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i

During the night of 23 October 2019, a series of images of Jupiter and Saturn
were obtained at an observing site on Mauna Loa, Hawai´i. The front page
image shows Saturn to the left, and Jupiter to the right, together with three
of its Galilean moons; Io, Europa, and Ganymede. My team and I were able to
capture these images by a Celestron scope with a QHY 178c camera system,with
an exposure time varying between 30 and 180 seconds. We used the RegiStax
system to stack frames from the short video exposures. Unfortunately, the wind
began to pick up throughout the night, and we decreased the exposure times to
accommodate for any movement it had on the videos. The final image results
were not too promising, and since we were unable to see any main features
of the planets, future observations should be done on a clearer night. The
observation was fun, though very cold, and I am grateful for have gained some
insight and experience in observational astronomy during my time abroad in
Hilo.





Abstract
The rapid rotation of Jupiter and Saturn, combined with internal source of
plasma provided by their moons Io and Enceladus respectively, creates a magne-
todisk structure of the planetary magnetic field. The magnetodisk looks like a
stretched dipole magnetic field in the equatorial region, where centrifugal force
is largest. The centrifugal force, originating in the rotating frame, is known to
have large contribution to the magnetodisk structure in the Jovian and Kronian
magnetospheres. In order to investigate deviations in the dynamics of charged
particles trapped in a magnetodisk compared to a pure dipole magnetic field,
this thesis studies how centrifugal force influences a trapped particle’s bounce
motion as described by the so-called guiding centre approximation.

Here a model characterising a trapped particle’s bounce period in a rotating
frame of reference is presented. It is evident that conservation of energy and
conservation of first adiabatic invariant put constraints on the particle motion
along the field line. The V4@ parameter is a boundary condition to the model
that determines the rate of change between kinetic and potential energy along
the field line, and describes to which degree the system is affected by rotation.
The bounce period is larger than in a non-rotating frame when inverse parallel
velocity component increases faster than mirror point latitude decreases, and
shorter for the opposite case. How these components change in relation to
each other varies as a function of V4@. Small values of V4@ results in longer
bounce periods for particles with small equatorial pitch angles, and shorter
bounce periods for particles with large equatorial pitch angles. An effect of
rotation when V4@ increases is that also particles with small pitch angles are
confined towards equator, bouncing with shorter bounce periods compared to
a non-rotating frame. The V4@ parameter, describing the ratio of centrifugal
potential energy to kinetic energy at equator, is thus a prerequisite for the
particle dynamics along the field line in a rotating frame.
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1
Introduction
When the kinetic energy of plasma particles in the Sun’s corona reaches a
certain value, they escape the Sun’s gravitational field and flows out into
space as solar wind. The interaction of solar wind and a planet’s magnetic
field creates a magnetosphere; a region of plasma surrounding the planet
which is controlled by the magnetic field. Such planetary magnetospheres
are important in shielding out solar and cosmic radiation from entering the
planet’s atmosphere, and is thus crucial for the existence of life on e.g., Earth.
Magnetospheres are active and complex systems where the structure and
behaviour depends on parameters such as the direction and magnitude of
the solar wind, the magnetic moment of the planet’s internal magnetic field,
sources of magnetospheric plasma, and orientation of the planet’s magnetic
field (Kivelson and Bagenal, 2007).

Magnetospheric exploration began in the 1950s with rockets launched into
the Arctic and Antarctic ionosphere detecting energetic electrons (Kivelson
and Russell, 1995). In 1958, Explorer 1 carryied a cosmic ray detector which
revealed measurements of the Earth’s radiation environment (NASA, a). From
these measurements, James Van Allen discovered the radiation belts, consisting
of charged particles trapped in space by Earth’s magnetic field. Later on, the
Explorer 10 and 12 satellites were able to reach further out in space and past the
Earth’s magnetosphere. These satellites collected measurements essential for
understanding the solar wind, and thus the interaction of the solar wind and
Earth’s magnetic field. In the 1970s, Pioneer 11 and 12 became the first space
crafts to reach out to other planets in the solar system; Jupiter and Saturn.
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2 chapter 1 introduction

These missions revealed magnetospheres of both planets, later referred to as
the Jovian and Kronian magnetosphere (Kivelson and Russell, 1995). While the
main structure of Earth’s magnetosphere is very similar to the magnetospheres
of Jupiter and Saturn, their dynamics differ significantly due to the domination
of rotation in the Jovian and Kronian magnetospheres (Kivelson, 2014).

Jupiter and Saturn are not only the largest planets in our Solar System, they
are also rapid rotators, that rotates with a period of 9.9 hours, and 10.5 hours,
respectively. The moons of Jupiter and Saturn, Io and Enceladus, provides
plasma to the Jovian and Kronian magnetospheres. Unlike Earth’s magneto-
sphere, this results in a large amount of internal plasma corotating with the
fast rotating magnetopsheres. The combination of fast rotation periods and
internal sources of magnetospheric plasma creates a magnetic field structure
which looks like a stretched dipole magnetic field. This is referred to as a mag-
netodisk (Kivelson, 2014), see Fig. 1.1. In 1967, J. A Gledhill was the first one to
explain the effects of Jupiter’s rapid rotation on the Jovian magnetosphere, and
the missions of Pioneer 11 and 12 could reveal the the magnetodisk structure.
In 1980, Voyager 1 provided measurements of Saturn’s magnetosphere, and
Connerney et al. (1981) could therefore reveal an azimuthal current in the
Kronian magnetosphere similar to the magnetodisk structure of the Jovian
magnetosphere. Throughout the years, the Voyager and Cassini space missions
have provided additional in situ measurements of the magnetospheres of the
gas giant planets, and several studies of trapped particle dynamics have been
carried out.

Figure 1.1: Illustration of the magnetodisk magnetic field structure. The dipole mag-
netic field is radially stretched near the equatorial region at increasing
distances from the planet.
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While recent observational measurements from rockets and satellites have
provided information and further theoretical understanding of planetary mag-
netospheres, there are still unanswered questions regarding the complex mag-
netospheric systems. Measurements of space plasma have been important
in understanding Earth’s magnetosphere, where studies of the dynamics of
trapped particles have provided remarkably information about the Van Allen
belts. It is known that the Jovian and Kronian magnetospheres share many
of the same fundamental structures of Earth’s magnetosphere, only that their
magnetospheres are extreme in comparison and deviates from a dipole field at
distances further out from the planet. How trapped particles behaves along the
magnetic fields shaped as a disk in the equatorial region is yet to be investigated
and fully understood.

Understanding trapped particle dynamics in a rotating dipole magnetic field is
also of interest and particularly timely with the current and future missions to
Jupiter; Juno and Juice, as well as the successful missions to Saturn, Cassini.
Juno arrived Jupiter in 2016, Juice is planned for launch in 2022,whereas Cassini
made its final approach to Saturn in 2017 (NASA, b). The physics of trapped
particles in magnetospheres is also a relevant topic to the emerging field of
space weather.

In this thesis, a model characterising trapped particle dynamics in a rotating
dipolemagnetic field is presented. As themagnetodisk structure of themagnetic
field of Jupiter and Saturn appears partly as a result of the rotating frame, the
thesis will focus on deviations of trapped particle dynamics in a rotating dipole
field compared to a non-rotating dipole field. We are therefore to investigate
what effect rotation have for trapped particles in the magnetospheres of Jupiter
and Saturn.

1.1 Research Question

In 1980, Van Allen and Thomsen (1980) presented a model describing the
dynamics of single charged particles in a dipole magnetic field, that is the
gyromotion about the magnetic field line, the bounce motion along the field
line and the longitudinal drift perpendicular to the field lines. The purpose
of this model was to provide parameters that could describe the motion of
trapped particles in the magnetosphere of Saturn. In addition to the parameters
describing the motion of particles trapped in a dipole magnetic field, additional
formulas were provided in order to consider the interaction with Saturn’s rings
and satellites.
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A similar model to Van Allen and Thomsen (1980) which also includes rotation
is presented in this thesis. The paper of Van Allen and Thomsen (1980) aimed
to provide parameters characterizing the interaction of trapped particles with
the rings and satellites of Saturn, but did not include the centrifugal force. In
order to account for the rotation, we add the centrifugal force in the guiding
centre approximation to the existing model of Van Allen and Thomsen (1980).
In this thesis we limit our self to investigate the effect of rotation in a particle’s
bounce motion only, not the azimuth drift period as well. The following research
question will therefore be investigated:

How does the fictitious centrifugal force introduced by a rotating frame of reference
influence the bounce motion of a single charged particle trapped in a dipole
magnetic field as described by the guiding centre approximation?

1.2 Outline

The thesis is structured in the following way:

Chapter 2 provides the essential theory of trapped particle dynamics in a dipole
magnetic field, as well as planetary magnetospheres in more detail and the
origin of the magnetodisk.

Chapter 3 presents an analytical derivation of the model characterising bounce
period in a rotating dipole magnetic field.

Chapter 4 presents an analysis of the results from chapter 3.

Chapter 5 summarises the work and contains a conclusion.





2
Theoretical Background
The goal of this chapter is to gain overview of the motion of single charged
particles trapped in various planetary magnetic fields. To do this, we will
review the dynamics of charged particles trapped in a dipolar-like magnetic
field. Section 2.1 covers the theory of a dipole magnetic field. In Section 2.2,
trapped particle dynamics will be reviewed in light of the guiding centre
approximation, and the three adiabatic invariants associated with the periodic
motions; magnetic moment, bounce motion, and drift motion. Furthermore in
Section 2.3, planetary magnetospheric physics will be surveyed with emphasis
on the differences between the magnetosphere at Earth and at the gas giant
planets.

2.1 Dipole magnetic field

The magnetic field of the Earth and other magnetised planets are usually
approximated to a dipole field configuration when looking at distances that are
not too far away from the surface of the planet (Baumjohann and Treumann,
1996). The Earth’s magnetic dipole field can be written in terms of latitude _
and radial distance A in a spherical coordinate system, as follows

H =
`0

4c
"�

A3
(−2 sin _êA + cos _ê_) (2.1)

5



6 chapter 2 theoretical background

"� is the dipole moment of the Earth, given as"� = 8.05 ·1022�<2, êA and ê_
are unit vectors in radial and latitudinal direction, respectively (Baumjohann
and Treumann, 1996). An illustration of the coordinate system can be seen in
Fig. 2.1, where the unit vectors in radial and latitudinal direction are indicated
as yellow arrows.

From Eq. (2.1) the radial and latitudinal components of the magnetic field can
be obtained

�A = −
`0

4c
"�

A3
2 sin _ (2.2)

�_ =
`0

4c
"�

A3
cos _ (2.3)

The strength of a dipole magnetic field at a specific location which is not too
far away from the Earth (Baumjohann and Treumann, 1996) is given by

�(_) = `0

4c
"�

A3
(1 + 3 sin2 _)1/2 (2.4)

where "� is the magnetic dipole moment of the Earth, r is the distance from
the center of the Earth to the location of interest and _ is the magnetic latitude
of the location.

Figure 2.1: Illustration of how the dipole field line equation A (_), in Eq. (2.9), is a
function of cosine squared, and how it solely depends on the variables _
– the magnetic latitude, and A4@ – the radial distance out to the equato-
rial plane. Figure adapted from (Baumjohann and Treumann, 1996) and
further edited.
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2.1.1 Dipole field line equation

The dipole field line equation represents any dipole field line with a radial
distance A4@ out to the equatorial plane, see Fig. 2.1. If the equatorial distance
A4@ is known, the distance from the planet out to any point on the field line
can be calculated. The following derivation of the dipole field line equation is
captured from Baumjohann and Treumann (1996).

The dipole field line equation is obtained from the condition that the magnetic
field direction H is parallel to the arc element 3s for any given point on the
magnetic field line (Prölss, 2004)

3s × H = 0 (2.5)

An axisymmetricmagnetic dipole field is assumed,as in Fig. 2.1. The condition in
Eq. (2.5) can therefore be written in terms of spherical coordinates, with radial
and latitudinal direction, êA and ê_ respectively (Baumjohann and Treumann,
1996)

A3_

3A
=
�_

�A
(2.6)

The radial and latitudinal components of the magnetic field, given in Eq. (2.1),
extends Eq. (2.6) into

3A

A
= −2 sin _

cos _
3_ (2.7)

Integrating Eq. (2.7) from the radial distance of the equatorial plane A4@ where
_ = 0 to an arbitrary radial distance A on the magnetic field line where _ > 0
we get ∫ A

A4@

1
A ′
3A ′ =

∫ _

0

23 (cos _′)
cos _′

, (2.8)

Which gives the dipole field line equation

A (_) = A4@ cos2 _ (2.9)

where A (_) is the radial distance from the center of the planet out to the
magnetic field line for a given position _, A4@ is the radial distance of the
equatorial plane, and _ is the latitude of interest. As the guiding centre moves
along a dipole magnetic field line, the dipole field line equation is essential in
describing a trapped particle’s bounce motion along the field line.

