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Abstract

Nonlinear light-matter interactions have been drawing attention of physi-
cists since the 1960’s. Quantum mechanics played a significant role in their
description and helped to derive important formulas showing the dependence
on the intensity of the electromagnetic field. High intensity light is able to
generate second and third harmonics which translates to generation of electro-
magnetic field with multiples of the original frequency. In comparison with the
linear behaviour of light, the nonlinear interactions are smaller in scale. This
makes perturbation methods well suited for obtaining solutions to equations
in nonlinear optics. In particular, the method of multiple scales is deployed
in paper 3, where it is used to solve nonlinear dispersive wave equations. The
key difference in our multiple scale solution is the linearity of the amplitude
equation and a complex valued frequency of the mode. Despite the potential
ill-posedness of the amplitude equation, the multiple scale solution remained a
valid approximation of the solution to the original model. The results showed
great potential of this method and its promising wider applications.

Other methods use pseudo-spectral methods which require an orthogonal
set of eigenfunctions (modes) used to create a substitute for the usual Fourier
transform. This mode transform is only useful if it succeeds to represent tar-
get functions well. Papers 1 and 2 deal with investigating such modes called
resonant and leaky modes and their ability to construct a mode transform.
The modes in the first paper are the eigenvalues for a quantum mechanical
system where an external radiation field is used to excite an electron trapped
in an electrical potential. The findings show that the resonant mode expansion
converges inside the potential independently of its depth. Equivalently, leaky
modes are obtained in paper 2 which are in close relation to resonant modes.
Here, the modes emerge from a system where a channel is introduced with
transparent boundaries for simulation of one-directional optical beam propa-
gation. Artificial index material is introduced outside the channel which gives
rise to leaky modes associated with such artificial structure. The study is
showing that leaky modes are well suited for function representation and thus
solving the nonlinear version of this problem. In addition, the transparent
boundary method turns out to be useful for spectral propagators such as the
unidirectional pulse propagation equation in contrast to a perfectly matched
layer.
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1 Introduction

1.1 Nonlinear optics

One of the most unifying understanding of large and diverse phenomena in science was
Maxwell’s theory of electric and magnetic fields. It was believed in the second half of
the nineteenth century that only a few new fundamental discoveries needed to be made.
This belief was shattered by the failure to explain the physical phenomena such as the
photoelectric effect, x-rays, radioactivity or the radiation spectrum. To understand these
phenomena, a new idea of the nature of light must have been revived. This led to the birth
of quantum theory and optical science ended up under the wings of a resolved science.
As new progress was made, the linear superposition of simpler solutions represented an
important role in the development. But the intensity of the light seemed to play no
significant part. However, there were still some observations that could not be explained
on a linear basis such as double refraction in isotropic media. This suggested that maybe
the intensity of the field was important after all.

The theoretical experiment of two-photon absorption from 1931 was the first spark
for the rise of the field of nonlinear optics. The German-born theoretical physicist Maria
Goeppert Mayer proposed the theory of possible simultaneous two-photon absorption by
atoms [I]. The probability of this absorption is proportional to the square of the light
intensity making it a nonlinear optical process. This nonlinear process remained in a
theoretical level until 1961, when exactly 30 years later, almost simultaneous two-photon
absorption was observed [2] and second-harmonic generation was discovered by Franken
and co-workers [3]. Nonlinear effects in the process when light propagates through and
interacts with matter occur with high-intensity light. The two-photon absorption was
therefore observed thanks to the construction of the first laser prior to the experiment
by Theodore Maiman [4][5]. This new source of coherent radiation could be focused to
achieve extremely high local intensities. To be a somewhat young field of nonlinear optics
of that time, it was scientifically fruitful and promising to be one of the most essential
areas of science for the next decades. Many fundamental new phenomena and phenomena
familiar to other fields are following and it continues to grow, becoming richer by the day.

The use of lasers in modern technology is enormous, ranging from high-density data
storage in memory disks to neurosurgery and dermatology in medicine. These high-
intensity devices are, however, not by any means simple models. They are highly complex
systems of dynamical nature that can reveal a behaviour of both fixed and chaotic attrac-
tors. Note, that a dynamical system tends to evolve to a set of numerical values called
attractor regardless of the starting conditions of the system. Also, many smaller lasers
can be coupled together providing a coherent high-power output. In this case, this array
will not behave as a single consistent unit but will produce a mosaic of patterns [6]. But
such a complicated behaviour is yet to be categorized and understood. In optical fibers,
these laser arrays could serve as a source for the pulses.

Another great potential of nonlinear optics lies in telecommunication technologies. Due
to the small cross-section in the waveguide of the fiber and long interaction lengths, the
low-energy optical pules can reach high intensities. Nowadays, with linear propagation
methods, the speed at which the information passes across continents in thin optical
fibers reaches rates of gigabits per second [7]. Some say that within a decade, this linear
technology will be taken over by a nonlinear one where light pulses are transmitted as
solitary waves.

There are several reasons why nonlinear optics is an ideal subject for a theoretician



who is interested in nonlinear behaviour and model building. Firstly, it is very diverse
and provides a variety of behaviours associated with nonlinear equations, development
of singularities, pattern formation, bifurcation processes or turbulence. All of these are
familiar to the theoretician in many contexts. Another reasons are the parallelism with
other fields and some new concepts of nonlinear science that are located on the different
side of dynamical behaviour such as soliton or strange attractor. These concepts often
show up and require more mathematical knowledge. Especially the strange attractor that
continues to have a large impact in optical feedback devices such as lasers [§]. The last
reason is the variety of mathematical tools a theoretician uses in computer simulation.
The ideas and theories are tested using a wide range adjustable parameters and useful
qualitative understanding is obtained through simple models. These reasons together with
an eager experimentalist and physical intuition will continue to steer the development of
nonlinear optics.

In order to describe what do we exactly mean by optical nonlinearity, we need to start
with polarization. In the classical approach, any material is made up of atoms. Each atom
consists of a "cloud" of negative charge and a positive charge. Usually, the nucleus of an
atom is positively charged because of the protons and the electrons around the nucleus
contribute to the negative charge. When there are no other forces at play, these two
charges cancel each other and the atom has no net charge. However, the mutual position
of these opposite charges is not constant but changes all the time due to a presence of
electromagnetic forces around. This causes these clouds to be distorted and asymmetric
which leads to a so called electric dipole. A dipole is characterized by its dipole moment
that is defined as the charge times the vector of displacement of the two charged clouds.
By definition, the direction is from negative to positive charges. The polarization P is
then the density of atomic electric dipole moments. The distortion or separation of the
charges in an atom can be caused by a presence of a changing electromagnetic field (EM
field). The creation of this separation itself creates an EM field around itself which,
in return, causes other separations of charges in the material. Tt is a kind of chain
reaction. Therefore, polarization is a source of an EM field and its units are coulomb
per meter squared (C/m?). There are altogether four sources of EM fields: polarization,
magnetization, free charge and free current. There can be more than one various source
of EM fields at a point in space and they can overlap continuously in time. They produce
EM fields but, at the same time, they are also influenced by these fields. It means that
sources can convert from one form to another.

Two more vector fields appear besides the electric and magnetic field in classical elec-
trodynamics; electric displacement D and magnetic induction B. The polarization plays
a role in the electric displacement through the equation

D =cE+P, (1.1.1)

where g is the permittivity of free-space. It is a measure of the ability of a material to be
polarized and thus store electric potential energy. E is the electric field. The term gyE is
called the induced polarization of free-space. It means that the electric field acts locally
on the vacuum creating electric dipole moments. The volume density of these moments
is proportional to the electric field with the proportionality constant being .

As explained earlier, the electric field displaces the electrons in the atom from the
nucleus inducing electric dipoles that collectively give rise to polarization. This electric
dipole is modelled by a powerful mass-and-spring model, also called the Lorentz oscillator
model, first proposed by the Dutch physicist H. A. Lorentz [9]. It gives a quite precise



picture of how the electric field depends on polarization for wide range of materials such
as dense gases, absorptive liquids and solids including dielectrics, semiconductors and
metals. To generalize the result obtained from this model, the polarization at a given
location x in an isotropic and linearly-polarizable material excited by an electric field is
expressed as

P(x,t) = ¢C(w)E(x,1), (1.1.2)

where C'(w) is the polarizability coefficient that depends on the frequency of the elec-
tric field and three material parameters: plasma frequency, resonance frequency and the
damping coefficient of spring in the model. A typical material is made from atoms that
have many electrons connected to their nuclei. Therefore each electron can be represented
by a mass-and-spring system so that C'(w) becomes a sum of the polarizability coefficients
of all the electrons.

The Lorentz oscillator model may be also used to describe the conduction electrons
in a material which move freely and are not bound to any atom. Some parameters in
the model will be changed, but a similar result can be obtained since the conduction
electron may still respond to an oscillating electric field. The proportionality constant
in this case is between the electric field and polarization is now represented by y.(w)
instead of C'(w) and it is called electric susceptibility of the conduction electrons. The
expression for the electric susceptibility gained in this way is called the Drude model of
the conduction electrons. However, in practical situations, the electric susceptibility refers
to susceptibility of the material, not only its conduction electrons and it is denoted by
X(w). One can derive the light propagation equation through a medium using general x
from Maxwell’s equations. In this wave equation, a quantity called the refracting index
n will appear which is defined as n = /1 + x. It is a dimensionless number greater than
unity. It defines how the light ray bends when entering a medium.

The dependence of P and ¢y on time history, spatial inhomogeneities, changing medium
density, and field intensity leads to nontrivial behaviour in the propagation of light. For
small electric field amplitude and no resonance between the electric field and the medium,
P depends linearly on E which is expressed as

P(x,t) = eox(w)E(x,1). (1.1.3)

This is true for an isotropic medium. The susceptibility x(w) is in general not a constant
and depends on the oscillation frequency of the electric field. When light enters a medium,
it does not respond instantaneously, but rather captures the electric field at previous
times. This memory effect, which is the embodiment of causality, is in optics called
temporal dispersion, or just dispersion. In an isotropic and homogeneous medium the
memory effect is captured by writing

P(x,t) = &g /t dt’'x(t — t"E(x,t'), (1.1.4)

or it can be written in a shorter form as P = ¢pxE. In nonlinear optics, the optical
response can often be described by generalizing (L.1.4])) by expressing the polarization P
as a power series in the electric field as

P=coxV :E+eox? : EE 4+ 0x® : EEE + . . ., (1.1.5)



where (™ is known as the n-th order nonlinear optical susceptibility. In a vector notation
we are using, the terms x (™ become tensors of rank n+1 and the tensor operation : is called
a contraction of tensors leaving a vector as an outcome. One can also write the equation
as convolution integrals, where the first term on the right hand side would have the
same form as (1.1.4), the second term would involve two convolution integrals, the third
term would have three and so on. Writing it in such form represents the most general
relationship between the electric field and the polarization. The first term defines the
usual linear susceptibility, the second term is the lowest order nonlinear susceptibility and
so on. Because the optical nonlinearities are small, this procedure is useful, for example
when applying perturbation theory. The experimental discovery of the equation (1.1.5)
had to wait until the development of powerful lasers as we discussed earlier. Physicists like
Maxwell, Hertz, Lorentz or Drude lacked the experimental stimulation, but the stimulated
emission of light changed this. There are many generalizations of the classical laws of
optics to the regime of intensities where nonlinear effects are not negligible. The study of
nonlinear susceptibilities of the structure of matter is of intrinsic interest as well.

It should be noted that the power series expansion expressed by does not
necessarily need to converge. In such circumstances different procedures must be used
to express the relationship between the material response and the applied electric field
amplitude. A resonant excitation of an atomic system is one such circumstance, where
a significant fraction of the atoms can be excited from the ground state. There are,
however, some non-resonant conditions, under which a strong photoionization can occur
and equation loses its validity. This happens because the strength of the applied
laser field becomes comparable to the characteristic atomic field strength.

The linear, or the 0-th order nonlinear susceptibility, determines the paths of light
rays. The knowledge of this behaviour gives insight about the nature of the material.
One important thing to emphasize is that rays will turn away from regions of smaller
and toward regions of greater refractive index. This property is the basis for Snell’s
law in optics. We have defined earlier the refractive index from the susceptibility to be
n(w) = /1 + x(w). This formula suggests that as the susceptibility depends, in general,
on the oscillation frequency of the electric field, so does the refractive index. For light
generated by a laser, one finds that the refractive index depends on the light intensity or
in other words the amplitude of the electric field. This can be seen from formula
as well. Recalling the property of light bending towards higher refractive index, we can
conclude that the intensity dependent index will tend to focus light into areas of high
light intensity. This increases the intensity, creating an even larger index, which focuses
light even more strongly. One can see that this runaway effect tends to quickly create a
local high intensity and is capable of destroying the material.

As we mentioned, for an isotropic, homogeneous medium, only the first term of
is significant and the polarization varies linearly with the electric field. However, for
materials with non-negligible change in the refractive index in response to an applied
electric field, also called Kerr effect, the third term in ng) is significant. The
even-order terms typically dropping out due to inversion symmetry of the medium. More
details on this subject will be provided in the summary of paper 3. It turns out that the
second-order nonlinear optical interactions can occur only in noncentrosymmetric crystals.
In other words, in crystals that do not display inversion symmetry. Materials like liquids,
gases or glass and many crystals that have the inversion symmetry, can not produce
second-order nonlinear optical interactions. For such materials, Xég vanishes. On the
other hand, third-order nonlinear optical interactions can occur for both centrosymmetric



and noncentrosymmetric media. In this case it is usually assumed that the nonlinear
polarization is restricted to the Kerr effect. This leads to the simplified formula

P= €0XEE + EQ?7E : ]'__‘3]5)7 (116)

where 7 is the Kerr coefficient, which is a material property. The expression (|1.1.6) goes
directly in this form into the light propagation equation derived from Maxwell’s equation,
where the unknown function is the electric field. It thus becomes a nonlinear partial
differential equation.

Now, how is it, that nonlinear optics is so accessible to theoretical analysis when
compared with other areas of nonlinear physics? The main reasons are that at the light
intensities available nowadays, the coupling coefficients from ([1.1.5) are small. Next rea-
son is that the frequency spectrum of the EM field is concentrated around a discrete
frequency (narrow band spectrum). Thanks to these properties one can remove fast space
and time scales from the equation using perturbation techniques which leads to signifi-
cant simplifications. The light and matter can be thought of as a system of uncoupled
oscillators up to the first order of approximation. The variables of light and matter obey
linear equations and light consists of wavetrains of the form

A(x, t)elkx=wb, (1.1.7)

where A is the amplitude, k is the propagation direction of the light, x is the position
vector, w is the oscillation frequency and ¢ denotes time. The sources of oscillation in
the matter are atomic and molecular vibrations, rotations, acoustic waves or conduc-
tion electrons as it was discussed earlier. The nonlinear terms are one or more order
of magnitude smaller, but it does not mean they are negligible and can have long-time
and distance effects. However, only a certain subset of all possible linear and nonlinear
interactions between different oscillators are important, especially those that satisfy the
resonant conditions. This subset represents a finite number combinations of oscillator
models. Since the solutions can be represented as a sum of discrete wavepackets
with localized frequency spectrum, the oscillation term represented by the exponential
varies much faster in space and time than the amplitude. This allows us to conclude the
inequalities 0*A/0t? < wOA/Ot and 9?A/Dz* < k,0A/Dz (k, is the z-components of the
vector k). Consequently it means that the amplitude A of the wavepacket satisfies an
equation containing only low powers of derivatives, typically the first order derivatives.
The usual distance and time units for light waves are 27 /w ~ 107'° s (order of femtosec-
onds) and 27/k, ~ 107® m (order of micrometers). The amplitude can vary in times
between 1072 s (nanoseconds) and 107'? s (picoseconds).

One of the primary goals of this theory is to write down the equations that govern
the amplitude A. These equation are in general nonlinear, but they often have the form
of nonlinear equation about which is much known. One such equation is the nonlinear
Schrodinger equation (NSLE), that is useful for fiber optics and nonlinear waveguides.
There are many perturbation techniques that help us to obtain these amplitude equations.
We are going to introduce one standard perturbation procedure, called method of multiple
scales, or MMS in short. It is used to derive the amplitude equation from the governing
Maxwell’s equations.

1.2 The method of multiple scales

Physicists, engineers and applied mathematicians face today many problems involving
nonlinear equations, variable coefficients or nonlinear boundary conditions at complex



boundaries which hinders the enquiry of exact solutions. New phenomena occur in non-
linear problems that we do not see in the corresponding linear problems. Therefore, the
purpose in the study of nonlinear problems is to aim attention on the features of nonlin-
earities that are the grounds for new phenomena, rather than to introduce methods to
improve the accuracy of linear methods. Developing a comprehensive theory of nonlin-
ear phenomena is often out of the question because of the complexity of mathematical
problems associated with nonlinearities.

While learning about differential equations, one quickly exhausts the few types that
can be solved analytically, or in closed form using elementary functions. Linear higher-
order partial differential equations are reducible to first or higher-order linear, homoge-
neous equations with constant coefficients by separation of variables. There are several
directions after this: approximation of solution using formulas or advanced theory. In
order to solve these problems, we are forced to reach for a sort of approximations, numer-
ical solutions or a combination of both. For something less than complete generality, one
practical approach was to settle. Instead of studying the global behaviour of solutions
of nonlinear problems, one seeks nonlinear solutions in the vicinity of (or in other words,
perturbations around) a known linear solution. This is the basic idea behind perturba-
tive solution of a nonlinear problem, or perturbation methods. Perturbation theory was
at the beginning used to solve otherwise unmanageable problems in the calculation of
the motion of planets in the solar system [L0]. This motion was described by Newton’s
gravitational equations which explained the phenomenon with two astronomical bodies.
But when a third body was introduced, a computational problem arose. Rising demands
in the accuracy of solutions to Newton’s gravitational equations were a consequence of,
among other things, astronomical observations. This led to several notable mathemati-
cians in the 18th and 19th century, such as Lagrange or Laplace, who also generalized the
perturbation methods. These two mathematicians promoted the view that the constants
involved in the motion of the planets around a star are perturbed by other planets and
that these constants are a function of time [I0]. Accordingly, the name for the theory
became perturbation theory. It was first studied by Laplace, Poisson and Gauss and the
calculations could be done with a very high accuracy. A big triumph of perturbation
theory was the discovery of the planet Neptune by Urbain Le Verrier. The calculations
were based on the deviations in motion caused by the planet Uranus [10].

Gradually, to solve new problems arising, perturbation methods were even more de-
veloped, adapted and used. Especially during the development of quantum mechanics in
the early 20th century. A quantum perturbation theory was established by Paul Dirac
in 1927 in order to find out when a particle is emitted from radioactive elements. This
theory became later known as Fermi’s golden rule [I1]. The quantum notation in this
perturbation theory allowed to write the expressions and formulas in a more compact
form, which made the theory more accessible. This led to its much wider applications. It
was known in the late 20th century, when chaos theory was developed, that unperturbed
systems were integrable systems and perturbed systems were not. This immediately led
to investigation of nearly integrable systems. Prior to that, nonlinear systems that were
solvable only with perturbation theory, were, in fact, integrable. It represented a climatic
discovery because it allowed to obtain exact solutions. One could now compare the re-
sults of perturbation series with the exact solutions which helped to resolve the meaning
of perturbation series.

Many who are using perturbation theory successfully, view it as a bag of given formulas
that work even though they are not always justifiable. Its infamous reputation is largely



known also by those who refuse to use it because it allegedly lacks mathematical rigour.
But the separation between perturbation methods and other approaches (e.g. geometrical
analysis) is a deception of the true essence of the subject. It was due to the definition
of asymptotic series that this was realized. Before applying a perturbation method, one
should always at the same time consider the existence and the uniqueness of the solution,
the geometry of the solution, bifurcations or other factors that might have an impact on
the solution.

It is common to teach perturbation theory to people that have not yet mastered the
methods of proof that are needed to show the existence of solutions to which approxima-
tions are found. It is because the demands for perturbation theory are from the extremely
applied end of mathematical spectrum and because of the nature of the theory that is
almost entirely informal in content. It is where mathematical theory interacts with prac-
tical computational methods. One might say that perturbation theory makes it possible
to appreciate the conditions where these practical computational methods fail. From this
point of view, a user of mathematics is able to acquire important mathematical skills as
an ability to read a theorem and extract the significance of its applications without a
need of a proof. And from the other end, it can help a mathematician who has some
appreciation for a need of a proof, while studying problem solving with proofs coming
later, to feel at ease when the proofs are come across.

As the name perturbation methods suggest, there are more than one method used in
this theory. According to these methods, the solution to the nonlinear problem is repre-
sented by the first few terms in the perturbation expansion. The perturbation expansions
can be useful for both qualitative and quantitative representations of a solution, although
they can be divergent. Sometimes even more useful than uniformly or absolutely conver-
gent expansions [12]. A straightforward expansion in powers of a parameter can break
down in some regions of nonuniformity which is more of a rule rather than an exception.
To remedy this problem, a number of techniques have been developed by physicists, en-
gineers and applied mathematician working in different branches of expertise. Some of
these techniques can be viewed as a different interpretation of the same idea while oth-
ers are entirely different. The idea behind perturbation methods is that a perturbative
solution becomes applicable if it is in a close proximity of another problem that we know
how to solve. A solution to a simpler problem is then studied and utilized to express the
solution to a more difficult problem in terms of the simpler one with a small correction.
This procedure creates a sequence of problems easier to solve in the sense that when we
find a corrected approximation, the process is repeated to obtain a better approximation.

A common feature of them is that the solution is represented by the first few terms
in the asymptotic expansion, as mentioned earlier. The expansions are carried out in
terms of a parameter ¢ which is usually small and appears in the equation. It may be
introduced artificially in the equations where it represents a dimensionless amplitude of a
perturbation. The perturbation expansion is then with respect to the small parameter e.
It is then easy to see, that the accuracy of this expansion gets better for smaller values
of . Such expansions are called parameter perturbations. The zeroth order terms are
typically a solution to the linearized version of the nonlinear problem. The coefficients in
the asymptotic expansions are obtained as solutions of sequences of linear problems. A
uniformly convergent Taylor series in ¢ in its domain of analyticity is used to develop the
relevant quantities. The expectation of the solution to be analytically dependent on the
parameter ¢ is justified by the parameter involved in the differential equation together
with the boundary condition in an analytic way. Solutions to linear equation that contain



inhomogeneities involving previously calculated lower order quantities, produce the higher
order quantities. Alternatively, instead of a parameter, the expansion may be based on a
coordinate. These expansions are called coordinate perturbations.

Perturbation problems are often divided into regular and singular perturbation prob-
lems. The difference between the two is in the role of the perturbation parameter in the
equation.

In a regular problem, the asymptotic expansion is obtained from a straightforward
procedure that leads to a hierarchy of differential equations with boundary conditions for
each term in the expansion. It is called the perturbation hierarchy. The hierarchy, or
system, is solved term by term recursively with a gradual improvement in the accuracy
as ¢ gets smaller in the whole domain of interest. The perturbation expansion must
also be valid uniformly. Otherwise if the expansion is nonuniform and it persists in the
approximations of higher orders, then it leads to a singular perturbation problem.

In a singular perturbation problem, the perturbation parameter € multiplies the high-
est order derivative in the differential equation, or the highest power in an algebraic
equation. For this reason, the solution of the leading order of the equation obeys a lower
order equation that is not satisfying the boundary conditions. This, of course, causes a
failure in the perturbation hierarchy where at some layers at the boundary or inside of
the domain, the procedure fails. Therefore is this kind of a problem also called layer-type
problem. Problems, mainly in dynamical astronomy, were the starting points of singular
perturbation problems for over a century. It helped to develop and resolve the issues
involved within the singular case.

If the system is solved over an infinite domain and contains small terms that are cu-
mulatively building up, then regular perturbation problem also fails. There are, however,
perturbation methods that work even in these kind of situations. They are the method of
averaging and the method of multiple scales both of which are used to derive asymptotic
expansions while remaining valid in the far field.

There are many different perturbation methods, out of which the most known are:

e the method of strained coordinates

e the method of matched composite and asymptotic expansions
e the method of averaging

e the method of multiple scales

Usually, in various textbooks, these techniques are presented through simple but useful
examples from physics and applied mathematics. The examples mostly involve ordinary
and partial differential equations from solid mechanics, fluid dynamics, quantum mechan-
ics, plasma physics and nonlinear optics. These differential equation include equations
or are included in problems like the van der Pol oscillator, the Duffing’s equation, Klein-
Gordon equation, Earth-Moon spaceship problem, supersonic flow past a thin airfoil, the
time-dependent and the nonlinear Shrédinger equation (NLSE) [I3][14][15][16][17]. The
last two examples are from quantum theory which is arguably the best description of
reality we have so far. Perturbation methods are tools most used in quantum theory, for
quantum electrodynamics, these methods are essentially the only tool available. Quantum
theories are more or less known for their perturbation expansions.

But let us return to introduction of one particular perturbation method that we use
in one of our papers. We are going to focus on this method, which is widely used in many



areas of applied science. Method of multiple scales, or MMS, is one of the two prominent
methods that take into account small cumulative effects of perturbations over a larger
period of time. As opposed to other perturbation methods, MMS features the nonexis-
tence of a limit process expansion for long times. It leads to writing the solution in a
form of a general asymptotic expansion. Historically, an astronomer Lindstedt proposed
a method, also known as Poincare-Lindstedt method, for calculation of periodic solutions
whose generalization is MMS [I8]. One such periodic solution comes from a problem of
a pendulum as a function of amplitude when the amplitude is small. MMS allows us to
calculate the period of such pendulum. It can be also used to determine how the funda-
mental frequency of an oscillator varies with the nonlinearity or calculate the exchange of
energy between weakly coupled oscillators through nonlinearities in the equations [19].

However, one can find different views on the applications of the method and its lim-
itations. It can therefore appear that the various descriptions of the method are quite
different, depending on the author’s views. One view, for example, presents the method
in a way which is very effective and allows to take the perturbation expansions to a higher
order in terms of the small perturbation parameter that would otherwise be not possible.

Whether one finds MMS is successful or not, in any given situation, does it not only
depend on the nature of the problem, but also on what one asks the method to provide.
Most perturbation methods, including MMS, were originally designed to find some form
of analytic solution to problems of interest. This is in particular true for application to
problems involving ordinary differential equations. Amongst all the perturbation methods,
MMS was not the one that received most of the focus from the authors for many years.
Although it was always regarded as with a great potential. Like all the other perturbation
methods, MMS also underwent many changes and adjustments during the years which
made it one of the lightest accessible and comprehensible tools. One of these changes was
to extending the number of scales from two to as many as one likes. This adjustment
made it possible to reach the desired accuracy of the asymptotic solution and to widen
the applicability of the method.

The method of multiple scales is, among other things, a tool for investigating dispersive
wave equations. As such a tool, it has a long pedigree and deep roots. It appears
in most textbooks on general perturbation methods and in all respectable textbooks
focused on singular perturbation methods. There are other perturbation methods that
have been applied to the problem of dispersive wave propagation, but most such methods
rely on a deeper and more extensive mathematical machinery as compared to MMS. In
order to apply these various perturbation methods to any given situation, very similar
restrictions has to be imposed on the wave equations of interest. Thus, to decide which
of these methods to apply, is to some extent a matter of personal taste and mathematical
sophistication.

One of the methods that was developed in order to unify, systematize approaches with
more mathematical rigour to solve problems that were previously solved by perturbation
methods is center manifold theory (CMT). This theory arose to remedy the nature of
perturbation methods in general, that is its vague domain of applicability, where the log-
ical relations between the formulas are not altogether clear. To introduce more rigour,
CMT developed an approach backed by geometry and useful mathematical theory. Con-
sequently, it is interesting to compare the CMT with MMS. Perhaps the most obvious
difference is that the CMT puts very little importance on the size of various physical
effects. In MMS are these effects expressed with the help of the perturbation parameter
e. However, center manifold analysis requires to pinpoint the dominant terms in a given



linear operator and the perturbation terms. These terms are various nonlinear terms or
effects that vary slowly and regarded as perturbation terms. Next, the center manifold ap-
proach uses iterative refinements to generate higher order approximations. Nevertheless,
some derivations such as evolution equations for spatial patterns or for wave modulation
are traditionally done using MMS, but can also be handled by CMT.

When it comes to complexity and the level of education one must have, to be able
to use these methods, the method of multiple scales appears much more available and
approachable with a comparably wide range of use, as we will demonstrate. CMT studies
equilibrium points of the dynamical system on which a center manifold is based. One
starts with representing the equation in a form of a differential equation operator. The
solution space of the linearized equation is decomposed into a stable subspace. This is
done through identifying the eigenvalues and eigenvectors of the linearized dynamical
system. Based on the eigenvalues, the stability of the eigenspace is determined and the
systems dynamics near the equilibrium is completely characterized. The center manifold
is calculated by iteration and at the end, the original system is restricted on the obtained
manifold and solved as a lower dimensional problem.

Nayfeh in his paper [20] analyzed the nature of Hopf bifurcations in retarded systems
modelled by nonlinear homogeneous ordinary differential equations with discrete time
delay. The analysis was done using both the CMT and MMS in order to compare the
two methods. He concluded that the method of multiple scales seemed to be simpler
in a sense that it could be directly applied to the retarded differential equations. To
compare with CMT, the retarded equations need to be converted into operator equation
in a Banach space. Since the Banach space does not have a natural inner product with a
norm, one also needs to find a tool that acts like an inner product. Then one has to define
the adjoint of the linearized operator, perform the projection on the center manifold and
obtain the normal form of the dynamical system on the center manifold. It is not hard
to see the clear difference in the complexity of the two methods, their practical use and
approachability.

In contrast to CMT, the method of multiple scales starts with a generalized version
of an expansion. Coordinates (variables) for each region (in time and space) that are
independent of each other, are separated. These separated coordinates are called scales.
Scales are introduced to be either fast-scale or slow-scale variables. It is important to
emphasize, that these variables are independent of one another. The given equation
is then transformed into a sequence of partial differentials equation even if the original
equation was an ordinary differential equation. The sequence of differential equation is the
previously mentioned perturbation hierarchy. Each level in the hierarchy is then solved
recursively where each solution represents a correction to the solution found earlier. If
one would carry on with this procedure indefinitely, the exact solution would be obtained.
In the process of solution, the independent variables introduce some degree of freedom
which is then used to remove so called secular terms from the equations in the hierarchy.
Secular terms impose constraints on the approximate solution. When these secular terms
are untreated, we find that these corrections can exhibit an unbounded growth in time.
In this case, the small perturbation has no longer a small effect but a larger one if time
gets large enough. At every step in the perturbation hierarchy, we get one equation in
a form of a condition for the amplitude that we introduced as a part of the solution to
the linearized problem. These equations come from the effort to eliminate secular terms.
At the end of the procedure, the equation are joined into one using the perturbation
expansion and we get a simpler equation for the amplitude which is easier to solve than
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the original problem.

To gain a better understanding for the method of multiple scales, we will now present
a demonstration of the method on a simple initial value problem for a 2nd order ordinary
differential equation. The problem is picked from the lecture notes by Per Jakobsen [21].
The procedure presented is the way the method is used in one of our papers.

Consider a cubic oscillator also known as the Duffing’s equation

y'(t) +y(t) = ey’(t), t>0,
y(0) =1
0

: (1.2.1)

where ¢ is the small perturbation parameter. The first step in MMS is to introduce a
function with scales

y(t) = h(to,t1,ta, .. .)|tj:5jt , (1.2.2)
together with the expansions
d 2
Fri O + €0, +°0p, + ..., (1.2.3)
h=ho+h +hy+.... (1.2.4)

These expansions say that a function h; varies on the time scale T; = €77. In other
words h; =y (¢7t). The more functions h; we obtain, the better can y(t) be represented
for larger times and thus, better approximation for the solution in a form of asymptotic
expansion.

Inserting these expansions into the differential equation ([1.2.1)) and expanding every-
thing in sight, we get

(O + €0y, + %0, +...) (O + €01, + %01, +...) (ho+ h1+ha+...)
=e(hog+hi+ha+...)°,
J

Orotoho + ho + € (Opgioh1 + h1 + Ogge, ho + Oryioho)

+ &2 (Oyy1oha + o + Ouye, b1 + Opyight + Oyt ho + Osyey ho + Ouyrgho) + - . .
= chy + 3e*h3h;. (1.2.5)

Matching the expressions for the different orders of € from both sides of the equation gives
us the following perturbation hierarchy to second order in ¢

order €° : Oy,ho + ho = 0,
order €' : Oysoh1 + hy = hi — Oy, ho — Oryi0ho,
order 52 . atotohg + hQ = 3h(2)h/1 — @[)tlhl — 8t1t0h1 — at0t2h0 — 8t1t1h0 — 8t2t0h0. (126)

The sequence of equations above is the perturbation hierarchy. Observe a common differ-
ential operator appearing in the equations £ = 0y, + 1.

There are many different approaches how to deal with these calculations depending
on the authors that practice the method of multiple scales. It comes down to how do we
treat the function h(tg,t1,...). A particular way of doing these calculations is followed if
one takes the function h seriously. It is done in most of the textbooks. The approach we
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will use is not the same since the function we actually want is y, not h, where the relation
between the two is defined in . This will make the calculations distinct from what
we can find elsewhere about this subject. Our approach is efficient and allows to go to
orders beyond 2 avoiding the huge amount of algebra involved in the calculations.

We will not consider h as a serious multivariable function and one consequence of that
is keeping the higher order partial derivatives 0;0;h;, and 0;0;hy separate from each other,
as we can see in the perturbation hierarchy. The equality of these terms is not used to
simplify the expressions. The other consequence is that we disregard the initial conditions
at this stage when we solve the hierarchy. The initial conditions are going to be used at
the end of the calculations.

Let us proceed to solve the equations in the perturbation hierarchy. At order £ we
have the solution

ho(to, t1,.. ) = Ao(tl, tg, .. .)€it0 + (*), (127)

where (x) is the complex conjugate of all the preceding terms. One feature of multiple
scales is the use of general solution of differential equation at order €°. For the other
orders, where partial differential equations appear, it will be different.

Note that the formula tells us how hy depends on ty, but not on the other
variables 1, t, . ... Also, the integration constant Ay depends only on the other variables.
The form of the formula tells us as well that the oscillatory term e’ varies slower than
the function Ay because the variables ¢y and ¢; are defined as ¢ty = ¢ and ¢; = t. Thus
t1,1s9,... are slower time scales than t.

Proceeding to the next order in (1.2.6), we insert (1.2.7)) into the right hand side of

the ! order equation and obtain
Dnoteh1 + h1 = (3] Ao|* Ao — 200, Ag) €™ + Aje®™ + (). (1.2.8)

Observe that this equation is a harmonic oscillator driven by a force with frequency 3 but
also 1 which is the resonant frequency of the oscillator. Solving the equation including the
homogeneous solution means linear growth and eventually breakdown. Breakdown is what
we try to avoid with multiple scale approach. The factor in front of the resonant oscillatory
term is called secular term. These terms cause growth and breakdown. Fortunately, we
have the freedom to remove the secular term by postulating that

3i
O, Ag = —5|A0|2A0. (1.2.9)

With this condition, the ! order equation simplifies to
Orotoh1 + b1 = Aje®™ + (x). (1.2.10)

One of the next consequences of treating h differently is that the general solution of the
homogeneous part of the equation ((1.2.10)) is disregarded. In fact, it is disregarded for
all the equations in the hierarchy except the €% order. Solving we take only the
particular solution

hy = —%Age?’”o + (%). (1.2.11)

We now insert h; into the next order equation in the perturbation hierarchy, the 2 order
and find

3 )
8t0t0h2 + hy = <—§’A0’4A0 — 2’i8t2A0 — 8t1t1A0> etto + (*) + NST, (1212)
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where N ST stands for nonsecular terms. The reason why we do not bother calculating
precisely these terms, is that we are not planning to go beyond the €2 order. The only
terms needed at this order are the secular terms we want to remove. To remove them, we
postulate

3i [
(3t2A0 = E‘Ao‘LLAO + §at1t1Ag. (1213)

To summarize, what we have so far is

) 1 . ..
h(tg,tl,tg, .. ) = Ao(tl,tg, .. .)6“0 — §A863lt0 + (*), (1214)
and
3
On Ao =~ Aol* Ay, (1.2.15)
3 i
atQA() — E|A0| AO + §at1t1A0. (1216)

We started with one differential equation and ended up with two coupled differential
equations. There would be even more if we decided to go to higher orders. The equation
for 9;,Ap can be simplified by removing the derivatives in the right hand side using the
equation for 0y, Ay by taking its derivative with respect to ¢;. This leads to the system

3t
O, Ao = —5|A0|2A07

151
8t2A0 = _1_6‘A0‘4A0. (1217)

One thing to observe about this system is that it is overdetermined. We have one function
Ap and two equations. Going to higher orders, the system would get even more overde-
termined. Typically, overdetermined systems have no solutions, which means that under
normal circumstances, the function h(t,t1,...) does not exist. But we treat the function
h differently in our setting. For systems of 1st order partial differential equations like
we can do a cross derivative test to check whether a solution exists. Taking the
0Oy,-derivative of the first equation and J;,-derivative of the second equation we get

151 45
8t2t1A0 — —E (21408152140143 + A(Q)ﬁtQAS) - —3—2|A0|6A0,
151 45
O Ao = = (3A20,, Ao (Ap)? + 2A5A30,, Ay) = —§]A0|6A0. (1.2.18)

The system is solvable according to the test, so the function h does exist. Or at least in
two variables t1,t5. To check if it exists also for t3, we would want to remove the secular
terms for the €3 order equation and perform the cross derivative test with all 3 equations
for Ag. In fact, if this was done, one would find that no matter how many orders one
would take, the system would be solvable and the function h would exist. This is, of
course, thanks to the current example we are solving. In general, we would not be so
lucky with the existence of the function h. This fact is the reason why we are not taking
h seriously as a multivariable function.

On the other hand, the nonexistence of the solution to the perturbation hierarchy is
not a serious issue because it is actually the function y(¢) we care about, not h. Our aim is
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to find the solution to the original equation and the existence of h is only of a theoretical
interest. Inspired by this realization we define the amplitude A(t) by

At) = Ao (t1, 1o, .. -)’tjzgjt . (1.2.19)

Using (|1.2.2) and ([1.2.14)), the perturbation expansion for y(t) yields

y(t) = A(t)elt — e%A?’(t)e?”'t + (%) + O(2). (1.2.20)

And to get the equation for the amplitude A(t), we multiply the first equation in ([1.2.17)
by € and the second equation by £ and add them up. We get

19 (8,5114() + %|A0|2A0) + 82 <8t2A0 + %|A0|4A0) = O,

31 152
(at0+gat1+g2at2+...)AO+5321A0|2A0+521_gy,40|4140:O,
U
d 31 157
—A=—c|APPA - 2 |AIA. 1.2.21
" e 1Al e 1 4l ( )

This is an amplitude equation. The amplitude equation determines the amplitude which
then determines the perturbation expansion for our solution to the original equation
through that is uniform for ¢t < e73. Observe that the amplitude equation (to-
gether with a given set of initial conditions that are yet to be determined) has a unique
solution regardless of the solvability of the overdetermined system ([1.2.17)). Thus, the
cross derivative test is unnecessary to perform.

