

Faculty of Science and Technology

Department of Physics and Technology

Power Flow Optimization with Graph Neural Networks

Jonas Berg Hansen

STA-3941 Master’s thesis in applied physics and mathematics 30 SP – June 2021

Abstract
Power flow analysis is an important tool in power engineering for planning and operating
power systems. The standard power flow problem consists of a set of non-linear equa-
tions, which are traditionally solved using numerical optimization techniques, such as the
Newton-Raphson method. However, these methods can become computationally expen-
sive for larger systems, and convergence to the global optimum is usually not guaranteed.
In recent years, several methods using Graph Neural Networks (GNNs) have been pro-
posed to speed up the computation of the power flow solutions, without making large
sacrifices in terms of accuracy. This class of models can learn localized features that are
independent from a global graph structure. Therefore, by representing power systems as
graphs these methods can, in principle, generalize to systems of different size and topology.
However, most of the current approaches have only been applied to systems with a fixed
topology and none of them were trained simultaneously on systems of different topology.
Hence, these models are not fully shown to generalize to widely different systems or even
to small perturbations of a given system.
In this thesis, several supervised GNN models are proposed to solve the power flow prob-
lem, using established GNN blocks from the literature. These GNNs are trained on a
set of different tasks, where the goal is to study the generalizability to both perturba-
tions and completely different systems, as well as comparing performance to standard
Multi-Layered Perceptron (MLP) models.
The experimental results show that the GNNs are comparatively successful at generalizing
to widely different topologies seen during training, but do not manage to generalize to
unseen topologies and are not able to outperform an MLP on slight perturbations of the
same energy system.
The study presented in this thesis allowed to draw important insights about the applica-
bility of GNN as power flow solvers. In the conclusion, several possible ways for improving
the GNN-based solvers are discussed.

(i)

Table of Contents
Part I / Introduction 1

1. Motivation ... 1

2. Problem statement.. 2

3. Paper structure .. 3

Part II / Theory 5

4. The power flow problem .. 5

4.1. Definition of a power system.. 5

4.2. The AC power flow problem .. 8

4.3. DC power flow approximation.. 10

4.4. Compute branch injections .. 10

5. Multi-Layered Perceptrons .. 11

6. Graphs and GNNs .. 11

6.1. Graph definition ... 11

6.2. Neural Networks using graphs.. 13

6.3. Common concepts for GNNs.. 14

6.4. Graph Convolutional Network by Kipf et al.. 15

6.5. Edge-Conditioned Convolution... 16

6.6. GNN framework with convolutional ARMA filters .. 17

7. Previous Deep Learning approaches for power flow optimization 18

7.1. MLP approaches ... 18

7.2. GNN approaches ... 19

Part III / Method 23

8. ECC setup ... 23

9. ARMA setup .. 23

10. Power system units ... 24

11. Graph and GNN construction.. 25

11.1. Bus graph representation... 25

11.2. Branch graph representation .. 26

11.3. GNN design .. 27

12. MLP configurations .. 29

13. Training and data structuring.. 30

Part IV / Experimental Design 33

14. Dataset construction ... 33

15. First experiment ... 34

16. Second experiment.. 35

(iii)

17. Third experiment.. 36

Part V / Results and Discussion 39

18. First Experiment .. 39

19. Second experiment.. 43

20. Third experiment.. 45

Part VI / Conclusions 53

21. Conclusive remarks for the experiments and possible improvements............................. 53

22. Purely data driven versus partly equation based... 54

23. Future Work... 55

Part VII / Appendix 57

A. DCPF formulation and solution... 57

References ... 58

(iv)

Abbreviations

ACPF Alternating-Current Power Flow

ANN Artificial Neural Network

ARMA Auto-Regressive Moving Average

CNN Convolutional Neural Network

ECC Edge-Conditioned Convolution

DCPF Direct-Current Power Flow

FC Fully-Connected

GCN Graph Convolutional Network

GCS Graph Convolutional Skip

GNN Graph Neural Network

GNS Graph Neural Solver

GS Gauss-Seidel

IEEE Institute of Electrical and Electronics Engineers

IPOPT Interior Point Optimizer

MAPE Mean Absolute Percentage Error

MLP Multi-Layered Perceptron

MPNN Message Passing Neural Network

MSE Mean Squared Error

NR Newton-Raphson

OPF Optimal Power Flow

(v)

Part I / Introduction

1. Motivation

Power flow study is a fundamental part of the operation, planning, maintenance, and
control of power systems (Salam, 2020). To ensure adequate system reliability for day-to-
day operation, the power flow must be distributed such that the demand is met without
violating the physical limits of the electrical components of the energy network. In ad-
dition, the power system should be reasonably resilient to outages and disconnections.
To perform the computations necessary to find this balanced state of operation, a power
solver needs information about how the electrical nodes in the power grid are connected,
as well as the physical properties of the infrastructure (e.g. resistances on transmission
lines).

The balanced power flow distribution of a system is found by solving a set of non-linear
equations derived from Kirchhoff’s current law, and these equations are most commonly
solved using iterative methods such as the Newton-Raphson method (Murty, 2017). For
moderately sized networks, these iterative procedures are able to find the solution at a
reasonable speed. However, if applied to larger grids or to different grid configurations
in quick succession, the computational complexity of these methods can render them un-
viable for tasks such as fast screenings of how possible contingencies will affect a grid.
Another problem with these numerical optimizers is that convergence to the global opti-
mum is in general not guaranteed and they can be sensitive to the initialization.

Some Artificial Neural Network (ANN) models have been proposed to solve the power
flow problem, where presently models using Multi-Layered Perceptrons (MLPs) make
up the majority. These MLP models are shown to yield decent accuracy and improved
inference time compared to the traditional numerical methods, but they do not explicitly
account for the topological structure of the power grids, which make them unable to
generalize to differently structured grids. In particular, many of the MLP models found
in literature work in a centralized/global setting, i.e. the perceptron units are tied to
specific electrical buses and/or transmission lines. The features learned are then directly
tied to the global structure of the grid, which means that the models become very sensitive
to any perturbation of this structure.

The arbitrary and non-Euclidean structure of power grids is perhaps best described using
mathematical graphs, where data is represented as a set of nodes with edges that connect
them. Among ANNs, Graph Neural Networks (GNNs) is a set of models within rela-
tional deep learning that can perform regression and classification tasks on graphs and,
in opposition to MLPs, these networks are able to perform localized operations and learn
parameters that are independent from the global graph structure. This independence
means that GNNs scale well to larger power grids and can possibly be trained on smaller
grids and then deployed on larger ones.

Presently, some models using GNNs have been proposed for different variants of the
power flow problem, but most use a setup where a model is trained and tested only on

Page 1 of 58

Part I – Introduction / Paper structure

the same grid topology. And for the few models where trained instances are tested against
differently sized grids, the training is still done using equally sized grids. In other words,
they are trained on only one grid topology and then tested on other topologies. Also,
none of these GNNs have been trained and tested on perturbations of a set topology. For
instance, line outages can be simulated by removing lines from the power system, which is
useful in contingency analysis (Idema, Lahaye, et al., 2014). Thus it would be interesting
to see if a GNN can be directly trained to compute the power flow solutions for such
contingency systems.

In this thesis, the performance of some GNN models made from established neural network
methodologies is measured for problems involving: constantly sized grids, completely
different grids, and perturbations of the same grid. In addition, within these tests, the aim
is to study and discuss: i) the generalization capability of GNNs to different topologies,
ii) the impact of the number of GNN layers, iii) how to best represent the power system
as a graph, and iv) what system quantities should be used as input and how they should
be incorporated into the graph representation.

2. Problem statement

Formally, the goals for this thesis are:

• Design supervised and fully data-driven GNN models for solving the power flow
problem based on established graph neural network blocks found in literature.

• Apply GNN models to a set of problems including:

– A problem where all data points are based on a fixed grid topology. This task
only requires learning features that applies to a specific set of electrical com-
ponents, and is therefore a good starting point for studying the applicability of
GNNs to the power flow problem. The performance against an unseen topol-
ogy will also be measured, which will reveal whether features learned from one
grid are transferable to a grid with a different topology.

– Training and testing on a grid where one or two randomly selected transmission
lines have been disconnected. This problem will show whether the GNN models
can yield good performance for slight perturbations of a topology, which could
be useful for analysing the impact of component outages in a system.

– Training and testing on grids with very different topologies. The aim of this
task is to see if an applied GNN model can learn to solve the power flow
problem for a selection of grids, and to see if learning from a selection of grid
topologies can improve the applicability to new, unseen topologies.

• Discuss experimental results with a focus on comparative performance to MLP
models and the generalizability to different topologies.

Page 2 of 58

Part I – Introduction / Paper structure

3. Paper structure

The main body of the thesis is divided into five parts:

• Part II – This part presents the necessary background theory for the power flow
problem, and the ANN models that will be trained to solve it.

• Part III – In this part the methodology of applied MLP and GNN models is
presented, as well as specifics regarding graph, data and training setup.

• Part IV – The generation of data used in this study is covered in this part, followed
by the design of each experiment which includes the exact architecture of applied
ANN models.

• Part V – This part presents the experimental results and a discussion for each
experiment.

• Part VI – Conclusive remarks for experimental results is given in this part, in
addition to weaknesses with the approach and possible improvements. This part
will also highlight some differences between the approaches in this thesis from that
of a GNN in the literature. At the end, some proposals for future work is given.

In addition, a small appendix is given in Part VII.

Page 3 of 58

Part II / Theory
This part presents the theoretical background needed to understand the power flow prob-
lem for energy grids and the ANN models that will be trained to solve it.

Section 4 presents the theory related to the power flow problem. Section 5 gives a brief
description of MLPs, while graphs and GNNs are covered in Section 6. At the end,
Section 7 presents some previous Deep Learning approaches that have been applied to
tasks related to power flow optimization.

4. The power flow problem

This section introduces some basic theory needed to understand the objective and struc-
ture of the power flow problem.

Section 4.1 presents a definition of a power system and the relevant quantities. Section 4.2
covers fundamental background theory for the AC power flow problem. In Section 4.3,
a brief presentation of a linear approximation to the AC power flow problem is given.
Finally, Section 4.4 gives equations for computing the transmission line injections in the
power flow solution.

4.1. Definition of a power system

Before defining the power flow problem, some terminology and equations regarding power
systems need to be established. Most of the following definitions fall in line with the
ones used by MATPOWER (Zimmerman, Murillo-Sánchez, & Thomas, 2010), which is
a package of free, open-source Matlab-language M-files for solving steady-state power
system simulation and optimization problems, such as the power flow problem.

The basic structure of a power system consists of a set of buses (or nodes) in a grid or
network, connected by components such as transmission lines, transformers and phase
shifters. Here, these components will be combined in a unified branch model, following
the framework of MATPOWER. This branch model consists of a standard π transmission
line model, couplet in series with an ideal phase shifting transformer, and with a regular
transformer located at the from end of the branch.

Each grid component has some associated admittance value, which is a measure of how
easily it allows current to flow through it, and it also measures the dynamic effects of
the component’s material susceptance to polarization. The component admittance of
buses and branches is thus used to relate currents and voltages in a power system, and is
subsequently important for finding the optimal power routing in power flow analysis.

For each branch, we can construct a 2 × 2 branch admittance matrix Ybr which relates
the complex current injections i at the from and to end of the branch with the respective
complex voltages v. Mathematically the relation is given by

Page 5 of 58

Part II – Theory / The power flow problem

[
if
it

]
= Ybr

[
vf
vt

]
, (1)

where the subscripts f and t denote the from and to ends of the branch, respectively.
The branch admittance matrix is given as (Zimmerman & Murillo-Sánchez, 2020)

Ybr =

[
yff yft
ytf ytt

]
=

[
(ys + j bc

2
) 1
τ2
−ys 1

τe−jθshift

−ys 1
τe−jθshift

ys + j bc
2

]
, (2)

where j is the imaginary unit, ys is the series admittance in the π model and bc is the total
charging susceptance. The variables τ and θshift are, respectively, the tap ratio magnitude
and phase shift angle of the transformer. In a system with Nl branches, four Nl×1 vectors
yff , yft, ytf and ytt can be constructed from the corresponding elements in Ybr from each
branch.

Constant power loads in the grid are represented by specified quantities of real (or active)
and reactive power consumption at buses. In a circuit, active power refers to the real
power that is consumed by a load, i.e. the net transfer of energy in one direction, whereas
reactive power refers to energy that is only stored in the circuit, meaning it flows back
and forth between source and load without transferring any net energy to the load. For
each bus, the complex power load is given by

sd = pd + jqd, (3)

where pd is the real or active component and qd is the reactive component (where d stands
for demand). Similarly, generators are represented by complex power injections at specific
buses, and for each generator bus the injection is

sg = pg + jqg, (4)

where pg and qg are the active and reactive generator power injection, respectively.

In addition to loads and generators, MATPOWER includes shunt connected elements at
buses such as capacitors and inductors that are modeled as fixed impedance to ground.
The shunt admittance is given by

ysh = gsh + jbsh, (5)

where gsh is the shunt conductance value and bsh is the shunt susceptance value.

For a grid with Nb buses, all constant impedance elements of the network can be incorpo-
rated into a complex Nb×Nb bus/nodal admittance matrix Ybus, formed from the elements
of the admittance matrices given by (2) and the shunt admittances. This matrix relates

Page 6 of 58

Part II – Theory / The power flow problem

complex bus current injections ibus to the complex voltages v, and for bus k the relation
is given as

ibus,k =

Nb∑
j=1

Ybus,kj vj, (6)

where vj is the complex voltage of bus j.

Similarly, for the branches, two Nl × Nb branch admittance matrices Yf and Yt can be
formed from the vectors created from each row of (2), and these relate the bus voltages to
the current injections at the from and to ends of the branches. For branch k the relations
are given as

if,k =

Nb∑
j=1

Yf,kj vj (7)

it,k =

Nb∑
j=1

Yt,kj vj (8)

To construct these three system admittance matrices, two sparse Nl × Nb connection
matrices Cf and Ct can be used. Let the ij-th element of Cf and the ik-th element of
Ct be 1 if branch i connects bus j to bus k in the grid, and zero otherwise. If we let
diag(·) denote an operator which creates a corresponding diagonal matrix from a vector,
the admittance matrices can be formed as

Yf = diag(yff)Cf + diag(yft)Ct (9)

Yf = diag(ytf)Cf + diag(ytt)Ct (10)

Ybus = CT
f Yf + CT

t Yt + diag(Ysh) (11)

From the current injections, the corresponding power injections for each bus and branch
k are found as

sbus,k = vki
∗
bus,k (12)

sf,k =

(
Nb∑
j=1

Cf,kjvj

)
i∗f,k (13)

st,k =

(
Nb∑
j=1

Ct,kjvj

)
i∗t,k (14)

where the asterisk denotes complex conjugate.