In order to express the ratio of magnetic field strength at equator �4@ to
magnetic field strength at the mirror point �<, we can insert the dipole field
line equation into Eq. (2.4). That gives

�(_) = `0

4c
"�

A34@ cos6 _
(1 + 3 sin2 _)1/2 (2.10)
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A4@ is the radial distance along the equatorial plane measured from the center
of the Earth out to the L shell. The L-value for the Earth’s magnetic field is
given by ! = A4@/'� , where '� is the radius of the Earth. The magnetic field
strength is then a function of the magnetic latitude and the L shell

�(_, !) = `0

4c
"�

(!'�)3 cos6 _
(1 + 3 sin2 _)1/2 (2.11)

which can be further simplified as

�(_, !) = ��

!3
(1 + 3 sin2 _)1/2

cos6 _
(2.12)

where �� = `0"�/4c'3
�
is the equatorial magnetic field on the Earth’s surface

(Baumjohann and Treumann, 1996). A particular point along a field line is
its intersection with the equatorial plane, where the magnetic field strength
obtains a minimum �4@ = ��/!3. The ratio of the magnetic field strength
at any given point along the field line to the magnetic field strength at the
equatorial plane is then

�(_)
�4@

=
(1 + 3 sin2 _)1/2

cos6 _
(2.13)

From this, we have a relation that describes magnetic field strength on the
field line, to magnetic field strength at equator as a function of the magnetic
latitude _.

2.2 Single Particle Motion

To understand the behaviour of trapped particles in planetary magnetic fields,
the basics of single particle motion in plasma physics will be covered. Unlike
particles in a neutral gas, where it is sufficient to describe the particle motion
statistically as a Maxwellian distribution, plasma particles are affected by
electromagnetic forces, and thus the detail of the particle’s motion becomes
important.
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2.2.1 Gyration

A charged particle with mass< and charge @ in a electromagnetic field will
experience the Lorentz force (Öztürk, 2012)

3 (W<v)
3C

= @ [K (r) + v × H(r)] (2.14)

where W = (1− E2/22)−1/2 is the relativistic term, E is the speed of the particle,
K is the electric field and H is the magnetic field. Eq. (2.14) describes the
particle’s motion as a function of position and time.

Assuming no electric field, K = 0, and a static and uniform magnetic field H,
Eq. (2.14) reduces to

3 (W<v)
3C

= @ [v × H] (2.15)

which shows that the acceleration will stay perpendicular to the velocity at all
times, and the speed of the particle is therefore assumed to be constant (Öztürk,
2012). Since the Lorentz force always acts perpendicular to the particle motion,
it causes the particle to gyrate.

If the particle’s velocity is not perpendicular to the magnetic field, the magnetic
force will in stead act perpendicular to the velocity component that is perpen-
dicular to the magnetic field. The parallel velocity component is unaffected by
the magnetic force, and will cause the particle to gyrate in a helical motion
along the field line. The angle between the particle’s velocity and the magnetic
field is called the pitch angle, and is defined as

U = arctan

(
E⊥
E ‖

)
(2.16)

which is the ratio between the particle’s perpendicular velocity component and
the parallel velocity component (Baumjohann and Treumann, 1996). The size
of the pitch angle is thus affecting the helix path of the particle motion, and is
illustrated in Fig. 2.2.

The solution to Eq. (2.15) is the gyro motion of the particle described as a
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simple harmonic oscillator, with a cyclotron frequency (Chen, 1974)

l2 ≡
|@ |�
W<

(2.17)

The particle will gyrate at this frequency with a radius on the size of the Larmor
radius A2 , defined as

A2 ≡
W<E⊥
|@ |� (2.18)

Eq. (2.17) and Eq. (2.18) shows how the gyration of a particle depends on the
strength of the magnetic field, and the particle’s charge and mass. Particles
will gyrate differently depending on its mass and charge, and the magnetic
field they are moving in. In example, it will cause heavy ions to gyrate in large
circles, and lighter electrons to gyrate in smaller circles. The Larmor radius
will additionally depend on the particle’s velocity component perpendicular to
the magnetic field.

Figure 2.2: Pitch angle U at two points along the magnetic field line, denoted as,8

and, (B), showing the particle’s velocity direction and the components
parallel and perpendicular to the magnetic field. Figure is adapted from
(Roederer and Zhang, 2014).

2.2.2 Guiding centre approximation

Solving the Lorentz force in Eq. (2.14) for a particle’s position in a nonuniform
magnetic field at every single point of the gyro motion can lead to very complex
solutions. The particle’s gyro motion is therefore often averaged out so that the
particle’s overall trajectory is described only as its guiding centre - the centre of
its gyration. The particle motion is thus independent of the gyration. Averaging
over one gyration period gives the position of the guiding centre ^ (C). This is
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known as the guiding centre approximation.

〈x〉 = l2

2c

∫ C+ c
l2

C− c
l2

x (C ′)3C ′ = ^ (C) (2.19)

wherel2 is the cyclotron frequency,andx is the position in the gyromotion. This
is illustrated in Fig. 2.3. The guiding centre approximation is only valid under
the condition that spatial changes in the magnetic field are not significantly
large within one gyroradius (Öztürk, 2012). This can be expressed as

A2 �
�

|∇� | (2.20)

where A2 is the Larmor radius, and ∇� is the spatial change of the magnetic
field in three dimensions. In numerical simulations, the guiding centre approx-
imation is highly advantageous as the particle’s motion can be resolved for
relatively large time steps. However, if the Larmor radius is large enough for
the magnetic field to change significantly on that length scale, the guiding
centre may not be valid. In that case there will not be a cyclotron motion
of the particle. The guiding centre approximation may be violated for highly
energetic particles if the gyroradius is too large, and simulating large time
steps of the particle’s trajectory would fail (Öztürk, 2012).

2.2.3 Magnetic drifts

In the presence of an external force or an inhomogenous magnetic field, the
particle will not only move along the field line, but it will also drift relative to
the guiding centre. The drift of the guiding center is usually referred to as a
magnetic drift, that appears due to the magnetic field the particle is moving
in. The following presents the grad-B drift and the curvature drift by the
assumption of the guiding centre approximation.

Grad-B drift

The Larmor radius A2 in Eq. (2.18) is inverse proportional to the strength of
the magnetic field �, and particles will therefore gyrate in small circles for
strong magnetic fields, and in large circles for weak magnetic fields. In the
case where the magnetic field strength varies in space, such that there is a
magnetic gradient, the particle will have large Larmor radius as it moves into
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regions of weaker magnetic field, and small Larmor radius as it moves into
regions of stronger magnetic field. This effect causes an overall motion of the
particle – a drift, which can be seen in Fig. 2.4. It shows that the particles drift
perpendicular to the magnetic gradient as well as they gyrate. This drift is
called grad-B drift and is given as

E∇ =
W<E2⊥
2@

H × ∇�
�3 (2.21)

The direction of the cross product between the magnetic field direction and the
gradient of the field is thus the direction of the particle’s drift. Since Eq. (2.21)
depends on the charge of the particle, electrons and ions will drift in opposite
directions (Baumjohann and Treumann, 1996).

Curvature drift

A particle will drift perpendicular to the magnetic field line also if the magnetic
field is curved. When the magnetic field has a curved shape, such as a dipole
and the magnetic field of Earth, the drift is caused by a centrifugal force arising
from the particle’s circular motion in the curved magnetic field. This drift is

Figure 2.3: Guiding centre for an ion- 1 and electron- 2 and its full particle motion G1
and G2, respectively. The charged particles are present in a static magnetic
field pointing in to the page.
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Figure 2.4: Gyro motion for an ion and electron moving in a gradient magnetic field.
Figure adapted from (Baumjohann and Treumann, 1996).

given as

E2 =
W<E2‖
@

X2 × H
'2
2�

2
(2.22)

where X2 is the radius of curvature, and depends on the charge of the particle
too, causing electrons and ions to drift in opposite direction.

The combination of a magnetic field that is varying in space, and a magnetic
field that is curved, will lead to yet another drift caused by both the gradient
magnetic field and the curved magnetic field: a grad-B pluss curvature drift,
given as

E2 + E∇ =
W<

@

X2 × H
'2
2�

2

(
E2‖ +

1
2
E2⊥

)
(2.23)

The Earth’s dipolemagnetic field is curved and has a gradient since themagnetic
field strength decreases with A3, which causes the trapped particles in Earth’s
magnetic field to drift azimuthally around the planet. Since the drift is charge
dependent, electrons and ions will drift in opposite direction around Earth,
thus creating what is known as the ring current (Baumjohann and Treumann,
1996).
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2.2.4 Adiabatic invariants

For a trapped particle there are three important periodic motions: the gyromo-
tion around the field line, the bounce motion along the field line, and the drift
motion around the planet, see illustration in Fig. 2.5. From adiabatic theory,
these periodic motions can be represented in terms of quantities called adia-
batic invariants. Adiabatic invariants are quantities that remain approximately
constant during small variations of the system within the length scale of the
periodicity. If the assumption that the system is varying slowly enough on
the length scale of the periodicity is not valid, such as during strong geomag-
netically disturbances, the periodic motion of the particle will not hold, and
the simplifications cannot be done. The adiabatic invariants are constants of
motion, and are derived from the action integral taken over a period (Chen,
1974)

� =

∮
? 3@ (2.24)

where p is themomentum andq is the space coordinate. In space plasma physics
there are three adiabatic invariants, each associated to the three periodic
motions of a trapped particle; the magnetic moment, the bounce period, and
the drift period (Chen, 1974). These invariants will be derived in the following
sections. Note that the derivations presented in the following sections of the
three adiabatic invariants are similarly discussed as in Öztürk (2012).

Figure 2.5: Periodic motion of a trapped particle. Figure to the left: Gyro Motion, here
denoted as+6. Figure in the center: Bounce Motion,+1 . Figure to the right:
Drift Motion, +3 . The figure adapted from (Kivelson and Russell, 1995).
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First adiabatic invariant

The first adiabatic invariant in plasma physics is associated with the magnetic
moment. The derivation of the first adiabatic invariant starts with the canonical
momentum for a charged particle in a magnetic field, given as

�1 =

∮
(W<v + @G) · 3; (2.25)

where G is the vector potential of the magnetic field and 3; is the line element
along the particle’s gyration path. Here, the magnetic field is assumed to be
constant during one integration period of the gyro motion. Eq. (2.25) can
further be written as

�1 =
cW2<2E2⊥
@�

(2.26)

For a constant mass and charge, we define the magnetic moment,

` ≡ 1
2
W2<E2⊥
�

= 2>=BC . (2.27)

which has its name from being equal to the magnetic moment occuring due to
the current that is generated from the particle’s gyromotion. Eq. (2.27) shows
that the magnetic moment stays constant as the particle moves into regions
of stronger and weaker magnetic field, because the perpendicular velocity
component that changes accordingly. This explains the effect of magnetic
mirroring.

Magnetic mirror effect

Magnetic mirroring is the phenomena of particles bouncing back and forth
between two mirror points along the magnetic field line. This is due to conser-
vation of energy and magnetic moment, and is caused by a magnetic mirror
force acting against the particle’s motion. The magnetic mirror force is derived
from the Lorentz equation and is defined as the following

LI = −
1
2
<E2⊥
�

mHI
mI

= −` mHI
mI

(2.28)

where HI is the magnetic field in z-direction in cylindrical coordinates, and `
is the magnetic moment. The mirror force will act against the particle’s motion
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as long as mHI

mI
> 0, hence the negative sign in Eq. (2.28). At the point when

the magnetic moment is largest, the force will cause the particle to reflect back
towards its direction of motion. The particle is reflected back at the point where
its parallel velocity component is zero. Then there is no direction of motion
along the field line, only perpendicular to the field line.

For a trapped particle in the dipole magnetic field of Earth, the mirroring
effect will occur at the northern and southern hemispheres. The magnetic field
strength is strongest at these points due to the converging of the field lines.
The magnetic mirroring effect is thus causing a motion of the particle called a
bounce motion along the field lines.

Second adiabatic invariant

The second adiabatic invariant is associated with the periodic bounce motion
of a trapped particle, which will remain approximately constant as long as the
changes in the system is not significantly large within one bounce period. The
second adiabatic invariant is derived by integrating the canonical momentum
for a charged particle over the path of the guiding field line 3s.

�2 =

∮
(<v + @G) · 3s (2.29)

where the second term cancels out since it results in the integration of a
surface enclosed by a bounce path, which goes back and forth along the same
field line. Further on, the second adiabatic invariant is expressed as two times
the integration from one mirror point _1 to the other _2 to complete a full
oscillation period of the bounce motion. Eq. (2.29) is then reduced to

�2 = 2
∫ _2

_1

<E ‖3B (2.30)

which is an integral of the parallel velocity component along the field line.

