
Faculty of Science and Technology
Department of Computer Science

Investigating the effects of dynamic approximationmethods onmachine
learning (ML) algorithms running on ML-specialized platforms

Eirik Haugen
INF-3990 Master’s Thesis in Computer Science - May 2021

1
Abstract
This thesis discusses the application of optimizations to machine learning
algorithms. In particular, we look at implementing these algorithms on spe-
cialized hardware, I.e. a Graphcore Intelligence Processing Unit, while also
applying software optimizations that have been shown to improve performance
of traditional workloads on general purpose CPUs. We discuss the feasibility of
using these techniques when performing Matrix Factorization using Stochastic
Gradient Descent on an IPU. We implement a program doing this, and show
the results of changing different parameters during the running of SGD. We
demonstrate that while machine learning is inherently approximate this does
not mean that all approximate computation techniques are applicable, and that
indeed some of these techniques require a more measurable level of approx-
imation that is given by there being a correct answer, I.e. that the algorithm
being approximated is not inherently approximate from the start. We also show
that other techniques can be applied to reduce the time it takes for SGD to
converge.

Contents
1 Abstract C

List of Figures G

2 Introduction 1

3 Dynamic Approximation and Machine Learning 3
3.1 Loop Perforation . 3
3.2 JouleGuard . 4

3.2.1 Value-Difference Based Exploration 4
3.2.2 Proportional Integral Controller 5

3.3 Matrix Factorization . 6
3.3.1 Stochastic Gradient Descent 8

4 Graphcore Intelligence Processing Unit 9
4.1 Hardware . 9
4.2 Software . 12
4.3 Utilizing the IPU . 13

5 Design 15
5.1 Structure . 15

5.1.1 Main . 15
5.1.2 Governor . 17
5.1.3 IPU Vertices . 17

6 Implementation 19
6.1 Main . 19
6.2 Governor . 21
6.3 IPU Vertices . 21

6.3.1 SGD Update Vertex 21
6.3.2 Square Error Vertex 21

7 Evaluation 23
7.1 Specifications . 23

E

F contents

7.2 Experimental Parameters 23
7.3 Results . 24

8 Discussion and Future Work 33
8.1 Applying JouleGuard . 33
8.2 VDBE Convergence . 34
8.3 Selection of Parameters . 34

8.3.1 Changing 𝛼 . 34
8.3.2 Changing Iterations per Epoch 35
8.3.3 Changing Samples per Epoch 36

9 Conclusion 37

A Running the Program 41

List of Figures
3.1 A visualization of how M is constructed as a product of W and H 7

4.1 Activity of tiles during two steps of graph execution, from
[Graa] . 12

4.2 A Poplar program as a Graph, from [Graa] 13
4.3 Placement of vertices and tensors on tiles of an IPU, from [Graa] 14

5.1 Overview of the program flow 16

7.1 Change of RMSE with the governor controlling no parameters 25
7.2 Time per epoch with the governor controlling no parameters 26
7.3 Change of RMSE with the governor controlling only 𝛼 27
7.4 Time per epoch with the governor controlling only 𝛼 27
7.5 Change of RMSE with the governor controlling only iterations

per epoch . 28
7.6 Time per epoch with the governor controlling only iterations

per epoch . 28
7.7 Change of RMSE with the governor controlling only samples

per epoch . 29
7.8 Time per epoch with the governor controlling only samples

per epoch . 29
7.9 Change of RMSE with the governor controlling all three pa-

rameters . 30
7.10 Time per epoch with the governor controlling all three pa-

rameters . 30
7.11 Change of RMSE with the governor controlling IPE and SPE 31
7.12 Change of RMSE with the governor controlling 𝛼 and SPE . . 31
7.13 Change of RMSE with the governor controlling 𝛼 and IPE . . 32

G

2
Introduction
Machine learning has become a prevalent branch of Computer Science. As the
usage of Machine Learning techniques grows, interest in hardware specifically
optimized for that type of workload will grow. When new types of hardware
emerges, it is important to quantify which existing techniques work or can
be adapted to these novel architectures. This thesis looks at combinations of
machine learning and Approximate Computing techniques, and investigates
the applicability of some techniques that have been applied to conventional
programs to increase their efficiency. We then attempt to leverage these tech-
niques to improve the convergence speed of Stochastic Gradient Descent based
Matrix Factorization implemented for Graphcore Intelligence Processing Units.

In particular we look at JouleGuard, a runtime control system shown by Hoff-
mann[Hof15]. With JouleGuard Hoffmann builds a method for achieving com-
putations under an energy budget by creating a runtime control system that
is energy and system configuration aware, and is capable of applying approxi-
mate computing techniques to a problem. By doing this he breaks the task of
achieving an energy budget target into two sub-tasks, and uses two different
solutions for these problems. The first of these problems is in identifying an
optimal system configuration for the system computing the problem, and the
second is in finding the greatest possible accuracy possible such that the energy
budget will be met. For solving the system configuration problem, Hoffman
uses a machine learning technique called Value-Difference Based Exploration
(VDBE), while for the latter he imagines the problem as a control theoretic one,
and implements a proportional integral controller to find the required speed

1

2 chapter 2 introduction

up of the computation. We try to map the problem of optimizing SGD-based
matrix factorization running on an IPU onto both of these sub-problems, and
show that only the first of these sub-problems apply in this case. We then
create an experimental implementation that uses VDBE to find the best set of
configurations for improving convergence speed.

We show that while this mapping of problems is not the best fit, we still pro-
duce results that show there is an increase in performance by using automated
adjustment of certain parameters during runtime.

3
Dynamic Approximation
and Machine Learning

3.1 Loop Perforation

Loop perforation aims to speed up computations by removing the least critical
iterations of specific loops. This changes the output of the program in nearly
every case tested in the original paper, however there are a wide range of
computations where this can be acceptable. The loop perforation technique
consists of two distinct phases. In the first phase, it tries to identify which loops
of the client program respond the best to tuning. This is done by identifying
every loop of the program, and trying to run it with a selective sample of inputs
for each loop, and identifying which loops cause poor results, such as very
large effects on the accuracy of the output, little decrease in run-time, crashes,
or even increases. When these have been filtered out, it is left with a set of
loops that are referred to as "tunable".
After the tunable loops of the client program have been identified, the second
phase aims to find the optimal amount of tuning of these loops that produce
the highest speed-up with the least accuracy sacrificed.
Sidiroglou et. al. demonstrate that this technique typically only changes the
result of the application by 10%, while speeding up execution by a factor of
2. We mention Loop Perforation in this thesis to demonstrate the power of
Approximate computing on traditional, sequential workloads.

3

4 chapter 3 dynamic approximation and machine learning

3.2 JouleGuard

JouleGuard, described in [Hof15], is an energy-aware system for optimizing the
performance of a program while operating under a power budget. The system
breaks this problem into two sub-problems: that of finding an optimal system
configuration delivering the best possible performance to power consumption
ratio for a specific problem, and then speeding up the running of the program
further by leveraging approximate computing techniques.

