylin and eosin, LPC = lysophosphatidylcholine, NAA = N-acetylaspartate, PE = phosphatidylethanolamine,
PI = phosphatidylinositol
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resonance (NMR) measurements [12]. We did, however,
identify higher levels of taurine in the same data set
when investigating reactive stroma, along with consider-
able upregulation of immune related genes [38]. Reactive
stroma is generally characterized by inflammation and
extracellular matrix remodeling [39, 40]. Collectively,
our findings suggest that taurine is primarily present in
the stroma, potentially as a protective reaction to a more
stressful environment caused by inflammation and oxi-
dative stress [41]. Future investigation of reactive pros-
tate stroma using MSI may give more information on
taurine’s role in stroma.
A key characteristic of the prostate stroma is the high

content of smooth muscle cells. The observation that
stroma had the highest levels of the nucleotides, AMP,
ADP, and ATP, may be explained by the presence of
muscle cells. ATP is the main energy currency for all

cells, particularly in muscle cells where hydrolysis of
phosphate groups with the end products ADP and AMP,
is important for muscle contraction [42]. Hence, the
muscle cells of the prostate stroma may contain a larger
reservoir of these adenosine phosphates to facilitate fast
contraction of the prostate when needed, e.g., during
ejaculation. Further, glucose, an important source for
ATP production, and creatine, a common storage mol-
ecule for phosphate groups in muscle cells [42], had
higher levels in stroma compared to both NCE and can-
cer. Our metabolic profiling of prostate stroma clearly
reveals pathways related to its muscle contraction
functionality.
Citrate and zinc were among the most important vari-

ables to differentiate NCE and cancer, which had de-
creased levels in cancer. Reduced levels of citrate in
prostate cancer tissue is a widely reported metabolic

Fig. 4 Altered metabolic pathways in cancer compared to non-cancer epithelium (NCE). Metabolites and lipids with variable importance on the
projection (VIP) score > 1 in the orthogonalized partial least squares discrimination analysis (OPLS-DA) models comparing NCE to cancer, are
colored as red or blue for higher or lower levels in cancer, respectively. CoA = coenzyme A, CPT1 = carnitine palmitoyltransferase 1, CACT =
carnitine-acetylcarnitine transferase, CrAT = carnitine O-acetyl-transferase, FA = fatty acid, GPE = glycerophosphoethanolamine, and NAA
= N-acetylaspartate
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alteration [12, 13] and have also been shown through
MSI experiments using DESI [15, 16]. The citrate level is
closely associated with zinc, which is suggested to cause
accumulation of citrate by inhibiting utilization in the
TCA cycle [11], as well as aspartate, which functions as
a carbon source for citrate synthesis (Fig. 4) [43]. Re-
cently, we were for the first time able to simultaneously
detect the metal zinc together with metabolites using
MALDI MSI, further demonstrating the close metabolic
association and reduced levels in cancer [17].
The polyamine spermine, which similar to citrate, is a

metabolite produced and secreted by the healthy prostate,
had lower levels in cancer compared to NCE (Fig. 2d and
Fig. 3). To our knowledge, this is the first time spermine is
detected with MSI on human tissue. Although many have
shown reduced levels of spermine in prostate cancer [12,
13, 44], less is known about the metabolic mechanism be-
hind this change. There is reported increased expression
of spermine oxidase (enzyme that converts spermine to
spermidine) in prostate cancer [45], which could explain
the slight elevation of spermidine shown in this study and
by others [34].
Increased de novo lipid synthesis for membrane pro-

duction is a key feature of many cancer types, including
prostate cancer [10]. In this study, small metabolites in-
volved in phospholipid synthesis and rearrangement,
such as choline and GPE, had higher levels in cancer
compared to NCE. Choline is a crucial building block
for PC synthesis. Elevated GPE in cancer tissue also
gives evidence towards membrane breakdown and re-
building. GPE is a breakdown product of PEs [46] and
can be further broken down to phosphoethanolamine
that can be used for new phospholipid synthesis of PE
and sphingolipids (Fig. 4). Higher levels of GPE in pros-
tate cancer compared to benign hyperplasia have been
reported [22]. We also detected elevated levels of phos-
pholipids in cancer compared to NCE, particularly sev-
eral PE and PI in negative ion mode. In contrast, there
were no remarkable differences of either the intermedi-
ates phosphocholine, glycerophosphocholine, ethanol-
amine, or PCs between cancer and NCE. This is an
unexpected observation, as these metabolites and lipids
usually have higher levels in prostate cancer [22]. Fur-
ther investigation of ethanolamine and choline contain-
ing compounds detection with MALDI is required to
solve this discrepancy. LPCs had lower levels in cancer
compared to NCE. In particular, LPC(16:0) had the high-
est VIP score (2.26) in the OPLS-DA model comparing
cancer to NCE and were highly significant (p = 7.8 ×
10−6). This is in accordance with Goto et al. which also
identified LPC(16:0) as reduced in prostate cancer using
MALDI imaging, and further found that it was signifi-
cantly associated with biochemical recurrence after rad-
ical prostatectomy [4]. LPCs may therefore be useful