Bounce period

A trapped particle’s bounce motion is the periodic motion between the two
mirror points. The bounce period is determined as the time it takes for the
particle to move from the equatorial plane _4@, to the mirror point at the
northern hemisphere _<, to the mirror point at the southern hemisphere,
and back to the equatorial plane, see illustration in Fig. 2.6. The derivation
here is captured from Guio et al. (2020). The bounce period is expressed
mathematically as the following (Van Allen and Thomsen, 1980)
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Figure 2.6: Path of a bounce period. To follow the bounce period path, look at the
blue starting point at the equatorial plane _4@ , and follow the arrows.

g1 = 4
∫ _<

0

3B

E ‖

= 4
∫ _<

0

3B

3_

3_

E ‖
(2.31)

where _< is the mirror point magnetic latitude, E ‖ is the parallel velocity
component of the particle, and3B is an arc element along the magnetic field line.
The particle’s velocity component parallel to the magnetic field is integrated
four times from equator, where _4@ = 0, up to the mirror point magnetic
latitude _<, in order to complete a full bounce period. The arc element 3s
along the field line can be expressed in terms of the magnetic latitude of the
field line. As explained in Section 2.1 the line element 3s along the magnetic
field line can be expressed in terms of an infinitesimal radial distance 3r and
A3, as follows

3s = 3AeA + A3_e_ (2.32)

The radial and latitudinal components of the magnetic field �A and �_ are in
the same direction as the unit vectors eA and e_ and Eq. (2.32) can therefore
be expressed as

3B

3_
= A (_)

(
1 + �

2
A

�2
_

)1/2
(2.33)

The parallel velocity component is derived from conservation of magnetic
moment, and is expressed as a function of the total velocity and the magnetic
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field at the mirror point �< and at the position of the particle �

E ‖ = E

√
1 − �

�<
(2.34)

By inserting the equation for the arc element in Eq. (2.33) and the parallel
velocity in Eq. (2.33) into the bounce period in Eq. (2.31) one gets

τ1 = 4
∫ _<

0
A (_)

(
1 + �

2
A

�2
_

)1/2
1
E

[
1 − �

�<

]−1/2
3_

= 4
'̂4@'%

E

∫ _<

0

1
'̂4@

(
1 + �2

A /�2
_

1 − �/�<

)1/2
Â (_)3_

where Â = A/'% and '̂4@ = '4@/'% , and '% is the planetary radius. The
expression for the bounce period is in Guio et al. (2020) simplified and further
expressed as

τ1 =
'̂4@'%

E
Φ('4@, U4@) (2.35)

where Φ is a dimensionless function defined as

Φ('4@, U4@) =
1
'̂4@

∫ _<

0
A (_)

(
1 + �2

A /�2
_

1 − �/�<

)1/2
Â (_)3_ (2.36)

When a dipole magnetic field is assumed, the integral in Eq. (2.36) is usually
solved numerically. It is common to approximate the integral as in Baumjohann
and Treumann (1996) to Γ = 1.30 − 0.56 sinU4@. The bounce period can then
be expressed in terms of the L shell, ! = A4@/'% as

τ1 '
4!'%
E
(1.30 − 0.56 sinU4@) (2.37)

which is a function of the equatorial distance A4@ and the particle’s velocity at
equator E4@. This implies that particles further out from the planet are expected
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to have a longer bounce period than particles closer to the planet. Particles
with low speed at the equatorial plane are expected to have longer bounce
periods than particles with high speed.

Electrons will spend seconds to complete a bounce period, while heavier ions
will use minutes (Baumjohann and Treumann, 1996). The second adiabatic
invariant may therefore be violated for ions with low enough energy under
conditions where the magnetic field varies on time scales smaller than the ion
bounce period.

Third adiabatic invariant

The third adiabatic invariant is associated with the periodic azimuthal drift
motion of trapped particles. As long as any changes to the system are on
larger time scales than the period of drift motion, it will be sufficient enough to
express the periodicity as an adiabatic invariant. The third adiabatic invariant
is derived by integrating the momentum over the path line enclosed by the
particle’s full orbit around the magnetic dipole, given as

�3 =

∮
(<v + @G) · 3; (2.38)

where 3; is a line element along the azimuthal drift path, and G is a vector
potential such that H = ∇ × G. Öztürk (2012) shows that the first term is
much smaller than the second term, and is therefore cancelled out. The third
adiabatic invariant can then be expressed as

�3 = @Φ (2.39)

which describes that the flux the particle encloses as it drifts azimuthally around
the dipole is conserved (Baumjohann and Treumann, 1996). The flux Φ is the
surface integral of the magnetic field

Φ =

∬
H · 3f (2.40)

where 3f is the area enclosed by the orbit of the particle drifting azimuthally
around the magnetic field.

Bounce-averaged azimuthal drift period

A trapped particle’s drift motion is its azimuthal motion around a dipole mag-
netic field. The drift motion is an effect of particles which undergo grad-B drift
and magnetic curvature drift. The drift is an average of the bounce period,
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which is measured as the shift of the angle in azimuth direction during one
bounce period, scaled with 2c . The bounce-averaged azimuhtal drift period is
given as

τ3 =
2c
Δq

τ1 (2.41)

where Δq is a change in longitude direction, and g1 is the bounce period. Guio
et al. (2020) presents the change in longitude during one bounce period, given
as

Δq = 4
∫ _<

0

E�

A cos _
3B

3_

3_

E ‖
(2.42)

where r is the radial distance from the planet to the particle, and E� is the
longitudinal drift velocity of the particle. The longitudinal drift velocity is a
combination of magnetic gradient and curvature drift. The derivation of the
azimuthal drift period can be found in Guio et al. (2020). The resulting drift
period is

τ3 =
2c@�%'2

%

3'̂4@W<E2
Φ('4@, U4@)
Γ('4@, U4@)

(2.43)

where Φ('4@, U4@) and Γ('4@, U4@) are dimensionless functions expressing the
bounce period, and the sum of the contributions from the magnetic curvature
and gradient drift motions, respectively. For a dipole magnetic field the integral
in the dimensionless functions Γ has in Baumjohann and Treumann (1996)
been solved numerically. It is approximated to an expression in terms of the
L shell, ! = A4@/'% , such that the bounce-averaged azimuthal drift period is
expressed as

τ3 '
2c@�%'2

%

3!W<E2
1

0.35 + 0.15 sinU4@
(2.44)

As long as no changes with time scales smaller than the time scale of the drift
period τ1 are made to the system, the particle will complete a full drift period
around the planet.

2.3 Planetary Magnetospheres

A planet’s magnetosphere is the region of plasma that surrounds a planet which
is controlled by the planetary magnetic field. The magnetosphere exists due
to the interaction between the solar wind and a planet’s internal magnetic
field.
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2.3.1 Formation and structure of a magnetosphere

A combination of the radial flow of the solar wind, and the Sun’s rotation results
in solar magnetic field lines formed as Archimedean spirals. The opposite
polarities of the Sun’s magnetic field at the poles results in a current sheet in
the equatorial plane, called the heliospheric current sheet, separating the two
regions. The sheet has a shape which looks much like the skirt of a ballerina
due to the tilt of the Sun’s magnetic field (Kivelson and Bagenal, 2007).

Alfvén’s theorem states that plasma andmagnetic fields are frozen together due
to the high conductivity of the plasma. The solar wind will therefore carry the
Sun’s magnetic field as it escapes the corona. This creates the interplanetary
magnetic field (IMF) which reaches out to the planets in our solar system.
Another effect of the frozen-in condition is that the Earth’s magnetic field
remains separated from the IMF. As the solar wind travels at supersonic speeds
and interacts with the magnetic field of magnetised planets, a bow shock
is created, which slows down the solar wind flow (Kivelson and Bagenal,
2007). This is illustrated in Fig. 2.7. The region just inside the bow shock is
called the magnetosheath and consists of shocked solar wind plasma. From
the magnetosheath region, particles can further enter a planet’s atmosphere
through the cusp region. The outer boundary of the magnetosphere is called
the magnetopause, and is typically found at distances around 10'� for the
Earth on the day side of the planet, where '� is the radius of Earth. The
magnetopause separates shocked solar wind plasma within the magnetosheath
from the plasma inside the magnetosphere (Sibeck and Murphy, 2021). When
the magnetopause is at balance, the pressure from the solar wind equals the
pressure from the planet’s magnetic field, and the magnetosphere’s size and
dynamics is highly influenced by the pressure of the solar wind. Under very
intense solar winds, leading to e.g. geomagnetic substorms, the pressure from
the solar wind is weaker on the night side of the planet, which results in parts
of the magnetosphere to be extended. This is known as the magnetotail, and
is illustrated in Fig. 2.7. Alfvén’s theorem breaks down during reconnection of
the magnetopause in the magnetotail region where the two hemispheres of
the magnetosphere meet. This happens only while the direction of the IMF and
the planetary magnetic field opposes one another. This process is known as
magnetic reconnection. The antiparallel field lines merge, and the plasma mix
such that shocked solar wind enters the magnetosphere. While it is yet poorly
understood at which location this process happen, magnetic reconnection is the
dominant solar wind-magnetosphere interaction (Sibeck and Murphy, 2021).
In the inner magnetosphere we find the ring current, the radiation belts and
the plasmasphere. Some solar wind particles that entered the magnetopause
through the magnetic reconnection process, are further accelerated from the
magnetotail to the near-Earth region. In the near-Earth region, at distances
from ∼ 1.5 − 9'� , ionized particles undergo a curvature-gradient drift, see
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Figure 2.7: Illustration of cross section of Earth’s magnetosphere and the interaction
with the solar wind. The thin arrowed lines are geomagnetic field lines,
and circled dots and cross are curernts. The interaction with the solar wind
creates a bow shock. Within this region is the magnetosheath. Further in
is the magnetopause which is the boundary of the magnetosphere. The
magnetotail and the current sheet are illustrated too. Figure is captured
from (Kivelson and Russell, 1995).

Eq. (2.23). As a result, ions with energies of ∼ 10 to ∼ 200 keV, and electrons
with energies of a magnitude lower, will drift in opposite directions around the
planet creating the ring current (Sibeck and Murphy (2021), and references
therein). Also in the near-Earth region are the two Van Allen radiation belts,
more precisely at 1.2 − 2'� for the inner belt and 3 − 7'� for the outer belt.
Trapped particles in the magnetospheres constitute the radiation belts, which
consists of highly energetic particles of about 1MeV for protons and about 50keV
for electrons (Prölss, 2004). Further within this region is the plasmasphere, a
cold and dense region where particles mainly originate from the ionosphere
with temperatures on the order of ∼ 1eV (Kivelson and Bagenal, 2007).

2.3.2 Magnetospheres of the giant planets

The gas giant planets, Jupiter and Saturn, have their names from being the most
massive and largest planets in our Solar System, and from being composed
of gas rather than solid material. Compared to Earth, Jupiter and Saturn are
hundred times as massive and large, with equatorial radii of '� ≈ 71, 500km
and '( ≈ 60, 300 km, respectively (Achilleos et al., 2021). As Jupiter and
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Table 2.1: Planetary magnetic field properties for Earth, Jupiter and Saturn. Magnetic
moment at Earth"�0ACℎ = 7.906×1025 Tesla m3 0. Dipole tilt represents the
angle between magnetic and rotation axes1 . Data is provided in (Kivelson
and Bagenal, 2007).

Earth Jupiter Saturn
r4@ (km) 6,378 71,492 60,268
Rot. period (h) 23.934 9.925 10.543
Ions $+, �+ $+, $++, (+ $+, $�+, �2$+
Mean mass (amu) 1.008 16 17.25
Magnetic moment (M�0ACℎ) 10 20.000 600
Dipole tilt1 +10.8° −9.6° −0.0°

Saturn are such massive planets, with "� ≈ 315"�0ACℎ and "( ≈ 95"�0ACℎ,
respectively, they do not obey the radius-mass relation for solid planets with
low mass, given as ' ∝ "1/3. Because of this, they must be gaseous planets,
otherwise they would not be as large (D’Angelo and Lissauer, 2018).

Magnetized planets are those planets whose the magnetic field is generated
from the electrically conducting fluid in their outer core (Kivelson and Bagenal,
2007). Objects that generate magnetic fields will have a magnetic moment,
that describes the strength and orientation of the magnetic field. The magnetic
moment of the magnetic field of Jupiter is ∼20,000 times larger than that
of Earth’s magnetic moment, and for Saturn it is ∼600, indicating enormous
internal magnetic fields compared to Earth (Kivelson and Bagenal, 2007). While
the Earth’s magnetic axis direction of the magnetic north pole is situated close
the geographical south pole, with 11° tilt between the magnetic axis and
rotation axis. The magnetic axis direction of Jupiter and Saturn is opposite to
that of the Earth, such that the magnetic north pole at Jupiter and Saturn is
situated close to the geomagnetic north pole, with 9.6° for Jupiter and 0° for
Saturn.

While the solar wind is the main source of plasma to Earth’s magnetic field,
planetary satellites are the main plasma sources in the innermagnetospheres of
Jupiter and Saturn. The volcanic moon Io is known for being the primary source
of plasma in the Jovian magnetosphere, where erupted lava becomes ionized
in the magnetosphere. The mass loading rate of the plasma from Io is ∼ 103
kg s−1 (Vasyliunas (2008), and references therein), resulting in mainly sulfur
and oxygen ions in the Jovian magnetosphere. In the Kronian magnetosphere,
the plumes of the icy moon Enceladus provides plasma to the magnetosphere
with a mass loading rate of ∼ 102 kgs−1, which is the reason for water group
ions in Saturn’s magnetosphere (Achilleos et al., 2021).



