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Summary 
 

In looking at the XMPP protocol as an alternative to the ordinary way of transferring files within a 

health network setting, namely e-mail, performance and security are important factors to consider. 

For security reasons we preferred to use in-band over out-of-band file transfer. The tradeoff is that 

this method puts a higher strain on the XMPP server and is significantly slower than its counterpart, 

out-of-band. In researching a specific XMPP implementation, the Openfire XMPP server, and looking 

into how it deals with in-band file transfers, we have found some ways to increase in-band file 

transfer performance, but not in the originally intended way, which would be through improvements 

in the Openfire source code concerning in-band file transfers. 
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1 Introduction 
 

This chapter outlines the background and defines the primary goal of this thesis.  

 

1.1 Background 
 

The Norwegian Health Network (NHN) is used for secure electronic exchange of various kinds of 

patient health care data, between hospitals, from hospitals to general practitioners and to 

pharmacists. These data may be discharge letters, lab results, referrals and radiology results and are 

mainly communicated through the SMTP/POP protocols.  

The Extensible Messaging and Presence Protocol (XMPP) protocol was originally developed for 

instant messaging (IM) and presence services. However, the protocol has been enhanced with 

numerous XMPP Extension Protocols (XEP’s). Two of these extensions, XEP-0047 In‐band bytestream 

(XEP-0047) and XEP-0065 Socks 5 bytestream (XEP-0065) are designed specifically for file transfer.  

The reliability of the XMPP protocol for file transfer within NHN was examined by Andreassen as a 

potential alternative to the SMTP/POP protocol. It was observed that both XEP’s were working 

reliably with the XMPP core protocol [1].  XEP-0047 did perform poorly compared to the XEP-0065 

extension, but has the advantage of not being dependant on a proxy server outside the 

firewalled/NAT environment, thereby avoiding having to open an additional port. This is 

advantageous in our health network setting, as opening more ports requires a more comprehensive 

risk and security analysis in addition to a higher demand for resources in the operating department. 

This is why we will seek ways to improve file transfer performance using in-band bytestream (IBB). 

 

1.2 Problem definition 
 

The goal of this thesis is to improve the performance of the in-band byte stream file transfer XMPP 

extension.  

 

1.3 Method 
 

There are three major paradigms in computer science [2] . The first paradigm, theory, is rooted in 

mathematics and consists of four steps followed in the development of a coherent, valid theory: 

 Characterize objects of study (definition). 

 Hypothesize possible relationships among them (theorem). 

 Determine whether the relationships are true (proof). 

 Interpret results. 
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The second paradigm, abstraction (modeling), is rooted in the experimental scientific method and 

consists of four stages that are followed in the investigation of a phenomenon:  

 Form a hypothesis. 

 Construct a model and make a prediction.  

 Design an experiment and collect data.  

 Analyze results. 

The third paradigm, design, is rooted in engineering and consists of four steps followed in the 

construction of a system (or device) to solve a given problem:  

 State requirements. 

 State specifications. 

 Design and implement the system.  

 Test the system. 

 

Our main focus is not to design and implement a new system, but rather to tweak or add to an 

existing one to improve it in the area of file transfer performance. Most of our work will be focused 

around a cycle of tweaking, testing and analyzing results, which means that we will work within the 

boundaries of both the abstraction and the design paradigm.  

A given implementation can seek performance or improvement and enhancement of prior 

implementations (proof of performance), demonstrate that a particular configuration of ideas or an 

approach achieves its objectives (proof of concept), or demonstrate a fundamentally new computing 

phenomenon (proof of existence) [2] . We will seek to improve and enhance prior implementations, 

which mean that we belong in the proof of performance category.  

We will attempt to optimize a XMPP server’s file transfer performance. For this we have chosen Jive 

Software’s Openfire XMPP server [3]. One reason for selecting this XMPP server implementation over 

others like Tigase [4]  and ejabberd [5]  is that we already are familiar with the Java programming 

language, which is Openfire’s programming language. Another reason is the support available to us 

from some of my supervisor’s coworkers at NST, as Openfire is at the base of some of the company’s 

work, and that brings us to a third motivation, as any positive result might be relevant to current NST 

projects involving Openfire. Subjectively speaking, it also seems to be the most polished and 

professional implementation around, although that’s merely the author’s impression and not based 

on close scrutiny of all the alternatives.  