At this point we can see that instead of solving a 2nd order nonlinear ODE for a
real unknown function y(t), we need to solve a 1st order ODE for a complex function
A(t). There are two reasons why the second alternative is better. Firstly, it is possible
to solve analytically whereas it is not the case for . On the other hand,
this feature of the amplitude equation may disappear for higher orders in € because of the
more terms in the amplitude equation. Amplitude equations for many different equations
share the same mathematical structure. Therefore solving more problems through this
method helps to get insight into an amplitude equation and can be useful in other different
situations.

Secondly, there is a difference between solving and from a numerical
point of view. Numerical solutions require a carefully chosen time step that is bound by
the physical context of the problem. In our case, the time step for the linearized form
of is constrained by the oscillation period which is of order 1. For the amplitude
equation, the time step is constrained by the period e!. This makes it much quicker to
numerically solve ((1.2.21)) since we can take ¢~ !-times less time steps. This difference can
be significant since € is small. Tt also makes MMS a tool for reformulation of a problem
such that it is possible to solve a weakly nonlinear ODE or PDE with a help of a fast
numerical method.

The last thing left to do is fitting the initial conditions. We use truncating at
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order € together with the conditions from to get the following equations
1
§(0) = A(0) = == A%(0) + (5) = 1,
3t 3
/0 =iA© - & (F1A0PAO + §40))
o (154 4 9 5 .3
—&" | 1 1AOFA0) = 1£1A0)FA(0) | + (+) = 0, (1.2.22)

where we used the amplitude equation to simplify the condition for the derivative and
disregarded the €* term after the substitution. Since the unknown A(0) is a complex
number, we can treat it as two unknown variables; the real, and the imaginary part. With
the two equations, the system ([1.2.22)) represents a 2 by 2 system of nonlinear algebraic
equations. It can be solved numerically, for example, using Newton’s iteration starting
with the solution for ¢ = 0, where the solution is easily obtained being A(0) = 1/2. This
will give us the correct initial condition for the amplitude equation up to order 2.

We have demonstrated MMS on an example of a nonlinear cubic oscillator. This is
only one face of the method from many. Similarly, other examples are solved introducing
more than one amplitude. In the case of a nonlinear system of ODEs or PDEs, one must
use a help from linear algebra, in particular Fredholm’s alternative theorem, or obtaining
the eigensystem of a matrix in order to solve the perturbation hierarchy. For singular
perturbation problems, one needs to introduce appropriate transformation of the variable
and then apply multiple scales.

It is clear that the MMS can be applied to many different situations where direct
approach of perturbation expansion creates nonuniform expansions. In various problems
with nonlinear PDEs and ODEs, different amount of algebra is required to construct
and solve the perturbation hierarchy. In textbook examples, like the one we did here, the
algebra is manageable. However, often in real world situations, it can be more challenging.
In our third paper presented in this work, it is such a case. It illustrates the possible
difficulty when applying MMS to nonlinear optics through the derivation of the amplitude
equation for nonlinearly polarized light pulse in a dispersive medium. In our third paper,
the nonlinear equation we are solving comes from the Maxwell’s equations.

MMS became so popular in the 1970’s, that it has been discovered over and over
again nearly every half year. It has been done so in many parts of science such as physics,
engineering or applied mathematics. Let us list some of the areas where it has a prominent
role.

The problems that were analyzed in the 1960’s and 70’s are weakly linear and nonlinear
vibrations governed by 2nd or 3rd order ODEs [22][23][24]|25], nonlinear oscillations in
differential equation with slowly varying coefficients [26], turning point problems for linear
ODEs [27], linear equation with variable coefficients [28], the effect of the scales on an aging
spring [29]. Another problems include the effect of cosmological expansion on particles
described by inhomogeneous equations with slowly varying coefficients [30], problem of
passing through resonance for an oscillator with slowly varying frequency [31], boundary
value problems for nonlinear differential equations [32] or solving the Orr-Sommerfeld
equation [33].

The earth-moon spaceship problem is one example that is used frequently in the
textbooks to demonstrate MMS [34]. Within orbital mechanics, the problem of a satellite
with a circular or elliptical orbits and a small thrust or drag were analyzed [35][36]. This
led to a problem of a motion of satellite around three bodies [37] or the stability of the
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triangular points in the elliptic problem of three bodies [38]. To analyze the motion
of satellites in systems of bodies became popular and using MMS, even higher order
terms were obtained in this motion taking into account the effects of eccentricity and
inclination [39]. Furthermore, the motion of a satellite with a period comparable to the
period of rotation of the gravitational primary was also studied [40)].

As well as motion of satellites, the motion of missiles with asymmetries was also
investigated. In particular, the nonlinear resonances in their motion [41]. A rolling missile
with variable roll rate was studied by Nayfeh [42], with linear and nonlinear aerodynamics.

From a different part of physics, nonlinear dynamic buckling of imperfect and elastic
dynamic columns of solid was analyzed [43]. MMS was also used to resolve a problem
of travelling wave on a cylindrical and a spherical shell [44] as well as the nonlinear
panel and membrane flutter [45]. The propagation of waves was also investigated in an
inhomogeneous rod [46]. The Klein-Gordon equation was a popular equation to study
using MMS as well [47][48].

As one can see from all the examples above, MMS is widely used to treat numer-
ous problems from orbital, flight and solid mechanics, various other kinds of differential
equations within wave interactions, atmospheric science, plasma physics, hydrodynamics,
fluid dynamics, statistical mechanics or general physics. Nonlinearities tend to appear
in almost every aspect of physics if one goes deep enough into investigating the given

phenomenon. Methods like MMS help to gain more understanding precisely in situations
like this.
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2 Summary of the papers

In this section we introduce the three papers presented in this thesis. In particular, the
leading idea behind them, the methods that are used and the main results.

2.1 Paper 1 - Convergence and completeness for square-well Stark
resonant state expansions

The purpose of this paper is to investigate the completeness of the Stark resonant states
for a quantum particle. In order to explain the problem and how it is related to nonlinear
optics, we start with the physical setup that has a quantum nature. Consider an atom
and an associated electron, which is a quantum particle, located in a square-well electric
potential V' (x), say, due to the nucleus. This system is then exposed to a homogeneous
external electric field with a constant fixed strength . In classical electrodynamics, the
electric scalar potential has as a source, electric charge and is related to the electric field
through the gradient of the potential. So there is an electric field present in the system
at all times.
Since it is a quantum-mechanical system, we are using Schrodinger’s equation (SE)

ih%w(x,t) = Hi(x,t), (2.1.1)

that governs the wave function ¥ (x,t) of a such quantum-mechanical system. In order
to apply SE, one needs to obtain the Hamiltonian H for the system. In other words, the
energies of the particles in the system, accounting for the kinetic and potential energies.
The unknown complex valued function 1 (x,t) that solves SE is interpreted as a wave
function for the system, a function of space and time. It contains an information about the
system. The practical interpretation of the wave function is that it defines a probability
density function when taken its square of the absolute value at each point. The wave
function itself is a product of an exponential depending only on time with a complex
frequency and a function of spatial variables called the eigenstates.

In the context of our system, the external electric field which could be produced by
a laser, is providing energy into the system and drives the particle away from the atom.
Eventually, the electron escapes from the confining but unstable potential. Given this
phenomenon, the eigenstates are growing functions in space and thus not normalizable.
This tells us that it is more likely to find the particle far from the nucleus than closer
because it is more likely that it escaped earlier in time than later. On the other hand, the
corresponding wave functions are exponentially decaying in time. As the name suggests,
a wave function can also be interpreted as a "wave" in a sense that the electron generates
it and creates the probability density field. Since the electron is the only source of this
field, the waves should only be outgoing from the system. Therefore, no incoming waves
are expected. We have just deduced two important properties of the quantum states:
they are unstable and only outgoing. The wave functions satisfying the outgoing wave
condition became known as resonant states, or also Stark resonant states. We have thus
established that the resonant states decay exponentially in time and at each point in time,
they grow in space in the direction of the laser source.

As stated in the beginning of this section, the aim of investigation of this paper is the
convergence and completeness of the eigenstates corresponding to resonant states. An
orthogonal set of functions {¢y}, where k is an index, can be used to represent square
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integrable functions through the expansion

flz) = ; %gﬁk(@, (2.1.2)

where (-,-) is the inner product associated to the domain and the context in which the
problem is set. According to mathematical analysis, an orthonormal set is said to be
complete if the Parseval’s equality || f||* = >,(f, ¢x)* holds for all square integrable
functions, where || - || represents the norm associated to the inner product. When an
orthonormal set is complete, then the expansion for any square integrable function
f converges in the mean square sense to f. In our case, the set of functions are the
eigenstates. It was mentioned earlier that the eigenstates are not normalizable so in
the standard von Neumann sense, they can not be used in such expansions to represent
functions. However, an extended mathematical foundation was developed to remedy
this problem involving rigged Hilbert spaces. This space is flexible enough to also contain
resonant states. Nevertheless, the resonant states can be made normalizable by evaluating
them on a line in the complex plane, as we will later see. In our paper, the completeness of
the resonant states is determined through certain properties and the completeness of the
scattering states. These states are obtained in the same way as the resonant states with
considering both outgoing and incoming waves to the right of the well. Thus they are in
a close relation to the resonant states. In particular, the scattering states are self-adjoint
and the Hamiltonian has an absolutely continuous spectrum that is equal to the real line.
Using the expansion (2.1.2) we also directly investigate its convergence rate through the
asymptotic form of the terms in the expansion.

Let us explain, how is the problem we are studying related to nonlinear optics. We
have learned at the start of this work how nonlinear response to an EM field arises. A
present EM field in a material made up from atoms is induced by the atoms which generate
electric dipoles. The density of these electric dipole moments defines polarization. Then
we found the nonlinear relation between the electric field and the polarization in the
material through optical susceptibilities . If we go deeper into understanding the
issue with the dipoles, we eventually need to reach for quantum mechanics and show how
the susceptibility depends on the dipole transition moments and atomic levels.

An electron in an atom occupies so called atomic levels depending on its energy. In
a ground state, the electron has its minimal energy and can most likely be found in the
first level nearest to the nucleus. Through EM radiation, the electron can gain energy
absorbing photons and jump "higher" (higher means further from the nucleus in this
context) into the next atomic level. These energy gains come in quantified amounts
meaning that there is a precise amount of energy the electron must gain in order to jump.
In the case of jumping to a "lower" level, the electron releases a photon with the same
amount of energy required to jump. Besides the energy eigenlevels of the free atom, there
are virtual levels which represent the combined energy of one energy eigenstate of the
atom and one or more photons from the radiation field.

There is a technique called resonant enhancement that allows us to obtain large values
of the nonlinear susceptibility because the energy levels of free atoms tend to be very
sharp. The whole situation can be visualized by considering the interactions in terms
of exchange of photons between the electrons and the radiation field. For example, an
electron absorbs two photons of frequency w, jumps two virtual levels and on the way
down, it releases a photon with frequency 2w. In resonant enhancement, one of the
real atomic levels is almost coincident with one of the virtual levels and creates a strong
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coupling between the radiation and the atom which than leads to a large nonlinear optical
susceptibility.

Thanks to SE, all of the properties of the atomic system can be described in terms of
the atomic wave function ¢ (x,t). We express the appropriate Hamiltonian of the system
as H = Hy + V(t), where Hy is the Hamiltonian for a free atom and V'(¢) describes the
interaction of the atom with the EM field. It is usually taken as

V(t) = —ex-E(t), (2.1.3)

where —e is the charge of the electron, —ex is the electric dipole moment and E(t) is the
external electric field. We obtain the wave function ¢ (x,t) by solving the SE. It contains
the information from both the atom itself and the external field. The square of its absolute
value of the normalized wave function provides the probability density distribution for the
system. It is also used to obtain the expectation value of observables. By expectation
value we mean the probabilistic expectation value of some measurement. One can think
of it as an average of all possible outcomes of the measurement, where the outcomes are
weighted by their likelihoods which are provided by the wave function. Let us consider A
to be an observable. Mathematically, it can be a self-adjoint operator with respect to the
Hilbert space. Then the expectation value of A in the state described by the normalized
vector ¢ (wave function) is defined as

(A)y = (L |A]¥), (2.1.4)

where (A), denotes the expectation value of A in the state ¢». The notation [¢) is the
Dirac notation of a normalized state vector. Let us say, the operator A is the position
operator in 1D, (Av)(x) = xt(x). Then the expectation value of A is calculated as

W= WAl = [ v = [ ol @L

In general, the atom is exposed to an EM field such that the SE can not be solved

exactly. In such cases, perturbation theory is often adequate to use to deal with the
problem. In order to do so, the Hamiltonian H is replaced with

H = Hy+ oV (t), (2.1.6)

where « is a parameter that varies continuously ranging from zero to one. It characterizes
the strength of the interaction between the atom and the EM field. For = 1 we have
the full physical situation. Following the perturbation theory, we are now looking for the
solution to the SE in the form of a power series in «

Y(x,t) =P O(x,t) + apW(x,t) + 2P (x, 1) + .. .. (2.1.7)

The solution of this form makes sure that ¢)™ will be the part of the solution which is
of order N in the interaction energy V' [49).

Carrying on the perturbation scheme, one finds the solutions to all orders. We then
use these results to describe the linear optical properties of the material. In particular,
the expectation value of the electric dipole moment can be described which is given by

(p) = (¥ [m[ ), (2.1.8)
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where m = —ex is our observable, the electric dipole moment and v is given by the
perturbation expansion (2.1.7) with o = 1. We therefore find that the lowest order
contribution to (p) is given by

(W) = @ [m|y®) + @O [m] ), (2.1.9)

where we assumed that the exact closed forms of all the quantities involved in the above
expression were previously obtained. The expectation value (2.1.9)) is then used to calcu-
late the form of the linear polarization as

PW = N(pW), (2.1.10)

where N is the number density of atoms. From the relation obtained above it is also pos-
sible to calculate the form of the linear susceptibility where one can identify the resonant
and antiresonant contributions to the susceptibility.

Analogously, the expression for the second order polarization is derived in a similar
way. The contribution of the second order to the induced dipole moment for an atom is
given by

and the corresponding polarization becomes P? = N(p®). This procedure is possible
to carry on further to an arbitrary order.

Taking the sum of all the obtained orders of polarization, one arrives at the expression
(1.1.5) with concrete formulas and finds that the first order contains the first power of
the electric field, the second order term contains the second power, and so on [49]. The
expressions derived using this method can also be used for more accurate predictions of
a nonresonant response for atomic systems. But it fails to describe relaxation processes
such as nearresonant response.

We have demonstrated the idea behind the connection between quantum mechanics
and nonlinear optics and how nonlinear optics arises directly from the quantum level.

Let us now proceed to the details of the actual paper. We have already discussed the

physical system which we are considering. The Hamiltonian is expressed by
1
H = — 50 +V(z) —ex, (2.1.12)

where € > 0 is the strength of the external field and V' (z) is the atomic potential that is
modelled by a square well of width 2d and depth 1

{ _‘/07 ’Z’| < d?

Viz) = 0, |z|>d

(2.1.13)

According to the brief characterization of the resonant states we made earlier, i.e. they
must only be outgoing waves, the solution we seek to the SE (2.1.1)) has the form

V(x,t) = P (x)e ™" (2.1.14)

The functions v, (z) are the eigenstates corresponding to the eigenproblem H1, = w,
and which satisfy the boundary conditions

V() -0 when z — —o0
Yo(z) and ¢/ (z) are continuous at = = —d,d

Y, (x) is a purely outgoing wave at x = oo. (2.1.15)
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The solutions we found to the eigenproblem are expressed using Airy functions and their
combinations. An Airy function is a solution to the nonlinear ODE y(z)"” — zy(x) = 0.
One can see that this form emerges in our calculations because of the external field term.
Hence the eigenstates are

alAi(yl(wip)) r < _da
Up(x) =V, (2) = ¢ a2Ai(y(r,wp)) + azBi(ye(r,w,)) —d <z <d, . (2.1.16)
asCit (y1(z,wp)) d < x < oo,

The function in the region d < z is defined as Ci" = Bi + iAi. It is a combination of
the Airy functions that asymptotically behaves as a purely outgoing wave. The functions
y1(z,w) and yo(z,w) are parametrizations of the arguments such that the Airy functions
are in fact solutions to the eigenproblem.

The eigenvalues w, are obtained from the continuity conditions for the eigenstate and
its derivative at both ends of the square-well. Applying these conditions, one gets a 4 by 4
homogeneous system of linear equations for the coefficients a;. The system has nontrivial
solution if the determinant is zero det M(w,) = 0, where M is the 4 by 4 matrix. The
determinant can be expressed in the form

det M(w) = (AoA| — AyA1)(B2C5 — ByCs) — (Ao By — AyBi)(A2C5 — AyCs),  (2.1.17)

where the quantities involved are the Airy functions evaluated at different arguments
depending on the parameters d, e,V and the variable w, for example

Ay = Ai (—(26)'* —d + (w+Vp)/e). To find the zero points of is anything but
easy. What appears as one equation, is, in fact, two because of the complex nature of
the determinant. Also, the count of the unknowns is two, namely the real and imaginary
part of w,. The first thing that comes across the mind is to plot the real and imaginary
part of the determinant as a contourplot det M (w,) = 0. The points where they cross in
the complex plane, are the resonant eigenvalues w,. A system with a particle confined
only in a square-well without an external field would have a finite number of eigenvalues
on the negative real axis corresponding to the bound states. The external field with
arbitrary nonzero strength has a large effect on the energetic spectrum, or the number
and locations of eigenvalues. It causes all the finite eigenvalues to shift a small amount
downwards in the complex plane close to the negative real axis and creates two infinite
families of new eigenvalues. The graph of the contourplot reveals us two infinite families
of eigenvalues, both of them in the lower half-plane. One is located along the positive
real axis, we call it the A-series and they are long-living states since the imaginary part
of wy, is small. The other family is located along the ray arg(z) = —27/3, which we call
the C-series and which corresponds to fast-decaying states since here, the imaginary part
of wy, is large. The finite number of zero points close to the negative real axis are the
previously mentioned perturbed bound states. The same behaviour and locations of the
eigenvalues after "switching on" the external field is also observed with the Dirac delta
potential [50], so we reckon, this phenomenon is generic.

It was possible to obtain the asymptotic formula for the zero points from the asymp-
totic forms of Airy functions. The formula was, of course, not exact, but it provided
excellent initial points that were used in Newton’s iteration method to obtain the actual
ones with arbitrary accuracy.

Now that we have both the resonant states and the corresponding eigenvalues at our
disposal, we focus on the goal of the paper. That is to investigate the possibility of the
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resonant states to be used for the expansion

flo)=>" %%(m)- (2.1.18)

As it turns out, the eigenproblem H1), = wi),, with is not self-adjoint and because
of the complex nature of the eigenvalues, the eigenstates are not normalizable on the real
line. In order to normalize them, we introduce a complex contour £, on which the resonant
states decay and thus, it is possible to normalize them. The contour has the following
form

x r < x.

L=z(z)= { ot eM(z—m) x>, (2.1.19)
where z. > 0 and 0 < # < 7/2 are chosen parameters. Note that the contour serves
its purpose for any chosen parameter within its range. The resonant states decay on the
negative real axis but grow exponentially on the positive real axis. However, evaluated on
the contour, they also decay for x > . and for any angle # within its range. In our paper,
we chose 6 = w/2 and z. > d. In this way, the contour £ is used to normalize the states.
The usual Hermitian inner product for complex functions on the real line is replaced by
a bilinear inner product for complex valued function on the contour L. In situations like
this, it is common to define a bilinear inner product for complex valued functions (®, V)
for a complex contour C as

(®, ) /C B(2)T(2)dz. (2.1.20)

From complex analysis we know that taking the complex conjugate of a complex function
removes its analyticity. Therefore, a natural generalization is a complex conjugate defined
as U(z) = W (z). Inspired by this, we identified p(z) = ®(2(x)) and ¥(z) = ¥(z(z)),
where z(z) is defined in (2.1.19) and with § = 7/2 we get the following explicit formula
for the inner product

(o) = / " olepile)da + i / " ooz, (2.1.21)

— 00

Here, the functions ¢ and 1 are continuous at x = x. but not smooth in a sense that
the first derivatives satisfy lim,_, + 0,9 = ilim,_, - 0,¢ and the same goes for ¢. In
the case of an operator with real eigenvalues and eigenfunctions, the operator is self-
adjoint. The eigenfunctions belong to a real vector space where the usual inner product
is defined. But because of the discontinuity of the derivative of the functions, their
complex nature and the nonpositivness of the inner product (2.1.21), they belong to a
somewhat different vector space than usual. Our goal is to show completeness of the
states and without a self-adjoint operator, we would be in trouble. Having a self-adjoint
operator has its advantage in the form of orthogonality of its eigenfunctions. And without
the orthogonality, the expansion (2.1.18) would not be a reality. Indeed, this would be
the case if not for the bilinear complex inner product (2.1.21)). As it turns out, on the
current vector space equipped with this inner product, the Hamiltonian is, in
fact, self-adjoint (Hy,¥) = (¢, HY). Under the process of showing this, one must use the
discontinuity conditions at © = x.. Thus, the states corresponding to different eigenvalues
are orthogonal. We would like the reader to pause at this point and appreciate this fact
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since it is not obvious at all that given such unusual vector space and inner product, one
would be led to orthogonality and self-adjointness.

Usually, this would prove the completeness but we do not have a Hilbert space. One
would prove it for the vector space we are currently working in, using functional analysis
and constructing topologies. In this paper we are not following this path but rather a one
that leads to weaker convergence.

Having defined the most important mathematical tools, we are ready to perform nu-
merical tests in order to show, how well the expansion (2.1.18)) represents functions. The
main focus was on Gaussians and wavepackets. From previous work done on this topic
using the Dirac delta potential [50] we expected the expansion to converge to the left of
the well. Based on our observations from the numerical tests, the expansion appears to
do so left to the square well but does not converge at the same rate inside the well. In
fact, the convergence seemed slower than exponential because many more terms had to
be included to achieve a satisfactory match. This constituted our hypothesis that the
resonant state expansion converges inside the well.

We next proceeded to the actual proof of this assumption. The way we approached to
the execution of the proof is somewhat more physical than mathematical. To prove the
completeness for the resonant states, we use the completeness for the scattering states of
our system. Scattering states arise when we allow both incoming and outgoing waves as
oppose to only outgoing waves for the resonant states. So in a physical sense, scattering
and resonant states are close to each other. For the Stark Hamiltonian (2.1.12)), the
scattering states are real valued functions and have real eigenvalues and they constitute
a continuous real spectrum. Thus we have completeness for them expressed as

/OO Vo (1), (2 )dw = §(x — ), (2.1.22)

where now v, (z) are the scattering states with w being real. One can illustrate how does
the formula (2.1.22)) help to obtain function representation (2.1.18)). For eigenstates ¢y (x)
of a system with a discrete spectrum, the completeness takes the discrete form

> prl(x)pi(a’) = 6(x — ), (2.1.23)

where it is assumed that the eigenstates ¢y (x) are normalized. Multiplying (2.1.23) by a
function with a compact support f(z) and integrating over the real z’-axis, we get

S 6el) / " f(@)bula)da’ = / " @)oo — o)
> on(@)(f,dn) = f(x), (2.1.24)

where the inner product (f, ) is defined as ffooo f(z)pr(z)dx. Tt is thus demonstrated
this way that completeness leads to an expansion equivalent to (2.1.18]).

The structure of the scattering states is similar to the resonant states (2.1.16]) except
for the region d < x, where we have a linear combination of the outgoing Ci™ and incoming
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Ci™ part:

7r2\detM w)|A1( ($+%)) r < _da
W [(B1A) — BiAy)Ai (p (z + =£12))
(A1A6 — A/IA())BI (/L (l’ + %VO))} —d<x<d,
Yu(T) = X (2.1.25)
i () i (o + 2)
—i (M) G (n (2 +2)) i<,

where 4 = (25) By playing with the formulas, it is possible to split na scattering states
into an incoming and outgoing part, so by this construction we have 1, = 1 +1_, where
Y} is the outgoing part that includes only the combination Ci* and ] is the incoming
part with Ci~. Next, we can use this splitting to split any function f(z) into outgoing
and incoming part f(z) = f*(z) + f~(x), where

1 [ det M (' > w(d
fE(x) = 5 /_Oo dw’ a(w') {:Fz'%] /_OO dw ww@)#(’:)mf’ (2.1.26)
with a(w’') = [°° dz 9. (z)f(z) being the energy representation of f(z). M(w’) is the

matrix of the system of equations coming from the continuity conditions at the boundaries
of the well and p(w') is an expression involving the Airy functions. The parameter £ was
introduced artificially as a correction variable to ensure exponential convergence of the
functions Ci* () for large values of x which are involved in the inner integral in (2.1.26).
These functions decay algebraically, but not fast enough for the integral to converge. For
this reason we introduced a correction in the variable w’. Calculations will be performed
treating £ to be finite and at the end we remove this regularization by letting it approach

zero. The formula (2.1.26]) was obtained using the completeness (2.1.22)) as well as special
rules for the antiderivatives for Airy functions and their combinations.

The goal with the formula is to obtain an expression for f*(z) as a linear
combination of resonant states which would represent the desired expansion (2.1.18]).
First, we decide to focus only on the outgoing part f*(x) and the incoming part is
treated in a similar way. From the form of the expression in (2.1.26) we see that in order
to get an expansion, the inner integral must represent functions that are proportional
to the resonant states (2.1.16). The corresponding integrand is complex and has a pole
at the point w = w’ + i€ in the upper complex half-plane. Through the functions ),
, it also has poles both in the lower and upper half-plane because of det M(w) and
its complex conjugate, respectively. These determinants are part of the coefficients in the
scattering states that ensure the continuity, where they appear in the denominator.

Having an integral over the real axis of a complex valued function with complex poles
immediately invites for the use of Cauchy’s residue theorem. Briefly put, it states, that if
I' is a simple closed positively oriented contour in the complex plane and g is a complex

valued function which is analytic inside and on I' except at the points 21, 2o, ..., z,, then
/g(z)dz = 2mi ZRes(g, 2;), (2.1.27)
r -
7j=1

where Res(z;) is the residue of g at the point z; and is defined as

1 dm—l
Res(g, z;) = Zlglzl] (m — 1)l dzm-1

[(z = 2)"g(2)], (2.1.28)
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where m is the order of the pole z;. Applying Cauchy’s residue theorem to our problem,
we chose a closed contour I' being a half-circle negatively oriented in the lower half-plane,
where the center of the circle is the origin and its radius is R. Choosing to integrate the
integrand found in the inner integral in along ', we can split the integral into
two parts: along the arc and the diameter in the following way

vold) o f Yu(d) Yu(d)
frawvto st = [ [ o w25+ [ s 20,
(2.1.29)

where Cr denotes the arc part of the half-circle. Since the scattering states include
the term det M(w) in the denominator of the coefficients, the integrand has poles being
exactly the energy eigenvalues w; calculated for the resonant states. Using Cauchy’s
residue theorem, we get from ([2.1.29))

/_oo dw () —2 D o ZRes (zpw(x)%—w,wj)

o w—w TiE w—w —1&
~ lim [ dw ww(x)M, (2.1.30)
R—o0 [ w—w Fi§

where there is a minus sign by the sum of the residues term because the orientation
of I' is negative. Upon evaluating the residues, the regulator £ can be safely removed.
After evaluating the limits in the residues, the final outcome will include the scattering
states at the resonant eigenvalues w;, due to the definition of the residue terms ([2.1.28).
This removes the incoming part of the scattering states leaving only the outgoing wave
and turning the scattering states into functions that are proportional to resonant states.
Furthermore, if the integral over Cg in (2.1.30]) vanishes in the limit when R approaches
infinity, then the inner integral in (2.1.26) can be written as a linear combination of the
resonant states and thus, the function f*(z) itself can be written as such. At this point,
we have reached the main point of the proof. The function f* then can be written as

Frx) =" epi(x), (2.1.31)

J

where the coefficients ¢; include the factors from the residues and the outer integral in
and 1;(x) are functions proportional to resonant states corresponding to the
eigenvalue w;. A similar expression can be found for the incoming part f~. The overall
expansion would then be the sum of the expansions for both f* and f~.

The rest of the proof in the article involves evaluating the integral over C'g in (2.1.30))
and showing that under certain conditions, it vanishes in the limit. It is shown by
parametrizing the circular arc with w = Re”. Since we let R to be arbitrary large,
the Airy functions involved in the integrand can be replaced by their asymptotic formulas
for large arguments. These asymptotic formulas also change depending on the phase 6 of
the complex argument dividing the circular arc into two angular sectors. We found that
in the sector —m < 6 < —27/3, the integrand decays exponentially for all z. In the second
sector —27/3 < 6 < 0, however, decays exponentially for z < —d and for x > d, the limit
does not exist. For inside the well, —d < = < d, we found that the integrand decays
independently of the depth of the well V[). Despite its appearance in the final expression
at multiple places, the depth V{ disappears at the end. This may be the main result of
the paper.
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Using the completeness of the scattering states, we have shown the completeness of
the resonant states by obtaining an expansion of a function . In the last chapter of
the paper, we investigate the convergence of the resonant state expansion (2.1.18]) with a
more direct method. First, we determine what contributes the most to the expansion. The
energy eigenvalues are divided into three different series, as we discussed. The perturbed
bound state eigenvalues is a finite set and therefore, it does not contribute. Eigenvalues
belonging to the C-series are located along the arg(z) = —27/3 ray in the complex plane
and tend to have very large imaginary part which means, they decay exponentially very
quickly. Thus we can also rule them out. A detailed investigation of the contribution
from this series confirmed this. So this leaves us with the A-series.

The question we started with was how does the expansion behave for large
indices p. To answer this, one needs the asymptotic forms of the resonant states. They
are made up only of Airy functions whose different asymptotic forms are well known.
First, the asymptotic form of the A-series eigenvalues was found w, for p > 1. To confirm
how accurate the asymptotic formulas are, we compared them with the high precision
numerical eigenvalues found by some iteration method. The region of interest for the
convergence was, of course, inside of the well. Since the well is placed symmetrically
around the origin, we investigated the expansion at the point x = 0. The function
represented by the expansion f(x) is assumed to have its support inside the well too.
With this said, the resonant expansion for f then becomes

b, d d )
f= Z Fp’ where b, = 1,,,(0) /_d f(@)y, (x)dx, N, = /_d Y, (z)°d. (2.1.32)

The asymptotic formulas were then obtained for b, and N, using a Gaussian function for
f and, again, compared with the numerically calculated values with high precision. To
finish with, we analysed the rate of convergence with some estimates choosing a particular
function f. For the simplest choice for f being a constant 1 inside and 0 outside the
well, we could obtain the analytic expression for b,. The resulting expression depended
inversely on V5. Next, we assumed a general function f with its support inside the well
and being zero at the boundaries of the well that is n times continuously differentiable.
The asymptotic formula for b, contains the integral as seen from (2.1.32)), where the
resonant states v,,, are a combination of cosine and sine functions. Solving the mentioned
integral using integration by parts, we get the factor by the x term in the arguments
of the trigonometric functions in the denominator each time we perform integration by
parts. That factor behaves asymptotically as ~ p%. Thus, multiplying the asymptotic
expression by p‘é enough times causes the series to converge algebraically. In fact the
rate of convergence can be estimated to be

bp _n+l ﬁlwn
< 2.1.33

Vo ‘cos <d(37r5p) %> ’ ’

where [ is a constant not depending on p or V; and |f(”)(x)‘ < M, for —d < z < d.
With the formula we have obtained the dependence of the terms in the series on
the smoothness of the target function f and the depth V. The rate of convergence can
then be acquired by dividing two consecutive terms . One would find that the
dependence on the depth Vj disappears.

In this paper we have investigated the completeness of the Stark resonant states for
a system with square well potential and external field. We found that they converge

26



pointwise to the left and inside of the well independently of the well depth V4. Inside
of the well, the resonant state expansion series converge algebraically and the size of the
terms grows as V; '. This means that for a small value for Vj, one would need to include
more terms in the expansion. The algebraic convergence also explains the observation
that the expansion needed to include more terms in order to achieve better match with
the target function.

Exploiting the fact that the resonant state expansion converges inside the well for
any nonzero depth Vj), we propose a similar result for a general potential with a compact
support, e.g. a Gaussian. Such potential could be approximated using several square
wells with different nonzero depths and as such, the resonant state expansion would be
expected to converge here as well, no matter how shallow the potential would be. At the
end, a limit would be taken of the joined square wells approaching a smooth potential.

2.2 Paper 2 - Constructing a partially transparent computational
boundary for UPPE using leaky modes

The propagation of optical pulses in a weakly nonlinear dispersive medium is usually in-
vestigated through the nonlinear Schrédinger equation (NLSE) [51]. It provides a robust
description and is based on the assumption of a weak instantaneous nonlinearity and that
the pulse is composed of a carrier wave with a slowly varying envelope. It can be derived
directly from Maxwell’s equations as an asymptotic expansion in a small parameter in-
cluding higher order correction terms [19]. This can be done using the method of multiple
scales, which we widely described earlier in this work. The small parameter, in this case,
may represent the Kerr coefficient which stands in front of the third power of the electric
field term . Over time, the development of better laser technologies allowed to use
shorter pulses with higher intensities which makes the foundation of NLSE and envelope
equations no longer valid even with correction terms included. Derivation of improved
and corrected equation has been done by several studies [52][53]. But for high-power op-
tical pulses in dispersive nonlinear media, solving the Maxwell’s equations directly is not
feasible. Therefore, NLSE is in this case replaced by a pulse propagation equation which
is a smooth transition from Maxwell’s equations to envelope based models and takes ad-
vantage of well-defined direction of the pulse propagation. There are number of such pulse
evolution equations that differ in assumptions and approximations [54]. However, there
is one that stands out and applies to all equations that are designed to treat the optical
pulse propagating in one direction. The main assumption in this equation is that the non-
linear polarization response (which we discussed to large extent) can be approximated by
the response from portion of the optical field that propagates forward. This replacement
is called the unidirectional approximation. The equation that is derived using this ap-
proximation explicitly is the unidirectional pulse propagation equation, or UPPE [55][56].
It captures the linear and nonlinear response of real materials over a spectrum that is
physically relevant. UPPE provides a correct description of extreme linear and nonlinear
focusing events in the scale of order of magnitude approaching the wavelength of light,
unlike the earlier approaches. Some of the advantages of UPPE is that envelope equation
can be derived from it and can be effectively and numerically implemented.

It was given relatively little attention to, whether it is actually possible to clarify if a
given situation can be treated with the unidirectional approximation. Limits to unidirec-
tional propagation were investigated by Kinsler [57] where he explored the one-dimensional
model and pointed out the existence of backward propagating waves that affect the non-
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linear response for the forward propagating component. This problem was picked up by
Jakobsen [58] where he introduced a method called bidirectional pulse propagation which
is an extension to the unidirectional method and takes over when the basic assumptions
behind UPPE become invalid.

In this paper, we create transparent computational domain to simulate unidirectional
propagation of optical pulses. The transparent computational domain is used to mimic
infinitely large domain. Solution of any scattering problem in such unbounded region is
problematic to tackle numerically since one needs to truncate the domain without having
too much of an effect on the original problem. In order to do so, the truncation should
be easy to implement (numerically speaking) and efficient. The first typical condition
the numerical solution must satisfy for a correct representation of a propagating optical
pulse, is the radiation condition at infinity. Consider a source of radiation (EM waves)
located at the origin of a plane. We assume that this source is the only originator of all
waves and has a compact support. From this basic assumption it is obvious, that no left
moving waves should be to the right of the source’s support and likewise, no right moving
wave to the left of the source. All wave phenomena must satisfy the condition that waves
move away from their source. This condition is called the radiation condition at infinity,
or outgoing waves at infinity and it is the correct boundary condition when describing
wavelike phenomena.

Implementing an infinite computational domain involves some key elements, each
method is bound to consider. When solving a PDE numerically by discretization of
the domain, the computational grid must be truncated in some way. So the main ques-
tion is how to truncate without introducing unwanted artefacts into the computation.
Introducing periodic boundary conditions is sometimes natural to do when dealing with
periodic structures. In problems whose solution rapidly decay with exponential rate,
truncating might be unnecessary as long as the computational domain is large enough.
In contrast, solutions that vary slower at larger distances, one can simply use coordinate
transformation to remap the infinite interval (—oo,00) to a finite interval (—1, 1) using,
for example, hyperbolic tangent. But the domain in problems involving wave equations
are very challenging because the solutions typically oscillate and decay slowly at great
distances. Here, the trick of remapping from infinite to finite domain does not hold be-
cause the solutions will oscillate infinitely fast at the boundary and this a serious problem
for the finite numerical resolution. Instead of a transparent boundary, one gets a hard
reflecting wall. This problem requires a different approach that makes the boundary in
such a way that the waves are being absorbed when striking it, without any reflections
and with achievable resolution.

Numerical methods such as boundary element method, infinite element method or
methods based on truncating Fourier expansions were deployed to deal with this prob-
lem [59][60][61]. The absorbing boundary conditions method (ABC) counts as computa-
tionally effective [62][63]. Lowers order ABCs have a simple implementation, but because
the truncated boundary of the domain is not fully non-reflecting, good accuracy is pro-
duced only for higher order ABCs [64]. Consequently, high accuracy means considerable
computational cost and increase in the difficulty of the implementation.

An alternative approach was found when, in 1994, Berenger transformed the problem
of truncation of unbounded domains and introduced absorbing boundaries for the wave
equations [65]. The main idea was that instead of finding a boundary condition describ-
ing absorption, an absorbing boundary layer was used. This absorbing layer would be
consisting of an artificially absorbing material placed at the edges of the computational
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grid independent of the boundary conditions. It would work the following way: when
a wave hits the absorbing layer, it is constricted by the absorption and exponentially
decays. When the wave is reflected, it will be exponentially small when it returns again.
There is however a problem with this approach. Because of the construct treating the
boundary as the meet of two materials, one expects three reflecting waves. This problem
was solved by constructing the layer such that waves do not reflect at the interface, the
so called perfectly matched layer (PML) [66]. This method is applicable both for elec-
tromagnetism and other wave equations although it was initially created for Maxwell’s
equations and then used for Helmholtz equation and other problems in acoustics [67],
elasticity or hyperbolic problems.

There are, however, problems where good boundary treatment is still missing. For
example high intensity pulses with few cycles in nonlinear optics which have very broad
spectra and spectral propagators are used to solve them. PML uses a finite difference
solver which do not go well together with spectral methods. In this case of spectral
propagators, any finite difference approach is not applicable and boundary treatment is
still a problem. The interaction between highly nonlinear optical pulses and matter tends
to send significant energy toward the boundaries where it must be absorbed to mimic the
propagation into infinite space. In this paper we address this problem in connection with
spectral-based numerical simulation.

The key element of the method in this paper is the introduction of a material outside
the interface of the boundary with an artificial refracting index. Unlike PML where the
layer absorbs, our layer is made as transparent as possible making its refracting index as
close to the index inside the computational box as possible. Thus we create a waveguide
that differs from its outside only by the refracting index. This artificial structure creates
modes that propagate comparatively long along the propagation direction, or close to
the waveguide axis (paraxial) until the waveguide is unable to retain the radiation from
the source prior to its eventual escape, or leakage. The portion of the electromagnetic
energy starts to leak out and is absorbed by the surrounding environment. Modes that
exhibit such behaviour are called the leaky modes. They are characterized by a unique
set of complex valued frequencies where the imaginary part represents the decay rate of
the leaky mode.