3.2.1 Value-Difference Based Exploration

When searching for an optimal configuration of the client system, JouleGuard
applies a machine learning technique called Value-Difference Based Explo-
ration (VDBE). This technique involves defining a set of system configurations
𝑆𝑦𝑠, and creating an estimate of a given configurations power usage and per-
formance using exponentially weighted moving averages. The performance
estimate of a given configuration in timestep 𝑡 is denoted as 𝑝𝑠𝑦𝑠 (𝑡), and the
power estimate as 𝑟𝑠𝑦𝑠 (𝑡). JouleGuard then lets the client program execute
for timestep 𝑡 , and gets the real measured values for the performance and
power, denoted as 𝑝𝑠𝑦𝑠 (𝑡) and 𝑟𝑠𝑦𝑠 (𝑡) respectively. The Estimates are then
updated using Eq. 3.1. JouleGuard uses 𝛼 = .85[Hof15]. The key feature of

𝑟𝑠𝑦𝑠 (𝑡) = (1 − 𝛼) × 𝑟𝑠𝑦𝑠 (𝑡 − 1) + 𝛼 × 𝑟𝑠𝑦𝑠 (𝑡)
𝑡𝑠𝑦𝑠 (𝑡) = (1 − 𝛼) × 𝑝𝑠𝑦𝑠 (𝑡 − 1) + 𝛼 × 𝑝𝑠𝑦𝑠 (𝑡)

(3.1)

3.1: Estimate update in VDBE, from [Hof15]

VDBE is in deciding when to try other system configurations, I.e. explore the
configuration space, and when to use the estimated best configuration. The
way VDBE does this decision is in calculating the value 𝜖 (𝑡) based on the re-
lationship between the estimated and measured values. 𝜖 (𝑡) is given by Eq. 3.2.

𝜖 (𝑡) is then used to decide whether to explore the configuration space by
generating a random number 𝑟 such that 0 < 𝑟 < 1. If 𝑟 < 𝜖 (𝑡), we select the
system configuration that delivers the best estimated performance, otherwise
we pick a random configuration. Eq. 3.2 has the properties that the closer our
estimates are to the measured values, the closer 𝜖 (𝑡) is to 1, with 𝜖 (𝑡) = 1
when 𝑟𝑐𝑜𝑛𝑓 = 𝑟𝑐𝑜𝑛𝑓 and 𝑝𝑐𝑜𝑛𝑓 = 𝑝𝑐𝑜𝑛𝑓 . This gives the desirable effect of never
causing configuration space exploration when the estimates are correct, instead
sticking with the best configuration. So the system is stable when the correct
configuration is found, but the system might be vulnerable to unforeseeable
events that cause the performance or power usage to change for some or all

3.2 jouleguard 5

𝑥 (𝑒) = 𝑒

−|
𝑟𝑠𝑦𝑠 (𝑒)
𝑡𝑠𝑦𝑠 (𝑒)

−
𝑟𝑠𝑦𝑠 (𝑒)
𝑡𝑠𝑦𝑠 (𝑒)

|

5

𝑝 (𝑒) = 1 − 𝑥 (𝑒)
1 + 𝑥 (𝑒)

𝜖 (𝑒) = 1
|𝑆𝑦𝑠 | × 𝑝 (𝑒) + (1 −

1
|𝑆𝑦𝑠 |) × 𝜖 (𝑒 − 1)

(3.2)

3.2: Calculate 𝜖 update in VDBE, from [Hof15]

configurations. In an event like this, the values of the estimates will diverge
from the measured values, which in turn will lower 𝜖 (𝑡), and cause configura-
tion space exploration to become more likely. Via this technique JouleGuard
achieves a high degree of efficiency even when circumstances change during
runtime[Hof15].

3.2.2 Proportional Integral Controller

While finding the optimal configuration of the system can already mean that a
computation will fall under an energy budget, this is not sufficient to guarantee
that it will. In cases where the computation will not fall under the energy bud-
get in the optimal configuration, JouleGuard can find how much the program
execution must be sped up such that the budget will be kept. JouleGuard now
has a target speed, and a way to alter the performance of the computation;
approximate computing. The runtime works with any approximate computing
technique which can order configurations, i.e. it can know that configuration
A delivers more accuracy than configuration B.

With this knowledge and this way of altering the speed of computation, Joule-
Guard can model this issue as a control theoretic problem. It does this by
creating using a Proportional Integral (PI) Controller to minimize the error
between the required speed-up and the measured speed-up. This means that
this controller attempts to find the amount of approximation that delivers the
needed speed up and no more.

This PI controller also includes an adaptive pole which defines how much
inaccuracy the controller can tolerate while still providing an energy guar-
antee, I.e this pole defines how inaccurate the estimates delivered by VDBE
can be while the budget is kept. This pole is then defined by the measured
inaccuracies in the estimates such that when the measured inaccuracy of the
estimates is high, the controller is more conservative in how much it acts, while

6 chapter 3 dynamic approximation and machine learning

when the VDBE portion is confident in its estimates the PI controller can be
more aggressive in its actions.

3.3 Matrix Factorization

Matrix factorization is a concept wherein you take a matrix of values and
decompose it into two smaller matrices. If we have original matrix 𝑀 ∈ R𝑚×𝑛,
the goal is to Produce two matrices𝑊 ∈ R𝑚×𝑘 and𝐻 ∈ R𝑛×𝑘 , where k is much
smaller than both m and n, and 𝑀 ≈𝑊𝐻 .
Already this results in a savings in storage space required to store the informa-
tion contained in M, as (𝑚 × 𝑘) + (𝑛 × 𝑘) < 𝑚 × 𝑛.

Another use for matrix factorization is to use it to perform Matrix Comple-
tion. If we do not know every value in M, I.e. M is a sparse matrix, if we can
still factor M into W and H, we can use the product𝑊𝐻 as an estimate of
what a complete M would look like. In this thesis, we look at using Matrix
Factorization to perform Matrix Completion in the context of recommender
systems. The power of matrix Factorization in this context is that what the
Matrix Factorization algorithm is doing is detecting a set of attributes that
different items in the M share in different ratios, and building W and H such
that each row or column of the smaller matrices have these sets of attributes in
ratios that can be used to build the original matrix M. This translates very well
to situations wherein a system is trying to find qualities of a certain product,
and then find out what qualities different users like. In this thesis we will look
at a case where M is a matrix of user-given ratings of movies. In a case like this,
for a matrix factorization-powered recommender system, H might be a matrix
where each column represents a set fo features or qualities the movie has, and
W a matrix of users where each row is a set of qualities that user enjoys.
What we end up with then is a matrix W of users and matrix H of movies, where
if we take two vectors𝑊𝑖 and 𝐻 𝑗 , we can find the value of 𝑀𝑖, 𝑗 by calculating
the dot product of the two vectors. The dot product is given by

〈𝑊𝑖, 𝐻 𝑗 〉 =
∑︁

𝑛∈𝑊𝑖 ,𝐻 𝑗

𝑊𝑖,𝑛 × 𝐻 𝑗,𝑛

This means that after Matrix Factorization, we have H and W such that we can
build M, and by doing so create a predicted rating for what a user would give
a movie, based on the qualities the algorithm has assigned the two.