We have tried to understand the Openfire code by digging into the source material, finding critical 

spots for file transfers, debugging them and attempting to understand which segment of code did 

what. Technically, this involved installing the Eclipse integrated development environment (IDE) [6]  

on a computer with Windows XP, the Openfire source code and setting up two XMPP Spark  clients 

from Jive Software to talk to each other through a Windows 2000 virtual machine on the same 

computer, to simulate two computers’ client communication. This setup, displayed in Figure 1, was 

obviously not intended for performance testing, but to act as a simple development and debugging 

platform.  
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Figure 1: Our development environment 

 

The experiment will be considered a success if we find a way to improve the Openfire source code in 

the area of in-band file transfer and can prove an increased performance when we test it within the 

Norwegian Health Network, under various loads and file sizes.  

 

 

 

1.4 Scope and limitations 
 

Our goal is to improve in-band file transfer performance, but we will limit ourselves to what can be 

tweaked and changed in the Openfire server code. As a consequence, there is also a limitation 

concerning standard Java libraries that the server uses. We will not try to replace those with better 

or more efficient ones.  

 



14 
 

1.5 Main results 
 

The result of this thesis is that we could not find a way to optimize the source code for file transfer. 

Our time was spent trying to understand the chosen XMPP server’s complex java code and structure, 

and the search for ways to optimize was fruitless. There did not present itself any apparent way to 

optimize the code in this area. However, we present some alternate steps that would increase in-

band file transfer performance. 

 

1.6 Summary 
 

This chapter has given an overview of this thesis, the background and problem definition, description 

of methods used, scope and limitations and a presentation of the main results..  
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2 Theory and background 
 

This chapter will give some background about the technologies and tools discussed and used in this 

thesis work. We will look at the core Jabber protocol in some detail, examine the relevant XMPP 

extensions for this thesis, and then explain our testing environment, the Norwegian Health Network. 

Furthermore, we will look at our XMPP server of choice, Jive Software’s Openfire XMPP server. 

 

2.1 Jabber/XMPP 
 

This section gives a look into the various aspects of XMPP. The terms XMPP and Jabber will be used 

interchangingly, as they refer to the same thing. 

 

2.1.1 Jabber history 

 

The following is the first mention of Jabber/XMPP to surface on the Internet and was posted on the 

website www.slashdot.org at the beginning of 1999 [7]. It included a statement from the developer 

Jeremie Miller about the new project he was working on:   

"Jabber is a new project I recently started to create a complete open-source platform for 

Instant Messaging with transparent communication to other IM systems (ICQ, AIM, etc). Most 

of the initial design and protocol work is done, as well as a working server and a few test 

clients."  

Soon, a core group of developers joined Miller to build out the server as well as open-source Jabber 

clients for Windows and Linux, and various other components [8]. This group also defined an open 

wire protocol for XML streaming, which is now an important part of the XMPP protocol. In 2001, 

Jabber Software Foundation (JSF) was formed to function as a standards development organization 

for the Jabber community [8]. In 2002, JSF submitted the XML streaming protocols to the Internet 

Engineering Task Force (IETF) as XMPP, and IETF approved it in 2004 and published four Requests for 

Comments (RFC) (RFC3920-23) [9]. By that, Jabber was formalized as XMPP. In 2006, JSF renamed its 

“Jabber Enhancement Proposals” (JEP) specification series to “XMPP Extension Protocols” (XEP). In 

2007, the foundation itself was renamed from JSF to the XMPP Standards Foundation (XSF). 

 

2.1.2 XMPP technology 

 

XMPP is short for Extensible Messaging and Presence Protocol and that is just what XMPP is. It is 

extensible and it is a protocol for communicating instant messages between users, just like MSN 

Messenger, Yahoo Messenger and the like. The presence part of the name is about users 

http://jabber.org/
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broadcasting their status to their friends. What makes XMPP different from most of its peers is that 

the protocol is open-source and anyone can develop and publish an implementation based on it.  

XMPP is an Extensible Markup Language (XML) based protocol intended for use with IM. However, it 

has been extended for use in other areas, like network-management systems, online gaming 

networks, applications for financial trading, content syndication, and remote instrument monitoring 

[8]. The core XMPP protocol defines the core functionality of how clients and servers work together, 

and XMPP extensions (XEP) define functionality which goes beyond the basics, like mentioned above. 