The appearance of leaky modes in electromagnetics has a long history. In the previous
paper we described modes called resonant states which are, in fact, a form of leaky modes.
Their common feature is that they both include purely outgoing waves at infinity. Leaky
modes exhibit the same behaviour as resonant states starting with the fact that they are
also eigenstates decaying in time. They have had an important role in quantum mechanics
since they were first described by Thomson in 1884 [68]. Just as in the case of resonant
states, leaky modes being decaying eigenstates means that the corresponding operator in
the eigenvalue problem is not self-adjoint. That means any projecting of functions into a
sum of leaky modes and the completeness of the resulting expansions are not part of any
general theory. Another significant feature of leaky modes is their unstable nature since
they exponentially grow in space. Thus, as resonant states, they cannot be placed in any
vector space with an inner product and be normalized. For such cases, a general theory is
challenging to create and so the matter of completeness and projection must be handled
case by case. This matter is addressed partially in our current paper. We introduce a
method where a projection for leaky modes is possible based on a well-known technique
of shifting them over to a contour in the complex plane just as we did with the resonant
states.
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Let us proceed with introducing the model. The propagation direction of the pulse
we wish to propagate is chosen to be along the z-axis. We choose therefore a straight
channel oriented along the z-axis with a uniform width across the z-axis (the transverse
direction). This will be our waveguide. We assume that the EM field and the channel are
independent of the y-variable, so the geometry of the whole model can be drawn on the
xz plane with two straight lines at * = —a and z = a and the beginning of the channel
at z = 0.

Before we continue, we need to decide what type of boundary conditions we want to
have for the waveguide. Let us therefore briefly discuss Maxwell’s boundary conditions
in general. Consider a surface that divides 3D space into two parts, say, region 1 and 2.
One can think of the surface as an interface of a material surrounded by free space, where
region 1 would correspond to the material and region 2 to the free space or vice versa.
Another example could be a hypothetical cut through a volume filled by one material
medium dividing it into two region on the opposite sides of the cut. For simplicity, let
us consider this surface to be smooth, such that for any point xy at the surface, there
would be a flat and smooth region around x, containing x, inside of it. Next, consider
a short line segment through x, and perpendicular to the surface. Both ends of this
line segment define two points x; and x5, where the indices indicate at which region the
point is. Maxwell’s equation are then used to find the boundary condition that relate
the magnitudes of all four field components Ej, H|,D and B, where E is the electric
field, D is the electric displacement field, H is the magnetic field and B is the magnetic
induction. The subscripts || and L indicate the parallel and perpendicular part of the
field to the surface, respectively. In order to apply Maxwell’s equations at the point xg
to obtain the boundary conditions, for example for E;, the correct equation must be
considered, in this case Maxwell’s 3rd equation V x E(x,t) = —0B(x,t)/0;. It includes
the curl operator, therefore the equation is applied to a small rectangular loop centred
at xo and perpendicular to the surface. The longer sides of the rectangle containing x;
and xs are taken to be parallel to the surface and the shorter ones to be perpendicular.
Taking the integral over the surface of the small rectangle of Maxwell’s 3rd equation and
taking the limit x; — X5, when the loop shrinks and disappears at the surface, we find
that the flux of the B field through the loop vanishes. The surface integral of a curl
turns to a line integral through Stoke’s theorem and we find Ej(x;,t) = Ej(x2,?). In
a similar manner, without the presence of any free charges and currents, the boundary
conditions for the other fields are found to be D (x1,t) = D (x2,t), H(x1,t) = Hj|(x2,1),
B (x1,t) — B (x2,t) = 0frec(X0, t) With of.ee being the free surface charge.

When solving Maxwell’s equations in isotropic, homogeneous, linear media, a simply
but powerful method is used that involves going back and forth between the space-time
domain (x,t) and the Fourier domain (k,w). The sources can be as well transformed into
their spectral domains and therefore, both the EM field and the sources can be expressed
as a superposition of plane-waves. A plane electromagnetic wave has the electric and
magnetic fields defined by

E(x,t) = Re[Egexp(i(k - x — wt))],

H(x,t) = Re [Hpexp(i(k - x — wt))], (2.2.1)
where the vector quantities k, Eq and Hy and the frequency w are all complex valued. The
vector k is associated with the propagation direction of the plane-wave and the vectors

E,, Hj associated with the polarization state of the corresponding vector field. The sources
such as induced polarization or magnetization are also expressed as plane-waves. If we

30



now substitute all the fields into Maxwell’s equation and assume a material medium with
no free charges or currents, we find simple equations containing dot products and vector
products without any differential operators

k-Eo =0, (2.2.2a)
k x Hy = —wepe(w)Ey, (2.2.2b)
k x Eq = wpop(w)Hy, (2.2.2c)
k-H, =0, (2.2.2d)

where 9,0 and pu,e are the permeability and permittivity of the free space and the
material the field resides in, respectively. From these equations ([2.2.2a)-(2.2.2d)) one can
derive the relation between the vector magnitude |k| = k and the frequency w, called the
dispersion relation. The propagation vector k is, in general, a 3D vector in a Cartesian
coordinate system with components k = (k,, k,, k.). The dispersion relation tells us that
if, for example, k, and k, are known, then k. can be obtained using this constraint.
Similarly, through Maxwell’s equations in the Fourier domain, one can calculate Ey, from
the knowledge of Ey, and Eo,, where Eq = (Ey,, Eoy, Eo.) using (2.2.2a). Other field
components are then easily determined using the rest of the equations.

In our setting, where the channel resides in the xz-plane, we assumed that the pulse will
not propagate in the y-direction, so we can set k, = 0. For a moment, let us forget about
that the pulse starts propagating at z = 0. The goal is to find the boundary conditions
at z = 0. Consider a plane-wave that is incident from above to the flat interface, in this
situation being the zy-plane. We expect the part of it being reflected and a part being
transmitted. From the discussion earlier about the Maxwell’s boundary conditions, we
found that the parallel part of the electric field must be continuous at the interface. In
our case, the parallel part is Ey = (E,, E,) such that these vector components must be
continuous. Similarly, we also find that the continuity of D,, H, and H, must be required
at all interfacial points (z,y,0). This is only possible if the following three conditions are
satisfied:

o W' = w" = w', where the upper subscripts correspond to the incident, reflected, and
transmitted wave, respectively.

e the z-components of the vector k to all three waves must be equal, namely k! =
kI = kL. We recognize this as a generalization of Snell’s law of optics.

e the y-components of the vector k to all three waves must be equal, namely k‘fj =
kr = kt.
y y

Once the tangential field components F,, E, and H,, H, are made continuous, Maxwell’s
equations in the Fourier domain make automatically the components D, and B, contin-
uous.

In the preceding discussion we set k, = 0 which leaves the unknowns in the dispersion
relation to be k, and k.. So knowing k, determines k,. We have also established that
knowing Ey, and Ep, determines Ey.. Totally, the quantities w’, k, E, and Efj, uniquely
determine the EM field of the incident plane-wave. Because of the three conditions listed
above together with the dispersion relation, the frequencies and the k vectors of all 3
waves (incident, reflected and transmitted) are determined. Since we need to ensure the

continuity of four components E,, F, and H,, H,, totally we have four equations. We
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know the quantities for the incident wave so the four unknowns are going to be Ep,, Ep,
and Ef,, Ef,.

Ox»
We can observe by writing down all four of the Maxwell’s equations in Fourier domain

k
EOz - _k_xEOxu (223&)
k.
Ho, = — Ey,, (2.2.3b)
Whop
k,Eos — ko Eo-
Hy, = == 0 (2.2.3¢)
Whtop
K
Hy, = Eo,, (2.2.3d)
Whop

where 1o and p are the permeability of the free space and the material the field resides
in, that they can be separated into two independent groups:

e knowing Fj, in equations (2.2.3al) and ([2.2.3c|), one needs only these two equations
to determine Ey, and Hy,. The incident wave is therefore specified by

(kg k2, Eog, Eoz, Hoy) and is commonly referred to as Transverse Magnetic (TM), or
p-polarized wave. Here we assume that for the incident wave we have k:; = Eéy = 0.
The only independent variables are k! and Ef,. All other field components are
determined through (2.2.3a))-(2.2.3d)).

e knowing Ej, in equations (2.2.3bf) and (2.2.3d)), one needs only these two equations
to determine Hy, and Hy,. The incident wave is therefore specified by

(kg k2, Eoy, How, Ho.) and is commonly referred to as Transverse Electric (TE), or
s-polarized wave. Here we assume that for the incident wave we have k) = Ef, =
Ej, = 0. The only independent variables are k; and Eg . All other field components
are determined through (2.2.3a))-(2.2.3d).

For these two groups of waves one can calculate the field components for the reflected and
transmitted waves, but we are not going to pursue that here.

With the current geometry of the model in our paper, we want the electric field to
be parallel to the boundaries of the slab. According to this requirement, we are choosing
the electric field to be transverse electric, or TE, because the only nonzero component is
the y-component and thus, parallel to the planes x = +a at the boundary. In the case of
TM waves, the z-component would be nonzero which is in the transverse direction to the
boundary. We have also assumed that the field does not change in the y-direction. So we
have

E(r,w) = (0,e(x, z,w),0),
P(r,w) = (0,p(z, z,w),0), (2.2.4)

where E is the electric field and P is the polarization. The electric field in the time domain
is then simply obtained using inverse Fourier transform in w — ¢.
The propagation equation is readily derived using Maxwell’s equations with no free
charges or currents. In the time frequency domain it has the form
w

2
0..e(x,z,w) + Opge(x, z,w)+ (Z) n?(z,w)e(r, z,w) = p(z, 2,w), (2.2.5)
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where n(z,w) is the refracting index and c is the speed of light. The refractive index
n(z,w) is designed to have the value 1 (vacuum) inside the channel and value > 1 outside:

|1 |zl<a

n(r,w) = { n ol >a (2.2.6)
where n is some constant larger than 1.

As we discussed the Maxwell’s boundary conditions, we found that the tangential part

of the electric field to the boundary must be continuous. Our field is TE which leaves the

tangential part to be e(z, z,w) and the continuity equations become

e(ta_,z,w) =e(+ay, z,w),
Ore(fa_, z,w) = dye(Fay, z,w). (2.2.7)

To write down a suitable spectral propagator, such as UPPE for this model, the goal
is to find the leaky modes for the linearized version of which are then used to
develop a leaky mode transform. This transform will be a substitute for the usual Fourier
transform. We get the linearized version of by letting p = 0.

When solving the linearized model we assume the wave starts propagating at z = 0.
As the wave propagates, it eventually hits the boundaries where a part of it is reflected
and a part transmitted. For this reason, the solution includes only right travelling wave
for x > a and only left travelling waves for x < —a. Such functions have the form

e(z, z,w) = DeP*ei x> a,
e(x, z,w) = eo* (Beigox + C’e_i&)x) , —a<z<a,
e(x, z,w) = AeP?e7®, xr < —a, (2.2.8)

where [y, & and f3,€& are the propagation constants inside and outside the channel, re-
spectively. These would correspond to the propagation vector k = (£,0, ) we discussed
earlier. The constant ¢ represents therefore the propagation in the transverse direction
and f in the paraxial direction (along the axis of the propagation direction). Due to
the reflection and transmission of the propagating wave from the boundaries, the wave
is disturbed and receives gradually more and more of these disturbances. Through the
dispersion relation that connect the propagation constant and the frequency w we find

() a0 e

The dispersion relation can be readily found by inserting exp(i(k - x — wt)), where x =
(z,y, 2), into the linearized form of (2.2.5).

To determine the constants A to D in , we need to use the boundary conditions
. As a consequence, we get a homogeneous linear system of four equations which
has nontrivial solutions only if the determinant is zero. This is expressed by the equation

- 288
tan(2a€0) + Z?ng =V, (2210)
where we have the following identity
WA 2
e=(2) -1+ (2.2.11)
c
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which is also a consequence of the boundary conditions. The relation (2.2.11]) represents

Snell’s law. Observe that upon substituting (2.2.11) into (2.2.9), we get 5 = (y which
is in agreement with the second condition from page 31. Solving (2.2.10) for & using

gives us the leaky modes.

The form of the equation (2.2.10) with the linear system it originated from, reveals
certain symmetries which allow us to consider the solutions &, only in one quadrant of
the complex plane. These symmetries can be expressed as

{{5750} ’ (Av B? Cv D)} — {{57 _50} ’ (A7 C? B? D)} ’ (2'2'123)
{{5750} ) (Av B? Cv D)} — {{_f*a _58} ) (A*7 B*v C*v D*)} : (2'2'12b)

Any solution in the other quadrants can be thus generated by using the symmetries.
Note, that the variable &, is complex valued. We chose to find to solutions in the second
quadrant. Here, expressing & in (2.2.11)) results in two different sets depending on the
positive or negative square root. The two separate systems we get, are

tan(2ay) = —i%ofz— ”_(:2;53, E=1/a+&, (2.2.13a)
0
tan(2a&y) = 2.25052— ‘j;&%, £=—\/Ja+&, (2.2.13b)
0

where we defined a = (w/c)?(n? — 1). In order to grasp, where the solutions to (2.2.10)
are located in the second quadrant, we plot the real and imaginary part of as
a contour plot and look where the two contours meet. The contour plot showed that
there is infinitely many solutions lying on one branch in the second quadrant with slow
logarithmic growth. From the mentioned symmetries of the problem we get the solutions
in the fourth quadrant once the solutions in the second quadrant are obtained. A similar
approach is then made for the solutions in first and third quadrant.

Since the branch the solutions lie on, grows at a logarithmic rate, it is safe to assume
that for solutions located further to the left, will have their real part dominating the imag-
inary part. We use this observation to obtain the asymptotic formula for the solutions.
So assuming |§| > /a and consequently {, = = + iy, where |x| > |y| we arrive at the
following formula

(2.2.14)

where p is the index of the solution. This is the asymptotic approximation for the solutions
of (2.2.10), (2.2.11)) in the second quadrant. Using the symmetries (2.2.12a]), (2.2.12h),
similar formulas can be found for the other three quadrants. From the locations of g,
based on , it is evident that the values for &, through the relation have
positive real and negative imaginary part. If we substitute such value for £ in the modes
(2.2.8)), we conclude that the modes in the second quadrant are outgoing and exponentially
growing in the transverse (z) direction. Likewise, we can use the formula (2.2.9) to
determine that these modes are decaying in the propagation direction. This classifies them
to be leaky modes. The same can be concluded for the modes in the fourth quadrant.
However, if we do the same analysis for the modes in the first and third quadrant, we
find that these are incoming and exponentially growing in the transverse direction and
growing in the propagation direction. These are thus not leaky modes but gaining modes.
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Formula turned out to be a really good approximation even for p of order 1.
It can, however, break down or not stay in the same quadrant as intended. This happens
if the natural logarithm inside the complex valued logarithm becomes negative. Clearly,
it happens when p < ayv/a/7. So p must be smaller than some constant for the formula
to not be correct. This is understandable since it was designed for large values of
p. Going back to the initial assumption where the magnitude of & was larger than /a,
we can now assume the opposite, namely || < y/a. In this case, we obtain a recursive
formula for £, which can be iterated once to get

p . TP
~—— 41 .
S~ 75, 2a2\/a

(2.2.15)

Since we are still in the second quadrant, we assume that the imaginary part must be a
small correction to the real part, or in other words mp/(2a) > mp/(2a*y/a), or equivalently,
p < ay/a, which is precisely when formula ([2.2.14) is no longer valid. The formula ([2.2.15])
is therefore an approximation for small values of p.

Having obtained the asymptotic formulas for the propagation constants, we can anal-
yse which modes propagate at which angles with respect to the propagation direction
along the z-axis. The angle is measured between the z-axis and the propagation vector
(&0, Bo). Modes for which this angle is small, are called paraxial. Using simple trigonom-
etry, one finds the formula for the angle to be 6, = arctan (Re[€o,]/Re[3(&op)]). Only the
real part is considered because the imaginary part corresponds to decay while the real
part to the actual propagation. The angle must be small for paraxial modes and this
holds only if Re [£,] < Re [ (§op)]- Using the asymptotic formulas for &, and the formula
for 3, we get the condition

p< (2.2.16)

av/ 2w
e

This formula tells us for which mode index p is the corresponding mode paraxial.

The equation becomes exponentially small well away from the real axis and it
can be very challenging to see solutions from the plots even if some might be there. For this
reason we investigated the possibility of the existence of solutions at different parts of the
second quadrant that were not covered. We found asymptotic formulas for the solutions
using the assumption Re[y] > Im[¢y]. Here, we considered two different conditions to
see if we can find more solutions, namely Re[{y] < Im[{y] and Re[&y] ~ Im[y] > 1. After
careful investigations we concluded that no additional solutions are present, so (2.2.14)
are the only ones.

One of the goal of this paper is to propagate the initial pulse as long as possible
without any disturbances which may come as a result of reflection from the boundaries
of the channel. Thus, we are interested in minimizing these reflections and so we want to
choose the difference of the artificial refractive index between the inside and the outside
as small as possible. This difference is depicted in the parameter a = (w/c)*(n? — 1).
Thus « decreases as we minimize the desired difference. We observed what happens with
the zeros {y, as o decreases. All the zeros in the second quadrant were moving up as
expected from the logarithmic dependence of a in the formula . The behaviour
of the first zero is particularly interesting, because it approaches the imaginary axis and
eventually disappears at a finite value a = «a.. For a < a.., our asymptotic formula (2.2.14)
produces a double zero. As we let v decrease even more, the next zero disappears and our
formula produced two double zeros. This goes on as «a approaches zero. Careful numerical
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examination revealed that no double zeros are actually present. The production of double
zeros can be explained by the attempt of the formula to preserve the original zeros even
though they vanished in reality. This sudden change in the formula with varying o made
us think about the possible reason for this doubling being the crossing of a branch cut for
the complex valued logarithm in (2.2.14). To explore this option, we used the standard
branch of logarithm being the negative real axis. The idea is that when the imaginary
part of the argument, let us denote it z, of the complex logarithm in (2.2.14]) is zero, we
will have a crossing of the branch cut since the real part is negative. Using this condition
we found that there is a crossing of the branch cut whenever « crosses the value
22

P
ap =" exp(—pm). (2.2.17)

So the disappearing of the first zero happens when « crosses the value 72 exp(—m)/a®.
The exponential decay of the critical values for a when another zero disappears indicate
that o must decrease even faster for the next zero to vanish. Numerical investigations
confirmed the obtained result and we observed the double zeros precisely at the
calculated critical values.

We now proceed to the form of the modes. We discussed essentially two types of
modes: leaky modes and gaining modes both corresponding to two families of zeros of
the determinant (2.2.13al) and (2.2.13b)), respectively. It is important to explain how are
the symmetries (2.2.12a)) and ([2.2.12b)) related to the type of the mode. Starting with the
zeros in the second quadrant, we know that they are leaky modes. Using the symmetry
(2.2.12a)), we get the zeros in fourth quadrant and these behave in the same way. Both
modes from second and fourth quadrant are thus outgoing, leaky modes. A simple analysis
shows that they are, in fact, the same modes and we can therefore disregard those from
fourth quadrant. Similarly, we consider zeros in the first quadrant that generate incoming,
gaining modes. Using the same symmetry we find the modes from third quadrant
to be the same which we disregard. The symmetry turns the zeros from second
quadrant into zeros from the first quadrant. This concludes that the symmetry
switches between modes of the same type while the symmetry switches between
different types. Let us denote the leaky modes with &, from the second quadrant u, (z)
and the gaining modes with zeros from the first quadrant «; (x). They are given by the
formulas

Deir® T >a 12
u, () = ¢ Below® 4 Ce ot —a<az<a , &= (a+ (&))", (2.2.18a)
Ae~r? T < —a
D*eir®, T >a
uf(z) = Bre o’ + C*e“»”, —a<z<a , &=—(a+ éf’jﬁ)lﬂ. (2.2.18b)
Are T r < —a
One notable observation is the relation (u})* = u,. Both leaky and gaining modes

are exponentially growing in  which makes them not-normalizable. We recognize this
problem from the previous paper with the resonant states. Here, we perform the same
procedure to fix this issue, namely evaluating the modes at a complex contour. It is an
analytical continuation into a complexified spatial domain. Depending on the type of the
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mode, the contour will be different. They are of the form

a—i(r—a), x>a at+i(r—a), z<a
2H(x) = x, lz] <a , 2z (x)= x, lz] <a , (2.2.19)
—a—i(r+a), v<-—a —a+i(r+a), r<—a

where 2T is used for the gaining modes and 2z~ for the leaky modes. The different types
of modes behave differently outside the channel. One is of outgoing and the other of
incoming type which is expressed by different sings in the exponents. This is the reason
why we need different contours to make both of them decay.

The modes are then evaluated at the contours resulting into the decaying
functions ¢ (z) = w} (2% (x)) and ¢, (z) = u, (27 (x)) in both directions of the z-axis.
For these complexified modes, we also have the relation (1/);(95))* = 1, (z). From now
on, we will refer to the complexified mode whenever we mention a mode.

The contours are evidently singular at x = +a which, in turn, makes the
modes w;,t not continuously differentiable at the boundaries. In addition, the modes
are satisfying different boundary conditions at © = 4a since the contours have different
shapes. The two types of modes are therefore categorized by different spaces of functions
to which they belong. These spaces of functions are spaces of smooth functions that
satisfy the corresponding boundary condition depending on the type of the mode. Let us
denote VT the space where the functions satisfy the boundary conditions for ¢)* and V'~
the space where the functions satisfy the boundary conditions for ¢ ~.

In order to use the modes as a generalized Fourier series to expand functions, we need
to have a notion of inner product and orthogonality. A suitable inner product defined for
complex values functions is constructed in the following way

(P, V) = /cq>(z)$(z)dz e C, (2.2.20)

where C is any contour in the complex plane and the function ¥(z) = U* (2*) is analytic.
It follows from complex analysis that taking the complex conjugate of a function by itself
makes the function non-analytic, but the generalized version of the complex conjugate

used in this inner product (2.2.20) fixes this problem. If we now apply (2.2.20) to the
contour z~, we get a complex valued scalar product on the space V'~

(V,0)” = i/__aw(m)d)(x)dx + /_a U(x)p(r)de +i/oow(x)q§(a:)dx, (2.2.21)

for ¢, ¢ both belonging to VV~. A similar expression can be obtained for the inner product
corresponding to the space V. The main focus in this paper is, however, on the leaky
modes so we are using mostly them to demonstrate calculations.
In addition to the inner product we also need to show that the modes are orthogonal.
It turns out, the modes ¥* are eigenfunctions to a differential operator £,
Do+ (2)7, 2| < a

L, = : (2.2.22)
O+ (2P (02— 1), |z| > a

with different eigenvalues, depending on the type of the mode. Hence, the orthogonality
is assured if the operator L, is self-adjoint with respect to the inner product defined in
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. Due to the fact that the modes and their eigenvalues are complex, this may
seem as impossible to achieve at first glance, but now it is straightforward to show that
the differential operator £, is indeed self-adjoint on the space V. The orthogonality of
the modes 1~ is then easy to check and the same goes for ™ € V7.

There are few properties we can observe here. The relation we mentioned between
the two types of modes (L/J;(I))* = 1, (v) and their corresponding boundary conditions
imply that if ¢y~ € V=, then (¢»7)" € V' so the conjugation operator maps between the
two spaces. One can also check that the conjugation maps between the inner products on
the two spaces as well. A simple analysis of V' and V'~ shows that they are linear spaces
and complex algebras as well, because any product ¢ for ¢,9 € V'~ also preserves the
boundary conditions at x = +a.

The establishment of orthogonality and normalizability now allows us to consider an
expansion of any function f in V'~ in terms of the generalized Fourier series using the
leaky modes 1, of the form

= (f(2),4,)
fia) Z%

The next logical step would be to test whether the series is able to accurately
represent functions. In the case of the resonant states we have also pursued the issue
of completeness, but we will not do that with leaky modes. On the other hand, we will
investigate the question of convergence. First of all, in order to use the expansion (2.2.23)
in practical modelling of transparent boundary conditions, for example for UPPE, the
expansion must represent well two types of function. These are physically reasonable
initial conditions and products of functions. By physically reasonable functions which
represent initial data, we mean functions with compact support such as Gaussian wave
packets. Products of functions are important to be in the span of leaky modes because of
the implementation of spectral propagators (UPPE) on the full nonlinear problem (2.2.5)).
The nonlinear term may very well include powers of the electric field which results in
finding the expansions for powers of leaky modes themselves. We conducted, therefore,
numerical tests where we compared Gaussian wave packets and squares of leaky modes
(in particular of those corresponding to p = 10 and p = 50) with their generalized Fourier
series. The index outside the channel was set to n = 1410712, The results were satisfying.
The original functions and their series overlapped perfectly using only 30 terms. Due to
the high oscillatory behaviour of the functions ¥?; and ¥Z,, we needed to use 60 and 200
terms in the series, respectively.

After having established the functionality of the series numerically, we next
proceeded to verify how well did the leaky modes expansion linearly propagate a Gaussian
beam in contrast to finite and infinity Fourier series solutions. The boundary conditions
for the leaky modes are already known and for the regular Fourier modes we used perfectly
reflecting boundary conditions at x = +a. Both are then compared to the exact, infinite
domain solution using Fourier modes applied in a much larger domain in z. In this
comparison we used n = 1 4+ 10712 outside the channel for leaky modes and a Gaussian
in the optical regime of infrared light. We expect the leaky modes solution to go hand
in hand with the exact infinite Fourier solution until the reflection from the boundaries
in the case of leaky modes makes large enough disturbances. When the accumulative
effect of the reflection gets large enough, the leaky modes solution starts to deviate from
the infinite Fourier solution at some value for z. We expect the finite Fourier solution to

by (). (2.2.23)
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deviate from the other two solutions at the moment when the wave hits the boundary of
the computational domain. And this was indeed what we observed. Approximately at
z ~ 4 x 10%, the finite Fourier solution gained much of a disturbance from the reflections
and was no longer a feasible solution. At this distance, the leaky modes and infinite
Fourier modes overlapped nicely. The leaky modes managed to keep up until around
z &~ 4 x 10°. Thus we can conclude that leaky modes were able to propagate around 10
times further than finite Fourier modes. The longer we propagate, the more reflection
leaky mode solution gets since the channel is not perfectly transparent. The difference
in the refractive index between the inside and the outside is nonzero. One would suggest
making the difference even smaller resulting in even further possible propagation, but this
turned out not to be entirely the case. Numerical test with smaller difference, in particular
n = 1+ 107'5 showed that the leaky modes series did not represent the target function
well at all. However, it seemed to converge pointwise but to a different function than the
target Gaussian. Including more terms in the expansion did not remedy the issue. Two
possible explanations were proposed: either the series diverges but so slowly, it cannot be
detected numerically, or it converges pointwise but not to the target function. Explanation
number two was observed to be correct based on extensive numerical investigations. It
would implicate that the series actually never converges to the target function. This,
however, does not make the leaky modes expansion any less useful for the task it was
designed for.

One observation we made concerning this issue was tied to a dimensionless number
n = a*a = a*(w/c)* (n* — 1). We found that if > 0.8 then the series gives a practically
satisfying representation of the function. Note, that two parameters in 7 depend on
characteristics of the channel. These are the width a and the refracting index on the
outside n. Making the difference of the indices smaller results in the term n? — 1 being
approximately that difference. Mathematically, the quality of the series representation
depends on a and the index difference inversely. In other words, larger width implies
smaller difference and vice versa. This observation has important consequences. When
applying leaky modes expansion as a part of a spectral propagator for the nonlinear
equation (2.2.5), all the support of the nonlinear interactions should be confined well
within the boundary walls. This affects the choice of the channel width and, consequently,
the index difference.

The question why does the series lose its ability to accurately represent functions
under certain circumstances, in particular small index difference, was further investigated.
We noticed that making the index difference smaller is also associated with a different
phenomena we observed earlier, specifically the loss of the first zero when « crosses the
value a; (2.2.17). These two phenomena (loss of a zero and bad convergence) indeed are
connected. Losing the first eigenvalue leads to the loss of the first leaky mode ;. Since
the first term in an expansion is the most important one, the loss of the entire term is
threatening for the accuracy of the whole series. The reason why this loss affects the
accuracy can be explained as follows. The shape of the leaky modes suggest that they
alternate between being odd and even functions depending on the index p. The leaky
mode belonging to the first zero ¢ is an even function. We know that for a 2 ay,
the expansion is a good representation of an even function like Gaussian. The expansion
starts to fail for o« < oy which is a clear indication that the loss of the first zero is in
play. Instead of the first term in the series being an even function, it is now odd and
understandably fails to represent an even Gaussian. To further test this explanation, we
tried to represent an odd function (first derivative of the Gaussian) for a < «;. Before,
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the series represented the Gaussian badly for n = 1 + 107*°. The odd function, in this
case, was accurately represented for an index step as small as n = 1 + 10724, Thus this
makes our explanation even more plausible.

At the end of the paper we looked closely at the convergence rate of the series (2.2.23).
We conjectured that the mode expansion does not converge to the target function for small
index step. The investigation of the convergence would not prove the conjecture entirely,
but it would certainly support it.

We start first by assuming that /a < |§o,| which defines our asymptotic regime as
we wish to obtain the terms in the series for large p and small a.. In this regime, we have
the asymptotic formulas for the zeros (2.2.14). Using this formula, we are interested in
finding the asymptotic formula for the terms in the series (2.2.23). Before we proceed
to the actual terms, the continuity coefficients in A, B,C, D need to be checked
how do they depend on p asymptotically. In order to obtain them, we will use the
matrix M whose nullspace contains the vector (A, B,C, D)T. The matrix M comes from
applying the boundary conditions. To compute the nullspace of M, we row reduce it
and find the last row to be of the form (0,0,0,((&)), where the function (&) includes
the determinant of M. So for {, = &g, the last row becomes zero and the basis of the
nullspace is easily found. Using the asymptotic formulas for &, and taking the limit as p
grows, the continuity coefficients are approximated as A = B = (—1)?*! and C = D = 0,
thus they do not contribute to the convergence rate of the series.

We continue to write the mode expansion in the following form

Z N, _Z cp(z), where (2.2.24a)

/f )day; ( (/ /+z/) “da. (2.2.24b)

The normalization term behaves in the asymptotic limit as N, ~ 4a(—1)P"!. The terms
by(z) include an integral of the product fi, over the interval [—a,a]. In this region,
the leaky modes are exponential functions with +i&g, in the exponent. Using integration
by parts to solve this integral, we end up with the factor {y, in the denominator, each
time the integration by parts is performed. Here again, we can see a similarity to the
convergence investigation of the resonant state expansion from the previous paper. At
this point we can deduce that the convergence rate will depend on the smoothness of the
target function f. The factor 1/£7, we get after n consecutive integrations by parts can
be, again, approximated using the asymptotic formula and we get the following expression

for b,(x)

by(z) = ¥ () < 26”) / £ (@) (¢ ()" da, (2.2.25)

where (1, (m))*(n) is the leaky mode in the region [—a,a| with a plus or minus sign
between the terms depending whether n is even or odd, respectively, where % (n) is a
superscript.

The newly obtained asymptotic formulas in (2.2.24a)) were tested using two sample
functions: a triangle function and a Gaussian wave packet. In the case of the triangle
function we were able to identify the corresponding series as a polylogarithm function
Li(n, z) = >, 2P /p" for some complex number z defined from the asymptotic expressions
we found and n being one of the following expressions: 2 + z:/a,2 + (d + z)/a and 2 +
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(d — z)a, where [—d, d] is the width of the triangle function with 0 < d < a. So clearly,
the convergence rate depends on the location x. After careful analysis of the various
inequalities we found that we have absolute convergence for the triangle function in the
region —a + d < z < a — d which corresponds to the inside of the triangle. In the rest of
the region outside the triangle but still inside the channel, or in other words [—a, —d] and
[d, a], we found convergence as well but only a conditional one.

For the second sample function we chose a Gaussian wave packet with its support
well inside the channel. The coefficients ¢, in decayed exponentially and thus
ensured that the leaky mode expansion converged for all x inside the channel. One can
also dedicate this to the infinite smoothness of the sample functions as opposed to the
triangle function which lacked this property.

Even though we were able to say something about the convergence rate of the expan-
sion, it is still not enough to fully resolve the problem of bad representation. However, we
attempted to solve it using the same approach we used to prove the completeness of the
resonant states. We start with the completeness for the scattering states for our system
which have real eigenvalues

/_OO Deo (ac)cpgo(x')dfo =0z —1). (2.2.26)

o0

The scattering states include the determinant of M in the denominator, thus they have
poles at the leaky modes eigenvalues &, in the second and the fourth quadrant. A complex
integration contour C is then introduced such that it includes the poles g, inside of it.
The determinant in the denominator of the scattering modes also contain the quantity
¢ = /a+ & and as a complex square root, it has branch cuts on the negative real axis.
This has to be taken into consideration as well.

After the contour C is chosen, the completeness relation (2.2.26)) is multiplied by f(z'),
integrated over the real 2’-axis and using Cauchy’s theorem, integrated over the contour C.
Due to the residue theorem, the resulting equation has a sum over the residues on the left
hand side which upon evaluating, turn the scattering modes into resonant leaky modes.
The right hand side becomes the function f(x). The sum of residues, as a function of z,
should be then equal to the leaky modes expansion of f. The residues can be calculated
and checked. The resulting equation is of the form

2mi 3 Res (e, (0064, ()s6or) ()0, () = 3 (if(?’)wqu(t))))%"(@'
p=0 P=1\ Weop \T)s Vg, \ T

(2.2.27)

Up to this point, everything would be perfect. However, the scattering modes include
also one free parameter a™(&g,) as a result of the boundary conditions. It must be chosen
such that the sum of residues is equal to the leaky mode expansion in (2.2.27). The
unfortunate thing is that the parameter a™ is not analytic because it is zero inside C
and contains two families of countably many zeros which produce branch cuts. The
integration over C must therefore include the contributions of the integrals over all these
possible branch cuts. This results into the conclusion that a function f(z) equals to its
leaky mode expansion plus some additional terms originating from the integrals along the
branch cuts. From our numerical observations, we know that as long as « is not smaller
than a certain critical value, the series representation is good. It is thus explained by
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the negligible contribution of those integral terms. When « gets smaller, the contribution
grows and some of them will dominate while not affecting the convergence of the series.
This extra contribution, however, makes the series converge to a different function than
the one generating it. It is possible to identify the extra integral terms along the branch
cuts, find their asymptotic forms in the limit when « goes to zero and pick out the ones
with the largest contribution. This way, one could add this term to the leaky mode
expansion resulting into the correction of the expansion and an accurate representation
of the target function. In spite of the effort, we were not able to find the integral terms,
but we believe they could be found. Nonetheless, even if they are found, their form and
complexity could make the leaky mode expansion too hard to use for practical purposes.

This paper introduces a new approach to mimic infinite domain by constructing a
transparent computational boundary for wave equations. The modes of the system, called
leaky modes are supported by the artificial index of the outside domain. A generalized
Fourier series using leaky modes is possible to use in solving the nonlinear wave equation
using spectral propagators such as UPPE. We have seen that the expansion (2.2.23) is able
to represent a function as long as the parameter values are chosen such that n = a?a > 0.8.
This condition is plentiful for all practical purposes. We demonstrated by more detailed
investigation concerning the completeness of the leaky modes by identifying finitely many
integral terms from branch cuts, that the leaky mode expansion does not converge to the
function used to construct it. In order to resolve the issue of convergence totally, one has
to find the contributing integral terms, but this definitely belongs to future work.

2.3 Paper 3 - Modelling pulse propagation in complex index ma-
terials using the method of multiple scales

This paper is perhaps the one where nonlinear optics truly manifests itself. In the first
chapter of the introduction we briefly discussed the origins of nonlinearity in optics. Terms
such as electric susceptibility or refracting index were introduced from the optical perspec-
tive. Shortly said, nonlinearity originates in the polarization term which includes higher
orders of power of the electric field. These higher powers become more apparent the higher
the intensity of the optical pulse. The nonlinear polarization term then finds its way into
the wave equation derived from Maxwell’s equations. In this paper, we are solving such
nonlinear dispersive wave equations using the method of multiple scales (MMS) which
was broadly introduced in chapter 1.2.

The model equation we are using is the simplest nontrivial wave equation from non-
linear optics. Before we derive it, let us explain little bit more about the nonlinear po-
larization we are using here. In the introduction of our first paper, we went through the
process of obtaining the nonlinear polarization terms from scratch, i.e. the Schrédinger
equation. The main idea was that electrons in an atom occupy certain energy levels. The
0-th energy level is called the ground state and it is closest to the nucleus. The more
energy the electron receives, the higher level it occupies (further away from the nucleus).
In the presence of an external electric field photons are being absorbed and released by the
electrons in the atom and jump back and forth between different energy levels. The energy
of a photon is defined by its oscillation frequency which can get enhanced by the electrons
if they require the same amount in order to jump and cause resonance. To illustrate this
process, assume an electron in the ground state needs to absorb a photon of frequency w
to jump to the first energy level. In the process of returning back to the ground state, a
photon is released later with the same frequency w and contributes to the electric field in
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return. This happens at low intensity optical pulses and is called the induced polarization
which we discussed in chapter 1.1. It is also called the first harmonic generation. When
the intensity gets larger, the electron absorbs two photons of frequency w and jumps two
levels, later creating a 2w frequency photon in a single quantum-mechanical process. This
phenomenon is called the second harmonic generation.

There can be two different types of second harmonic generation depending on the
frequencies of the photons that are getting absorbed and released. The process described
above required two photons with the same frequency w. Think of a situation where the two
input photons are at different frequencies w; and ws. In one case, the electron absorbs
both, jumps two levels and on the way down creates a single photon with frequency
w3 = wy + we. This is the sum-frequency generation. In the other case, the atom first
absorbs a photon of frequency w; and jumps to the second level. The presence of the
other frequency ws then stimulates a process, where the second level decays by creating
two photons with frequencies ws and w3 = w; —wy. This is called the difference-frequency
generation and is also known as optical parametric amplification.

A similar process occurs when applying three photons with the same or different
frequencies, where the electron jumps between three different energy levels and produces
photons with new frequencies. This is the third harmonic generation. Note, that to obtain
higher order harmonic generation, the intensity of the external electric field must be larger
and larger. The amount of resulting types of different generations in this case gets also
bigger.

The processes we have just described involve virtual energy levels which are distinct
from the real energy levels of an atom. Virtual levels represent the sum of the energies
coming from the real energy levels and one or more photons from the surrounding ra-
diation field. This is the reason why are these processes of, so called, parametric type.
Conversely, processes that involve transfer from one real energy level to another are called
nonparametric processes. We have seen earlier that the different harmonic generations
give rise to different orders of susceptibilities through the formulas (2.1.9)),
and so on. As a consequence of virtual levels, parametric processes can always be de-
scribed by real susceptibilities while nonparametric processes are described by complex
valued susceptibilities that can be derived using the method in the summary of paper 1.
In parametric cases, the energy of the photons transferred in the process is always con-
served and remains present only in the exchanges between the atoms and the radiation
field. This is not true for the nonparametric processes where the photon energy can be
transferred into or from the material medium. A simple distinction between parametric
and nonparametric processes would be the real and complex valued refractive index, re-
spectively. The real part of the index exists as a consequence of the parametric processes
while the imaginary part is a consequence of the nonparametric processes. The imaginary
part corresponds to absorption of the radiation which occurs following the transfer of the
photons energy into the material.