3.3 matrix factorization 7

M

k

kW

H

nn

m

m

Figure 3.1: A visualization of how M is constructed as a product of W and H

8 chapter 3 dynamic approximation and machine learning

3.3.1 Stochastic Gradient Descent

Gradient descent is a machine learning technique wherein one tries to find the
minimum value of a function by computing the output for a given input value,
then shifting the input value slightly, and seeing how the output moved. If the
output grew smaller, one continues to shift the input value until one finds the
minimum output value. To be certain that one has found the true minimum
output of the function, however, one must examine every possible input value
of the function.
This quickly becomes impractical for most functions, and for these functions
we turn to Stochastic gradient descent instead. For SGD, we perform a gradient
descent at a random set of starting inputs. This can lead to the output being
a local minimum, i.e. an input to the function such that any small change in
input causes the output value to rise, but there exists some other input that
causes a lesser output. One therefore must choose how many inputs one tests
to lower this risk by deciding how tolerant one’s purpose is to local minima.
When we refer to a small change in input, this is a value that is decided before-
hand, as it is important to the proper behaviour of the technique, while the
proper value is dependent on the specific function being minimized. Typically
this value is referred to as the step size of the Stochastic Gradient Descent, and
we will denote it with 𝛼 .
This technique is often applied to Matrix Factorization problems, as it allows
us to incrementally improve the fit of H and W such that they produce a good
estimate of M. There is no formula for matrix factorization, and as such we
need to find the two factors via trial and error. With SGD, we start with H and
W as matrices of the correct dimensions, with random initial values.

When performing a stochastic gradient descent, it is possible to make the
output values of one is producing fit the available data too well, in such a way
that it gets further away from a real fit to all expected data. To combat this, we
introduce a regularization parameter, which we will refer to as 𝜆. By setting
lambda to an appropriate value, we can control how strong the fit of the output
will be to the input matrix. This also means that when performing SGD, we
are not waiting for the accuracy to reach a known threshold, but instead for
it to stop changing, and stabilize around a value where each update is not
producing a change, or very little change.
An SGD update is defined in Eq. 3.3. For each epoch that the computation is
running, we select a certain amount of random values in M, and update the
corresponding values in H and W.

𝑊𝑖 ←𝑊𝑖 − 𝛼 ((𝑀𝑖, 𝑗 − (𝑊𝑖𝐻 𝑗)𝐻 𝑗) − 𝜆𝑊𝑖)
𝐻𝑖 ← 𝐻𝑖 − 𝛼 ((𝑀𝑖, 𝑗 − (𝐻𝑖𝑊𝑗)𝑊 𝑗) − 𝜆𝐻𝑖)

(3.3)

4
Graphcore Intelligence
Processing Unit

The IPU is designed both on a hardware and software level to be well suited
to machine learning. To do this, the design of the IPU aims at providing strong
performance in highly parallel tasks that represent diverse workloads. The goal
here is to be able to compute on a large quantity of datawhere itmay is desirable
to perform different operations on different segments of the data. This type
of parallel execution is often referred to as Multiple Instruction, Multiple Data
(MIMD) Parallelism, for the fact that it performs multiple different instructions
on multiple pieces of data in parallel[Jia+19].

4.1 Hardware

A traditional CPU is typically optimized to execute code that is not parallel
or has relatively low levels of parallelism. The design of CPUs involves a lot
of optimizations per core on a relatively low core count. Modern CPUs also
typically include several levels of memory. A common configuration for a Multi-
core CPU is for each core to have a small amount of memory referred to as the L1
cache, which is comprised of the fastest memory technology available, located
close to the core on chip. After the L1 cache, CPUs have one or more levels of
cache that is shared between all cores, before hitting the main memory of the

9

10 chapter 4 graphcore intell igence processing unit

CPU. Generally each level of cache has more storage, but is slower and further
from the cores[Hig90]. Current day CPU caches are typically implemented
using Static Random Access Memory (SRAM). This type of memory is utilized
for caches for its superior read/write speeds as compared to any other feasible
technology for the purpose[Kor+18]. However, SRAM is quite costly compared
to other memory techniques, as well as occupying more physical space per byte
than other technologies, such as DRAM[KRS00]. These complex cache layouts
reduce the latency of memory accesses by selecting data that is likely to be
used in the future into faster, closer memory.

The IPU naturally invites comparisons to Graphical Processing Units (GPU).
This is because they are both processor architectures that aim at optimizing
for workloads with high degrees of parallelism. Their intent differs in the type
of parallelism that is offered by them. A GPU is optimized for Single Instruc-
tion, Multiple Data (SIMD) parallelism, where a single set of instructions is
executed on a large amount of data in parallel. A typical example of this is in,
as the name suggests, processing of graphical workloads[Gui13]. GPUs achieve
their high degree of parallelism by having a large number of basic processor
cores that are divided into groups of threads called warps. Each warp is then
scheduled, managed, and executed together. Each thread in a warp can work
on different data, but all these threads can only execute the same instruction
in parallel. Code within a warp can have conditional branching, such that
certain threads will branch to different instructions from other threads in the
warp, but in cases where threads diverge in instructions, the warp can still
only execute one instruction at a time, such that the GPU will execute the
different branches in series, freezing the threads in the warp that are not in
the current branch[Gui13]. While modern GPUs have a more complex memory
layout than historical GPUs had, they share the key philosophy behind hiding
memory access latency by instantiating a large number of threads such that
when a warp is waiting for memory, a different warp can be context-changed
into while the first warp is blocked.

Similar to a GPU, a IPU offers a large core count. The GC2 (Mk 1) IPU has 1116
cores, where each core has 256 KiB of memory, while the GC200 (Mk 2) IPU has
1472 cores where each core has 642 KiB of memory[Graa]. This highlights the
core difference in design philosophy between a IPU and a GPU. In an IPU, each
core is more complex than those of a GPU, such that each of them is capable
of executing a program independently, such that in theory each of the 1472
cores of a GC200 IPU can be executing a unique program on unique data in
parallel without incurring a penalty over all cores executing the same program.
Graphcore refers to the combination of a processing core on the IPU and the
local memory of that core as a tile. When the IPU processes data, all instructions

4.1 hardware 11

and data that is to be used by a tile must reside on the local memory of that
tile. Like GPUs, each IPU tile also benefits from having more threads assigned
to it than can run at once, such that it can switch out a thread in the event
that it is blocked, thus hiding memory latency. The memory on the tiles is
implemented as SRAM, and because of this get similar R/W performance to a
CPU cache[Jia+19]

As we have discussed above, the IPU then delivers a very fine grained MIMD
parallelism, where each parallel thread can be doing a completely separate
thing. However, this is not very useful in and of itself, as with the features we
have described, making an IPU as a single device perform a task presents sev-
eral problems. Each tile has relatively little memory, and manually partitioning
memory such that each part of it fits within a certain tile, and then making sure
the instructions that pair to that data is also sent to the correct tile. Partially
this problem is solved in software with the Poplar SDK, but these solutions
are made feasible via the Interconnect Architecture of the IPU system. This
interconnect is a data bus that connects each tile of the IPU to every other tile,
providing a high data bandwidth with low latency, such that it is feasible to load
data onto the IPU without concern for locality, and the use the interconnect
to distribute the data to the tiles that need it, before executing programs on
the tiles. In addition to this, each IPU contains a module called an IPU link,
which effectively merge the IPU interconnects of one or more IPUs, to create a
multi-IPU system that transparently appears as a single IPU to a programmer.
The interconnect does have latency penalties depending on distance between
the tiles, with additional penalties for crossing IPU link boundaries, thought
the benefit of such multi-IPU systems presents in a potentially much higher
core count, with a corresponding much higher aggregate memory[Jia+19].