The XMPP protocol deals with streams and stanzas. In our setting, streams are like open channels 

established in both direction between the server and clients. The client queries the server and opens 

a stream, and then the server opens another stream towards the client (response stream). As 

mentioned, XML is the language by which the entities communicate. When the server recognizes a 

<stream> tag, it knows this is the beginning of a stream of data from the client. The </stream> tag 

would mark the end of communication. Between the beginning and end of a stream, stanzas are 

sent.  The XMPP Core documentation [10] defines an XML stream as a container for the exchange of 

XML elements between any two entities over a network. It goes on to say: 

The start of an XML stream is denoted unambiguously by an opening XML <stream> tag, 

while the end of the XML stream is denoted unambiguously by a closing XML </stream> tag. 

During the life of the stream, the entity that initiated it can send an unbounded number of 

XML elements over the stream, either elements used to negotiate the stream (e.g., to 

negotiate Use of TLS (Use of TLS) or Use of SASL (Use of SASL)) or XML stanza , see section 4.1 

in [10] 

You could think of an XML stream as an envelope for the different XML stanzas sent while the stream 

is open as illustrated in figure 1. When the stream is closed, the underlying UDP or TCP connection 

(usually TCP) is also closed. 

An XMP stanza is according to [10] a discrete semantic unit of structured information that is sent 

from one entity to another over an XML stream. It is a child of the root level, which is the mentioned 

<stream>. Stanzas come as <message/>, <presence/> and <iq/> elements and these contain data 

corresponding to their semantic value. In addition these stanzas have some common attributes. 

These are: 

 to: JID of recipient 

 from: JID of sender 

 id: can be a unique ID assigned to each stanza 

 type: varies by stanza 

 xml:lang: used to specify human language 
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Table 1: Structure and contents of a XMPP stream session with stanzas, from section 4.1 in [10]. 

 

 

The <presence /> stanza is a basic broadcast, or publish-subscribe mechanism. It is about users, or 

clients, passing their availability status to the other users in their friends list, or roster, as it is called. 

If you have ever used an IM service, you are probable aware of that you can see if your friends are 

online and whether they are busy or available to talk, or if they are away from the computer at the 

moment.  An online XMPP client broadcasts (and receives) such presence data.  All the users that 

have subscribed to you and are online will receive your online status.  Technically, the client sends 

the data to a server. The server receives it and based on the particular user’s friends list, or roster, it 

passes the presence data on to those users, who does the same to his or her online friends.  

<message/> holds the message the user passes on to another user and <iq/> is a request-response 

mechanism for where a more structured data flow is required.   

It is possible (and quite simple) to install and set up a private and isolated XMPP server on a 

corporate network. It gives the benefit of not having to deal with spam of any kind, since the server is 

not connected to the Internet. However, Jabber does support server to server communication, which 

means that users on a particular server can have IM friends on other servers. Figure 2 illustrates this. 
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Figure 2: XMPP server to server communication (http://www.isode.com/whitepapers/xmpp.html) 

 

 

2.2 XEP 
 

XMPP’s core protocol and functionality can be enhanced and expanded by extensions. These 

extensions are called XMPP Extension Protocols (XEP’s). They add to the core protocols functionality 

in some way without making changes to the server/client implementation they are working 

alongside. This means that the source code of the server/client also can be changed by its author(s) 

without it affecting the extensions that users might use with it. This thesis will focus on two XEP’s 

made for file transfer. These are XEP-0047 In‐band bytestream (XEP-0047) and XEP-0065 Socks 5 

bytestream (XEP-0065). The two differ in that XEP-0047 offers in band byte stream (IBB) and XEP-

0065 out of band (OOB) byte stream. With XEP-0047, the byte stream will flow through the XMPP 

server, via the XML stream. With XEP-0065, the byte stream, or file, will go directly from peer to 

peer, or mediated through a proxy server. We will look further into each of these methods and show 

some of the XML code that streams between the server and clients. 