Page 7 of 58

Part II – Theory / The power flow problem

4.2. The AC power flow problem

In the traditional formulation of the AC power flow problem (ACPF), four variables are
of interest for each electrical bus k in a power system (Seifi & Sepasian, 2011). These are

pk : Net active (or real) power injection

qk : Net reactive power injection

|vk| : Voltage magnitude

θk : Voltage phase angle

The net power injections are the difference between generation and load consumption at
the buses, i.e.

pk = pg,k − pd,k, (15)

qk = qg,k − qd,k, (16)

With these variables known, along with relevant admittances, all currents and power flows
in the system can be calculated from the equations in the previous section.

The actual power flow problem consists of finding the steady-state for a system given
a pattern of load and generation. The steady-state can be seen as a static case where
power equilibrium is achieved. Of course, in reality the system is not truly static, but will
always be subject to small load changes and other transients (Andersson, 2008). Larger
fluctuating changes could also occur like e.g. load demand at a buses being considerably
higher during the day compared to at night and admittance on transmission lines being
affected by weather conditions. However, in a shorter time frame, these variations are
often so small that a static steady-state model is a justified representation of the system
in practice. But in a strict sense, the objective to the power flow problem is to analyze a
“snap-shot” of the system, and not its dynamic evolution (Conejo & Baringo, 2018).

The steady-state satisfy a set of equilibrium equations of the form

g(X) = 0, (17)

where X is a set of variables. More specifically, for each bus we get two power balance
equations derived from Kirchhoff’s current law (Conejo & Baringo, 2018):

Nb∑
j=1

|vk||vj| (Gbus,kj cos (θk − θj) +Bbus,kj sin (θk − θj))− pk = 0, (18)

Nb∑
k=1

|vk||vj| (Gbus,kj sin (θk − θj)−Bbus,kj cos (θk − θj))− qk = 0, (19)

Page 8 of 58

Part II – Theory / The power flow problem

where Gbus,kj and Bbus,kj are the respective real and imaginary parts of the kj-th element
in the bus admittance matrix Ybus. From here on, equations (18) and (19) will be referred
to as the active/real and reactive power equations.

Combined for all buses, the power balance equations yields a system of 2Nb non-linear
equations, with a total of 4Nb unknowns. To have a unique solution that satisfy all of them
(on average) two out of the four variables {pk, qk, |vk|, θk} must be specified beforehand for
each bus. There are naturally multiple ways to accomplish this, but in the most common
methodology a single bus with a generator is chosen as a reference bus or slack bus for
which voltage magnitude and phase angle are specified. The phase angle for the other
buses are expressed as differences from the slack bus. Also, the reference effectively serve
as an active power slack for the system, i.e. pk is unknown for this bus. The other buses
with generators are referred to as PV buses, where active power injection and voltage
magnitude is known. Finally, the remaining buses are called PQ buses, and for these, real
and reactive injections are specified, i.e. all load values are fixed beforehand. An overview
of the different bus types is given in Table 1.

Table 1: Overview of the different bus types

Bus type Specified quantities

Reference/slack bus |vk| and θk

PQ bus pk and qk

PV bus pk and |vk|

The variables that are of main interest are the voltage magnitude at PQ buses and the
voltage phase angle at all non-slack buses. This amounts to NPV + 2NPQ unknowns,
where NPV and NPQ are the number of PV and PQ buses, respectively. To solve for
these variables, an equal number of equations can formed from the active and reactive
power balance equations of the PQ buses and the active power equations of the PV buses.
After finding all the voltage magnitudes and phase angles, the NPV + 1 unknown reactive
power injections for generator buses can be found from the corresponding reactive power
balance equations of these buses. Lastly, the net real power injection of the reference bus,
which ensures that production meets consumption, is found from the real power balance
equation of this bus.

The non-linear nature of the power balance equations prevents the problem from being
solved analytically. Instead the traditional approach is to use iterative procedures such as
the Newton-Raphson (NR) method or the Gauss-Seidel (GS) method. The NR method
is the most widely used of these two, and has at least a quadratic rate of convergence if
sufficiently close to the solution (Chow & Sanchez-Gasca, 2020). In comparison the GS
method has a linear convergence rate.

Naturally, as the number of buses and branches increase, these iterative procedures be-
come increasingly expensive computationally, and possibly not suitable for online use. In
addition, convergence is not guaranteed. To reduce the computation time and help con-
vergence, other faster approximations could be used to warm-start the procedure. One
method that can be used for this purpose is the DC power flow approximation, which is
briefly covered in the following section.

Page 9 of 58

Part II – Theory / Multi-Layered Perceptrons

4.3. DC power flow approximation

In the DC formulation of the ACPF problem the power system is linearized, yielding a
non-iterative and absolutely convergent procedure. As a result the DCPF formulation is
easier to solve, but the deviations from the true AC power balance for the steady-state
may be substantial. Thus, the DCPF is mostly useful in tasks where the need for short
calculation speeds is higher than the need for high calculation precision, e.g. in real power
dispatch or power market analysis (Zhu, 2015).

The derivation of the DCPF solution is not highly relevant for the later experimental
part, but the assumptions that are made differ a bit in the literature, so a relatively short
presentation of MATPOWER’s formulation, which is used in the experiments, is given
in Appendix A for transparency. However, for the experiments, it is important to know
that the DCPF always set bus voltage magnitudes to 1 per unit (p.u.) and reactive power
flows are ignored. This will be of importance when making comparisons with the DCPF
approximations in the experiments. The per unit quantity for the voltage will be a bit
more thoroughly explained in Section 10.

4.4. Compute branch injections

When studying the solution of the ACPF problem, one may be more interested in the
power flows on the branches rather than the voltages on the buses. After applying a solver
such as the Newton-Raphson method, MATPOWER provides the power injections and
the voltages at both ends of each branch. These are given as

sf = pf + jqf (20)

st = pt + jqt (21)

vf = |vf |ejθf (22)

vt = |vt|ejθt (23)

The complex current injections at both ends then become

if =

(
sf
vf

)∗
(24)

it =

(
st
vt

)∗
(25)

Page 10 of 58

Part II – Theory / Graphs and GNNs

5. Multi-Layered Perceptrons

Among Deep Learning models, the Multi-Layered Perceptron (MLP) is perhaps one of
the most straightforward and simple. At its core, an MLP consist of at set of layers with
a set number of neurons or processing units representing the feature space of each layer.
An MLP always has an input layer and an output layer, and at least one layer in-between
called the hidden layer(s). Mathematically, the processing of an MLP with L hidden
layers is given as (Alpaydin, 2014)

h(0) = x,

h(l) = σ(l)
(
W (l)h(l−1) + b(l)

)
, l = 1, 2, ..., L,

y = σ(L+1)
(
W (L+1)h(L) + b(L+1)

)
,

where x ∈ RFin×1 is the input, h(l) ∈ RFl×1 is the hidden state at the l-th layer, W (l) ∈
RFl×Fl−1 is a trainable weight matrix, b(l) ∈ RFl×1 is a trainable bias vector, σ(l) is an
activation function, and y ∈ RFout×1 is the processed output. Fl is equal to the number
of processing units at the l-th layer.

6. Graphs and GNNs

As mentioned in Section 1, it may be natural to model power systems as graphs. The
admittance matrix can be seen as a form of graph adjacency matrix, and the different
system components can be seen as graph nodes and edges, with the different system
quantities as node and edge features.

In this section, basic theory for graphs and GNNs will be presented. First, Section 6.1 will
present a graph definition and relevant graph attributes. Section 6.2 and 6.3 will cover
some general GNN theory. Section 6.4 presents one of the more widely used graph con-
volutional network methodologies. And finally, Section 6.5 and 6.6 present, respectively,
the ECC and ARMA layer, which will be used for the GNN models in the experiments.

6.1. Graph definition

A mathematical graph G = (V , E) is defined by a set of nodes (or vertices) V and a set of
edges (or arcs) E that connect them. Graph edges can be either oriented or non-oriented,
which depends on the ordering of connected node pairs. If the connected pairs are not
ordered, i.e. if E ⊆ {{u, v} | u, v ∈ V} (Bacciu, Errica, Micheli, & Podda, 2020), edges
are non-oriented and the graph is said to be undirected. In opposition, if the pairs are
ordered, meaning E ⊆ {(u, v) | u, v ∈ V}, the edges are oriented and the graph is directed.
In other words, for a directed graph, a distinction is made between an edge going from

Page 11 of 58

Part II – Theory / Graphs and GNNs

node u to v and one going from v to u. An illustration of an undirected graph versus a
directed graph is given in Figure 1.

The edges found in E can be encoded into a binary adjacency matrix A ∈ R|V|×|V|, where
element Auv is equal to 1 if an edge goes from node u to node v, and 0 otherwise. The
lack of ordering in undirected graphs means that A is always symmetric, while this is
not necessarily the fact for directed graphs. For the graphs in Figure 1, the respective
adjacency matrices are

(a): A =



1 2 3 4 5

1 0 1 1 1 1
2 1 0 0 0 0
3 1 0 0 1 0
4 1 0 1 0 0
5 1 0 0 0 0

 (b): A =



1 2 3 4 5

1 0 0 0 1 1
2 1 0 0 0 0
3 1 0 0 1 0
4 0 0 1 0 0
5 0 0 0 0 0


In graphs, a path is defined as a sequence of unique edges that joins a sequence of nodes,
and the path length is given by the number of edges in this sequence. By finding the
length of the shortest path between nodes, one can get an idea of the complexity of the
graph.

An undirected graph is said to be connected if there exists a path for every vertex pair,
and this is the case for the example graph in Figure 1a. A directed graph is, on the other
hand, said to be weakly connected if replacing each edge with an undirected one yields a
connected graph. If a directed path exists from u to v and from v to u for every node pair
{u, v}, then the graph is strongly connected. The example graph in Figure 1b is weakly
connected but not strongly, since e.g. there is no directed path going from node 5 to node
2.

The neighborhood of node u in an undirected graph, denoted as Nu, is defined as the
set of nodes that have edges connecting to node u, i.e. Nu = {v | {u, v} ∈ E}. The
neighbors of each node can thus be seen from the adjacency matrix, where node v is a
neighbor of u if Auv = Avu = 1. If the neigborhood also includes u itself (meaning the
graph has self-connecting edges or self-loops), it is said to be closed. Otherwise, it is
referred to as an open neighborhood. For a directed graph we can differentiate between
out-neighbors and in-neighbors for each of the two possible edge orientations. The set
of out-neighbors is then given by N out

u = {v | (u, v) ∈ E} and the set of in-neighbors
as N in

u = {v | (v, u) ∈ E}. As an example, for the undirected graph in Figure 1 the
neigborhood of node 1 is N1 = {2, 3, 4, 5}, while for the directed graph the out- and
in-neigborhoods are N out

1 = {4, 5} and N in
1 = {3, 2}.

In addition to the topological information in A, the graph representation can be extended
by having additional feature information on the nodes and edges. Each node is then
associated with a corresponding feature vector x, and an edge connecting node u to node
v comes with a corresponding feature vector eu→v (or euv). Note that for non-oriented
edges euv = evu. The features in these vectors can be discrete, continuous or possibly
a combination of both. Additional information about node relationships can also be
included by using a weighted adjacency matrix, i.e. the 1s are replaced with continuous
values which represent some “strength” measure of the edges.

Page 12 of 58

Part II – Theory / Graphs and GNNs

(a) (b)

Figure 1: (a) Example of an undirected graph. This graph can be transformed into a directed version by replacing
each edge by two similar edges facing the opposite way of each other. (b) Example of a directed graph
for which the adjacency matrix is asymmetric.

6.2. Neural Networks using graphs

Many types of non-Euclidean real world data are most naturally represented in the form
of graphs, and hence there is currently an interest in developing and improving techniques
that apply Artificial Neural Networks (ANNs) to the graph domain. So far, neural net-
work approaches using graphs have been applied to tasks such as classification of protein
functions for biological protein-protein interaction graphs (Hamilton, Ying, & Leskovec,
2017), content recommendation for users on social platforms (Ying et al., 2018), predic-
tion of side effects emerging from drug-drug interactions (Zitnik, Agrawal, & Leskovec,
2018) and document topic classification (Kipf & Welling, 2017), to name a few.

The large variety of recently developed techniques using ANNs in conjunction with graphs
does, however, make it tricky to define key mechanisms and terminology that apply to
all of them. This task is made even trickier by the fact that many approaches use either
different terminology for similar techniques, or same terminology for differing techniques.
For instance, the term graph convolution is repeated a number of times throughout the
current literature, as several approaches utilize some form of convolution operator (either
in the spatial/node or spectral domain) and/or incorporate some type of local receptive
field similar to the ones that arise from the filters in Convolutional Neural Networks
(CNNs) (Goodfellow, Bengio, & Courville, 2016). Examples include spectral approaches
such as the ones seen in (Defferrard, Bresson, & Vandergheynst, 2016) and (Kipf &
Welling, 2017) and spatial ones as in (Atwood & Towsley, 2016) and (Duvenaud et al.,
2015). Also, the term Graph Neural Network (GNN) is often used as a generic term to
refer to a model belonging to the general field of ANNs incorporating graphs in some way,
while some texts reserve this term specifically for the pioneering model by Scarselli et al.
(2008). In this thesis, the former definition is used.

Even though the techniques used in the developed GNNs vary, there are some main
concepts which apply to many of them. The next section will present some of these
shared concepts, and this presentation will rely heavily on the introduction to GNNs by
Bacciu et al. (2020).

Page 13 of 58

Part II – Theory / Graphs and GNNs

6.3. Common concepts for GNNs

In a GNN, each node is typically associated with a corresponding state vector hi, which
is often updated through successive iteration steps or layers of the network. For the l-th
iteration step, we can be denote the state of node i as h

(l)
i . Commonly, the state of each

node at the input layer is set equal to some input feature vector, i.e. h
(0)
i = xi.