An important aspect of the philosophy of the design of the IPU is the Bulk
Synchronous Parallel model for generalizing parallelization of workloads. In
the paper introducing the BSP model, it is described as a model not of hardware,
or software, but a model that can inform the design of both[Val90]. According
to BSP, a device or framework that is suited for parallelized workloads should
be designed such that it has three core attributes. The first of these is that
it should have some amount of components that can perform computation,
and some amount of components that have memory. In the IPU architecture
these attributes are covered by the tiles, which have both a processor and
memory. Second, a BSP capable system should have some method of routing
data between sets of processing and/or memory components, which in the IPU
is covered by the interconnect. Finally the BSP model requires that the device
should have some method of synchronizing the processing components. In the
IPU, the synchronization is also dealt with via the interconnect.

12 chapter 4 graphcore intell igence processing unit

Figure 4.1: Activity of tiles during two steps of graph execution, from [Graa]

4.2 Software

While the BSP model underpinning the IPU is seen in the design of the hard-
ware, it also heavily informs the design of the software running on the IPU
as well as the programming model used by users of the IPU. This means that
a program running on an IPU is segmented into supersteps, such that each
step consists of a communication stage where each tile makes sure that it
has the data needed for its instructions on its local memory, followed by an
execution step where each tile performs its computations, before waiting for
all tiles to finish their computations in a final barrier synchronization step. A
major benefit of this model is in automatic memory management. As we will
see later, the IPU programmer specifies how segmented a set of data is, that is
how many tiles it is distributed across, and the first step in the superstep will
ensure that the data resides on the tiles that require it automatically. When
programming an IPU, our program defines how the set of tensors on the graph
should look like, then either use pre-defined Vertex-code from the SDK, or
write our own vertices. When we have the code for the vertices and the tensors
ready, we define the connections between sections of the tensors and copies
of the vertices, and map these vertices onto tiles of the IPU. Preferably, we
want the parts of a tensor that are used by a certain vertex to reside on the
same tile as that vertex, since this provides the fastest possible R/W for the
tile. In addition to this, we also want to maximize hardware utilization, which
in this casemeansmapping all tensors and vertices evenly over all available tiles.

When the IPU executes the graph, the graph is sectioned into steps. At the
start of each step, all the tiles synchronize with each other. Once synced, the

4.3 util iz ing the ipu 13

Figure 4.2: A Poplar program as a Graph, from [Graa]

tiles get the data they need for their computation from other tiles as needed,
then perform their computation, before finally waiting for the synchronization
at the next step, as illustrated in Fig. 4.1.

4.3 Utilizing the IPU

Writing code for the IPU is done using the Graphcore-supplied SDK Poplar. In
Poplar, the program to be run on the IPU is referred to as a graphWhen writing
code in Poplar, variables are defined as tensors, while sets of instructions to be
run on one or more tiles are called vertices. Thus, when we build a graph for an
IPU we first define some set of tensors which will hold input data for the full
IPU program. After this, one or more tensors can be define variables to hold
data during execution of the graph, and for output data.

Once a set of tensors is defined, we can define a set of vertices to be in-
cluded in the program. These can be written as codelets for the graph we are
building, or gotten from a number of pre-defined vertices included in the SDK.
When creating a vertex, we specify the tensors, or a subset of a tensor, which
represents the input and output data of that vertex. In this way, we can define
many copies of the same instructions with different data, and thus achieve a
programming model similar to the SIMD parallelism of a GPU,while still having
the flexibility of an IPU. We can for instance have one step in the graph where
the execution resembles a SIMD program, and then flow into a second step
where many different sets of instructions are performed on different sections
of the data.

14 chapter 4 graphcore intell igence processing unit

Figure 4.3: Placement of vertices and tensors on tiles of an IPU, from [Graa]

If we can fit our entire model, I.e. the set of instructions and all data, into
the aggregate memory of the tiles, we can generate this graph, and execute
it fully on the IPU and be done with our computation. If we cannot do this,
however, we must define use the input and possibly the output tensors of the
graph to update the data that is being evaluated between executions of the
graph.

5
Design
We implement a Stochastic Gradient Descent-based Matrix Factorization pro-
gram that runs using an IPU. In this program, we implement a Governor that
attempts to speed up the program by selecting the best parameters for the
algorithm. This program is specifically written for using the MovieLens dataset,
as this is a large dataset of real world data, and should represent a realistic
workload[HK15].

5.1 Structure

We separate the program into three structures as illustrated in Fig. 5.1.

5.1.1 Main

The "Main" structure builds the IPU program and calculates the accuracy of the
computations performed. For measuring accuracy we use Root Mean Square

Error (RMSE) given by
√︃∑

𝑖,𝑗∈𝑀,𝑊 ,𝐻 (𝑀𝑖,𝑗−〈𝑊𝑖 ,𝐻 𝑗 〉)2
𝑁

. In addition to this, the main
structure generates the random subset of Ω, Ω𝑠𝑢𝑏 , though the size of it is
decided by the Governor.

15

16 chapter 5 design

Generate Configs
Set initial estimates

Governor

Compute:
SGD Updates
Square Errors

IPU

Define Starting Parameters
Ingest Dataset

Main

Config Count

Build IPU Graph

First
Config

Config
Ω Sub

 W and H

Compute:
Root Mean Square Error

End if termination criteria fulfilled

 W and H
Square Errors

Update Estimates
Decide on exploration vs best configRMSE

Time

Estimated Best Config
OR

Random Config

Figure 5.1: Overview of the program flow

5.1 structure 17

5.1.2 Governor

The Governor holds and modifies estimates of configurations, and selects the
best one. When the Governor is instantiated at the start of the program, it is
given an amount of configurations to generate. We will refer to the generated
set of configurations as 𝐶𝑜𝑛𝑓 . Each configuration in 𝐶𝑜𝑛𝑓 consists of three
parameters. 𝛼 , the step size, samples per epoch, defining how many values
from Ω to send to the IPU per epoch, and finally iterations per epoch, defining
how many updates the IPU should perform on those values in a single epoch.
When these configurations are generated, each of those parameters are given
a random value.