The large amount of plasma expelled into the inner magnetospheres of Jupiter
and Saturn will corotate with the rotating magnetosphere, and as a result
the plasma will shape into a torus around the planet. As Jupiter and Saturn
are rapid rotators, where Jupiter rotates with ∼ 9.9 hours and Saturn with
∼ 10.5 hours, the injected plasma will feel accelerated due to the centrifugal
force, originating in the rotating frame, resulting in a strong azimuthal ring
current extended radially outwards from the planet. The radially extended
ring current will stretch the magnetic field lines in the equatorial plane into
a shape referred to as a magnetodisk. A magnetodisk field is a magnetic field
that looks like a stretched dipole magnetic field as the field lines are stretched
radially in the equatorial plane. The stretching of the field appears at radial
distances from the planet where the centrifugal force is largest. At ∼ 6'� ,
where Io is situated, the centrifugal force exceeds the gravitational force by a
factor of ∼ 20 (Achilleos et al., 2010). From this point, and up to ∼ 20'� , the
field lines are stretched into a magnetodisk shape. In this region the azimuthal
current diffueses into a plasma sheet (Kivelson and Bagenal, 2007). In the
Kronian magnetosphere, the centrifugal force exceeds the gravitational force
by a factor of ∼ 20 at the point of Enceladus, at 4'( , resulting in a current that
flows azimuthally that stretches the field lines too.





3
Derivation of bounce
period in a rotating frame
of reference
In order to study how the centrifugal force influences a trapped particle’s
bounce motion, the effect of rotation must be included in the particle motion
along a field line, as described by the guiding centre approximation. How
the centrifugal force appears and why it matters for a magnetodisk will be
explained in Section 3.1.

The main assumptions in the study of trapped particle dynamics in a rotating
frame is conservation of energy and the first adiabatic invariant along the
guiding centre path. In a rotating frame it follows that the particle will have a
centrifugal potential energy. To account for the centrifugal force in the guiding
centre approximation, we must study conservation of kinetic and centrifugal
potential energy in a rotating frame. This will be covered in Section 3.2.
Conservation of the first adiabatic invariant is essential in the study of a
trapped particle’s bounce motion as it constrains the particle’s perpendicular
velocity component along the field line. How conservation of the first adiabatic
invariant affects the particle motion in a rotating frame will be discussed in
Section 3.2 as well.
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chapter 3 derivation of bounce period in a rotating frame of

reference

In Section 3.3 we will discuss how conservation of energy and the first adiabatic
invariant affects the mirror point magnetic latitude in a rotating frame.

Due to the fundamental conservation principles of energy and magnetic mo-
ment along the guiding field path, Roederer and Zhang (2014) refer the equato-
rial plane in the dipole magnetic field as an equilibrium position of the trapped
particles. This implies that if one knows the particle’s velocity E4@, distance
from the planetary axis A4@, and the pitch angle U4@, the particle dynamics
along the field line can be calculated analytically thereafter. From this, the
particle motion along the field line can be fully understood. The equatorial
observations of the particle are thus used as boundary conditions in the model
(Roederer and Zhang, 2014). The model presented in this thesis will in addition
include one additional boundary condition; the V4@ parameter, which will be
introduced in Section 3.4.

In Section 3.5, the equation describing the bounce period of a trapped particle
in a rotating frame will be presented. The dimensionless function Φ which
characterises the bounce periodwill be the focus in order to answer the research
question presented in Section 1.1.

In Section 3.6, we will present what we expect a trapped particle’s drift period
to be in a rotating frame.

Magnetospheres are complex systems and there are many parameters affecting
the dynamics of trapped particles. The following simplifications are done in
the derivation of the bounce period in a rotating frame.

• The model in this thesis is an undisturbed dipole magnetic field assumed
to be azimuth symmetric about the planet’s axis of rotation.

• The trapped particles are assumed to be rigidly corotating with the
magnetic field with the angular velocity Ω? of the planet’s rotation (Vogt
et al., 2014). The rotation period of the planet is therefore assumed to be
constant also at distances further out from the axis of rotation.

• The trapped particles are also assumed to not be drifting azimuthally
around the planet. There will only be a bounce motion along the field
lines.
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3.1 Centrifugal force

A non-inertial frame of reference is a reference systemwhich accelerates relative
to an inertial frame. Objects present in such a non-inertial reference frame
will therefore be affected by forces due to the acceleration of the frame, called
fictitious forces. These forces are fictitious since they have no real physical origin,
but only appear since the object is present in the non-inertial frame.

Linear accelerating or rotating frames are examples of non-inertial reference
frames, as they move with changing speed or direction relative to the inertial
frame. In an accelerating, car a person will feel a force pushing the person back
into the seat. If the car is moving in a circular motion with a constant speed, the
person will feel a force which pushes the person outwards from the center of
the circular motion. To an observer on the outside, there is no origin to each of
these forces within the inertial frame. Therefore, the forces experienced by the
person in the non-inertial frame are fictitious. There are mainly three fictitious
forces in a rotating frame of reference; the Coriolis force, the Centrifugal force
and the Euler force, each depending on the angular velocity of the rotating
system Ω.

• Coriolis force: L = −2<
 × v

• Centrifugal force: L = −<
 × (
 × r)

• Euler force: L = −<3

3C
× r

In the magnetodisk magnetic field of Jupiter and Saturn, trapped particles will
be affected by fictitious forces due to the rotating frame of the rapid rotating
planets. The model discussed in this thesis will only include the centrifugal
force, we omit the remaining two. The Euler force is ignored since we assume
a constant rotation period of the planet, and a stationary orientation of the
angular velocity. Because of this, there is no time variation of the angular
velocity, and hence 3Ω

3C
= 0. The Coriolis force is ignored too because it does

no work on the particles. It is perpendicular to the particle motion, and will act
equally as the magnetic force (Vogt et al., 2014). However, the Coriolis force may
have an impact on the drift period, which will be discussed in Section 3.6.

An illustration of the centrifugal force in a system of a rotating dipole magnetic
field can be seen in Fig. 3.1, which also illustrates the model derived in this
thesis. The resulting centrifugal force ��� is pointing radially outwards from
the axis of rotation in a system with angular velocity 
? , and a radial distance
to the object r = r4@. The centrifugal force is proportional to the radial distance
of the object, and from the dipole field line equation Eq. (2.9), it follows that
the centrifugal force decreases for higher magnetic latitudes. The particles will
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Figure 3.1: Centrifugal force in a system of a rotating dipole magnetic field. Ω? is the
angular velocity of the rotation of the planet, A4@ is the radial distance to
the magnetic field line at the equatorial plane, and ��� is the resulting
centrifugal force.

therefore be subjected to the largest centrifugal force at the equatorial plane.

For trapped particles in a rotating frame, the centrifugal force is defined as

L�� = −<
? × (
? × r), (3.1)

where m is the mass of the particle, 
? is the angular velocity of the planet,
and r is the radial distance from the axis of rotation out to the point of the
particle on the field line.

3.2 Conservation of energy

For a trapped particle bouncing between the mirror points in a rotating dipole
magnetic field, energy is conserved along the guiding centre path because the
particle is in a conservative vector field. The Lorentz force, originating in the
electromagnetic field, is by definition perpendicular to the velocity direction
of the particle, and does therefore zero work on the particle. The centrifugal
force, originating in the rotating frame, will always act radially outwards from
the axis of rotation. That means, along the bounce path, it will therefore be
in an angle to the direction of motion, and does zero work on the particle as
well.

The trapped particle’s total energy along a guiding centre path is the sum of
kinetic energy � and centrifugal potential energy �� , and can be thought
of as total energy conserved in a spring. Along the guiding centre path, the
particle’s energy will have the same oscillating behaviour as the spring, where
it will have a maximum kinetic energy and a minimum potential energy at
equator, whereas a minimum kinetic energy and a maximum potential energy
at the mirror point.
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Since the centrifugal force in Eq. (3.1) is a conservative force, the centrifugal
potential energy �� can be derived from the condition that a conservative force
is the derivative of a potential. From the centrifugal force L2 in Eq. (3.1), we
can therefore obtain the centrifugal potential energy �� from the the following
relation

L�� = −∇�� (3.2)

Solving Eq. (3.2) gives the centrifugal potential energy

�� = −1
2
<(
? × r)2 +  (3.3)

where 
? is the angular velocity of the planet, r is the radial distance from
origin to the position of the particle, and K is the integration constant from
solving Eq. (3.2). The integration constant K defines the reference point of
the centrifugal potential energy and the centrifugal potential energy is nega-
tive because it requires work to bring an object towards the axis of rotation
(PhysicsLibreTexts).

For the purpose of comparing the particle’s kinetic energy to the potential
energy, the reference point of the centrifugal potential energy is defined at
equator. The constant K is therefore chosen such that the total energy at
equator only equals the kinetic energy. The centrifugal potential energy is then
expressed as

�� = −1
2
<(
? × r)2 +

1
2
<(
? × r4@)2 (3.4)

A dipole magnetic field is assumed and we insert the dipole field line equation
from Eq. (2.9). By solving the cross products in Eq. (3.4), the centrifugal
potential energy along the field line can then be expressed as

�� (_) = −
1
2
<Ω2

?A
2
4@ cos

6 _ + 1
2
<Ω2

?A
2
4@

=
1
2
<Ω2

?A
2
4@ (1 − cos6 _) (3.5)

The resulting expression for the centrifugal potential energy in Eq. (3.5) shows
that the centrifugal potential energy is zero at equator where _ = 0. Fur-
thermore, the centrifugal potential energy increases as 1 − cos6 _ towards the
mirror point magnetic latitude _<.

Recalling the spring analogy, the kinetic energy must decrease as a function
of cos6 _ along the guiding path for energy to be conserved. As the particle
moves towards higher latitude, the particle’s kinetic energy is transformed into
potential energy. Hence, the kinetic energy will not be constant along a field
line as it is for a non-rotating frame. In order to express the kinetic energy
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of the particle along the guiding centre path as a function of the magnetic
latitude, we will consider conservation of energy between the equator �4@, and
at any arbitrary point along the field line � (_). We know from Eq. (3.5) that
the centrifugal potential energy is zero at the equator since this is the reference
point of the potential energy. Conservation of energy gives

� 4@ = � (_) + �� (_) (3.6)

where � 4@ is kinetic energy at equator, � (_) is kinetic energy at a given
magnetic latitude _ and �� (_) is potential energy at a given magnetic latitude
_, see Eq. (3.5). The kinetic energy along the guiding centre path is therefore
expressed in terms of kinetic energy at equator and centrifugal potential energy
along the guiding centre path

� (_) =
1
2
<E24@ −

1
2
<Ω2

?A
2
4@ (1 − cos6 _) (3.7)

When at equator _ = 0, the expression in Eq. (3.7) is solely the kinetic energy at
the equator, expressed as the equatorial velocity � 4@ = 1

2<E
2
4@. As the particle

drifts towards higher latitudes, the kinetic energy of the particle will decrease
proportional to cos6 _. It is thus clear that rotation will have an effect on the
kinetic energy of a trapped particle.

From Eq. (3.5) and Eq. (3.7) it is clear that the particle energy converts between
kinetic and potential energy along the guiding centre path depending on the
variables E4@, Ω? and A4@, and behaves as an oscillator along the guiding centre
path. From this we observe that kinetic energy obtains a maximum at equator,
and a minimum at the mirror point. Furthermore, potential energy obtains a
minimum at equator and a maximum at the mirror point.

The particle’s total velocity along the field line is given as

E2C>C = E
2
⊥ + E2‖ (3.8)

From conservation of the first adiabatic invariant it follows that the particle’s
perpendicular kinetic energy is constrained by the magnetic field strength
of the field line. When the particle reaches its mirror point at E ‖ = 0, the
perpendicular kinetic energy will be at its maximum. From this it follows
that perpendicular kinetic energy is maximum where total kinetic energy is
minimum. From Eq. (3.8) we can see that the conversion between kinetic and
potential energy along the field line will influence the conversion between
perpendicular and parallel kinetic energy of the particle. The parallel kinetic
energy is thus constrained by both conservation of energy and the first adiabatic
invariant. The particle motion along the field line is described by the parallel
kinetic energy, and will be shown in Section 3.5.
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3.3 Mirror point magnetic latitude

In this section themirror pointmagnetic latitude in a rotating frame of reference
will be derived by the assumption that energy and the first adiabatic invariant
is conserved.

For a particle moving along the magnetic dipole field line as described by the
guiding centre approximation, the magnetic mirror point is described in terms
of the magnetic field at this point �< (Guio et al., 2020), see Eq. (2.13). In order
to express the mirror point magnetic latitude _< in terms of the equatorial
pitch angle U4@ in a rotating frame, we must first look into conservation of
magnetic moment. The following relation is the magnetic moment between
the mirror point and the equatorial plane, see Eq. (2.27).

