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ABSTRACT: Effective bioremediation of hydrocarbons requires innovative
approaches to minimize phosphate precipitation in soils of different buffering
capacities. Understanding the mechanisms underlying sustained stimulation of
bacterial activity remains a key challenge for optimizing bioremediationparticularly
in northern regions. Positron emission tomography (PET) can trace microbial
activity within the naturally occurring soil structure of intact soils. Here, we use PET
to test two hypotheses: (1) optimizing phosphate bioavailability in soil will
outperform a generic biostimulatory solution in promoting hydrocarbon remediation
and (2) oligotrophic biostimulation will be more effective than eutrophic approaches.
In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In
particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting
hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized
biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be
crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.
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■ INTRODUCTION

Worldwide, polluted sites contribute to ∼2 million deaths each
year through soil and water pollution.1 The carbon cost of
cleaning the world’s ∼20 million contaminated sites using ex
situ methods is 177 billion tonnes of CO2 equivalents, five
times what the entire globe emits each year. Collectively,
contaminated sites represent $10 trillion United States dollars
(USD) in environmental liability, and costs to the global
economy are between $0.2 and $1.1 trillion USD/year (0.25−
1.89% of global GDP).2 Despite the urgent need to reduce the
economic and health effects of contaminated sites, current
technologies are not up to the task with only ∼5% of sites
being remediated.3 These low rates of remediation activity will,
in the worst case, lead to doubling of contaminated sites over
the next decade,2 or, best case, merely equal the rate of new
site pollution.4

In situ bioremediation is a carbon- and resource-efficient
means of depleting hydrocarbons in soil. An in situ
biostimulation system for an average site of 3800 m3 diverts
more than 8 kilotonnes of contaminated soil from landfills,
avoids the emission of 30 kilotonnes of CO2 equivalents,

5 and
has a cost point typically 30−70% less than excavation-based
approaches. The fundamentals of in situ biostimulation have
been known for over 50 years6,7−providing nutrients and
electron acceptors. However, the sustained stimulation of the
bacterial activity has proven to be challenging, especially in

northern regions8 where ecosystems may be more sensitive to
contamination than southern climes.9

Cold, northern regions are characterized by low levels of N
and P, which hinder natural source zone depletion (NSZD) of
hydrocarbon-contaminated soils.10 NSZD describes the
collective, naturally occurring dissolution, volatilization, and
biodegradation processes underlying mass losses of petroleum
hydrocarbons (PHCs).11 Furthermore, biostimulation of
bacterial activity in soil decreases over time due to the
formation of secondary phosphorus minerals as the bio-
stimulatory solution permeates and reacts with soil matrices.
For example, soil mineralogy that favored brushite (CaHPO4·
2H2O) formation during biostimulation enhanced hydro-
carbon degradation, whereas Ca-deficient soils in which
newberyite (MgHPO4·3H2O) formed showed slower hydro-
carbon degradation.12 One solution is the use of ligands13,14

that chelate Ca and Fe and prevent phosphorus precipitation.
Such chelators can help sustain bioremediation.15 However,
biostimulatory solutions also slowly dissolve soil carbonates.
Carbonate dissolution releases Ca and Mg, which in turn cause
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the precipitation of Ca/Mg phosphate minerals, which are less
bioaccessible to microbes than adsorbed or dissolved P. If we
assume that phosphorus must remain bioavailable for hydro-
carbon bioremediation to occur,15,16 then approaches that
modify biostimulatory solutions to minimize phosphate
precipitation in soils of differing buffering capacities should
outperform standard, one-size-fits-all approaches toward
microbial biostimulation.
A wide range of bacteria anaerobically degrade hydro-

carbons,17 and thus, some biostimulatory approaches add
nutrients to maintain a C/N ratio of approximately 10 to
optimize the metabolic activity.18 Anaerobic degradation of
hydrocarbons by consortia involves not only degraders but also
bacteria involved in phosphorus19 and necromass recycling.20

Thus, it is reasonable to hypothesize that the addition of
oligotrophic biostimulatory solutions might be as effective as
traditional, nutrient-rich biostimulatory solutions. If so, then
the use of oligotrophic biostimulatory solutions would solve
many practical delivery problems associated with distribution
system fouling by bacterial overgrowth. Our goal is to test two
hypotheses: (1) optimizing phosphate bioavailability in soil
would outperform a generic biostimulatory solution in
promoting hydrocarbon remediation and (2) oligotrophic
biostimulation would be more effective than eutrophic
approaches.
Most microcosm designs include variations on a theme in

which soil is dried, sieved, and then spiked.21−23 This process
alters the soil surface area coming into contact with the
biostimulatory solution, the soil structure, solution flow
through fractured clay minerals, the distribution and properties
of hydrocarbons, as well as the microbial population and
habitat.24 To better replicate field conditions, intact soil
columns can be used.25 Incremental sampling approaches can
help obtain more representative samples for chemical and
genomic analysis26−28 though methods to link activity in soil
volumes 10 billion times larger than a genomic sample are
needed.
Positron emission tomography (PET) can image over 1.5 ×