The technique for selection a configuration is a modification of the VDBE
method used in JouleGuards[Hof15] for selecting the best system configuration.
We refer to the measured time taken to execute an epoch 𝑒 using configuration
𝑐𝑜𝑛𝑓 as 𝑡 (𝑒)𝑐𝑜𝑛𝑓 and the change in RMSE for that epoch 𝑟 (𝑒)𝑐𝑜𝑛𝑓 . The estimate
for the time taken for 𝑒 is given as 𝑡 (𝑒)𝑐𝑜𝑛𝑓 , and the estimated change in RMSE
is given with 𝑟 (𝑒)𝑐𝑜𝑛𝑓 . After a new Epoch is run, the Governor updates its
estimates using eq. 3.1, and then computes 𝜖 (𝑒) using eq. 3.2. Note here that
we have renamed the weight constant, as in JouleGuard they denote this with
𝛼 , which we are using to refer to the learning rate of the matrix Factorization.
We use 𝑤𝑒𝑖𝑔ℎ𝑡 = .85, as in the JouleGuard paper.

𝑟𝑐𝑜𝑛𝑓 (𝑒) = (1 −𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑟𝑐𝑜𝑛𝑓 (𝑒 − 1) +𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑟𝑐𝑜𝑛𝑓 (𝑒)
𝑡𝑐𝑜𝑛𝑓 (𝑒) = (1 −𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑡𝑐𝑜𝑛𝑓 (𝑒 − 1) +𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑡𝑐𝑜𝑛𝑓 (𝑒)

(5.1)

𝑥 (𝑒) = 𝑒

−|
𝑟𝑐𝑜𝑛𝑓 (𝑒)
𝑡𝑐𝑜𝑛𝑓 (𝑒)

−
𝑟𝑐𝑜𝑛𝑓 (𝑒)
𝑡𝑐𝑜𝑛𝑓 (𝑒)

|

5

𝑝 (𝑒) = 1 − 𝑥 (𝑒)
1 + 𝑥 (𝑒)

𝜖 (𝑒) = 1
|𝐶𝑜𝑛𝑓 | × 𝑝 (𝑒) + (1 −

1
|𝐶𝑜𝑛𝑓 |) × 𝜖 (𝑒 − 1)

(5.2)

Once 𝜖 (𝑒) is calculated, we generate a random number 𝑟 . If 𝑟 < 𝜖 (𝑒), we select
a random configuration, and if not we select the configuration with the best
estimated performance, as measured by 𝑟𝑐𝑜𝑛𝑓 (𝑒)

𝑡𝑐𝑜𝑛𝑓 (𝑒)
.

5.1.3 IPU Vertices

We have two different IPU vertices. The first performs an SGD update on a value
of H or W, while the second measures the square error of a set of values. The
SGD updates are distributed across the tiles of the IPU, and then the values of

18 chapter 5 design

W and H are updated. After this is done, the square error of the updated values
is calculated, and these results are sent to the Main portion of the program.
This is also the portion of the program that accepts the parameters controlled
by the governor. The 𝛼 parameters decides the step size of the SGD update,
as can be seen in Eq. 3.3. The Iterations Per epoch parameters decides how
many times the SGD update is performed on each of the samples from M that
have been selected, while the samples per epoch decides how many samples
are selected. These three parameters then combine to control how fast the
selected samples move towards the final value in an epoch, as well as how
many samples, which in turn should give the governor control over how fast
the entire output is moving towards the desired value.

6
Implementation
6.1 Main

The main portion of the program is written in C++, and includes all usage
of the Poplar SDK in this implementation. A simplified pseudocode for this
section of the program is shown below
Ω ← 𝑑𝑖𝑠𝑘

𝑊 ← random values
𝐻 ← random values
𝑐𝑜𝑛𝑓 ← 𝐺𝑜𝑣𝑒𝑟𝑛𝑜𝑟 .𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔()
while iterations < 300 do

Ω𝑠𝑢𝑏 ← 𝑐𝑜𝑛𝑓𝑆𝑃𝐸 from Ω
Build tensors and datastreams for H, W and Ω𝑠𝑢𝑏

𝑈𝑝𝑑𝑎𝑡𝑒_𝑊 ← Compute Set of SGD Update Vertices for updating W
𝑈𝑝𝑑𝑎𝑡𝑒_𝐻 ← Compute Set of SGD Update Vertices for updating H
𝐶𝑎𝑙𝑐_𝑆𝐸 ← Compute Set of Square Error Vertices
function Graph program

Copy Ω𝑠𝑢𝑏 to device
Copy W to device
Copy H to device
function Repeat(𝑐𝑜𝑛𝑓𝐼𝑃𝐸)

Run 𝑈𝑝𝑑𝑎𝑡𝑒_𝑊
Run 𝑈𝑝𝑑𝑎𝑡𝑒_𝐻

end function

19

20 chapter 6 implementation

Run 𝐶𝑎𝑙𝑐_𝑆𝐸
Copy W to host
Copy H to host
Copy Square Errors to host

end function
𝐻,𝑊 , 𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟𝑠 ← run Graph Program on IPU
𝑅𝑀𝑆𝐸 ←

√︃
𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟𝑠

𝐶𝑜𝑛𝑓𝑆𝑃𝐸

𝑐𝑜𝑛𝑓 ← 𝐺𝑜𝑣𝑒𝑟𝑛𝑜𝑟 .𝑔𝑒𝑡_𝑛𝑒𝑤_𝑐𝑜𝑛𝑓 𝑖𝑔(𝑅𝑀𝑆𝐸, 𝑡𝑖𝑚𝑒)
end while

This portion starts by reading all data from the dataset into a C++ standard
library vector of triples. The ratings in the MovieLens dataset are arranged
such that the userId are contiguous, that is the ID range [1..𝑚𝑎𝑥 > is the set
of all integers between 0 and max, so this presents no problem when deciding
one of the indexes of a rating in M, however, the Movie ids in the dataset do not
have this property, and so a mapping from movie id to index in m is needed.
We create this mapping by making the index of each movie the index it has in
a sorted list of all movie ids.

Once the dataset has been read and preprocessed, we generate two vectors, one
of size 𝑟𝑜𝑤𝑠 ∗𝑘 for W and another of size 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ∗𝑘 for H, and fill these with
random values. Once this is done, we enter the loop that runs until the program
is done. In this loop we take a generate Ω𝑠𝑢𝑏 , the random subset of Ω to run
the SGD updates on for this iteration. Here we define the datastreams that will
copy data to and from the IPU to the host device, and also the tensors we will
use to hold data during execution of the graph. Once this is done, we build the
three Compute Sets of Vertices that will be executed in the graph. The first two
of these are both sets of SGD Update Vertices, with one having W as the "candi-
date" tensor, and H the "opposite", and the other Compute Set having the roles
ofW andH reversed. The third Compute set is made up of Square Error Vertices.

Once all Streams, tensors and Compute sets are defined, we build the program
to be executed on the IPU. This program copies all needed data, including
the full values of H and W, and then runs the two SGD Update Compute Sets
𝐼𝑃𝐸, times, where the value of 𝐼𝑃𝐸 is gotten from a config received from the
governor. It then runs the last Compute Set, before copying the newly updated
H and W, as well as all Square Errors back to the host.

Once the graph has been executed on the IPU, we calculate the Root of the
mean of the Square Errors that the IPU calculated, and send this value along
with the time this iteration took to run to the governor, requesting it give us a
configuration.