�4@

�<
=
E⊥24@

E2⊥<
=
E24@ sin

2 U4@

E2<
(3.9)

Here the pitch angle at the mirror point is 90° thus cancelling out sin2 U<. To
express the particle’s velocity at the mirror point E<, energy must be conserved
between the mirror point �< and at the equatorial plane �4@, which gives

E2< = E24@ − Ω2
?A

2
4@ (1 − cos6 _<) (3.10)

We then get a relation between the magnetic field strength at equator and at
the mirror point given as

�4@

�<
=

sin2 U4@

1 − Ω2
?A

2
4@

E24@
(1 − cos6 _<)

(3.11)

Eq. (3.11) can be simplified by defining a parameter V4@

V4@ ≡
Ω2
?A

2
4@

E24@
(3.12)

which also is the ratio of the centrifugal potential energy at the equator to the
kinetic energy at the equator. The equatorial pitch angle as a function of the
mirror point magnetic latitude is therefore

sin2 U4@ =
�4@

�<

(
1 − V4@ (1 − cos6 _<)

)
(3.13)

Since the particle’s centre of gyration is assumed to move along a dipole
magnetic field, we can use Eq. (2.13) to express the magnetic field at the
equatorial plane �4@ to the magnetic field at the mirror point �< as a function
of magnetic latitude _. We then get

sin2 U4@ =
cos6 _<

(1 + 3 sin2 _<)1/2
[
1 − V4@ (1 − cos6 _<)

]
(3.14)
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Here we have obtained an expression for the mirror point latitude _< for a
given equatorial pitch angle U4@ in a rotating frame. Eq. (3.14) is a function of
the V4@ parameter, and it is thus clear that the centrifugal effect will have an
impact on the mirror point magnetic latitude of a trapped particle in a rotating
frame.

3.4 The V4@ parameter

The V4@ parameter defined in Eq. (3.12) depends on the angular velocity of the
rotating system Ω? , the equatorial distance A4@, and the velocity of the particle
at equator E4@. The three variables in Eq. (3.12) can further be expressed as

Ω? =
2c
)?
, A4@ = !'?, E4@ =

√
2�4@
<

(3.15)

where )? is the rotation period of the planet, ! is the L shell value, '? is the
planetary radius of the planet, �4@ is the equatorial energy of the particle, and
< is the particle’s mass. The V4@ parameter is thus describing to which degree
rotation affects a particle given these conditions.

As the distance from the axis of rotation increases, V4@ will increase since
it is proportional to A24@, see Eq. (3.12). The effect of rotation will therefore
have small impact on particles close to the planet. Though as we go further
out, rotation will have larger effect on the particles. This would be the case
where the equatorial energy and the rotation period is kept fixed as one studies
changes in radial direction.

For particles with low equatorial velocity, V4@ will be larger compared to parti-
cles with high equatorial velocity, since V4@ is inverse proportional to E24@. The
effect of rotation will therefore matter more for a cold plasma population than
for a hot plasma population.

For a fast rotating planet, V4@ will be larger relative to a planet with a slower
rotation, as V4@ is proportional to Ω2

? . Trapped particles in the magnetic field
of a fast rotating planet are therefore expected to be more affected by rotation,
than trapped particles in a magnetic field of a slow rotating planet.

The centrifugal potential energy will affect the particle dynamics differently
depending on how V4@ varies. Since V4@ is defined as a ratio of the centrifugal
potential energy to the kinetic energy at equator, the centrifugal potential
energy will have a larger effect for V4@ > 1. When V4@ > 1, the particle will
have more potential energy than kinetic energy at equator compared to a
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non-rotating frame, and potential energy will dominate the particle dynamics.
When V4@ < 1 , the particle will have less potential energy than kinetic energy at
equator compared to a non-rotating frame, and the centrifugal potential energy
will have small effect on the particle dynamics. When V4@ = 1, centrifugal
potential energy will have same effect on the particle dynamics as kinetic
energy at equator. When V4@ = 0, there will be no rotation as for a non-rotating
frame.

3.5 Bounce period

The goal of this section is to derive the final equation describing the bounce pe-
riod of a trapped particle in a rotating frame of reference. Unlike the derivation
of the bounce period in a non-rotating frame in Section 2.2.4, this section will
derive a closed form expression of the bounce period by assuming a dipole mag-
netic field. The dipole field line equation will therefore be used. The bounce
period is given by the integral of the inverse parallel velocity, and the next step
in the derivation is to express the particle’s parallel velocity component.

To obtain the particle’s parallel velocity component as a function of the equato-
rial pitch angle U4@, and the magnetic latitude _, we must find an expression of
the pitch angle U as a function of the equatorial pitch angle U4@. To do so, we
assume conservation of magnetic moment between the mirror point and the
position of the particle. We also assume conservation of energy between the
mirror point �< and the equatorial region �4@, and we assume conservation
of energy between the position of the particle � and the equatorial region �4@.
Conservation of magnetic moment gives

�

�<
=
E2 sin2 U
E2<

(3.16)

By inserting the total velocity E , derived from conservation of energy at equator
and at any point along the field line, and the total velocity at the mirror point
E< from Eq. (3.10) we get

sin2 U =
�

�<

E24@ − Ω2
?A

2
4@ (1 − cos6 _<)

E24@ − Ω2
?A

2
4@ (1 − cos6 _)

(3.17)

This can be simplified by expressing the pitch angle in terms of V4@.

sin2 U =
�

�<

1 − V4@ (1 − cos6 _<)
1 − V4@ (1 − cos6 _) (3.18)

The numerator in Eq. (3.18) can be replaced by the mirror point magnetic
latitude in terms of the equatorial pitch angle in Eq. (3.13), which gives the
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pitch angle U as a function of equatorial pitch angle U4@

sin2 U =
�

�4@

sin2 U4@
1 − V4@ (1 − cos6 _) (3.19)

with this equation, we can obtain an expression for the parallel velocity com-
ponent.

E ‖ = E
√
1 − sin2 U

= E4@

√
1 − V4@ (1 − cos6 _)

√
1 − �

�4@

sin2 U4@
1 − V4@ (1 − cos6 _) (3.20)

where the total velocity E , derived from conservation of energy, also is expressed
in terms of V4@.

What remains in order to obtain the final equation of the bounce period is to
express the arc element 3B in the expression of Eq. (2.31). From the expression
of the arc element obtained in Eq. (2.33), we insert the radial and latitudinal
magnetic field components in terms of a dipole magnetic field as in Eq. (2.2)
and Eq. (2.3), as well as the dipole field line equation from Eq. (2.9). This
gives the arc element in terms of the equatorial distance A4@ and the magnetic
latitude

3B

3_
= A4@ cos _(1 + 3 sin2 _)1/2 (3.21)

By inserting the parallel velocity component from Eq. (3.20) and the arc element
in Eq. (3.21) we get the final bounce period for a trapped particle in a rotating
frame

g1 = 4
A4@

E4@

∫ _<

0

cos _(1 + 3 sin2 _)1/2√
1 − V4@ (1 − cos6 _)

×

(
1 − (1 + 3 sin

2 _)1/2
cos6 _

sin2 U4@
(1 − V4@ (1 − cos6 _))

)−1/2
3_ (3.22)

which is the integral of every magnetic latitude up to the mirror point magnetic
latitude _< for a given equatorial pitch angle U4@, and now also depending on
V4@. The velocity at the equatorial plane, E4@, and the equatorial distance A4@
remains constant independently of the mirror point _, and can therefore be
taken out of the integral.

The bounce period in Eq. (3.22) can be simplified to

g1 = 4
A4@

E4@
Φ(U4@, V4@) (3.23)
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which resembles the expression for the bounce period in Guio et al. (2020) as
defined in Eq. (2.35), but here Φ is a function of V4@ as well. The dimensionless
function Φ in a rotating frame is then given as

Φ(U4@, V4@) =
∫ _<

0

cos _(1 + 3 sin2 _)1/2√
1 − V4@ (1 − cos6 _)

×

(
1 − (1 + 3 sin

2 _)1/2
cos6 _

sin2 U4@
(1 − V4@ (1 − cos6 _))

)−1/2
3_ (3.24)

which characterises the bounce period in a rotating frame independently of
the equatorial velocity E4@ and equatorial radius of the particle A4@.

The dimensionless function Φ expressed in Eq. (3.24) will be the focus in the
analysis of this thesis, since it characterises the bounce period, and depends on
the V4@ parameter. It is therefore of interest to investigate the effect of rotation
by considering Φ.

3.6 Drift period

The focus of this thesis is to investigate how the centrifugal force influences
the bounce motion of a particle trapped in a rotating frame. However, the
drift period in a rotating frame will be presented as it is of interest for future
work.

As explained in Eq. (2.41), the particle’s drift period is an average of the bounce
period scaled with 2c . The change in longitude during one bounce period
depends on the particle’s magnetic drift around the planet as expressed in
Eq. (2.42). In a rotating frame, the particle’s drift will additionally be affected
by the centrifugal force. This is accounted for when the general force for
guiding centre is considered, given as

E� =
1
@

L × H
�2 (3.25)

which results in the following drift

E2 5 = −
<

@

[
 × (
 × r)] × H
�2 (3.26)

as we see in Eq. (3.26), this drift will be in the same direction as the magnetic
drift originating from the grad-B and magnetic curvature drift.



In Section 3.1 it was discussed that the Coriolis force is perpendicular to the
particle motion. Since the particle is assumed to move along the field line, the
Coriolis force will not do work on the particle. However, as the particle drifts in
azimuth direction around the planet, the Coriolis force will act perpendicular
to the drift direction, and it may have an impact on the particle’s drift. It
is mentioned in Vogt et al. (2014) that the Coriolis force will introduce an
azimuthal drift averaged over a gyroperiod. If we assume that the Coriolis force
will have in impact too, the following drift must be accounted for in a rotating
frame of reference

E2 5 = −
2<
@

[
 × v] × H
�2 (3.27)

which originates from the Coriolis force given as

�2 = −2<
 × v (3.28)

Given that these assumptions are valid, the resulting azimuth drift for a trapped
particle in a rotating frame will be

EA>C 5 A0<4 = E∇� + E' + E2 5

=
<

@

(
E2‖ +

1
2
E2⊥

)
Xc × H
'2
2�

2
+ <
@

[
 × (
 × r)] × H
�2 (3.29)

where E∇� is the grad-B drift, E' is the curvature drift, and E2 5 is the drift due
to the centrifugal force.

In order to derive a closed form expression of the drift period in a rotating
frame as for the bounce period in Section 3.5, we would in this case include the
total guiding centre drift in a rotating frame from Eq. (3.29) to the equation
for the drift period in Eq. (2.41).





4
Analysis
The bounce period in a rotating frame derived in Eq. (3.22) aims to answer
the research question in this thesis. In order to investigate how the centrifugal
force influences the bounce motion of a trapped particle in a dipole magnetic
field, the focus will be to analyse how the dimensionless function Φ varies with
the V4@ parameter.

Firstly, the function Φ will be investigated when V4@ = 0. This is done to check
the validity of the bounce period expression derived in Eq. (3.22), as if there
was no rotation. This will be discussed in Section 4.1.

Further on, in order to analyse how Φ varies with increasing value of V4@, we
must first understand how the parallel velocity and the mirror point varies with
V4@, sinceΦ is defined as the integral over the inverse parallel velocity integrated
up to _< as seen in Eq. (3.24). How the particle energy affects the motion along
the field line and the mirror point is presented in Section 4.2.

As discussed in Section 4.2, the parallel velocity and the mirror point magnetic
latitude varies depending on the equatorial parameters; �4@, ! and Ω? , which
describes the V4@ parameter. How V4@ varies for hot and cold plasma popula-
tions, radial distance from the planetary axis, and different planetary rotation
periods is presented in Section 4.3.

How the mirror point magnetic latitude varies with V4@ will be discussed in
Section 4.4. The inverse parallel velocity will also vary with V4@, and this will

37
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be discussed in Section 4.5.

The main goal of this chapter is to analyse how the dimensionless function Φ
varies with V4@. This will be done by comparing the mirror point latitude from
Section 4.4 with the inverse parallel velocity in Section 4.5. This is discussed
in Section 4.6.

Some particles may not remain trapped along the field line, but will be lost
in the atmosphere. This is known as the loss cone. How the effect of rotation
influences the loss cone will be covered in Section 4.7.

4.1 Validation of expression

If V4@ = 0 in Φ for a rotating frame derived in Eq. (3.24), we would expect Φ
to behave equally as if there was no rotation. In order to validate the model,
Φ is plotted for V4@ = 0 in Fig. 4.1 together with the approximated function
Γ = 1.30 − 0.5 sin(U4@) as stated in Baumjohann and Treumann (1996). From
Fig. 4.1 we can see that the expression of the dimensionless function in Eq. (3.24)
is a good approximation to the numerical expression from Baumjohann and
Treumann (1996). It is therefore reasonable to say that the expression for Φ
is valid in expressing a particle’s bounce period in a non-rotating frame for
V4@ = 0.

