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Glossary 

Artificial intelligence An advanced form of predictive computing 

commonly used in modern technologies. 

Asthenospermia 

 

Percentage of progressively motile spermatozoa 

below the lower reference limit. 

Azoospermia No spermatozoa in the ejaculate. 

Coherent light beams Beams with identical frequency and waveform.  

Dry mass The density of the cell’s non-aqueous content, mainly 

the proteins, carbohydrates and lipids. 

Interference A phenomenon in which two waves superpose to 

form a resultant wave of greater, lower, or the 

same amplitude. 

 

Oligoasthenoteratospermia Percentages of both progressively motile and 

morphologically normal spermatozoa below the 

lower reference limits. 

Oligospermia Total number (or concentration, depending on 

outcome reported) of spermatozoa below the lower 

reference limit. 

Super-Resolution Microscopy 

(Nanoscopy) 

Optical microscopy that has a resolution on the order 

of 100 nm or below. 

Refractive Index Measure in optics describes how fast light travels 

through the material. 

Teratospermia 

 

Percentage of morphologically normal spermatozoa 

below the lower reference limit. 
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Abstract 

Declined fertility rate and population is a matter of serious concern, especially in the 

developed nations. Assisted Reproductive Technologies (ART), including in vitro fertilization 

(IVF), have provided great hope for infertility treatment and maintaining population growth 

and social structure. With the help of ART, more than 8 million babies have already been born 

so far. Despite the worldwide expansion of ART, there is a number of open questions on the 

IVF success rates. Male factors for infertility contribute equally as female factors, however, 

male infertility is primarily focused on the “semen quality”. Therefore, the search of new semen 

parameters for male fertility evaluation and the exploration of the optimal method of sperm 

selection in IVF have been included among the top 10 research priorities for male infertility 

and medically assisted reproduction. The development of imaging systems coupled with image 

processing by Artificial Intelligence (AI) could be the revolutionary step for semen quality 

analysis and sperm cell selection in IVF procedures. 

For this work, we applied optical nanoscopy technology for the analysis of human 

spermatozoa, i.e., label-based Structured Illumination Microscopy (SIM) and non-invasive 

Quantitative Phase Microscopy (QPM). The SIM results demonstrated a prominent contrast 

and resolution enhancement for subcellular structures of living sperm cells, especially for 

mitochondria-containing midpiece, where features around 100 nm length-scale were resolved. 

Further, non-labeled QPM combined with machine learning technique revealed the association 

between gradual progressive motility loss and the morphology changes of the sperm head after 

external exposure to various concentrations of hydrogen peroxide. Moreover, to recognize 

healthy and stress-affected sperm cells, we applied Deep Neural Networks (DNNs) to QPM 

images achieving an accuracy of 85.6% on a dataset of 10,163 interferometric images of sperm 

cells. Additionally, we summarized the evidence from published literature regarding the 

association between mitochondrial DNA copy numbers (mtDNAcn) and semen quality.  

To conclude, we set up the high-resolution imaging of living human sperm cells with a 

remarkable level of subcellular structural details provided by SIM. Next, the morphological 

changes of sperm heads resulting from peroxidation have been revealed by QPM, which may 

not be explored by microscopy currently used in IVF settings. Besides, the implementation of 

DNNs for QPM image processing appears to be a promising tool in the automated classification 

and selection of sperm cells during IVF procedures. Moreover, the results of our meta-analysis 

showed an association of mtDNAcn in human sperm cells and semen quality, which seems to 

be a relevant sperm parameter for routine clinical practice in male fertility assessment.  
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1 INTRODUCTION 

 

1.1 Semen quality 

The term «semen» (from the Greek σπέρμα – «seed») refers to ejaculated material 

comprising a seminal fluid and haploid spermatozoa. The semen quality is a measure of male 

fertility and is defined by several parameters, including spermatozoa morphology. The mature 

human sperm cell consists of a head, neck, a midpiece containing the mitochondrial sheath with 

approximately 10-14 spirals of mitochondria and the longest part – tail (Figure 1). The sperm 

head includes a nucleus with highly compacted DNA and a cap-like structure called the 

acrosome, which contains enzymes necessary for the fertilization process (Pitnick et al., 2009).  

                      

Figure 1 The structure of human spermatozoon.  

(1) The sperm head of a human spermatozoon, (2) neck, (3) midpiece containing the 

mitochondrial sheath, (4) tail, (5) the end piece. (A) The acrosome and (B) nucleus region. The 

image was acquired by three-dimensional refractive index tomography. 

  

Since the first study of spermatozoa led by the Dutch businessman and scientist Anton 

van Leeuwenhoek using a single-lens microscope in 1676, sperm cells appeared to be one of 

the remarkable cells in the human body with a specific structure conditioned by its pivotal 

function (Birkhead & Montgomerie 2009). The active development and implementation of 

medically assisted reproduction have made sperm cell research particularly important in male 

fertility assessment and infertility treatment. 
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1.1.1 Assessment of semen quality 

Semen analysis is a part of male reproductive health investigation widely and routinely 

used in fertility assessment. The World Health Organization (WHO) criteria have been 

considered a gold standard of semen quality analysis since 1980. The lower reference limits of 

semen measures were revised and scaled-down three times in 1987, 1992 and 2010 (Cooper et 

al., 2010). The trend is explained by the gradual decline of semen parameters over the last 

decades due to various reasons (Virtanen et al., 2017). Male reproductive problems such as 

impaired spermatogenesis, decreased testosterone production, cryptorchidism and testicular 

cancer may result in reduced semen parameters, which are essential predictors of male 

fecundity (Skakkebaek et al., 2016). According to the last WHO criteria (2010), the 

corresponding lower values for the main clinical parameters are listed in Table 1. These 

reference values reflect the semen parameters of men having children, and thresholds are used 

to classify patients as subfertile or infertile. 

Table 1 Lower reference limits for semen analyses (WHO 2010). 

Parameter Reference value 

Semen volume 1.5 ml 

Total sperm count 39 million cells per semen volume 

Sperm concentration 15 million cells/ml 

Progressive motility 32% 

Total motility 40% 

Vitality 58% of live cells 

Morphology 4% of normal form 

 

Following the recommendations of the WHO group on male infertility, which were 

presented to the WHO Steering Committee Meeting for Guidelines and Nomenclatures in 

September 2015, the assessment of several semen parameters is a more convenient predictor of 

male fertility status in comparison to a single parameter (Barratt et al., 2017). Moreover, the 

high quality of evidence suggests that: “a single ejaculate is sufficient to establish the most 

appropriate investigation and treatment pathway. However, a semen analysis can be repeated 

if one or more abnormalities are found” (Barratt et al., 2017). 
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1.1.2 The global decline in semen quality parameters 

One of the well-defined and generalized reports on the significant decrease in semen 

measures was put forward by Carlsen and colleagues (1992). The decrease of seminal volume 

(3.40 ml to 2.75 ml) and mean sperm cell concentration (113×106/ml to 66×106/ml) has been 

shown between 1940 and 1990 from publications covering 20 countries (Carlsen et al., 1992). 

The included studies vary based on analyzed semen parameters, analysis methods, study 

population, and potential interfering factors. Participants could be healthy or infertile/subfertile 

partners of infertile/fertile women undergoing ART procedures, semen donors, or participants 

of unknown fertility. However, the heterogeneous population, including healthy and infertile 

patients, could result in the study’s bias.  

The historical review by Carlsen (1992) has initiated the avalanche of retrospective and 

newly collected prospective studies related to semen quality (Adamopoulous et al., 1996; Irvine 

et al., 1996; Younglai et al., 1998; Swan et al., 2000; Itoh et al., 2001; Geoffroy-Siraudin et 

al., 2012; Rolland et al., 2013). For instance, male fertility was assessed in the University 

Hospital of North Norway, Tromsø, from 1993 to 2012 (Basnet et al., 2016), where semen 

samples from 5739 men were analyzed as a part of routine clinical investigation of subfertile 

and infertile couples. Interestingly, the mean age of men among couples seeking ART treatment 

increased gradually during the study period from 32.0 years to 35.6 years. In addition, Basnet 

and colleagues found a gradual decrease in mean seminal fluid volume, mean sperm cell 

concentration and decrease in total sperm count per ejaculate (by 11.4%, 23.1% and 28.9%, 

respectively) between two decades of the study (1993-2002 and 2003-2013). Moreover, besides 

the increase in the number of oligozoospermic patients, the proportion of asthenozoospermic 

and azoospermic patients, who used ART for infertility treatment, increased dramatically 

during the study period.  