From the formal definition of the n-th order of susceptibility x™(w) it follows that
this quantity must be tensor of rank n+ 1, see . In the case of the second harmonic
generation, the corresponding nonlinear polarization term is expressed [49] as

P (wy + wim) = €0 Z Z ngz,)g(wn + Wiy Wy Win ) Ej (W) B (wiy ), (2.3.1)
3k (n,m)

where the optical field residing in a second-order nonlinear optical medium consists of two
distinct frequency components F(t) = E;(w;)exp(—iwit) + Fa(ws)exp(—iwqt) + (x). The
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symbol (%) represents the complex conjugate of the preceding terms. The formula
is in accordance with the process illustrated in the introduction of paper 1. The indices
i,J, k are the Cartesian components of the fields. The indices n,m take values 1 and 2,
as the field around consists of the frequencies w; and ws. The notation (n,m) means that
under the summation through n,m in (2.3.1)), the sum w,, + w,, in the argument should
be kept unchanged as the nonlinear polarization oscillates at frequency w,, + wy,, even if
wy, and wy, vary. The function x® is written with three arguments. Technically speaking,
this is unnecessary, because thee first is always the sum of the other two. The polarization
term therefore represents the sum-frequency generation.

In order to completely describe this interaction resulting into second-harmonic genera-
tion, we need to know all the nonlinear polarization term components Pi(z). Denoting w3y =
w1 + we, we therefore need to determine 12 tensors Xgi,i(wg,wl,wg), Xg?,)g(wl,wg, —Wsa), ...
and so on, all the possible combinations. In addition, each tensor contains 27 Cartesian
components since the rank of the tensor is 3. Totally, 324 different complex numbers
need be determined. However, the form of makes it possible to observe certain
symmetries due to the restrictions that relate these symmetries to the components of ().
Since 1, j, k,n and m are dummy indices, they can be interchanged and useful properties
of the susceptibility can be exploited. For example if we allow the nonlinear susceptibility
to be unchanged if the last two arguments and the Cartesian indices are interchanged,
then we get X;,l (Wn 4 Wiy Wy W) = szg (Wn + Wiy Wi, wy ). This is referred to as intrinsic
permutation symmetry. We get full permutation symmetry if we can freely interchange
all the arguments as long as the corresponding Cartesian indices are also interchanged
simultaneously. Using these and various other types of symmetries, the number of com-
ponents to determine greatly reduces. The intrinsic permutation symmetry only reduces
the number to only 81 independent parameters.

The symmetry properties of the material medium puts constraints on the linear and
nonlinear susceptibilities. In a crystal which is isotropic in the x and y direction, but
different in the z direction, the optical response for an applied field polarized in either
the x or the y direction would be the same. This would impose a symmetry on the
second-order susceptibility such that X(zi)x = g}y It is thus important to determine all
types of symmetry properties in a crystalline medium and its consequences on the form
of the linear and nonlinear optical susceptibilities. This can be done using mathematical
methods such as group theory.

In some crystals one observes a type of symmetry in reference to the nonlinear suscep-
tibility, called centrosymmetry, or inversion symmetry. Let us consider a second-harmonic
generation in such medium that responds instantaneously to the applied optical field. So
no temporal dispersion. The nonlinear polarization is then given by P®)(t) = gox® E2(t).
Inversion symmetry means that if the sign of the applied electrical field changes, so does
the sign of the polarization. Thus the formula for the polarization must be identical to
— P (t) = gox?@ (= FE)?(t) which is equivalent to —P?(t) = ¢ox? E%(t). By comparison
we see that o E%(t) must be equal to both P®)(¢) and —P®(t). Hence we get that
P@)(t) = — P (t) which implies that P®(¢) = 0 and likewise x® = 0. The conclusion is
that for a centrosymmetric material system, the y® nonlinear susceptibility must vanish
identically. This fact is true in general in nature for all centrosymmetric materials. In-
tuitively, it can be understood at the atomic level. Consider an electron and its motion
in a nonparabolic potential well U(x) centred at the nucleus, or at the origin in the case
of one dimension and that is an even function (symmetric under the operation = — —z).
The nonparabolic potential in 1D being a function of z, is approximated using Taylor
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series around the origin as U(x) ~ c;2? — cp2?, where ¢; and ¢y depend on parameters
such as the mass of the electron or the resonant frequency of the atom. The fourth order
term is considered as a correction to the second order term, consistent with the Taylor
series. Using classical mechanics, the restoring force F). generated from the potential is
of the form F, = —dU/dx = —2cix + 4cox®. The restoring force is then a nonlinear
function of the displacement of the electron from its equilibrium position. Because of this
nonlinearity, the atomic response will show significant harmonic distortion. In more than
one dimension, the restoring force takes the form F, = —2¢;x + 4co(x - x)x. The variable
x represents the displacement of the electron from its equilibrium position. Next, the
equation of motion for the electron is obtained where the electron is moving under the
restoring force and the electromagnetic force coming from the external field. The equation
essentially describes a motion of a nonlinear oscillator. Since the equation is nonlinear
because of the restoring force, the solution is sought in the form of a power series in
a parameter. A sequence of simpler equations are obtained which can be analytically
solved [49]. The first order equation gives us the linear polarization term P! and the
susceptibility (V). The second order equation turns out to be damped but not driven by
any force, its steady state solution vanishes, thus x> = 0. The third equation gives us
the third order nonlinear polarization term that can be shown [49] to be of the form

W)+ B(w,)] E(w,
pPe Nezm3D Wm;D()] )<<>) (2.3.2)

mnp

Here, N is the number density of atoms, b is a parameter that characterizes the strength
of the nonlinearity in the restoring force, D is defined as D(w) = wj — w? — 2iyw with
wo being the resonant frequency of the atom and ~ is the strength of the damping force.
The indices m,n,p go through the values 1,2 and 3 and the frequencies wy,,, are the
three different frequencies in the applied field given by E(t) = 322 _ B, (wy) exp(—iwpt).
The frequency w, is assumed to contain the combination of the other three frequencies
Wy = Wy + Wy, + w, (sum-frequency generation). Observe that the form of is the
same as the third order term in (|1.1.5]).

Conversely, material media possessing no inversion symmetry, are called noncen-
trosymmetric media. This property can also be explained in terms of the potential well
U(z) in the atom. In this case, the potential is also nonparabolic, but not symmetric
around the y-axis. Therefore, the first two terms in its Taylor expansion around the ori-
gin are U(z) & ;2% + cex®. The first term corresponds to a harmonic potential and the
second term corresponds to an anharmonic correction term. This model describes only
noncentrosymmetric media, because the potential energy function U(z) contains both
even and odd powers of z, while the potential in centrosymmetric media consists of only
even terms. The corresponding restoring force then becomes F, = —ciz — 3coz?. Similar
nonlinear equation of motion can be obtained for the electron and using the power series
method, a sequence of equations is obtained. The difference here is that the second order
equation is driven and so, has a nonzero solution resulting into a nonzero second order
nonlinear susceptibility x?). We can conclude that the lowest order nonlinear contribu-
tion to the polarization of a noncentrosymmetric material is second order in the applied
field strength. Note that this analysis for both centro- and noncentrosymmetric media
can be extended to include higher order effects.

In this paper, we assume a centrosymmetric, isotropic, homogeneous and lossy medium
in which the applied field consists of only one frequency w. Also, in an isotropic medium,
the third order nonlinear susceptibility x® is assumed to respond instantaneously to
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the applied optical field and is essentially independent of the frequencies of the applied
waves whenever these frequencies are much smaller than the resonance frequency wy. We
also assume that in our isotropic, homogeneous medium, the nonlinear susceptibility is
constant in all directions. Such a third order nonlinear susceptibility is called the Kerr
coefficient, denoted by 7 in this paper. Thus, in accordance with the formula we
have

PNL = 60’/7<E . E)E, (233)

where Py, stands for nonlinear polarization. The linear polarization term is assumed to
not react instantaneously but rather depend on the electric field in all the previous times,
called dispersion. It is expressed by

t
Pu(x,t) = e / At (t — VB, 1) = eov/Zr (i0)E(x, 1), (2.3.4)
where the last equality is an alternative form for the linear polarization. It can be readily
derived using Fourier transform and Taylor series, where x(w) is the Fourier transform of
X(w). The overall polarization will then be the sum of the linear and nonlinear polarization

P=P;,+Pny.. (2.3.5)
The model equation is derived from the Maxwell’s equations

0B+V xE=0,
0D -V xH =0,
V-D =0,
V.B=0. (2.3.6)

The quantities E, D, H and B are the electric field, electric displacement, magnetic field
and magnetic induction, respectively. We assume no magnetic response in the material
so we have the relations H = B/pug and D = ¢0E + P. The constants py and ¢y are the
permeability and permittivity of the free space, respectively. We are also considering the
propagation direction of the optical pulse to be the positive z direction and that it does not
depend on x and y coordinate. In paper 2 we discussed the Maxwell’s boundary conditions
where two types of boundary condition were made possible: the transverse magnetic and
transverse electric waves. Out of these two, transverse electric waves are more suitable
here, because we want the electric field to be parallel to the boundaries which are, in this
case, the x and y directions. According to these assumptions, we restrict ourselves to
solutions of the form

E(z,t) = E(z,t)e,,
B(z,1) = Bi(z,t)e, + Bz, t)e., (2.3.7)
PNL(Z, t) = PNL(Z, t)ey. (238)

The nonlinear polarization term (2.3.3) then simply becomes Py, = gonE?>. Using (2.3.4))-
(2.3.8) one can eliminate the magnetic field components with cross derivatives and arrive
at the equation

3ttE - CZaZZE + \/%@tf((zat)E == —nattE?’, (239)

46



which is the basic model equation for this paper. Since we are solving it using a per-
turbation method and consequently comparing the solution to a high precision numerical
solution, it is useful and practical to scale the equation (2.3.9). There are three variables
which can be scaled, namely z = Zyz',t = Tyt' and E = EyE’. The scaled variables are
then dimensionless by definition. The scales Zy, Ty and Ej are picked in a convenient way
to eliminate most of the factors that appear after the scaling is applied. Doing so, we get
the relation Ty = Zy/c. Since Fourier transforms in both time and space play a prominent
role, we need also to pick the scales for the wave number & = Kyk' and the frequency
w = Qw’ such that it does not affect the usual form of the associated Fourier transforms.
Using the relation between Ty and Z; one finds that the relation €2y = cK| assures this.
The scaled equation has then the form

OnE — 0..FE + V210, x(i0,)E = —20,E°, (2.3.10)

where we dropped all the primes and introduced a dimensionless quantity € = Ey,/. The
field strength FEj is chosen to be the peak amplitude of the initial field which depends
on the strength of the laser used to generate it. Thus € can be varied over orders of
magnitude, but typically it is always less than one in realistic situations. The parameter
e will also serve us as the small perturbation parameter when we apply MMS.

The material medium in which we wish to propagate the initial pulse is associated
with strong dispersion. As a consequence, the pulse spreads quickly out but has a very
narrow wave-number spectrum. Thus, we will assume that the initial field has a narrow
spectrum centred on a wave length which is determined by the laser generating the pulse.
So the equation (2.3.10)) is solved as an initial value problem restricting the solution to
a spectrally narrow one. Using MMS, one can derive equations for such narrow band
solutions, called amplitude equations that give a good approximation to Maxwell’s equa-
tions for these type of solutions. In this paper, we derive such an amplitude equation.
Earlier, we introduced MMS and demonstrated the procedure on an example. The same
procedure will be done on the equation . We start by introducing the expansions

3t:3t0+63t1 +528t2+...,
0, = 0.y + 0., +%0,, + ...,
e=ey+ce; +eley+.... (2.3.11)

The electric field is then given by

E(z,t) = e(z0,t0, 21, 11, - - (2.3.12)

) ‘tjzsjt,zj:ejz'
The function x(i0;) is unknown at this point and we use the expansion for time ({2.3.11])
and Taylor series to get an expansion up to the order £2. The process continues in a usual
way by writing down the perturbation hierarchy. The 0-th order equation has the wave
packet solution

60(2’07 to, 21, tl, .. ) = AO(ZL tl, .. .)6100 + (*), (2313)

where 0y = kzy — wty and w = w(k) is a complex function which is the solution to the
dispersion relation w?n?(w) = k?, where the refracting index n is defined as n?(w) =
14+ v27X(w). The reason why w(k) is a complex valued function is because the material
media we are considering is of lossy type, or in other words the linear susceptibility has
a nonzero imaginary type that corresponds to absorption of the applied field. Solving
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the equation (2.3.10) as an initial value problem leads to the choice of the initial field at
time t = 0. The wave number spectrum is then known for the initial field and is real
which makes the time frequency w complex. This has tremendous effect on the amplitude
equation. Usually, the amplitude equations derived with MMS are nonlinear, such as
the nonlinear Schrodinger equation or the complex Ginsburg-Landau equation. In these
examples, the time frequency is, however, real valued. Recall that amplitude equation is
obtained from removing the secular terms at every order of the perturbation hierarchy.
In our case, the 2 order equation contains the third power of ey. Taking the third power

of (2.3.13)) we get 4 nonlinear terms in Ag
ep = AdeBh 1| Ag|? Agei® e 4 (%), (2.3.14)

where w; = Im w. The secular terms at all orders are the factors in front of the exponential
term e, Besides the terms in , the €2 order equation has only secular terms which
are linear because no other source of nonlinearity exists except for the third power. This
concludes that if w was real valued, the second term from (2.3.14) would contribute to
the secular terms resulting into a nonlinear amplitude equation. But since this is not the
case, the amplitude equation remains linear. This makes the MMS based on decaying
modes fundamentally different from stationary modes.
Carrying on with the calculations, we found the amplitude equation to be

OA + o (k)0 A — i (5 —a (w’(k))2> 9..A =0, (2.3.15)

which is linear and where « and [ are defined as

n*(w) + 2wV2r Y (w) + 2w V21 Y (w)

a=uw'(k) oF : (2.3.16a)
A
B=5= (2.3.16b)

The nonlinearity comes in play through the relation between the electric field and the
amplitude of the following form

E(Z,t) — A(Z,t)ei(szwt) + 82(01A3(Z,t>6i3(kz7wt) + CQ|A(Z,t)‘ZA(Z’t)ei(szwt)emtwi) + <*)’
(2.3.17)

where

1
n?(w) — n2(3w)’
3 2iw; )
co = 3w + i) — (2.3.18b)
E? — (1 + x(w + i2w;)) (w + 2iw;)

¢ = (2.3.18a)

In the case of stationary modes, or real valued w the nonlinearity would be present also
trough the amplitude equation.

At the first and second order equations, we took only the particular solutions and
disregarded the homogeneous solutions. By considering them as well, new amplitudes
would be introduced and for each of them, the amplitude equations would also be linear
and decoupled. The defining electric field in terms of these amplitudes would be much
more complicated. The deciding factor whether to include new amplitudes depends on the
kind of solutions we wish to approximate. Here, the initial condition must be consistent
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with perturbation assumptions made during the MMS. The amplitude equation (2.3.15)
is linear so any narrow band initial condition for this equation will lead to a narrow band
wave packet solution with dispersive properties. Our goal is, nevertheless, not to validate
the amplitude equation with its relation to E. The goal is to find a solution to the wave
equation (2.3.10)) so the initial condition needs to be chosen there. It is also justified from
the physical point of view since the initial field for E is determined by a laser which is
spectrally narrow, and not for the amplitude A. The initial condition is then a narrow
(Gaussian centred at some particular wave length and nowhere else. From the relation
(2.3.17) we see that the initial condition for F consists of two Gaussian centred at k£ and
3k which is not consistent with the wanted initial condition. It is also clear that in order
for F to be a Gaussian centred on k, the amplitude A must be a Gaussian centred on
k = 0. If we would impose the initial condition for £ being only at k and calculate the
initial condition for the amplitude A, it would result in two Gaussians again at k£ = 0 and
2k. But in MMS we assumed only one wave packet centred at & (2.3.13). The Gaussian at
2k would be, however, smaller. To solve this issue, we have to introduce a homogeneous
solution to the 2 order equation with a new amplitude

62(20, tg, 21, tl, .. ) = BQ(Zl, tl, .. ‘)ez’(3kz—w(3k)t) + (*), (2319)

centred at 3k. This way we separate the two Gaussian obtained in the initial condition
for A. Now we get two initial condition for A and B, each consisting of one Gaussian.
The relation determining the electric field E from the amplitudes A and B is then of the
form

E(z,t) = A(z,t)e!*) L 2((B + ¢, A3(2, 1)) e3k==wb
tea Az, 1)PAlz, £)e! 02 - (). (2.3.20)

We obtain the initial condition for B by letting B(z,0) = —c;A*(2,0) and we get an
equation from ([2.3.20) with Gaussians on both sides centred at k. The initial condition
for A is then easily found by solving

E(2,0) = A(z,0)e™ + c2cy| A(2,0)[2A(z,0)e™ + (¥), (2.3.21)

by an iterative numerical method.

To get the amplitude equation for the new amplitude B, secular terms for the 3 order
equation must be removed. This means a lot of work with tedious algebra but we can
deduce them cleverly by observing the form of the right hand sides for the equations in the
perturbation hierarchy. The right hand side of the ¢! equation contains only derivatives
of ey. The €2 equation’s right hand side contains both ey and e; but the terms with e;
are exactly the same as for ey in the previous order equation. Therefore we can deduce
that the €3 equation will contain the same terms only with ey, where our new amplitude
By is. Thus the secular terms for By in the €% equations are the same as for Ay in the !
equation, except with 3k instead of k. We then conclude that the amplitude equation for
B must take the form

8B + ' (3k).B = 0. (2.3.22)

The rest of the paper is about validating the MMS solution (2.3.20)) using high precision
numerical simulations. The narrow band solutions we are considering are challenging
to solve numerically because they consist of wave packets with wide and slowly varying
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envelope and fast oscillations. This implies very high resolution to capture the oscillations
and large computational domain to include all the envelope which leads to long running
time. Solving an amplitude equation instead requires much less computational time.
The main reason is that for narrow band solutions, the carrier wave centred at the fast
frequency does not need to be resolved, only the small deviations around the center
frequency.

In order to validate our solutions, we need to know the formula for the electric sus-
ceptibility y(w) which plays a role in the dispersion relation. There are some polynomial
formulas that approximate the real dispersion relation quite well if one is far from material
resonance. For such approximations it is fairly easy to numerically solve the model equa-
tion and validate the amplitude equation. A much general class of approximations for the
susceptibility are rational functions. To see how they are obtained, we need to go back to
the atomic level of the material. The atoms in material media are composed of massive
nuclei surrounded by electrons with small mass relative to the nucleus. The applied elec-
tric field E can excite the electrons and displaces them from the nucleus creating electric
dipoles which give rise to the polarization P. This effect can be described by a simple yet
powerful mass-spring model. It was first proposed by H. A. Lorentz [9], a Dutch physicist.
This model provides a surprisingly accurate description for the dependence of the electric
field on polarization.

Consider an atom with a nucleus of mass M and charge 4+¢ with an electron of mass
m and charge —q attached to it. The nucleus is assumed to have much larger mass than
the mass of the electron. We are going to model the attachment through a spring between
the nucleus and the electron with a spring constant «. This system has also a dynamic
friction with a real valued, positive friction constant . This will cause a damping effect
in the system. Let us assume that the position of the nucleus is at the origin of the zy
plane and the electron moves up and down in the y direction. When there is no excitation,
the electron is in its equilibrium position which coincides with the position of the nucleus
with the net charge of 0, so there is no electric dipole moment defined as p = p e,.
Under the influence of a monochromatic electric field E(t) = E, cos(wt)e, applied along
the y-axis, the electron is driven from its equilibrium position creating en electric dipole
moment p = —qy(t)e,, where y(t) is the displacement of the negative charge along the
y-axis. From classical electrodynamics, we know that the force exerted on the electron is
—eE(t). From classical mechanics, the restoring spring force becomes —ay(t)e, and the
damping force reads —fy(t)e,, where y = dy/dt is the velocity of the electron particle.
Note that treating this quantum system with classical mechanics is by no means accurate
from quantum mechanical point of view, but the goal is to obtain an approximation from
a mechanical perspective. According to Newton’s law of motion, the total force acting on
the negative charge is equal to its mass times its acceleration, or in other words

mij(t) = —qE(t) — ay(t) = By(t),
4
.. . q
§(8) +79(t) + woy(t) = ——E(t), (2.3.23)
where we denoted v = §/m being the damping coefficient and wy = \/a/m is the reso-
nance frequency of the atom. We will look for a solution of the form

y(t) = Relyoexp(—iwt)], where yy is complex valued and write the electric field as
E(t) = Re[Eypexp(—iwt)] , where E, is complex. Then the equation (2.3.23) turns
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to
, q
—whyo — iywyo + wiyo = — - Ej. (2.3.24)
The solution to the above equation then yields

—q/mE,
Wi —w? —iyw

Our goal is to obtain the formula for the linear electric susceptibility of the material
X(w). Recall that the linear polarization term is of the form P(t) = egox(w)E(t), see
(1.1.3). Thus we need to obtain the polarization P. Inspired by this, we write the electric
dipole moment p of the mass-spring system as p = —qy(t)e, = Re[—qyoe, exp(—iwt)] =
Re[p, exp(—iwt)], where we denoted

Py = —¢*/mE,

07 W2 —w? —iw
and we used the result (2.3.25). In order to obtain the electric dipole moment density
which the polarization P really is, we need a constant N which stands for the number of
such atoms with dipoles p. The polarization is then defined as P = Re[Np, exp(—iwt)]
that can be written in the form P = Re[gox(w) E, exp(—iwt)e,], where we introduced the
term

e,, (2.3.26)

2

v = P 2.3.27
W) = s (23.27)

with w, = \/Ng?/(eom) called the plasma frequency. The formula for the linear suscep-
tibility is referred to as the Lorentz model.

The type of approximations such as in form of rational functions are com-
monly known as Sellmeier formulas in optics. Using these formulas in the dispersion
relation turns the model equation, which is a differential equation in time, into a more
complicated pseudo-differential equation in time. This is because the frequency variable w
is in the denominator, what in the time domain becomes an integral operator. The integral
operator in our model equation would be X(i0;). For this situation, we introduce
a transformation that allows us to turn the model equation into a differential equation
in time, called Sellmeier transformation. The reason why we need such transformation
is to be able to solve the model equation numerically and validate our MMS solution by
comparison. The numerical solution of the model equation can be only obtained if the
equation does not include integral operators.

Let us assume that the electric susceptibility of the material is approximated by a
Sellmeier formula of the form x(w) = P(w)/Q(w), where P and ) are some polynomials
in w like the one we obtained . The idea behind the Sellmeier transformation is to
transform the original pseudo-differential model equation (2.3.10) which can be written
as L(E, E*) = 0 into a differential equation £(E, E?) = 0. The way we proceed is to take
the Fourier transform of the model equation (in both space and time, although only time
is sufficient) and rewrite it in the following way

L(E,E% =0,
1 e
o5 QW)L (B, E*)| =0,
L f(EE) =0, (2.3.28)



where we denoted £ = Q(w)L. At the end, the equation £(E, E3) = 0 is transformed
back using inverse Fourier transform. If Q was defined as Q(w) = aw? + bw + ¢, as is
the form in , the operator £ = becomes £ = (¢ + ibd, — ad?) o L. The Sellmeier
transformation of the model equation is then £(E, E*) = 0 which is a normal differential
equation in time.

It is easy to observe from the transformed equation E(E7E3) = 0 that any of its
solutions is also a solution to the original equation L£(E, E®) = 0, but not vice versa.
We can express this by stating that Sp C Sy, where S, denotes the solution space
of the original model equation and Sp is solution space of the transformed equation.
One can argue that the Sellmeier transformation can break down when @Q(w) becomes
zero, but this situation is rarely realized. We are, however, focusing on an even smaller
subspace of Sp that are narrow band solutions described by the amplitude equation
(2-3.15)). Then the only question is whether the MMS applied to the Sellmeier transformed
equation produces exactly the same amplitude equation as the one we got from the pseudo-
differential equation (2.3.10)). If this is true, then we can use the transformed equation to
validate our MMS solution without the pseudo-differential operator in our way. We will
choose two different examples of susceptibility, check whether the MMS solution matches
for both transformed and original model equation and in a positive case, validate it by
comparing with the numerical solution of the transformed equation.

The first model of material response function we are using is of the simple form

1
V21 v —iaw’

where a and ~ are real positive constants. This kind of susceptibility may not be physical
at all, even though it satisfies the Kramers-Kronig relations. To briefly summarize what
these relations mean, assume that we apply an electric field on a material at ¢ = 0. An
impulse-response P(¢) (material polarization) in a material must therefore start at ¢t = 0
as well and not earlier. Hence, P(t) is a causal function, that is P(¢) = 0 for ¢ < 0.
This is natural to assume and should be so in any physical system where a response to
an impulse cannot occur before the impulse itself. The causality of the impulse-response
is what intimately relates the real and imaginary part of the susceptibility yx(w). These
relationships caused by the causality are called Kramers-Kronig relations.

The model not being physical does not need to stop us from using it for
the validation of the amplitude equation. In fact, choosing a linear function in the de-
nominator makes it the simplest possible choice. Using the procedure of the Sellmeier
transformation we get the following transformed equation

X(w) (2.3.29)

(v +adk) (attE —0..E+ EzattES) + Oyl = 0,
aatttE + (’Y + 1)8ttE — 7822E — a@zztE + 52’)/8ttE3 + €2GatttE3 = 0, (2330)

where we used the interchangeability between w <> i0; as a consequence of the Fourier
transform. Observe that the transformed equation (2.3.30) is indeed differential equation
in time and in this paper, we use pseudo-spectral method to solve it numerically. Recall
that in order to use this transformation, the MMS solution to (2.3.30)) must yield the
same equations as ([2.3.15)), (2.3.17). The derivations are provided in Appendix B of the
paper and it turns out, the MMS solutions are the same.

The equation ([2.3.30)), in its current form, cannot be solved with respect to its highest
order time derivative since it contains a nonlinear term. Here, the small parameter € can
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be used to obtain an approximation to by iteration such that it can be solved
with respect to the highest derivative. This is achieved by expressing the highest time
derivative from the linear term. The obtained expression is then substituted into the full
equation with 9y B° = 6 (,E)” + 1859, Bdy E + 3E?0, E. The terms of higher
order than 2 are dropped, for it must be consistent with the MMS solution which is valid
to order £2.

Before we proceed to the actual solving of the equation , we observe, that the
amplitude equation is derived only for one amplitude, or one mode, to be precise, while
has three such modes since it is of third order derivative in time. The solution to
the linear part of can thus be expressed as inverse Fourier transform

3
1 > .
i=1 "7

where w;(k) are the solutions to the dispersion equation which is a third order polynomial
in w. Due to a symmetry of the dispersion relation, namely that if w(k) is a solution, then
—w*(k) is a solution as well and that the electric field must be real, one arrives
at the following relations between the amplitudes A; 5 3(k):

Ai(k) = A3 ( k),
—k). (2.3.32)
We see that the amplitudes for £ < 0 are determined by their values for £ > 0, so
it is sufficient to specify them only for positive argument k. As mentioned earlier, the
amplitude equation is correct for a narrow band solution of only one of the modes A;(k)
centred around a positive wave number kj. Let us assume that the mode, for which we
have the amplitude equation, is A;(k). According to (2.3.32), specifying A;(k > 0) and
Ai(k < 0) =0 gives us As(k > 0) = 0. It is therefore consistent to choose Az(k) = 0 for
all k and As(k > 0) = 0. With these choices, the electric field simplifies to

E(z t —zw —|—A* k iw*(—k)t 1kz _ / d/{iE /{Z t zkz
(= \/27T/ —~— (e l \ 2w
E(k,t)
(2.3.33)

where we let w;(k) = w(k) to match the parameters in our MMS solution. As a part of
our pseudo-spectral method of solving (2.3.30)), we Fourier transform the equation into
its k& domain and obtain a third order ODE with a nonlinear right hand side. The third
order implies we need three initial conditions E(k,0), 8,E(k,0) and 8, E(k,0) if we want
to solve it as an initial value problem. These conditions can be acquired from (2.3.33)
through the amplitude A;(k). If we denote the three initial conditions f(k),g(k) and
ﬁ(k:)7 respectively, then we get

f(k) = Ay(k) + AL (—F), (2.3.34a)
G(k) = —iw(k) Ay (k) + iw* (—k) AL (—k), (2.3.34b)
hk) = = (k) Ay (k) — (W (—k))? Af(—Fk). (2.3.34¢)

Thus the choice of A, (k) is sufficient to determine all the initial conditions to solve ({2.3.30)).
The ODE can be turned into a system of first order ODEs and solved numerically. To be
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able to solve the amplitude equation as well, we need to compute the initial condition for
(2.3.15) in terms of the chosen function A;(k). Taking the inverse Fourier transform in k
of the right hand side of gives us F(z,0). Consequently, we equate this function
with the right hand side of evaluated at t = 0 and match separately the first part
and the second part which is the complex conjugate of the first part. We arrive at the
system

FHA(k)} = A(2,0)e™% + canEg| A(z,0)[PA*(2,0)e™%,
Fl {A’{(—/{:)} = A*(Z, O)e—ikoz + cénE§|A(z,0)|2A(z,0)e_ik°’z. (2335)

This is a nonlinear system of algebraic equations with the unknowns A(z,0) and A*(z,0).
It can be solved numerically with Newton’s method. The initial condition for the other
amplitude B(z,0) is readily obtained using the condition B(z,0) = —c; A3(z,0).

We must be aware of the consistency with assumption for the narrow band solutions,
while choosing the initial condition A;(k). Perhaps the most natural representation in
the spectral domain £ is a narrow Gaussian centred at kg > 0. The parameters of the
Gaussian should be chosen such that the function is narrow enough. The assumption is
that the amplitude A(z,t) should be slowly varying in z, or in other words 0,A ~ O(e).
The width of the Gaussian needs to be therefore chosen so that its width becomes ~ 1/e.

In the numerical test to validate the amplitude equation, the parameters for the ma-
terial response model were chosen to be a = 20 and v = 5. With the choice of
the perturbation parameter, we face a kind of a tradeoff. The underlying assumption is
that ¢ < 1. Making the parameter € as small as possible so that the separation of scales
in the MMS solution is as clear as possible, is reasonable. On the other hand, making
e very small means, we have to propagate the wave equation a very long time for the
nonlinearities to be detectable or to affect the spectrum of the waves. Also, it would be
challenging numerically for the model equation due to long running times. During the
MMS process, we removed the secular terms up to the €2 order which implies that the
MMS solution should be valid up to t < e72. So for a very small €, the model equation
should be solved up to €72 which could become very large.

In our simulations, we chose ¢ = 107!, This may not be a very small number, but
it turns out, the amplitude equation does approximate the exact model quite well for
this value of €. The numerical test begins with computing the initial conditions for the
amplitude equations A(k,0) and B(k,0). They are both Gaussian centred at k = 0
with widths ~ 1/e, as expected. We have also calculated the initial condition without
considering the other amplitude B(k,0). The outcome was that A(k,0) consisted of a
Gaussian at & = 0 and also another Gaussian of order € centred at 2k,. This led to a
contradiction since we assumed a narrow band initial condition.

Returning back to the numerical test, with ky = 2w, the dispersion relation yields
the frequency wy = 6.28 — 2.5 x 1072, The real part of the frequency wy represents the
oscillation frequency of the initial pulse while the imaginary part stands for its decaying
rate. From the graph of n(w), we would observe that the numerical value of the real
part of wy puts our initial pulse to the right of the material resonance. In our paper,
we provided plots of the two solutions of using a system of ODEs and using the
amplitude equation, on top of each other at four different times t = 0, 15,40 and ¢t = 50. In
addition, the functions were compared in their spectral domain £ at ¢t = 50. At all times,
the two functions matched surprisingly well. The small deviations are not exceeding the
2 order. In their spectrum graphs, the functions were consisting of two Gaussians, one
larger sitting at ky = 27, as expected and one smaller at 3ky = 67 with height of order £2.
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The one at 3kg can be explained by the nonlinearity having the cubic form E3. Inserting
a plane wave for F in (2.3.30) would result into multiplying the wave numbers by a factor
of 3, hence 3kq. It can be therefore regarded as the nonlinear effect of the third order
polarization term.

However, the results were not always satisfactory during our extensive numerical tests
with various parameters for the susceptibility and the initial wave number ky. It was
observed that in order to stay on the correct asymptotic regime, the parameters were
subjected to certain constraints. The susceptibility x(w) in (2.3.10) was approximated by
its Taylor expansion whose terms can be observed in the parameter o in (2.3.16a). We
expect the Taylor series to converge, so the derivatives of y(w) involved here should not
break the order of the preceding terms in the expansion. This depends mainly on the
parameters a,~ and the frequency w around which the Taylor series is expanded.

Judging from the results of the numerical tests, we may conclude that the amplitude
equation accurately approximates the exact solutions for Maxwell. On the other hand, a
stability analysis of the amplitude equation reveals that the equation is in fact, ill-posed.
This might come as a shock since the numerical test suggests its validity. The stability of
(2.3.15) can be easily investigated by substituting A(z,t) = exp(A(k)t) exp(ikz) into the
equation and cancelling the common factors. At the end we find the expression for the
function A(k) which serves as the growth curve. If Re A > 0, the solution to the amplitude
equation grows exponentially and decays when Re A < 0. We find that the growth curve
is of the form

Re A(k) = a1 k* + ask, (2.3.36)

where the constants aq, as include some algebraic combinations of the real and imaginary
parts of the quantities w’(ko), @ and S. The function (2.3.36) is a parabola passing through
the origin. For our parameter choices in the previous numerical test, the constant a; is
positive and as negative which leads to positive growing of the parabola, thus exponential
growth of the solution to the amplitude equation. We face two contradictory facts: on
one hand, the amplitude equation approximates the exact solution very well and on the
other hand, it is ill-posed which usually means bad news for any proposed mathematical
model. There are many examples in mathematics where diverging models describe the
reality accurately within certain asymptotic bounds [12][69]. Here, the constants a; and
as are of order 107% and 107°, respectively. The graph of the parabola is thus very
shallow. If we plot the initial condition A(k,0), B(k,0) together with the growth curve
in the range k € [—10, 10], we find that the initial conditions have their support confined
within k£ € [—2,2] and the maximum of A(k) in the range k € [—10, 10] is around 5 x 10~*
at k = —10. In addition, the stability curve always passes zero, the initial conditions are
centred at zero and they are narrow by definition. This suggests that the region where
the solution to the amplitude equation resides, will grow at the slowest rate in case of a
growth. The amplitude equation is also valid during the time ¢t < 72 which in our case
is t < 100. All these facts contribute to the conclusion that for any solution satisfying
the assumptions to derive the amplitude solution, will not grow large enough to affect to
solution up to order % and greater.

In the rest of the paper, we present one more example of the susceptibility model,
namely the Lorentz model we derived earlier in ([2.3.27))

1 1

o = 2.3.37
X(w) V2 aw? + ibw + ¢’ ( )
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where a = —1/w?, b = —v/w} and ¢ = w?/w?. Note, that the formula is scaled
according to the scaling introduced in the beginning of this paper as opposed to the
formula calculated in . This model represents an actual physical model as opposed
to (2.3.29) and also satisfies the Kramer-Kronig relations. The function we are using has
an additional factor 1/ V27 due to a Fourier transform convention. As with the previous
mode, the same procedure has been done with the Lorentz model: finding the Sellmeier
transformation, iterating the transformed equation in order to remove the highest time
derivative by the nonlinear term, expressing the solution as the inverse Fourier transform
of 4 independent modes, finding the relations between them and calculating the initial
condition for the amplitude equation. The Sellmeier transformation now produces a 4-th
order differential equation in time, so we get a 4 x 4 nonlinear system of ODEs.

To validate the amplitude equation for the Lorentz model of dispersion, we chose
two different set of parameters a, b, c. These two sets correspond to two physical models
where the material resonance occurs at different wavelengths of light. The first choice
of parameters represents a material with ultraviolet resonance (wavelength is of order
of tens of nanometers). The frequency of the initial pulse was placed to the left of
the resonance. In the second set of parameters we chose the material to have infrared
resonance (wavelength is of order of tens of micrometers) and the frequency of the initial
pulse is at the right of the resonance. In both examples, the overlap between the MMS
solution and the high precision solution of the model equation is satisfactory both in
their spatial and spectral domains. The investigation of the stability for both sets of
parameters resulted into well-posedness for the amplitude equation in the ultraviolet case
and ill-posedness for the infrared case. The instability in the latter case did not pose any
danger as the numerical tests showed.

This paper contains successful derivation of the MMS solution to Maxwell’s equation
(2.3.10) and validation of its numerical accuracy. We introduced the Sellmeier transforma-
tion which helped to remove the pseudo-differential operator from the Maxwell’s equation.
The MMS produced a linear amplitude equation which made it much faster to solve com-
pared to solving the original Maxwell’s equation. We found that the amplitude equation
can be ill-posed depending on the parameters of the susceptibility, but a careful exami-
nation showed that it does not represent a problem due to the nature of the instability
and the location of the initial condition. The amplitude equation was validated through
three numerical tests using two different dispersion models (susceptibilities). We found
the amplitude equation to be an accurate approximation of the exact solution in each test.
However, countless other numerical tests revealed some limitations of the MMS solution.
In all cases, the main source of failure was the choice of parameters in the susceptibility
and the initial frequency wy. It affected the Taylor expansion of y(w) around wy where
the ordering of the terms became compromised. Also, when one was near resonance, the
MMS solution did not perform as good as expected, partly because the magnitude of the
nonlinear terms exceeded the order 2 in the numerical solution. Further investigations
of these problems are definitely required.
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In this paper, we investigate the completeness of the Stark resonant states for a par-
ticle in a square-well potential. We find that the resonant state expansions for target
functions converge inside the potential well and that the existence of this convergence
does not depend on the depth of the potential well, V. By analyzing the asymptotic
form of the terms in these expansions, we prove some results on the relation between
smoothness of target functions and the asymptotic rate of convergence of the corre-
sponding resonant state expansion and show that the asymptotic rate of convergence
is also independent of V¢, but the absolute size terms in the series asymptotically goes
as Vy !, Published by AIP Publishing. https://doi.org/10.1063/1.5042523

I. INTRODUCTION

Decaying quantum states were first introduced in 1928 by Gamow'? and independently by
Gurney and Condon®* in the context of nuclear physics, to describe long-lived wave functions of
particles that eventually “escape” from a confining but unstable potential. This was however not
the first time decaying eigenstates were used in physics. As early as 1884, Thomson> used them to
describe decay phenomena in electromagnetism. Characterization of the unstable states using the
absence of incoming waves was first introduced by Siegert® in the context of the nuclear scattering
matrix. The Siegert characterization was taken up by Peierls,” Couteur,® and Humblet® and developed
into a powerful tool in nuclear scattering theory. The wave functions satisfying the Siegert outgoing-
wave conditions became known as resonant states and their properties have been investigated for
many years (for example, Refs. 10-19).