Figure 4.1: Comparison between dimensionless function Φ when V4@ = 0, and numer-
ical approximation of integral 1.30−0.5 sin(U4@) as stated in Baumjohann
and Treumann (1996).
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4.2 Particle Energy

The kinetic energy of a particle in a rotating reference frame is not constant
along the field line. As discussed in Section 3.2, the kinetic energy converts
into potential energy along the guiding centre path. The kinetic energy along
a field line will decrease as a function of cos6 _, see Eq. (3.7). How much the
kinetic energy decreases depends on the scaling of the equatorial parameters:
the equatorial energy �4@, the planetary angular velocity Ω? , and the L shell
value !. Fig. 4.2 illustrates how the kinetic energy, normalised to the equatorial
kinetic energy, decreases along the guiding centre path for three different
equatorial energies. Fig. 4.2a shows �4@ = 500eV, Fig. 4.2b shows �4@ = 5keV,
and Fig. 4.2c shows �4@ = 50keV. The normalised kinetic energy is shown from
equator where _ = 0° to _ = 14° in Fig. 4.2a, and from _ = 0° to _ = 70° in
Fig. 4.2b and Fig. 4.2c. The kinetic energy is also shown for no rotation, see
blue line in Fig. 4.2, which agrees with a constant kinetic energy along the field
line in a non-rotating frame. From these figures, it is clear that the effect of
rotation influences the particle’s energy.

(a) (b)

(c)

Figure 4.2: Kinetic energy normalised to kinetic energy at equator decreasing with
increasing values of the magnetic latitude. The range of magnetic latitude
varies with the equatorial kinetic energy (a) �4@ = 500eV (b) �4@ = 5keV
(c) �4@ = 50keV.
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Low energy particles will loose more of its kinetic energy and gain more poten-
tial energy than high energy particles as they drift towards higher latitudes. A
particle rotating around Jupiter with a rotation period of 9.9 hours, an equato-
rial energy of �4@ = 500eV, at ! = 15, will have lost 50% of its equatorial kinetic
energy at a magnetic latitude of _ = 10°, see Fig. 4.2a. An equivalent particle
with higher energy �4@ = 5keV, will have lost 50% of its equatorial kinetic
energy at _ = 50°, see Fig. 4.2b. A particle with a higher energy, �4@ = 50keV,
will have lost only 6% of its equatorial kinetic energy at around _ = 70°, see
Fig. 4.2c. From this we can conclude that the centrifugal effect has a lesser im-
pact on particles with high equatorial energy. The kinetic energy is transformed
into centrifugal potential energy at a faster rate along the guiding centre path
for low energy particles than high energy particles.

The further out from the planet a particle is, the more does the kinetic energy
decrease as the particle drifts towards higher latitudes. This is seen when we
compare ! = 5 and ! = 15 in the plots of Fig. 4.2. A particle with �4@ = 5keV
will have lost much more of its kinetic energy at a distance ! = 15, then at
a distance ! = 5. This is independent of the equatorial kinetic energy, and
can be seen in all of the subplots of Fig. 4.2. Additionally, the kinetic energy
decreases faster for a faster rotating planet. For each of the given ! shells,
the kinetic energy reduces more rapidly when the rotation period is 9.9h
compared to 10.5h. Another remark from Fig. 4.2 is how the combination of
the distance from the planet, and the rotation period of the planet, affects
the kinetic energy. A faster planetary rotation period will cause more kinetic
energy to be converted into potential energy at distances further away from
the planet, compared to distances close to the planet. In Fig. 4.2b, at ! = 5,
the difference between the kinetic energy for Saturn and Jupiter is very small
around 3%, while at ! = 15, the difference is about 20%. The interpretation of
this is that the centrifugal effect has a larger impact on the conversion between
potential energy and kinetic energy when the particle is further out from the
planet and/or corotates around faster rotating planets.

In this section it has been illustrated that kinetic energy decreases along the
field line as an effect of rotation. How much and how fast the kinetic energy
converts into potential energy varies with the equatorial parameters !, Ω?
and �4@. The particle’s kinetic energy indicates the trapped particle dynamics
along the guiding centre path as it describes the particle energy parallel and
perpendicular to the magnetic field. The particle motion of a trapped particle
bouncing between themirror points is always on the field line, and it is therefore
of interest to study the parallel kinetic energy.
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(a) (b)

(c) (d)

Figure 4.3: Parallel kinetic energy normalised to its value at equator decreasing to-
wards zero for increasing value of magnetic latitude. The equatorial pitch
angle is U4@ = 30° which explains why the range of magnetic latitude is
from _ = 0° − 35°. (a) Saturn �4@ = 500eV (b) Saturn �4@ = 50keV (c)
Jupiter �4@ = 500eV (d) Jupiter �4@ = 50keV

4.2.1 Parallel kinetic energy

In a rotating frame of reference, Eq. (3.20) states that the parallel kinetic energy
along the field line is in addition to the pitch angle, also a function of the L
shell, �4@ and the angular velocity of the planet Ω? . Fig. 4.3 shows how the
parallel kinetic energy in a rotating frame decreases to zero at different rates
depending on these variables. The two plots at the top of the figure shows the
parallel kinetic energy for Saturn, while the two plots at the bottom shows for
Jupiter. The parallel kinetic energy in a non-rotating frame is also shown in
Fig. 4.3, only as a function of U4@ and �4@ as it is independent of the radial
distance from the planet in the non-rotating frame.

The parallel kinetic energy decreases to zero faster at distances further out
from the planet. This clearly in seen in Fig. 4.3a and Fig. 4.3c which shows
Saturn and Jupiter for �4@ = 500eV, respectively. At ! = 5 in Fig. 4.3a, the
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parallel kinetic energy has reduced to half of its initial speed around _ = 23°,
whereas at ! = 15 the parallel kinetic energy has reduced to half of its initial
speed around _ = 10°. For ! = 25 this happens at about _ = 7°. The same
behaviour is seen for Jupiter in Fig. 4.3c. From Fig. 4.3a and Fig. 4.3c it can
also be seen that there is a gap between the curves representing ! = 5 and
! = 15. From this it can be understood that the kinetic energy will decrease at
a even faster rate at very large distances from the surface of the planet.

The parallel kinetic energy will also decrease to zero faster for cold plasma
particles than for hot plasma particles. This is seen when we compare the two
plots on the left to the plots on the right in Fig. 4.3. The plots on the left
side shows Saturn and Jupiter when �4@ = 500eV, while the ones on the right
illustrates the same for �4@ = 50keV. At ! = 25, the kinetic energy has reduced
to half of its initial speed at about _ = 7° for a cold plasma particle, while
this occurs at _ = 26° for a hot plasma particle. Compared to a non-rotating
frame, the particle at ! = 25 will have half of its initial speed at 20° lower
for a cold plasma particle, but about 3° lower for a hot plasma particle. From
this it is clear that the centrifugal effect has larger influence for a cold plasma
population than a hot plasma population.

The parallel kinetic energy is also decreasing at a faster rate depending on
the planet’s rotation period. This can be seen by comparing the plots at the
top to the plots at the bottom in Fig. 4.3 which illustrates the parallel kinetic
energy of Saturn and Jupiter, respectively. While a cold plasma particle at a
distance ! = 25 reduces to half its energy at around _ = 7° for Saturn, this
happens at around _ = 5° for Jupiter. For a hot plasma particle this is around
_ = 26° for Saturn compared to around _ = 25° for Jupiter. The difference
is very small since Jupiter and Saturn rotates with relatively equal rotation
periods. However, we can conclude that the centrifugal effect will be larger for
rapid rotating planets.

From studying the plots in Fig. 4.3 it is evident that parallel kinetic energy
converts into perpendicular kinetic energy at different rates depending on the
parameters !, �4@ and Ω? . This results in different points of reflection of the
trapped particle, and the mirror point depends on these variables too. This has
been shown in the expression for the equatorial pitch angle in a rotating frame,
derived in Eq. (3.14), and will be discussed in the following subsection.

4.2.2 Mirror point

The mirror point magnetic latitude is the point where the particle’s parallel
velocity component has reached zero. How fast the parallel kinetic energy
decreases to zero is therefore affecting the particle’s mirror point. Fig. 4.4
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shows how the mirror point varies for both Saturn and Jupiter as a function
of equatorial energy �4@, the equatorial pitch angle U4@, the distance from the
planet A4@, and the planet’s rotation period. The energies are ranging from cold
to hot plasma, from 10 keV to 1 MeV at fixed equatorial pitch angle of U4@ = 30°,
and with three equatorial distances A4@ = 5'? , 10'? , 20'? , in the case of no
rotation. The yellow line in Fig. 4.4 shows the mirror point magnetic latitude
_< when there is no rotation and is constant for any value of A4@ and �4@.
Note that the yellow line covers the blue and the red line, each representing
different equatorial distances for the non-rotating frame. This shows that the
mirror point magnetic latitude in a non-rotating frame is independent of the
equatorial parameters !, �4@ and Ω? .

(a) Saturn

(b) Jupiter

Figure 4.4: Comparison of mirror point magnetic latitude _< between Saturn and
Jupiter, and how it varies for changing equatorial energy �4@ . The equa-
torial energy �4@ is ranging from 10 keV to 1 MeV, where the equatorial
pitch angle is set to U4@ = 30°. Three equatorial distances are chosen A4@
= 5'? , 15'? , 25'? in the case of rotation and no rotation.
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The mirror point depends on the particle’s equatorial energy �4@, resulting in
a broader range of mirror points for a cold plasma population, than for a hot
plasma population. The range of mirror points for cold plasma extends from
_< = 31° for ! = 5 to _< = 13° for ! = 25. The range narrows as the equatorial
energy increases up to around 105eV, where the mirror point becomes inde-
pendent of the distance from the planet, and is _< = 35° like the non-rotating
frame of reference. The hot plasma particles will bounce at the nearly the same
magnetic latitude, independently of the distance from the planet, while the
cold plasma particles will bounce at mirror points that are strongly affected by
the distance from the planet. Cold plasma particles are therefore more affected
by the centrifugal force than hot plasma particles.

We can see how the mirror point magnetic latitude also depends on the planet’s
rotation period by comparing Fig. 4.4a and Fig. 4.4b which shows Saturn and
Jupiter respectively. Trapped particles corotating around Jupiter will bounce
at lower magnetic latitudes than trapped particles corotating around Saturn.
This effect is most clear in the range of cold plasma population where the
mirror point is _< = 13° for Saturn but _< = 10° for Jupiter, at ! = 25. The
differences between the mirror points of Jupiter and Saturn is seen for every
equatorial energy in Fig. 4.4. However, in the range of hot plasma population
from 105eV to 106eV, it is clear that these plasma particles are not affected by
the planet’s rotation period either.

From the investigations in these plots it has been shown how the conversion
between kinetic energy and potential energy will affect the parallel kinetic en-
ergy and thus the magnetic mirror point. It has been shown that the centrifugal
effect will impact the parallel kinetic energy and the mirror point at different
rates depending on the variables �4@, the ! shell and the rotation period of
the planet. Another important remark from these results is how the centrifu-
gal effect does not only influence each variable individually, but also that the
combination of the variables emphasizes the impact of the centrifugal effect.
The combination of these variables represents V4@, as defined in Eq. (3.12). In
the next section, the V4@ parameter will be presented. It will be shown how
V4@ depends on the variables �4@, the ! shell and the rotation period of the
planet. Understanding how V4@ behaves is essential for the study of a trapped
particle’s bounce motion in a rotating frame of reference.

4.3 The V4@ parameter

The V4@ parameter is ameasure of howmuch a particle with the given equatorial
conditions; Ω? , ! and �4@, is affected by the centrifugal force. In this section,
the V4@ parameter will be studied in terms of how it varies for hot and cold
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plasma populations, as a function of radial distance from the planetary axis,
and for different planetary rotation periods. Fig. 4.5 shows how V4@ varies for
Jupiter and Saturn from cold plasma �4@ ∼ 102eV to hot plasma �4@ ∼ 106eV,
and for L shell values from ! = 5 to ! = 20. The V4@ parameter expands from
V4@ = 0 to V4@ = 35, whereas the surface plot is shown in logarithmic scale.

(a) Jupiter (b) Saturn

Figure 4.5: Logarithmic plot of the V4@ parameter as a function of L shell value and
equatorial energy �4@ .

It is clear from Eq. (3.12) that V4@ is proportional to A24@, and V4@ is therefore
expected to increase further out from the planetary axis. By considering V4@
solely as a function of the L shell, Fig. 4.5 shows that for every given value
of the equatorial energy �4@, V4@ increases for increasing value of !. This is
as expected, which also agrees with the fact that centrifugal potential energy
increases with distance from the planetary axis. This is because it requires
more work to bring the particle back to the planet at far distances. From this,
we can see that the centrifugal effect is larger for particles further out from
the planet.

The V4@ parameter is by definition inverse proportional to E4@, and V4@ is
therefore expected to be large for a cold plasma population, and smaller for
a hot plasma population. If we also consider V4@ solely as a function of the
equatorial energy �4@, we can from Fig. 4.5 observe that for each L shell,
V4@ decreases as the energy increases. From this, we can understand that the
centrifugal effect is larger for particles with low equatorial energy than particles
with high equatorial energy.