10−4 m3 of soil to identify 1.5 × 10−9 m3 volume of active
microbial activity.29 Thus, PET can provide greater spatial
resolution than genomic approaches and is an invaluable tool
for characterizing microbial metabolic processes.30 PET images
the gamma rays released from radiotracers such as fluorine-18
(18F), carbon-11 (11C), or nitrogen-13 (13N) that emit
positrons which travel a short distance, ∼1 mm in water,
before releasing gamma radiation due to antimatter/matter
interactions (annihilation).30 Using fluorine-18 ([18F]F−) to
track water flow through a core followed by a glucose analogue
2-[18F]fluoro-2-deoxy-D-glucose ([18F]F-FDG), one can map
the heterotrophic microbial metabolism of exogenous
Rahnella31 and indigenous sediment bacterial communities.32

Here, we used a similar approach to quantify and visualize
bacterial activity in intact soil cores obtained from a subarctic
contaminated site in which in situ biostimulation was being
considered. In so doing, we could not only test our project
hypotheses but also evaluate if the optimized biostimulatory
solutions (i) increased generalized biomass or (ii) selectively
stimulated only certain regions and types of bacteria.

■ MATERIALS AND METHODS
Site Description and Field Data Collection. The field

site was in Old Crow, YT, situated immediately downstream of
the confluence of the Porcupine and Old Crow Rivers,

approximately 130 km north of the Arctic Circle. The site is
complex in its geological and hydrogeological profiles, further
complicated by the underlying continuous permafrost,
cryosolic soils experiencing cryoturbation, and a seasonally
fluctuating active layer. The soils are mainly wet, medium-
plastic olive-gray silts, with trace organics. As of 2017, diesel
contaminants were present in the soil at the field site at
concentrations exceeding the Yukon Contaminated Sites
Regulations Residential Land Use standards and Special
Waste Regulations standards. In September 2017, intact soil
cores (n = 19) were collected at a depth of 0.25−0.50 m below
the ground surface from nine locations representing ∼250 m2

across the site in 90 mm outer diameter steel Shelby tubes
either 760 or 460 mm in length.33

Biostimulatory Rationale. The Base biostimulatory
solution consisted of 800 mg L−1 HNO3, 180 mg L−1

tripolyphosphate (TPP), 100 mg L−1 MgSO4, and 6.29 ×
104 mg L−1 Fe(III)NH4-citrate to have a C/N/P ratio of
100:11:1 based on the hydrocarbons present in the soil (see
Table S1 and Supporting Methods). The oligotrophic version
of this solution had much lower N and P concentrations, 3.4
mg L−1 HNO3 and 3.1 mg L−1 TPP. To create the Focus
biostimulatory solutions, we developed a decision tree to
customize the biostimulatory solution for each core (Figure
S1). We first assessed if the soil buffering capacity was high
(pH > 4.5 after addition of 10 mM citrate buffer) and then if
the soil was Ca-rich (Mg:Ca < 0.12) and finally Fe-rich
(Fesolution > 30 mg L−1).
Field soil cores and biostimulatory experiment. We created

microcosms (n = 4−7 per core, depending on the core length,
131 in total), an intact soil core inside a polyvinyl chloride tube
measuring 3.5 cm in diameter and 5 cm in height, from each
soil core. Each microcosm was placed into a 125 mL amber jar
with a treatment solution for 28 days at 4 °C to mimic in situ
temperatures and allowed to go anaerobic. Microcosms were
placed on a rotary shaker set at 2.5 s−1. The rotary shaker was
used to reproduce groundwater flow conditions as much as
possible with the microcosm setup and to maximize surface
interactions. Shaking was carried out at a relatively low speed
to reduce potential siltation and matrix interferences during the
analytical tests.
Treatment solutions (Table S1 and see below) were one of:

Control (distilled and deionized (DI) water; n = 37), Base
(solution of nitrogen, phosphate, ammonium iron(III) citrate,
and sulfate; n = 45), Focus (slight modifications of the base
solution based on the decision tree; n = 26), and Focus +
Oligo (same modifications as corresponding to Focus
treatment however with lower N and P concentrations (i.e.,
slightly oligotrophic); n = 23). On the second day of the
experiment, we sampled and replenished 50 mL of each
microcosm solution and analyzed for nutrient concentrations
(see Figure S2). After 28 days, 12 microcosms were selected
and kept intact for PET analysis (eight base solutions and four
DI water solutions). The selection criteria were as follows:
from the cores that showed successful degradation with the
Base solution, we narrowed down our microcosm options by
removing any microcosms that had noticeable slumping as
cores shorter than 4 cm could not be imaged well. Microcosms
were then randomly selected from the remaining number left.
For the remaining unselected microcosms, soil was extruded,
homogenized by hand mixing, and subsampled for DNA,
exchangeable nutrients, and PHCs.12
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The biostimulatory experiment combined two experiments:
the first one evaluated DI water and Base (n = 4 soil cores;
microcosmsDI: n = 22 and Base: n = 24) and the second
one included Focus and Focus + Oligo (n = 15 cores;
microcosmsDI: n = 15, Base: n = 21, Focus: n = 26, and
Focus + Oligo: n = 23). The first experiment had an even
number of DI and Base microcosms created from two cores,
while the other two cores had an uneven number, and we used
the Base treatment for these two. As mentioned previously, we
had enough soil for a varying number of microcosms from each
core (4−7). Each core had a minimum of n = 1 mesocosm for
each treatment (DI, Base, Focus, and Focus + Oligo). For
cores from which we were able to extract more microcosms, we
prioritized Focus and Focus + Oligo treatments because we
had completed more DI and Base microcosms from the first
experiment. The first pilot experiment indicated the variability
within the success of the Base solution, which prompted us to
conduct the second experiment considering the Focus and
Focus + Oligo treatments. Both experiments followed the same
protocol detailed here and thus our analyses focus on the
results from both.
Verification of PET and the dosing system. We used model