Another study by Auger presents the semen analyses between 1973 and 1992 from 

healthy 1750 donors who had previously fathered at least one child (Auger et al., 1995). Most 

of the donors lived in the Paris area. In comparison to Basnet’s (2016) study from Norway and 

Carlsen’s study from Denmark (1992), seminal fluid’s mean volume did not change during the 

study period. At the same time, the mean sperm concentration decreased from 89×106/ml in 

1973 to 60×106/ml in 1992. Moreover, the level of motile and morphologically normal cells 

decreased by 0.6% and 0.5% per year, respectively (Auger et al., 1995).  

The recent large-scale meta-regression analysis of Levine and colleagues (2017) 

collected information about sperm concentration and total sperm count from 6 continents and 



 

16 

50 countries between 1973 and 2011 (Levine et al., 2017). These data indicate a decline in 

sperm concentration (52.4%) and total sperm count (59.3%) of unselected men in Europe, North 

America, New Zealand and Australia over the study period. Notably, the analysis did not show 

the same trend for the studies from South America, Asia and Africa, resulting from limited 

statistical power or unexplained reasons behind the semen quality decline.  

To sum up, over the past 30 years, numerous studies identified a significant decrease in 

semen quality. Although there is variability in semen parameters between countries, an evident 

trend of decreasing semen quality is presented. Future studies should be done to prove if this 

trend is stable or due to random fluctuations. 

 

1.1.3 Probable reasons for adverse semen quality 

During the last decades, an adverse trend in male reproductive health has been likely 

associated with multiple influences both prenatally and in adult life. Following the concept by 

Skakkebæk (2001), various disorders of the male reproductive system such as reduced semen 

quality, testicular cancer, testicular maldescent, hypospadias might be interrelated with each 

other through a testicular dysgenesis syndrome (Figure 2), which is associated with the fetal 

testis exposure to external adverse factors or resulted from genetic abnormalities (Skakkebæk 

et al., 2001).  

There are three early periods in male developmental health that are important for the 

further normal development and function of reproduction: the intrauterine phase, the neonatal 

phase in the first months of life, and puberty (Ferlin 2020). An adverse effect acting through 

the mother during the pregnancy might interfere with normal fetus germ proliferation and 

differentiation. Thus, environmental pollutants such as endocrine-disrupting chemicals (EDCs) 

appear to affect the perinatal and adult testes negatively (Hauser et al., 2006; Sharpe 2010). 

EDCs include toxic stable organic pollutants (for ex. polychlorinated biphenyls and their 

pyrolytic products), non-persistent organic pollutants (phthalates), pesticides, which are known 

to affect male reproductive health (Dallinga et al., 2002; Martenies et al., 2013; Chiu et al., 

2016).  

Although environmental factors are one of the probable reasons for deteriorating semen 

quality (Sharpe et al., 1993; Nordkap et al., 2012; Bloom et al., 2015), the declined semen 

measures have been detected both in places with heavy industrial pollution (Japan – Itoh et al., 

2001; China – Liu et al., 2020) and places with little pollution (France – Auger et al., 1995; 

Greece – Adamopoulos et al., 1996; United Kingdom – Irvine et al., 1996; Canada – Younglai 
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et al., 1998; Norway – Basnet et al., 2016). That may indirectly suggest the presence of other 

deteriorating factors to male reproductive health in addition to environmental reasons.  

 

           

Figure 2 Schematic representation of pathogenic links between the components and 

clinical manifestations of testicular dysgenesis syndrome. Reduced semen quality could be 

linked by pathological mechanisms of testicular dysgenesis syndrome to increased incidence of 

testicular maldescent and hypospadias of newborns, along with testicular cancer of adults. The 

increased male reproductive health problem is most likely to be a result of genetic and 

environmental factors. 

____________________________________________________________________________________________________ 

This figure was adapted from Human Reproduction, 16(5), Skakkebaek N. E., Rajpert-De Meyts E. & 

Main K. M., Testicular dysgenesis syndrome: an increasingly common developmental disorder with 

environmental aspects, pp. 972-978, (2001).  

 

During the adult period of life, the spermatogenic capacity can be affected by various 

lifestyle factors such as diet (Afeiche et al., 2013; Jensen et al., 2013), smoking (Sharma et al., 

2016), sexually transmitted diseases (Gimenes et al., 2014) and obesity, which relates to 

increased risk of azoospermia and oligospermia (Sermondade et al., 2013). Psychological stress 

can also be included as a reason for worsening semen quality all around the world. For example, 

it has been shown by Li and colleagues (2011) that different forms of stress derived from job, 
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life events, or social support-related stress are connected with decreased sperm concentration, 

progressive motility and increased level of morphologically abnormal sperm forms (Li et al., 

2011). Nordkap and colleagues (2016) categorize stress more in detail based on a self-reported 

survey from stress-related parts of the Copenhagen Psychological Questionnaire. The men were 

categorized as “being distressed,” “having the problem in relaxing,” “being irritated” and 

“being tense” all the time or four weeks before the survey. The men with the highest stress level 

had lower sperm concentration (38%), lower total sperm count (34%) and lower semen volume 

(15%) than men with medium stress level (Nordkap et al., 2016). It is notable that men from 

the highest stress group were smokers, used marijuana, consumed caffeine and had sexually 

transmitted diseases compared to men with low stress levels. 

Several meta-analyses have revealed the association of reduced sperm motility and 

viability with acute exposure to radiofrequency fields of cellular phones (Adams et al., 2014; 

Liu et al., 2014). Using the Internet through Wi-Fi connection has also been reported to decrease 

semen quality (Avendano et al., 2012). It has been proposed that the possible reason for the 

adverse effect of mobile phone expose and wireless Internet is oxidative stress resulted in sperm 

nuclear DNA fragmentation (Avendano et al., 2012).  

To conclude, male reproductive health problems can be conditioned by multiple 

reasons. Some external factors can influence the fertility potential reversibly such as sexual 

abstinence before the collection of the semen (Auger et al., 1995), heating, cigarette smoking, 

lifestyle and psychology. Other factors affect fertility irreversibly such as age (Auger et al., 

1995), genetic status (Ferlin et al., 2007; Skakkebaek et al., 2016) and prenatal exposure to 

adverse environmental factors. For that reason, prevention of male infertility, starting with life’s 

initial point – the conception, seems to be the most effective way to improve male reproductive 

health (Ferlin 2020). 

 

1.2 Advances in male reproductive health and infertility treatment 

Given the presented worldwide changes in semen quality, the question arises of whether 

these changes result in infertility. The WHO defines infertility as “a disease of the reproductive 

system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular 

unprotected sexual intercourse”. It has been established that half of a couple’s infertility is 

conditioned by male factors such as poor semen quality, genetic syndromes, cryptorchidism 

and sexual disorders (Agarwal et al., 2021). The invention of ART gives infertile couples a 

chance to have a genetic offspring. Specifically, historical advances in male reproductive health 
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such as cryopreservation and Intracytoplasmic Sperm Injection (ICSI) have profoundly 

impacted the management of couples with male factor infertility. 

 

1.2.1 Cryopreservation of sperm cells 

Cryopreservation is a freezing technique to preserve both the genetic material as well as 

metabolic activity of cells and tissues after storage at extremely low temperatures. This 

technique has broad clinical applications, including the freezing of blood and cancerous tissue 

samples, stem cells of different origins for further therapy and autologous transplantations, 

mesenchymal stromal cells for regenerative medicine and tissue engineering (Jang et al., 2017). 