The V4@ parameter is also proportional to the planet’s angular velocity Ω2
? , and

is expected to increase for faster rotating planets. When comparing the surface
plots of V4@ for Jupiter and Saturn in Fig. 4.5a and Fig. 4.5b, V4@ is larger for
both �4@ and ! for Jupiter than for Saturn. The difference of V4@ in the two
plots is not large, but is a result of their relatively equal rotation periods ∼ 9.9
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hours and ∼ 10.5 hours. The centrifugal effect will be larger for faster rotating
planets.

In the region where particles will have more potential energy than kinetic
energy, and the centrifugal potential energywill dominate the particle dynamics
is in Fig. 4.5 referred to as the region where green turns over to yellow. The
green region is where V4@ ≈ 1 and the yellow region is where V4@ � 1. This is
in the region mainly of the cold plasma population, but also for hotter plasma at
further distances around ! = 15 and ! = 20. For the green and yellow region,
V4@ ranges from 1 to 35 at its maximum at ! = 20. The centrifugal potential
energy will therefore dominate the kinetic energy for cold plasma particles,
and even more for those particles further out from the planet. This indicates
that the dynamics of cold plasma particles is dominated by the centrifugal
force, and results in cold plasma particles being pulled out in radial direction
at a larger rate than they will be able to bounce along the field line.

In the region where particles will have more kinetic energy than potential
energy, which is not enough for the centrifugal potential energy to dominate
the particle dynamics is in the region where green turns over to blue. This is
in the region of hot plasma population. The hot plasma population is more
spread than the cold plasma population, ranging from about 103eV to 106eV,
whereas the cold plasma population is only on the order of ∼ 102eV. The blue
region in Fig. 4.5 shows V4@ values in the range of 3.4 · 10−3 to 0.02, which
is approximately zero, where the smallest value is at ! = 5. From this it can
be understood that the hot plasma population is almost not affected by the
centrifugal force, independently of the distance from the planetary rotation
axis.

In reality, it is shown that the corotation of the magnetospheric plasma in
the rotating system is varying as a function of the radial distance in the
magnetosphere (Hill, 1979). The rotation frequency is possibly decreasing by
an order of 2 from the surface of the planet to the magnetopause. We would
therefore not expect V4@ to necessarily increase proportional to A24@ in a real
life scenario. To take this into account in the V4@ parameter, we would in
that case expect the effect of rotation to have a smaller effect for particles
further out from the planet. That is at distances where the corotation of the
magnetospheric plasma is significantly lower than the angular frequency of the
planet.

In this section it has been shown that V4@ varies as a function of the equatorial
parameters of a trapped particle, that is !, �4@ and Ω? . V4@ describes to which
degree the centrifugal potential energy dominates the dynamics of the particle,
and the dynamics of the particle in a rotating frame will therefore depend
on the particle’s equatorial parameters. The particle dynamics will be more
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affected by rotation if the particle has a low equatorial velocity, is further out
from the surface of the planet, or corotates with the angular frequency of a
rapid rotating planet.

4.4 Mirror point and the V4@ parameter

In a rotating frame, the mirror point magnetic latitude _< is not only a function
of the equatorial pitch angle as in a non-rotating frame, but also a function of
V4@. This was shown in Eq. (3.14). The point where the particle bounces back
depends on how much kinetic energy is converted into potential energy along
the guiding centre path. Fig. 4.6 shows a surface plot of how the mirror point
varies as a function of the equatorial pitch angle and V4@. For V4@ = 0 the mirror
point behaves as studied for a non-rotating frame where small equatorial pitch
angles results in high mirror points, while large equatorial pitch angles results
in low mirror points. As V4@ increases towards 1, we can observe the same
behaviour, only that the mirror point becomes lower at even smaller values of
the equatorial pitch angle. In the range where V4@ > 1, and towards V4@ ≈ 5,
the mirror point decreases significantly for low pitch angle values. For values
of V4@ = [15, 35] the mirror point is low, about _< = 10° for all pitch angles.
The interpretation of this is that the effect of rotation results in low mirror
points also for small pitch angles. The mirror points becomes lower for smaller
and smaller pitch angles as V4@ increases. This effect becomes significant in
the region where V4@ > 1, which is the point where the centrifugal potential
energy dominates the kinetic energy. The kinetic energy converts to potential
energy at a faster rate when V4@ > 1 than for V4@ = 0. Particles will therefore
not drift to high latitudes even with small pitch angles as they are strongly
affected by the radial pull of the centrifugal force.

In this section it has been shown that the mirror point magnetic latitude is
reduced as an effect of rotation. We showed that the mirror point magnetic
latitude varies as a function of V4@ as well as the equatorial pitch angle U4@. As
V4@ increases, the mirror point magnetic latitude will be lower for small equa-
torial pitch angles. It was shown that the mirror point latitude reduces faster
for small equatorial pitch angles in the region around U4@ < 30°, compared to
U4@ > 30°.

4.5 Parallel velocity component E ‖
In this section we want to study how the particle’s inverse parallel velocity
component increases towards infinity along the guiding centre path as V4@
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Figure 4.6: Mirror point latitude _< as a function of equatorial pitch angle U4@ and
the V4@ parameter.

increases. The mirror point latitude is the point where the parallel velocity
component is zero. The point where the particle is reflected back is there-
fore at the asymptote of the inverse parallel velocity component. How the
inverse parallel velocity increases as a function of magnetic latitude is shown
in Fig. 4.7a1 – Fig. 4.7a4. The four plots illustrate the inverse parallel velocity
with and without rotation, and for V4@ = {0.4, 1, 2.5, 3.7}. The plots show two
equatorial pitch angles U4@ = 10° and U4@ = 60°, in order to study how the
inverse parallel velocity increases differently for small and large equatorial
pitch angles.

Fig. 4.7a1 – Fig. 4.7a4 illustrate that the inverse parallel velocity component
increases towards its asymptote at a faster rate as V4@ increases. The inverse
parallel velocity will increase faster as V4@ increases, for both values of U4@.
However, the inverse parallel velocity increases faster when U4@ = 10° than for
U4@ = 60°. When we compare V4@ = 0.4 to V4@ = 2.5 in Fig. 4.7, we can see that
the inverse parallel velocity has increased significantly more when U4@ = 10°
than for U4@ = 60°. When U4@ = 10° and V4@ = 0.4, the asymptote is at around
_ = 49° compared to _ = 52° in a non-rotating frame. While when V4@ = 2.5,
the asymptote is at around _ = 22° compared to _ = 52° in the non-rotating
frame. When U4@ = 60° and V4@ = 0.4, the asymptote is at around _ = 12°
compared to _ = 14° in a non-rotating frame. While when V4@ = 2.5, the
asymptote is at around _ = 8° compared to _ = 14° in the non-rotating frame.
This shows that the inverse parallel velocity increases towards its asymptote
faster for small pitch angles than large pitch angles when V4@ increases. The
mirror point is thus reducing faster for small pitch angles than large pitch
angles, which is in agreement to what we could see in Fig. 4.6.
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(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 4.7: (a1) - (a4) shows how the inverse parallel velocity component increases
as a function of magnetic latitude for four values of the V4@ parameter.
That is V4@ = 0.4, 1, 2.5 and 3.7. The inverse parallel velocity is shown
for U4@ = 10° and U4@ = 60°, for rotation and no rotation. The values of
the inverse parallel velocity are normalized by 105m/s. The initial value
of the parallel velocity at equator affects the V4@ parameter, and is the
reason for the different scaling on the y axes. (b1)-(b4) shows the resulting
dimensionless function Φ integrated over equatorial pitch angles ranging
from sinU4@ = 0.1−1 for the same four V4@ values. The vertical dotted lines
are at the two points of U4@ = 10° and U4@ = 60°, that is sinU4@ = 0.17
and sinU4@ = 0.87 resp. The dimensionless function Φ is also shown for
when there is no rotation that is V4@ = 0.
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4.6 Dimensionless function Φ

The goal of this section is to analyse how the parallel velocity component
in combination with the mirror point latitude influences the dimensionless
functionΦ as the V4@ parameter increases. As seen in Section 4.4 and Section 4.5,
the parallel velocity component and the mirror point depend on V4@. How the
parallel velocity and the mirror point varies with V4@ is thus essential in the
analysis of Φ. We now limit the investigation to distinct V4@ values, while we in
the previous sections referred to how it varies with the planet’s rotation, the L
shell value, and the equatorial energy of the particle.

Fig. 4.7b1 – Fig. 4.7b4 show how Φ varies in range of sin(U4@) = 0.1 − 1 as
the V4@ parameter increases. The four plots show V4@ = {0.4, 1, 2.5, 3.7}. The
function Φ is shown for rotation and no rotation for the purpose to study the
effect of rotation. The two functions Φ for rotation and no rotation intersect
at different pitch angles as V4@ increases. When V4@ = 0.4, they intersect at
sin(U4@) = 0.55, which corresponds to U4@ ≈ 33°. For larger values of V4@,
they intersect at U4@ ≈ 26°, U4@ ≈ 14° and U4@ ≈ 6° for V4@ = 1, 2.5 and 3.7,
respectively. On the left side of the crossing we observe that Φ is larger in a
rotating frame, than in a non-rotating frame. On the right side of the cross we
observe that Φ is smaller than in a non-rotating frame. How much larger and
how much smaller Φ is compared to the non-rotating frame, does also vary
with V4@.

At which rates the inverse parallel velocity increases and the mirror point lati-
tude decreases is determined by V4@, as discussed in Section 4.4 and Section 4.5.
If the inverse parallel velocity increases faster than the mirror point reduces,
the resulting function Φ will be larger compared to a non-rotating frame. If the
inverse parallel velocity does not increase faster than the mirror point is reduc-
ing, the resulting function Φ will be less compared to a non-rotating frame. By
knowing this, we can relate the plots which show the inverse parallel velocity
in Fig. 4.7a1 – Fig. 4.7a4 to the plots showing the dimensionless function in
Fig. 4.7b1 – Fig. 4.7b4. In order to compare how the inverse parallel velocity in
combination with the mirror point influences the dimensionless function Φ, we
will focus on two pitch angle values, U4@ = 10° and U4@ = 60°. The points of
these pitch angles are drawn as vertical dotted lines in Fig. 4.7b1 – Fig. 4.7b4,
at sin(U4@) = 0.17 and sin(U4@) = 0.87.

First we study U4@ = 10° which is the dotted line on the left side. When
V4@ = 0.4 the asymptote of the inverse parallel velocity only has reduced from
around _ = 52° to _ = 49°, which is not significantly low, see Fig. 4.7a1. The
inverse parallel velocity will increase at a faster rate which results in a larger
function Φ compared to a non-rotating frame, see the dotted line to the left
in Fig. 4.7b1. The function is Φ = 1.45 for V4@ = 0.4 while it is Φ = 1.2 for
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V4@ = 0. As expected, Φ is therefore larger in a rotating frame. When V4@ = 2.5
we observe the same behaviour for U4@ = 10°. Even though we observe the
asymptote of the inverse parallel velocity to be much smaller when V4@ = 2.5,
the inverse parallel velocity has increased at a sufficient rate for the function
Φ to be larger compared to a non-rotating frame. On the other hand when
V4@ = 3.7, the asymptote has reduced significantly from the non-rotating frame.
The inverse parallel velocity is not increasing fast enough, and the resulting
Φ is lower than in a rotating frame. From this it is clear that particles with
small pitch angles will bounce at high latitudes additionally as their speed will
decrease faster than in a non-rotating frame. Particles with small pitch angles
will therefore spend longer time completing a bounce period compared to a
non-rotating frame as long as V4@ is not too large.

We will now study U4@ = 60° which is the dotted line on the right side. When
V4@ = 0.4, the asymptote has decreased only about 2° in latitude compared to
the non-rotating frame. However, we observe the resulting function Φ to be
lower than in a non-rotating frame, which is because inverse parallel velocity
has not increased significantly within the time the mirror point has reduced.
For V4@ = 1 and V4@ = 2.5 we observe the same behaviour, and the resulting
Φ is lower than in a non-rotating frame. When V4@ = 3.7, we observe the
same behaviour too, only here the resulting Φ is much lower than the non-
rotating frame. The mirror point has reduced remarkably, and the inverse
parallel velocity has not increased at a fast rate compared to the non-rotating
frame. From this is clear that particles with large equatorial pitch angles are
trapped closer to the equatorial region as an effect of rotation. Compared to a
non-rotating frame, the time it takes to complete a bounce period is therefore
shorter as V4@ increases.

An important remark from the analysis of the plots in Fig. 4.7 is how the
combination of increasing inverse parallel velocity and decreasing mirror point
also depend on the equatorial pitch angle U4@ as V4@ increases. As we have
studied, the mirror point latitude will decrease more rapidly than the inverse
parallel velocity will increase when V4@ increases, which will also concern
smaller U4@ as V4@ gets larger. This effect is seen as the intersection between
Φ for rotation and no rotation appears at lower equatorial pitch angles as
V4@ increases. To further study and understand how Φ also varies with the
equatorial pitch angle, the next step is to investigate Φ in terms of both V4@
and U4@.