cores to verify that our imaging system and microcosms could
differentiate between [18F]F− water paths and [18F]F-FDG
retention by bacteria. Three model cores (see below) were
pushed into a Tempe cell (Soil Moisture Equipment Corp.,
Santa Barbara, CA) modified with a Teflon barrel. Each Tempe
cell has an inflow and an outflow with 1 bar ceramic plate
filters sealed with an O-ring that is used to determine the
movement rates through the soil and the physical and chemical
soil properties.
The model cores had three layers (15 mm in height) of

sterilized silica sand (DS2000/SIL4, SIL Industrial Minerals,
Bruderheim, SK) inside the Tempe cells (Figure S3). Each
layer was 15 mm thick and 35 mm in diameter with a total
height of 45 mm. All cores had dry sand as the top and bottom
layers; however, the middle layers were either: (a) infused with
2 mL of Milli-Q water, (b) inoculated with Pseudomonas
(isolated from environmental soil samples, identified using API
strips, bioMeŕieux, St. Laurent, QC) in 2 mL of Milli-Q water
and then autoclaved at 121 °C under 110 kPa, or (c)
inoculated with Pseudomonas in 2 mL of Milli-Q water.
We injected the model cores with ∼16 MBq [18F]F-FDG in

42 mL of DI water, waited for ∼10 min, and imaged in the
scanner mode. Thereafter, three pore volumes (∼63 mL) of DI
water was pushed through the cell at 1 bar pressure to wash
out residual [18F]F-FDG and imaging was conducted again in
the scanner mode. For the soil cores, we injected 42 mL of
∼13 MBq [18F]F-FDG solution into the core, which was then
washed with 145 mL of DI water. We then autoclaved the core
and then treated again with 42 mL of ∼16 MBq [18F]F-FDG
solution and washed with 155 mL of DI water. For all cores,
we measured the outflow to determine the volume taken up in
the core.
Modular PET System. The custom-built PhytoPET system

used here consisted of four 60 mm × 60 mm × 124 mm
detector modules.29 Detailed information and characterization
of the electronics and the data acquisition architecture can be
found in previous studies.34−36 A 360 degree rotation stage and
a 50 cm translation stage were incorporated to allow relative
movement between detectors and objects for continuous step-
and-shoot acquisition.37

To calibrate volume estimates from the PET imagery, we
used radioactive volume dimensions in PET images of the
NEMA NU 4-2008 image quality phantom.38 During
calibration, a threshold factor applied to the image stack was
chosen to best separate radioactive volumes from the
background based on their intensity and to allow the feature
dimensions in the PET images to reflect the real phantom
feature dimensions. The signal count rates of the phantom
used for this calibration process were at the same order as
those used in the experiments herein. The phantom comprises
radioactive volume features with dimensions ranging from 1 to
30 mm. To avoid overestimating the volumes based on the
PET images, the phantom feature dimensions equal to or
larger than 3 mm were taken into account in the calibration
process. This corresponded to an activity threshold of 0.504×
maximum activity within each image stack to separate
radioactive voxels from the background for volume estimates.
Camera mode images were reconstructed with proprietary

software35 employing the iterative maximum likelihood
expectation maximization algorithm39 based on a voxel size
of 0.5 mm3 and 50 iterations. For the scanner mode, data were
preprocessed using in-house developed code and together with
the corresponding crystal positions and directions were fed
into a modular tomographic image reconstruction platform
(CASToR) for list-mode image reconstruction.29,40 Raw
images were exported and processed using the Fiji distribu-
tion41 of ImageJ.42 To calculate activity volumes for each core,
we used an activity threshold of 0.504× maximum activity (see
above) within each image stack. We trimmed the data outside
the diameter of the core (>35 mm) and excluded data outside
4.6−42.5 mm range to avoid field-of-view and pooling effects.
We calculated volumes using the Just Another Colocalization
Plugin (JACoP) in Fiji.43

Bacterial versus Soil Pore Volumes. Bacteria are
metabolically agnostic to [18F]F−(aq), which makes it an ideal
radiotracer to quantify open soil voids unoccupied by bacteria.
Conversely, as an analogue of glucose, [18F]F-FDG shows high
uptake by bacteria.44 Therefore, we used PET imaging of
[18F]F-FDG to obtain estimates of open pore plus bacterial
volumes and subtracted the pore volumes determined through
imaging of [18F]F−(aq) to quantify bacterial volumes in four soil
cores (two DI water and two base biostimulatory solution
treatments).