To update the state of each node, information is typically spread across the graph with
some form of message passing between nodes (Gilmer, Schoenholz, Riley, Vinyals, & Dahl,
2017). These messages can be computed for each node by using its current state and,
possibly, the feature information on edges connected to the node. The messages are then
sent to neighboring nodes, and the state of each node is updated using incoming messages
and possibly its current state. When message passing is applied in successive steps, nodes
receive contextual information from an area larger than their first-order neighborhood. In
other words, the local receptive field of each node increases, and this process is illustrated
in Figure 2. Here, through several message passing steps (or propagation steps), node i is
able to receive information from all the neighbors of node j (including itself). Naturally,
if nodes carry information that are relevant to far away neighbors, this propagation of
information can be beneficial in both prediction and classification tasks.

For many of the established GNN architectures, the neighborhood aggregation of messages
for node i at step l can be collectively expressed as (Bacciu et al., 2020)

h
(l)
i = φ(l)

(
h

(l−1)
i ,Ψ

(
{g(l)(ej→i)Tψ(l)(h

(l−1)
j) | j ∈ Ni}

))
(26)

Here φ, ψ and g represent arbitrary transformation functions, Ψ is a permutation invariant
function (e.g. the sum or max operator) and Ni is either the open or closed neighborhood
of node i. Note that this formulation allows for the inclusion of edge features (both
discrete and continuous). If edge features are not included, the expression is reduced to

h
(l)
i = φ(l)

(
h

(l−1)
i ,Ψ

(
{ψ(l)(h

(l−1)
j) | j ∈ Ni}

))
(27)

Note that in both equation (26) and (27) the graphs are assumed to be non-positional,
hence Ψ must be permutation invariant.

As recently mentioned, successive application of message passing and neighborhood ag-
gregation expands the local receptive field of each node, which can prove beneficial when
making inference of individual nodes or even for the entire graph. However, several of
the most popular aggregation techniques for GNNs suffer from a so called over-smoothing
of the node features when the process involves too many steps or layers. This drawback
of deeper GNNs was first noted by Li et al. (2018) in a work studying the effectiveness
of the popular Graph Convolutional Network (GCN) model by Kipf and Welling (2017).
The potential issue is that as the number of aggregations (or convolutions) increase, node
embeddings can end up being effectively indistinguishable from each other, which can
lead to a severe decay in the performance and expressive power of the GNN. The actual

Page 14 of 58

Part II – Theory / Graphs and GNNs

reason for over-smoothing is not always crystal clear, and likely depends on both the
model in use and the data. Chen et al. (2020) propose that it can be caused by non-ideal
information-to-noise ratio, where in e.g. a node classification task each node can receive
too much noisy information from nodes belonging to a different class that do not help
inference, but rather weakens it. It is also easy to imagine that if the number of aggre-
gations far exceeds the size of the graph, the aggregation could also end up giving very
similar node representations, since the total receptive fields of the nodes greatly overlap.
Several methods have been proposed to combat over-smoothing for existing aggregation
functions/methods, such as a type of normalization layer (Zhao & Akoglu, 2019) and
adaptive changes to the topology (Chen et al., 2020). Regardless, GNNs tend to be shal-
lower than other Deep Learning models such as CNNs used in image related tasks, and
in many cases a deep GNN is not necessary to achieve good performance.

Figure 2: Illustration of how successive propagation steps in a typical GNN increases the receptive field for each
node. Going from step 0 to step 1, the state of node j is updated by aggregating messages coming from
it’s neighboring nodes. At the transition from step 1 to 2, node i is updated using information of the
state of node j at step 1, which in turn consists of information of the state of j’s neighbors (including
i) at step 0. Thus by step 2, node i has indirectly received information from all the nodes in the graph.

6.4. Graph Convolutional Network by Kipf et al.

In the Graph Convolutional Network (GCN) model by Kipf and Welling (2017) aggrega-
tion is done through a feedforward approach with a layer-wise propagation rule that is
based on a localized first-order approximation of spectral graph convolution. For a given
layer l, the propagation rule is given by

H(l) = σ
(
D̃−1/2ÃD̃−1/2H(l−1)W (l)

)
(28)

Here, Ã = A+I is the adjacency matrix (binary or weighted) of an undirected graph with
added self-connections. I is the identity matrix with the same dimensions as A. D̃ is the
degree matrix of Ã, where D̃ii =

∑
j Ãij. H(l) is the matrix of node activations at the

lth layer, where the hidden state vectors h
(l)
i are placed as rows. Finally, W (l) is a layer-

specific weight matrix and σ is an activation function. If one studies the arithmetic of
the propagation rule a bit closer, there are clear parallels to the aggregation in a CNN. If

Page 15 of 58

Part II – Theory / Graphs and GNNs

Ã ∈ RN×N and H(l) ∈ RN×Fl , then W (l) ∈ RFl×Fl+1 , i.e. the weights are not node-specific,
and the aggregation is done by centering on each node and using the same set of weights,
which is similar to how the filter weights work in a CNN. For a single graph node, the
neighborhood aggregation in the propagation rule can be expressed as

h
(l)
i = σ

((
W (l)

)T ∑
j∈Ni

L̃ijh
(l−1)
j

)
, (29)

where h
(l−1)
i ∈ RFl−1×1 and L̃ = D̃−1/2ÃD̃−1/2.

Moreover, the matrix L̃ = D̃−1/2ÃD̃−1/2 can be seen as a renormalization of the symmet-
rically normalized laplacian matrix L = I+D−1/2AD−1/2, and is therfore often called the
renormalized graph laplacian. This renormalization trick reduces the risk of numerical
instabilities and exploding/vanishing gradients for successive application of equation (28),
compared to using L (Zhou et al., 2018).

6.5. Edge-Conditioned Convolution

The paper by Simonovsky and Komodakis (2017) introduces a method of performing
convolution-like aggregation on local neighborhoods while exploiting labels on the edges.
More specifically, the filter weights used to aggregate information from neighbors are
conditioned on said edge labels. The operation itself is formalized as

h
(l)
i =

1

|Ni|
∑
j∈Ni

g(l)
(
ej→i;W

(l)
)
h
(l−1)
j + b(l), (30)

where ej→i is the feature vector of the edge going from node j to node i in the original
input graph and g(l) is a differentiable function parametrized by a set of learnable weights
W(l).

If h
(l)
i ∈ RFl×1, h

(l−1)
i ∈ RFl−1×1 and ej→i ∈ RS, then g must produce an Fl×Fl−1 matrix

given a vector of length S. So, if g is for instance based on MLPs, this can be achieved
by e.g. using Fl MLPs that each output a vector of length Fl−1 or by using a single MLP
outputting a vector of length Fl · Fl−1 that is then reshaped into a matrix.

In the above formulation, each node can only utilize its own features at the previous layer
if the neighborhoods are closed (i.e. each node must have a corresponding self-loop). The
function g might then need to treat these self-loops differently than the other edges, as it
is not always obvious what edge labels should be assigned to these loops. For instance, in
a power system, a graph representation could be constructed by letting buses act as graph
nodes and branches as edges. Natural choices for edge features may then be quantities
related to the branch admittance matrices such as resistance and reactance. However,
in this case there are no physical component that can naturally represent a self-loop.
Instead, edge features for a self-loop could for example be created from an average of the

Page 16 of 58

Part II – Theory / Graphs and GNNs

feature vectors of the other edges that connect to this node. The potential drawback with
such an approach is that the node features that are retained after aggregation depend
on these self-loop features (that are treated like the other edge features), rather than the
node features themselves.

In the models used for the experiments in this thesis, an extended formulation that avoids
this issue will instead be used , and it is given as (Grattarola & Alippi, 2020)

h
(l)
i = h

(l−1)
i W

(l)
root +

∑
j∈Ni

g(l)
(
ej→i;W

(l)
)
h
(l−1)
j + b(l), (31)

i.e. the aggregation of each node can now also directly leverage the nodes’ own features,

done through a skip-connection with a trainable weight matrix W
(l)
root ∈ RFl×Fl−1 . Techni-

cally, this formulation is more inline with the Message Passing Neural Networks (MPNN)
framework of Gilmer et al. (2017), but henceforth it will here be referred to as an ECC
layer, since the conditioning on edge features is its most distinctive attribute compared
to other popular GNN frameworks that use convolution-like operators.

6.6. GNN framework with convolutional ARMA filters

Bianchi et al. (2021) present a graph convolutional layer inspired by the auto-regressive
moving average (ARMA) filter. Compared to polynomial approaches such as the ones
by Defferrard et al. (2016) and Kipf and Welling (2017), this ARMA GNN framework is
meant to provide a more flexible frequency response, be more robust to noise, and better
capture the global graph structure.

In this framework, an ARMA1 filter is expressed as a recursive approximation using a
stack of Graph Convolutional Skip (GCS) layers that are given as

X̄(1) = σ
(
L̂XW (0) +XV

)
(32)

X̄(t) = σ
(
L̂X̄(t−1)W +XV

)
, t = 2, 3, ..., T (33)

where X ∈ RN×Fin is the initial node feature matrix (or graph signal), X̄(t) is the filtered
graph signal at iteration step t (of which there are T in total), σ is some non-linear
activation function, and W (0) ∈ RFin×Fout , W ∈ RFin×Fout and V ∈ RFin×Fout are trainable
weight parameters. Here, L̂ is a rescaled version of the symmetrically normalized graph
laplacian, given as

L̂ =
1

2
(λmax − λmin)I −D−1/2AD−1/2, (34)

Page 17 of 58

Part II – Theory / Previous Deep Learning approaches for power flow optimization

with λmax = 2 and λmin = 0.

An ARMAK filter is approximated as an average of the output of K unique GCS stacks:

X̄ =
1

K

K∑
k=1

X̄
(T)
k (35)

The usage of skip-connections in the GCS layers allow nodes to better preserve their own
features, and thus alleviate the over-smoothing problem. The usage of several GCS stacks
can allow the ARMA layer to focus on different types of relations between nodes, and
the weight sharing within each stack allow for more propagation steps while keeping the
amount of trainable parameters at a moderate level.

7. Previous Deep Learning approaches for power flow
optimization

The next sections will cover some of the Deep Learning approaches that have been pro-
posed to solve power flow related tasks. With the exception of one approach, the below
models are trained in a supervised learning setup, where some form of discrepancy is
measured between predictions and given labels and stochastic gradient descent is used to
iteratively update model weights in an attempt to reduce this discrepancy.

Section 7.1 present a couple of MLP approaches and Section 7.2 cover several GNN
approaches.

7.1. MLP approaches

An early example of MLPs used for the power flow problem is given in (Paucar & Rider,
2002). Here, each unknown voltage magnitude and phase angle is computed using a
corresponding shallow MLP. In other words, this model uses NPQ MLPs to compute
the unknown |v| values and NPQ + NPV MLPs to compute the unknown θ values. As
input, these MLPs use the known voltage magnitudes and active power generation of
PV buses, the diagonal values of the bus admittance matrix and values related to a
contingency simulation. The added contingency values are meant to allow the model
to take into account things like different loading scenarios, line outages and different
generation voltage values. Despite this, the model as a whole can only learn to solve the
problem for a specific power system, and it will not be able to scale to systems with a
different number of buses.

Donnot et al. (2018) present a model based on MLPs that is capable of training on N-1
contingencies for transmission lines, i.e. power flows can be evaluated for every possible
(single) line disconnection. This is done through the inclusion of conditional hidden units

Page 18 of 58

Part II – Theory / Previous Deep Learning approaches for power flow optimization

in the architecture, which are activated in the case of line disconnections. This technique
was named “guided dropout” due to inspiration from the more standard dropout tech-
nique (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). As input, this
model only uses the load and active power generation at the buses. Hence, physical char-
acteristics on the transmission lines, such as resistance and reactance, are not included.
The model is trained on N-1 contingency samples based on a reference topology, and it
is shown to outperform the DCPF approximation in terms of mean-squared error for the
power flows. The model is also shown to be able to generalize to N-2 situations (two
disconnections) without being trained on such case samples. Despite being able to handle
disconnections of one or two transmission lines, this model is not able to generalize to
systems with topologies that differ more than this with respect to the reference topology,
such as systems with a different number of buses or completely different line arrangement.
This is due to the use of input units in the model that are connected to specific buses and
lines in the reference topology.

MLPs can not explicitly make use of the topological information in power systems, and
thus their scalability and generalization capability are severely limited. In theory, a single
MLP used for this problem is scalable if it makes inference in a local fashion, i.e. it predicts
values for each bus using variables only belonging to this bus. However, such a model
would only be able to make inference on a grid with a fixed topology. In the case of a
constant topology, an MLP working in a global fashion, i.e. one that takes in multiple
bus variables and line variables at once, will perform better than a local one, since it can
learn relations between buses. However, the complexity of the model will scale poorly
with the dimension of the energy grid. Additionally, as seen in the approach proposed
by (Donnot et al., 2018), global MLPs can only handle small changes in the topology
if the architecture is carefully constructed. These changes in the grid are also primarily
disconnections, so if components are added or more extensive reconfigurations are done,
these models will likely have to be trained once again, which might squander the benefit
gained from the reduced computation time compared to numerical approaches.

To overcome the limitations of MLPs, we thus desire models that more explicitly make
use of the topological information found in power systems and can generalize to power
systems with different topologies. This information would make scaling more straightfor-
ward, assuming the models work in a local fashion, and it could possibly lead to better
generalization for fixed-size power grids, since the topology is closely related to the un-
derlying physics of the problem. The approaches in the next section all try to make more
explicit use of the grid topology to solve different power flow related problems, although
this is done through quite different methodologies.

7.2. GNN approaches

Donon et al. (2019) present a GNN model that uses a so-called dual line graph represen-
tation to compute the ACPF solution of a power system with respect to the power flows
on the transmission lines. In the model, an embedding step is used to map the problem
from the bus-space to the line-space and aggregation is then performed on the lines using
a GCN-like technique with two different line adjacency matrices, that each focus on one of
the transmission line ends (origin/from end and extremity/to end). Load and generator

Page 19 of 58

Part II – Theory / Previous Deep Learning approaches for power flow optimization

injections on the buses are used as input and all the transmission lines are assumed to
have the same properties, i.e. features like line resistance are not taken into account. The
model is trained in a supervised fashion using the output of a Newton-Raphson solver as
labels, and in the experiments detailed in the paper, the model is shown to outperform
an MLP network and the DCPF approximation when trained and tested on randomly
generated grids of constant size. It is also shown to outperform the DCPF approximation
on grids with sizes ranging from 10 to 110 buses when trained on grids with 30 buses.