Based on cryobiology achievements, human fertility preservation has been carried out 

as an effective ART service worldwide. For instance, cryopreservation of mature sperm cells is 

one of the first techniques implemented in the clinical practice providing fertility preservation 

of adult men (Bunge & Sherman, 1953). Specifically, adolescent men, young adults and adults 

undergoing chemotherapy or other cytotoxic fertility-dangerous medication can preserve their 

semen to have offspring in the future (Sanger et al., 1992; Rousset-Jablonski et al., 2016). 

Another group of patients who are recommended cryopreservation of sperm cells is 

azoospermic males undergoing testicular biopsy or aspiration of sperm from the epididymis or 

testicles (Gangrade, 2013). In addition, the cryopreservation of testicular tissue is a prospective 

method both for in vitro spermatogonial stem cell maturation and for direct autotransplantation 

of the tissue back into the patient’s body after the effective treatment (Onofre et al., 2016). 

Moreover, biobanking has a profound application for the storage of cryopreserved semen of 

donors. 

According to the previous reports, semen can be stored for decades with the subsequent 

fertilization capacity (Szell et al., 2013). Thawed semen can be used for Intrauterine 

Insemination (IUI), IVF or ICSI. The type of fertilization technique depends on the infertility 

origin and cryo survival rate of post-thawed semen. Following the concept of «partial survival», 

freezing and thawing processes lead to a decrease of more than 50% in motility parameters and 

survivance (Donnelly et al., 2001), ultrastructure and cell morphology changes (Woolley & 

Richardson 1978; Barthelemy 1990; Ozkavukcu et al., 2008), mitochondrial activity reduction 

(O’Connel et al., 2002) and damage of sperm DNA (Kopeika et al., 2015). The above-

mentioned cell changes might be influenced by the cryoprotector, cryopreservation and thawing 

itself and most of all by characteristics of native semen, such as sperm cell motility and 
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concentration. Semen samples with a low survival rate are used for fertilization using the ICSI 

technique when an embryologist selects an individual cell for direct injection into the oocyte. 

 

1.2.2 Intracytoplasmic Sperm Injection 

1.2.2.1 Historical background 

Until the development of ART, male infertility treatment was limited. For example, 

oligospermia cases were treated with increasing gonadotropin secretion to stimulate 

spermatogenesis. Most of the male fertility problems caused by inflammation and infection 

were medicated with antibiotics and anti-inflammatory drugs. Traditional medicine such as 

vitamins, herbs, minerals, and so forth was also used to improve semen quality (Kovacs 2020).  

At the beginning of the “ART era,” subfertile men with the decreased number of motile sperms 

could achieve fertilization of the oocyte using microdrops of semen of moderate or mild 

quality (Figure 3a) (Svalander et al., 1994). Building upon the microdrop technique, it was 

possible to inseminate the egg and get the first baby with a sperm obtained microsurgically 

from men with obstructive azoospermia (Temple-Smith et al., 1985).  

 

 

Figure 3 Different micromanipulation techniques to fertilize the egg. (a) Microdrop 

technique (standard IVF), (b) Zona Pellucida Drilling (ZD), and Partial Zona Pellucida 

Dissection (PZD), (c) Subzonal Insemination (SUZI) and (d) Intracytoplasmic Sperm Injection 

(ICSI).  

____________________________________________________________________________________________________

This figure was published in Sperm biology: an evolutionary perspective, In Birkhead T. R., Hosken D. 

J., Pitnick S. (Eds.). Pacey A. A., Sperm, human fertility and society, pp. 565-597, Copyright Academic 

Press (2009). 
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The next step in overcoming male infertility was micromanipulation procedures to 

achieve the fertilization with the semen of extremely low sperm concentration and motility 

(Figure 3b-d). For example, Zona Pellucida (ZP) drilling involved making a hole in the zona 

pellucida with subsequent incubation in a sperm suspension (Figure 3b) (Gordon et al., 1988). 

However, the method did not work successfully in humans. During Partial Zona Dissection 

(PZD), a mechanical slit was made before incubation in a sperm suspension (Malter et al., 

1989). Another variant of micromanipulation was the Subzonal Insemination Technique 

(SUZI), involving the embedding of sperm cells into the perivitelline space in between zona 

pellucida and the oocyte membrane (Figure 3c) (Lawsking et al., 1987; Svalander et al., 1994). 

Sperms were treated before injection to enhance the acrosome reaction. SUZI was successfully 

applied on mice, and further, the first clinical trial was performed in humans at the Infertility 

Medical Centre in 1987 in Australia. The first birth with the help of SUZI-microinjection was 

reported in 1988 by Ng in Singapore (Kovacs 2020).  

The following significant modification of microinjection was ICSI, introduced in 1991 

in Brussels at the Centre for Reproductive Medicine of Vrije Universiteit Brussel (Figure 3d). 

The first ICSI was the failed SUZI case when a microinjector accidentally penetrated the oocyte 

membrane with one sperm cell. This procedure resulted in the birth of a child in 1992 (Palermo 

et al., 1992). Further, the results after ICSI were more effective in comparison with SUZI. Due 

to this fact, the ICSI became the only microinjection technique used to successfully achieve 

pregnancy from men with severe semen abnormalities (Kovacs 2020). 

 

1.2.2.2 Clinical recommendations to use ICSI 

The International Committee for Monitoring Assisted Reproductive Technologies 

(ICMART) and The European Society of Human Reproduction and Embryology (ESHRE) 

reproductive organizations reported the increasing global use of ICSI constituting two-thirds of 

the total number of fresh ART cycles (Dyer et al., 2016; Calhaz-Jorge et al., 2017). Despite the 

original recommendations of using ICSI, there has been a rise in the use of ICSI for non-severe 

male factor infertility, non-male factor infertility and fertilization failures (Boulet et al., 2015). 

For that reason, the American Society for Reproductive Medicine (ASRM) and the Society for 

Advanced Reproductive Technology (SART) state that ICSI should not be routinely performed 

for non-male factor infertility cases (Penzias et al., 2020). The use of ICSI should be based on 

the following clinical evidences:  
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→ The severe factor of male subfertility such as autoimmune infertility. 

→ Cases of failed conventional IVF due to impaired sperm function. 

→ Patients with azoospermia who are subjected to surgical recovery of cells from the 

reproductive tract. 

→ Cryopreservation in a limited quantity of sperm cells and decreased survival rate after 

thawing. 

→ Upcoming preimplantation genetic screening. In that case, ICSI prevents contamination 

with surplus sperm cells attached to the zygote. 

→ Fertilization with cryopreserved oocytes. Limited data exist that fusion of the sperm cell 

and the thawed oocyte might be compromised using conventional IVF (Gook & Edgar, 

2007). 

 

1.2.2.3 Effect of ICSI on long- and short-term health in offspring 

There have been concerns about the adverse effects of assisted technologies on 

offspring’s wellbeing. A substantial amount of meta-analyses and systematic reviews have 

demonstrated a link between fertility problems, cardiometabolic diseases and 

neurodevelopmental disorders among offspring conceived with the help of ART (Catford et al., 

2017; Rumbold et al., 2017; Catford et al., 2018; Bay et al., 2019). For instance, Sandin and 

colleague’s extensive spectrum analysis showed that severe male infertility with subsequent 

surgical sperm extraction increased the risk of mental retardation and autism in offspring 

(Sandin et al., 2013). Moreover, the results of Berntsen’s review (2019) revealed the increased 

risk of obstetric complications for ART pregnancies, such as hypertensive disorders in 

pregnancy, placental complications, gestational diabetes and medical interventions (Figure 4) 

(Berntsen et al., 2019). Based on the Australian data, there is an increased risk of stillbirth, 

neonatal death, preterm birth, low birth weight and major birth defects using ART (Davies et 

al., 2012; Marino et al., 2014; Davies 2020).  

It is important to note that the early ART protocols included transferring two or more 

embryos, affecting the reported perinatal outcomes. Presently, elective single embryo transfer 

is recommended to overcome the problems associated with multiple pregnancies and support 

maternity and neonatal health care (Martikainen et al., 2001). However, it is still controversial 

whether the live birth defects of ART conceived children are due to infertility itself or the ART 

treatments (Figure 4). 
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Figure 4 Factors affecting the short- and long-term health in offspring born after ART. 