 

2.2.1 XEP-0047 in band byte stream 

 

The XEP-0047 specification [11] introduces IBB as a reliable bytestream protocol between two Jabber 

entities over a Jabber XML stream, as illustrated in Figure 3. The specification/it states that the basic 

idea is that binary data is encoded as Base64 and transferred over the Jabber network, and that it is 

likely to be useful for sending small payloads such as binary files. Moreover, the author says that XEP-

0047 is mostly intended as a fallback in situations where a SOCKS5 Bytestream [12]  is unavailable, 

and not for byte streams that have a high bandwidth requirement.  
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The reason it has to be encoded is because of an inherent attribute of binary files that makes it 

impossible to send raw over the XML stream. This will be explained in more detail as we look at 

Base64 [13]. 

 

 

Figure 3: In-band bytestream, from section 2.3.1 in [1] 

 

 

The term “In-band” means that the data is transported via the XMPP stream, through the server. In 

contrast, “Out-of-band” means that another connection is established for the actual binary data 

transfer, that is, outside the stream and XMPP server. “In-band” is not an advantage in terms of 

performance, since the server already has to deal with every user’s messages, iq and presence data 

and could be slowed down by the extra load. This is especially true for servers that handle a large 

amount of requests. However, there is one area where in-band has an advantage over out-of-band 

and that is where anonymity is concerned. Since both clients only communicate with server, within 

the XML stream, there is no need to reveal their IP-addresses to each other as would be necessary in 

a peer-to-peer scenario.  

Code listing 1 is XML for creating an in-band bytestream and asks Juliet if she would like to form a 

connection, using the session id “mySID” to uniquely reference the bytestream. The “block-size” 

attribute specifies the maximum amount of data (in bytes) that an IBB packet may contain.  

 

 

Code listing 1: Initiaton of interaction, from section 3.1 in [11] 

 

The success response saying that the bytestream is active is shown in Code listing 2. 
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Code listing 2: Success response, from section 3.1 in [11]  

 

Data is sent using either <message> or <iq> stanzas. Code listing 3 shows data sent using the 

message stanza. Data to be sent must not be larger than the “block-size” defined during the in-band 

bytestream initiation.  

 

 

Code listing 3: Sending data using message stanza, from section 3.2 in [11] . 

 

The data between the <data> tags is encoded in Base64 as specified in RFC 4648 [13]. According to 

Morin [14], the problem with binary attachments is that they don’t read well when encapsulated in 

other documents. They need to be encoded, and base 64 is the standard for doing this for SMTP, 

XMPP and many other internet protocols. Base 64 is a data representation protocol that allows 

binary data to be encapsulated within another document. The encoding process represents 24-bits 

groups of input bits as output strings of 4 concatenated 6-bit groups, each of which is translated into 

a single character in the base 64 alphabet. Each 6-bit group is used as an index into an array of 64 

printable characters. The character referenced by the index is placed in the output string [13]. Figure 

7 shows the index value with the encoded base 64 character.  

Base 64 encoding inflates the data size with about 30 percent, which means that ten megabyte of 

data turns into thirteen when it is to be transferred in-band between two clients. 
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Table 2: The Base 64 alphabet, from section 4 in [13] . 

 

 

Base 64 is not necessary with XEP-0065, since it relies on peer-to-peer or proxy mediation. The files 

are not part of any document or XML stream and are sent as they are. The XML stream negotiates 

the connection, but the files are transferred directly or through a proxy server.  

 

2.2.2 XEP-0065 Socks 5 bytestream 

 

XMPP is not designed for sending binary data. It is designed for sending relatively small fragments of 

XML between network entities. For the purpose of file transfer within XMPP a few extension 

protocols have been created and XEP-0065 Socks 5 bytestream is one [12]. The specification says that 

XEP-0065 is an XMPP protocol extension for establishing an out-of-band bytestream between any 

two XMPP users, mainly for the purpose of file transfer. The bytestream can be either direct (peer-

to-peer) or mediated through a special-purpose proxy server. The typical transport protocol used is 

TCP, although UDP may optionally be supported as well.  

 

To accurately communicate what is going on in these two scenarios a list of terms is defined as 

shown in table 3. 
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Table 3: Terms used in description of XEP-0065 connection scenarios, from section 2 in [12]. 

 

The direct connection model would look like Figure 3. The model of the mediated connection is 

shown in Figure 4. 

 

 

Figure 4: Direct connection, from section 2.3.2 in [1]. 

 

Direct connection is according to [12] the simpler case of the two.  The specification details the 

process for establishing this kind of bytestream: 

1. Initiator sends IQ-set to Target specifying the full JID and network address of 

StreamHost/Initiator as well as the StreamID (SID) of the proposed bytestream. 