A follow-up to the above GNN model, dubbed the Graph Neural Solver (GNS), is given
by Donon et al. (2020). For this model the goal is not to predict the line power flows,
but instead the voltage magnitude and phase angle of the buses. The most unique aspect
of this model is that it is trained to directly minimize the violation of Kirchhoff’s law at
each bus in the grid, i.e. it is trained unsupervised. To accomplish this, the model uses
a combination of physical equations, neural network blocks and message passing between
buses, and the architecture consists of a fixed number of layers which act like correction
steps that iteratively tries to get closer to a power equilibrium. As input, the model
uses a wide arrange of quantities related to load buses, shunt elements, generators and
branches. This model is shown to be more accurate than the DCPF approximation when
trained and tested on grids of constant size, which are generated by sampling bus and
branch quantities in some selected IEEE grids. In addition, this GNS model is shown to
generalize fairly well to smaller grids when trained on larger ones, but the opposite is not
always the case. Also, the predictions are shown to be highly correlated to the solutions
given by a Newton-Raphson solver. The principal drawback of this model may be that
the reliance on physical equations makes it so that one needs a bit more familiarity with
the related physics to be able to alter the model to fit a setup with for instance additional
input parameters and/or a different form of grid modeling (e.g. one that does not use
shunt elements to model capacitors and inductors).

Another supervised GNN approach for solving the ACPF problem is given by Bolz et
al. (2019). In this approach, the goal is to output the loadings on each transmission
line for the steady-state solution, and to compute predictions, a form of spatial graph
convolution is used to aggregate information on the lines. The line loadings are defined as
the percentage difference between the current on the line in the ACPF solution and the
maximum current it can carry. The most unique feature of the aggregation methodology of
this model, compared to the previous two approaches, is that it does not use pre-defined
neighborhood structures through e.g. an adjacency matrix, but instead uses estimated
correlations to determine which transmission lines are related to each other. This is
motivated by the fact that one might not always have access to a complete adjacency
matrix and the correlation estimates can uncover inherent dependencies between lines
that are not directly inferred by the grid topology. Presented tests against resampled
instances of an IEEE grid and two larger real world type grids show that this model is
able to outperform an MLP model for the larger grids, but falls behind on the smaller
IEEE grid. Although it is not explicitly mentioned, presumably, several instances of the
same grid topology is needed to estimate the correlations. This means that this model
cannot generalize to unseen grids with different topologies after training.

A supervised GNN model for solving the Optimal Power Flow (OPF or ACOPF) problem
of a power system is given by Owerko et al. (2020). In short, compared to the regular
PF problem, the OPF problem adds an objective function that is to be optimized for

Page 20 of 58

Part II – Theory / Previous Deep Learning approaches for power flow optimization

the system, and possibly some constraints on certain parameters such as power limits on
generators and current limits on the transmission lines. In the paper by Owerko et al.
(2020) the objective function is a sum of second order polynomial cost functions for the
generators. The cost of each generator is computed from the active power injection, and
the goal is to find the power injections that minimize the overall cost. In addition, there
are box constraints on the bus voltage and power solutions, i.e. they have to be within a
set range. The GNN that is set to find the active powers that accomplishes this, consists
of polynomial aggregation filters that sort of resemble the framework by Defferrard et
al. (2016). It is also worth noting that the adjacency matrices used for the aggregation
are weigthed with the impedance between connected buses, i.e. the reciprocal of the
corresponding element in the bus/nodal admittance matrix Ybus. Two versions of the
GNN is used for experimentation, where one is referred to as a local GNN that has a fully
connected (FC) layer at the end which act on the representations/features of individual
nodes at a time, and the second is called a global GNN, where the FC layer acts across
all nodes at the same time. Naturally, the latter configuration can not be used on grids of
different size as the number of processing units in the last FC layer depend on the number
of nodes. As input, both models use solutions from the DCOPF approximation, which
is the OPF equivalent to the approximation mentioned in Section 4.3. Experiments are
performed on datasets constructed from resampled versions of the IEEE30 and IEEE118
reference grids, where the targets for supervised gradient descent learning are provided by
an IPOPT solver (Wächter & Biegler, 2006). To benchmark the GNNs, a local and a global
MLP is used, which have been given roughly the same structure as GNN counterparts in
terms of number of layers and hidden units. Reported results show that the global GNN
performs the best, with the global MLP in second, the local GNN in third and the local
MLP in last.

When the load demand pushes the generation capacity of a power system to its limits,
power companies can choose to reduce the consumption through deliberate shutdown of
electric power in one or more parts of a power distribution system, which is generally
done to prevent failures that can occur if the system becomes overloaded. This procedure
is called load-shedding, and Kim et al. (2019) presents a GNN model for predicting the
optimal load-shedding ratio that prevents transmission lines from being overloaded in case
of a line contingency (e.g. a line outage). The GNN is based on node feature updates
for the buses using the GCN framework by Kipf and Welling (2017). Training is done
in a supervised setting, and to obtain targets to learn from, the task is framed as an
OPF problem where the objective is to minimize the load-shedding ratio for a given load
profile and contingency scenario. Note that the desired load-shedding ratio is a single
number for the entire power grid, so after the GCN layers, the model uses fully connected
layers to map the node states into a univariate space. The number of units in these final
layers depend on the number of buses in the grid, so the same model can not be applied
to differently sized grids. Like most of the above approaches, the authors behind this
model have used standard IEEE systems with resampled values for training and testing.
Presented results show that this GNN model is able to outperform both a global MLP
and a linear regression model.

Page 21 of 58

Part III / Method

Here, the methodology used to design and implement the GNN models will be presented.
The applied models are implemented using Keras in Tensorflow (ver. 2.4.1, Abadi et al.,
2015) and the GNNs rely on the functions and layer implementations from the Spektral
library (ver. 1.0.5, Grattarola & Alippi, 2020).

Sections 8 and 9 will detail the structure of the two main set pieces of the GNNs: ECC and
ARMA. Section 10 lists the units for the relevant power system quantities. In Section 11,
two different graph construction methods will be presented, along with the GNN design
that will be used for each of these two representations. Section 12 presents two different
MLP configurations that will be used to benchmark the GNNs. Finally, in Section 13
some details regarding the training and data setup will be given.

8. ECC setup

The ECC layers will rely on the implementation in Spektral, which falls inline with
Eq. (31) rather than that of Eq. (30). The function for processing edge features, denoted
by g, will be an MLP network, which is the only function type that is natively supported in
the Spektral implementation of the ECC layer. Moreover, this MLP network will always
have trainable bias terms and ReLU activations at each layer. An activation function σ
is also placed at the end of the ECC layer, so the updated node states are given by

h
(l)
i = σ

(
h
(l−1)
i W

(l)
root +

∑
j∈Ni

MLP(l)
(
ej→i;W

(l)
)
h
(l−1)
j + b(l)

)
, (36)

where ej→i is an edge vector containing the features of the corresponding branch. To get
the correct output dimensions, the MLP has an output layer with Fl · Fl−1 units, which

is then reshaped into a Fl × Fl−1 matrix before multiplication with h
(l−1)
j .

9. ARMA setup

For the ARMA layers, the implementation will differ slightly from the one presented in
the paper by Bianchi et al. (2021). The first difference is due to the way weight sharing is
done in Spektral’s implementation of the ARMA layer. To achieve weight sharing within
each stack, a division is done after the first iteration step, where weights assigned to step
t = 2 applies to all subsequent steps. As a consequence, the first iteration step has an
unique weight matrix V for the skip connection. Formally, the implementation of the
ARMA layer in Spektral is therefore

Page 23 of 58

Part III – Method / Graph and GNN construction

X̄(1) = σ
(
L̃XW (0) +XV (0)

)
, (37)

X̄(t) = σ
(
L̃X̄(t−1)W +XV

)
, t = 2, 3, ..., T, (38)

where V (0) and V are two different weight matrices, rather than the same one as in
Equation (32)-(33). Changing this implementation such that it matches the originally
intended setup does not require much effort, but there should not be any disadvantage
with Spektral’s implementation, other than a small increment in the number of parameters
Therefore, it is used as-is.

The second difference is that L̂, the symmetrically normalized and rescaled graph lapla-
cian, will be replaced by a normalized adjacency matrix, i.e.

L̂→ D−1/2AD−1/2. (39)

Tests showed that using either matrix yields similar performance after training. However,
when using the laplacian the overall GNN setup becomes a bit more complicated. This
is due to the ECC layer, which requires an adjacency matrix to track the location of the
edges. Since the laplacian introduces self-loops, which will have no corresponding edge
features, both the normalized laplacian for ARMA and another adjacency matrix without
self-loops for ECC would have to be used in this case. Therefore, it is more memory
efficient to only use the normalized adjacency. Also, the skip-connections present in both
ARMA and ECC make the inclusion of self-loops somewhat redundant.

Each ARMA layer consist of K stacks that each have T iteration steps, which determines
the number of propagation steps on the graph, and this type of layer will be denoted
as ARMAT

K . No activation function is applied after the average in Eq. (35), due to the
presence of activations at the end of each stack. Also, when constructing the GNNs,
several ARMA layers will be used in succession to create a receptive field around each
node that covers either most of or the entire graph. The use of successive layers is mostly
done to increase the capacity of the overall network with respect to the number of trainable
parameters, since GNNs with only a single ARMA layer with a higher T value showed
significantly worse performance in early tests. This could be due to difficulties in finding
a single set of weights that manage to capture relevant features for a large number of
propagation steps.

10. Power system units

Table 2 displays the units of the quantities that will be used as input features and output
labels for the GNN models. The “per unit” (p.u.) measure mean that system quantities
are expressed as fractions of a defined base unit quantity. In MATPOWER, each power
grid has a single base apparent power value in MVA and several base voltage values in
kV for the different voltage levels of the system. Voltage magnitude for each bus is then
converted from kilovolt to the per unit basis through the corresponding base level in kV,
and branch resistance, reactance and charging susceptance use both the base MVA and
corresponding base kVs to convert to p.u.

Page 24 of 58

Part III – Method / Graph and GNN construction

Table 2: Units for relevant power system quantities

Quantity Unit
Active power, p Megawatts, MW

Reactive power, q Mega volt amps (reactive), MVAr
Apparent power, |s| (s = p+ jq) Mega volt amps, MVA

Voltage magnitude, |v| Per unit, p.u.
Voltage phase angle, θ Radians

Current (real and imaginary), i Kiloamps, kA
Resistance, r Per unit, p.u.
Reactance, x Per unit, p.u.

Total charging susceptance, bc Per unit, p.u.

11. Graph and GNN construction

In the experiments that will be detailed in Section 4, two different graph representations
of the power grids will be used. In the first representation, buses will essentially take the
role of graph nodes, and branches will act as graph edges. This type of representation
will be referred to as bus graph. In the second representation, branches will instead act as
graph nodes, and buses will sort of act as edges. This representation will be referred to
as branch graph, and can be seen as a type of line graph (Harary & Norman, 1960) form
of the bus graphs. Each representation will be detailed in Sections 11.1 and 11.2, and
Section 11.3 details the basic structure or design of the GNNs used for the experiments.

11.1. Bus graph representation

In the experiments presented in Sections 15 and 16, the input data to the GNN models
are expressed in terms of graphs were buses are represented as nodes and branches are
represented as edges. From the corresponding bus, each node is assigned the following
input features: active and reactive load, active power injection and voltage magnitude
set point for connected generator, and a one-hot label which indicates whether the node
represents the slack bus (1 if true, 0 otherwise). If a bus does not have load values or a
generator, then the corresponding node features are zero.

The topology of the power systems is represented as an undirected graph, i.e. the topology
of each system is incorporated into a symmetric adjacency matrix. In reality, the branches
have a form of directionality, since they have designated to and from ends. However, early
tests showed that when propagating information through a directed graph, represented
by an asymmetric adjacency matrix, the GNN solvers achieved worse performance. This
is perhaps due to the directed versions not being strongly connected, which causes the
diffusion process on the graph to become hindered. Predictions have to be made for every
bus, and for semi-remote buses at the peripheral regions of the grid, the information
gathering can become difficult with directed edges. Going back to the example graph in
Figure 1b, if message passing is done by following the direction of the edges, then node
2 has no way of receiving information from the rest of the graph, which is not ideal for a
power system where the power flow solution of all buses depend on each other. Therefore

Page 25 of 58

Part III – Method / Graph and GNN construction

an undirected graph representation is chosen, where each branch is represented by two
opposite facing edges. Each edge is associated with a vector containing the following
attributes: branch resistance, reactance and charging susceptance, and a 2-dimensional
one-hot label indicating the direction of the edge. In this last one-hot vector, the first
element is 1 if the direction matches that of the corresponding branch, and the second
element is instead 1 if the opposite is true. The branch directionality is with this encoded
into the edge features.

The bullet list below summarizes the feature assignment of the bus graphs

• Node feature vector x: active load pd, reactive load qd, active power injection from
generator pg, voltage magnitude of connected generator |vg| and slack bus indicator
Islack.

• Edge feature vector e: branch resistance r, reactance x, total charging susceptance
bc and direction indicator Idir.

All of the above (non-indicator) quantities are directly involved in the equations of Sec-
tion 4, with the exception of branch resistance and reactance which are connected through
the series admittance ys:

ys =
1

zs
, (40)

zs = r + jx, (41)

where zs is the series impedance.