Fig. 4.8 shows how the dimensionless function Φ evolves for different pitch
angles as V4@ increases. The values of the equatorial pitch angles in Fig. 4.8
are U4@ = {10°, 20°, 30°, 40°, 70°}. The function Φ is normalised to its value
when there is no rotationΦ/ΦV4@=0. As V4@ increases, the normalised functionΦ
peaks for equatorial pitch angles up to around U4@ = 30°. The peak of U4@ = 10°
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appears at V4@ = 1, while for larger equatorial pitch angles, the peaks appear
at lower values of V4@. For equatorial pitch angles larger than about 30°, there
is no peak and Φ only decreases as V4@ increases. The horisontal dotted line
indicates where Φ equals its value in the non-rotating frame, ΦV4@=0.

Figure 4.8: Dimensionless function Φ, normalised to its value when V4@ = 0, as a
function of V4@ = 0−20 and equatorial pitch angles U4@ = 10°, 20°, 30°, 40°
and70°. The horisontal dotted line indicates whereΦ andΦV4@=0 are equal.

Above and below the dotted line in Fig. 4.8 describes when the resulting
function Φ is larger and smaller than what it would be in non-rotating frame,
given the equatorial pitch angle U4@ and V4@. The interesting part in Fig. 4.8 is
the shape of Φ above the dotted line, where we observe peaks of Φ for different
pitch angles. In the following, we will therefore focus on how Φ behaves as a
function of V4@ in the region above the dotted line which concerns particles
with equatorial pitch angles with U4@ < 30°. We know that V4@ is a rate that
describes to which degree the system is affected by rotation. Furthermore,
V4@ describes the relation between centrifugal potential energy at equator to
kinetic energy at equator, and we will now study how Φ varies in relation to
this.

When V4@ < 1, a trapped particle will have more centrifugal potential energy
and less kinetic energy at equator compared to a non-rotating frame. Since the
energy of the particle converts between kinetic energy and potential energy
along the guiding centre path, the particle will have more centrifugal potential
energy as it moves to higher latitudes, than at equator. As an effect of rotation,
the parallel velocity will therefore reduce faster compared to a non-rotating
frame. However, as we discussed in Section 4.4, these pitch angles are small
enough for the mirror point to not reduce significantly since V4@ < 1. From this
it is clear that Φ increases in the region of V4@ = (0, 1), and peaks at V4@ = 1
for the lowest U4@.
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When V4@ = 1, the centrifugal potential energy equals the kinetic energy at
equator. Kinetic energy will therefore convert into potential energy along the
field line faster than when V4@ < 1. V4@ = 1 is the point where the normalised
function Φ peaks, that is for the smallest equatorial pitch angle U4@ = 10°
in Fig. 4.8. The peak of the normalized function Φ is the maximum time a
particle will spend on a bounce period given the equatorial pitch angle. Note
that maximum time means maximum time normalised to the non-rotating
frame. When V4@ = 1 we observe the largest distribution of Φ values across the
equatorial pitch angles which range from Φ = (0.7, 1.7). What this means is
that the outcome of the bounce period will vary significantly depending on the
particle’s equatorial pitch angle when V4@ = 1.

When V4@ > 1, centrifugal potential energy will be larger than kinetic energy
at equator. Along the guiding centre path, this means that kinetic energy will
convert into potential energy much faster than when V4@ = 1. Since the total
velocity is given by E2C>C = E2⊥ + E2‖ , it follows that the parallel velocity will
decrease more rapid and the mirror point as well. As discussed in Section 4.4
the mirror points will be lower also for small pitch angles when V4@ > 1, which
will impact the resulting bounce period. This is why we observe Φ to decrease
past V4@ = 1 for the lowest U4@.

For large enough values of V4@, which is below the dotted line, centrifugal
potential energy is a lot larger than kinetic energy at equator. Kinetic energy
will therefore convert into potential energy at an even faster rate than discussed
above. The effect of rotation causes the mirror point to reduce significantly,
and the inverse parallel velocity is not increasing fast enough. The function
Φ is thus smaller than in a rotating frame, and is the reason why we observe
Φ to only decrease below this point. Note that the horisontal dotted line in
Fig. 4.8 indicates where the function Φ for V4@ = 0 intersects the function Φ
when V4@ > 0 in Fig. 4.7. From this, one can interpret when Φ and ΦV4@=0
are equal, as the limit where centrifugal potential energy will dominate the
particle dynamics such that the particle is trapped closer to equator than in a
non-rotating frame.

At which V4@ the function Φ equals its initial value when V4@ = 0, and intersects
the dotted line, is plotted in Fig. 4.9 as a function of equatorial pitch angles.
Fig. 4.9 shows that equatorial pitch angles smaller than U4@ = 40° will intersect
the dotted line for different values of V4@. This implies that for smaller equatorial
pitch angles it requires a larger V4@ for the centrifugal effect to dominate the
particle dynamics. When U4@ = 10°, V4@ must be larger than 3 for the centrifugal
effect to dominate the dynamics of particles with U4@ = 10° and larger. For
equatorial pitch angles larger than U4@ = 40°, the function Φ does not cross
the dotted line which is seen as V4@ = 0 in Fig. 4.9 for these pitch angles.
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The function Φ does therefore not peak for U4@ > 40°. These pitch angles are
large enough to remain trapped in the region close to equator independently
of V4@.

Figure 4.9: V4@ values required for centrifugal effect to dominate the particle dynamics
for a given U4@ . This is when Φ, normalised to its value when there is no
rotation V4@ = 0, equals 1, seen as the dotted line in Fig. 4.8. The V4@
values are shown as a function of equatorial pitch angles ranging from
U4@ = 5° − 70°.

A more complete view of how Φ varies as a function of both V4@, and the
equatorial pitch angleU4@, is shown in Fig. 4.10. The plot is shown in logarithmic
scale to emphasize variations in Φ. There is a clear difference above and below
V4@ = 1. For values of V4@ < 1, we observe a similar behaviour as in a non-
rotating frame where the bounce period is longer for small pitch angles and
shorter for large pitch angles. However, as V4@ increases towards V4@ = 1, we
observe a larger variation of Φ for the pitch angles as discussed in Fig. 4.8.
At V4@ = 1 we observe a peak region of small pitch angles too. For values of
V4@ > 1, we observe Φ to be lower also for small U4@ as discussed previously.
For very large values of V4@, closer to V4@ = 10, the bounce period is shorter
almost independently of the equatorial pitch angle.

From the investigations in this section it is clear that as V4@ increases, the mirror
point latitude decreases, and the inverse parallel velocity increases. How these
two variables change in relation to each other as V4@ increases determines the
bounce period of a trapped particle. The effect of rotation results in longer
bounce periods for particles with small U4@ and shorter bounce periods for
particles with large U4@, compared to a non-rotating frame. It has also been
shown that the effect of rotation will result in shorter bounce periods for
particles with smaller U4@ when V4@ increases. As we could see in Fig. 4.9, the
value of V4@ needed for centrifugal force to dominate the particle dynamics
increases for smaller U4@. Values of V4@ larger than the limit as shown in Fig. 4.9
will result in shorter bounce periods compared to a non-rotating frame.
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Figure 4.10: Dimensionless function Φ as a function of the equatorial pitch angle U4@
and the V4@ parameter. The surface plot is shown in logarithmic scale to
emphasize variations in Φ.

4.7 Loss cone

For small enough equatorial pitch angles some trapped particles may be lost
to the atmosphere. These particles have mirror points which are too far down
in the atmosphere for them to collide with the neutral particles (Baumjohann
and Treumann, 1996). In a rotating frame, the range of particles lost to the
atmosphere will change. The following equation shows how the equatorial loss
cone U; is also a function of V4@ in a rotating frame.

sin2 U; =
cos6 _�

(1 + 3 sin2 _�)1/2
(1 − V4@ (1 − cos6 _�)) (4.1)

Following the derivation in Baumjohann and Treumann (1996), it can be
simplified to

sin2 U; = (4!6 − 3!5)−1/2(1 − V4@ (1 − !−3)) (4.2)

which shows that the equatorial loss cone is a function determined by the L
shell and the V4@ parameter. Since Eq. (4.2) depends on V4@, the particles lost
to the atmosphere will be valid only for given energy values, L shell values
and rotation periods. How the equatorial loss cone varies with �4@, ! and
Ω? is not straightforward. However, the solution to Eq. (4.2) is plotted in
Fig. 4.11 as a function of V4@ when there is no rotation, and when V4@ =

{0.2, 0.4, 0.6, 0.8}.



Fig. 4.11 shows how the range of equatorial loss cone values reduces as V4@
increases. From Section 4.6 we know that the effect of rotation confines particles
towards equator. What we have seen is that also particles with small equatorial
pitch angles will be trapped closer to equator as V4@ increases. Since particles
bounce to lower latitudes in a rotating frame, we expect less particles to be lost
to the atmosphere. From this, it is clear why we observe the range of equatorial
loss cone values to reduce as V4@ increases.

The range of loss cone values in Fig. 4.11 is not shown for V4@ values larger than
V4@ = 0.8. For V4@ > 0.9, the solution to Eq. (4.2) is not valid. Since centrifugal
potential energy dominates kinetic energy at equator when V4@ > 1, the effect
of rotation may be sufficiently large at this point for particles with small U4@ to
be trapped closer to equator. If this results in that no particles are lost to the
atmosphere, it is likely the reason we get no solution for V4@ > 0.9.

Figure 4.11: Equatorial loss cone U; as a function of L shell values from L=2 to L=6,
shown for when there is no rotation and when V4@ = 0.2, 0.4, 0.6 and
0.8.





5
Conclusion
5.1 Concluding remarks

In this study we wanted to investigate how the centrifugal force influences a
trapped particle’s bounce motion as described by the guiding centre approxima-
tion in a dipole magnetic field. We built on the existing model of Van Allen and
Thomsen (1980) and included the effect of the centrifugal force. We assumed
total energy and first adiabatic invariant to be conserved on the field line. From
this, a model characterising a trapped particle’s bounce motion in a rotating
frame was derived (Chapter 3).

We first studied the particle’s kinetic energy along the field in terms of the
equatorial parameters �4@, ! and Ω? , and how it affected the mirror point
latitude _<. The particle dynamics was observed to bemore affected by rotation
if the particle was low energetic, is further out from the planet, or corotates
with the angular frequency of a rapid rotating planet. Low energy particles
bounce at lower latitudes as an effect of rotation, whereas high energy particles
are almost not effected by rotation. Low energy particles that are further out
from the planet will bounce at lower latitudes than those closer to the planet.
Low energy particles corototating with a rapid rotating planet will bounce to
lower latitudes compared to a non-rotating frame.

We then studied the the particle motion along the field line in terms of the V4@
parameter, which is the ratio of centrifugal potential energy to kinetic energy
at equator. We found that particles are trapped closer to equator as an effect
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of rotation, also for particles with small U4@ when V4@ is sufficiently large. The
dimensionless function Φ was studied in terms of V4@ as well, and we observed
Φ to behave differently depending on both V4@ and U4@. Recalling the research
question introduced in Section 1.1, we could in Chapter 3 and Chapter 4 discover
that the combination of howmirror point latitude decreases, and inverse parallel
velocity increases, resulted in varying values of Φ depending on the rate of
change. The effect of rotation will therefore slow down particles along the
field line and confine them towards equator, where V4@ is a prerequisite for the
particle dynamics along the field line.

From the analysis in this study it is evident that conservation of energy and
conservation of first adiabatic invariant put constraints on the particle motion
along the field line. Compared to a non-rotating frame, a trapped particle’s
energy will behave as an oscillator along the field line as an effect of the
rotating frame, converting between kinetic and potential energy. The total
velocity of the particle along the guiding centre path is therefore constrained by
conservation of energy. In addition, conservation of first adiabatic invariant will
put a constrain on the perpendicular kinetic energy, as we know the magnetic
field strength at every point along the field line. At which rate the particle
energy converts between kinetic and potential energy, depends on the value of
the V4@ parameter. From this it follows that at which rate parallel kinetic energy
converts into perpendicular kinetic energy along the field line is determined by
V4@ as well. The particle’s total velocity is the sum of perpendicular and parallel
velocity component squared, and explains why the particle motion along the
field line is constrained by both conservation of energy and conservation of
first adiabatic invariant. The bounce period of a trapped particle in a rotating
frame is thus a two constrained problem determined by interplay between the
two conservation laws.

5.2 Future work

A natural next step to improve the model presented in this thesis would be
to investigate a particle’s drift period in addition to the bounce period. The
drift period introduced in Section 3.6 needs to be needs to be investigated in
comparison to the bounce motion in order to obtain the complete dynamics of
a trapped particle.

Another possible investigation could be to take into account how corotation of
the magnetospheric plasma in the rotating system varies as a function of the
radial distance in the magnetosphere as stated in Hill (1979).
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We know it will take a few seconds for electrons to complete a bounce period.
Since ions are heavier, they will spend a few minutes completing a bounce
period. Based on this, it would also be interesting to investigate ions compared
to electrons. The purpose of this would be to look at the bounce period
difference of ions and electrons in a rotating frame, compared to a non-rotating
frame. We would expect ions to spend longer time completing a bounce period
than electrons due to their heaver mass.
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