The ART outcome is most likely to be a result of a combination of parental factors (age, 

genetics, reproductive disease, environment/lifestyle, length of infertility) and the ART itself 

(for ex. controlled ovarian stimulation, ICSI, in vitro culture, assisted hatching, trophectoderm 

biopsy, embryo transfer, cryopreservation). The short-term health effect of ART is manifested 

on antenatal and neonatal levels, including pregnant women’s health. The data on the long-term 

effect of ART is still too limited to draw a robust conclusion. 

____________________________________________________________________________________________________ 

This figure was published in Human Reproduction Update, 25(2), Berntsen S., Söderström-Anttila V., 

Wennerholm U. B., Laivuori H., Loft A., Oldereid N. B., Romundstad L. B., Bergh C., & Pinborg A., 

The health of children conceived by ART: ‘the chicken or the egg?’, pp. 137-158, Copyright Oxford 

Academic (2019). 

 

Interestingly, it has been reported by a limited number of studies that the fertility of ICSI 

conceived men is affected (Katagiri et al., 2004; Palermo et al., 2008; Belva et al., 2016; Belva 

et al., 2017; Rumbold et al., 2019). For instance, the level of serum testosterone and free serum 

testosterone in ICSI conceived infant boys is decreased by 23% and 27%, respectively. In 

addition, a 60% reduction in the luteinizing hormone to testosterone ratio compared to infants 

conceived spontaneously has been detected (Kai et al., 2007). Moreover, the reduced semen 

quality has been presented on the limited cohort of ICSI conceived males from Belgium at age 

18-22 (Belva et al., 2016; Rumbold et al., 2019). In addition, Y-microdeletions are detected in 



 

24 

the ICSI offspring (Katagiri et al., 2004). Despite the presented findings, the adverse effect of 

ICSI on male fertility of conceived children needs to be confirmed in larger studies. 

 

1.2.2.4 An overview of current sperm cell selection techniques for ICSI 

One of the crucial steps in ART is cell selection, which aims to pick up the cell with the 

highest fertilizing potential. The proper cell selection may guarantee successful fertilization in 

vitro, embryo development and offspring wellbeing. In general, the spermatozoon of high 

fertilization capacity has a genome with proper integrity and intactness, progressive motility 

and normal morphology, ability to capacitate and express all of the necessary receptors and 

enzymes for oocyte fusion (Kravetz 2005). In the case of ICSI, sperm cell overcomes biological 

requirements essential in fertilization in vivo. Hence, the selection process in terms of ICSI is 

particularly important.  

Numerous techniques for sperm cell selection have been introduced recently, but most 

of them are out of routine clinical use due to high expenses or manpower input (Sakkas 2013). 

In terms of cost and effectiveness, the optimized Density Gradient Separation (DGC) method 

is currently used for routine sperm purification purposes (Mortimer & Mortimer 2013). The 

DGC method is based on the high density of human spermatozoa, which is due to highly 

packaged DNA surrounded by a thin rim of cytoplasm to be remained after cytoplasm 

elimination during spermiogenesis. After centrifugation in a continuous density gradient, the 

cells with the greatest densities are placed to the densest layer (Aitken 2020). Another technique 

is the swim-up test based on spermatozoa’s intrinsic motility and the ability to penetrate the 

dense extracellular matrices (Agarwal 2018). The swim-up process involves the layering of a 

hyaluronate solution, a component of cervical mucus, with subsequent incubation of an hour at 

37 ℃. Progressive sperm cells migrate directly from semen to medium leaving behind non-

progressive cells, debris and somatic cells. Hence, this method has been reported to produce 

sperm suspension of high quality and motility.  

In ICSI, the sperm selection is based on the motility and morphology assessment by 

conventional light microscope followed by the sperm selection with DGC or swim-up. At the 

same time, advanced sperm selection techniques are being assessed, which are based on sperm 

features different from motility and morphology. For example, electrophoretic sperm 

separation is a separation method premised on the negative charge of sperm cells migrating to 

the anode in the electric field (Ainsworth et al., 2005; Aitken 2020). A separation membrane 

with a pore size of 5 µm provides the migration of sperm cells but no other cell types. The 
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constant applied current (75 mA) and a variable voltage (18-21 V) are applied to the reservoir 

with a semen sample and an electrophoresis buffer. It has been demonstrated that membrane-

based electrophoresis is effective as the DGC method regarding isolation of cells with high 

motility and DNA integrity and lower leukocyte contamination level (Fleming 2008). 

Moreover, the electrophoretic method provides the minimum risk of oxidative stress because it 

does not imply centrifugation (Aitken 2020). Despite the apparent success of the electrophoretic 

method in the separation of high-quality spermatozoa, there were no significant differences in 

fertilization rate after using DGC-prepared spermatozoa and after sperm separation in the 

electric field (Fleming 2008). 

Sperm-binding to hyaluronic acid (HA) is another method to check the functionality 

of the sperm cell shortly before fertilization by ICSI. The method is based on the capability of 

the spermatozoa to bind to the hyaluronic acid-rich matrix of the oocyte using specific receptors 

(Huszar et al., 2007). The method is marketed as a Physiological Intracytoplasmic Sperm 

Injection (PICSI®) and SpermSlow® that differs from each other by using immobilized HA or 

suspended HA, respectively. In PICSI®, mature sperm cells bind to the HA, while the 

SpermSlow® technique slows down movements of the sperm cell. Several studies have 

estimated the effectiveness of the sperm-binding to the hyaluronic acid method regarding sperm 

quality and effects on ART outcome (Parmegiani et al., 2010; Majumdar & Majumdar 2013; 

Erberelli et al., 2017). The HA method gives less sperm DNA fragmentation compared to DGC. 

At the same time, it appeared to be no fertilization improvements and pregnancy rates (Beck-

Fruchter et al., 2016). More importantly, there is no increase in the likelihood of live birth 

(McDowell et al., 2014). 

Sperm cells with signs of apoptosis have a phosphatidylserine receptor exposed on the 

plasma membrane, which is an indicator of starting DNA degradation. This feature of sperm 

cells is used in Magnetic-Activated Cell Sorting (MACS) or non-apoptotic sperm selection. 

Apoptotic sperm cells, which externalize phosphatidylserine on the surface, bind to the annexin 

V-conjugated paramagnetic microbeads (Said and Land 2011). After the incubation with the 

microbeads, the sample is allowed to run through the magnet-containing column, leaving the 

apoptotic cells in the column. Due to the MACS can not eliminate somatic cells from the semen, 

an additional step of DGC centrifugation is used, which may be detrimental to the cells and 

sperm count (Said and Land 2011). It has been shown that combined MACS-DGS selects the 

cells with higher potential of mitochondrial membrane, decreased level of active caspase-3 and 

phosphatidylserine exposure, normal morphology and better DNA integrity compared with 

DGS only (Said et al., 2005). However, the positive effect of the method on the ICSI outcomes 
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is controversial, as reported by several studies and summarized in a systematic review and meta-

analysis (Gil et al., 2013).  

An advanced high optical magnification method of sperm selection was introduced in 

2002 in Israel called Intracytoplasmic Morphologically selected Sperm Injection (IMSI) 

(Bartoov et al., 2002) (Figure 5). In IVF laboratories, the micromanipulation system is equipped 

with optics giving magnification at ×400. At the same time, IMSI achieves magnification up to 

×6600. For IMSI, sperm cells are prepared by routine washing techniques followed by imaging 

using an inverted light microscope equipped with Nomarski optics with ×100 oil-immersion 

objective. Finally, digital enhancement by using software is applied to obtain high 

magnification (Bartoov et al., 2002). 

 

   

Figure 5 Microinjection pipettes containing sperm cells at different magnification. (a) The 

ICSI and (b) IMSI procedures at the magnification of ×400 and ×5000, respectively. 