11.2. Branch graph representation

As seen in the power flow theory of Section 4.2, all buses are not treated equally in
the ACPF setup. The voltage magnitude of generator buses are fixed beforehand and
the slack bus introduces some ambiguity since the voltage phase angle of each bus is
expressed as a difference from the reference. This causes some fundamental differences
between graph nodes in the bus graphs, which a GNN will have to somehow model or take
into account to make good inference for all nodes. When only training on grids with either
roughly or the exact same topology and bus assignment, this does not matter that much,
especially if the GNN model implements enough propagation steps to allow all nodes to
communicate and/or use “graph-spanning” fully connected layers at the end, like the so-
called global GNN by Owerko et al. (2020). However, if a GNN is meant to be trained
on widely different grids, it is not possible to use such FC layers and the variations in
local neighborhoods might become so large that the GNN is not able to accurately model
the categorical differences between buses with only localized operations, even if there are
features on the nodes that indicate if they represent a generator bus or the slack bus.
The branches, on the other hand, are not as categorically different from each other, even

Page 26 of 58

Part III – Method / Graph and GNN construction

across grids with heterogeneous topologies. The assignment of PQ, PV and slack bus does
to some degree affect the branches too, such as the voltage level at the ends being fixed if
a branch is connected to a bus with a generator, but the power and current injections on
the branches are not pre-determined. These injections also represent the full power flow
solution, since given these values one can find all the complex bus voltages and vice versa.
Thus for a task involving a GNN solver meant to work with grids that are quite different
in terms of size and topology, it might make more sense to directly make predictions
for the branch power and current. This can be accomplished by using a branch graph
representation, where branches act as nodes.

In this alternate representation, buses will define connections between branches, but do
not represent edges in the same sense branches do in the bus graphs. Each bus can in
theory be connected to an unlimited number of branches. So in these branch graphs,
buses can represent multiple edges. More specifically, for branch k that connects bus i
to bus j, any other branch that is connected to either bus i or j will be considered as
a neighbor of branch k. Note that this results in a symmetric adjacency matrix for the
branches, which in early tests proved to be more beneficial than an asymmetric one that
also use the direction of the branches to define neighborhoods. An illustration of the move
from a bus focused graph to a branch focused one is given in Figure 3.

Despite the change in the representation of graph nodes, the same GNNs used for bus
focused graphs can be used with this alternate graph formulation, where bus features
can be placed on the edges and branch features on the nodes. However, every branch
is connected to two buses, so there is no need for a framework that than can handle an
arbitrary number of edges with attributes such as the ECC layer. Instead, values related
to the buses can be added directly to the node features. Thus for the experiment that
involves this branch graph representation, each graph node will be assigned the following
features:

• From corresponding branch: resistance r, reactance x and charging susceptance bc

• From bus connected at from end of corresponding branch: active load pd, reactive
load qd, active power injection from connected generator pg, voltage magnitude of
connected generator |vg| and slack bus indicator Islack

• From bus connected at to end of corresponding branch: Same as for the from end
bus.

11.3. GNN design

To utilize all of the most important quantities related to buses and branches, a GNN must
be able to aggregate information based on node features, as well as utilizing edge features
if they are included. Also, in contrast to many other tasks where GNNs have been used,
information from distant neighbors may be useful for achieving accurate predictions. In
a power system, it is clear from the physical equations that the ACPF solutions of all
buses and branches depend on each other, since the goal is to achieve a full system power

Page 27 of 58

Part III – Method / MLP configurations

Figure 3: Simple illustration of the transition from bus graph to branch graph.

equilibrium. It is therefore beneficial to use a GNN that can aggregate information from
a large neighborhood around each graph node, while preventing, at the same time, to
over-smooth the node features.

In the models used in this thesis, the aggregation of node features will primarily be done
with the use of ARMA layers. The skip connection in the GCS stacks help to prevent
over-smoothing by allowing the GNN to better model sharp frequencies in the data and
the sharing of weights within each stack allow for many propagation steps without a
massive increase in trainable parameters which could easily lead to overfitting.

To incorporate edge features, a single ECC layer will be used to embed information
from the connecting edges into the nodes. Further aggregation of node features is then
intended to be done using ARMA layers. A GNN comprised only of ECC layers would
utilize both node and edge features, but each ECC layer would bring a substantial number
of parameters and only cover a single propagation step. Also, unlike the node features,
the edge features do not change between stacked ECC layers. Therefore, not much more
should be gained from repeatedly relying on the same edge features for the aggregation,
compared to what is gained from the edge feature information that is embedded into the
node features after the first ECC layer. Hence both of ECC and ARMA are used to build
the core GNN architecture for use on graphs with edge features.

Before and after these core GNN layers, pre- and post-processing layers will be used,
which are fully connected layers that act like the local MLPs described in Section 12. The
intention of the pre-processing layers is to allow the model to map node features into a
more meaningful representation before aggregation starts, and the post-processing layers
will map the aggregated node states into the output space. Such a configuration is aligned
with the study on the architectural design space of GNNs by You et al. (2020), which
showed that pre- and post-processing layers could improve performance when combined
with different aggregation techniques.

Because of the difference in structure between the two graph representations, the GNN
design will also be slightly different. The main difference is that the ECC layer is not
used when dealing with branch graphs, since both branch and bus attributes are included
in the node features, i.e. there are no edge features to process in this case. Illustrations of
the basic GNN structure for use with bus graphs and branch graphs are shown in Figure
4 and 5, respectively.

Page 28 of 58

Part III – Method / MLP configurations

Figure 4: Basic overview of the structure of the GNNs that are applied to bus graphs.

Figure 5: Basic overview of the structure of the GNNs that are applied to branch graphs.

12. MLP configurations

To benchmark the GNNs, comparisons will be made to the performance of basic MLP
models. Each of these models will follow one of two main configurations, where the first
takes in the input features of a single bus and the second takes the features from the entire
grid as input. These two architectures will be referred to as local MLP and global MLP,
respectively. Illustrations of the architecture of both local and global MLPs are given in
Figure 6.

Since a local MLP predicts the ACPF output of a bus based only on the features of that
bus, it is expected that this narrow perspective will not be enough to make accurate
predictions, and it will likely struggle even more if it is trained on grids with differing
topology due to a higher number of unique buses. Therefore, this configuration will only
be used in an experiment involving grids of constant topology. The performance of the
Local MLPs can then give a pin-point of how much underlying information in the grid
that can be modeled from the one-to-one relation between a bus’ features and its ACPF
solution. As input, these models will use the same bus/node features as the bus graphs.

The global MLPs will, on the other hand, use features for all buses and branches as input.
These features will include all of the ones used in the bus graphs, with the exception of the
indicator variables. This omission comes from the fact that each input unit and output
unit in the global MLPs will correspond to a specific bus or branch, so the information in
these indicators would be redundant. To achieve centralized computations that utilize the
entire grid in the global MLP layers, the input features of all buses are concatenated into
a single one-dimensional array. The same is done for the input features of all branches,
and to reduce the number of weight parameters related to the input layer, the resulting
bus and branch arrays are processed by separate perceptron layers, which is illustrated by
the purple units in Figure 6b. The output of these two “pre-processing” layers are then
joined together and fed as input to the hidden layers of the network, given by the orange
units in Figure 6b. At the end, the network outputs the full set of features for either
all buses or branches in the form of a single vector, e.g. all relevant voltage magnitudes

Page 29 of 58

Part III – Method / Training and data structuring

and voltage phase angles are found in this vector. With this setup, the number of input
and output units depend on the grid size, so if the global GNN is meant to be applied to
differently sized grids some form of padding must be used, where the input and output
dimensions matches the largest size the grids are allowed to take.

In general, the MLPs used for the experiments will not be as deep as the GNN counterparts
they are meant to be compared to. This is due to the differences in how much of the
grid is included when computing the output. For the GNNs, an increase in number
of layers or propagation steps means that each graph node gets a larger receptive field
for the computation of the predictions, and thus it makes sense to make them deeper
to encompass a large part of the graph for all nodes. The local MLPs, however, only
consider the features of a single node at a time, so adding more layers does not have the
same impact. And for the global MLPs, a centralized perspective is used already from the
first hidden layer, which means that meaningful hidden features for the entire grid should
be obtainable with only a few layers. For the experiments, the number of hidden units
in the MLPs are chosen such that the amount of trainable parameters is either roughly
the same as or at least not several orders of magnitude larger than the amount for the
corresponding GNN model. The global MLPs will deviate the most from the GNNs in
this regard, since the number of parameters depend on the number of buses/branches.

13. Training and data structuring

All of the models in the experiments will be trained to minimize a supervised loss with gra-
dient descent, where targets (or labels) are provided by MATPOWER’s Newton Raphson
solver. For the experiments involving bus graphs, the targets will be the voltage magni-
tudes of PQ buses and the voltage phase angles of all non-slack buses. In practice, the
GNNs predict values for all buses, due to the localized operations. So to ignore the output
associated with the fixed voltage quantities in the ACPF problem, they are masked out
before computing the loss. This is also done for the local MLPs, while the global MLPs
are set to only output the desired quantities.

For the task involving branch graphs, the targets will instead be the power and current
injections on the branches, which are computed from the bus voltages using Eq. (20)-(25).
Thus for each branch the goal will be to predict the real and imaginary components of
the injections at both the from and to end, which means that eight quantities are to be
predicted per branch. This applies to all branches, so there is no need for a masking
operation for the GNN in this case.

The actual dimensions and structure of the input data vary between the model types.
The MLPs only use 1D vectors as input, and thus the data is fed in batches as 2D ma-
trices where the vectors are placed as rows. For the GNNs it is a bit more complicated.
Tensorflow and Spektral can not do sparse operations for tensors with more than 2 di-
mensions, so to utilize the sparsity of the adjacency matrices, the input must be given
as two-dimensional arrays. To accomplish this, a batch of graphs that are fed to a GNN
is put together in a “disjoint union”, i.e. they are represented by a single graph. For
the node features this is done by first placing the node feature vectors of each graph

Page 30 of 58

Part III – Method / Training and data structuring

(a)

(b)

Figure 6: Examples of the structure of a local MLP (a) and a global MLP (b). In (a), only a single bus’ features
are used as input and output. In (b), features from all buses and branches are used as input, and output
features are computed for either all buses or branches depending on the use case. The number of layer
units and hidden layers shown here are only for illustration purposes and do not accurately reflect the
MLP models used in the experiments.

as rows in a matrix. The resulting matrices for the graphs are then stacked on top of
one another to form a single matrix. The same applies to the edge features, where the
number of rows correspond to the total number of edges for all the graphs combined.
Sparse operations can then be achieved by placing the adjacency matrices (or the nor-
malized counterparts) as blocks in a sparse block diagonal matrix, where the placement
corresponds with the ordering in the node and edge feature matrices. Utilizing sparse op-
erations is naturally more efficient both computation- and memory-wise, and this disjoint
union gives a straightforward way of training GNNs with a dataset containing graphs of
different size. An illustration of the resulting disjoint union is shown in Figure 7.

As for training configuration, all models are trained with the ADAM optimizer using
Tensorflow’s default parameters and the loss is computed as mean squared error (MSE):

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2 (42)

where y are the actual labels and ŷ are the predictions made by the model.

Page 31 of 58

Part III – Method / Training and data structuring

Figure 7: [Based on a figure in the documentation of the Spektral library] Illustration of how the disjoint union
between graphs is constructed. On the left: an adjacency matrix is formed from the graph batch by
placing the individual adjacency matrices as blocks in a sparse block diagonal matrix. On the right:
Node features from each graph are stacked on top of each other, following the same order as in Abatch.

Page 32 of 58

Part IV / Experimental Design

This section presents the design of the experiments, with focus on objective, grid configu-
rations and model architectures, which rely on the methods of Part III. Before presenting
the design for the different experiments, Section 14 will explain how data is acquired.

14. Dataset construction

Similar to most of the GNN approaches mentioned in 7.2, data for the experiments are
acquired by resampling values in reference grids. This thesis will consider the case grids
found in MATPOWER, which are based on either real world power systems or IEEE
systems. Therefore, by focusing on the data on these grids some amount of realism
is ensured. However, by randomly sampling values in the grids, the end result could
end up being unrealistic. To ensure that model instances do not learn from possibly
intractable variants, grids that fail to converge with MATPOWER’s Newton-Raphson
implementation get discarded. Of course, this does not fully ensure realism, but the
grids are at least solvable. The sampling ranges are also somewhat conservative, due to
difficulties acquiring data that satisfied the above requirement when ranges were wider.
The actual sampling procedure goes as follows:

• Active and reactive load values on buses are sampled uniformly in a range going
from 50 to 150 percent of the original values in the reference grid. For example, if
a bus in the reference grid has an active load of 40 MW, the sampling range of this
bus goes from 20 to 60 MW.

• The active power on generators are resampled uniformly from 75 to 125 percent of
the corresponding values in the reference grid. After sampling, a check is performed
to see if the active power on the PV generators exceeds the total active load demand.
If this is true, the slack bus generator will be assigned a negative active power to
achieve system equilibrium, i.e. it will act as a dispatchable load. While having such
a dispatchable load is not necessarily unrealistic, this can happen rather often for
some of the case grids, so in these cases the sampled grids are discarded to avoid
creating some sort of bias in the data.

• The voltage magnitude of the generators are sampled uniformly in a range from 0.9
p.u. to 1.1 p.u.

• Resistance, reactance and charging susceptance values on the branches are resam-
pled uniformly from 90 to 110 percent of the corresponding values in the reference
grid.

For the second experiment, presented in Section 16, perturbations in the topology of a
specific grid will be generated by randomly disconnecting one or two branches before the
above resampling is performed. However, in this selection process, the branches connected
to the slack bus are never disconnected, since this bus is vital for the ACPF solution and

Page 33 of 58

Part IV – Experimental Design / First experiment

should not be isolated from the rest of the system. After disconnecting the branches,
any buses that no longer have a connected path to the slack bus get discarded. Both
ARMA and ECC can work with disconnected graphs and MATPOWER can also be used
on disconnected systems, but additional considerations must be made for each of the
disconnected parts in the grid. For example, each of the separated “islands” need to have
generators that can meet the load consumption of the buses within that island. Keeping
track of aspects such as this and implementing additional consistency checks is out of the
scope of this thesis, and hence the study in the second experiment will be limited to fully
connected grids obtained from perturbations of the topology of a specific system.

15. First experiment

In this first task a GNN model will be trained and tested on resampled variants of two
differently sized reference grids, called case30 and case300 in MATPOWER, where the
names refer to the number of buses each grid has. The goal is to predict the power
flow solution of these grids in terms of voltage magnitude and phase angle at the buses.
Subsequently, the input data will be structured as bus graphs, and GNN instances are
only trained on grids of the same size.

The complete dataset consists of 15 000 samples of both case30 and case300, generated
with the procedure in the previous section. For each case grid, 70% of the samples is used
for training and the rest is for testing, and 20% of the training set is used for validation.