Imaging Pore Volumes and Bacterial Activity in
Intact Cores. The field soils had a mean bulk density of
1.47 g cm−3 and a mean void volume of 26.37 cm3. Thus,
approximately 27 mL of solution would completely fill the void
volumes of an intact 5 cm × 3.5 cm core. The soil pH was
∼6.8, and there were approximately 700 mg L−1 CaCO3 and
0.5 mg L−1 phosphate in the system. Thus, before adding
fluorine-18, we exchanged the high pH solution with DI water
to prevent fluoride coprecipitation with Ca or P. For each field
soil core, we washed out Ca/P with 81 mL (three void
volumes) of DI water under 1 bar of pressure.
We injected 54 mL of 4.2 MBq [18F]F−(aq) (0.1 MBq mL−1)

solution to the top of the Tempe cell under 1 bar of pressure
until 18 mL exited the cell. Each core was then imaged using
the PhytoPET system for 5 min. Immediately after imaging, we
pushed 3× pore volume (81 mL) of DI water through the
Tempe cell to wash out the remaining [18F]F−(aq). Next, we
added 54 mL of 42 MBq [18F]F-FDG (1 MBq mL−1) to the
top of the Tempe cell until 27 mL exited the core. The core
was incubated for 90 min following [18F]F-FDG application
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and then 27 mL of DI water was pushed through at 1 bar to
remove residual [18F]F-FDG leaving only [18F]F-FDG inside
bacterial cells. After washing, the core was imaged for 5 min.
After imaging and all solutions were flushed through, we

extruded the cores by pushing out 1 cm of soil at a time to
maintain the orientation of the core. Each 1 cm soil puck (n =
5 per cylinder) was subsampled nine times (once in each 45°
quadrat and once in the middle) using glass pipettes. Gamma
radiation in each subsample was measured using a 2480
Wizard2 1-detector gamma counter (PerkinElmer, USA).
Subsamples were maintained at −80 °C for DNA analyses.
PHC fractions were grouped according to the equivalent
normal straight-chain hydrocarbon (nC) boiling point ranges
and were defined by four fractions (F1−F4).45 The remaining
soil in each puck was homogenized and analyzed for F2
(>nC10 to nC16) and F3 (>nC16 to nC34) concentrations
and moisture.
16S rRNA Sequencing. We subsampled the soil pucks for

bacterial composition determination, taking between 9 and 19
soil samples per core (n = 150 subsamples). Some soil
locations could not be subsampled due to rocks, voids, etc. We
used quantitative polymerase chain reaction (qPCR) to
quantify rRNA from each subsample. RNA was extracted
using an RNA mini kit (Zymo Research), and concentrations
were determined using an Invitrogen Qubit RNA HS Assay Kit
(Thermo Fisher Scientific). We used reverse-transcription
PCR (RT-PCR) and oligo(dT) for cDNA synthesis (In-
vitrogen, Thermo Fisher Scientific). For amplification of the
16S rRNA gene, we used a reaction mixture containing 18.2 μL
of H2O, 2.5 μL of DreamTaq buffer (Invitrogen by Thermo
Fisher Scientific), 1 μL of each primer (342F (5′-CTA CGG
GGG GCA GCA G-3′) and 806R (5′- GGA CTA CCG GGG
TAT CT-3′)), 0.05 μL of each nucleotide (dATP, dCTP,
dGTP, and DTTP), and 0.125 μL of Taq polymerase with a 35
cycle PCR. Each sample was spiked with a known
concentration of Aliivibrio f ischeri (A. f ischeri) as an internal
standard.46 Samples were purified using NucleoMag Magnetic
Beads (D-Mark Biosciences), indexed for 16S rRNA
sequencing (Illumina), and purified again. After pooling,
samples were sequenced on an Illumina MiSeq using a V3
Chemistry kit (600 cycle).
qPCR. We used qPCR with primers targeting a fragment of

the 16S rRNA gene to quantify DNA expression in soil
subsamples of different radioactivities. qPCR was run using an
Applied Biosystems 7500 Real Time PCR System (Thermo
Fisher Scientific, Toronto, ON), and SYBR green was used to
quantify the bacterial DNA obtained with the 342F/806R
primers to target our regions of interest in the 16S rRNA gene.
We used the 16S rRNA gene due to its valuable uncommon
properties (ubiquity, extreme sequence conservation, and a
domain structure with variable evolutionary rates), which
makes it easy to distinguish between different genera and it is
the de facto standard for prokaryotic taxonomy.47,48 Each 20 μL
reaction mixture contained the following: 10 μL of SYBR
Green master mix (QIAGEN Instruments, Toronto, ON), 1
μL of 10 μM of each forward and reverse primers, 2 μL of 5
ng/μL DNA,49 and 6 μL of nuclease-free H2O. The normal
standard ranged from 105 to 108 copies/μL. The coefficients of
determination (R2) for our assays ranged from 0.95 to 0.99,
while amplification efficiencies were between 0.85 and 0.99.
Based on the melting curve analyses, we found no evidence for
primer dimers. The resulting quantities of rRNA gene copies

were normalized by expressing gene copies as ratios to the
maximum quantity of copies per replicate.