The fact that resonant states decay exponentially in time implies that it is more likely to find the
released particle far from the nucleus than closer to it since it is more likely to have been released
by an earlier time than a later one. The resonant states are thus not normalizable, at least not in the
standard sense introduced by von Neumann when he gave a proper mathematical foundation?” for a
subset of the Dirac formalization of quantum mechanics®! in terms of Hilbert spaces for the states
and Hermitian operators for the observables. Subsequently, after many intervening years of steady
mathematical progress involving many people, an extended mathematical foundation for the full
Dirac formalization, involving rigged Hilbert spaces, was developed by Gelfand.?” It turned out that
the context of rigged Hilbert spaces was flexible enough to also include resonant states even if such
states were not part of Dirac’s original formalization of quantum mechanics. However, the theory of
rigged Hilbert spaces is perhaps a bit heavy on the mathematical side, and therefore, several other
extensions of the von Neumann foundation of quantum mechanics designed to accommodate resonant
states has been developed over the years.>>~>® Over and above these mathematical developments, a
key issue involving resonant states has been their physical interpretation. The fact that they cannot
be normalized in the Hilbert space setting means that the Born interpretation of quantum states in
terms of probability theory fails. However, it has been shown that a state with infinite norm can
be given a probabilistic interpretation by considering an expanding sphere in which the probability
density (and the norm) remains conserved.”’ Be this as it may, it has always been recognized that
such states contain useful physical information. For example, the temporal decay of the resonant state
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corresponding to a bound state in the zero field limit is related to the life time of that state under the
influence of the field.

The mathematical peculiarities were perhaps perceived less as an obstacle in electromagnetics
where the counterparts of quantum resonances are the so-called leaky modes. These are configurations
of the electromagnetic fields inside unstable resonators and waveguides that can “survive” for long
times, but eventually radiate their energy away. They have been studied with keen interest in resonator
cavities,*3! optical waveguides,>” and photonic?? and plasmonic**3’ structures and are often utilized
for numerical simulations.

However, despite their long history of utility (e.g., Refs. 36-39) in various fields, the unstable
states, both quantum and electromagnetic, have not yet been fully understood. On the quantum side,
the lack of a general theory for non-self adjoint operators is challenging and is the reason why
non-Hermitian systems are mostly investigated on a case-by-case basis (see, e.g., Ref. 25). Ours is
precisely such a study of a concrete quantum system.

Our particular motivation for investigating this problem comes from our long time involvement
in the problem of high intensity optical pulse propagation.*>*! For such high intensity fields, it is very
challenging to come up with a material response theory that is reasonably accurate and also reasonably
fast to evaluate. This last requirement is of paramount importance for long distance propagation*? and
rules out any scheme involving a direct integration of the Schrodinger equation*® because of the large
spectrum of space and time scales involved. There are roughly three orders of magnitude between
the oscillation time scale for the electrons in the atom and the optical time scale. This difference,
which is a problem for any direct integration scheme, also presents an opportunity for simplification;
if one can find a complete set of resonant states for an atom in a constant field, then the solutions for a
variable field can be expanded, to a good approximation, in the same set of resonant states by simply
making the parameter representing the field strength time dependent. This is an adiabatic assumption
that becomes more accurate with the larger the gap between electronic time scale and the optical time
scale becomes.

The purpose of this paper is to demonstrate the completeness of the resonant eigenstates for a
quantum particle in a square-well potential that is exposed to a homogeneous external electric field
and to investigate the convergence properties of the corresponding resonant-state expansion. The
external field, even a weak one, has a profound effect on the energetic spectrum of the system; As
soon as the field is switched on, all discrete-energy eigenstates dissolve into the energy-continuum
which fills up the whole real axis.** At the same time, resonances appear in the complex energy
plane, and it is these decaying states our work is concerned with. The results presented in this work
generalize and extend the findings in our previous study,*> where the convergence of a resonant state
expansion was investigated for the case of a zero-range Dirac-delta potential.**~*3 In particular, the
more realistic system investigated here allows us to make conjectures concerning a wide family of
one-dimensional quantum systems.

The paper is organized as follows. In Sec. I, we set up the problem by introducing the resonant
states for a square-well potential and the locations of their energy eigenvalues in the complex plane;
these results are known from the literature.*” In an attempt to make the paper more readable, we
decided to omit most of the technical but rather standard calculation details in favor of demonstrating
the validity of important intermediate results with the help of high-precision numerical tests. In
particular, we have made extensive numerical investigations into the convergence of the resonant
state expansions and in Sec. III we show some of the results of these investigations. They indicate
strongly that the resonant state expansions converge point-wise to the left (i.e., against the pull of
the field) of the well and inside the well, but diverge to the right of the well, assuming here that the
external field points to the right. This result is consistent with what was obtained for the case of a
Dirac delta potential in Ref. 45. In Sec. IV, we prove that what the numerical evidence indicates is
indeed true. Resonant state expansions are shown to converge point-wise to the left of the well and
inside the well and diverge to the right of the well for all reasonable initial data for the Schrodinger
equation. In Sec. V, we investigate the asymptotic form of the terms in the resonant state expansion
and make precise statements about the rate of convergence and how this rate relates to the smoothness
of the function that is being expanded. We also present high-precision numerical calculations to verify
the correctness of our asymptotic formulas and the statements on convergence rates. One surprising
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conclusion that came out of this investigation is that the depth of the potential well does not play much
of a role; both the question of convergence of the resonant state expansion and its asymptotic rate
of convergence are independent of the depth of the well. We finish the paper with Sec. VI where we
briefly discuss on what has been achieved and where we also spell out the aforementioned conjecture
in some more detail.

Il. STARK RESONANT STATES FOR A SQUARE WELL

Let us consider the following Hamiltonian:
1
H=—§8XX+V(X)—8x, (1

where ¢ is the strength of the external field and where we without loss of generality assume that
€ > 0, which corresponds to the external electric field pulling the electron to the right. The atomic
potential, V(x), is modeled by a square well of width 2d and depth V

Vo[V <d.
Y30, x| >d.

According to Siegert’s characterization, Stark resonant states for the square well are wave functions
of the form

Y, 0 =ge e, (2)
where i/, (x) are solutions to the equation
Hy, =wy, 3)
which satisfy the boundary conditions
Ye(x)— 0 when x - —co,
Y (x) and ¥, (x) are continuous at x = —d, d,
¥, (x) is a purely outgoing wave at x = oo. “4)

The resonant states can be expressed in terms of Airy functions in the form

a1 Ai(yi(x, wp)) x<-—d,
Yp(x) =, (X) =4 a2Ai(y2(x, wp)) + azBi(ya(x, wp)), —d<x<d, )
asCi* (y1 (x, wp)) d<x<oo,

with the notation Ci* = Bi + iAi representing an Airy combination that asymptotically behaves as
an outgoing wave. The functions y;(x, w) and y,(x, w) that parametrize the arguments of the Airy
functions above are given by

yi(x,w)= —2(28)_% (ex + w),

Vo (x,w) = —2(28)_% (ex + Vy + w).

The resonant eigenvalues w), are obtained as solvability conditions for the coefficients a; ensuring
that the wave function and its derivative are both continuous at the edges of the potential well, at
x = =d. There is a countable set of such solutions in the complex plane, determined by the equation

det M(w,) =0, (6)
where M(w) is a certain 4 X 4 matrix. The explicit expression for the determinant of M(w) is
det M(w) = (ApA] — AjA1)(B2C; — B,C3) — (AgB| — AyB1)(A2C} — AL C3),

where we have defined

Ao :Ai(,u(—d + %)),Al :Ai(y(—d L 97 V‘))),B1 :Bi(y(—d L& J;VO)),

€

A, :Ai(ﬂ(d L@ J;VO)),BZ :Bi(,u(d + %"0)) s :Ci*(,u(d + g))

with = —(2¢)3.
u=-2¢) 66
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The resonant eigenvalues lie in the lower complex half plane which means that the corresponding
resonant-state wave functions (2) are decaying in time, as they should. Figure 1 shows the zero
contours of the real and imaginary parts of the equation. The points where they cross are the zero
points of the determinant and thus are the resonant eigenvalues. There exist two infinite families of
resonant eigenvalues. The family on the right side of the imaginary axis, called as the A-series in this
paper, has zeros located close to the positive real axis and correspond to longer living states, while
the family to the left of the imaginary axis has eigenvalues located along the ray arg(z) = —27" and
corresponds to fast decaying states. We call this second family as the C-series. Figure 1 also shows
a finite family of resonant states lying close to the negative real axis that corresponds to the bound
state eigenvalues for the square well in the limit when the external field approach zero. We call these
states as perturbed bound states. This structural division of the resonant states into a finite number
of perturbed bound states and the two infinite A-series and C-series is also seen for the short range
delta potential in Ref. 45, is probably generic, and should be expected for more general potentials
also.

Our focus in this paper is to investigate to what extent the resonant states we have found can be
used to expand initial conditions for the Schrodinger equation. If any given initial condition can be
expanded in resonant states

(f ’ '7017)
f@= ), =), @)
7 (Y ur)
the solution to the time dependent Schrodinger equation for the Hamiltonian operator (1), with initial
data ¥ (x, 0) = f(x), is given by

ZEHEDY wau)e"“ﬂ’. @®)
p

(vp-v)
This is an exact solution for a static external field corresponding to a fixed value for & in (1). For the
case of an external field that varies slowly on the atomic time scale, which we take to be atto-seconds,
the expansion (8), where now the resonant states and their complex eigenvalues vary in time through
their dependence on € = & (¢), is a good approximation to the exact solution.

The eigenvalue problem (3) and (4) is not self-adjoint and as a consequence the eigenvalues
displayed in Fig. 1 are complex and the resonant states (5) are not normalizable on the real line. This
is, as discussed in the Introduction, to be expected on physical grounds.

In order to achieve the normalization for the resonant states, we rely on the technique used in
Ref. 50. In this technique, one introduces a complex contour £ on which the resonant states are

Re (dctM) -0
@Im (dct M) -0

0.2f1

0.1¢

01F
0.2}
03}
04+
05}

-0.6

FIG. 1. Contour plot of det M(wg + iwy). The green and red lines are the zero contours of the real and imaginary part of det
M(wp + iwy). The parameters chosen for this illustration were & = 0.03, Vo = 0.5, d = 4. The eigenvalues from the A-series
are the blue dots, those from the C-series are purple, and the perturbed bound states are in black.
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evaluated. The contour we will be using has the form

X, x <X,

€))

Xe+eP(x—x.) x>x.

£=z(x)={

which serves its purpose for any chosen parameters x, > 0 and 0 <6 < Z. In the following, we
will consider =7 and x. > d to the right of the well. One can see from the form of the res-
onant states that they decay on the negative axis, while on the positive part, where the outgoing
wave dominates the wave function shape, they show exponential growth. It turns out that for any
0 <6 < 7, the outgoing part of the wave function decays along the contour and integration along the
contour can be used to normalize the states. The normalization is achieved by replacing the usual
Hermitian inner product for complex valued functions on the real line by another bilinear product
for complex valued functions defined on the contour £; this is the product denoted by (-, -) in (7)
and (8).

More generally, for any complex contour C and analytic functions ® and ¥, we can define a
bilinear complex valued product (®, ¥) by the formula

(@,%)= / dz®(2)¥(2),
c
where W(z) = ¥(z) is the natural generalization of a complex conjugate preserving the class of analytic
functions. For the particular choice of contour (9) with 6 = 7, we have the explicit expression

X 00
(p, )= / dxg(x)y(x) +1i / dxp()y(x), (10)
—0o0 Xe

where now ¢(x) = O(z(x)) and ¢ (x) = ¥P(z(x)) are smooth functions defined on the real axes that are
singular at the point x = x.. At the point x., we have

6x¢p|“ = i8x90|a,
axlﬁla = iaxwlaa

where for any function f(x) we have introduced the notation f[* =lim,_,+ and f|,, =lim,_, - f(x).
This set of functions clearly forms a vector space over the complex numbers, but it is an unusual
complex vector space in several ways. Taking the complex conjugate of vectors in V brings us out of
the space, the product, (-, -), is not positive, (¢, ¢) is in general a complex number, and this complex
valued product is symmetric (¢, ¥) = (¥, ¢). However, the space V equipped with the product (10)
is the natural setting for working with resonant states; not only does it contain the resonant states as
vectors but also the Hamiltonian (1) is self-adjoint on this space

(He,¥) = (o, Hy).

This means that resonant states corresponding to different eigenvalues are orthogonal and this fact
leads to the expansion (1). For self-adjoint operators in Hilbert space, one has a completeness theorem.
We are not aware of the existence of such a result for the space V. In order to prove such a result for
the space V, one has first to construct an appropriate topology and then use this topology as a starting
point for a completeness theorem. This kind of investigation, which certainly is worthwhile to pursue
mathematically, will however at best to lead to some kind of convergence that is weaker than the
pointwise convergence which is our goal to investigate in the current paper. We will therefore not
pursue these mathematical issues here.

Note that the relevance of this kind of mathematical structure for describing expansion into
decaying states was noted already in 1938 by Kapur and Peierls while studying the dispersion formulas
for nuclear reactions.!

lll. NUMERICAL RESULTS

We have done extensive numerical tests of the resonant state expansions (7). For particular
choices of functions, f(x), and particular square wells, the expansion coefficients were calculated
8



113501-6 Juhasz, Kolesik, and Jakobsen J. Math. Phys. 59, 113501 (2018)

1 17
— ) /N m— ) /N
08l Re(((m)) / \ 08l Re({(m)) / ‘\\
) —m(f(z)| \
06} 06} /
04t 0.4
02} / \ 02}
O P, ..o === S 0 ___-::;‘,____ﬁ,,,,,,,,ﬁﬁ__,,,,:t':ﬁ_
-0.2 : -0.2
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
X xr
(@) (b)

FIG. 2. The test functionf(x) = e and the corresponding expansion f (x) using resonant states from A-series. The parameters
are Vo =2, d =14, £ = 0.03. Note that the function to be expanded in this and the following figure is well localized inside the
potential well. (a) 100 terms used in the expansion. (b) 1000 terms used in the expansion.

using resonant states from the set of perturbed bound states and the A-series. The sample results
displayed in Figs. 2 and 3 show what we find is generic behaviour. For this illustration, we used a
Gaussian function and a Gaussian wave packet, and computed from 20 to 1000 terms taken from
the set of perturbed bound states and from the A-series in the resonant state expansion thereby
defining a function fx)= >n ¥, (x), which could possibly be different from our original f. We
calculate numerically, the complex energy eigenvalues, w,, which are solutions of (6) and the coef-
ficients a;- - - a4, ensuring the continuity of the resonant states at the points x = —d, d. From these
pictures and many like them, our conjecture is that resonant state expansions based on the set of
perturbed bound states and the A-series will converge point-wise for all reasonable initial data for the
Schrodinger equation. The convergence appears to be fairly slow compared to the convergence of a
regular Fourier series for the same functions. The slow convergence is, in particular, well illustrated
by Fig. 3. The correspondence between the convergence and the pictures in Fig. 3 lies in the fact
that if we increase the number of terms in the expansion, the difference between the two functions
decreases.

In the remainder of this paper, we will prove that our conjecture is true and also investigate in
detail how the rate of convergence depends on all parameters in the problem.

Tl (@)
- —-TIm[f(x))]

-5 -25 0 25 5

0 25 5
x x
(a) (b)

FIG. 3. The test function f(x) =0 and the corresponding expansion f (x) using resonant states from A-series. The
parameters are Vo =2, d = 14, £ = 0.03. (a) 1000 terms used in the expansion. (b) 10086 terms used in the expansion.
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IV. RESONANT STATES EXPANSION

The numerical tests in Sec. III suggest that the resonant state expansion (7) converges inside
the well, although the rate of convergence is rather slow. In this chapter, we present a proof that
confirms the pointwise convergence. Let us begin by noting that the Stark Hamiltonian (1) has no
bound states. The continuous spectrum is found by imposing scattering boundary conditions on the
Stark Hamiltonian where we have both incoming and outgoing waves at positive infinity and decaying
outgoing waves at negative infinity.

The Stark Hamiltonian is an unbounded self-adjoint operator and as such it has an associated
resolution of the identity.”> In general, the spectral resolution contains an integration over point
spectra and also absolute continuous and singularly continuous spectral components. For the Stark
Hamiltonian in this paper, it has been proven®>> that both the point spectrum and the singularly
continuous spectrum are empty and that the absolutely continuous spectrum is equal to the whole
real line. Thus we have

/ Yo (W e )dw =6(x — x7), an

where the complex conjugate in (11) is missing because in our case the scattering states are real. For
our particular Stark Hamiltonian (1), we find that the scattering states are given by

mrmmo M) x<—d,
(840 - BlA(’))Ai(,u(x + etlo))

AT
HAIA) — A APBi(u(x + 220))] —d<x<d,
Yox)=x .
i(Ee) ci e+ 2)
1
_i(—jzthZ;)ZCi_(u(x+ %)) d<x,

where u = —(23)%, Ci* = Bi(x) + iAi(x) and where det M (w) = det M(w). The normalization constant
X = 2-3£7% ensures that the multiplier of the delta functions on the right-hand side of (11) is one.

Since Ci* and Ci~ represent outgoing and incoming waves at positive infinity, there is a natural
split of the scattering states in outgoing, ¥, (x), and incoming, ¥, (x), parts. These are

() i (s + ) M) g

1
[ detM(w) \ 2 i+ 1
l(detM(w)) Gi (#(d-i-%) P(_‘U

V()= xq [(BjAo - BiAAI

(12)

—~
=
=
+
o|%
N
N—
N—

+(A1A] — A]Ag)Bi

(@) ebos) g

l(detM(w) ) Ci-
det M(w)

(
det M(w)
! ( det M(w) ) (

d
Vo) = X1 [B]Ao - BiADAI(u(x +

—
=
=
+
S
I
=
SN—
SN—
|
U
A
=
A
QU

ﬂp(w)

) @

+HA1A) — AA0)Bi(u(x + )] —d<x<d,

l(gzxg;) Ci~ ( (x+ %)) d<x,
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where we have defined p(w) = (B{Ao — B1A()A2 + (A1A) — A]Ag)B,. Observe that by construction,
we have

Yoo () =, () + P, (x).

We can use the completeness to split any functions in the span of {i,, } into outgoing and incoming
parts

f(X)=/ ds 6(x — $)f (s)
= / ) ds / ) dw Yo, (W (s) / ) dw’ a(w" ) (s)

2/00 do’ a(w”) /OO dw ¥, (x) /00 ds o (W (5),

where a(w’) = [, dx . (x)f (x) is the energy representation of f(x). We now split the scattering state
W () into outgoing and incoming parts using (12) and (13) and find that f(x) = f*(x) + f~(x), where

fi(X)=/ dw’a(w')/ dwlﬁw(X)/ ds Yoo () (5).

Using special rules for anti-derivatives of Airy functions®® and generalizing the approach used in
Ref. 45, we get the following expressions for the outgoing and incoming parts of f(x):

1 det M(w’ w(d
Frw=3 [ waw >[ M]/ dor 022D (14)

(w’) W Fié

Note that the inner integral in (14) has been regularized using a parameter & that will be removed at
the end of our calculations by letting it approach zero from above.

We will now focus on the outgoing part of f(x); the incoming part of f(x) is treated in an entirely
similar manner. For the outgoing part of f(x), we observe that the integrand in the inner integral in
the expression (14) defining f*(x)

lﬂw(d)

— (15)

Pe(w') = / dw ww(x)

has poles at the point w = w’ + i€ in the upper half plane and at the zeroes for the functions det M (w)
and det M (w) in the lower and upper half plane.

We now rewrite the quantity Pz (w’) using the residue theorem on the contour I’ which is closed
in the lower half plane. This contour is depicted in Fig. 4. The only poles of the integrand inside this
contour are the zeroes of det M(w) and we thus have

FIG. 4. Closed contour I'g in the lower complex frequency half plane, w.
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%(d)
— lé:

wld o(d
=—ZRe (wx)%,wj) —/C o) 2D

Pi(w")= / de e, ()~ (16)

i&

Observe that Plg converges to Pg in (15) as R — oo. From (16), it is evident that if the integral over
the contour Cg vanishes in the limit when R approaches infinity

lim dw e, (x )‘””—(d):o, (17)

R— 0 Cr — lf

then the Pz (w”) will be a sum of residues
w(d
Pe(@) = Z Res (ww( e )

and from this it is then a simple matter to show that the regulator & can be safely removed and that
formula (14) reduces to a resonant state expansion for the outgoing part of f

Fre =) ), (18)
J

which is what we wanted to prove.

Thus the proof of convergence for the resonant state expansion for any given x is reduced
to showing that the limit (17) holds for that x. In order to investigate this limit, we parameterize
the circular arc Cg in the lower half plane using w = Re'? and use standard formulas for the Airy
functions®’ in the large argument limit to derive asymptotic formulas for the scattering states i, in the
limit of large R. Because of the well known Stokes phenomenon, the resulting asymptotic expressions
for the scattering states are different for the two angular sectors —2?" <f<0and -r << —27”. We
find that in the second sector, the scattering state ¢ ,,(x) decays exponentially for all x and thus this
angular sector gives no contribution to the limit (17). In the first angular sector, we have the following
asymptotic expression for the scattering state:

1 1 1
2(kR)4 i 2 2
(li )1 e IBOR? ,@XR2 x<-d,
in20?2
1 1 1 Vo
20kR)E  _; 5 wRZ(x+f)
2R)? p-iBroIeR? e -d<x<d,
in202
Yolx)=x 1
1 . —wR? (x+ 2
___ g2  LioR2(0-3B),” @ E
7 1€ e
2(kR)4 2
2R iR’ 3 I iBoR? 3
i il e—lﬁQR ew‘xR —i 1O' . elBQR e—m'xR d<x,
202 272 (kR)4

N

where @, o are complex numbers depending on 6 and u=(2¢&) 3, B = 2ued, o = 2uVy, and
k = 2ue'?. Let us start analyzing the various regions in x. For x < —d, we find that the limit is
zero and that for x > d it does not exist. Thus the resonant state expansion converges for x < —d, but
not for x > d. This is consistent with what was found for the Dirac delta potential in Ref. 45 if we
imagine approaching the Dirac delta function using a sequence of square wells where V approach
minus infinity, while d approach zero.
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For x inside the square well, where — d < x < d, the asymptotic expression for the integrand in
(17) is found to be

Yow(x)

Vod) ¥ 1
w-w Fi§  w-w FiE\ g (kR)>
1 $sin( Lo)|r2 Yo iR (g Y0
e_iO'QrRz 6(2;1)2 |sm(§9)|R2 [82[1 (x+?—d)—a'] elm',-RZ (x+?—d)
g
87(kR)>

1 Lo 1 Vv, i 1 Vv,
eiQrR2 (0._2/3)6(2;1) 2 ’sm(§9)|R 2 [—sZ,u(x+£+d)+(0’—2,B)] e—zwiR 2 (x+?f)+d)

4(kR)?
o

1 Lo 1 [ Vo , 1 Vo
_i u)2 |sin( 560)|R2 &2 (x+—+d)—(2 +0) twiRZ(x+—+d
e i(2B+0)orR?2 e M | (2 )| H z %] e z

1
ﬂ(KR)%

o, R (6_4[;)6(2#)% Jsin(4 e)|R% [—82}1 (x+§ —d)+(a-—4ﬁ)] e—iw,-R% (x+§ —d) ) '

+

e (19)
If this expression decays exponentially in the limit R — oo, the resonant state expansion will converge
inside the square well. In (19), we have four different terms that need to be checked separately. The
first two exponentials in (19) decay if

v v
82,u(x+;0—d)—0'<0, —82,u(x+;0+d)+(0'—2ﬁ)<0,
U U
d>x, ~3d <x. (20)

These conditions are satisfied inside the well, —d < x < d.
The second two parts of (19) converge to zero if

1Y/ Vi
82u(x+;o+d)—(2,3+0')<0, —82#(x+:0_d)+(0'_413)<0’
U U
d>x, -3d <x, (21)

which are also satisfied inside the well. Note that the depth of the well V disappears from the
inequalities (20) and (21). Thus we reach the surprising conclusion that the resonant state expansion
converges for all x inside the square well independently of the depth of the well.

V. RATE OF CONVERGENCE

In this section, we directly investigate the rate of convergence of the resonant state expansion
(18) found to converge for —oco < x < d in Sec. IV. As we have discussed in Sec. II of this paper,
the energy eigenvalues can be categorized into three groups. The first is the finite set of perturbed
bound states, the second set is the A-series, which are located in the fourth quadrant in the complex
plane, and the third is the C-series located in the third quadrant. The perturbed set of bound states is
finite and thus does not contribute to the rate of convergence, but the A-series and the C-series are
both infinite and they do contribute to the rate of convergence. First, we look at the part of the sum
corresponding to the eigenvalues from the A-series and after that briefly sum up the results for the
C-series. In order to do this, we need an asymptotic expression for resonant state eigenvalues from
the A-series. In principle, we find this expression by first finding the leading order contribution of the
determinant function, here denoted by det M 00(6%%); for lwl — oo and then finding the leading order
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expression for the roots of the equation det M*°(w) = 0 that define the A-series. The final formula
for the resonant eigenvalues w), is simple and is reproduced below in (22), but even though nothing
beyond the standard asymptotic formulas for Airy functions are required for this derivation, the details
are technical and will not be presented (this remark applies to most of the explicit formulas derived
in this section). The formula for w), is

a=r(Fe) 22)
where ) )
& =p- 3Lﬂ1n(p)+ip+ ﬁln(sin(czp%) ) - %h(p), (23)
where p > 1 is the index of the eigenvalues. The parameters appearing in (22) and (23) are given by
y=202)73,
233373
= 2d(37‘[8)%,
ln(nzcl)
pP= Tor

h(p) = arg(sin (CQp% ))
In Fig. 5, we compare the asymptotic formula for the resonant eigenvalues with an arbitrary pre-
cision numerical calculation of the eigenvalues. As we can see, our asymptotic formula is highly
accurate.

We will now use the asymptotic formula for the location of the resonant eigenvalues of the
A-series to get an estimate of the rate of convergence of the resonant state expansion for functions
f whose support are inside the square well. The rate of expansion in general depends on x, but here
we will focus on the point x = 0. The resonant state expansion for f then becomes the following

numerical series:
S
N b
> p

where
d
by =10, O [ f,
-d
¢ 2
N, = / Wy ()2dx.
—d
Or -1
o exact &, > exact &,
-0.57 -1.5
N B Y Y ﬂ\z 4 N,/ N\ Yo Ve
1.5 -2.5
-2 : : : -3
1 3 5 7 9 9.2 9.7 10.2 10.7
Rel¢,] x10% Rel,] 107
(a) (b)

FIG. 5. Comparison between a high precision numerical calculation of the pole positions and the asymptotic formula (22) for
two different ranges of the pole index.

74



113501-12 Juhasz, Kolesik, and Jakobsen J. Math. Phys. 59, 113501 (2018)

Using the asymptotic formula for the resonant eigenvalues from the A-series (22), we get the following
asymptotic expressions for b, and N:

3n

b, ~n! (7)319_;{513 cos(g1(p) + %) + ap sin(g (p) + %)}

d
/d dx f(x){asz cos(g1(p) + xg2(p) + %) +ay sin(g1(p) + xg2(p) + %)},

2 1
ay _(3np\?3
N,~—Lp 1= 24
pysﬂ(2)’ 4

where
2 3 11
81(p)=zu2&p + 23y Vo,
$2(p) = P yep?.
Recall that (ay, . . ., a4) is a vector that spans the null space of the matrix M, = M(w),). In general, this
vector also depends on p. However, in the asymptotic range, when p > 1 the matrix M, simplifies in
such a way that the null-space vector can be chosen to be independent of p.

In Fig. 6, where we have chosen f(x) to be a Gaussian function, we see how accurate the
asymptotic expressions are. They are showing two sets of points, the absolute value of the numerically
calculated value of the term, and the value we get from the asymptotic formulas. For smaller values
of p, the approximation seems to fluctuate around the exact values and does not seem to catch up on
the most extreme swings and breaks. However, as we move forward to higher values, the asymptotic
formula eventually catches all the wild swings of the terms in the series.

We will now derive some analytic estimates for the rate of convergence using the asymptotic

expressions (24) for b, and N,. First we note that for the special case of a function that is constant
equal to one inside the well and zero outside, we can find an analytic expression for b,,. Let us call this

3 %107° X 10"1 7
o exact J\i’|

5 . approx’%‘ 1

1 ’ 0.5

O O 2.4

2 4 6 8 10 5 6 7 8 9 10
p %103 p x10°
(a) (b)
%102 x107%°

Ny

’ o exact %L o b
i N, N,
2 ’ . approx‘%’%’ 1.5  approx 4:’—
N,

.o . ¢ © 0.5 . .
0 ) < ¢ ¢ o @ elasde 5 °% egos s s O b o® o of
2 4 6 8 10 2 4 6 8
p x107 p %1010
©) (d)

FIG. 6. The absolute value of exact and asymptotic ratios b

N—’; for different ranges of the eigenvalue index p. In these pictures,
we used Vo =2,d =14, £ =0.03, x. =20,and 0 = 5.
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guantity as bg. The details of the calculation are relegated to the Appendix. The resulting expression

1S
@

V0|cos (a’(37rsp)% ) | ’

0| -
|br'|’“

where « is a numerical factor that does not depend on p or V. Now let f(x) be a function that is zero
at x = +d and is n times continuously differentiable. From formula (24), it is clear that each time the
trigonometric sum under the integral sign is integrated, a factor of g>(p) appears in the denominator.
It is also clear that any number of integrations will preserve the form of the trigonometric term in the
integrand up to sign after an even number of integrations. Thus, using integration by parts, n = 2m
times will give us

by
Ny

_% ﬁMn
Vo|COS(d(37T£p)%)|’

~

where f is another numerical factor not depending on p or V( and | fm (x)| < M, for x inside the well.
This formula shows explicitly how the size of the terms in the resonant state series for a function
depends on the smoothness of that function and the depth of the well. Note that the depth of the well
cancels if we divide two consecutive terms to get the rate of convergence, and we can conclude that
the absolute size of the terms depends on the depth of the well as V; !, but that the rate of convergence
is independent of V.

So far we have only considered convergence of the part of the resonant state expansion that
comes from the A-series. However, detailed investigations of the terms in the series coming from the
C-series have shown that they are decaying exponentially in the resonant state index, p, and thus have
no influence on the question of convergence for the series as a whole. These investigations, which
follow the same approach as for the A-series, will not be presented here.

VI. CONCLUSION

We have investigated the completeness of the Stark resonant states in a system with a square-well
potential and a homogeneous external field. Our conclusion is that when the field pulls the particle to
the right, the resonant state expansions converge pointwise to the left of the well as well as inside the
well. Interestingly, we have found that the existence of convergence is independent of the depth of
the potential well, V. In other words, no matter how shallow the well might be, there is a convergent
resonant-state expansion.

We have also derived formulas that show how the rate of convergence depends on the smooth-
ness of the function being expanded. These formulas indicate that the rate of convergence is also
independent of the depth of the well, but the absolute size of the terms grows like V; !, Thus, for
any given target accuracy, a smaller potential depth means that more terms have to be included in the
series.

Taking into account the similar nature of the convergence results for the Dirac delta poten-
tial*> and for the square potential treated in this paper, we conjecture a similar result for a general
potential of compact support. Such a potential can be approximated by a finite set of conjoined
square wells, as illustrated in Fig. 7, and we expect that our approach can be generalized to this
setting using a transfer-matrix technique. In the limit when the set of conjoined square wells
approach the smooth potential, there will inevitably be square wells that are arbitrarily shallow
but we expect, based on the result derived in this paper, that this will not destroy the conver-
gence. In fact, this same result leads us to conjecture pointwise convergence even for non-compact
potentials.

Finally let us note that there are issues that invite further investigations. Our resonant-state
expansion is constructed separately for the incoming and outgoing portions of the given wave function,
and there is certain similarity here with the Green’s function approach in which the imposed boundary
conditions can select the outgoing waves. Naturally, what constitutes the outgoing and incoming
parts of the given function in the region far from the origin (in the direction of the field) is given and
unique, and corresponds to the decomposition into Ci* and Ci~. However, the in- and out-split is not
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|
WL

FIG. 7. A continuous potential V(x) with a suitable discretization V.

necessarily unique inside the potential well. It is an open question of how such a degree of freedom
affects the resulting expansion.
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APPENDIX: EVALUATION OF bg

The integral in (24) is computed as

_1(3m 6 1 [ b1y . T
G el dx f(x){as cos(g1(p) +xg2(p) + Z) +ap sin(g1(p) + xg2(p) + Z)}
—d
3r\TE L 1 [aerdnerE
=2 (— pe [a2 sin(y) + a3 cos(y)]|dy
2 82(0) Jgy(p)-des )+ =

y=g1(P)+dg2(p)+ 5
y=g1(p)~dg2(p)+7

(377 )_61?‘é g;p) [a3 sin(y) — a3 cos(y)] |

(3_)_(1’p_(1) gzl(p) [a3 sin(gl(P) +dga(p) + %) —ay COS(gl(p) +dgr(p) + %)

—a3 sin(g1(p) —dg>(p) + %) +ap COS(gl(P) —dga(p) + %)]

. (A1)

=2 (3—”)_é ‘éw [ag cos(gl(p) + %) +a Sin(gl(p) + %)

2 82(p)
Using (A1) and the asymptotic forms of the Airy functions, the coefficients b, in (24) become

172 ~2 (377T)_(1)p‘é [az sin(gl(p) + %) +a3 cos(gl(p) + %)]
ﬂ_5(3_n)‘% 1 2sin(aga(p))

> o 0) [a3 Cos(gl(p)+ %) +ap sin(gl(p)+ %)]

wl—=

— ! (37)_ p—% 2sin(ag> () Sil;(:(ii(p)) [a2 sin(gl(p) + %) +a3 cos(gl(p) + %)]2 (A2)

7
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We take a further look at the trigonometric terms. After writing them in exponential forms, we find
that one of the two exponentials can be neglected in the limit p > 1. Therefore we get

1

1 _1 O o B
Sin(gl(p) + %) ~ 2—1.(—1)’)19% (7T2C1) : Sin(c3p%) 2el(”2p37V0 2h(17)+4)’
T | Lo 2 |2 i(u%p%wo—lh(pnﬂ)
Cos(gl(P)+Z)z§(—1)P 3(71- Cl) sm(c3p§) e b +) (A3)

Using (A3), we rewrite (A2) as

-1, 2sin(dGrep)? , _
37”) ! s1n(gz(;f)8p ) @%(_l)ppg(ﬂzcl)

1
2

I

0. —1
bp~7r (

sin (C3p% )

11
ei(# 2p37Vo—%h(p)+%)
2

N S A
+a3%(—1)pp% (ﬂzcl) ’ zel(”2p37vo 2h(p)+4)

sin (C3p~%)

~ _1(3ﬂ)—3 _l2sin(d(37r8p)%)
=7 7 p 3

ﬂ%p%ys
2

ar 2
— +az
i

-1

1

1 _1
—(—l)pp% (nzcl) : sin(C3p%)

1 1 1
_fei(ﬂ7p§7Vo—%h(p)+%)
2

_(3”)_3],—%Mp5( 3 )_1 sin(zd(37r8p)%)

1 mocy
2(3nep)3

1 1
i2(7§V—lh )+£) a» 2
¢ u2p3yVo—sh(p)r+% 2 4 a3
i

_ -1
: sin (2d(37r8p)% )
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= - 1 1
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1 1
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e
l
Thus
o | sinfacmen?)
| P| "V W
a
- Vo(cos(d(3ﬂgp)%)|,
where :
3
a=——l(a3 —ia)l’.
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ABSTRACT

In this paper, we introduce a method for creating a transparent computational boundary for the simulation of unidirectional propagation of
optical beams and pulses using leaky modes. The key element of the method is the introduction of an artificial-index material outside a chosen
computational domain and utilization of the quasi-normal modes associated with such artificial structure. The method is tested on the free
space propagation of TE electromagnetic waves. By choosing the material to have appropriate optical properties, one can greatly reduce the
reflection at the computational boundary. In contrast to the well-known approach based on a perfectly matched layer, our method is especially
well suited for spectral propagators.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099193

I. INTRODUCTION

Treatment of domain boundaries in numerical simulations, especially in the solution of partial differential equations, presents a long-
standing problem. While powerful methods have been developed for certain situations, they often introduce significant additional complexity
and computational overhead. The perfectly matched layer (PML)' approach stands as a prime example of methods that work extremely well
in situations where a transparent boundary is meant to mimic a connection of the given “computational box” to an infinite outside space.
Indeed, PML-based methods are routinely employed for wave-propagation simulation, for example, in finite-difference Maxwell solvers” and
in beam-propagation simulation.’

Nevertheless, there are applications for which good boundary treatments are still lacking. For example, in extreme nonlinear optics,
characterized by high intensity, few cycle pulses, which, through their interaction with material degrees of freedom, display very broad and
complex spatiotemporal spectra, spectral beam, and pulse propagators* are the preferred methods of choice. Unfortunately, they do not mesh
well with the boundary treatments developed for the finite-difference solvers such as PML.

While spectral propagators applied to pulses and/or beams shine in many situations that are next to impossible to handle with finite-
difference approaches, the boundary treatment can be a significant problem. For example, long-distance propagation of highly nonlinear
optical pulses’ is often connected with light-matter interactions that send significant energy propagating toward the boundaries of compu-
tational domains where it must be “absorbed” as if propagating into infinite space. In connection to spectral-based numerical simulation of
beam and pulse propagation, this is a difficult problem that we aim to address in this work.

The method we put forward can be understood as an extension of an approximation that is sometimes used to simulate beam and pulse
propagation in leaky waveguides”’ such as hollow-core fibers or capillaries.” In such a context, the propagating modes are approximated”'’
by real parts of the true leaky modes for the given waveguide,'' while their propagation constants are redefined by the inclusion of the
imaginary parts that reflect the propagation loss of a leaky mode. Such an approach can be interpreted as a first-order perturbation theory
where eigenvalues are corrected, while the wave functions are kept unchanged. Needless to say, this only works when the physics dictates that
the propagation is dominated by a relatively small number of modes that have small propagation losses.
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We propose to utilize the true leaky modes, without approximations, as the basis for both the numerical representation of the optical field
and for the realization of transparent boundary conditions. We introduce an artificial structure outside of the given computational domain in
order to introduce an infinite set of leaky modes, and construct an expansion of an arbitrary beam profile. While we present the treatment for
a fixed frequency, the generalization to pulsed waveform is straightforward.

Leaky modes have had a long history in the field of electromagnetics. They were used already as early as in 1884 by Thomson'” in his
study of decay phenomena in electromagnetlcs Since then, they have been of enduring interest in electromagnetics, for resonator cavities, "
optical waveguides, ~ photonic,'® and plasmonic'”'* structures, and are often used for numerical simulations, which is also what we propose
to do in the current paper. Leaky modes are decaying eigenstates and as such have played an important role in quantum theory from its very
inception until today. In this setting, they describe unstable states. Such states were first defined in terms of the absence of incoming waves by
Siegert'” for the nuclear scattering matrix. Siegert’s definition of unstable states was taken up by Peierls,”’ Le Couteur,”’ and Humblet’* and
by them refined into an important tool for nuclear scattering theory. The wave functlons satisfying the Siegert outgoing-wave conditions are
known as resonant states, and their properties have been of interest for many years.”” **

As s evident from the previous paragraph, leaky modes and unstable states have a long history and have been, and are, of great utility”’
in various fields. However, the fact that they are decaying eigenstates means that the corresponding eigenvalue problems are not self-adjoint.
Consequently, the matter of projecting general field configurations into sum of leaky modes or resonant states, and the question of complete-
ness of the resulting expansions, are not backed up by any general theory, like for the self-adjoint case. In fact, the leaky modes and resonant
states are invariably growing exponentially in space, and thus cannot be placed in some well-known inner product spaces. The lack of a general
theory for non-self-adjoint operators is challenging, and it means that questions of projection and completeness have to be handled in a case
by case basis. In this paper, we will introduce a projection method for leaky modes based on a naturally occurring complex non-Hermitian
inner product, but will not present a convergence proof for our leaky mode expansions.