The bullet points below show some of the structural differences between case30 and
case300 that is not directly tied to the difference in number of buses.

Case30 Case300

• Has 6 generators. • Has 69 generators
• Has no transformers on branches and • Has 107 transformers on branches and

subsequently has only one voltage level. 13 different voltage levels.
• Between bus graph nodes there is an • Between bus graph nodes there is an

average shortest path length of 3.20 average shortest path length of 9.90
with a standard deviation of 1.30. with a standard deviation of 3.68.

• The largest shortest path length is 6. • The largest shortest path length is
• All load values are non-negative 24.

• Has some negative load values which
could be power output from inter-
mittent sources such as wind mills or
solar panels.

The aim of this experiment is to test the GNN model on unseen data with the same
topology it is trained on, as well as the performance against an unseen grid with a different
topology. Also, to benchmark the GNN, comparisons are made with i) a localized MLP
that makes predictions for each bus only based on the input features of that bus, ii) a
global MLP model that acts in a centralized way, using at once features from all buses and

Page 34 of 58

Part IV – Experimental Design / Second experiment

branches. In theory, this setting with fixed topology is optimal for a global MLP, since all
buses (and branches) are always assigned to the same input and output processing units
and there is no need for padding.

The GNN architecture consists of two pre-processing layers with respective 16 and 32
hidden units, a single ECC layer with 32 hidden units and a three layered MLP with 8
hidden units in each hidden layer, two ARMA5

2 layers with 32 hidden units each, and two
post-processing layers with 16 units and 2 units, respectively. The use of two GCS stacks
in the ARMA layers should allow the model to leverage different types of relations within
the graphs, and in total, the GNN implements 11 propagation steps on the graph (1 from
ECC and 5 · 2 from ARMA). Also, dropout is applied to the units related to the skip
connections in ARMA, with a dropout rate of 0.5. This should encourage the model to
learn a different set of features in each stack. Leaky ReLU activations are applied after
each layer in the pre-processing stage, at the end of the ECC layer, within the ARMA
stacks, and after the first post-processing layer. The negative slope coefficient α in the
leaky ReLUs is set to 0.3. The last post-processing layer acts as the output layer, and
thus has no activation since this is a regression task where (in theory) the output can take
any real value.

The local MLP model consists of: two hidden layers with 128 units, one hidden layer
with 64 units and an output layer with 2 units. The global MLP model consists of: bus
and branch pre-processing layers with 64 units each, a hidden layer with 64 units and an
output layer where the number of output units match the number of voltage magnitudes
and voltage phase angles which are to be predicted. Leaky ReLU activation with α = 0.3
are placed after all layers except for the last one in both MLP configurations.

Comparisons will also be made with the output of the DCPF approximations, which is
provided by MATPOWER.

An overview of the model architectures is given in Figure 8.

Figure 8: Overview of the model architectures used for the first experiment. Fout is equal to the number of voltage
magnitudes and phase angles that are to be predicted, i.e. Fout = NPQ +Nnon-slack.

16. Second experiment

In the second experiment, the goal will be to train the neural network models to compute
ACPF bus voltage predictions for perturbations of a grid topology obtained by discon-
necting some branches. This experimental setting emulates realistic scenarios where a

Page 35 of 58

Part IV – Experimental Design / Third experiment

power line is disconnected from the grid due to faults or maintenance operations. The
case300 grid is chosen to be the reference for this task due to its moderately large size
and overall complexity, and disconnections and resampling follow the procedure described
in Section 14. The dataset consists of 30 000 samples, the training/testing split is 70/30,
and 20% of the training set is used for validation.

Compared to the architecture in the previous experiment, the GNN model will now have
four ARMA5

2 layers instead of two. The total number of propagation steps on the graph
is thus increased to 21, which is not enough to create a receptive field (i.e., the size of
the graph neighborhood accounted by the GNN layers) that covers the whole grid when
centered on each possible bus, but it is enough to cover most of them. In particular, the
receptive field is more than twice the size of the average shortest path length of 9.90 for
the reference grid. The applied disconnections can increase the shortest path lengths, but
on average they only increase the path length approximately by 0.5%.

As for the MLP models, the local MLP is not included since it is very unlikely that it will
be able to make good inference with a perspective that only cover a single bus at a time
when the underlying topology changes. The global MLP model, on the other hand, will
still be applied and it is given the same architecture as in the previous experiment. Also,
comparisons will again be made with the DCPF approximations from MATPOWER.

An overview of the model architectures is given in Figure 9

Figure 9: Overview of the model architectures used for the second experiment. Fout is equal to the number of
voltage magnitudes and phase angles that are to be predicted, i.e. Fout = NPQ +Nnon-slack.

17. Third experiment

The final task will involve samples of multiple case grids with completely different topol-
ogy, where the goal is to predict the power and current injections on the branches. The
shift in perspective from buses to branches is done due to the more invariant nature of
the branches. When training using grids with widely different topologies, the different set
of PV buses and slack bus could cause problems for a GNN if the bus graphs are used.
Especially for prediction of θ values, which are sensitive to the choice of slack bus, since
the angles are given as offsets to this bus. Representing data as branch graphs should
alleviate this issue, and the power and current injections is perhaps more dependent on
the immediate neighborhood of each branch. Still, some dependence on the voltage level
of the slack bus will remain and its power output isn’t known beforehand, so its relative
location will still be of some importance for each branch.

Page 36 of 58

Part IV – Experimental Design / Third experiment

The data consists of samples based on MATPOWER’s case9, case30, case39 and case118.
Ten thousand samples are made for each grid (no disconnections, only resampled values).
Each grid case sample set is split into training, validation and testing sets following a
56/14/30 percent division. The respective sets for each case are then combined, giving
complete train/valid/testing sets with equal proportions of each case grid. Also, a similar
dataset of ten thousand instances of case300 is made, but this one is meant for testing
purposes only.

As input, the applied GNN model now uses the aforementioned branch graphs of the grids,
and as output it is meant to give the real and imaginary power and current injections at
both ends of each branch. Thus the GNN model is given mostly the same architecture
as in the second experiment, where the only difference is that the ECC layer is removed
since the branch graphs do not have edge features and the final FC layer has 8 output
units instead of 2.

Also the global MLP model mostly retains its structure from the previous experiment.
The only difference here is related to the number of input and output units, which must
be padded. It is, in this case, technically still feasible to have units corresponding to
specific buses or branches, where units also corresponds to specific grids. However, this
would yield an enormous amount of units, and the purpose of this experiment is to see if
a neural network can generalize to grids with multiple topologies without relying on such
one-to-one relationships between processing units and buses/branches. Instead, the input
and output units are partitioned into padded segments, each corresponding to a specific
feature. So, for instance, the bus part of the input layer has a segment of units reserved for
active load values at buses and another for active power injections of connected generators.
Similarly the branch part of the input layer has segments for each of the different branch
input features and the output layer has a segment for each of the eight branch output
features. The size of each padded segment is equal to whatever is needed to fit any of
the grid samples. To avoid having more units than necessary for this experiment, the
dimensions of case118 is used to find the maximum number of units needed, since this
grid has the highest number of load buses, generators and branches. When a smaller grid
is given, unused parts of the segments are filled with zeros. During training, a masking
operation is applied to the output units before computing the loss to prevent the inclusion
of predictions for more branches than the grid has.

Although only small changes are made compared to the previous experiment, an overview
of the model architectures is given in Figure 10.

The power and current injections in MW/MVA and kA used here have a much wider
range than the voltage values used in the two previous experiments. In addition, the
distributions for the inputs and branch labels differ in both shape and width between
the different case grids. Thus z-score normalization (subtract mean and scale to unit
variance) is applied to both input features and output labels, where the mean and standard
deviation are computed across the training samples from all of the grids. This is a common
operation in Machine Learning that encourages weights to be smaller (in absolute value)
and balances out the rate at which weights learn, which can speed up convergence when
training models (LeCun, Bottou, Orr, & Müller, 1998).

Page 37 of 58

Part IV – Experimental Design / Third experiment

Figure 10: Overview of the model architectures used for the third experiment. Here, Fout = 8Nbr.

Page 38 of 58

Part V / Results and Discussion

In this section the experimental results will be presented in order, along with a discussion
for each experiment.

18. First Experiment

Ten randomly initialized instances of the GNN, local MLP and the global MLP model
from Section 15 were trained for 100 epochs with a learning rate of 0.001 and a batch size
of 16. For each instance, the model weights that yielded the lowest validation MSE loss
during training were restored upon completion.

Besides the MSE defined in (42), which is also used as the loss to train the models, the
mean absolute percentage error (MAPE) will also be considered as an additional metric
to compare the performance of the models. The MAPE is defined as

MAPE(y, ŷ) =
100

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ , (43)

where yi and ŷi are the true value and prediction of sample i, respectively.

Table 3 and 4 compare the performance of the different model types in terms of the
total MSE, total MAPE, as well as the separate MAPE values for the predicted voltage
magnitudes and voltage phase angles. The names case30 GNN and case300 GNN in the
tables refer to which grid topology the GNN instances have been trained on. The MLPs
have also been trained only on a single grid topology and the performance is reported in
Table 3 (case30) and Table 4 (case300).

Table 3: Performance achieved on the test set of case30. Values are given as mean plus/minus standard deviation.

Model/Metric Total MSE Total MAPE MAPE |v| MAPE θ
DCPF 0.001275 75.25 3.98 134.23

Local MLP 0.001287 ± 0.000013 167.02 ± 15.79 3.41 ± 0.01 302.43 ± 28.84

Global MLP 0.000062 ± 0.000022 29.31 ± 6.81 0.65 ± 0.21 53.04 ± 12.45

Case30 GNN 0.000013± 0.000001 15.32± 1.66 0.25± 0.02 27.79± 3.02

Case300 GNN 0.176011 ± 0.058714 2519.50 ± 528.99 4.40 ± 0.97 4600.96 ± 967.15

Before going over the results, it should be noted that in terms of loss progression there
are some differences among the models. The local MLP converges very quickly with the
number of epochs, i.e. the loss settles quite early. The MSE losses of the global MLP,
on the other hand, keep descending throughout all of the training epochs, although the
descent is very slow at the end. For the GNNs, the convergence differ between the training
datasets. When training on case30 samples, the GNN more or less fully converges towards
the end of the training interval. For case300, on the other hand, the descent is noticeably

Page 39 of 58

Part V – Results and Discussion / First Experiment

Table 4: Performance achieved on the test set of case300. Values are given as mean plus/minus standard deviation.

Model/Metric Total MSE Total MAPE MAPE |v| MAPE θ
DCPF 0.238885 142.13 5.65 247.57

Local MLP 0.075323 ± 0.000834 133.67 ± 3.93 4.32 ± 0.05 233.61 ± 6.99

Global MLP 0.016763± 0.004707 33.71± 10.02 4.12 ± 0.27 56.57± 17.66

Case30 GNN 2.9326 ± 1.01207 387.41 ± 96.30 138.56 ± 44.02 579.66 ± 171.09

Case300 GNN 0.038304 ± 0.000461 71.33 ± 2.86 3.62± 0.04 123.64 ± 5.06

slower overall, and the model never fully converge during the 100 training epochs. The
loss progression for the global MLP and the GNN with the case300 set is shown in Figure
11. This last difference regarding the loss descent of the GNN could be due to the larger
size of case300, as well as an increase in the complexity of the topology, compared to
case30.

(a)

(b)

Figure 11: Plot of the loss progression for case300 in the first experiment, starting from the 10th epoch. (a): Global
MLP and (b): GNN. The darker lines show the sample median of the 10 model instances, while the
lighter colored bands cover the range between the 25% and the 75% quantiles.

Page 40 of 58

Part V – Results and Discussion / First Experiment

As for the performance metrics, Table 3 shows clear differences between the models for
the case30 testing dataset. Firstly, if we exclude the case300 GNN, the local MLP has the
highest mean value in all metrics. Since the local MLP has access only to the information
of a single bus to compute its output, the best it can do is to compute an output close
to the mean of the training set. As an exception, the local MLP manages to outperform
the DCPF approximation in terms of MAPE for voltage magnitude. This is likely due to
the fact that the voltage magnitude stays mostly within the range 0.90 to 1.1 p.u. in the
data. So while DCPF always gives 1 p.u., the local MLP can achieve better performance
by staying near the average of the training data. The voltage phase angles in radians, on
the other hand, span a much wider range, so the prediction for each bus must be more
distinct to achieve a low MAPE score. From the sample standard deviation, it seems that
there is a chance that a trained local MLP instance can achieve a better total MSE score
than the DCPF, but not to any substantial degree.

As opposed to the local MLP, the global MLP manages fairly well in all metrics, and
achieves an error well below the DCPF approximation with a performance uplift of about
95% in terms of total MSE. The contrast between the local and global MLP show the
advantage of capturing the dependence between buses and branches even if the topology
is always the same.

The case30 GNN also achieves good comparative performance according to each metric,
even surpassing the global MLP. Interestingly, even if this model only use localized op-
erations, it manages to capture the dependencies in the global structure in a better way
than the global MLP.

However, the case300 GNN in Table 3, which is a GNN trained on case300 and then
applied to case30, performs markedly worse than any of the other models and the DCPF.
This indicates that the features learned from the case300 grids do not translate well to the
case30 grids. In general, to achieve good performance in a transfer-learning application
such as this one, it is very important that the new “unseen” data comes from a similar
distribution as the training data. This is probably not the case here, since case30 and
case300 are very different.

Results obtained on the case300 testing dataset are given in Table 4 and the trend here
is fairly similar to that of case30. Here, the local MLP outperforms the DCPF with
respect to all metrics, which could indicate that the linear DCPF approximation leads
to higher inaccuracy for larger systems. The global MLP is again a clear improvement
from the local one, but does not introduce the same level of improvement in terms of
voltage magnitude MAPE compared to the case30 grid results. The case300 GNN only
surpasses the global MLP in terms of voltage magnitude MAPE, and for the other metrics
the global MLP achieves roughly 50% better performance. Once again, the GNN model
trained on the other grid topology does worse than all other ANN models and the DCPF.