Bioinformatics. A total of 6,677,295 reads were produced
with an average of 44,515 reads per sample. Primers were
removed using cutadapt v.2.150 and then imported into
QIIME2 v.2020.8.51 Sequences were joined using
VSEARCH52 and then filtered based on quality using default
parameters: maximum number of consecutive low-quality
scores (r = 3), minimum length that a sequence read can be
truncated and still be retained (p = 0.75 total read length),
maximum number of low PHRED scores that can be observed
in direct succession before truncating a sequence read (q = 3),
maximum number of ambiguous (i.e., N) base calls (n = 0),
minimum four sequence count (c = 0.005%),53 and sorting
into amplicon sequence variants (ASVs) using a trim length of
400 in Deblur.54 ASVs were classified using a 342F/806R-
trained V3/V4 SILVA database.55 The resultant QIIME2
abundance and taxonomy artifacts were exported to BIOM
format56 for processing in R v.4.0.257 and combined with
sample information using “phyloseq” v.1.26.1.58 Chloroplasts
and mitochondrial contaminants were removed, and abundan-
ces were standardized to the A. fischeri spike.46 Finally, we
removed any ASVs with a mean read count ≤1 and/or samples
with ≤1 nonzero value. There were 720 unique ASVs with an
average of 70 ASVs and 41,414 reads per sample across 141
samples in the final data set. Each ASV was present in 2−128
samples with a mean prevalence of 13. A phylogenetic tree was
constructed by inserting the sequences in the Greengenes
13_8 reference tree59 with the QIIME2 plugin “q2-fragment-
insertion”60 using the SATe-́enabled phylogenetic placement
method.61 The tree was exported from QIIME2 in Newick
format,62 imported into R using the “ape” package v.5.4,63 and
plotted using “phylosignal” v. 1.364 and “phylobase” v. 0.8.10.65

Statistical Analyses. PHC Degradation. PHC degradation
rate constants (k) were determined using single first-order
kinetics

i
k
jjjj

y
{
zzzzk

C C
t

ln( ) ln( )t 0= −
−

where Ct is the concentration at time t and C0 is the starting
concentration. Preliminary linear models indicated that the
core depth below the surface and initial PHC concentrations
influenced the degradation constants. To maximize our
inferential power about biostimulatory treatment effects, we
fit a series of generalized least-squares (GLS) linear models
testing the influence of depth, initial concentrations, and their
interaction with degradation constants using the “nlme”
package v.3.1−148 in R.66 We used model selection to
determine the variance structure for heterogeneity in model
residuals and the most predictive combination of fixed
effects.67 We modeled variance heterogeneity using an
exponential variance structure in these initial models. Once
we generated the model of best fit (assessed using Akaike
Information Criterion), we calculated residuals from those best
fit models to use as bias-free estimates of degradation constants
in downstream assessments of treatment effects (Table S2).
For the downstream analyses of treatment effects, we used a
different variance spread per treatment (“varIdent”) to address
variance heterogeneity and maximize the model fit (Table S2).

P Immobilization. P immobilization was calculated as the
difference between initial and final phosphorus in solution. To
account for different initial phosphorus concentrations among
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cores, we normalized immobilization by input concentrations.
Similar to that mentioned above, we fit a series of GLS models
to test the influence of depth on P immobilization rates (Table
S2). No depth relationship or variance heterogeneity was
detected, so linear models were used to assess treatment
effects.
Bacterial Composition. We assessed the microbial

community composition using principal component analysis
(PCA), and compositional differences were quantified using
both redundancy analysis (RDA) and permutational multi-
variate analysis of variance in the “vegan” v. 2.5−7 package in
R.68 To address the compositional nature of the bacterial
microbiome, zeros in the data set were replaced using a
geometric Bayesian multiplicative approach using the “zCom-
positions” v.1.2.0 R package and then transformed using a
centered-log ratio (CLR) transformation using the “CoDaSeq”
v. 0.99.3 package.69−71 The CLR mitigates the issue of
differences among microbial taxa not being linear by turning
the read counts into a ratio abundance (abundance normalized
by the geometric mean abundance of all taxa per sample). CLR
allows us to retain the relationships among samples and also
puts the data in a linear space where we can apply linear
statistical techniques such as PCA. The geometric mean
centers the abundance values such that the average relative
abundance is zero and therefore above average abundances will
be positive and below average will be negative. We used RDA
to assess the bacterial compositional differences among
treatments.

■ RESULTS
Optimizing PHC Degradation by Optimizing P

Accessibility. The Focus treatment tripled F3 degradation
rate constants compared to the Base treatment (0.006 ± 0.004
and 0.021 ± 0.009 day−1 in the Base and Focus, respectively)
(Figure 1 and Table S2; constants are means ± SE). Only
Focus and Focus + Oligo (0.016 ± 0.006) rate constants were
significantly (P < 0.05) greater than DI water rates (0.003 ±
0.004 day−1). These increased degradation rates correspond to
half-life times of 231 days for DI water, 115 days for Base, and
33 days for Focus. The effect of initial F3 concentrations on
degradation rate constants was minimal and soil depth had no
influence (Table S2).
The increased degradation of hydrocarbon fraction F3 was

not necessarily linked to increased P availability for micro-
organisms (Figure 2a,b,f) as P immobilization/fixation was
greatest in our Focus + Oligo treatment (0.492 ± 0.190;
though immobilization was still relatively high in the focus
treatment: 0.203 ± 0.111 versus 0.058 ± 0.027 in the DI
control). Though increased NH4

+ versus NO3
− availability

likely played a role in increased F3 degradation (Figure 2c−
e,g), we were unable to verify P mineralization on samples due
to an experimental error during transfer to the Canadian Light
Source that damaged the PET-imaged samples.
The Focus treatment (0.013 ± 0.009) did not improve the