2. Target opens a TCP socket to the specified network address. 

3. Target requests connection via SOCKS5, with the DST.ADDR and DST.PORT parameters set to 

the values defined below. 

4. StreamHost/Initiator sends acknowledgement of successful connection to Target via SOCKS5. 

5. Target sends IQ-result to Initiator, preserving the 'id' of the initial IQ-set. 

6. StreamHost/Initiator activates the bytestream. 

7. Initiator and Target may begin using the bytestream. 
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Figure 5: Mediated connection, from section 2.3.2 in [1]. 

Mediated connection, as shown in Figure 5, involves a proxy that acts as the StreamHost, as opposed 

to direct connection where the Initiator has that role, as. That means that both Initiator and Target 

must negotiate a connection with the StreamHost, which again means that they need to know the 

network address of the proxy, or StreamHost. The process of establishing a mediated bytestream is 

taken from section 3.2 in [12].  

1. Optionally, Initiator discovers the network address of StreamHost in-band. 

2. Initiator sends IQ-set to Target specifying the full JID and network address of StreamHost as 

well as the StreamID (SID) of the proposed bytestream. 

3. Target opens a TCP socket to the selected StreamHost. 

4. Target establishes connection via SOCKS5, with the DST.ADDR and DST.PORT parameters set 

to the values defined below. 

5. StreamHost sends acknowledgement of successful connection to Target via SOCKS5. 

6. Target sends IQ-result to Initiator, preserving the 'id' of the initial IQ-set. 

7. Initiator opens a TCP socket at the StreamHost. 

8. Initiator establishes connection via SOCKS5, with the DST.ADDR and DST.PORT parameters set 

to the values defined below. 

9. StreamHost sends acknowledgement of successful connection to Initiator via SOCKS5. 

10. Initiator sends IQ-set to StreamHost requesting that StreamHost activate the bytestream 

associated with the StreamID. 

11. StreamHost activates the bytestream. (Data is now relayed between the two SOCKS5 

connections by the proxy.) 

12. StreamHost sends IQ-result to Initiator acknowledging that the bytestream has been 

activated (or specifying an error). 

13. Initiator and Target may begin using the bytestream. 

 

The XML code below is taken from the XEP-0065 RFC and is included to give deeper insight into the 

protocol extension. 

The Initiator may want to know if the Target supports the bytestream protocol. It may do so using 

Service discovery [15] as follows and shown in Code listing 4-7: 



24 
 

  

Code listing 4: Initiator sends service discovery request to target, from section 4.1 in [12]. 

  

If the Target supports it, it will answer like shown in Code listing 5. 

 

Code listing 5: Target replies to service discovery request, from section 4.1 in [12]. 

 

Initiator locates proxy using service discovery before initiating a bytestream: 

 

 

Code listing 6: Initiator sends service discovery request to server, from section 4.2 in [12] 

 

Server returns known JIDs. 

 

Code listing 7: Server replies to service discovery request, from section 4.2 in [12] 
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2.3 Health Network 
 

The following is a quote from section 2.1.3 in [1]: 

A Health network (HN) can be seen as an Internet Service Provider (ISP) for the health regions 

in Norway, where its main purpose is to provide services for communication between primary 

healthcare and the specialist healthcare providers. One of the most important forms of 

communication is the transfer of medical information to and from the hospitals. Examples of 

data in this communication are discharge letters, lab results, referrals and radiology results. 

This communication is performed today using the well known protocols POP and SMTP. Due 

to the sensitivity of data communicated within the framework of the HN, there are strict 

safety measures established for securing the reliability of the services and the protection of 

the data communicated within the network [16]. This security consists of several different 

items, where firewalls, traffic filtering, logging and encryption are some of them. The network 

is also divided into different zones, based on the level of trust between the communication 

partners. 

All five health regions in Norway established their own regional health networks during the second 

half of 1990. The regions had no inter-regional coordination, so technology, service, ambition and 

organization differed. In 2003 the National Health Network project was initiated by the Norwegian 

government to establish a central infrastructure that would connect the health networks. In 2004, 

the six network conglomerate, including equipment, personnel and contracts, was transferred to 

Norsk Helsenett AS, which at the time was a newly founded company [16].  