Some of the performance difference of the GNN model between the case30 and case300
when testing on the same grid topology used for training may be due to the different
“coverage” of the grids. For the case30 samples, the GNN model manages to create a
receptive field that reaches each part of the graph from each node, since the total number
of propagation steps exceed the largest shortest path length of 6. In fact, for several nodes
the receptive field will span the entire graph several times, which should be more than

Page 41 of 58

Part V – Results and Discussion / Second experiment

enough to capture all underlying dependencies between buses. For the case300 samples,
the GNN model has enough propagation steps to cover the average shortest length, but
for many buses it does not manage to reach every part of the graph.

As stated before, all buses depend on each other in the ACPF solution, so if e.g. the load
value of one bus changes, this change affects the solution of all buses. Thus, compared
to other types of applications on graphs, it is crucial that GNNs have large receptive
fields to make the best possible inference. Also, since the phase angle is expressed as
differences from the slack bus angle, it is likely very vital that the graph nodes receive
(indirect) information from this bus to yield accurate predictions. This might be a major
reason as to why the GNN model falls behind the global MLP in terms of the phase angle
predictions for the case300 samples. In addition, the slack bus will also affect all voltage
magnitudes through its role as a power slack, but this quantity also heavily depend on
the other generators that are spread throughout the grid. Thus, for voltage magnitude,
a decent enough accuracy can likely be achieved through exchanges of information from
the more immediate surrounding. This might explain why the case300 GNN achieves the
lowest MAPE value for voltage magnitude in Table 4.

As seen in Figure 11, the GNN did not fully converge when training with the case300
samples and could hence see some improvement if trained longer. However, this somewhat
applies to the global MLP model as well, and it should also be noted that, compared to
the GNN model, each epoch took considerably less time when training the global MLP,
especially on a GPU, as the fewer and larger matrix multiplications in the MLP model
are more suited for paralleled computations.

Moving back to the transfer learning aspect of the experiment, the most interesting result
may be the mismatch in the metrics when comparing performance of GNNs trained on a
different topology than the ones in the testing set. By looking at the total MSE only, one
might get the impression that the case300 GNN learns features that better generalize to
the case30 grid than vice versa. On the other hand, the total MAPE suggests that the
situation is the opposite. This is likely due to the difference in magnitude for values of
|v| and θ, since |v| is on average larger by an order or two. Therefore, when the case30
GNN does badly in terms of |v| on case300 grids, it has a much more negative impact
on MSE than when the case300 GNN does badly in terms of θ on the case30 grids. The
difference in voltage magnitude MAPE for these cross-GNN tests is, however, difficult to
explain. It could be that the GNNs trained on case300 encounter inputs that take values
in wider range and, thus, manage better to give predictions closer to the average |v|-value
when faced with case30 grids. Finally, the large difference in terms of voltage phase angle
MAPE could be due to weaknesses of the metric itself. The angles of case30 are, on
average, roughly ten times smaller than that of case300 and MAPE has a tendency to
“blow up” for small values since even relatively minor absolute differences could result in
large percentage deviations.

Overall, the failure to generalize to the other grid in these transfer learning tests is likely
due to differences in the distributions for input features and output labels. Underlying
differences tied to grid attributes such as voltage levels, which are not explicitly expressed
in the input features of the models, may also contribute.

Page 42 of 58

Part V – Results and Discussion / Second experiment

19. Second experiment

Ten instances of the global MLP model and the GNN model detailed in Section 16 were
trained for 250 epochs with a learning rate of 0.001 and a batch size of 16. As in the
previous experiment, the model weights that yielded the lowest validation loss during
training were recovered upon completion.

The performance metric values obtained on the testing set are given in Table 5. At first
glance, the metric values are not too different from the ones in Table 4, which is based on
samples based on the same reference grid, case300. This suggests that the added branch
disconnections may not have caused that much more complexity, compared to the setup
of the previous experiment. However, the DCPF experiences a drop in performance that
suggests some increase in complexity, but this likely varies depending on which branches
were disconnected. The global MLP, on the other hand, achieves improved performance
compared to the previous experiment. The same also goes for the GNN model, which
falls shortly behind the global MLP.

Table 5: Performance against the testing set of the second experiment. Values are given as mean plus/minus
standard deviation.

Model/Metric Total MSE Total MAPE MAPE |v| MAPE θ
DCPF 0.2454283 165.14 5.70 288.34

Global MLP 0.014861± 0.002824 32.23± 5.39 3.90 ± 0.19 54.12± 9.53

GNN 0.027452 ± 0.000706 59.04 ± 3.66 3.49± 0.03 101.96 ± 6.49

The loss progression of the two models is shown in Figure 12. In terms of training
convergence, the loss of the global MLP seems to almost fully settle within the 250
training epochs and manage to get below that of the previous experiment. Curiously,
there is not the same improvement in the progression of the GNN loss. Instead, the GNN
seems to be on the brink of overfitting, since roughly after 100 epochs the training loss
continues a steady descent while validation slows down and almost reaches a complete
halt at the end of the 250 epochs.

The improvement in the metrics and loss progression for the global MLP is probably
mostly due to the doubled size of the train set and the higher number of training epochs.
These two things is likely also why the GNN loss improves, in addition to the increase in
propagation steps from having two additional ARMA layers. The difference in training
progression between the global MLP and the GNN is, however, harder to explain. Both
models are trained from the same data following the same training/validation split, so
judging by the global MLP loss, there does not seem to be a bias between the training
and validation set. Hence, the behavior of the GNN must be caused by something else.

It is also doubtful that the added disconnections is the cause, since the increasing gap
between validation and training loss should then have manifested in both models. If
anything, the disconnections could have slightly aided the generalization. For instance,
in the global MLP model, each bus and branch has corresponding processing units in the
input layer, so when branches (and possibly buses) are disconnected, these units receive

Page 43 of 58

Part V – Results and Discussion / Second experiment

(a)

(b)

Figure 12: Plot of the loss progression in the second experiment, starting from the 10th epoch. (a): Global MLP
and (b): GNN. The darker lines show the sample median of the 10 model instances, while the lighter
colored bands cover the range between the 25% and the 75% quantiles.

zeros as input. This process is sort of similar to a dropout procedure (Srivastava et al.,
2014), where the model in this case should learn to not fully rely on all branches and
buses being present when performing the global computations, which could translate into
a higher generalization capability when faced with new configurations of the topology.
The same should also somewhat apply to the GNN, as the disconnections should lead
to more diverse neighborhood configurations, which in turn should encourage the model
to learn more versatile weights for aggregation on nodes. Thus, an extended study with
different reference topologies is probably needed to reveal the reason behind the overfitting
trend of the GNN.

The maintained success of the global MLP is because all of the configurations caused by
disconnections involve the same buses and branches. If instead additions of one or two new
buses and/or branches are made, the global MLP would likely struggle, even if padded
since it would be unfeasible to equip the model with input units that correspond to any
conceivable expanded topology. One could alternatively add optional input and output
units that do not correspond to specific configurations but rather to some arbitrary extra

Page 44 of 58

Part V – Results and Discussion / Third experiment

buses or branches. Still, the input units would then no longer be associated with the buses
and branches of a single fixed topology, so the model would not be as powerful anymore.
It might also be that if more disconnections are made, the permutations of which buses
and branches remain become so high that the GNN model instead performs better, since
it is better equipped to learn features that are independent of the global structure.

The performance metrics displayed in the Tables 3, 4 and 5 are good for comparing the
performance between models, but do not reveal whether there is a substantial difference
in the error obtained at each bus. To perform such an analysis, Figure 13 shows the
distribution of the nodal MSE averaged over the 10 trained GNN instances. The plot
shows error measures only for the buses the model instances have been trained to predict,
where the MSE of buses that don’t fall into this group is set to zero. To highlight the
different bus types, the PV buses are marked with a yellow outline and the slack bus is
given a red outline.

From the MSE graph plot in Figure 13, it seems that the MSE values for voltage magnitude
is somewhat more uniform than for voltage phase angle. Again, it should be noted that
the value range for the voltage magnitude |v| labels is a lot narrower than for the phase
angle θ. So, the GNN model likely struggles more with lowering the overall error for the
θ predictions. In general, it seems that the MSE increases the further away one goes from
the slack bus, but this trend seems stronger for θ than for |v|. This is visualized in Figure
14, which shows the average MSE as a function of the shortest path length from the slack
bus.

In addition to the path length from the slack bus, the amount of variation in the magnitude
of the labels could explain why the MSE varies among the buses. Figure 15 shows graph
plots of the measured standard deviation for the output labels, and there seems to be a
strong correlation between these plots and the ones in Figure 13.

To analyze whether the disconnections also contribute to the MSE differences, Figure 16
shows the number of times each bus is disconnected in the complete dataset. Here, there
is some correlation to the MSE values of voltage magnitude in Figure 13a. However, there
are some regions that do not match, for instance, a chain of nodes in the lower part of
the grid are disconnected fairly often but have relatively low MSE values in Fig. 13a.
Hence there is reason to believe that the disconnections have not negatively affected the
predictive power of the GNN.

20. Third experiment

Ten instances of the global MLP model and the GNN model given in Section 17 were
trained on the mixed dataset with resampled variations of case9, case30, case39 and
case118. The training parameters were the same as for the previous experiments, with
the exception of batch size which was increased to 64 to speed up training with this larger
dataset. Again, the model weights that yielded the lowest validation loss were restored
after training to measure the performance on the test set.

Page 45 of 58

Part V – Results and Discussion / Third experiment

(a)

(b)

Figure 13: Graph plots for the GNN performance showing the node/bus distribution of MSE values for (a): voltage
magnitude and (b): voltage phase angle. In addition, PV buses are marked with a yellow outline and
the slack bus with a red outline.

Page 46 of 58

Part V – Results and Discussion / Third experiment

(a)

(b)

Figure 14: Average (nodal) MSE values as functions of the shortest path length from the slack bus. (a): MSE
values for voltage magnitude and (b): MSE values for voltage phase angle.

Table 6 lists the MSE values for the branch predictions in the original (unnormalized)
scale. Unlike in the second experiment, the GNN now outperforms the global MLP in
terms of MSE. In fact, the global MLP is even outmatched by the DCPF approximation
which only makes predictions for active injections.

Plots of the loss progression for the two ANN models are given in Figure 17. This time, the
global MLP instances start to overfit after roughly the 25th epoch, and the GNN instances
maintain a steady descent for both training and validation loss during the entire training
interval.

The drop in performance for the global MLP is likely due to the difference in the problem
setting, since the MLP now does not have processing units that correspond to a specific
topology. Instead, the model tries to find a global set of operations for widely different
topologies using padded input and output layers where the units are only feature-specific.

Page 47 of 58

Part V – Results and Discussion / Third experiment

(a)

(b)

Figure 15: Graph plots showing the nodal sample standard deviation for the output labels in the complete dataset.
(a): voltage magnitude and (b) voltage phase angle.

Page 48 of 58

Part V – Results and Discussion / Third experiment

Figure 16: Graph plot showing the number of times each bus is disconnected in the complete dataset.

Table 6: MSE values for the predictions of the testing dataset given as mean ± standard deviation. The metrics
are computed in the original scale where power is given in MW/MVA and current is in kA.

Data/Model DCPF Global MLP GNN
case9 262.13 2617.71± 1001.89 52.03± 5.43
case30 167.30 3309.75± 440.94 13.30± 1.25
case39 6001.99 13461.70± 4614.44 272.56± 23.02
case118 4174.21 7261.94± 963.00 100.67± 6.84
Total 3764.94 7565.36± 1017.39 114.46± 6.68

This makes it much more difficult to capture dependencies between buses and branches,
and as seen in Figure 17a, the model starts to overfit quite quickly.

For both the ANN models and the DCPF, the magnitude order of MSE for the different
grid topologies is the same. The most interesting result may be that the MSE for case39
is the highest in all cases, instead of case118 which is larger and possibly has a more
complex topology. To explain this result, Figure 18 and 19 show histograms for the
normalized input features and output labels for the different case grids (including case300).
The histograms are computed from arrays where all of the different features have been
concatenated, and the input features include both bus and branch quantities. These plots
give a rough idea of the input and output distributions of the different case grids. The
greater width of the case39 histograms might explain the higher MSE achieved on this
topology. In fact, the width of the label histograms matches well with the differences in
magnitude of the MSE.

Overall, the results show that a GNN using localized operations is more suitable than
an MLP for predicting the ACPF solutions on branches for grids with topologies that
differ more than just slight variations of a given topology, as in the second experiment.
However, in a practical setting one might want to be able to train on one set of grids and
then deploy the model on a new grid with a previously unseen topology. Table 7 show

Page 49 of 58

Part V – Results and Discussion / Third experiment

(a)

(b)

Figure 17: Plot of the loss progression in the third experiment, starting from the 10th epoch. (a): Global MLP
and (b): GNN. The darker lines show the sample median of the 10 model instances, while the lighter
colored bands cover the range between the 25% and the 75% quantiles. MSE values are computed from
the normalized labels.

the MSE values for the predictions of the case300 test set, which is a grid topology that
the GNN model instances have not encountered during training. Predictions were not
computed for the global MLP, since the case300 grid does not fit inside the input layer.
The min and max MSE values are given for the GNN to showcase just how different the
errors are for the model instances. Even the smallest value is considerable larger than the
DCPF MSE, and the large span from smallest to largest suggest that the GNN model in
essence does little more than guess-work in its predictions. Going back to Figure 18 and
19, the distribution of values does not seem that different for the case300 compared to the
grids that the model has been trained on. The incapability to generalize to this unseen
case grid may therefore instead be tied to the topology and density of components such
as transformers and shunt elements, which are not accounted for as input features.

Page 50 of 58

Part V – Results and Discussion / Third experiment

Table 7: MSE values for the predictions of the unseen case300 dataset. The metrics are computed in the original
scale for power and current, and minimum and maximum MSE values for the GNN instances are displayed
instead of mean and standard deviation.

DCPF GNN
6897.71 min: 38514.19, max: 581948.13

Figure 18: Histograms of the input features present in the training dataset. The features include both bus and
branch quantities. The histograms for each case grid is computed by concatenating all the relevant
features from all corresponding training samples into a single vector.

Page 51 of 58

Part V – Results and Discussion / Third experiment

Figure 19: Histograms of the output labels present in the training dataset. The features include the aforementioned
eight branch power and current injection values. The histograms for each case grid is computed by
concatenating all the relevant features from all corresponding training samples into a single vector.