Base F2 degradation rates of 0.024 ± 0.012 day−1, which were
greater (P < 0.056) than the DI water rates (0.001 ± 0.01
day−1). Like F3, the initial concentrations of F2 had little
influence on degradation activity but soil depth did, with F2
degradation rates decreasing as the soil depth increased.
Bacterial and Soil Pore Space Volumes. Soil porosity

estimates using radiotracers corresponded with estimates based
on bulk density (Table 1). Bacteria occupied between 60.3 and
74.4% of the total pore space, representing between 29.8 and

40.8% of the total soil volume (Table 1 and Figure 3a). The
bacterial volume was 17.6 cm3 in the Base treatment compared
to 15.6 cm3 in the DI treatment but these volumes were not
statistically different (P > 0.05). We were unable to assess the
Focus treatment as we were only able to assess four cores using
radiotracers.
There are largely three types of pores present in these soils

(Figure 3b): (i) bacterial microcolony pores where the pore
space is filled with active bacteria but through which water can
flow, (ii) biofilm pores in which there are channels of pores
free of active metabolic activity through which water flows, and
(iii) inaccessible pores where no bacteria or water flows
(Figure 3b, black pixels; also see Figures S4 and S5).

Biostimulation of Bacterial Activity as Measured by
[18F]F-FDG Incorporation. We successfully labeled Pseudo-
monas in sand cores with [18F]F-FDG (Figures S6 and S7).
Radioactivity was greater in live Pseudomonas cores relative to
sterile and autoclaved samples, with some downward move-
ment of the bacterium with [18F]F-FDG and DI water flow.
Radioactivity in field soil cores treated with the base
biostimulatory solution was associated with 16S rRNA gene
expression (t55 = 8.705, P < 0.001) and no relationship was
detected in the DI water treatment (Table 2 and Figure 4).
Incorporated radioactivity in Base-stimulated soils (mean
ionization event counts per minute per gram of soil ± SE =
180,896 ± 51,084) was 108% that of DI water-treated soils
(86,981 ± 19,893), and similarly 16S rRNA expression was 10-
fold greater in Base-stimulated soils. If we only compare
samples between DI and Base with similar levels of
radioactivity, the link between incorporated radioactivity and
16S rRNA expression remains. As a quality control check, in
field soil cores with indigenous microbes, radioactivity was

Figure 1. Treatment influence on PHC degradation. F + O indicates
focus plus oligo. Degradation constant estimates for hydrocarbon
fractions (a) F2 and (b) F3. Degradation constants represent the
residuals from GLS modeling degradation based on depth within the
soil core and initial PHC concentrations. C/N ratios are presented
above each treatment. Mean degradation constants (c,d) from GLS
models estimating treatment influence. .,*, and ** denote significance
at P < 0.1, 0.05, and 0.01, respectively. Error bars represent 95%
confidence intervals. Note the scale difference between y-axes for F2
and F3. See the Supporting Information (Table S2) for more details
about the models.
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greater throughout the soil profile relative to the autoclaved
field soil cores (Figure S8).
Bacterial Community Composition. There were 1030

ASVs across 141 samples from the QIIME2 pipeline. After A.
fischeri standardization and removal of singletons/doubletons,
720 ASVs were remaining. Of these 720, 96 were unique to the
Base treatment consisting of seven phyla (Figure 5a,b) and an
additional 87 were more than double72 the relative abundance
in the DI treatment (Table S3). The 96 unique taxa in the Base
treatment consisted of 59 genera from Proteobacteria, 16
Firmicutes, 11 Actinobacteria, 6 Bacteroidetes, 2 Chloroflexi, 1
Hydrogenedentes, and 1 Gemmatimonadetes.
Not surprisingly, the most abundant genus in the Base

treatment was Pseudomonas, a known hydrocarbon degrader
(Figure 5a and Table S3). There were other known degraders
from Gammaproteobacteria (Stenotrophomonas: n = 4) and
Alphaproteobacteria (Sphingomonas: n = 3) that were either
absent in the DI water treatment or much more abundant in

the Base treatment. Several other genera relevant to
bioremediation were abundant in both base and DI treatments.
For instance, known carbon cyclers like Cellulomonas, Geo-
bacter, and Rhodoferax73−75 had relative abundances >1% in
both treatments (Figure 5c). Other carbon cyclers from the
OPB41 and Solirubrobacterales orders74,76 were noticeably
differentially abundant between the base and DI treatments
(178- and 357-fold greater in base; Table S3). Known
syntrophs like Syntrophus, Smithella, and Thauera75,77 were
also present, albeit in lower (<1%) relative abundances.
Interestingly, the largest fold-change detected between base
and DI treatments was for a known phosphate-solubilizing
Alphaproteobacteria Methylobacterium, which was >740-fold
more abundant in the Base treatment (Figure 5a and Table
S3). Another phosphate-solubilizing genus from Actino-
bacteria, Corynebacterium,78 was 42-fold more abundant in
the Base versus DI water treatments.
[18F]F-FDG incorporation did not predict community

composition changes (Figure S9) despite differences in
community composition between Base and DI treatments
(RDA: F1,139 = 4.174, P = 0.001). The change in community
composition was driven by the 238 ASVs that were at least
double the abundance in the Base community. However, two
genera of the phylum Proteobacteria, Polaromonas (Base: 40%
and DI water: 41%) and Pseudomonas (Base: 28% and DI
water: 16%), comprised over half the community (Figure 5c).
Some members of these taxa increased by 1.2−6.3 fold
(Polaromonas) and 1.1−136.7 fold (Pseudomonas) in the Base
compared to the DI treatment. Thus, the observed link
between [18F]F-FDG and 16S RNA expression (Figure 4) may
arise from these two bacteria’s ready incorporation of glucose.