Most hospitals and other units in the specialist care service still have their connection to Norsk 

Helsenett through the old regional health network structure. In 2006 the central infrastructure was 

moved to the IP-VPN service Nordic Connect, which is supplied by Telenor. The intention is to phase 

out the old regional networks, and have the hospitals connect directly to this [16].  

During the implementation phase of a new service into the operating environment of a health region 

there are several issues to look into. One is the level of security enabled on the traffic flow within the 

new system, what gateways will be passed through, what firewalls have to allow traffic and what 

systems will be exposed to the new service. One could grade the intrusion into existing security 

systems into three stages for classifying port access through firewalls. 

The following is a quote from 2.1.3 in [1]: 

• 0 – No openings, would be the very best and of course keep the systems 

optimal safe  

•  1 – One opening, giving new implementations access but at the same time 

keeping security to a satisfying level. Would of course need risk and security 

analysis.  

•  Many – More than one opened port for access would demand 

comprehensive risk and security analysis in addition to a much higher 

demand for resources in the operating department.  
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According to [1], an application that would support several services running through the same 

firewall accessed port could reduce the cost of resources needed by the operational department. He 

also states that it could decrease the need for preparatory work for the new service to be accepted 

as a part of the risk and security level that is maintained. 

 

 

2.4 Openfire 
 

Openfire [3], formerly known as Wildfire, is an open source, real time collaboration (RTC) XMPP 

server created by Jive Software [17]. The latest version is at the time of writing 3.6.4 and was 

released May 1, 2009. There are other open source XMPP server implementations available, like 

Tigase and ejabberd, but we choose to work with Openfire for reasons previously explained.  

At the time we starting working with the Openfire server source code, it had reached version 3.6.0, 

and we have kept that version throughout to avoid overwriting changes, comments and debugging 

code made by us. An issue with this approach is that the changes and improvements made by the 

developers might coincide with our changes and improvements, thereby rendering our work less 

relevant or completely irrelevant, but this did not seem too likely.  

Openfire is freely supported through its community forum, but commercial support is also available 

from Jive Software. 

Openfire supports the following features [18]: 

 Web-based administration panel 

 Plug-in interface 

 Customizable 

 SSL/TLS support 

 User-friendly web interface and guided installation 

 Database connectivity (i.e. embedded Apache Derby or other DBMS with JDBC 3 driver) for 

storing messages and user details 

  LDAP connectivity 

 Platform independent, pure Java 

 Full integration with Spark Jabber client 

The Openfire source code is governed by the GNU Public License (GPL) [19].  

In-band bytestream file transfer is inherently slower than its counterpart out of band file transfer. In 

Openfire both XEP-0047 and XEP-0065 are implemented alongside each other as it is described in.  

Openfire has implemented the XEP-0096 [20] SI File Transfer extension. This is an extension that 

attempts to overcome some of the shortcomings of out of band file transfer, like the fact that it does 

not work when one of the parties is behind a firewall and it’s not reliable. Simply put, the extension 

makes sure that whenever it is not possible to use out of band file transfer, Openfire will fall back on 
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in-band file transfer instead. Since we will deal with in-band bytestream file transfers exclusively, we 

have disabled Openfire’s ability to use out of band file transfers. 

 

2.5 Spark 
 

Spark [21] is the XMPP client that for the most part has been used in this experiment. It is made by 

Jive Software and has reached version number 2.5.8. The latest version was released on November 

14th, 2007.  

There is a wide range of XMPP clients available, and of varying quality. Some are one-man projects, 

some are collaborations and then others are made by corporations, like our choice. We have not 

gone to great lengths to find out which client would serve us best, as Spark was the first one we 

tried, downloaded from the same site as Openfire, and it has worked well for our purpose, which was 

to test file transfer between XMPP clients. In an attempt to run two clients alongside each other on 

the same installation, something Spark would not allow us to do, we tried a few others, like Exodus 

[22]. Exodus met this requirement but seemed to violate the specification for in band file transfer, as 

tests revealed that the file data were encoded in something other than base64. We tried to have the 

Spark client send a file to Exodus client and it did not work when we had made sure in the server 

settings that only in band transfers were allowed. We turned back to Spark and solved the problem 

of running more than one client by installing a virtual machine and ran the second Spark client from 

that. Now we had a client-server-client communication setup.  
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3 Requirements and specifications 
 