clinical biomarkers but needs verification in a larger pa-
tient cohort.
Increased β-oxidation, the process in which fatty acids

are broken down for energy production, is another
metabolic alteration commonly detected in cancer [35].
The rate limiting step of β-oxidation is the carnitine
shuttle, which transports fatty acids across the mito-
chondrial membranes by attaching them to the metabol-
ite carnitine and creating carnitine fatty acid (carnitine-
FA) [35]. Excess acetyl groups inside the mitochondria
can also be transported out by attaching them to carni-
tine, creating acetylcarnitine. The elevated levels in pros-
tate cancer of carnitine and acetylcarnitine, as well as
hydroxybutyrylcarnitine, provide evidence for elevated β-
oxidation. Ren et al. showed elevated levels of both car-
nitine and several carnitine-FA in prostate cancer com-
pared to normal tissue samples [47], and Randall et al.
detected a higher intensity of palmitoylcarnitine in pros-
tate cancer areas using MALDI MSI [19]. Recently,
higher levels of carnitines were detected in prostate can-
cer tissue with presence of the gene fusion TMPRSS2-
ERG (transmembrane protease, serine 2—ETS-related
gene), a marker associated with shorter recurrence-free
survival and cancer specific death [48]. Increased levels
of carnitines can also be non-invasively detected in
serum [49, 50] and extracellular vesicles [51] of patients
with aggressive prostate cancer. Further, the enzymes
that transport fatty acids through the carnitine shuttle
(Fig. 4) are upregulated in prostate cancer tissue [18, 47,
52]. Collectively, the carnitine shuttle system has an in-
teresting potential to be investigated further for
diagnostics.
There is a limitation in this study which should be ad-

dressed. Delocalization of metabolites to the outside of
the tissue’s boundary was observed for the sections mea-
sured in positive ion mode (Fig. 3), which is an indica-
tion of delocalization also within the tissue. This is likely
an effect of insufficient vacuum drying and/or a wet
matrix application. Due to the nature of diffusion, with
molecules moving from high to low concentrations,
delocalization could cause false negatives by decreasing
the signal-differences between tissue types but is less
likely to cause false positives.
MSI methods show potential for diagnostic applica-

tions and are getting increasingly intertwined within
clinics [53]. Several of the differential analytes identified
in this study may be good candidates for clinical bio-
markers, as they have also been reported differential in
other publications using MSI, including citrate [15, 16],
and LPC (16:0) [4]. Importantly, future studies should
aim to link MALDI MSI measurements to clinical
follow-up data such as recurrence, metastasis, and over-
all survival. However, before MSI can be routinely im-
plemented in the clinic, there is a need to further
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understand tissue heterogeneity and to improve multi-
center reproducibility and validate biomarker accuracy
[53].

Conclusion
This study shows that different tissue entities within
prostate cancer tissue samples have distinct metabolic
profiles. We identified significant metabolic alterations
in key molecular processes, such as lipid metabolism
and prostatic secretory function between the tissue types
NCE, stroma, and cancer, using MALDI-TOF MSI. Pro-
filing of stroma revealed higher levels of energy transfer
metabolites and the antioxidant taurine compared to
cancer and NCE. An interesting finding was elevated
levels of key carnitine shuttle metabolites in prostate
cancer tissue compared to both NCE and stroma, pro-
viding evidence for elevated lipid β-oxidation. The ob-
served differences in metabolite levels between the
defined tissue structures pinpoint the importance of
methodology providing spatial information. In a clinical
setting, capturing this spatial information in heteroge-
neous cancer samples provides a potentially vital advan-
tage over bulk analysis, where important differential
biomarker levels may be hidden.
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