____________________________________________________________________________________________________

This figure was published in Journal of Reproduction & Infertility, 21(1), Mangoli E., & Khalili M. A., 

The Beneficial Role of Intra Cytoplasmic Morphologically Selected Sperm Injection (IMSI) in Assisted 

Reproduction, pp. 3-10, Open Access Article (2020).  

 

The Motile Sperm Organelle Morphology Examination (MSOME) is performed 

using IMSI setup to resolve subtle morphology changes in sperm structures such as the 

acrosome, nucleus, mitochondria, tail, neck and post acrosomal lamina (Berkovitz et al., 

2006a). Based on IMSI analysis, it has been shown that the presence of nuclear vacuoles in the 

sperm head, which conventional ICSI cannot detect, decreased pregnancy rate and increased 

abortion rate (Berkovitz et al., 2006b). Moreover, a new grading system was established to 

assess the morphology of spermatozoa, considering the presence, number and size of vacuoles 

in the head (Bartoov et al., 2002; Vanderzwalmen et al., 2008).  

  

(a) (b) 
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1.3 Prospective methods of sperm cell selection and analysis in ART 

Due to the selection of reproductive cells and embryos are performed mainly based on 

morphology, the development of imaging systems is one of the central issues in ART. Presently, 

IVF laboratories use differential interference contrast microscopy, phase-contrast microscopy 

by Zernike, and the Hoffman modulation contrast system (Mirsky et al., 2016). All these 

methods generate contrast from local variations in refractive index across the cell and do not 

provide information about the deep morphology and structures of the sample (Hu and Popescu, 

2019). Moreover, available 2D information overlaps with the optical aberrations, which might 

affect the analyzed morphological details. In this regard, IMSI was created to improve the 

outcome of IVF, as compared with the conventional ICSI. IMSI is an enhanced imaging 

technique enabling the resolution of subtle sperm morphological structures (Bartoov et al., 

2002). However, despite the enhanced magnification and reported success of pregnancy rates 

using IMSI, the technique is expensive and time-consuming. Moreover, the result of the meta-

analysis on comparing the clinical outcomes between ICSI and IMSI does not support the use 

of IMSI due to the lack of conclusive evidence about live birth outcomes, risks of miscarriage 

and effect on clinical pregnancy (Teixeira et al., 2013). Thus, new imaging techniques for cell 

morphology assessment in ART are under a continuous state of exploration. An alternative 

imaging solution for sperm selection and analysis is QPM, which has been successfully 

demonstrated to study sperm cell biology. 

 

1.3.1 Quantitative Phase Microscopy 

QPM is a method based on an optical phenomenon of interference providing 3D 

information about the specimen. The digital holography applied to QPM is called Digital 

Holographic Microscopy (DHM). In contrast to other imaging systems, QPM offers 

quantitative information about the optical thickness of the sample in a non-labeled manner. 

QPM has been thoroughly used in basic and clinical science due to its nanoscale sensitivity in 

2D, 3D and 4D (time-resolved tomography) without invasion of the biological sample (Park et 

al., 2018). For example, QPM has been implemented in cancer cells phenotyping (Kemper et 

al., 2006), in blood cell screening providing information about morphological and biochemical 

parameters (Shaked et al., 2011), in neurophotonics for the study of live neurons during 

electrical activity (Marquet et al., 2014), in cell growth regulation of mammalian cells (Mir et 

al., 2011) and in the analysis of the internal structures of the eukaryotic cell such as condensed 
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chromosomes in metaphase (Sung et al., 2012). Besides, the combination of QPM with artificial 

intelligence is a promising tool for automated cell selection, which can be clinically applied in 

the future.  

 

1.3.1.1 Basic principles of QPM 

QPM offers quantitative information of the analyzed sample about information of the 

refractive index and the cell’s local thickness. That means that the QPM data is directly related 

to the morphological changes of the cells, which cannot be analyzed by bright field microscopy 

(BFM) commonly used in ART. Basically, QPM records how much light is delayed when 

passing through the analyzed object. The optical path delay – OPD (x, y) is defined as  refractive 

index changes into the sample: 

 

OPD (x, y) = t (x, y)(nc-ns),   

 

where OPD (x, y) – the optical path delay at each cell point, t (x, y) – the cell thickness, (nc-ns) 

refractive index variation between the cell and surrounding medium. 

QPM makes it possible to measure this delay quantitatively and thus acquire an 

interferogram by recording the interference of the two superimposed coherent beams: one beam 

passing through the sample and another reference beam that does not come in contact with the 

object (Figure 6). An experimental setup can be equipped with a different light source, such as 

coherent laser light or incoherent white light. The hologram is usually acquired by the CCD 

camera (Charge-Coupled Device), which is a part of the digital holography microscopy system. 

The digital hologram (interferogram) is mathematically processed to the optical thickness map 

of the sample (quantitative phase map or phase-contrast map) (Figure 7). The deep red 

corresponds to the maximum phase, and the deep blue is associated with the zero phase. The 

phase parameters changes might represent the changes in the morphology of the sample. The 

number of 2D holographic images at different object planes creates 3D quantitative image, 

allowing the spatial phase sensitivity to distinguish the tiniest biological structures as the tail 

part of spermatozoa with a thickness of approximately 100 nm.  
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Figure 6 Typical interferometric setup for digital holographic microscopy. The original 

light source is divided into two coherent beams by a beam splitter. One beam interacts with an 

object under test, and another reference beam does not contact the object. The resulting 

quantitative phase map is reconstructed by recording the interferogram of those two 

superimposed coherent beams. The hologram is acquired by a digital sensor array (for example, 

CCD camera). BS – beam splitter, M – mirror. Reference- and object beams are highlighted. 

____________________________________________________________________________________________________ 

This figure was published in Spermatozoa - Facts and Perspectives, In Meccariello R., Chianese R. 

(Eds.). Angelis A. De, Ferrara M. A., Coppola G., & De Luca A. C., Advanced Label-Free Optical 

Methods for Spermatozoa Quality Assessment and Selection, pp. 219-240, IntechOpen, Open access 

article (2018). 

 

1.3.1.2 QPM of human sperm cells 

The first imaging of sperm cells by QPM was performed in 2008 by researchers from 

Spain and Israel on swine spermatozoa (Mico et al., 2008). The capacity of interferogram 

microscopy for sperm analysis was expanded by Di Caprio and colleagues (2010) on bovine 

spermatozoa. Later the Israeli research group led by prof. Shaked published a number of studies 

about QPM of human sperm cells with special emphasis on the application of this technique in 

ART procedures (Eravuchira et al., 2015; Haifler et al., 2015; Balberg et al., 2017; Barnea et 

al., 2018; Dardikman-Yoffe et al., 2020).  
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Figure 7 Quantitative Phase Microscopy of human spermatozoa. (a) An interferogram of 

human sperm cell obtained with QPM. (b) The optical path delay is encoded into the bending 

of the interference fringes. (c) The optical thickness map of the sample is digitally calculated 

from the interferogram.  

____________________________________________________________________________________________________ 

This figure was published in Fertility and Sterility, 104(1), Haifler M., Girshovitz P., Band G., 

Dardikman G., Madjar I., & Shaked N. T., Interferometric phase microscopy for label-free 

morphological evaluation of sperm cells, pp. 43-47, Copyright Elsevier (2015).  

 

Assessment of sperm morphology by QPM 

Haifler and colleagues (2015) have demonstrated the QPM’s ability to analyze the 

human sperm morphology in a comparable manner to label-based BFM being used in IVF. 

There was no statistical difference comparing the main sperm morphological parameters using 

QPM and label-based BFM using the WHO 2010 criteria (Haifler et al., 2015). The picture 

showed that morphological features such as vacuoles were seen clearly using both non-labeled 

QPM and label-based BFM (Figure 8). Moreover, the specificity and sensitivity of head width, 

acrosome area, and midpiece width imaging using QPM were higher than label-free BFM. 

Namely, 50% of the vacuoles that label-free BFM missed were detected by QPM. 