There is one main requirement for this thesis, and that is to improve in-band bytestream file transfer 

performance in the Openfire XMPP server. There is a significant performance decrease in switching 

from out-of-band to in-band bytestream. This drop in performance will most likely vary from server 

implementation to implementation, as there inevitably will be some differences in how the XEP-0047 

is implemented in the various servers.  Our goal is to narrow the gap between Openfire’s out-of-band 

and in-band bytestream efficiency, to make the latter a more viable alternative to the more common 

way of transferring files in the health network environment, which is currently e-mail and e-mail 

attachments.  
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4 Design 
 

In this thesis we have used the Openfire XMPP server and the Spark XMPP clients for reasons 

previously explained. This chapter will detail the design of these components in regard to file 

transfer. Figure 6 shows an overview of a client-to-server-to-client setup, using in-band file transfer. 

The arrows indicate the bytestream that would flow to and from the clients, through the Openfire 

server. 

  

 

Figure 6: Spark clients and Openfire server, arrows indicate file transfer stream. 

 

Figure 7 shows a closer look at the Spark client. It emphasizes the base 64 encoding and decoding 

process that takes place in the client during an in-band file transfer, an encoding process which 

increases the total file size with about one third. A string like: “This string of bytes is about to be 

encoded in base 64” is 54 bytes long. Encoded in base 64 it looks like: 

“VGhpcyBzdHJpbmcgb2YgYnl0ZXMgaXMgYWJvdXQgdG8gYmUgZW5jb2RlZCBpbiBiYXNlIDY0” and is 

72 bytes long, which is exactly one third of increase. 
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Figure 7: Spark client in-band file transfer operation. 

 

Figure 8 shows the Openfire XMPP server sending and receiving to and from the spark clients. Notice 

that the data is processed on its way through the server. In fact, we observed that Openfire’s 

interceptPacket method, in “/openfire/src/java/org/jivesoftware/openfire/filetransfer/ 

DefaultFileTransferManager.java” found four packages for every package sent from a client (a total 

of four, including the one from the sending client). So a message package sent containing encoded 

file data would appear four times when showing the output of these packages. Closer inspection 

revealed that two of these packages were linked to the sender’s session and the other two to the 

receiver’s session. Every package had a Boolean value for whether it was an incoming package and 

whether it was processed or not.   

Another thing to keep in mind is that Openfire is limited by its assigned virtual memory as to how 

large files it can handle. If the server is set to run with 1024 megabytes of memory, it will crash in an 

attempt to transfer larger files, see section 5.1 in [1]. 
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Figure 8: Openfire client to server to client in-band file transfer 
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5 Implementation 
 

This chapter aims to give you some insight into our experience with Openfire.  

Openfire is a large and complex system. The compressed and zipped source code weighs in at an, 

from a developers point of view, intimidating 51 megabyte. That amount might not seem like much 

in terms of sheer byte size, but it is a lot of code to take in and understand, and obviously, one can’t 

be expected to gain a complete understanding of such a massive system in the relative short amount 

of time that is available. As a consequence, we focus on what would seem like the most relevant 

parts of the system, those that deal with file transfer, see Figure 9. 

 

Figure 9: Some of Openfire's packages, with one file transfer packages highlighted 
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What I found to be challenging in researching the Openfire code, was how strikingly modulated the 

code is. One simple method can include several other method calls and quite a few classes and 

libraries. That made it hard to see what is really going on, since a lot of code is elsewhere in the 

aforementioned methods, classes and libraries. This modularity is illustrated in Figure 6, which also 

shows what we found to be a helpful method of gathering the threads to attain a clearer and more 

complete picture of what is going on at a certain place in the code.  