The paper is organized as follows: In Sec. II, we introduce the model which we will use to access the feasibility of our proposed approach
to setting up a partially reflective boundary for spectral pulse propagators. We are most familiar with the particular spectral pulse propagator
UPPE,” but our approach is applicable to any of the spectral pulse propagators that are commonly used in optics today. The model describes
the propagation of TE electromagnetic waves in a homogeneous medium that we for convenience assume is a vacuum. We then proceed to
set up and solve the eigenvalue problem for the complex transverse wave numbers that define the leaky modes. In this section, we also derive
a very accurate explicit asymptotic formula for the location of leaky mode wave numbers in the complex plane. In Sec. III, we introduce the
leaky modes and show that, by using the technique, well-know from the study of resonant states in quantum theory, of shifting them over
to a complex spatial contour outside the transverse computational domain, the leaky modes can be identified with vectors in a vector space
of functions on the real line that is endowed with a complex non-Hermitian inner product.””"” The leaky modes are orthogonal with respect
to this product, and we can thus write down generalized Fourier series for any given function based on the orthogonal leaky modes and this
non-Hermitian inner product. This solves the projection problem for our leaky modes.

We have done extensive numerical experiments using our leaky mode expansions, and in Sec. I'V, we present some examples and the
conclusions we draw from these examples, with regards to their suitability for representing initial data for the spectral propagator. We argue
that the leaky mode expansions converge pointwise for all sufficiently smooth functions in our space, but that they do not always converge to
the function used to generate the expansion. The pointwise convergence only becomes problematic in the limit when the index, of the artificial
material introduced outside the computational domain, tends toward the same value as the index inside the domain. One would expect that
problems with the leaky mode expansions would appear in this limit since if the limit is reached, there is no index difference between the
inside and the outside of the computational domain and leaky modes cease to exist. However, in order to minimize the reflection from the
boundary of the computational domain, we want to choose the difference between the inside index and the outside, artificial index, as small
as possible. It thus becomes a trade-off between making it small in order to minimize reflections and not making it so small that the leaky
mode expansions stops giving a good representation of the functions used to generate the expansions. At the end of Sec. I'V, we argue, using a
dimensionless quantity that appear from our theory, that an acceptable trade-off can be made.

In this paper, we do not present a proof that the leaky mode expansion converge to the function used to generate the series. The chief
reason for this is that we believe that they never really do converge point wise to the function used to generate them. This is what our numerical
results from Sec. I'V indicated. In Sec. V, we present analytical arguments that points to the same conclusion. However, the conjectured lack
of pointwise convergence to the desired function does not make the leaky mode expansions useless from a more practical point of view. This
is what we argue in Sec. I'V, where we use a certain dimensionless quantity to specify what we mean by a practical point of view in this context.

Il. THE MODEL

We will assume that the spatial inhomogeneity of the refractive index takes the form of a straight channel oriented along the z-axis of our
coordinate system, of uniform width 24 in the transverse direction, which is oriented along the x-axis of our coordinate system. The geometry
of the channel is illustrated in Fig. 1. Consistent with the geometry, we assume that the electromagnetic field is transverse electric. Thus, we
have

E(r,w) = (0,e(x,z,0),0),
P(r,w) = (0,p(x,2,0),0). 1)
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FIG. 1. Geometry of the refractive index channel.

Here, we use the sign convention for the inverse Fourier transform with respect to time that is standard in optics

E(r,t) = [oo dw E(r,w) e ™", (2)

Using Maxwell’s equations with no free charges or currents, we find that e(x, z, w) is a solution to the following model equation:

2
Oze(x,z,w) + Oxce(x, z,w)+(%) 1+ x(x, w))e(x,z,w) = p(x,2, w), (3)

|| linearization

Oze(x,z,w) + Owe(x, z, w)+( % )2n2 (v, w)e(x,z,w) = 0. (4)

In addition to the model Eq. (3), the electric field e(x, z, w) must satisfy the conditions
e(za-,z,w) = e(+a,z, w), (5)
Oce(ta—,z,w) = Oye(as,z, w), (6)

which follows from the electromagnetic interface conditions for transverse electric fields at x = +a.

The goal is now to find leaky modes for the linearized equation. These modes can then be used to write down a modified spectral
propagator, like UPPE, for the model Eq. (3), where a leaky mode transform takes the place of the usual transverse Fourier transform. The rest
of the paper is focused on constructing the leaky modes and evaluating for which transverse field configurations they form a suitable basis.

lll. LEAKY MODES

Leaky modes are solutions to the linearized model Eq. (4) that are propagating in the direction of the positive z-axis, satisfy the
electromagnetic interface conditions (5) and (6), and are outgoing at positive and negative infinity.
Such functions must be of the form

e(x,z,w) = De*e™, x> a,
e(x,z,w) = eiﬁOZ(Beif"x + Ce_if"x), —a<x<a,
e(x,z,w) = Aeiﬂzef'fx, x < —a, (7)

where f8o, & and B, £ are the propagation constants and transverse wave numbers inside and outside the channel, respectively. The propagation
constants are determined by the transverse wave numbers by the identities

ﬁ:((‘;’)znz—ﬁ);, ﬁo=((f)2—£§);- ©

From the physical point of view, the modes represents electromagnetic disturbances that propagate in the direction of the positive z-axis while
they are partially reflected and transmitted at the lateral boundaries defining the index channel. This is illustrated in Fig. 2.
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FIG. 2. Plane-wave propagation.

In order for the functions (7) to satisfy the electromagnetic boundary conditions (6), and thus be leaky modes, the two propagation
constants f§ and Sy must be equal, which is only true if the following identity holds:

2 w\* 2
f = ; (I’l -1 ) + EO . (9)
This is Snell’s law. In addition, the following linear algebraic system:
it ) ) 0 A 0
—ie®E  —jei0gy el 0 B| |o
0 eiafo e—ia&] 7eiaf cl 1o (10)
0 iefﬂfo EO _ie—illfo EO _l'ei“ff D 0

must have a unique solution. This can only happen if the determinant of the matrix defining the system is zero. One can show that the
determinant is zero if and only if the transverse wavenumber satisfy following equation:

tan(2aéy) + iﬁ =0. (11)

g

Equation (11), together with Snell’s law (9), will determine the dispersion law pertaining to each separate leaky mode.
Note that the system of (9)-(11) has two symmetries connecting solutions. If we denote solutions using the notation
{{¢, &}, (A, B,C,D)}, the two symmetries are of the form

{{& &}, (A,B,C,D)} — {{& -4}, (A,C,B,D) }, (12)
{{& &}, (A,B,C,D)} - {{-&",-& },(A",B",C",D")}. (13)

A. Dispersion laws

In this section, we will design asymptotic formulas for all solutions &, &, to Egs. (9) and (11), and thus determine all modes for the system
and their respective dispersion laws.
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Let us start by observing that & = 0 is a solution to Eq. (11) and that the corresponding solution vector to the linear system (9) is
given by

A 0
B -1
cl=l 1| (14)
D 0

However, we observe that if we insert £, = 0 and the vector (14) into the formula for the modes (7), we find that the corresponding mode is
identically zero. Thus, the solution &y = 0 only gives us a trivial mode which can be disregarded when we use the modes for expanding electric
field configurations.

Observe that because of the symmetries (12) and (13), it is sufficient to consider the case when & is in the second quadrant. Any solution
in one of the other quadrants can be generated from a solution in the second quadrant by using the symmetries. In the second quadrant, we
can split the system (9) and (11) into two separate systems depending on which square root we take when Eq. (9) is used to express & as a
function of &,

250\/06+€§

tan(2a&p) = —iW, E=\Ja+&, (15)
0
tan(2a&y) = i250527 ‘f%%, E=—\Ja+ &, (16)

where we have defined « = (w/c)*(n* = 1). In Fig. 3, we display the solutions of the first of the two systems, (15). In the figure, the solutions are
defined by the intersection of the zero contours for the real and imaginary part of the equation for & in (15). There clearly exists an infinite
set of solutions, each one corresponding to a distinct mode with its associated dispersion law. A similar plot for the second of the two systems,
(16), gives convincing numerical evidence that it has no solutions in the second quadrant and thus this system does not give us any additional
modes in the second quadrant.

It is evident that for most solutions displayed in Fig. 3, the real part strongly dominate the imaginary part. This fact can be used to find
an asymptotic formula for the solutions to Eq. (11).

Assuming that |&| > \/a, Eq. (11) can be approximated by

260‘£0| 1+§ ) 06 1 ) az
— Y i/ el R Rt (17)
&

tan(2a&y) = —i + =

2{3(1+%) &

because |&| = \/f_é is equal to —&y when & is in the second quadrant.
Judging from the locations of the zeros in Fig. 3, most of them will be found in regions of the complex plane, where |Re[&;]| > |Im[&]|.
We therefore write & = x + iy, where |x| > |y| and use this to simplify Eq. (15) in the following way:

Im[&o]

0.6¢ — Re[det[&]]=0
ol — Im[det[£]]=0
0.2
0.0}

Re[&)]

FIG. 3. Zero contours of the determinant in the second quadrant. Parameter values used in this plot were a = 1, n = 1 + 10~"2 and infrared light at wavelength 1 ym.

J. Math. Phys. 60, 083505 (2019); doi: 10.1063/1.5099193 60, 083505-5
Published under license by AIP Publishing

86



Journal of o _ _
Mathematical Physics ARTICLE scitation.org/journal/jmp

_ ; 2
1-r _; 2rsin 0 o1& ) (18)

r2+2rcosf+1 r2+2rcosf+1 8x*

where r = exp(—4ay) and 0 = 4ax. After careful analysis, we find the following formula:
16(—‘2 + L ln[‘ﬁ])4
pr 1 2a ' 4a aZat

=-—+ L 19
Sop 2a " 4a 08 a? (19)

which is an asymptotic approximation to the solutions of (9) and (11) in the 2* quadrant. Using the symmetries (12) and (13), similar formulas
for modes residing in the other three quadrants can be obtained.

Writing the formula defining & in terms of & from (15) in the form & = & + i&"”, it is evident that if & is in the second quadrant, then
& > 0and & <0. Using the formula (7) and our convention for the inverse Fourier transform (2), we can conclude that the modes in the
second quadrant, determined by formula (19), are outgoing and exponentially growing in the transverse direction. From the formula for the
propagation constants (8), it is also evident that they are decaying in the propagation direction. These are thus leaky modes. In a similar
way, the modes determined by formula (19) for the 4-th are also outgoing and decaying in the propagation direction, and thus, are also leaky
modes. We find however that the modes determined by formulas for 1-st and 3-rd are incoming and growing in the propagation direction.
These modes are thus not leaky modes, but gaining modes.

Even if we assumed p being large, the formulas for all four quadrants give surprisingly good results, even when p is of order 1. However,
it is exactly in this region where the formulas can break down. Observe that the inner logarithm in formula (19) must be positive in order to
stay in the same quadrant. Therefore, these formula becomes invalid if

pirt < a/a

S sl=ps T (20)

Let us assume that \/a > |&,|. Applying this assumption to the equation for & from (15), which determine the leaky modes in the 2-nd
quadrant, gives us

2
Eon/a(1+&/a 2

tan(2a§0) _ —iZM ~ —iﬁ,

oc(l +2£§/a) Va

2rsin 6 . 1-7 .28

i N,

r2+2rcosf+1  r*+2rcosf+1 Va

@1

where &) = x + iy and r = exp(—4ay), 0 = 4ax. Using the same approach as before, we find that

L PR o Ve N IO R S DR N B I
bop = 2a+l4aLog[\/&+250:|N 2a+l4aLog1 Va T 2a Ia\/&' (22)

Under the assumed condition /& >> |€y|, the second term in Eq. (22) is a small correction to the first term. This allows us to look at Eq. (22)
as a recursion formula for the solution &p,. Starting from the leading term fgp = —nip/(2a), we obtain from the first iteration

np+, 1 mp lp+, p

EOP%_Z laﬁ%__Za 12a2\/E'

(23)

We have thus obtained a different asymptotic formula for the solutions &y, in the 2-nd quadrant, a formula where we know that the imaginary
part is a small correction to the real part, 7p/(2a) > 7p/(2a*\/&), or equivalently, p << a+/&. This condition implies that condition (20) holds.
Thus, we can conclude that the asymptotic formula (23) holds exactly when the asymptotic formula (19) breaks down. Formulas similar to
(23) can be derived for the other quadrants.

Some of the leaky modes are paraxial, whereas others are not. In order to be more precise about which modes are paraxial, note that the
propagation vector for the light beam is of the form (&y, o). This is clear from Eq. (7), and it allows us to calculate the propagation angle of
the beam with respect to the z-axis. This angle is

=tan! 7Re[£0p] )
b=t (Re[/z(f()p)]' -
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Clearly, for each &,, we get a different angle. In order for a mode to be paraxial, the angle 8, must be small, and this holds only if Re[y,] «
Re[B(&op)], or in other words
a/2w

p< p (25)

where we have used the fact to leading order &y, ~ —mp/(2a). Formula (25) determines which leaky modes are paraxial.

We now investigate if there are zeros in parts of the complex &o-plane that are not covered by the asymptotic formulas we have found so
far. We will focus on the second quadrant, the other quadrants can be treated in a similar way with corresponding results. These investigations
are necessary because the exponential smallness of the equation determining &, in the part of the second quadrant well away from the real
axis, makes a direct numerical search for solutions, like the one in Fig. 3, very challenging.

Let us first look for zeros in the part of the second quadrant where y = Im[£,] is much larger than x = Re[§] and Im[&(] > 1 > a. Under
these conditions on &y, we have tan(2a&y) ~ i and the equation for &, in (15) can be simplified using Taylor series with the solution y = \/a. We
thus end up with a solution & = i\/a that contradicting the assumptions imposed on &;. Hence, no zeros can exist in this part of the second
quadrant.

Let us next look at the region where y = Im[&o] ~ Re[&o] = x and y, x > 1 > a. At this point, observe that the left-hand side of Eq. (11) is
not actually equal to the determinant of the system(10). Imposing Eq. (11) only implies that the determinant is zero. If we rather equates the
full determinant of (10) to zero, we get

e4iaEO _ (EO + 5)2

NCER o

The above equation can be simplified using the assumptions |€| > a. Writing §, = —x + iy, where x, y > 0, we get
Re: x'—6x’y’ +y* =0, (27)
Im: x3y - xy3 =0. (28)

The only possible solutions to Eq. (27) are x = y(v/2 — 1),x = (/2 + 1). Substituting these solutions into (28), and solving for y, we find
in both cases t y = 0. This contradict our assumptions, and thus, there are no solutions in this region of the second quadrant either. We have
now covered all possible regions of the second quadrant and thus conclude that there are no other zeros of the determinant, and thus leaky
modes, than the ones we have already found and that is covered by our asymptotic formulas.

There is however one remaining issue related to the zeros, and thus leaky modes, that needs to be discussed. As we have already noted,
the asymptotic formulas for the zeros, which, by design, are expected to be accurate only in the limit when the index p is very large, in fact
works surprisingly well even for p as small as 2. However, the very first zero, the one corresponding to p = 1, is never very accurate. The first
zero also behave differently when the parameter « is varied. Recall that the value of this parameter is proportional to the size of the index
step defining the channel where the waves will be propagating. We are interested in minimizing reflections from the edges of the channel and
therefore would want to make the index step, and hence the parameter «, as small as possible. When we let alpha decrease, we observe that
all the zeros in the second quadrant, except the first, move slowly up, and even more slowly toward the imaginary axis. This behavior is to be
expected from of the logarithmic dependence of the imaginary part of the zero on the parameter a. The first zero approaches the imaginary
axis at a fast rate when « is decreased, and for a finite value of a = a, it simply vanishes. For a < a,, we observe that for one value of the
index p, the formula (19) indicate the presence of a double zero. The index for which this occurs increase when « keeps decreasing towards
zero. These double zeros are however spurious; careful numerical investigations show that there are no double zeros. However, this abrupt
change in the prediction derived from formula (19), when « vary smoothly, alerted us to the possibility that the root cause to why our formula
predicted both the vanishing of the first zero and the existence of double zeros is the crossing of a branch cut. Observe that the argument
of the logarithm in formula (19) is an expression with complex values, so there is indeed a branch cut implied by the formula and thus the
argument crossing this branch cut when « vary smoothly is a real possibility.

Formula (19) can be written in the form

7 i
}L_'_i

> 4aLog[z], z= . (29)

EOp:_

We use the standard branch of the logarithm in our calculations, and thus, there is a branch cut along the negative real axis. The real part of
&op is negative, so we will have a crossing of the branch cut whenever the imaginary part of z vanish. Expanding the polynomial expression
defining z in Eq. (29), and taking the imaginary part, we find that there is a crossing of the branch cut whenever « crosses the value

2_2
T

ap = pe exp(-pmn). (30)
Further numerical investigations show that a. = & and that &, for p > 1 correspond to the values of & where formula (19) predicts a double
zero for the value of the index equal to p. The impact of the disappearing of the first zero on our leaky mode expansions will be discussed later,

at the end of Sec. I'V.
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B. Mode shapes, normalization, and projection

For {£, &}, solving Egs. (9) and (11) with &, in the second quadrant and & in the fourth quadrant, this is the case specified in (15), we
have a leaky mode whose formula which, according to (7), is given by

De%*, x>a "
u, (x) = Be'*r* + Eeii%ﬁx, —a<x<a, &=(a+ (EOP)Z) . (1)
Ae %, X< -—a

Using the symmetries (12) and (13), we can conclude that there is a corresponding incoming, gaining mode, in the first quadrant whose
formula is given by

D* e, x>a
up(x) =4 Bre S 4 e, —a<x<a, & =—(at&) (32)
A*e %, x<-a

Observe that we have (u,)* = u,. In Fig. 4, we see an outgoing mode corresponding to the index p = 20. The mode is evidently
exponentially growing in x. This holds true for all modes, both incoming and outgoing.

Since the modes are exponentially growing in x, they are clearly not normalizable. We can make the modes normalizable by analytically
continuing them into a complexified spatial domain and restricting the analytically continued modes to carefully chosen complex contours.
The contours will be different depending on whether the modes are incoming or outgoing. The contours we will be using are of the form

a-i(x—a), x>a a+i(x—a), x<a
z'(x) = x, x| <a, z (x)= X, x| < a, (33)
—a-i(x+a), x<-a —a+i(x+a), x<-a

where z* is used for the incoming modes and z™ is used for the outgoing modes.
Evaluating Egs. (31) and (32) on these contours, we find that they exponentially decay in both directions on the real axis. Define functions
¥, (x) and v, (x) on the positive real axis as

v, (x) = uy (2" (x)), (34)
v, (x) = u, (27 (x)). (35)
The formulas for these functions are

D %) x5 g
¥, (x) =4 Br* + Ce™™*, x| <a, & =(a+ fép)l/z, (36)

AeiEPae+E"(x+a), x< —a

D* &gl (=a) x>a
+ — * —if x % i x _ «\2)1/2

I//P (X) =1 BT e "o + CTew N ‘x| <a, fp = —(oc+ (EOP) ) . (37)

Ax—eifpue—fp(xﬂz)) X< —a

Re[uy(X)]

IAAANAAAAAA\

FIG. 4. Outgoing mode corresponding to the index p = 20. Parameters used in this plot were a = 1, n= 1+ 10~"2 and infrared light at wavelength 1 um.
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FIG. 5. Outgoing mode and its complexified version corresponding to the index p = 20. Parameters used in this plot were a =1, n =1 + 10~'2 and infrared light at wavelength
1 ym.

Note that for these complexified modes, we also have the relation (y; (x))yr =y, (x). Figure 5 shows the functions u5y(x) and y(x) in the
same picture. We observe that y5,(x) decay exponentially outside the channel, which is confined to the interval [-a, a]. Also note that the
complexified modes are not continuously differentiable at the points x = +a. This is because we restricted the analytically continued modes
to a contour that is singular at x = £a. We made this choice in order to get fastest possible decay of the complexified modes and the simplest
possible expressions for certain key differential operators acting on the modes.

Using the analyticity of the complexified modes at the two points z = +a and the formulas for the two singular contours (33), it is easy to
verify that the following boundary conditions holds for v, (x) and y;, (x) at the two points x = +a:

yp(xa,0) = yp (2a",0), ¥y (a7, 0) =y, (xa", ),
Oy (-4, w) = —idxy, (-a", w), Oy, (a7, @) = idy, (—a", w),
Oy (a7, w) = 0y, (a', w), oy, (a”,w) = —idyy, (a", w). (38)

This fact tells us that complexified modes y*, ¥~ belong to two different spaces of functions, V* and V™. Here, V™ is the space of smooth
functions on real line which satisfies the boundary conditions for y;, (x) (38), and similarly for V*. We evidently have

{V/;(x)};; cVv’, {1//1: (x)};:l cV". (39)

It is easy to verify that the complexified modes are in fact eigenfunctions to the differential operator

oy
oo “

We have
L ) =hr . h-((4) -6) )
Loy () = ppyp () tp =2y (42)

In order use the complexified modes as a tool for expanding functions in V™, functions that are in the span of {1//; (x) };: > We need

an inner product on the space. Furthermore, with respect to this inner product the leaky modes must be normalizable and orthogonal.
Orthogonality would be assured if the operator Ly, defined in (40), is self-adjoint with respect to the chosen inner product. This, however,
seems like an impossible task since we know that the eigenvalues A,, defined in (42), are in fact complex.

Nevertheless, an inner product that satisfy all the requirements can be constructed. In order to do this, note that for any contour C in the
complex plane, we can define a complex values scalar product on the space of functions analytic in an open set containing the contour

(0,¥) = fc ®(2)¥(z)dz € C, (43)

where ¥(z) is an analytic function defined by ¥(z) = ¥* (z* ) Applying this definition of scalar product of analytic functions to the contour
z~, we get the following complex valued scalar product on the space V™, defined for any pair of function y, ¢ € V™ by the expression
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) =i [ e+ [Ty@emdrri [T yxg(dx (44)

It is now straight forward to show that the differential operator Ly is self-adjoint with respect to the inner product (44) on the space V™. The
orthogonality of the leaky modes can be readily verified.
Any function in f € V™ which is in the span of the leaky modes {1//; (x) };1 can now be expanded in terms of a generalized Fourier series
of the form
- = ()
f) eV =flx) =) ~——

= (W)

In a similar way, an inner product can be introduced on the space of gaining modes V™.
Observe that the boundary conditions (38) implies that ¢ € V™ <> y™* € V™. Thus, the complex conjugate maps between these two spaces.
In a similar way, the complex conjugate maps between the inner products on the two spaces

(v, )" = (v 9" (46)

The spaces of leaky modes V™ and gaining modes V™" are not only linear spaces but also complex algebras. This holds because products of
functions preserve the boundary conditions at x = +a. For any pair of functions in y, ¢ € V™, we have, for example, Ox(y¢) (a~) = —i0x(y¢)
(a"). Thus, we can conclude that (y¢) € V™.

¥, (x). (45)

IV. NUMERICAL RESULTS

In this paper, we will not present a formal proof specifying precisely which space of functions are in the span of the set of leaky modes,
and thus, for which space of functions the expansions (45) converge point wise. We will however present some arguments in Sec. V that
addresses the question of convergence of the leaky mode expansions (45).

In this section, we present some numerical tests of the leaky mode expansions that will indicate strongly that they are indeed useful for
the optical beam propagation context, we have designed them for. In order for the leaky mode expansions to be useful for modelling (semi)
transparent computational boundaries for UPPE, and other spectral pulse propagators, there are two conditions that must be met.

First, physically reasonable initial data must be in the span of the leaky modes. Second, products of functions in the span must also be in
the span. In Fig. 6, we display an expansion of a Gaussian wave packet using only 30 terms in the leaky mode expansion (45). In these plots, the
refractive index outside the slab is 7 = 1 + 107'2. As we can see, the Gaussian wave packet and its leaky mode expansion are indistinguishable.

Second, since the spectral pulse propagator must be able to handle nonlinear interactions, products of functions in the span must also be

in the span (Fig. 7). In order to investigate this, we expanded squares of the leaky modes, namely, (t/ffo(x))z and (14/50 (x))z. The results are
clearly very satisfying. Note that for the second mode, we needed more terms in the leaky mode expansion because of its highly oscillatory
nature.

In this paper, we are not going to implement our leaky mode expansions in a fully nonlinear spectral pulse propagation algorithm.
Before this can be done, more work has to be put into ensuring the accuracy and efficiency of the transformation from a function to its
leaky mode expansion and back again. Here, we will show a linear propagation example, where we compare the approach using the leaky
modes, to one using regular Fourier modes, which corresponds to imposing perfectly reflecting boundary condition at x = +a. Both are
compared to the exact, infinite domain solution, which, for any z, can be approximated arbitrarily well by using a regular Fourier series on
a much larger transverse domain. To appreciate how well our leaky modes expansion does, we demonstrate a numerical experiment where
model a CW Gaussian beam propagation using Fourier expansion for finite as well as for infinite domain and compare it to the leaky modes
expansion.

1.0 1.0

— Re[f(x)]
/\0 ; /\ Re[expansion]
/ .
-1.0 X5 \/ \/ 03 1.0

-1.0

— Im[f(x)]
Im[expansion]

(a) Real part of a gaussian wavepacket and its (b) Imaginary part of a gaussian wavepacket
leaky mode expansion. and its leaky mode expansion.

FIG. 6. A Gaussian wavepacket f(x) = exp(—mx?)exp(ikx), where m = 10, k = 30 and its leaky mode expansion using 30 outgoing terms. The parameters used in this
expansion were a = 1, n = 1 + 10~"2 and infrared light at wavelength 1 um.
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[7 Re[Ud,(x)] — Re[expansion]} [7 Re[U2)(x)] — Re[expansion]]
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-3

(a) Real part of the square of outgoing mode (b) Real part of the square of outgoing mode
corresponding to p = 10 and its leaky mode corresponding to p = 50 and its leaky mode
expansion using 60 outgoing terms. expansion using 200 outgoing terms.

FIG. 7. Two squares of outgoing modes corresponding to p = 10 and p = 50 and their leaky mode expansion using 60, respectively, 200 outgoing terms. The parameters used
in this expansion were a =1, n=1+10~"" and infrared light at wavelength 1 ym.

As indicated earlier, we also express the infinite domain solution using Fourier modes, now on a larger domain, say 10a. The exact
solution and this numerical solution will not deviate until the diffracting Gaussian hit the boundary of the extended domain.

Figure 8 depicts the solutions for all three approaches. The width of the domain for the finite Fourier method as well as the slab for
the leaky modes is @ = 1/2 and the refractive index outside the slab is 7 = 1 + 107" in the optical regime of infrared light. Approximately at
the point z ~ 4 x 10*, the wave hits the boundary of the slab and the finite Fourier solution starts to deviate from the other two solutions.
In Fig. 8(a), we see that the leaky modes solution and infinite domain Fourier overlap reasonably well. Propagating the wave further in
the slab, we observe that around z ~ 4 x 10° the leaky modes solution starts to deviate from the infinite domain Fourier solution. Up to
this moment, the leaky modes and infinite Fourier solutions were very close to each other. We can therefore say that with the leaky modes
method, we were able to propagate the wave approximately 10 times longer than with the finite Fourier method. The reason why the leaky
modes eventually collapsed is, that the slab is not perfectly transparent. In other words, the difference in the refractive indices for the slab
and the outside domain is nonzero. This leads to reflections that gradually build up as the wave propagates in z causing it to interfere with
itself.

To be able to propagate the wave using leaky modes even further, we could lower the index # even more, to, say, n = 1 + 10™"°. However,
it turns out that here we come across some serious issues. Let us first look at an expansions for a Gaussian function using n = 1 + 107,
Looking at Fig. 9, we see that the width of the domain is the same as in the propagation example; however, we made refractive index n outside
the slab closer to 1. The number of terms used in this expansion was 200. The badness of this expansion suggests that one should use perhaps
more terms to make it better. But the truth is, the expansion does not change with more terms. Thus, the numerics indicate that the leaky
mode expansion for the Gaussian does converge pointwise, but unfortunately to some other function than the target Gaussian. There are two
possible explanations for what happens here. The first is that the series actually diverges, but so slowly that we cannot detect it numerically.
The second is that the series does converge pointwise, but not to the function used to generate it.

Extensive numerical investigations, using very high numerical precision, leads us to conjecture that it is the second explanation that is
correct. In fact, we suspect that the leaky mode never converge pointwise to the function used to generate it. We will look more into these
issues in Sec. V using asymptotic methods. Here, we just note that even though we very likely do not have pointwise convergence for the leaky
mode expansion, the expansion is nevertheless useful for the task it was designed for. We find that the deviation between a function and its

e(x.z=4x10°)
1.0

Finite Fourier Finite Fourier

Infinite Fourier Infinite Fourier

Leaky modes 08 Leaky modes

Initial condition| b e Initial condition

-04 -02 0.0 02 04 * ) -02 il 00 - 02 04
(@ (b)

FIG. 8. Comparing different solutions to Eq. (4) using the Fourier method in a finite and infinite domain and leaky modes. For the Fourier method in a finite domain and
leaky modes, 100 terms in the expansions were used while for the Fourier method in an infinite domain we used 300 terms. Parameters used in these plots were a = 1/2,
n=1+10~"2 and infrared light at wavelength 1 um.
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FIG. 9. The test function in this figure is f(x) = exp(—(10x)?). Parameters used in this expansion were a = 1, n = 1 + 10~"° and infrared light at wavelength 1 um.

leaky mode expansion is only noticeable when the dimensionless number

f1=a2(%)2(n2*1) (47)

is not too small. For the series to give a, practically speaking, faithful representation of functions, we need at least # 2 0.8. We find that for an
infrared light at wavelength 1 um (w/c ~ 6.283 x 10°), we have a good representation of Gaussian initial data if

a=10"m, n>1+10"",
a=10"m, n>1+10"%
a=10"m, n>1+10"°,

a=10"m, n>1+10""

An important requirement for using the leaky mode expansion is that the main part of the pulse, where the bulk of the nonlinear interactions
takes place, is well inside the domain [-a, a]. The choices for the transverse width a of the domain in the above list are chosen because they
corresponds to actual dimensions used in high energy, long distance, propagation of optical pulses in air, using the UPPE code developed at
the Center for Mathematical Sciences at the University of Arizona.

In Sec. 111, we mentioned a phenomenon that occurs when one varies the value of a. In particular, if @ becomes less than (30) for p =1,
the first zero disappears. In other words, we loosen the first eigenfunction completely, an eigenfunction which determine the first term in the
leaky mode expansion. Since one usually expects that the first terms in the expansion are the most important ones for generic functions, the
loss off the first eigenfunction is ominous. We conjecture that this loss, at least partly, explains why the leaky mode expansion loses its ability
to accurately represent important boundary data like a Gaussian, when the parameter & become small enough.

In support of this conjecture, note that the eigenfunctions v, (x) alternate between being odd and even functions depending on the index
p. Before the disappearing of the first zero, ¥ (x) is an even function. Let us denote (30) for p = 1 as ™. Then, for « > «” the expansion is
a good representation of the Gaussian, which is even. However, for a < a*, the expansion goes bad because we have lost the first term in the
sum. Now we understand why the expansion goes wrong. Because the most important first term in the expansion is an odd function trying to

- — Re[f(x)]
- — Re[expansion]

1.0

-1.0 -0.5 0.

wn

|
(")
T

FIG. 10. The test function in this figure is f(x) = exp(—(10x)?) (~200x). Parameters used in this expansion were a =1, n =1+ 10724, and infrared light at wavelength 1 um.
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represent an even Gaussian. With this in mind, let us expand an odd function instead of the even Gaussian for a < ™. Let us, for example, use
derivative of the Gaussian. Indeed, as can be seen in Fig. 10, the leaky mode expansion represent the odd functions much better than the even
Gaussian. While the Gaussian was badly represented by its leaky mode expansion for n = 1 + 107", for the derivative of the Gaussian, which

is an odd function, we have a very precise leaky mode expansion, even for an index step as small as n = 1 + 107,

V. ASYMPTOTIC SERIES

In Sec. IV, we conjectured that for small index steps, the leaky mode expansions does converge, but not to the functions used to generate
the expansion. We used high precision numerical calculations to support this conjecture. In this section, we will lend additional support to
the conjecture by proving that in the limit of small index step, the leaky mode expansion does indeed converge point wise, but to the wrong
function. The asymptotic regime we are exploring are more here conveniently defined in terms of the parameter a. The requirement of the
analysis in this section is that

Vo < [&opl. (48)

The validity of this inequality is what we in this section mean by the asymptotic limit. Note that (48) is in fact also the requirement for the
formula (19) to be an accurate approximation to the locating of the leaky mode wave numbers, £,. Recall that the leaky mode expansion for
a function f(x) is given by

- & (@, @)

(49)
= (vg (0, vg (%)

— g, (%).
)

We will be interested in finding an asymptotic approximation to the terms in this sum for two sample functions. However, before we proceed
to the actual terms for our sample functions, we first need to know, how the coefficients A, B, C, D in Eq. (37) depend on the index p in
the asymptotic limit. First of all, we realize that the vector (A, B, C, D)" is the null space and thus eigenvector belonging to the eigenvalue
0. To compute this eigenvector we can proceed, as we would normally do, by row-reducing the matrix Eq. (10), which gives us the matrix
whose last row is of the form (0, 0, 0, #(&o)), where (&) contains the determinant of M. Thus, we get all zeros in the last row of the matrix, if
& = &op. Using this simplification, it is easy to find a basis for the one dimensional null space in the form

250 ezmsb
(10 ) g (1+e0)
(E=§)enEr)
= O-R) b (i) |, (50)
E(1=e"0 )+, (Tre™)

TaOw

Using the asymptotic expression (19), for the location of the zeros of the determinant &, = &y,, we find the asymptotic formula for the term
exp(xiaégp) grows linearly in p, while exp(+iay,) decays. In the asymptotic limit, we can approximate (50) by the expression

(-1

(-1
-
1

(51)

oW

For any given function f(x), we can write the leaky mode expansion in the form
by (x
OIS A} 2
p p p
where according to Eq. (44)
bo(x) = [ Gy (x)aey (3), (53)

Np = (i[:+[:+ifa°°)(w;(x))2dx. (54)

We now turn our attention to the normalization terms N, in Eq. (54). In the limit of small « since the zeros &y, in Eq. (49) are from the 2-nd
quadrant, we can assume &, ~ —&g,. Using this assumption, and doing the integrals in (54) exactly, we obtain
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k (4aBC&y, exp(2iayp)
Np N + "

fOp k 2i
where k = A> + D* = B> + C. In the last step, we used the fact that exp(2iaop) decays as p~>.

Let us next make a general statement about the decay rate, as a function of the index p, of the projection (53) of a given function f(x) onto
the leaky mode y;, (x). Let us assume that f(x) is a function that is zero at x = +a and is n-times continuously differentiable. It is clear that each
time we perform integration by parts in (53), i.e., differentiating f(x) and integrating v, (x), we get an extra factor iy, in the denominator.
After n consecutive integrations by parts, we get

) ~ 4aBC ~ 4a(-1)""", (55)

_ i\" rd ., ()
) = 0 ) [0 6 ) (56
where
- x(n) _ | Bexp(iopx) + Cexp(—ikppx) niseven
(v () - {Bexp(ifopx) — Cexp(—iéppx) nisodd (57)
The term 1/ ESP can be approximated as ~(—2a)"/(pm)", and so the asymptotic expression for Eq. (56) becomes
_ —24i\" 4 _ *(n)
) =y 0 ) [ o ) Ve ()

Next, we will find asymptotic approximations to (58) for our two chosen sample functions. This will give us an asymptotic approximation to
the terms of the leaky mode expansion for the two sample functions.
As our first sample, we choose the following triangle function:

x+d -d<x<0
f(x):{—x+d O<x<d ’ (59)

whose derivative is 1 for —d < x < 0 and -1 for 0 < x < d. In this case, the approximative coefficients ¢,(x) = by(x)/N, after one integration by

parts are
LA (G- indp\( pr \*"*’
0 G saC-1p |~ ”"p(ﬂ)(m)

exp(—w)((—1)P—exp(m5x)(:\7a)u)(a}\);r&)a. (60)

In Figs. 11 and 12, we compare the asymptotic expressions for the terms in the leaky mode expansion with the exact terms calculated using
high precision numerics. As we can see, there is a remarkable agreement between the values predicted by the asymptotic formulas and the
exact values, even for small values of the mode index p. Numerically, the terms appear to approach zero fairly quickly, indicating the series
itself converge.

In order to see if, and for which values of x the series converge or diverge, we write the terms in the series (60) in the form of sum of
terms proportional to z/p", for some complex number z and 7 being one of the following expressions: 2 + x/a, 2 + (d + x)/aand 2 £ (d - x)a.
The sum over p of each term can be expressed using the polylogarithm function Li(n, z), which is defined by the expression

0.25
° o exact Re[c,) 0.20(° © exact Re[e,]
0.20 * asymptotic Re[c,] 0.15¢ * asymptotic Re[c,]
o
0.15 0.10f
0.10 0.05
s O Q 40 J I)

0.05 9 ° 9 30 40 ° 50

0.05
mo ° 9,0, 050, o p [ ®
°710 20 30 40 50
(a) z=0 (b) z=1/3

FIG. 11. Comparing the real part of the exact values of c,(x) with their asymptotic forms. The parameters used in these plots were a =1, n=1+10~"%, d = 1/2 and infrared
light at wavelength 1 um. The test function for these coefficients is Eq. (59).
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— Re[f(x)]
— Re[expansion]
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FIG. 12. Comparing the original test function Eq. (59) with its leaky modes expansion and the asymptotic leaky modes expansion. Parameters used in this expansion were
a=1,n=1+10"", d =%, and infrared light at wavelength 1 um.

0o p
Li(nz) =Y =. 61)
S

If n is strictly larger than 1, the series defining the polylogarithm converge absolutely. After analyzing the various inequalities we find that
we get absolute convergence of the leaky mode expansion for the triangle function only if —a + d < x < a — d. For the case in Fig. 12, this
region is —1/2 < x < 1/2. However, we also have a convergence in the entire channel. In the region outside the region of absolute convergence,
we also have convergence. The convergence here is ensured by cancellations among terms spiraling toward the origin in the complex plane.
In the region of the channel outside the domain —a + d < x < a — d, the amplitude of the terms does not decay fast enough ensure abso-
lute convergence, and the cancellation among the spiraling terms are needed for convergence. The resulting convergence is evidently only
conditional.
As our second sample function, we pick a Gaussian wave packet

f(x) = exp(~(mx)*)exp(ikx), (62)

for some real numbers m, k > 0. The asymptotic terms ¢,(x) for this case are
1 _ a
cp(x) ~ W% (x) [ exp(—(mx)?)exp(ikx) (Bexp(i€opx) + Cexp(—ikpx)dx)dx. (63)

Let the parameters m, k be such that f(x) has its support well inside the slab and f(+a) »~ 0. Then, we can evaluate the integral analytically as

cp(x) » ﬁ(Bexp(—W) + Cexp(_(k_fol’)z))

4ma(-1)P+! 4m? 4m?

—x/a x/a
((_I)P-Flexp(—ixé’;ﬂ)(ali;[a) +exp(lxz';ﬂ)(al\)7/-[&) ), (64)

where &y, is defined in (19). The terms ¢, (x) in this case decay exponentially and thus ensure that the leaky mode expansion converge for all
x in the channel. From Fig. 13 we see that the leaky mode expansion and the exact numerical expansion both are very close to the original
Gaussian wave packet for all x in the channel.