  

c 
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Figure 8 The comparison of sperm cell imaged with label-based BFM and QPM. (a) BFM 

image of sperm head stained with Quick Stain (Biological Industries) and (b) phase-contrast 

map of the same cell acquired by QPM. BFM image was performed using an inverted 

microscope (Axio Observer, Zeiss). The QPM system was comprised of portable 

interferometric module TAU. The sperm vacuole is marked with an arrow. 

____________________________________________________________________________________________________ 

This figure was published in Fertility and Sterility, 104(1), Haifler M., Girshovitz P., Band G., 

Dardikman G., Madjar I., & Shaked N. T., Interferometric phase microscopy for label-free 

morphological evaluation of sperm cells, pp. 43-47, Copyright Elsevier (2015).  

 

The vacuole analysis in the sperm head was performed more in detail by Coppola and 

colleagues (Coppola et al., 2014). They presented a quantitative comparison between a 

morphologically normal cell and a cell with a vacuole in the head region. The cell with the 

vacuole had distinct depression in the height profile along the major axis of the sperm head that 

might affect the volume of the sperm head (Figure 9). As one can see from the figure, vacuoles 

can be easily located on the phase map due to decreased refractive index, resulting in the drop 

of optical path delay. 

QPM has been used to compare quantitative phase-contrast between normal sperm cells 

and sperm cells from the semen samples with multiple abnormalities such as 

oligoasthenoteratospermia (AOT) (Crha et al., 2011). It has been detected that cells from the 

normal samples have significantly higher maximum phase shift rather than AOT samples. 

Interestingly, the architecture and integrity of the genetic material in the abnormal sperm head 

seem to affect the cell’s quantitative value detected by QPM. This suggestion appears to be 

proved by the study of Barnea (2018), where the cells with different DNA fragmentation levels 

differ significantly regarding QPM quantitative parameters. It is found that a combination of 

the different criteria extracted from the phase maps of sperm cells can predict the fragmentation 

status of DNA. For example, cells from the most fragmented group are characterized by a large 

b a 
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nuclear area and small acrosomes. At the same time, the less fragmented group is characterized 

by the largest head area and the large acrosome dry mass (Barnea et al., 2018).  

Figure 9 The vacuole detection in sperm head by QPM. (a) Phase-contrast map and (b) an 

isoline plot of a spermatozoon with a vacuole. The vacuole region is marked with an arrow. 

____________________________________________________________________________________________________

This figure was published in Zygote, 22(4), Coppola G., Di Caprio G., Wilding M., Ferraro P., Esposito 

G., Di Matteo L., Dale R., & Dale B., Digital holographic microscopy for the evaluation of human sperm 

structure, pp. 446-454, Copyright Cambridge University Press (2014). 

Biophysical evaluation of sperm cells using QPM 

QPM allows extracting the biophysical parameters such as biovolume and dry mass. For 

instance, the biovolume of live bovine sperm cells was analyzed using the combination of 

optical tweezer and QPM to enhance the precision of 3D reconstruction of quantitative phase 

maps. The optical tweezer provides an opportunity for optical trapping and rotating the flowing 

cell into a microfluidic channel with the subsequent recording of the interferograms for further 

mathematical processing (Figure 10). All acquired 2D holograms were combined to get 3D 

visualization of the analyzed cell (Merola et al., 2013). Another analysis by Coppola (2013) 

revealed that the mean volume of a fixed human sperm cell is 8.03 ± 0.72 µm3 based on 

quantitative phase shift information from QPM (Coppola et al., 2013). Dry mass is another 

biophysical parameter being detected by QPM. Dry mass is a density of the cell’s non-aqueous 

content, mainly proteins, carbohydrates and lipids. In Balberg’s (2017) recent study, the dry 

mass of the sperm nucleus and acrosome region of unlabeled immobilized spermatozoa was 

quantitatively measured by QPM for the first time. The optical resolution of the system enables 

a b 
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the differentiation of the nuclear compartments of the sperm cell. Thus, the precise 

determination of acrosome and nucleus was done based on the BFM stained image of the same 

cells. The average dry mass was 5.96 ± 1.15 × 10-12 grams and 1.54 ± 0.58 × 10-12 grams for 

the nucleus and acrosomal region, respectively (Balberg et al., 2017).  

Figure 10 The optical trapping and rotating of the sperm cell into a microfluidic channel. 

The schematic representation of the interaction between the trapping laser (red) and moving 

sperm cell into the microfluidic chamber. 

____________________________________________________________________________________________________

This figure was adapted from Lab on a Chip, 13(23), Merola F., Miccio L., Memmolo P., Di Caprio G., 

Galli A., Puglisi R., Balduzzi D., Coppola G., Netti P., & Ferraro P., Digital holography as a method for 

3D imaging and estimating the biovolume of motile cells, pp. 4512-4516, (2013). 

Kinematic study of sperm cells by QPM 

Besides morphological and biophysical analyses, QPM has been used to study the 

kinematics (motility) of sperm cells applying the 3D spatial motion over time. The first 

holographic image of moving bovine sperm cells in a microfluidic chamber was reported in 

2010 by Di Caprio and colleagues. Later the same authors reported the automated detection and 

tracking of human spermatozoa using partial spatial coherent DHM (Di Caprio et al., 2014). 

The phase maps of the moving cell were reconstructed using the holograms collected during 

the tracking. To provide the quantitative kinematic pattern and to describe the trajectory, several 

velocity parameters and their ratio were analyzed, such as curvilinear velocity (VCL), straight-

line velocity (VSL), average path velocity (VAP). VCL relates to a total distance that sperm 

head swims for a certain observational time; the VSL refers to the distance between the first 

and the last points of the trajectory; the VAP is the distance that the cell has translocated in the 

average direction of movement in the study period. Retrieved quantitative motility parameters 

were compared between progressive and non-progressive motile sperm cells. In particular, the 
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morphologically abnormal cell had nonlinear motion detected with the system. Moreover, the 

group of sperm cells was tracked, detecting the anomalous behavior of non-progressive cells 

based on the quantitative kinematic value VSL (green line, Figure 11).  

Figure 11 Multiple sperm cell tracking. (a) Transversal and (b) reconstructed three-

dimensional path of sperm cell tracking. Data were acquired over 11 s. The scale bar is 20 µm. 

____________________________________________________________________________________________________ 

This figure was published in Biomedical Optics Express, 5(3), Di Caprio G., El Mallahi, Ferraro A., 

Dale P., Coppola R., Dale B., Coppola G., & Dubois F., 4D tracking of clinical seminal samples for 

quantitative characterization of motility parameters, pp. 690-700, Open Access Article (2014). 

1.3.1.3 Artificial intelligence and QPM framework: application in ART 

Artificial intelligence (AI) is a promising tool for automated image processing in 

medicine (Lee et al., 2017; Shen et al., 2017). In order to reach the specificity of the automated 

analysis and segmentation of the images, the form of AI called machine learning is thoroughly 

implemented. Many old machine learning algorithms exist, such as Support Vector Machine 

(SVM) and newer ones – Deep Neural Networks (DNNs). DNNs use the abundance of data 

points to train the model so that further outputs can be predicted based on the training data set. 

Usually, 70% of data is used for the training, while the other 30% is allocated as a test data set. 

The bigger the training data set, the better the predictive value of the algorithm. The current 

application of AI to reproductive urology is in its primary stage (Figure 12). However, it has 

already been shown that AI can learn and successfully identify sperm cells of high quality (Chu 

et al., 2019). For instance, 371 of 415 sperm images acquired by clinical microscopes were 

a b 
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identified correctly using transfer learning with a deep convolutional network (Thirumalaraju 

et al., 2018).  

 

 

Figure 12 Current artificial intelligence application in reproductive medicine. 

____________________________________________________________________________________________________ 

This figure was adapted from Current Urology Reports, 20(9), Chu K. Y., Nassau D. E., Arora H., 

Lokeshwar S. D., Madhusoodanan V., & Ramasamy R., Artificial Intelligence in Reproductive Urology, 

Article 52, (2019). 