■ DISCUSSION

Using intact soil cores from a diesel-contaminated site in
northern Yukon, Canada, we tested biostimulatory solutions
that minimize phosphate precipitation in soils of different
buffering capacities. Using a combination of microcosm, PET,
and genomic approaches, we found that optimized biostimu-
latory solutions tripled F3 degradation rate constants relative
to generic solutions (Figure 1b,d and Table S2) and the rate
constants were ∼7× greater relative to that of control (DI
water) treatments. A previous study found similar rate
differentials in field experiments well south of the Arctic
circle.79 Thus, Focus biostimulatory solutions can provide
substantial stimulation of northern hydrocarbon degradation
despite unfavorable (e.g., lower temperatures) conditions.
At this field site, using air temperature as a rough proxy for

soil temperatures, there are ∼160 days where minimum
temperatures are greater than −5 °C80 and hydrocarbon
degradation can occur though the number of days with
temperatures greater than −5 °C below the ground surface are
likely less than 160. The Canadian Council of Ministers of the

Figure 2. Phosphorus and nitrogen cycling and the influence of
treatment on each. F + O indicates focus plus oligo. (a) Input P and
(b) immobilized P for each treatment. Organic input N consisting of
(c) ammonium (NH4

+) and (d) nitrate (NO3
−). Thus, Ninput = NH4

+

+ NO3
−. (e) Immobilized N for each treatment. Mean (f) P- and (g)

N-immobilization normalized by input concentrations from GLS
models estimating the treatment influence. .,*,**, and *** denote
significance at P < 0.1, 0.05, 0.01, and 0.001, respectively. Error bars
represent 95% confidence intervals.

Table 1. Void Characteristics of Microcosms Used in the Volume Experiment

lab radiochemistry

sample treatment
dry density (g

cm−3)
bulk density (g

cm−3)
soil volume

(cm3)
solid volume

(cm3)
porosity
(cm3)

bacterial volume
(cm3)

open pore volume
(cm3)

porosity
(cm3)

1B DI water 1.23 1.53 47.12 21.83 25.29 14.06 7.18 21.24
4D 1.08 1.35 48.08 19.62 28.46 17.04 9.14 26.18
2A base 1.28 1.60 46.16 22.24 23.92 18.84 6.49 25.33
4A 1.12 1.40 48.08 20.28 27.80 16.39 10.80 27.19
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Figure 3. (a) Volume of soil pore space and bacteria in a field soil core, first injected with [18F]F−(aq) to map the open pore space, rinsed with DI
water, followed by injection with [18F]F-FDG to map the total pore space, and again rinsed with DI water. Points represent the volume estimates,
and the shaded regions are bounded by a Gaussian loess smoother (span = 0.176). The upper polygon (violet) indicates bacterial volume (14,062
mm3). The lower polygon (dark orange) indicates open pore (7180 mm3). The sum of the two is the estimate of the total available pore space
(21,242 mm3). Gray rectangles indicate regions that were either out of the field of view of the PET detector (<4.6 mm) or account for label pooling
(length >42.5 mm). Horizontal dotted lines indicate the averaged cross sections presented in (b). (b) Mean radioactivity in core cross sections
bounded by the dashed lines in (a). Activity concentrations have been standardized relative to the maximum values to facilitate visual comparisons
between the [18F]F−(aq)/[

18F]F-FDG and [18F]F-FDG − [18F]F−(aq)/[
18F]F−(aq) − [18F]F-FDG images. Actual concentrations were lower in the

residual images.

Table 2. Results of Linear Models Examining the Relationship between Radioactivity Retention and 16S rRNA Gene
Expression in PHC-Contaminated Soilsa

covariance parameter estimates biostimulatory solution DI water

random ef fect on intercept

soil core ID 0.272 −
fixed effect estimates variable coefficient SE d.f. t-value P-value

biostimulatory solution radioactivity 0.894 0.103 55 8.705 0.000***
intercept 0.785 0.214 55 3.668 0.001***

DI water radioactivity −0.136 0.220 39 −0.620 0.539
intercept 1.714 0.245 39 6.993 0.000***

a***Indicates significance at P ≤ 0.001.