 

 

Figure 10: Overview of interconnected classes, methods and libraries, numbers 1-5 shows in which sequence the code is 
running 

 

We never found a way to optimize the file transfer performance through the source code. One 

problem was that too much time got spent over in what proved to be the wrong package, the 

org.jivesoftware.openfire.filetransfer package, and only late in the process did we realize that this 

code didn’t really do anything significant to the in-band transfers. It seemed like a natural place to 

search for leads. However, that code seems to primarily deal with metainformation to the transfers, 

and commenting it out what previously seemed like important code made no difference to the 

outcome of a file transfer. It became clear to us that the XMPP file transfer is handled in mainly the 

same way as the rest of the XMPP stream; the byte stream is encoded in base64 and sent together 

with the rest of the iq and message stanzas, which led us to the code dealing with general message 

handling. Eventually we found a place in the code that made a difference, but only in terms of 

whether text was transferred or whether files transfers were completed.  
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The method marked 1 from Figure 10, public Document read(Reader reader), is found in the class 

called XMPPPacketReader, in the package org.dom4j.io in the Openfire hierarchy.  This method, as 

partially shown in Code Listing 8 returns a method called public Document parseDocument(). It seems 

to handle the XMPP stanzas, or packets. Note the switch statement, testing for the type of 

XmlPullParser.  

 

 

Code listing 8: The first part of the parseDocument() method 

  

Debugging shows that the most commonly used types seems to be XmlPullParser.START_TAG, 

END_TAG AND TEXT, at least for normal messaging and file transfers. The XmlPullParser.TEXT is 

shown in Code listing 9. Both messages and the base64 encoded file content are in the text variable.  

 

 

Code listing 9: case XmlPullParser.TEXT 

 

From here on there wasn’t much more that we could do. We could conclude that commenting out 

the line parent.addText(text) prevents messages and files from being sent to the client, but other 
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than that, there wasn’t any apparent room for improvement. At this level we bumped into standard 

Java libraries (jar files) just about everywhere we looked, which is a problem when you looking for 

things you can change.  
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6 Testing and results 
 

Testing did not work out as originally planned. We had purposed to have a testing environment set 

up within the Norwegian Health Network, to measure the performance of our improved version of 

Openfire’s in-band file transfer against the normal one, but this was evidently not necessary seeing 

there was no new software solution to test. We could of course set up a cluster with the Openfire 

Enterprise server and test performance, but that would be a lot of work and effort to prove 

something already quite evident, that a cluster performs better than a single server, at least when 

there are a lot of users and traffic involved.  
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7 Discussion  
 

In terms of performance, in-band file transfer’s main problem is that file traffic has to be routed 

through the server. That is why its specification states that it should only be used as a fallback 

solution to out-of-band file transfers, and that is also the way Openfire uses it by default. Our goal 

was to see if it was possible to improve in-band file transfer performance by tweaking and changing 

the source code of Openfire. This proved problematic. One reason is the massive amount of source 

code - this system is huge, and we found it hard to completely understand and comprehend. Another 

is the modularity of the code; everything is interconnected, and finding out what connects to what 

was quite a challenge. Thirdly, when we eventually found our way through parts of the code jungle, 

we often got to a dead end, represented by the use of standard java libraries, which we obviously 

could not do much to. That leaves us with only a few more options for improving in-band file transfer 

performance; upgrading the server machine – more memory, faster processor and so on, removing 

bottlenecks like a slow network connection or both of the above combined with clustering; many 

interconnected servers using dynamic load-balancing. This feature has been available in Openfire 

Enterprise since version 3.4.0, but only commercially, hence the Enterprise name. A clustered 

Openfire Enterprise would probably be the way to go if XMPP were to replace or complement e-mail 

as the primary electronic communication protocol in the Norwegian Health Network. Openfire 

Enterprise is commercial and supported by Jive Software. Whether users would convert from e-mail 

to XMPP is an entirely different discussion.  

The base 64 encoding/decoding used for in-band file transfer is an interesting subject, since a there is 

a significant extra amount of data produced from this process. One possible solution that comes to 

mind about this problem is file compression prior to encoding and sending to server, to compensate 

for the increased file size. The XMPP client would first compress the file, and then encode it with 

base64. The receiving client would decode the file content, and then decompress it. This would put a 

heavier load on the clients and infuse a time delay, but would free up resources on the server in the 

cases where there actually was something to gain from compressing. In some cases, as with certain 

picture formats, there is not a whole lot to gain in compressing, as they are already as compressed as 

they can be.  

 

  



42 
 

  



43 
 

8 Conclusion 
 

In hindsight we may have to conclude that the assignment for this thesis was a bit too ambitious. 

However, it has to a certain extent proved that there is no easily spotted way to enhance in-band file 

transfer performance in the Openfire server source code. I say that hesitantly, as I am no expert on 

either Java or Openfire, but from what I have seen so far, I am not encouraged to keep looking.  
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