 

AI can be applied to different imaging systems, including QPM. The merging of QPM 

with machine learning increases the chance of the automated classification of cells. The 

interferograms of sperm cells can be processed very fast on numerous spermatozoa using 

trained algorithms. For example, in the work of Mirsky (2017), the SVM classifier was designed 

for the automated classification of human spermatozoa’s phase maps based on sperm cell 

morphology. The phase maps are used to extract morphology parameters of the cell to train the 

SVM algorithm to classify normal and abnormal sperm cells afterward (Mirsky et al., 2017). 

Newer machine learning – DNNs combined with QPM have a more precise sensitivity to detect 

tiny changes in the sperm head, midpiece, and tail than SVM algorithms. Moreover, the system 

can suggest a new approach for the functional analysis of sperm cells by measuring the 

biophysical parameters. For instance, Kandel and colleagues (2020) presented a highly 

sensitive QPM and deep learning framework for the precise measurement of dry mass in the 

bovine spermatozoa compartments such as head, midpiece, and tail. Interestingly, the data 

revealed the predictive value of dry-mass ratios (head/midpiece, head/tail, midpiece/tail) for 
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zygote formation and blastocyst development (Kandel et al., 2020) which might open a new 

perspective for the application of the QPM-AI framework in ART.  

 

1.3.1.4 Clinical application of QPM 

Despite the successful implementation of QPM for the study of sperm cells, there is a 

need for clinical trials of this technique to be implemented in the assisted reproductive 

technologies. Several issues postpone the clinical trials of QPM. Namely, the QPM requires a 

specially trained operator to interpret the results of the imaging. At the same time, a clinical 

system should be easy and fast due to the limited diagnostics or sperm selection time under the 

ICSI procedure. Additionally, the precision of the resulted interferogram is defined by the 

technical equipment, which might be expensive for routine use in the laboratory.  

Currently, there is a close interdisciplinary collaboration between physicists, biologists 

and clinicians to improve the method and evaluate the clinical relevance of QPM. Thus, the 

QPM has been effectively implemented for the study of sperm biology (Mico et al., 2008; Crha 

et al., 2011; Coppola et al., 2013; Di Caprio et al., 2014; Haifler et al., 2015; Eravuchira et al., 

2015; Balberg et al., 2017; Mirsky et al., 2017; Barnea et al., 2018; Dardikman-Yoffe et al., 

2020; Kandel et al., 2020). In order to bring the technique to broad usage, several interferogram 

devices have been developed so far (Girshovitz et al., 2013; Lee et al., 2014). For instance, the 

Israeli research group led by prof. Shaked has proposed a portable module for QPM of sperm 

cells called TAU interferometer, which can be attached to the existing microscopes for 

interferometric optical thickness measurements (Girshovitz et al., 2013). However, the test-

specificity and robustness of the system for the particular tasks should be done in the near term 

before the clinical trials and marketing of the QPM devices. 

 

1.3.2 Mitochondrial DNA in sperm cells 

The World Health Organization recommends performing the semen analysis uniformly 

according to established criteria (WHO 2010). Each semen parameter by itself has a limited 

prognostic value in defining sperm fertilizing potential and cannot be a reliable predictor 

individually for male fertility status (Barratt et al., 2017). Moreover, men who have semen 

parameters below the reference limits are not necessarily infertile. For example, men with 

morphologically normal forms less than 4% had normal fertilization rates using conventional 

IVF (Mortimer & Mortimer 2020). For that reason, the search for new sperm factors and the 
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development of practical diagnostic assays in addition to the classical method should be 

encouraged for more extensive and robust semen analysis thoroughly reflecting the fertility 

status of the patient.  

Sperm cell consists of various structures, the pathophysiology of which might reflect 

the male reproductive health. For instance, male infertility can be associated with adverse sperm 

mitochondrial functions (Figure 13). Mitochondria carry DNA in the form of a double-stranded 

circular nucleoprotein molecule called nucleoid (Anderson et al., 1981). Most of the 

mitochondrial proteins are nuclear-encoded, while some of the genes are transcribed in 

mitochondria. After fertilization, paternal mitochondria and mitochondrial genome are 

eliminated by selective destruction through the ubiquitination in the early embryo in mammals 

(Sutovsky et al., 1999), thereby enabling the uniparental inheritance of mitochondrial genes 

(Hutchison et al., 1974). Moreover, paternal mitochondria and mtDNA are almost physically 

excluded before fertilization in mammals. Namely, a substantial portion of mitochondria is 

eliminated with cytoplasm in the form of residual bodies during spermiogenesis (De Luca & 

O’Farrell, 2012).  

Point mutations and deletions in mtDNA are responsible for sperm cellular dysfunctions 

manifested in adverse semen parameters. Multiple deletions of mtDNA are associated with 

idiopathic astheno-, asthenoterato-, and oligoasthenoteratospermia (Colagar et al., 2014; 

Gholinezhad et al., 2019). In particular, low sperm motility has been associated with a missense 

mutation in the mitochondrial COIII gene (cytochrome c oxidase subunit III) (Baklouti-

Gargouri et al., 2014), large scale 7436-bp deletions in mtDNA (m.8637-m.8649/m.16073-

m.16085) (Ambulkar et al., 2016), single nucleotide polymorphism of mtDNA (ex. 

m.11696G>A) (Ji et al., 2017), 4977-bp deletions (m.8470-m.8483/m.13447-m.13460) (Kao et 

al., 1995), A3243G point mutation (m.3243A>G) (Spiropoulos et al., 2002). To compensate 

for the adverse effect of mitochondrial DNA mutations and deletions, the change of sperm 

mtDNA copy numbers during spermatogenesis might abate a severe disease manifestation. This 

hypothesis might be supported by the significantly higher numbers of sperm mitochondrial 

DNA in abnormal semen samples in comparison to normal ejaculates of fertile donors. A few 

studies reported a negative correlation between mitochondrial DNA quantity and various semen 

parameters. For example, mitochondrial DNA copy numbers increase has been negatively 

associated with sperm motility (Tian et al., 2014; Bonanno et al., 2016; Faja et al., 2019), total 

sperm count (Song et al., 2008), sperm concentration (Amaral et al., 2007; Tian et al., 2014) 

and sperm morphology (Amaral et al., 2007). These findings suggest the predictive value of 

mitochondrial DNA copy numbers and integrity for male reproductive status assessment. 
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Figure 13 Overview of mitochondria functions in spermatozoa, and their multiple, 

potentially harmful consequences on reproductive function. Sperm mitochondria are not 

transmitted to descendants but involved in different sperm functions such as (1) producing 

energy in the form of adenosine triphosphate (ATP) required for cellular functions; (2) 

production of Reactive Oxygen Species (ROS), which are involved in sperm functioning, but 

can be detrimental beyond a certain level; (3) calcium regulation (Ca2+), and (4) apoptosis. The 

defects in any of these functions can lead to sperm functioning abnormalities in mobility, 

capacitation, acrosome reaction, and as a consequence in fertilization. The circle represents the 

double-stranded sperm mitochondrial DNA (mtDNA) with genes marked in colors. 

____________________________________________________________________________________________________

This figure was adapted from Human Reproduction Update, 0(0), Boguenet M., Bouet P. E., Spiers A., 

Reynier P., & May-Panloup P., Mitochondria: their role in spermatozoa and in male infertility, pp. 1-

23, (2021). Some elements of the figure were taken from Microsoft Office stock images and 

Wikipedia.org. 
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2 AIM AND OBJECTIVES 

The overall aim of this PhD project was to investigate the potential of new sperm 

imaging techniques for biological and clinical application. In addition, we also wanted to 

explore whether mitochondrial DNA copy numbers are valuable for male fertility assessment.  

 

Specific objectives of paper I 

1) To set up imaging conditions for high-resolution imaging of living human sperm cells 

by SIM. 

2) To specify the imaging protocol for multi-color imaging of sperm cells by SIM. 

3) To characterize the ultrastructure of living human spermatozoa by SIM. 

 

Specific objectives of paper II 

1) To evaluate the effect of various concentrations of hydrogen peroxide (H2O2) on human 

sperm motility.  

2) To analyze the optical thickness of the human sperm head upon gradual peroxidation 

by using holographic microscopy (QPM). 