— Re[f(x)]

— Re[expansion]

— Re[asym. expansion]

FIG. 13. Comparing the original test function Eq. (62) with its leaky modes expansion and the asymptotic leaky modes expansion. Parameters used in this expansion were
a=1,n=1+10"" m=4, k=40 and infrared light at wavelength 1 um.
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We have seen that the expansion we introduced in Eq. (49) can represent a function very well as long as the parameter values are chosen
such that 7 = a*a 2 0.8. These bounds are sufficient for all practical purposes. However, looking at the expansion under such circumstances
where the value of « is small enough, we see that the expansion is a very bad representation of the target function. Although we cannot state
that we know the reason for this, we have done some preliminary investigations that points to a likely explanation.

Recall that we do have completeness for the scattering modes. Formally this is expressed by the identity

[ 9a (098, ()0 = 0(x - 2. (65)

Here, ¢¢,(x), can be any linear combination of scattering modes. The usual way to get from the completeness for scattering modes to the
completeness for the leaky modes is to analytically extend the scattering modes into the complex frequency space and then use the Cauchy
theorem. This allows us to write it as a discrete sum of residues evaluated at the poles which are &y;. Thus the scattering states get converted
into resonant leaky modes at these points leaving us with a sum similar to the one in (49).

In order to be more precise about this, we introduce an integration contour C in Fig. 14 that contains the zeros &o; in the second and
fourth quadrant. In the scattering states, the continuity coefficients contain the determinant of the matrix (10), which contains the variable
& = \/a+&. This is a complex square root that has a branch cut on the negative real axis. Figure 14 depicts one possible complex contour.
We indicated the branch points, where the branch cut begins.

Integrating the integrand in (65) over the contour C, multiplying by f(x) and integrating over the real axis, we get

. o v fmww)
27i ) Res( ¢z, (x)@g, (%), &op )| f (), 0p(x) =) — Op(x). (66)
ﬂ}; (92, (x) 9z o) (£ (0 v, () p; (v (v ) v

With the usual boundary conditions for the scattering states we end up with a system where we have one free parameter a* (o). The
expressions on the two sides of (66) are identical only if the free parameter a*(&op) is chosen to be

det’ M(fop) .
2mi(yg (%), vy (%)) detM(&p)

a (&yp) = (67)

However, this choice for a*(£o,) is not an analytic function because both functions det’ M(&y,) and (V’gop (x), Ve, (x)) are zero inside the
integration contour. Each of these two families of countably many zeros give rise to equally many branch cuts. The parametric formulas for
these branch cuts are possible to find but while applying the Cauchy theorem we must now include terms representing integrals around all
these additional branch cuts. Thus, what we get from the Cauchy theorem is that any function with compact support inside that channel

C

/ branch cut

T S 3 /branchpomt
....,..' a R

-R >

—\/ a
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branch cut

FIG. 14. Complex integration contour C.
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is equal to its leaky mode expansion, plus additional terms that includes integrals along the branch cuts on and off the imaginary axis as
described above. What we know is that, unless alpha is smaller than the critical value a*, which we introduced in Sec. IV, the function is
well represented by the leaky mode expansion alone. This means that the contribution from all the other terms for such values of alpha are
negligible. For smaller values of alpha the contributions from the rest of the terms are not negligible and as # = a®a approaches zero, these
terms will come to dominate. For such values of « the leaky mode expansion still converge, but it does not converge to the function used to
construct the expansion. By deriving asymptotic formulas for the all the terms defined by integrals around branch cuts, in the limit when #
approaches zero, one could compare their sizes and identify the dominant ones. If, say, one term dominate, then this term could be added
to the leaky mode expansion resulting in an expansion that represents the function to be expanded in a much better way than the leaky
mode expansion is able to do on its own. We believe that the asymptotic expressions for the terms could be found, but there might not be a
dominant term, and even if there is, extending the leaky mode expansion by adding this term might easily make the expansion too hard to use
for practical calculations.

VI. CONCLUSION

In this paper, we have presented an new approach to minimizing the reflections from finite computational boundaries for wave equations
formulated in the spectral domain. This approach is based on representing the field in the transverse spatial direction using leaky mode
expansions supported by an artificial index channel. We have shown that at the linear level, our approach makes it possible propagate the
waves much further than what is possible if a regular Fourier expansion is used. The leaky modes are not reflection less at the boundary,
and eventually the small but finite reflections build up, and the computed solutions starts to deviate from the infinite domain solutions. This
reflection can be minimized by reducing the index step, but at the price of getting a progressively worse representation of the solution to
the wave equation. In Secs. IV and V, we have argued, using both numerical and analytical approaches, that a practically useful trade-off
can be made between minimizing reflections from the boundary and maximizing the accuracy of the representation of solutions of the wave
equations using leaky modes.

We have illustrated our approach using the case of a TE electromagnetic wave in vacuum, but the approach can clearly be generalized
to much more general wave propagation problems than this. In the optical context, the obvious next step would be to consider waves with
cylinder symmetry.

An important issue that we have not discussed in this paper is how to compute the transformation from fields to leaky mode ampli-
tudes and back in an accurate, stable, and efficient way. In order for the method described in this paper to become part of the toolbox of
computational optics, this problem has to be addressed.
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Abstract

In this paper we study pulse propagation in complex refractive index materials, modelled by
a dispersive wave equation, using the method of multiple scales (MMS), and perform several
numerical tests to investigate its accuracy. We assume a complex valued refracting index in a
noncentrosymmetric medium with a Kerr response. The key feature of our MMS solution is the
linearity of the amplitude equation and the complex nature of the mode-frequency. The MMS
is tested as an initial value problem using three different dispersion models. Depending on the
parameters of the problem, the amplitude equation can be both well- or ill-posed. Despite the
ill-posedness, the MMS solution remains a valid approximation of the solution to the original
nonlinear model.

1 Introduction

For mathematical models of waves propagating in material media, the phenomenon of dispersion is
frequently caused by the requirement of causality.

For example, for the case of a light pulse propagating through an isotropic and homogeneous
media, the propagating pulse induces a local dipole density, P, which for the simplest cases takes
the form

t

P(x,t) = 50/ dt'x(t — t"hE(x,t), (1)
— 0o

meaning that the polarization at a time ¢ only depends on the electric field at times previous to t.

This memory effect, which is the embodiment of causality, is in optics called temporal dispersion, or

just dispersion. In this paper, in order to make our discussion specific, we will focus on this particular

context in our work, but our methods and results apply quite widely to dispersive wave propagation.

The presence of dispersion evidently spells trouble for the integration of the governing equations
for the waves. In general, they cannot be solved as an initial value problem.

This phenomenon is of course well known in the theory of wave propagation, and in optics in
particular, and various more or less ingenious methods has been invented for getting around the
problem.

In optics one frequently tries to get around this problem by solving Maxwell’s equations for optical
pulse propagation as a boundary value problem, rather as an initial value problem.
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In fact, one could argue that the boundary value problem is more closely aligned with the way
experiments are done, than the initial value problem is. Waves in a material slab are launched by
shining a source laser at the interface of the slab, and therefore one could say that the incoming field
at the boundary of the slab is fully controlled by using the laser. Thus, we have the data necessary
for solving a boundary value problem for optical pulse propagation.

This is the basic, and in fact the only premise, which underlie the Unidirectional Pulse Propaga-
tion Equation(UPPE) [1][2][3] approach to optical pulse propagation. Of course, if there is significant
back scatter of light from the interface and/or the material, the boundary condition is not fully con-
trolled, and UPPE, and also other, less general, boundary solvers, which all rely on unidirectionality,
are in trouble. For such cases, one can still solve Maxwell’s equations for optical pulse propagation
as a boundary value problem by using a more general approach than UPPE. This approach is called
the Bidirectional Pulse Propagation Equation(BPPE) [4][5].

The BPPE approach is an exact method in the sense that no solutions has been lost when
transitioning from Maxwell to BPPE. It is however also a purely numerical method and does not
give any analytical insight into the pulse propagation problem. The UPPE is also an exact method,
but only if one restricts to solutions of Maxwell that satisfy the condition of unidirectionality, and it
is also a purely numerical method.

A much older approach to optical pulse propagation solves Maxwell’s equations as an initial
value problem by restricting to a class of solutions that are spectrally narrow, also called narrow
band solutions. This restriction makes it possible to derive equations, in general called amplitude
equations, that, for a limited time, give a good approximation to Maxwell’s equations, for solutions
that are spectrally narrow. These amplitude equations can be solved as initial value problems.
The systematic approach for deriving these equations is the method of multiple scales(MMS) [6][7].
In optics, the best known such amplitude equation is the nonlinear Schrodinger equation(NLSE).
Another well known amplitude equation, which is particularly useful for driven optical systems like
a laser, is the Complex Ginzburg-Landau equation [8].

From a purely numerical point of view, the great thing about amplitude equations is that they
are much faster to solve numerically than the original Maxwell’s equations. The root cause of this is
that for the narrow spectrum solutions represented by the amplitude equations, the fast frequency
at the center of the spectrum, the so-called carrier wave, needs not be temporally resolved, only
deviations from the center frequency needs to be resolved, and the range of these deviations is by
assumption small.

In addition to being fast to solve numerically as an initial value problem, amplitude equations
tend to have a universal form, at least to leading order, and this universal form, quite frequently,
makes the equation amenable to analytical investigations. In the best cases, a complete analytical
solution can be found. This is true for the NLSE equation [9]. However, this analytic solvability is
not robust. If we want to extend the amplitude equation beyond the leading order, which we must,
if we want an equation that approximates the narrow spectrum solutions to Maxwell for a longer
interval of time, the analytic solvability is typically lost, but the fast numerical solvability is not. So,
one can say that the important feature of amplitude equations in optics, is that they form the basis
for a fast numerical approach for obtaining certain types of solutions to Maxwell’s equations.

Apart from the use of amplitude equations, there are also other analytic approaches to simplifying
PDE’s by restricting to a subset of their full solution space. Two such alternative approaches are the
use of center manifolds [10][11] and the renormalization group [12][13].

The aim of this paper is two-fold.

Firstly, we want to go beyond the use of stationary modes as a basis for the MMS expansion, and
consider the more general case of modes that are decaying, usually because of loss of some sort in
the material, or gain for that matter. In this paper we will focus on the situation of lossy materials.
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The case of weak losses can treated by using stationary modes, assuming that the decaying terms are
small compared to the leading part of Maxwell’s equations. For situations where the loss is too large
to be included as a perturbation, one must use a MMS based on decaying modes. This is a situation
that occur if one is investigating optical pulse propagation close to a material resonance. It is also
the case if one want to derive amplitude equations in near-zero index situations. In fact, this last case
is the major motivation for the work we do in this paper. Two interesting features of the resulting
amplitude equations, features that we explore in detail later in this paper, is that the amplitude
equations we derive are necessarily linear and that they are frequently il posed . The interesting
thing is that they, nevertheless, accurately represent both the linear and the nonlinear dynamics
of the narrow band solutions of Maxwell’s equations, for time intervals for which the amplitude
equations according to the MMS procedure should approximate such solutions well.

Secondly, we want to investigate the validity of the amplitude equations, as a fast numerical
scheme for narrow band solutions to Maxwell’s equations, by comparing the numerical solution of
the amplitude equation to the corresponding numerical solution of Maxwell’s equations. Since we
cannot solve Maxwell’s equation numerically as an initial value problem, this validity check has an
obvious problem that needs to be handled. Handling this problem is the second major focus of this
paper. It relies on the fact that in optics, one almost always approximates the linear dispersion of
materials using Sellmeier equations [14].

2 A model wave equation, including nonlinearity and general
temporal dispersion

The basic model equation we will use to illustrate our methods, and for which we will state our main
conclusions, is the simplest nontrivial wave equation from nonlinear optics. It is scalar, and includes
general linear dispersion and a Kerr, cubic nonlinear material response. Our methods and conclusions
apply much more widely than this, but for the sake of clarity and because numerical methods play
an important role in this paper, it is necessary to work within a specific class of equations.

In order to put our model equation into a real physical context, we start this section by deriving
the equation from Maxwell’s equations under some reasonable physical assumptions on the material
response.

Maxwell’s equations for a situation where there are no free charges or currents, are given by

OB +V xE =0,
0D -V xH =0,
V-D =0,
V-B=0. (2.1)

Most materials show no magnetic response at optical frequencies, thus we assume that

1
H = —B,
Ho
D=¢E+P. (2.2)

The polarization is in general a sum of a term that is linear in EE and ones that are nonlinear in E.
We thus have

P=P;,+Py;s. (2.3)
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We assume that the linear material response is isotropic, homogeneous and causal
t
P.(x,t) = 50/ dt'x(t — " E(x,t'). (2.4)

In the explicit calculations that we do in this paper, we will assume that the nonlinear polarization
is restricted to the Kerr effect. Thus we will assume that

PNL = 80’17E . EE, (25)

where 1 is the Kerr coefficient. This is a choice we make just to be specific, the applicability of
our methods, and the validity of our conclusions, derived in this paper, in no way depend on this
particular choice for the nonlinear response.

Inserting (2.2)-(2.5) into (2.1), we can rewrite Maxwell’s equations into the form

OB +V xE =0,
1
@E — 02V X B+ v 27r8t)2(28t)E = —g—@tPNL,
0
1
V . <E + vV 27r)2(130E> = —g—V . PNL7
0
V-B=0, (2.6)

where we have used an alternative form of (2.4) which is derived in Appendix A. The factor v/27 is
a consequence of our conventions for the Fourier transform.
We will now restrict ourselves to solutions of the form

E(z,t) = E(z,t)e,,
B(z,t) = Bi(z,t)e, + Ba(z, t)e., (2.7)
PNL(Z,t) = PNL(z,t)ey, (28)

which are called transverse electric waves(TE). For this simplified case, Maxwell’s equations take the
form

atBl - aZE - 0,
3tBQ == O,

O, — 20.B) + V2m0R (i, E = —gloatpNL,
0.Bs =0, (2.9)
where for the assumed Kerr effect we have
Pyp = eonE®. (2.10)

By taking cross derivatives it is easy to eliminate the magnetic field components and arrive at the
equation

1
attE — C2aZZE + V QWatt)%(lat)E = —E—attPNL, (211)
0

which is the basic model equation we will be using in the rest of this paper.
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2.1 Scaling of the model equation

If the aim is to solve Maxwell’s equations numerically, in some specific physical context, it is not
really necessary to scale the equation, and frequently this is not done, even if one can argue that it
could still be a useful thing to do. However, if one is going to derive an amplitude equation for the
same physical situation, it might not be essential to scale the equation, but it certainly is extremely
useful. After all, the essence of MMS is the ordering of terms in certain expansions according to size,
and ensuring that this ordering, according to size, persists, up to some time of our choosing.

Equation (2.11) will be the staring point for our multiple scale approach. Let us start by picking
scales Zy, Ty and Ejy, for space, time and electric field amplitude, so that we have

2= Zy?,
t =Tot',
E = EF', (2.12)

where the primed symbols are the scaled quantities. With these choices of scales the model equation
(2.11) takes the form

2T2 .
Oy B — CZ—;]az/z/E/ + V210ppx (i0p) E' = —nE;0py E™, (2.13)

0

where )2’ (10y) = X (i@t/%o) We are at this point free to choose the time scale T, so let us choose it

so that the factor before the z-derivative becomes one

Ty = —. 2.14
)= (214

We next set the scale for the electric field to be the initial peak electric field amplitude. Thus
Ey = max |E(z,0)]. (2.15)

With this we can write the model equation in the form

3ttE - azzE + \/ﬁ@ttf((zﬁt)E = _528ttE37 (216)

where we now have dropped primes on all quantities, since from this point on, only scaled quantities
will appear. In this equation we have introduced the dimensionless parameter € = /nkEy. Typically,
the Kerr parameter is fixed for any given material, whereas E is at our disposal to vary over many
orders of magnitude, depending on the strength of the laser used to generate the initial electric
field. This means that ¢ can be made to vary over many orders of magnitude, but for realistic field
intensities it is always smaller than one, usually much smaller than one. ¢ is the small perturbation
parameter which we need for the MMS expansion.

In this paper, Fourier transforms and plane waves play a prominent role, and whenever that is
the case, it is convenient to pick the units for wave number and frequency in such a way that the
phase of plane waves, and the Fourier transform, and its inverse, retain the same symbolic form in
scaled and unscaled quantities. It is easy to verify that this is the case if we make the choice

1
Ky= — 2.17
1
Qy = —. 2.18
o= 7 .19

106



Thus we measure frequency in the well known unit Hertz, or cycles per unit time. Wavelength is in
a similar way measured in periods per unit length.

Note that (2.14), which fixes the time scale in terms of the length scale, also, because of (2.18),
fix the frequency scale in terms of the wave number scale

QO = CKQ. (219)

Thus, the only scale that remains to pick is the one for wave number. The initial field is in a lab
situation generated using a laser. These days most optical labs have lasers that produce pulses of
femto second duration [15], and labs with more specialized equipment can produce pulses down to
atto second durations [16]. Such short pulses have a very broad spectrum and their dynamics are
therefore hard to approximate using amplitude equations, which require narrow band pulses. There
are versions of MMS that can handle such broad band pulses, but only in the weak dispersion limit.
In this paper we apply MMS in a form that is tailored to the opposite limit of strong dispersion.
Thus, in this paper we must assume that the initial field has a narrow wave number spectrum centred
on a wave length determined by the lasing wave length of the laser generating the initial pulse. What
the word "narrow" in the previous sentence means, will be clarified in the MMS expansion in the
next section.

In this paper we are focused on validating amplitude equations derived using decaying modes in
the vicinity of a material resonance, and it thus makes sense to pick the scale, K, for wave number,
in such a way that the position of the resonance is centred on scales wavelengths that are of order
one. The initial laser pulse will then have a narrow band spectrum centred on a scaled wave length
that is also of order one. We will in the rest of the paper assume that this has been done, and from
now on only refer to scaled quantities, both in the model equation and in the specific material models
that we will introduce in the sections to come.

2.2 Decaying mode, amplitude equation, for the model equation
We proceed with the multiple scale method by introducing the expansions
@t :3,50 +58t1 +€28t2 —|-7

0, = 0y +€0,, +%0,, + ...,
e=-¢ey+ee; +eex+..., (2.20)

where the connection between the multiple scale field amplitude e and the electric field amplitude E
is given by

E(Z, t) = 6(20, to, 21, tl, .. ) ‘tjzajt,zj:fsjz' (221)
The function x(i0;) is expressed as a Taylor series as follows.
)A((Zat) = X(z(@to + €8t1 -+ 528752 + .. )) = f((z@to) + )A(I(Z.ato) (Eiatl -+ 82i3t2 + .. )
X' (@0h) (. 2, 2
+ B — (00, + %0, +...)
1
= X(z@to) + Eiatl)zl(iato) + 52 (i@m)%/(i@o) — 5)%”(2.8%)8151151 + .. ) + ..., (222)
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We now insert (2.20), (2.21) and (2.22) into (2.16) and expand everything in sight. This gives us the
following perturbation hierarchy

€% Ohyte€0 — Oryzg€0 + V2 0sy1y X (104, ) e = 0, (2.23)
. - V27041, X (1015 )1 = — — 2v/278,, R (i, )
€ Opto€1 — Osgzo€1 + V20t X (104, )€1 = —20451,€0 + 20452, €0 — 2V 270y X (104, ) O, €0
— 1V 27T8t0t0)2/(i8t0)8t160, (224)

62 : atot(]eQ - 8202062 + v 27T8t0t0>2(7:at0)62 - _at1t160 - 28t0t2 €0 + az1zl €o + 282’02260
—V 27T)A((Z.8t0)at1t1 €y — 2V 277'8150)2(2.8150)8752 €0
— 21V 271'8)50)2/ (i@to)atltleo — 1V 27T8t0t0)2/(i8t0)3t2 €0
1 — N
+ 5 27Tatotoxll(zato)at1t1 €o — nEgatotoeg

— 1V 27Tat0t0t1 X’(i@to)el — 2V 27r3t0t1)2(i3t0)61
- 28t0t161 + 28202161. (225)

For the order £ equation we choose the wave packet solution
eo(20, to, 21,11, .. .) = Ag(z1, 1, .. .)e % 4 (%), (2.26)
where
0y = kzo — wty, (2.27)
and where w = w(k) is a complez solution to the dispersion relation
wn?(w) = k*. (2.28)
Here, the complex refractive index, n(w), is defined by
n*(w) =1+ V2rx(w). (2.29)

Observe that our multiple scale expansion is based on a complex, decaying mode, not a complex,
stationary mode, which is usual when one applies MMS far from any resonances of the material.
We will see here and also in later sections that this fact will change many aspects of the resulting
amplitude equations.

We must now calculate the right-hand side of the order ¢! equation. Inserting (2.26) into (2.24),
we get

uota€1 — Do €1 + V21 Dy1 X (81 )€1 = (mwatle + 20k, Ay + 2iwv21(w)dy, Ag
+iw2\/%§(’(w)8t1140> e® 4 (%), (2.30)
In order to remove secular terms we must postulate that
2ikd., Ag + i <2w + 20V2rR(w) + w%/ﬁfc’(w)) 8, Ag = 0. (2.31)

Observe that from the dispersion relation (2.28) we have

W (1+V2rR(w)) = k2,
J
(k) (Qw +2wV2m R (w) + \/ﬁw%g'(w)) = k. (2.32)
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Thus (2.31) can be written in the form
8151140 + w/(k)821A0 =0. (233)

For the case of stationary modes, the quantity w’(k) is real and by definition equal to the group
velocity for an initial light pulse with a narrow spectrum centred on the wave number k.
The order ! equation simplifies into

atotoel - 62’()2061 + Vv 27T6t0t0)%<iat0)61 = 0. (234)

At this point we face a choice; which solution should we pick for this equation? The equation is
homogeneous, and thus does not have any nontrivial particular solution, like the equation for e,, at
the next order, do.

Here we pick the simplest possible solution

er =0, (2.35)

for (2.34). The discussion of why we make this pick here, and what the consequences would be
to make another less trivial choice, is best postponed until after we complete the derivation of the
amplitude equation at order 2.
We now must compute the right-hand side of the order £ equation. Inserting (2.26) and (2.35)
into the right-hand side of the order % equation we get
atotoeg — 0Z02062 —+ v 27r(9t0t0)2(i3t0)62 = (_8t1t1 AO =+ 2iw8t2Ao + 82121 AO + Qikango
-V 271—)2(("))8151151140 + 12w 277—)%(("])8152140
— 2wy zﬂ)zl(w)atltl AO + in v 271—)%/(("))6152140

1 . .
—§w2\/ QWX”(w)atltlA()) e 1 92 Adets0o
+ 3(w; — 2w)?| Ag|* Age™Pe®owi (), (2.36)

where w; = Im w. At this point it is worth observing that none of the nonlinear terms in (2.36) are
secular. In addition to the usual nonsecular term €%, we also have the term e®e?0% which would
have been included into the secular terms, and thus, in the final amplitude equation, if it wasn’t for
the complex nature of w. This makes MMS based on decaying modes essentially different from the
case of stationary modes.

Continuing the calculation, we observe that in order to remove secular terms from (2.36), we
must postulate that

— Oyye, Ag + 2iwdy, Ag + 0., Ag + 2ik0., Ag — V21X (W) By 1, Ao + 12wV 271X (w) Dy, Ag
2V ()Bue, Ao + iV T ()0, Ay — %&\/%i”(w)amﬁo o,

T

Onis o (—1 = VERR(w) — 20V BV ) — VIRV )

+ 9y, A (2@@; + 20V 2 (w) + zw2\/27r>g’(w)) 4., A + 2ikD., Ay = 0. (2.37)

109



The factor multiplying the term J;, Ay can be expressed using (2.32), and equation (2.37) therefore

simplifies as follows

Ou o (1 = VETI(w) ~ 2VERY (@) - VIR )

2k
O, Ag— 1D, Ay + 2ikD,, Ag = 0,
w' (k)

4

@QAO -+ w/(k)822A0 — iﬁ@zon -+ z'aathg = 0,

where
;o (W) 4 2wv2r Y (w) 4 3wV 2" (w)
o =/ (k) ks SALT O]
_ W'(k)
KT

By removing the secular terms from equation (2.36), the order £? equation turns into

8t0t062 — 8Z0Z062 =+ V 271'8t0t0)2(i8t0)62 = QWZAgeiSHO

+ 3<W + 2iwi>2|A0’2A06i00€2t0wi + (*)

(2.38)

(2.39)

(2.40)

(2.41)

This equation is not homogeneous, and we chose at this point to solve for es, using only a particular

solution. One such particular solution is evidently
62(20, to, .. ) = ClAgeiseo + CQ|A0|2A0€i0062t0wi + (*),

where

w? 1

- w?n?(3w) - n?(w) — n?(3w)’
3(w + 2iw;)?

k2 — (14 x(w + 12w;)) (w + 2iw;)”

Cy =

Defining an amplitude A(z,t) by
A(Z,t) = Ao(Zl, tl, .. )‘

] )
tj=elt,zj=¢elz

(2.42)

(2.43)

(2.44)

(2.45)

and proceeding in the usual way, using (2.33) and (2.38) we finally get the following amplitude

equation
WA+ W' (k)0 A —iB0,, A+ iadyA = 0.

The amplitude A is related to the electric field amplitude £ through the formula

E(z,t) = A(z,1)e"* 79D 1 2(c; A3(2,1)eB*2790 4 )| A(2, 1) |2 A(z, 1) F= =Dy 4 (x).

By design, for (2.46), (2.47) to be an approximate solution to (2.16), we must have

BO.A ~ adyA ~ O(e2),
O A ~ 9.A ~ Oe),
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where we recall that € is a number much smaller than 1. Given these circumstances, we observe that

OA =~/ (K)D.A ~ O(e),

Y
O A = W' (k)?0..A ~ O(?), (2.49)

and thus, the second order in time, amplitude equation (2.46), is asymptotically equivalent to the
more convenient, first order in time, equation

DA + o (k)9 A — i (ﬁ PN @/(k))?) 9., A =0. (2.50)

This amplitude equation, together with relation (2.47), are the two key elements defining a fast
numerical scheme for narrow band solutions to (2.16).

Note that this amplitude equation is a linear equation. This is very different from the nonlinear
Schrodinger equation, which is the leading order amplitude equation for our model equation far
from any material resonances. The solution to the amplitude equation (2.50), can be an accurate
approximation for our nonlinear model equation, despite the linearity of the amplitude equation,
because the expression (2.47) that connects the amplitude A to the electric field amplitude E, is
nonlinear. Note that if we want to have an amplitude equation which is a good approximation to the
model equation beyond a time of order e72, we have to extend the MMS procedure to higher order
in €. It is evident from what we have said about secular terms in the paragraph following equation
(2.1), that these extended amplitude equations will all be linear, no matter to which order the MMS
procedure is extended.

Since the amplitude equation is linear, the solution space, Sy, is of course a linear space. The
relation (2.47) amounts to a map, M, from S, into the solution space, Sg, of the exact equation
(2.16). The map is certainly not surjective, and neither is it injective. The lack of injectivity
means that the map cannot be used to induce a nonlinear superposition principle on its image set,
M (Sg) C Sg, using the usual pullback/pushforward approach.

In order to get the approximate solution to our model equation defined by the amplitude equation
(2.50), and the relation (2.47), we decided to pick particular solutions at order £ and &2, at both
orders disregarding the general solution to the homogeneous equation. The consequence of adding
a solution to the homogeneous equation, in the form of wave packets, at one or both orders, would
be to add one or two new independent amplitudes to the problem. Each of these amplitudes would,
through the removal of secular terms at order e, €2 and &3, satisfy their own amplitude equations.
Both these extra amplitude equations would also be linear, and uncoupled from each other and the
one for the amplitude A. The relation defining the electric field in terms of the amplitudes would
now be much more complicated and involve sums of products of all three amplitudes.

The deciding factor for whether we include these extra amplitudes, or not, is what kind of
solutions of the model equation we are trying to approximate. This comes down to which kind
of initial conditions for the model equation we are able to represent faithfully using our amplitude
equation.

Any choice of a narrow band initial amplitude for the amplitude equation (2.50), will lead to a
narrow band wave packet solution of the model equation, with dispersive properties determined by
the choice of a complex solution w = w(k) to the dispersion relation (2.28), at order €° of our MMS
expansion. This is certainly a valid choice of initial condition, if our aim is to validate the amplitude
equation (2.50) together with its corresponding defining relation (2.47) for E.

However, such a choice of initial condition for F is awkward from a physical point of view. Usually
the initial field is determined by a laser, whose output, in most cases, can be approximated spectrally
by a narrow Gaussian centred at the operating wave length of the laser. The initial condition for
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E, defined above using a narrow band initial condition for A, consists of two (Gaussians centred at k
and 3k, and with a special relationship between the amplitudes and phases of the two Gaussians.

From the relation (2.47), it is evident that in order for F to be a Gaussian centred on some
wave number k, the amplitude A must be a Gaussian centred on k£ = 0, and we have to introduce a
solution to the homogeneous solution at order 2 of the form

62(20, to, 21, tl, .o ) = B()(Zl, tl; .o .)ei(sk'inw(gk)tO) + (*), (251)
leading, in the end, to a relation determining the electric field in terms of the amplitudes A and

B(Z,t) = BO(thla ..

) ’tj:sjt,ijsjz’
of the form

E(z,t) = Az, )" ) 4 (B + 1 A%(2, 1)) =)
+eal Az, )P Az, t)e! D) (). (2.52)

By fixing the initial value of the amplitude B to be
B(z,0) = —c;A%(2,0)), (2.53)

we ensure that the initial spectrum for F is a Gaussian, whose center and width, is determined by
the initial spectrum for the amplitude A.
The initial value for the amplitude A is found by solving

E(z,0) = A(z,0)e** 4 %cy| A(2,0) 2 A(2,0)e™ + (%), (2.54)

for A using for example Newton’s method.

Since our aim is to get an approximation to the solution of the model equation to order &2 for
times ¢ < €72, we need to remove the secular terms generated by the amplitude B, at order €3, since
such terms would grow linearly and potentially disturb the spectrum at 3k, already for times of order
g L.

From detailed calculations done while deriving the amplitude equation (2.50), it is not hard to
see that the resulting amplitude equation for the amplitude B must take the form

8B + W' (3k)0.B = 0. (2.55)

For the validity tests we will discussing later in the paper, we will always introduce such an extra
amplitude B, whenever it is necessary for faithfully representing a Gaussian initial spectrum for E.

3 Testing the validity of the amplitude equations

The first goal of this paper was to use the MMS approach to derive the amplitude equation close
to a material resonance for nonlinear wave equations with arbitrary, but of course causal, material
response. Our main model equation and motivation comes from the field of nonlinear optics, but our
methods and results can evidently be applied much wider than this.

Our second goal, which is the focus in this section and the rest of the paper, is to test the validity
of the derived amplitude equations using high precision numerical simulations. If one is far from a
material resonance, the dispersion relation of the material can to a good approximation be modelled
by a polynomial function of the frequency, usually a second order polynomial is sufficient like in the
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Lorentz model [17]. In this situation, a direct simulation of the model equation can fairly easily
be achieved, and the validity of the amplitude equation can thus be tested. However, even in this
situation, numerical validation is not all that common. One reason for this is that the narrow band
solutions, which are well approximated by the amplitude equations, are also the type of solutions to
Maxwell that are most challenging to simulate numerically. This is because such solutions, which
basically are wave packets, have a slowly varying, and consequently very wide, envelope, and at the
same time contain a very large number of oscillations under the envelope. Thus one need both a large
computational domain and a very high resolution of that domain. This makes for a large number
discretization points and thus long running times.

When one is close to a material resonance, low order polynomial approximations do not work
as well as when one is far from a resonance. In this situation different and more complicated ap-
proximations must be used. This typically turns the model equation, which is a differential equation
in time, into an equation that is a pseudo-differential equation in time. Solving such a thing as an
initial value problem is not an easy proposition.

A frequently used class of such, more general approximations, are the rational functions. This
type of approximations are in particular very much used for approximating the electric susceptibility
in optics. For this situation, one can exactly transform the model equation into a equation that
is a differential equation in time, and whose initial value problem can be solved numerically. The
transformation is based on what is called the Sellmeier formulas in optics, and it thus makes sense
to denote the associated transformation for the Sellmeter transformation.

3.1 The Sellmeier Transformation

The Sellmeier formulas in optics are approximations of the electric susceptibility in terms of sums of
rational functions of the simple type

1

R =
() aw? +bw + ¢’

(3.1.1)
where a,b and ¢ are complex constants. Causality, and questions of loss or gain in the material,
put restrictions on the constants that we leave aside for now. Later, when we do our numerical
simulation in order to validate the amplitude equations, these restrictions come to the fore. Finite
sums of functions of the type (3.1.1) will produce general rational functions. Thus the Sellmeier
formulas are simply rational approximations to the electric susceptibility
. P(w)
X(w) =——=. (3.1.2)
Qw)

In order to describe the Sellmeier transformation, observe first that (2.16) can be written in the
form L(E,E®) = 0, where £ is a suitable operator that produces our equation (2.16) and which
includes the integral operator x(id;). Secondly, observe that the Fourier transform of our model
equation can be rewritten into the form

L(E,E%) =0,
0
1 A 3 —
o) QWL (B )| =0
0
1 N
0w L(E,E*) =0, (3.1.3)
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where £ = Qw)L.
Assuming the form of the susceptibility to be described by the very simplest Sellmeier formula
(3.1.1), x(w) = R(w), the operator L is the differential operator

L= (c+ibd, — ad}) o L. (3.1.4)

The equation £ (E, E?) = 0 is the Sellmeier transformation of the original equation £(E, E3) = 0.
It is evident from (3.1.3) that any solution to the differential equation

L(E,E%) =0, (3.1.5)

is also a solution to the original pseudo differential equation (2.16). If Sy, denotes the space of
solutions for this original model equation and Sp denote the space of solutions for the Sellmeier
transformed equation (3.1.5), we thus have Sp C Sy. We are not going to do a detailed mathematical
analysis of situations where the Sellmeier transformation breaks down, these are situations where
(Q)(w) pass through zero, or is close to zero on a region of positive measure. This situation is very
rarely realized for ordinary materials.

Our idea is now to restrict the numerical validation to solutions in the smaller solution space Sp.
This of course only make sense if the MMS procedure applied to the Sellmeier transformed equation
(3.1.5) produces the exact same amplitude equation as the one we got earlier, starting from the
original pseudo differential equation (2.16). From our short discussion of the relation between Sy,
and Sp in the previous paragraph, we certainly expect to get the same amplitude equation, but we
still feel that it is prudent to directly verify that this is the case for each of the two explicit examples
of Sellmeier formulas discussed in the following sections.

3.2 A toy model for dispersion

In this first validation calculation for our amplitude equation (2.50) and associated reconstructed
electric field amplitude (2.47) we chose a material response function of the simple form

vt

ue v, t>0
x(t)z{ 0. t<0 (3.2.1)

for some real positive constants v and v. The corresponding electric susceptibility, which is the
Fourier transform of (3.2.1), is given by the formula
U 1
Y(w) = — . 3.2.2
Defining parameters v = =, a = %, the formula for the susceptibility can be written in the more
convenient form

1 1
V2ry —taw’
We are not aware of any material response that in the optical regime is described by this electric
susceptibility, but it does satisfy the, all important Kramer-Kronig relations, and thus describe a
causal response. For us, this choice is a device for testing the amplitude equation in the simplest
setting possible. Later in the paper we will investigate the validity of the amplitude equation when
the electric susceptibility describes a very common atomic model, the Lorentz oscillator. For this

case, the validation is conceptually the same as for the simple model above, but it is technically much
harder.

(W) (3.2.3)
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3.2.1 The Sellmeier transformation

The model for electric susceptibility described above, leads to a Sellmeier transformed equation that,
in our scheme of things, is as simple as possible to handle numerically. Following the procedure
described in the previous section, we find that the Sellmeier transform of our model equation is

ClatttE + ('7 + 1)8ttE — ’y@zzE — a@zztE + 52’}/8“E3 + €2a(9tttE3 =0. (324)

This equation is, as expected, a differential equation and not a pseudo differential equation. It can be
solved numerically using, for example a pseudo spectral method, which is what we do in this paper.
As noted earlier, for the validation test to make sense, we must ensure that the MMS procedure
applied to (3.2.4) gives us the same amplitude equation (2.50), which we got from the original model
equation (2.16). We do this is Appendix B and observe there that the derived amplitude equation is
indeed the same as the original one (2.50).

3.2.2 Numerical results

Actually solving the Sellmeier transformed equation (3.2.4), is awkward, because it is not solved
explicitly with respect to the highest derivative. However, the fact that ¢ is small means that, by
iteration, we can approximate (3.2.4) by an equation that is solved explicitly with respect to highest
derivative. We achieve this by expanding out the offending term ad,; E? as follows

adu E* = a (6 (0,F)* + 18E0, By E + 3E*0 F) , (3.2.5)

and substituting for 0y, F using (3.2.4).
Dropping terms of order £*, which we must do in order to be consistent with our order €2 MMS
expansion, we get the following explicit equation

0O B + (v + 1)0uE — 70,.E — a0, E + nEgy (6E (O,E)” + 3E?0,E)
EQ

+ EQCL 6 (atE)B + 18E(9tE8ttE + 3_ (’y@zzE + ClazztE — ("}/ + 1)8ttE) =0. (326)
a

Since the explicit equation (3.2.6) agrees with the exact implicit equation (3.2.4) to order 2, the
amplitude equation to order 2 for these two equations must be the same. Thus we can use (3.2.6)
to validate our original amplitude equation (2.50).

Recall that the amplitude equation is derived using one specific mode of the linearization. Thus,
to do the validation we must select one of these modes. Given this mode, all the parameters in the
amplitude equation are determined in terms of the parameters of (3.2.6). The detailed expressions
are derived in Appendix B. This linear mode, which is an explicit function of z and ¢, can now be
used to determine all the three initial conditions needed to solve (3.2.6) numerically, and thus to
complete the validation.

The equation (3.2.6) has three independent modes. The solution to the linear part of (3.2.6) can
be expressed as inverse Fourier integrals of all three modes

E(z,t) = —— ( / dkA; (k)ehem®n) 4 / dk Ay (k)e' =720 4 / dkAg(k)e“’fZ—%(k)ﬂ).
V2T —00 —00 —00
(3.2.7)
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The electric field E(z,t) must be real so (3.2.7) must be equal to its complex conjugate

1 > 4 .
E* (Z, t) _ \/_2_7r (/ dkAT(—k>€Z(kz+w1 (—k)t)

+ / dk Ay (—k)elk=tea(=ht) 4 / dkA;(—k)ei<kz+w§<—k>>f>). (3.2.8)

—00

o0

Let us first assume that & > 0. From the form of the dispersion relation (B.6)
p(k,w) = aw® +iw(y + 1) — ak’w — ivk?, (3.2.9)
we observe that if w(k) is a solution to p(k,w) = 0, then we have
p(k, —w*) = —a(w*)® —iw* (v + 1) + ak’w* — iyk?
= — [aw® +iw(y + 1) — ak’w — ivk*] = 0. (3.2.10)

This implies that if w(k) is a solution, then —w*(k) is a solution as well. Thus, assuming that the
three solutions are distinct, we can number them in such a way that

wi (k) = —wa(k), (3.2.11)
wi (k) = —ws(k). (3.2.12)

Next observe that the dispersion relation (B.6) is even in k. Using this fact, we can number the
solutions for negative k in such a way that w;23(k) = wi23(—k). Using these relations, together
with (3.2.11) and (3.2.12), formula (3.2.8) turns to

1 o o0 ‘
E*(Z,t) _ E (/ dk‘A*( k)) i(kz—wa2(k)t) +/ dkA;(_k)ez(kz—wﬂk)t)

+ / dkA;(—k)ei(kz‘w3(’“))t)) : (3.2.13)
For (3.2.7) and (3.2.13) to be the same, the following relations between the amplitudes A; 5 3(k) must
hold

Ay (k) = A3(—k),
Ay (k) = Ai(—k). (3.2.14)

From these relations, we see that the amplitudes for £ < 0 are determined from their values for £ > 0
and vice versa.