6.2 governor 21

6.2 Governor

The Governor is also written in C++, and runs on the host CPU like the
main portion of the program. It is implemented as a class, containing the
set of randomly generated configurations 𝐶𝑜𝑛𝑓 as a member, and having two
methods associated with it. The first of these methods is called at the start of
the program, to get the first config. This method simply returns the first of the
randomly generated configurations. The second method is what updates the
estimates for the previously run config, then calculates 𝜖 (𝑒) using Eq. 5.2 and
uses it to decide which configuration to return. If 𝜖 (𝑒) ≥ 𝑟 where r is a random
number between 1 and 0, we pick the configuration with the best estimated
change in rmse over time, otherwise we pick a random configuration from
𝐶𝑜𝑛𝑓 .

6.3 IPU Vertices

6.3.1 SGD Update Vertex

The first Vertex is the SGD Update Vertex, which we describe in pseudocode
as such:

for i in indexes of Cand, Opposite do
𝑑𝑖 𝑓 𝑓 ← Ω (𝑥,𝑦) − (𝐶𝑎𝑛𝑑 [𝑖] ×𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 [𝑖])
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 ← 𝜆 ∗𝐶𝑎𝑛𝑑 [𝑖]
𝐶𝑎𝑛𝑑 [𝑖] ← 𝐶𝑎𝑛𝑑 [𝑖] + 𝛼 ((𝑑𝑖 𝑓 𝑓 −𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 [𝑖]) − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑)

end for

Where Ω (𝑥,𝑦) denotes a single rating from Ω (and Ω𝑠𝑢𝑏), Cand represents the
vector gotten from taking either the x-th vector from W or the y-th vector of
H, such that the Product of these two vectors should approximate Ω (𝑥,𝑦) . 𝛼
denotes the learning rate, and 𝜆 the regularization parameter, as described in
Sec. 3.3.1.

6.3.2 Square Error Vertex

The Second Vertex is the Square Error Vertex, which takes two vectors that
come together to approximate a value in Ω𝑠𝑢𝑏 , and calculates the dot product
of the two vectors, and squares the difference between this product and the
value from Ω𝑠𝑢𝑏 .

7
Evaluation
7.1 Specifications

The program included with this thesis was written in c++ using the poplar
SDK created by Graphcore, and during testing has been compiled using g++
7.50 on a machine running Ubuntu 18.04.5 LTS. The tests have been run on a
Graphcore POD64 system, using one Graphcore M2000 IPU.

7.2 Experimental Parameters

When performing experiments, we investigate how the parameters controlled
by the governor affect the results of the computation. We let the program
run for 300 epochs, so that differences in sample size will not cause an early
termination of some runs. Fig. 7.1 shows how the RMSE changes over the epochs
when all the parameters are set at the beginning. In these runs, 𝛼 = 0.012,
Iterations per epoch is 1, and samples per epoch is set to 5000. We see that
the RMSE falls rapidly for the first 50 epochs, before slowly levelling out, and
seeming to get stable somewhere in the 150-200 epoch range. For tests where
the governor controls one or more parameters, the parameters are set to fall
within certain bounds.

23

24 chapter 7 evaluation

Param min max
𝛼 0,0005 0,05
IPE 1 20
SPE 500 5000

The bounds for 𝛼 were decided by observing that any value above 0,05 caused
rapid divergence, and 0,0005 would result in very slow convergence. For the
iterations per epoch, a value below one would result in an epoch where nothing
was done barring copying data back and forth to the device, while we set the
upper bound to an arbitrary value we judged sufficiently greater than one as
to give us usable data. This is the same with the lower bound for samples per
epoch, where 500 was judged to be small enough to demonstrate the impact
of the variable, while the upper bound was selected due to the nature of the
dataset in combination with Poplar. When creating a vertex for a single super-
step of the IPU execution, Poplar enforces the property that a value can only
be read or written from. This means that if we have two entries in Ω that share
one value in their coordinate, we cannot evaluate them in the same epoch. For
the MovieLens dataset, we found that a SPE much over 5000 would result in
the random selection of Ω𝑠𝑢𝑏 failing to find enough usable samples frequently.

For the tests where the governor controls none of the parameters, they are set
as such 𝛼 = 0.012, 𝐼𝑃𝐸 = 1, 𝑆𝑃𝐸 = 5000.

7.3 Results

Note that in all graphs, the Measured RMSE is the RMSE of the Ω𝑠𝑢𝑏 for that
epoch only. We will also show the true RMSE as calculated for every value in
Ω at epoch 300. For the time graphs, we show the measured time it took to
execute a given epoch, as well as the average time of all epochs. Observing
the RMSE at epoch 300 in Fig. 7.1, it appears to have held stable at around
160 since around epoch 150. Calculating the true RMSE of the output W and
H of the program, as they were after epoch 300, we see that the RMSE of the
full dataset is indeed 160,5. We also see that the time per epoch is relatively
constant.

In Fig. 7.3, we see that it appears the RMSE of each Ω𝑠𝑢𝑏 appears to drop
much faster, and we reach a low point before epoch 100, however we see that
the graph is significantly more noisy, and it is difficult to judge when a true
stable point is reached. However, at the end of epoch 300, the true RMSE of Ω
to H and W was 164,3, which is very close to the value without the governor.
The time per epoch is unchanged, since the amount of computation per epoch
is unchanged.

7.3 results 25

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.1: Change of RMSE with the governor controlling no parameters

Letting the governor control the amount of iterations per epoch, as seen in Fig.
7.5, there is a significant change in the way our measured RMSE changes, as
it appears to hit a value around the expected 160 nearly immediately. This is
because every iteration performs a SGD update, and so we expect the value of
Ω𝑠𝑢𝑏 to be closer to our computed values at the end of our epoch. It is important
here to note that the RMSE of Ω𝑠𝑢𝑏 is not necessarily an accurate representa-
tion of the RMSE for Ω, as it only shows how close a given row or column in
H or W is to a single point in our desired output. We also see that the RMSE
appears to increase again, and indeed after epoch 300 the true RMSE of Ω is
178,8. We will discuss possible reasons for this in the Discussion chapter. Note
that the time per epoch in Fig. 7.6 is less stable in this case, but not much higher.

In Fig. 7.7, we see that changing the samples per epoch alone does not
change the appearance of the graph much, as with alpha it appear to exhibit
similar behaviour to the control, albeit with a noisier graph. However, in Fig.
7.8, we see that the time per epoch has grown noisier, but with a lower average
time. We also see that the RMSE of Ω is 161,3.
In Fig. 7.9, we see that when we let the governor control all three parameters,
the graph very much resembles the one in Fig. 7.5, where only the IPE was
governed. This is due to how strong the effect of the IPE change is to the

26 chapter 7 evaluation

0 50 100 150 200 250 300
Epoch

13.5

14.0

14.5

15.0

15.5

Ti
m

e
(s

)
Time per epoch

Figure 7.2: Time per epoch with the governor controlling no parameters

measured RMSE, and effects of other changes are drowned out by it. In Figs.
7.11, 7.12, and 7.13, we show how measured RMSE is affected by letting the
governor all combinations of two of the three parameters. Again we see in
Figs. 7.11 and 7.13 that where the governor controls IPE, we see a much faster
descent to a value around 175, however again the values appear to be higher,
and indeed the full RMSE after epoch 300 is 179,4 and 185 respectively. For
the test where the governor controls 𝛼 and SPE, shown in Fig. 7.12, we see
behaviour quite similar to Fig. 7.3, where only 𝛼 was governed.