Figure 4. Relationship between soil radioactivity and bacterial 16S rRNA gene expression in PHC-contaminated soil cores following [18F]F-FDG
permeation and DI water wash. Soil cores were treated with (a) base biostimulatory solution or (b) DI water. Different colors of points indicate
unique soil cores. A linear mixed effect random intercept model was fit in (a) and linear regression model in (b) (Table 2). The thick black line
indicates the population model and thin lines of varying color in (a) show fits for individual soil cores. (a) R2

m = 0.574 and R2
c = 0.636. (b) R2

adj =
−0.016.
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Environment (CCME) Tier 1 guidance values for F3
concentrations in coarse-grained soils are 1700 mg kg−1.45

Using CCME guidelines as a target, the number of days with
temperatures greater than −5 °C each year, and the decay
constants calculated above, application of the Focus bio-
stimulatory solution could be predicted to close the site within
1 year, compared to 3 years for the Base, or 6 years for NSZD
to occur. A similar comparison with half-lives for F2 suggests
that the Base solution would result in site closure in
approximately 2 years compared to 35 years by NSZD.
These results are encouraging though given we are
extrapolating from a relatively small number of lab micro-
cosms, we caution readers to interpret these closure times
accordingly.
Furthermore, P immobilization in Focus solutions was

tripled relative to the control and doubled relative to generic
solutions (Figure 2a,b,f and Table S2). Based on these results,
we propose that nuanced biostimulatory solutions that
optimize soil buffering capacity to improve phosphate
bioavailability may provide a means to remediating soils in

northern environments though further work on P mineraliza-
tion is necessary to confirm this result.
Bacteria occupied over half of the pore space in the intact

soil cores. There appeared to be three broad types of pore
space that could be imaged using 18F-radiotracers. This allows
us to explore disparate specialized niches and communal
behavior of bacteria and the pore-scale hydrodynamics that
influence their habitat. The patchy distribution of micro-
colonial bacteria that appeared to be most metabolically active
is suggestive of heterogeneous resource allocation.81,82 This
may reflect the heterogeneous distribution of diesel and/or
nutrients within the soil, which is common in PHC-
contaminated soils.83 Biofilm bacteria typically form through
production of extracellular polymeric substances and can
dramatically alter the fluid dynamics of their environment.84

Live and/or dead bacteria may clog preferential flow paths,
effectively remodeling the porous network within the soil, with
implications for chemical transport in natural porous media.
Quantifying the nature of soil pore space is crucial for
understanding bioremediation nuances as these spaces
determine the hydraulic mechanisms and hot spots of

Figure 5. (a) Rooted radial phylogeny of the ASVs with the greatest increases in relative abundance (fold changes >42; n = 5) in the Base treatment
relative to DI water and ASVs that were present in the Base treatment and absent in DI water (n = 96). (b) Venn diagram illustrating the number of
shared and unique taxa in treatment. (c) Relative abundance of taxa summed by genus. These 10 taxa represent the top three most abundant genera
in both treatments as well as several ecologically relevant bacteria in the context of bioremediation.
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metabolic activitykey determinants of bioremediation
success.
Radioactivity was indicative of gene expression, which was

greater in biostimulated soils relative to control treatments
(Figure 4 and Table 2). Model sand cores indicated that the
increased radioactivity was indeed due to metabolism by live
bacteria and not due to bacterial morphology or soil structure
(Figure S7). We identified several taxa potentially involved in
either anaerobic or aerobic cycling of carbon. Not surprisingly,
several known carbon cyclers/PHC degraders were differ-
entially abundant between treatments in the intact soil cores.
Genera like Geobacter have been found to degrade hydro-
carbons anaerobically75,85 (in addition to oxidizing iron),86 and
some Pseudomonas, Polaromonas, Cellulomonas, and Rhodoferax
species are known aerobic degraders.87−91 Supporting the
occurrence of anaerobic hydrocarbon degradation was the
presence of a number of known syntrophic bacteria. For
instance, some members of the Syntrophus and Smithella
genera are secondary fermentative bacteria that oxidize
intermediate products like propionate and benzoate and
release H2 and acetate.75 Some Corynebacterium species secrete
phosphatases that hydrolyze extracellular organophosphates,
liberating phosphate that may then be taken up by bacterial P
transport systems.92 Thauera is a hydrogenotrophic denitrifier
and produces benzylsuccinate synthase, which helps to catalyze
anaerobic toluene degradation.77,93 Syntrophic associations
typically involve H2- or acetate-consuming methanogenic
archaea that perform the last step of the anaerobic carbon
cycle by releasing methane.75 Methanogenic archaea may use
CO2 (from hydrocarbon degradation) or H2 (from propionate
and benzoate degradation) to generate CH4, which may then
be used by Methylobacterium to generate formate as an
intermediate.86 Electrons generated during the oxidation of
formate to CO2 can be transferred to nitrate reductase of
Methylobacterium or other denitrifiers.94 Overall, these results
suggest that the dominant processes underlying hydrocarbon
degradation in the soils studied here are aerobic and ostensibly
largely dictated by Pseudomonas and Polaromonas. However,
anaerobic cometabolism and syntrophy95 should not be
overlooked as important agents of bioremediation in northern
soils.
Bioremediation of PHC-contaminated sites is challenging

due to mineral precipitation and bacterial overgrowth from
eutrophic biostimulatory solutions. The mechanisms by which
targeted biostimulatory solutions enhance bioremediation or
foul distribution systems are unclear, particularly due to
unrepresentative overprocessed soil samples used in laboratory
studies of PHC degradation. Here, we confirmed our
hypotheses that (i) optimized phosphate bioavailability
would outperform generic biostimulatory solutions in promot-
ing hydrocarbon degradation and (ii) oligotrophic biostimu-
lation was more effective than eutrophic approaches. Fine-scale
studies such as our study that optimize phosphate bioavail-
ability and use intact soil cores have a key role in generating
novel solutions for in situ bioremediation of PHCs.
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