While deriving the asymptotic solution in Appendix B, we assumed the solution to the 0-th order
equation in the perturbation hierarchy (B.1) to be one of the three possible modes. The amplitude
equation (2.50) is the correct equation only for narrow band solutions consisting of one such mode,
centred around wave number ky which we, without loss of generality, can assume is positive. To
be specific, assume that this mode is A;(k). The narrow band property implies that A;(k) = 0 for
k < 0, and from this the relations (3.2.14) implies that we can consistently choose A3(k) = 0 for all
k and As(k) =0 for k > 0.

Using these assumptions and (3.2.14), we get from (3.2.13)

1 & 0
E(Z,t) _ \/_2_7T (/ dkA*( ]{3) i(kz—wa (k)t) +/ d/{}A*< k?) i(kz— wl(k)t))

d/{ZAl i(kz—w1(k)t) + dlfA*(l{?) —i(kz—wj (k)t)
=

—00

dk Al _zw(k)t+AT(—k)€iw*(_k)t] eikz _
\/ 2m / ~— /

E(k,t)

/ dkE(k,t)e™*,  (3.2.15)

o0

o
3
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where we let w; (k) = w(k) to match the parameters in our asymptotic solution (2.47) with (3.2.15).

We now turn back to equation (3.2.6). Upon transforming this PDE into its spectral domain
k, we get a third order ODE with a nonlinear right-hand side. We want to solve this ODE as an
initial value problem, and therefore need three initial conditions, here denoted by f(k),g(k) and
h(k). These three initial conditions we obtain from (3.2.15)

f(k) = E(k,0),
g(k) = atE(kv 0)7
h(k) = 8y E(k,0). (3.2.16)

These conditions can be also expressed in terms of the amplitude A;(k) using (3.2.15)

f(k) = Ay(k) + Aj(—k), (3.2.17)
G(k) = —iw(k) Ay (k) + iw*(—k) AL (—k), (3.2.18)
hk) = —w? (k) Ay (k) — (W (—k))? A% (—Fk). (3.2.19)

The only thing left to do now, is to compute the initial condition for the amplitude equation (2.50
in terms of our chosen amplitude A; (k).

As discussed at the end of section 2.2, the initial condition for £, which is natural from a physical
point of view, is one whose spectrum is a narrow Gaussian. This is taken care of by letting the
spectral amplitude A;(k) be a Gaussian centered at some wave number kg

De=%k=ko)* | > 0
Agm:{ 0 L0 (3.2.20)

where D, > 0.

As also discussed at the end of section 2.3, we might have to introduce an extra amplitude at
order €2 in order to faithfully represent the initial condition on E in terms of an initial condition for
the amplitude equation.

The way to determine if any extra amplitude has to be introduced at order £2, is to assume the
opposite. Given this, the relation between the amplitude A and the electric field E is determined by
(2.47).

We now take the inverse Fourier transform of equation (3.2.17) and equate it to the right-hand
side of (2.47) evaluated at t = 0. Matching separately the first part and the second part, which is
the complex conjugates of the first part, on both sides, we get

FHA(k)} = A(z,0)e™% + cinEg A% (2,0)€%0% + cynE3| A(z, 0)P A" (2, 0)e’*o7,
FHA(=k)} = A(2,0)e” ™% + ¢inEf (A)° (2,0)e” %% + cinEg| Az, 0)PA(z,0)e 7, (3.2.21)

which is a nonlinear system of algebraic equations, consisting of two equations and two unknowns
A(z,0) and A*(z,0). This system can easily be solved numerically, for example using Newtons
method.

Note that the parameter § controls the width of A;(k). Given that the amplitude A(z,t) should
be slowly varying in z, 9.A ~ O(¢), the parameter ¢ should be chosen such that § ~ 1/¢.

In order to do a numerical comparison, we fix the refractive index by choosing the parameter
values v = 5 and a = 20. In figure 1 we see the real and imaginary part of the resulting refractive
index of our material.

At this point, the only remaining parameter to set is the, all important, nonlinearity parameter ¢.
In all our derivation, we assumed that this parameter was small, only then will there be separation of
scales, which is the key assumption underlying our derivations of amplitude equations using MMS.
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Figure 1: Refractive index n(w) for the toy model after scaling. The parameters in
this figure are v = 5 and a = 20.

Usually, one is deriving amplitude equations in order to gain some analytical insight into the
wave propagation problem at hand, and the actual numerical value of € does not need to be fixed.
Here however, where we are doing a numerical validation of the amplitude equations, the situation
is different, here we need to give a specific value to the nonlinearity parameter. And, with respect
to this, we face a tradeoff.

On the one hand, we should pick a value for £ that is as small as possible, in order for the
separation of scales to be as large as possible. Only for such values can we expect our amplitude
equations to accurately approximate the original model equation.

On the other hand, a very small value for the nonlinearity parameter means that we have to
propagate the waves for very long distances for the nonlinearity in the model equation to influence
the spectrum of the waves. Very long distances mean very long times which translates into very long
running time for the simulations of the model equation.

In this paper we choose the value for the nonlinearity parameter to be e = 10~!. This certainly
does not seem to be a very small number, but as we will see, even for a nonlinearity parameter
as large as this, our amplitude equation does actually approximate the exact model equation well.
This is just another example of what one could call the phenomenon of the unreasonable accuracy of
asymptotic methods.

As it turns out, our chosen value for the nonlinearity parameter is also physically reasonable. For
example, for a light pulse in a visible part of the spectrum, at 586 nm, propagating through Argon
gas at atmospheric pressure, of an intensity equal to half the critical ionization threshold, the value
for the nonlinearity parameter is ¢ = 0.13 [18|.

Let us now point our attention to calculating the correct initial condition for A. In order for the
amplitude equation (2.50) to be valid, the amplitude A must be spectrally narrow. In fact, the whole
MMS expansion is based on the assumption that the width of the spectrum of A is of order epsilon.

The spectrum for A which we find assuming that no new amplitude is required at order &2 is
displayed in figure 2. The parameters used to calculate the initial condition for A were a = 20 and
v =5.
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k
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Figure 2: The Fourier transform of the initial conditions A(k,0) obtained with New-
tons iterative method from the equations (3.2.21).

Evidently, the width of this spectrum is not of order €. The main part of the spectrum is narrow,
but there is an additional peak in the spectrum centred at 2k, whose distance from the origin is
of order one, not order . Thus, assuming that no new amplitude is needed at order £ leads to a
contradiction.

From relation (2.47) we observe that the peak in the spectrum for A corresponds to a peak at
3ko for E. Furthermore, from figure 2 we observe that the height of the peak is of order £2. From
these two observations it is evident that the peak in the spectrum for A can be taken into account by
introducing an extra amplitude B in the MMS expansion at order £2. As we outlined at the end of
section 2.2, the amplitude B will come equipped with its own linear amplitude equation, decoupled
from the one for A.

The initial values for A and B are now found by solving equation (2.54) for A, using the approach
from (3.2.21), and then using the identity (2.53) to determine the initial value for B in terms of the
one for A.

— 1AK,0)
IBk,0)]

k

1 2 3 4 5

Figure 3: The Fourier transform of the initial conditions A(k,0) and B(k,0) obtained
with Newtons iterative method from the equations (3.2.21) and (2.53).

In figure 3 we display an example of the initial condition A(k,0). In this example we use the
value kg = 27. Note that this means that our initial pulse spectrum is located to the right of the
frequency defining the material resonance, in a region of anomalous dispersion, which means that
the real part of the refractive index decrease for increasing frequency.

Now we have everything we need in order to compare the numerical solution of the model equation
(3.2.6) to it’s corresponding amplitude equation (2.50).
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Figure 4: The solution of (3.2.6) using a system of first order ODE’s (blue graph)
compared with solution (2.47) using the amplitude A(z,t) computed from (2.50) (red
graph) for the toy model dispersion.

Figure 4 depicts these two solutions at different times. We can see that they are indeed very close.
For the values of the parameters used in this comparison, the complex frequency of the chosen mode
is given by wy = w(ky) = 6.28 — 2.5 x 1072,

In order to get more insight into the accuracy, let us compare the wave number spectrum of these
two solutions. This is what is displayed in figure 5, which includes both the major bumps in the k
spectrum. The larger one has its support at the frequency k = ko = 27 as expected. This represents
the linear part of the solution. The smaller one is located around the frequency k = 3ky = 67. It
makes sense that it sits precisely at 3ko, since the Kerr nonlinearity has the form E?, which means
that when inserting a plane wave for F into E?, the wave numbers get multiplied by a factor of 3.

From figure 5b it does appear that there is a small deviation between the exact numerical solution
and the solution derived from the amplitude equation.This deviation is however one or more orders of
magnitude smaller than €2, and such deviations are to be expected for an MMS expansion truncated
at order £2.

Based on the experience from testing the MMS solution, it became clear that in order to stay
in the correct asymptotic regime, where the MMS solution is valid, the parameter values fixing the
problem are subject to certain constraints.

First of all, the constants o and /3 occurring in the amplitude equation, defined in (2.39), (2.40),
include the derivatives of the susceptibility y(w). These derivatives come from the Taylor expansion
of this function. We expect this Taylor series to converge, so by assumption, these derivatives must
not break the order of the preceding terms in the expansion. This assumption depends mainly on
the parameters 7 and a in (3.2.3) and the frequency w around which the Taylor series is expanded.
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Figure 5: The spectrum of the solutions of (3.2.6) using a system of first order ODE’s
(blue graph) compared with the spectrum of the solution (2.47) using the amplitude
A(z,t) computed from (2.50) (red graph) for the toy model dispersion.

Preserving the order of these terms is closely tied to the possibility of making the assumptions in
(2.48) and consequently arriving at the amplitude equation. The assumption made in (2.48) are
related also to the choice of the parameter ¢ in the initial condition (3.2.20). The amplitude A(z, t)
is by assumption slowly varying in z compared to the exponential e?*o*. Therefore the initial condition
(3.2.20) should be fast varying in k& and the parameter 0 needs to be chosen accordingly, for example

d=1/e.

3.2.3 Stability and well-posedness

From the numerical solution of the amplitude equation in the previous section, and its ability to
accurately approximate the exact, narrow band, solutions for Maxwell, one might think that our
amplitude equation is just fine. However, nothing could be further from the truth. In this section
we will show that the amplitude equation is in fact ill posed as a PDE.

Since the amplitude equation is linear, this fact can be easily proven by merely calculating the
growth curve for the equation. We find this curve by inserting A(z,t) = e*®*e?* into the equation
(2.50), cancelling the common factor e*®e?** and extracting the real part of the resulting algebraic
equation.

A+ ik (ko) — i (5 N (w’(ko))2> (ik)* = 0,
i
AE) = —ika (ko) — ik? (5 —a (w’(ko))2> ,

)
Re A(k) = a1 k* + ask, (3.2.22)

where a; and ay are real parameters that depend on the complex parameters «, 5 and w’'(k) is the
derivative of the dispersion relation (2.28). This function is a parabola which pass through the origin,
and is displayed in figure 6, using the parameter values from our numerical test.

From figure 6 it is evident that the amplitude equation is ill posed by definition; arbitrary high
spatial frequencies will grow exponentially in time, with no upper bound for the growth rate.

Being ill posed is usually, for good reasons, thought of as ringing the death knell for any proposed
mathematical model. But, still, in the situation investigated in the previous section, the ill posed
amplitude equation is an excellent tool for simulating narrow band solutions to Maxwell’s equation.
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Figure 6: Stability of the amplitude equation (2.50) for the toy model dispersion.
The red and the green graphs are representing the amplitudes |A(k, 0)| and |B(k,0)|,
respectively. These function were scaled to fit the figure. The parameter values in
this figure are a; = 3 x 107% and ay = —1.26 x 1075.

We regard this as another example of the way asymptotic methods make use of, and give meaning
to, otherwise meaningless mathematical expressions. Anyone that is a user of asymptotic methods
can not help noticing this fact. The classical case of this is Eulers example, where the useless power
series Y (—1)"n! ", with zero radius of convergence, is, nevertheless, an accurate approximation to
a certain exponential integral. Similarly, the expansion for the energy of the anharmonic quantum
oscillator is an asymptotic series with zero radius of convergence [19]|. In fact, essentially all series
used in quantum theory, in both the particle and the field incarnations of the theory, is known
to, or believed to, have zero radius of convergence [20][21]. But, nevertheless, their usefulness is
indisputable, their predictions give some of the most accurate correspondences between theory and
experiment in all of science.

The reason why the ill posed amplitude equation nevertheless is an accurate numerical model for
the narrow band solutions of Maxwell, for which it was designed, is simple. From the form of the
stability curve (3.2.22) it is clear that it passes through 0 for every parameter. Combining this with
that fact that the initial condition for A will always be centered at & = 0, we can conclude that
in the case of ill-posedness, the growth rate around £ = 0 will not be large. For any solution that
satisfies the assumptions used to derive the amplitude equation, the fastest growing wave number
component in the spectrum of the amplitude A(z,t), will, during the time for which the amplitude
equation is valid, ¢t < €72, not grow large enough to affect the solution to order £2 or greater.

3.3 Lorentzian model of dispersion

In the previous section we used the simplest possible rational approximation to the electric suscep-
tibility. As we noted there, this model is, as far as we know, not a realistic physical model, even
though it is causal and thus does satisfies the optical Kramer-Kronig relations. In this subsection we
consider the next simplest one, which is of the form

()= (3.3.1)
w) = : 3.
X V2r w2 — w? — iyw

This dispersion is a realistic physical model of the electric susceptibility. It can be derived from a
purely classical model of an atom consisting of a positive charge, representing the nucleus, together
with all the electrons, save one [22]. The remaining electron is singled out by being the one that
resonantly responds to an imposed oscillatory electric field. Since the single electron is much lighter
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Figure 7: Refractive index n(w) for the Lorentzian model of dispersion (3.3.1). The
parameters in this figure are a = —0.01,b = —7 x 1073 and ¢ = 0.16.

than the rest of the atom, which after all contains the nucleus, we are in effect describing a simple
oscillator, which is a harmonic oscillator, unless the field is strong enough to pull the electron too far
from the atom. The model is called the Lorentz oscillator, and have been applied to a vast range of
materials in the gaseous, liquid and solid phase. The parameters w,,w, and v are interpreted as the
resonance frequency of the oscillator, the plasma frequency and the absorptive loss. The factor of
27 is, as noted before, a consequence of our Fourier transform conventions, which are introduced in
Appendix A. The Lorentz oscillator model is causal and thus satisfies the Kramer-Kronig relations.

We now repeat the calculations from the previous section for the Lorentz oscillator. We start
by finding a differential equation £ (E,E®) = 0, corresponding to our model pseudo differential
equation (2.16), using the Sellmeier transformation. After that, we use MMS to verify that we get
the same amplitude equation for the Sellmeier transformed equation as the one we got from the
original equation (2.16). We then move on to doing a numerical comparison of the accuracy of
the amplitude equation with respect to the Sellmeier transformed equation. As noted earlier in this
paper, this amounts to a direct comparison of the numerical accuracy of the amplitude equation with
respect to the original model equation (2.16), which is the goal of this paper. In our calculations we
rewrite the function (3.3.1) in a, for us more convenient, form

o(w) 1 1 1 1 (3.3.2)
w) = = : : 3.
X Qﬂz_g_éuﬂ_i%w V2 aw? 4 ibw + ¢

p P p
where we have defined a = —1/w2,b = —7/w? and ¢ = w?/w?. In our case, the refractive index is

defined as n?(w) = 1+ v27x(w). In Figure (7) we display an example of such a refractive index,
corresponding to the numerical values a = —0.01,b = —7 x 1072 and ¢ = 0.16.

In the next subsections we derive the equation (3.1.3) for the Lorentzian model of dispersion and
obtain the MMS solution for it. Next we test the MMS solution using two choices of parameters for
the Lorentz model.

3.3.1 The Sellmeier transformation

The Lorentzian model of dispersion leads to the following Sellmeier transformed equation
(1 + C)attE — bamE — a@ttttE + (b@zzt — Cazz + a@zm)E + Ez(Catt — b@m — Clatttt)ES =0. (333)

Again, the derived equation (3.3.3) does not include any pseudo differential operator. We have
verified that the amplitude equation for (3.3.3) matches the one for (2.16).
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3.3.2 Numerical results

We proceed by testing the results based on the amplitude equation (2.50) and a solution to (3.3.3)
for the Lorentz model of dispersion. Two tests will be conducted, each of them with a different choice
of parameters a, b, ¢ for the Lorentz model.

The Sellmeier transformed equation (3.3.3) is implicit in its highest time derivative, but can be
approximated by an equation explicit in its highest time derivative. Following the same procedure
as in chapter 3.2.2 we have

(]. + C)attE — batttE — a&ttttE + (b@zzt — c@zz + a@zm)E
_ g2 [—c (6E (O,E)* + 3E2a§2)E) +b (6 (E)® + 18E8,E0PE + 3E2a§3>E>

2
+a <3a§4)EE2 +18E <a§2>E> +24 <a§3>E> EO,E + 36 (0,E)? @@E)] , (3.3.4)

where 8t(4)E is expressed as
1
OVE = = (14 )OuE — b0 E + (b0ssy — €Oss + aost)E) . (3.3.5)
a

As before, the amplitude equation (2.50) is an equation for one of the four independent modes
equation (3.3.4) has. In order to test the MMS solution we need to choose one mode for which we
have the amplitude equation (2.50). In order to arrive at the point where we can chose the mode,
we proceed like we did in subsection 3.2.2. The electric field E(z,t) is expressed as the inverse
Fourier transform of the sum of all 4 modes and is then equated with its complex conjugate. In
order to proceed, we need to establish relations between the mode frequencies found by solving the
corresponding dispersion equation.

We observe that

p(k,w) = aw* + ibw’® + w?(c + 1) — k* (aw® + ibw + ¢) = 0
Y
p(k, —w*) = a(w*)* — ib(w*)® + (w*)*(c+ 1) — k* (a(w*)® — ibw* +¢) =0
= [aw! + ibw® + w?(c + 1) — k* (aw® + ibw + ¢)] " = 0. (3.3.6)

Thus like in subsection 3.2.2; solution space of p(k,w) = 0 is the same as for p(k, —w*) = 0. We can
therefore conclude that if w(k) is a solution, then —w*(k) is as well. Assuming that all solutions are
distinct, we can enumerate the four the solutions in such a way that the following relations between

Ld1727374(]{?) hold:

wi(—k) = —ws(k),
wy(—k) = —wa(k).

The equation p(k,w) = 0is also even in k, and thus we can enumerate the four solutions corresponding
to negative k in such a way that w;(—k) = w;(k), for some ¢ and j. Using this fact, together with
the relations (3.3.7), (3.3.8), the realness of the electric field implies the following relations between
the amplitudes A; 53 4(k):

A(k) = A3 (—k), (3.3.9)
k (3.3.10)
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The amplitudes for negative argument are defined from their values for £ > 0. As before, we want
the electric field consisting of only one amplitude, for which we obtained the amplitude equation
(2.50), therefore we set Ay(k) = As(k) = A4(k) = 0 for £ > 0. This implies A3, = 0,Vk. We thus

arrive at

1 [ . -
E@J%:zﬁ/pd@MNMeMW+AK%%W(M]W—\@;/ dkE(k, t)e™.  (3.3.11)

-~

E(k,t)

The amplitude A;(k) can be chosen arbitrary and it will define the initial condition E(z,0).

The equation (3.3.4) is solved as a 4-th order ODE in the spectral domain k. For this to work, we
need four initial conditions, denoted by fj(k:) for j = 0,1,2,3. These conditions are obtained from
(3.3.11) and can be expressed in terms of the given amplitude A;(k) as

OV E(k,0) = fi(k) = (=icw(k)) As (k) + (iw" (=k)) A7 (k). (3.3.12)

By choosing A;(k),k > 0, all four initial conditions are defined. From the relation (2.47) between
E(z,t) and A(z,t), we then calculate the initial condition for the amplitude equation (2.50) in exactly
the same way as in (3.2.21). The same procedure also applies in terms of the extra mode B(z, 1)
whether or not it should be included. As we will see, this extra mode will be included in the following
numerical tests.

We proceed to the implementation part and choose the initial amplitude A;(k) to be the same
as for the toy model. A Gaussian centered at the wave number k.

De0k=ko)* = 50
Agm:{ 0 L0 (3.3.13)

for some D, 0 > 0. We will use different values for kq in the next two numerical tests.

Lorentz test for ultraviolet resonance The model in chapter 3.2.2 resulted in an ill posed
amplitude equation that turned out to give us a correct solution within the asymptotic regime for
our perturbation scheme. In this test we picked the parameters in such a way that it results in a well
posed amplitude equation.

Re n(w) Im n(w)
0.10
1.04
0.08
1.02
0.06
1.00
0.04
0.98
0.02
0.96
7 8 9 10 i1 12 13” W 8 9 10 i1 12 13°
(a) (b)
Figure 8: Refractive index n(w) for Lorentz test for ultraviolet resonance. The pa-
rameters in this figure are a = —1,b = —1 and ¢ = 100.

In figure 8 we see the real and imaginary part of the refractive index. The choice of parameters in
this figure are

a=—1,
=1,
c = 100. (3.3.14)
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The parameter for the nonlinear term is again chosen to be ¢ = 1071

E(z,t=0) E(z,t=15.)
ols — Numerical solution 0.4 — Numerical solution
— Multiple scale solution — Multiple scale solution
r P \ 0.2
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L1, -0.2
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(a) (b)
E(z,t=40.) E(z,t=50.)
0.4 — Numerical solution 0.4 — Numerical solution
— Multiple scale solution — Multiple scale solution

-0.4 -0.4

Figure 9: Lorentz test for ultraviolet resonance. The solution of (3.3.4) using a system
of first order ODE’s (blue function) compared with the MMS solution (2.47) (red
function).

When comparing the two solutions from both equations (3.3.4) and the MMS solution in figure 9,
we see that they overlap sufficiently at all the presented times. However, comparing the solutions in
the spectral domain can reveal the more subtle differences.

10 =0 0.014
0.8 0.012
’ — Numerical solution =15 — Numerical solution
« Multiple scale solution 0.010 “Q o Multiple scale solution
0.6 N
0.008
0.4 0.006
0.004
0.2
0.002
0.00 ol ‘
i 7.5 8.0 8.5 o % 23 24 25 2"
(a) (b)

Figure 10: Lorentz test for ultraviolet resonance. A close-up for the spectrum in &
of the solutions of (3.3.4) (blue function) compared with the spectrum of the MMS
solution (2.47) (red function).

On figure 10 we see that they overlap quite nicely. The parameters used in figures 9 and 10 are
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ko = 8, wp = w(ko) = 7.9 —i1.99 x 1072. The part of the spectrum we are interested in is the smaller
gaussian bump centered at 3ky = 24, where the nonlinearity manifests. In order to see the details
how well these two functions overlap, we can look at the figure 10 for both the gaussian bumps.
Figure 10b is rather convincing us of the accuracy of the MMS solution. On figure 10a is the main
gaussian that represents the linear part of the solution. As we can see, the MMS solution is indeed
accurate up to the order of €2 for both the toy model and the Lorentz model of dispersion. In the
next paragraph we run one more numerical test with a different set of parameters.

Lorentz test for infrared resonance Let us now choose the parameters a, b, ¢ for the Lorentz
test for infrared resonance. In this model we are using the following parameters in the refracting
index:

a = —0.25,
b= —10,
c=1. (3.3.15)

We can see the plot of this refraction index in figure (11). We also notice that the graph of this
function is somewhat unusual. The resonance for this function is much closer to 0 than for the
index in figure 8. However, the resonance area in the non-scaled version of figure 11 is located at
the frequencies that are around 1.5 x 10 (with the scaling factor Qy = 1.5 x 10'®) which is in the
infrared range.

14
1.2
1.0
0.8 — Re[n(w)]
0.4
0.2
0.2 0.4 0.6 0.8 T

Figure 11: Refractive index n(w) for Lorentz test for infrared resonance. The param-
eters in this figure are a = —0.25,b = —10 and c = 1.

The initial condition for the amplitude remains the same as in (3.3.13) as well as the parameters
0,D,n and Ey. The refractive index parameters give us the scaled frequency of the pulse obtained
from the dispersion relation wy = w(kg) = 6.29 —i4.91 x 1072

As seen from the results in figures (12) and (13) we can conclude that the MMS solution proved
itself and it is sufficiently accurate compared to the high precision numerical solution up to the
error of order ¢ = 1072, The parameters used in figures 12 and 13 are ky = 2m,wy = w(ky) =
6.29 —i4.91 x 1072,

In the next subsection we investigate the stability of the amplitude equation for both the Lorentz
tests for ultraviolet and infrared resonance.
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Figure 12: Lorentz test for infrared resonance. The solution of (3.3.4) using a system
of first order ODE’s (blue function) compared with the MMS solution (2.47) (red
function).
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Figure 13: Lorentz test for infrared resonance. A close-up for the spectrum in & of the
solutions of (3.3.4) (blue function) compared with the spectrum of the MMS solution
(2.47) (red function).

3.3.3 Stability and well-posedness

In this subsection we look at the stability of the amplitude equation (2.50) with the parameters used
in Lorentz tests for ultraviolet and infrared resonance. The formula for the stability is the same as
(3.2.22). On figure (14a) we can see the graph of the function Re A\(k) for both tests. As mentioned

earlier in Lorentz test for ultraviolet resonance, we chose the parameters for this test such that
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(a) Lorentz test for ultraviolet resonance. (b) Lorentz test for infrared resonance.

Figure 14: Stability curve for the amplitude equation (2.50). The parameters in 14a
are a; = —1.15 x 1072 and as = —1.9 x 1072 and in 14b are a; = 2.83 x 107° and
as = 3.77 X 1074,

results in a well posed amplitude equation. Figure 14a confirms this. For the Lorentz test for infrared
resonance we got ill posedness again. For both cases there is a small range of k where the amplitude
is stable (in the ill posed case) or unstable (in the well posed case). Figure 14a tells us that we do
not have to worry about the exponential growth for Lorentz model for ultraviolet resonance whereas
the opposite is true for Lorentz model for infrared resonance 14b.

4 Conclusion

In this paper we have successfully derived the MMS solution to Maxwell’s equation (2.16) and
demonstrated its numerical accuracy. During the process we introduced the Sellmeier transformation
that helped us express Maxwell’s equation without any pseudodifferential operators. We showed
that the obtained MMS solutions provide a good approximation to the solution of the nonlinear
Maxwell’s equation (2.16) up to order 2. The key features of our MMS solutions are the linearity
of the amplitude equation and the complex nature of the modes. The linearity made the amplitude
equation analytically solvable in a much faster way than the original Maxwell’s equation which is one
of the main advantages of MMS. On the other hand, in some cases, the amplitude equation turned
out to be ill posed. However it does not represent a problem because of the nature of the stability
curve and the location of the initial condition.

We did three numerical tests; the first corresponds to a toy model of dispersion, and the other
two to the, more physical, Lorentz model of dispersion. The MMS solution performed very well in
all three cases. For the two Lorentz cases, we chose the frequency of the initial pulse to be in front
of and behind the resonance, where the first case gave us a well posed amplitude equation while the
second one turned out to be an ill posed one.

The key idea behind MMS is to maintain the ordering in asymptotic expansions. This ordering
also applies to the Taylor expansion of the susceptibility (2.22). It is clear, that this ordering depends
on the parameters in y(w) itself, but also on the frequency wy around which we are expanding. In our
countless numerical tests we have tried many different combinations of the parameters. We observed
that this ordering failed for certain values for the parameters. Especially when one wants to be near
or at resonance. The derivatives of y(w) also appear in the constant «, which is required to be of
a certain order since it appears in the €2 part of the amplitude equation. Alternatively, different
methods may be used to expand the susceptibility, for example rational function expansion.
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Another problem with our approach that also relates to the values of parameters in y(w), is the
growth of the nonlinear term in the Maxwell’s equation. As expected, if the height of the spectral
peak at 3kg exceeds the order of €2 in the numerical solution, our MMS solution fails to maintain its
accuracy. This problem, however, occurred less often than the aforementioned violation of ordering
in the x(w) expansion.

Further investigations are needed to clarify the issues discussed in the last two paragraphs. Re-
solving them, by perhaps modifying the way MMS is used in these kind problems, could lead to an
MMS solution preserving its accuracy for an even broader set of parameter values.
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Appendices

Appendix A

In this appendix we introduce a more convenient representation of the linear polarization (2.4). First,
let us mention that our convention for Fourier transform is

F(w) \/%/ dzf(t)e ™
(1) = M/ A F(w)e (A1)
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Then using (A.1) we have according to (2.4)

—= f i » (i $w> Bx, w)e ™,

e é O (/Z Qo B(x, w)em) ,

. f; o ( / " dw (i0)" Bx, w)e W’f) ,

~ 20> 3 o (00" Bl o)

= egV 27 (i0,) E(x, 1), (A-2)

where y(w) is the Fourier transform of y(¢).

Appendix B

In this appendix we derive the amplitude equation and the MMS solution to (3.2.4). The multiple
scales were introduced in (2.20). Using these on the equation (3.2.4), we get the following perturbation
hierarchy

v aOytoto€0 + (7 + 1)igt0€0 — 002020t0€0 — V02020€0 = 0,  (B.1)
el aOkototo€1 + (7 + 1)Ohoto€1 — @0z 2t0€1 — Y0zpz€1 =

(=204, — 3a04gtot, + A0sg20t; + 200492021 — 27040ty + 2770202, ) €0, (B.2)
g2 Opytoto€2 + (7 + 1)kt €2 — 0050201062 — VO0sp20€2 =

(_Saatot0t2 - gaatohtl + 2aat02022 + a’at02121 + 2(182’021151 + aaZOZotz
_28150152 (7 + 1) - 8t1751 (7 + 1) + 278Z022 + 782121) €o + (_Baatototl + 20’82502021
+aazozot1 - 28750751 (7 + 1) + 2’782(%1) €1 — (a0t0t0t0 + ’Vatoto) 63. (B3)

For the €% order equation we choose the wave packet solution
eo(20, to, 21, t1, .. .) = Ao(z1, 11, - - .)eieo + (%), (B.4)
where
Oy = kzy — wty, (B.5)
and where w = w(k) is a complex number and a solution to the dispersion relation
aw® +iw?(y + 1) — ak®w — ivk* = 0. (B.6)
Note that k is the scaled initial spatial frequency and is used to obtain the complex frequency w.
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We now proceed to the € order equation. Inserting (B.4) into (B.2) we get

aatototoel + (’Y + ]->at0toel - a/aZoZotoel - ’)/8202061 =
(2iwdy, (v + 1) Ag + 3aw?dy, Ag — ak?y, Ag + 2awk., Ay + 2iky0,, Ag) € + (). (B.7)

In order to remove secular terms we postulate that

2iwdy, (v + 1) Ag + 3aw?0,, Ay — ak?0y, Ay + 2awkd,, Ay + 2ik~y0., Ay = 0,
O Ao (2iw(y + 1) 4 3aw® — ak®) + 9., Ay (2akw + 2ivk) = 0. (B.8)

Observe that by differentiating the dispersion relation (B.6) with respect to k we get

aw® +iw?(y + 1) — ak’w — iyk® = 0,

3aw?w' (k) + 12w’ (k) (7 + 1) — a2kw — ak*w' (k) — i2vk i 0,
3aw? +i2w(y + 1) — ak® = mZ’—W’ (B.9)
Using (B.9), the equation (B.8) can be written in the form
O, Ag + W'(k)0,, Ao = 0. (B.10)
The ¢ order equation (B.7) now simplifies into
aOtote€1 + (7 + 1)Okto€1 — a0z 20t0€1 — V0502061 = 0. (B.11)
We choose the special zero solution to (B.11)
er = 0. (B.12)

We now compute the right-hand side of the order £* equation. Inserting (B.12) into the right-hand
side of the order €? equation (B.3) we get
a@tototoeg + (’}/ + 1)875075062 — a@zontOeg — ’78202062 = (3&0)26752140 + 3iaw0t1t1A0 + 2akwaz2AQ
— iawd,, ., Ag + 2iakd;, ., Ay — ak?0;, Ay
+ 22(,&1(’}/ + 1)8t2A0 — (’7 + 1)(91/1{/1140
+2i7kd., Ay + Y1§0:,, Ag) €% — NST + (),
(B.13)

where
NST = a2Tiw3 A3e3% 4 A2 Ageit g?owi (3iaw® — 18aw’w; — 36iaww; + 24aw;)
— 9w A2e30 4 3y A2 A% ei0 M0 (20, — iw)? (B.14)
are the non-secular terms and where w; = Im w. In order to remove secular terms we postulate that

3aw?0y, Ay + 3iawdy,, Ay + 2akwd,, Ay — iawd,, ,, Ay + 2iakd,, ., Ag — ak*d,,Ag
+ 22&)(’}/ + 1)8152140 — (’}/ + 1)8t1t1A0 + 2wk822A0 + v@zon = O,

I
O, Ao (Baw® — ak? + 2iw(y + 1)) + Oy, Ao (3iaw — (v + 1)) + 0, Ao (2akw + 2ivk)
+ 2iak0y, ,, Ao + 0,2, Ao (7 — taw) = 0. (B.15)
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From the equation (B.8) we express the 0;,,, derivative in terms of 0,4, in the following way
O Ao (2iw(y + 1) 4 3aw® — ak?) = —0,, Ao (2akw + 2ivk) /O,
ak? — 2iw(y + 1) — 3aw?
2akw + 2ivk
Substituting (B.16) back to (B.15) and using the relation (B.9) by then term 0,, Ay we get

atltl AO

- @tlzle. (B16)

2k 2vk
0, Ao% O, Ao (3iaw — (v + 1)) + 0., Ao (2akw + 2ivk)
W’
o ak? = 2iw(y + 1) — 3aw? ,
-+ 2iak Sakeo T 22’7[{} atltlAO + a27121 AO (7 - Z(l(x)) - 07
Y
W' (k) , o ak? = 2iw(y + 1) — 3aw?
O, A "(k)0,,Ag + ————— | 3iaw — 1) + 2iak O, A
b Ao + (k)0 0+a2kw+i2’yk(mw (v +1) +2ia 2akw + 2ivk 220
w'(k)
—f— Ay =0. B.1
¢ ok a2121 0 0 ( 7)
Let us deal with the factor by the term 0;,+, Ao separately.
W' (k) , . ak? = 2iw(y + 1) — 3aw?
—— | 3 — 1) + 2iak
a2kw + 12vk ( aw = (y+1) +2ia 2akw + 2ivk
(k) v+ 11— iaw L (2iw(y + 1) + 3aw? — ak?)
2 v — jaw (7 — iaw)?
w'(k) (7 + 1 = 3iaw) (v — jaw) + a2iw(y + 1) + 3a?w? — a?k?
2k (v — iaw)?
L 2 _ 9 272
_iw (k) v+~ zaw7+zaw a’k . (B.18)
2k (v — iaw)?
Now we turn once again for help to the dispersion relation (B.6) and find
aw® + iw*(y + 1) — ak*w — ivk?® = 0,
I
iw?(y — iaw) + iw?® — ik*(y — iaw) = 0,
w2
k* = — +w? (B.19)
v — iaw
Inserting (B.19) back into (B.18), we obtain
W' (k) v+ — 2iawy + taw — a’k* i/ (k) 72+ = 2iawy + daw — a27 o — AW
2k (v — iaw)? B Qk (v — iaw)?
iw' (k) (v — iaw)2 + v +iaw — a® 77“’;“]
2k (7 —jaw)?
. iaw) (y—iaw)—a?w?
2k (v — mw)
i (k) Tt \ (k) 2
= 4 e = 1+ — ).
2k (v — iaw)? 2k (v — iaw)?
(B.20)
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Using this result in (B.17), our final amplitude equation becomes

: iw' (k) 7 w'(k) _
(9,52A0 —+ w (k’)azzA() + o (1 + ("y _ mw)?’ 8t1t1A[) — 1 ok azlzlAQ = 0. (B21)

By removing the secular terms from the equation (B.13), the order £? equation turns to
Ototo€2 + (7 + 1)O0hyte€2 — 05020102 — V02p20€2 = — (a27iw3A363i90

+ A2 A eifo g2towi (3iaw® — 18aw’w; — 36iaww; + 24aw;) — 9yw? A32e31%

+3y AR Age 0w (2uw; — iw)?) + (%), (B.22)
which we solve for ey taking only the particular solution.
ea(20, 10, - . .) = c1AB™P | Ap|? Age'® e + (), (B.23)
where
B Iw?(y — Ziaw) _ 1
“a= —9w2(7y — 3iaw) + 9k2(y — Jiaw) — w?  —1+n2(w) — 1/(y — i3aw)
_ ! (B.24)

n?(w) — n2(3w)’
— (3a(2w; — iw)? + 3y(2w; — iw)?)
a(2w; — 2iw)3 + k(v + a(2w; — iw)) + (2w; — iw)?(y + 1)
—3(2w; — iw)?

k? + (2w; —iw)? (14 1/(y — ia(w + 2iw;)))
_ 3(w + 2iw;)?

k? — (w + 2iw;)? (1 4+ 1/(y — ia(w + 2iw;)))

3(w + 2iw;)?

) s+ . (B.25)
k2 — (14 x(w + i2w;)) (w + 2iw;)

Cy =

with w; = Im w.
Defining as before the amplitude as in (2.45) and proceeding the usual way using (B.10) and
(B.21) we get the amplitude equation

WA+ W'(k)D. A —iB0.. A+ iadyA =0, (B.26)
where
_ W'(k) o8
a=—r (1 + = iaw)? ) (B.27)
~ w'(k)
b= T (B.28)

The overall approximate solution to (3.2.4) is then
E(z,t) = Az, 1)e'®2790 4 122 A3(2,1)eB3®=wD 4 )e?| A2, 1) |2 Az, t)e! kw2 4 (x) (B.29)

where ¢y, ¢o are defined in (B.24) and (B.25). To verify that «, 5 in (2.46) and (B.26) are the same,
we look at (2.39) and get

L 2 (w) + 2wa/27X (W) + a—;wz 2rX"(w)  W'(k)
(k) 2k 2k <1 * v — law * Qwaw — iaw)?
a—2w2 -2 ~W(k) (v —iaw)® 4 (v — iaw)? 4 2wai(y — law) — a’w?
- 2 (y-—- iaw)3> 2k ( (v —iaw)? )
_ W) (v —iaw)’ + 9% w'(k) oa
T % ( (7 — iaw)? ) T % (1 - iaw)3> | (B:30)
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which is the same as (B.27).
Using the same argument as in (2.48) we can simplify the amplitude equation (B.26) into

OA + o (K)D,A — i9,, A (ﬁ B (w’(k))Q) —0. (B.31)
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