7.3 results 27

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.3: Change of RMSE with the governor controlling only 𝛼

0 50 100 150 200 250 300
Epoch

13.5

14.0

14.5

15.0

15.5

16.0

Ti
m

e
(s

)

Time per epoch

Figure 7.4: Time per epoch with the governor controlling only 𝛼

28 chapter 7 evaluation

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350
RM

SE
Measured RMSE per epoch

Figure 7.5: Change of RMSE with the governor controlling only iterations per epoch

0 50 100 150 200 250 300
Epoch

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

15.50

Ti
m

e
(s

)

Time per epoch

Figure 7.6: Time per epoch with the governor controlling only iterations per epoch

7.3 results 29

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.7: Change of RMSE with the governor controlling only samples per epoch

0 50 100 150 200 250 300
Epoch

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Ti
m

e
(s

)

Time per epoch

Figure 7.8: Time per epoch with the governor controlling only samples per epoch

30 chapter 7 evaluation

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350
RM

SE
Measured RMSE per epoch

Figure 7.9: Change of RMSE with the governor controlling all three parameters

0 50 100 150 200 250 300
Epoch

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Ti
m

e
(s

)

Time per epoch

Figure 7.10: Time per epoch with the governor controlling all three parameters

7.3 results 31

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.11: Change of RMSE with the governor controlling IPE and SPE

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.12: Change of RMSE with the governor controlling 𝛼 and SPE

32 chapter 7 evaluation

0 50 100 150 200 250 300
Epoch

150

175

200

225

250

275

300

325

350

RM
SE

Measured RMSE per epoch

Figure 7.13: Change of RMSE with the governor controlling 𝛼 and IPE

8
Discussion and Future
Work

8.1 Applying JouleGuard

We have elected to only attempt to apply one of the two parts of JouleGuard
to the problem of Matrix Factorization. This is because the second part, where
the algorithm decides how much to let the degrade the output of the client
program, requires a strict ordering of accuracies of the possible configurations
of the program. While it does not require knowing the impact a certain con-
figuration will have on the final result of the computation, it requires that the
configurations be ordered according to the client programs preference, I.e. this
part of JouleGuard must know which configuration is the one that will deliver
the highest degree of accuracy[Hof15].
In SGD, each iteration of the algorithm will deliver some change to the accuracy
of the whole set. Generally, the less a value has been changed from its initial,
random, value the more it will move towards the correct value. Sometimes,
especially with a learning rate that is set too high, SGD can start to diverge
from the correct value, that is, the accuracy will start decreasing after a time.
This happens when the values in H andW pass the values they optimally should
be, and start growing too large or small. In addition to this, we want to tune
SGD such that it does not reach too high an accuracy with the known values of
M, since this can indicate and over-fit to the data, meaning that H and W are
tuned too strongly to the data in such a way that it misses the trend real trend

33

34 chapter 8 discussion and future work

of the data in favour of producing the exact values of the known data. This can
especially happen in datasets that are uneven in how many values are known
for different items in the set, which is the case with the MovieLens dataset,
where some movies have far more ratings than others, and some users have far
more rating than others. What this implies for the application of JouleGuard
is that we also have no expectation of reaching 100% accuracy, even without
applying the technique. Indeed, setting a power budget for SGD would only
involve stopping the execution when you near the budgeted amount of power,
as each iteration is already moving the accuracy of the output towards the
desired result, meaning that terminating computation at any point is equivalent
to JouleGuards tuning of parameters to generate a less accurate result.

8.2 VDBE Convergence

In none of our tests using a governor does the VDBE method find any stability
in which configuration it believes to be the best. We believe this is because we
use the change in RMSE as a performance metric for the governor, and this
is expected to change over the run of the algorithm, as can be very clearly
seen in Fig.7.1, where the governor is not doing anything. This means that
even if the governor changed nothing, it’s estimates for the change in RMSE
will nearly always be wrong, and often by a large amount, such that it will
frequently search for new configurations. Despite this, allowing for multiple
configurations shows that there is speed to be gained in leveraging some
technique for selecting these parameters. However, we suspect that if there is
an algorithm that is more appropriately suited for SGD that can still find a
configuration, this might be able to get the same level of improved performance
without creating so much noise in the accuracy. The noise in the accuracymakes
it much harder to algorithmically determine when the algorithm is stabilized,
and is another reason we have opted for a set amount of epochs for the tests
in this thesis.

8.3 Selection of Parameters

8.3.1 Changing 𝛼

Changing the learning rate of SGD during runtime produces faster convergence,
as a higher learning rate means that each update brings more change to
the values. However, a learning rate that is too large can cause undesirable
behaviour, where the value oscillates over and under the correct value, and if it
is far too large, can even cause divergence, where the value keeps going away

8.3 selection of parameters 35

from the correct value after passing through it. By setting it using our governor,
we hope to avoid these behaviours, in particular the causing of divergence. We
believe this is achieved, as as soon as the change in RMSE becomes negative, the
governor will not select that configuration. However, there remains a possibility
of such values being chosen for𝛼 , and this only being corrected after divergence
has begun, and in such cases, while the algorithm will still converge in the end,
it will do so slower than if we had not diverged first. We have yet to observe
this behaviour in testing, and this might indicate that the maximum bound of
the governors allowed values for 𝛼 is set to an appropriate value.

8.3.2 Changing Iterations per Epoch

Having a distinction between epochs and iterations is not something we have
seen in other literature concerning SGD. The reason we create this distinction
was originally motivated by the way we chose to program the IPU, where we
cannot send new data from the host memory to the device memory while our
device code is running. Because of this, if we wished to do more per time we ran
the IPUs, it must be on the same data. We quickly saw that this caused desirable
behaviour, however, and decided to include it as a parameter for the governor.
As we show in the Evaluation chapter, letting the governor control IPE, alone
or with any combination of the other parameters, flattens the measured RMSE
graph per epoch, while not increasing the run-time per epoch significantly.

This flattening of the measured RMSE curve does make it much more challeng-
ing to determine at what epoch one should terminate execution. Normally for
RMSE one wants to stop running when the measured RMSE stops changing
epoch by epoch, or in practice when it changes less than some acceptable value.
When we raise IPE, we essentially hit close to this flat point for each Ω𝑠𝑢𝑏 , such
that comparing the measured RMSE epoch by epoch gives us a much less clear
view of the true RMSE of the program. This is exacerbated by the fact that
our program only puts one entry per index in H and W in each Ω𝑠𝑢𝑏 , so that
what we are seeing is that the values in H and W become close to that specific
index in Ω, without necessarily coming close to the value that best matches
all relevant matches in Ω. If we look at Fig. 3.1, we know that each vector in H
and W needs to represent a full row or column in M, but the measured RMSE
will always only match it to one point in a single epoch. This is not an issue
when we measure RMSE across multiple epochs since we select new random
values from Ω each epoch, such that we will expect to see an even distribution
of the RMSE of a a vector between all relevant point in Ω as the amount of
epochs we have run increases. What this implies is that the measured RMSE
in a single epoch does not show much on its own, and that we are interested
in is the trend of RMSE over multiple epochs. This trend is completely hidden
by raising IPE, such that it becomes very hard to decide when to terminate

36 chapter 8 discussion and future work

execution. This is another reason we decided to run all tests for a set amount
of epochs.