Page 52 of 58

Part VI / Conclusions

21. Conclusive remarks for the experiments and
possible improvements

As a whole, the experimental results show that in tasks involving either a grid with
fixed topolopy or grids with limited permutations of a set topology, a global MLP might
be more suitable for solving the ACPF problem than a GNN model such as the ones
developed here. If the topology differs more, a GNN seems more suitable, as the usage
of local operations allow these models to better learn features that are independent from
the global structure and thus better generalize to different grid topologies. Still, the GNN
model used in the third experiment was shown to not be very successful when faced with
the larger and unseen case300 grid.

Some of the trouble with generalizing to new grid topologies may stem from weaknesses
in how input data is formed. In all of the experiments, system quantities such as active
power injections and reactive load have been expressed in MW or MVA, while quantities
such as voltage magnitude and branch resistance have been expressed in a per unit (p.u.)
measure. For each grid, these p.u. measures are based on the base apparent power value
and several base voltage levels. Thus even within the same grid, 1 p.u. voltage magnitude
or resistance represents different amounts of volt or ohms in different parts of the grid,
since these per unit values are computed from different base voltages. The potential
problem with this is that GNNs work locally and applies the same set of operations on
all graph nodes, and the models used here are not sufficiently equipped to handle such
categorical differences. In case30, there is only one voltage level, which might be a part
of the reason why the GNN model actually achieved better performance than the global
MLP for this grid in the first experiment. The branch resistance, reactance and charging
susceptance p.u. amounts also depend on the base apparent power value, but for all the
grids used here this base amount was 100 MVA, so this base quantity did probably not
contribute to the issues with generalizing to new unseen case grids.

Another potential drawback with the used approach is that the input features of the
models only consisted of quantities that were resampled (with the exception of the slack
bus and branch direction indicators). Since transformers on the branches are the cause of
the different voltage levels, it could be beneficial to include the tap ratio value τ and the
phase shift angle θshift as additional branch features. These values would be the same for
all samples of the same grid, but their location in the grid is directly tied to the change
in voltage levels and thus in the interpretation of the per unit basis. Since the GNNs
work locally, these values could help in making distinctive aggregation computations for
different kinds of neighborhoods in the grid, which in turn could help the generalization
to different topologies. For similar reasons, other quantities that are not resampled such
as shunt loads on buses, should maybe also be included in some way. For the global MLPs
with procession units that correspond to a specific topology, the inclusion of values from
these extra components would probably not lead to significant improvements, since these
MLPs work in a centralized setting. Any information these transformers and shunts hold

Page 53 of 58

Part VI – Conclusions / Purely data driven versus partly equation based

is therefore indirectly leveraged when modeling the dependencies between all of the buses
and branches.

It might also be beneficial to express either all or none of the quantities in p.u. The
reason for this is that with the mix of units used for this thesis, further problems could
arise if grids with different base MVA are considered, as this affects the p.u. values of
resistance, reactance and charging susceptance. Also, the initial idea for the third exper-
iment was to train the models with more than just the four topologies, but some of the
other MATPOWER grids such as case14 and case57 lacked base voltage values, which
made it impossible to compute the branch currents in kA. Thus, it might be better to
convert all quantities to p.u., including power and current. In this way, one does not need
to explicitly include the base MVA and base kV values into the input features, and the
values found in different grids would be constrained to more similar value distributions,
which could greatly help the generalization capability. It is, however, likely that this
would only be effective for the GNNs if the attributes of transformers are included in the
input features, due to their connection to the different voltage levels.

22. Purely data driven versus partly equation based

Of the current GNN approaches to the ACPF problem found in literature, the so-called
Graph Neural Solver (GNS) of Donon et al. (2020) is perhaps the one shown to achieve the
highest level of generalization to unseen grid topologies, especially if trained on a larger
grid. As described in Section 7.2, this GNS model is unsupervised and learns to directly
minimize the violation to Kirchhoff’s law through physical equations. These physical
equations involve global operations, which might give this model a more complete vision
in how the magnitude of each of the system quantities matter for finding the solution, at
least compared to fully localized and purely data-driven approaches, such as the one used
in this thesis.

The principal drawback with the GNS model is its complexity and the fact that it is
specifically tuned to the ACPF problem and the way MATPOWER handles grid modeling.
On the other hand, purely data driven and supervised approaches are more general and
can more easily be tuned to solve different tasks. For instance, a supervised bus graph
GNN could easily be converted to a task where the goal is to predict the power output
on generators for an optimal power flow problem. The only things needed to change are:
i) the output layer such that predictions are only made for generator buses and ii) to
provide labels from e.g. an IPOPT solver during training. On the other hand, one of the
main drawbacks of the purely data driven models is the need for labels, which could be
computationally expensive to acquire. Also, these models likely need to train on a wider
set of topologies to be able to generalize to unseen ones.

Aside from these differences, there is one key aspect both the GNS and the supervised
and fully localized GNN models share: a reliance on propagation steps to diffuse the
information through message passing. As highlighted several times in this thesis, all buses
and branches depend on each other in the ACPF solution. Therefore, the models ideally
should be able to aggregate information from the entire grid when they are processing

Page 54 of 58

Part VI – Conclusions / Future Work

every specific node. As the models grow deeper to achieve this for larger grids, the
training and inference time will increase and gradient problems could arise during training.
Naturally, the necessary number of propagation steps does not grow linearly with the
number of buses, but if the grids have more chain-like structures rather than radial ones
it could become quite large.

23. Future Work

There are different options to further investigate the applicability of GNNs for the power
flow problem. A natural extension of the work in this thesis would be to investigate
whether the generalizability of a fully localized and supervised GNN can be improved by
the inclusion of: a training dataset with a larger number of topologies, a full conversion
to the p.u. basis, and input features representing transformers and shunt elements.

Another possible extension of the second experiment would be to see if by increasing
the number of disconnections there might eventually be a turning point where a GNN
surpasses the performance of a global MLP.

It would also be interesting to see if a GNN could be used to initialize a Newton-Raphson
solver. If the GNN gives predictions that are fairly close to the solution but not fully
satisfying in terms of accuracy, the total inference time of applying NR after a GNN
might be lower than if NR is initialized randomly. Naturally, this is under the assumption
that the GNN is able to give predictions in a reasonable time. Of course, if several grids
are fed simultaneously through a disjoint union, as done in this thesis, GNN predictions
can be made for many grids at a time, which should cut down the total inference time.
In an ideal scenario, this procedure could also improve the overall convergence of NR, as
long as the GNN does not mimic NR too closely.

Page 55 of 58

Part VII / Appendix

A. DCPF formulation and solution

In the DCPF formulation, all reactive power flows of the power system are ignored, which
means that Qi on the buses is neglected. In addition, MATPOWER includes the following
assumptions:

• All voltage magnitudes are assumed to be constant and equal to 1.0 p.u. (one per
unit).

• Branches are considered to be lossless, and as a consequence branch resistances rs
and charging capacitances bc are negligible:

ys =
1

rs + jxs
≈ 1

jxs
, bc ≈ 0 (44)

• Voltage angle differences across branches are assumed to be small enough such that

sin(θf − θt − θshift) ≈ θf − θt − θshift (45)

This also applies to the differences between buses.

From the second of the above assumptions, the branch admittance matrix in (2) approx-
imates to

Ybr ≈
1

jxs

[
1
τ2

− 1
τe−jθshift

− 1
τe−jθshift

1

]
(46)

This matrix, combined with the first and third assumption, yield the following approxi-
mation of the real power flow of each branch

pf = <{sf} ≈
1

xsτ
(θf − θt − θshift) (47)

And due to the lossless assumption we have that pt = −pf .

The relationship between active power flows and voltage angles for each branch is now
given by

[
pf
pt

]
= Bbr

[
θf
θt

]
+ pshift (48)

Page 57 of 58

Part VII – Appendix / DCPF formulation and solution

where

Bbr =
1

xsτ

[
1 −1
−1 1

]
and pshift =

θshift
xsτ

[
−1
1

]
.

For a shunt element the amount of consumed complex power is

ssh = v(yshv)∗ ≈ gsh − jbsh, (49)

which follows from the first assumption. Consequently, the amount of active power con-
sumed is psh ≈ gsh.

Next, let bff be an Nl × 1 vector where the k-th element is bk, where

bk =
1

xs,k τk
(50)

Also, let pf,shift be an Nl × 1 vector where the k-th element is equal to −θshift,kbk. The
relationship between all nodal active power injections and voltage angles can now be
expressed in matrix form as

pbus = Bbusθ + pbus,shift, (51)

where

pbus,shift = (Cf − Ct)Tpf,shift (52)

Bbus = (Cf − Ct)Tdiag(bff)(Cf − Ct) (53)

Here, the Nl×Nl matrix Bbus is analogous to the nodal admittance matrix Ybus in ACPF.
Finally, the active power balance equations for the system can be compactly expressed as

Bbusθ + pbus,shift + gsh − pnet = 0, (54)

where all vectors are Nb×1 and the k-th element is equal to the value of the corresponding
bus. The vector pnet contain the net active power injections given by (15). The unknowns
in θ can now be solved analytically since all of the remaining balance equations are linear.

Other formulations of the DC power flow problem include additional assumptions that
further simplify the problem, such as ignoring tap settings on branch transformers (Seifi &
Sepasian, 2011; Zhu, 2015). Many of the power system formulations found in the literature
also do not include shunt elements on buses, which further simplifies the derivation.

Page 58 of 58

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved
from https://www.tensorflow.org/ (Software available from tensorflow.org)

Alpaydin, E. (2014). Introduction to machine learning. MIT Press.
Andersson, G. (2008). Modelling and analysis of electric power systems. EEH-Power

Systems Laboratory, Swiss Federal Institute of Technology (ETH), Zürich, Switzer-
land .

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances
in neural information processing systems (pp. 1993–2001).

Bacciu, D., Errica, F., Micheli, A., & Podda, M. (2020). A gentle introduction to deep
learning for graphs. Neural Networks .

Bianchi, F. M., Grattarola, D., Livi, L., & Alippi, C. (2021). Graph neural networks with
convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Bolz, V., Rueß, J., & Zell, A. (2019). Power flow approximation based on graph convo-
lutional networks. In 2019 18th ieee international conference on machine learning
and applications (icmla) (pp. 1679–1686).

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the aaai conference on artificial intelligence (Vol. 34, pp. 3438–3445).

Chow, J. H., & Sanchez-Gasca, J. J. (2020). Power system modeling, computation, and
control. John Wiley & Sons.

Conejo, A. J., & Baringo, L. (2018). Power system operations. Springer.
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks

on graphs with fast localized spectral filtering. In Advances in neural information
processing systems (pp. 3844–3852).

Donnot, B., Guyon, I., Schoenauer, M., Marot, A., & Panciatici, P. (2018). Fast power
system security analysis with guided dropout. arXiv preprint arXiv:1801.09870 .

Donon, B., Clément, R., Donnot, B., Marot, A., Guyon, I., & Schoenauer, M. (2020).
Neural networks for power flow: Graph neural solver. Electric Power Systems Re-
search, 189 , 106547.

Donon, B., Donnot, B., Guyon, I., & Marot, A. (2019). Graph neural solver for power
systems. In 2019 international joint conference on neural networks (ijcnn) (pp.
1–8).

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems (pp.
2224–2232).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In Proceedings of the 34th international
conference on machine learning (icml) (pp. 1263–1272).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
(http://www.deeplearningbook.org)

Grattarola, D., & Alippi, C. (2020). Graph neural networks in tensorflow and keras with
spektral. arXiv preprint arXiv:2006.12138 .

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in neural information processing systems (pp. 1024–1034).

Harary, F., & Norman, R. Z. (1960). Some properties of line digraphs. Rendiconti del
Circolo Matematico di Palermo, 9 (2), 161–168.

Idema, R., Lahaye, D. J., et al. (2014). Computational methods in power system analysis.
Springer.

Kim, C., Kim, K., Balaprakash, P., & Anitescu, M. (2019). Graph convolutional neural
networks for optimal load shedding under line contingency. In 2019 ieee power &
energy society general meeting (pesgm) (pp. 1–5).

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convo-
lutional networks. In Proceedings of the 5th international conference on learning
representations (iclr).

LeCun, Y., Bottou, L., Orr, G., & Müller, K. (1998). Efficient backprop. Neural Networks:
Tricks of the Trade, 546–546.

Li, Q., Han, Z., & Wu, X.-M. (2018). Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the aaai conference on artificial
intelligence (Vol. 32).

Murty, P. (2017). Power systems analysis. Butterworth-Heinemann.
Owerko, D., Gama, F., & Ribeiro, A. (2020). Optimal power flow using graph neural

networks. In Icassp 2020-2020 ieee international conference on acoustics, speech
and signal processing (icassp) (pp. 5930–5934).

Paucar, V. L., & Rider, M. J. (2002). Artificial neural networks for solving the power
flow problem in electric power systems. Electric Power Systems Research, 62 (2),
139–144.

Salam, M. A. (2020). Fundamentals of electrical power systems analysis. Springer.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The

graph neural network model. IEEE Transactions on Neural Networks , 20 (1), 61–80.
Seifi, H., & Sepasian, M. S. (2011). Electric power system planning: Issues, algorithms

and solutions. Springer-Verlag Berlin Heidelberg.
Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters in convolu-

tional neural networks on graphs. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 3693–3702).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15 (1), 1929–1958.

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming , 106 (1), 25.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018).
Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th acm sigkdd international conference on knowledge discovery &
data mining (pp. 974–983).

You, J., Ying, Z., & Leskovec, J. (2020). Design space for graph neural networks. Advances
in Neural Information Processing Systems , 33 .

Zhao, L., & Akoglu, L. (2019). Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223 .

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., . . . Sun, M. (2018). Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434 .

Zhu, J. (2015). Optimization of power system operation. John Wiley & Sons.
Zimmerman, R. D., & Murillo-Sánchez, C. E. (2020). Matpower user’s manual, version

7.1. Retrieved from https://matpower.org/docs/MATPOWER-manual-7.1.pdf

Zimmerman, R. D., Murillo-Sánchez, C. E., & Thomas, R. J. (2010). Matpower: Steady-
state operations, planning, and analysis tools for power systems research and edu-
cation. IEEE Transactions on power systems , 26 (1), 12–19.

Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics , 34 (13), i457–i466.