8.3.3 Changing Samples per Epoch

We want to at least have enough vertices such that all tiles of the IPU are
executing the compute set, and for optimal hiding of memory access latency
we want several threads running per tile, since this means the IPU can swap
out a thread when it is blocked by memory access. This means we want the
amount of vertices in a single execution step to be some multiple of the amount
of tiles on the graph. The way we have implemented our algorithm, each of
our three compute sets have SPE amount of vertices, thus we want this value
to be high. However, this value also sets the size of Ω𝑠𝑢𝑏 , which must be copied
to the IPU every epoch. This is why we believe there should be some optimal
value for this parameter. Tests such as the one shown in Fig. 7.7, where the
governor only control SPE did not show more success in achieving a stable best
configuration using VDBE, so if there is an optimal value, we did not find it.
Our belief about the possibility of there being some optimal value is backed up
by Fig. 7.8, where we see that the time per epoch is much more chaotic than
in Fig. 7.2, while having a somewhat lower average.

9
Conclusion
This thesis discusses Approximate Computing, with a particular focus on Joule-
Guard, a system that leverages both machine learning and control theoretic
constructs for optimizing running of programs under an energy budget and
showcases hardware specialized for machine learning workloads, the Graph-
core Intelligence Processing Unit. We implement a version of SGD-based Matrix
factorization on the IPU, leveraging some of the techniques from JouleGuard
to optimize it. We show that while this method does not behave in a way that
suggests it is the optimal solution for this particular problem, we see that it
still causes faster convergence.
By demonstrating this, we show that Graphcore IPUs exhibit enough flexibility
that there are significant gains to be made by configuring the programs running
on them well, and that machine learning algorithms are sensitive to the param-
eters that we define, in particular Iterations per Epoch parameter we introduce
in an attempt to reduce the amount of host-device data transfer.

37

Bibliography
[Hig90] Lee Higbee. “Quick and easy cache performance analysis.” In: ACM

SIGARCH Computer Architecture News 18.2 (1990), pp. 33–44.
[Val90] Leslie G Valiant. “A bridging model for parallel computation.” In:

Communications of the ACM 33.8 (1990), pp. 103–111.
[KRS00] Paul Keltcher, Stephen Richardson, and Stuart Siu. “An equal area

comparison of embedded dram and sram memory architectures
for a chip multiprocessor.” In: HP LABS TECHNICAL REPORT HPL-
2000-53. Citeseer. 2000.

[Gui13] Design Guide. “Cuda c programming guide.” In: NVIDIA, July
(2013).

[HK15] F.Maxwell Harper and Joseph A. Konstan. “TheMovieLens Datasets:
History and Context.” In: ACM Trans. Interact. Intell. Syst. 5.4 (Dec.
2015). issn: 2160-6455. doi: 10 . 1145 / 2827872. url: https :
//doi.org/10.1145/2827872.

[Hof15] Henry Hoffmann. “JouleGuard: Energy Guarantees for Approxi-
mate Applications.” In: Proceedings of the 25th Symposium on Oper-
ating Systems Principles. SOSP ’15. Monterey, California: Association
for Computing Machinery, 2015, 198–214. isbn: 9781450338349.
doi: 10.1145/2815400.2815403. url: https://doi.org/10.1145/
2815400.2815403.

[GUH16] Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Recommender
System: Algorithms, Business Value, and Innovation.” In: ACM
Trans. Manage. Inf. Syst. 6.4 (Dec. 2016). issn: 2158-656X. doi:
10.1145/2843948. url: https://doi.org/10.1145/2843948.

[Kor+18] Kunal Korgaonkar et al. “Density Tradeoffs of Non-Volatile Mem-
ory as a Replacement for SRAM Based Last Level Cache.” In: 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). 2018, pp. 315–327. doi: 10.1109/ISCA.2018.00035.

[Jia+19] Zhe Jia et al. “Dissecting the graphcore ipu architecture via mi-
crobenchmarking.” In: arXiv preprint arXiv:1912.03413 (2019).

[Graa] Graphcore. IPU Programmer’s Guide. https://docs.graphcore.
ai/projects/ipu- overview/en/latest/index.html. Accessed:
2021-05-02.

39

https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2815400.2815403
https://doi.org/10.1145/2815400.2815403
https://doi.org/10.1145/2815400.2815403
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://doi.org/10.1109/ISCA.2018.00035
https://docs.graphcore.ai/projects/ipu-overview/en/latest/index.html
https://docs.graphcore.ai/projects/ipu-overview/en/latest/index.html

40 BIBLIOGRAPHY

[Grab] Graphcore. Poplar and PopLibs UserGuide. https://docs.graphcore.
ai/projects/poplar-user-guide/en/latest/introduction.html.
Accessed: 2021-05-02.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/introduction.html
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/introduction.html

A
Running the Program
Compiling the program included with this thesis requires a system with g++,
make and the Poplar SDK installed. When these prerequisites are met, runmake
in the directory to compile the program and the IPU vertices. The program is
not set up to run using a virtual IPU model, and thus requires the system it
be run on have a IPU. When the program is compiled, it can be invoked with
the command ./approximationOptimizer, and it requires a path to a dataset
formatted in the exact way the MovieLens dataset is formatted be passed as
the first argument. Further optional arguments allow you to decide which
directory to write output data about each epoch to, how many configurations
the governor should generate, and finally which of the parameters the governor
should control.

41

	1 Abstract
	List of Figures
	2 Introduction
	3 Dynamic Approximation and Machine Learning
	3.1 Loop Perforation
	3.2 JouleGuard
	3.2.1 Value-Difference Based Exploration
	3.2.2 Proportional Integral Controller

	3.3 Matrix Factorization
	3.3.1 Stochastic Gradient Descent

	4 Graphcore Intelligence Processing Unit
	4.1 Hardware
	4.2 Software
	4.3 Utilizing the IPU

	5 Design
	5.1 Structure
	5.1.1 Main
	5.1.2 Governor
	5.1.3 IPU Vertices

	6 Implementation
	6.1 Main
	6.2 Governor
	6.3 IPU Vertices
	6.3.1 SGD Update Vertex
	6.3.2 Square Error Vertex

	7 Evaluation
	7.1 Specifications
	7.2 Experimental Parameters
	7.3 Results

	8 Discussion and Future Work
	8.1 Applying JouleGuard
	8.2 VDBE Convergence
	8.3 Selection of Parameters
	8.3.1 Changing
	8.3.2 Changing Iterations per Epoch
	8.3.3 Changing Samples per Epoch

	9 Conclusion
	A Running the Program