3) To classify the normal spermatozoa and cells upon oxidative stress by SVM classifier. 

 

Specific objectives of paper III 

1) To classify four different pathophysiological groups of human spermatozoa by applying 

deep learning and the QPM framework. 

2) To compare DNN architectures with feature extraction-based machine learning models 

for the classification of sperm cells. 

 

The specific objective of paper IV 

• To summarize the evidence from literature regarding the association of mitochondrial 

DNA copy numbers and semen quality. 
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3 MATERIALS AND METHODS  

3.1 Ethical approval  

Ethics of conduct was strictly followed. The Regional Committee for Medical Research 

Ethics North Norway approved all study protocols (2014/932/REK Nord; date of approval: 

28.11.2014). 

The semen samples were collected from men who attended the IVF clinic of the 

Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø. 

Informed consent was obtained from all participants. 

3.2 Semen preparation 

The samples were collected according to the WHO 2010 criteria after 3–5 days of 

abstinence. The Neubauer-improved counting chamber was used to count sperm cells number 

after liquefaction. All semen samples used in the experiments met the requirements of the WHO 

2010 criteria to be considered as “normal”.  

The swim-up or gradient centrifugation methods were used to eliminate seminal plasma 

and isolate sperm cells with progressive motility and normal morphology. In the case of 

gradient centrifugation, one milliliter of semen was placed on each 1.5 ml of 90% and 45% 

gradient layers of SpermGrad (Vitrolife, Sweden) and centrifugated at 500×g for 15 min. A 

human Quinn’s Sperm Washing Medium (Origio, Denmark) was used to wash the pellet twice 

at 300×g for 5 min. The cells after centrifugation were adjusted to the necessary concentration 

with Quinn’s Advantage Fertilization Medium (Origio, Denmark) supplemented with 5 mg/ml 

human serum albumin (Sigma) for the following procedures. 

As described in Paper I (Oppstad et al., 2018), the semen samples were washed by 

swim-up method. Samples were centrifuged twice with 5 ml of Sperm Washing Medium (Sage) 

for 10 min at 700×g. After the supernatant disposal, 0.5 ml of swim-up medium was layered on 

top of the cells, and the tube was put into an incubator (5.0% CO2, 37 °C). After 1 h of 

incubation, PR motile spermatozoa migrated to the swim-up medium. Then the supernatant was 

aspirated with a pipette, centrifuged, and the sediment was used for the following procedures. 
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3.3 Simulation of various pathophysiological cell conditions  

To perform experiments with externally induced oxidative stress in Paper II (Dubey et 

al., 2019), Quinn’s Advantage Protein Plus Fertilization Medium (SAGE, Denmark) was used 

to dilute purified sperm cells to a concentration of 5.0×106 cells/ml. Further, sperm cells were 

put in a medium into 96-well cell culture plates (Corning, Germany) where different 

concentrations of H2O2 (10 µM, 40 µM, 70 µM, 100 µM) were added. For the control, the 

reference chamber was filled with the same concentration of semen without H2O2. The semen 

samples were incubated for 1 h at 37°C, 5–6% CO2.  

For automated classification of different pathophysiological groups of spermatozoa in 

Paper III (Butola et al., 2020), purified semen samples were placed into 96-well cell culture 

plates (Corning, Germany) in a concentration of 2×104 cells per ml with 200 µM H2O2 (for 

oxidatively stressed samples) or 2% ethanol (for ethanol-affected samples), the reference 

chamber was filled with purified semen only. The samples were incubated for 1 h at 37 °C, 5% 

CO2.  

3.4 Cryopreservation and thawing  

Cryopreservation and thawing of semen samples were performed following the Sperm 

Freezing Medium protocol (Origio, Denmark). Before the freezing, the Sperm Freezing 

Medium was placed for a minimum of 2 h at room temperature (RT). After semen purification, 

the semen sample and the Sperm Freezing Medium were mixed on a 1:1 (v/v) ratio. The 

medium was added onto the semen sample by dribs, and the solution was carefully mixed after 

each addition. The mixture was left at RT for a minimum of 10 min. Next, the diluted semen 

was loaded into cryo-tubes (Thermo Fisher Scientific Nunc, Germany). The tubes were placed 

in the gas phase of the liquid nitrogen for 30 min. Then the cryo-tubes were transferred into the 

liquid nitrogen and stored at -196ºC. During the thawing process, the cryo-tubes were put at RT 

for 5 min. Then samples were washed by centrifugation in Quinn’s Sperm Washing Medium 

(Origio, Denmark). After washing, the supernatant was aspirated, and cells from the sediment 

were used for the following procedures. 

3.5 Sperm motility assessment  

The sperm cell’s motility was graded as progressive (PR) and non-progressive (NP) 

following the WHO 2010 criteria after liquefaction at 30 min. A Neubauer-improved counting 

chamber was used for the motility evaluations under the inverted phase-contrast microscope 
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with a ×40 magnification objective. First, the grid section was scored for PR cells, next for NP 

spermatozoa in the same grid section in three different replicates for each sample.  

3.6 Statistical analysis 

Descriptive statistics such as mean, standard deviation (SD), and n (%) were used to 

summarize the semen analysis variables. Differences between means were tested using t-Test: 

Paired Two Sample for Means. A level of statistical significance was set at p <0.05. Analyses 

and graphical visualization were performed in Microsoft Excel.   

3.7 Immunofluorescent staining  

Suspension of washed human sperm cells was fixed with 4% PFA (Paraformaldehyde, 

Sigma-Aldrich, Germany) for 10 min. PFA was discarded by centrifugation in 1×PBS 

(Phosphate-Buffered Saline, Sigma-Aldrich, Germany) for 10 min. Cells were pipetted onto the 

slides, fixed in 4% PFA in 1×PBS for 10 min in a humid chamber, and washed for 5 min in 

1×PBS. Cell membranes were permeabilized with 0.5% Triton X-100 (Sigma-Aldrich, 

Germany) for 5 min and washed in 1×PBS for 5 min. 

 

Table 2 Antibodies and labeling conditions for immunofluorescent staining of sperm cells. 

Primary antibodies Stock concentration Dilution 
Total volume: 

200 µl 

Rabbit anti-human TOM20 0.2 mg/ml 1:200 1 µl 

Secondary antibodies  

Alexa Fluor 647-donkey anti-rabbit 2 mg/ml 1: 500 0.4 µl 

 

For immunofluorescent staining, human sperm cells were treated with 1% blocking 

reagent (BSA, Bovine Serum Albumin, Sigma-Aldrich, Germany) in 1×PBS for 1 h. Then cells 

were incubated with primary antibodies for mitochondrial import receptor subunit TOM20 

(Rabbit anti-human TOM20, Thermo Fisher Scientific, Germany) diluted in 1% BSA in 1×PBS 

for 1 h at RT. After incubation with primary antibodies, sperm cells were washed thrice in 

1×PBS and then incubated with secondary antibodies (Alexa Fluor 647-donkey anti-rabbit, 

Thermo Fisher Scientific, Germany) diluted in 1% BSA in 1×PBS for 1 h at RT. Then cells 

were washed similarly, dehydrated and air-dried (Table 2). 
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3.8 Live-cell fluorescent labeling 

For the live-cell imaging by SIM, CellMask Orange for cell membrane, MitoTracker 

Green for mitochondria, Hoechst 34580 for nuclear DNA, PicoGreen for nuclear and 

mitochondrial DNA, and SiR-tubulin for tubulin were used. All probes were purchased from 

Thermo Fisher Scientific (Germany), besides SiR-tubulin purchased from Spirochrome 

(Switzerland). Cells were incubated with probes at RT in Live Cell Imaging Solution 

(Molecular Probes, Germany) or in 1×PBS. Labeling conditions are summarized in Table 3. In 

the case of multi-color labeling, the dye with the longest staining time was added first, with 

sequential administration of other dyes. After incubation, cells were washed by centrifugation 

in 1×PBS for 10 min at 800×g. After centrifugation, the supernatant was discarded, and the 

samples resuspended in 1×PBS to a concentration found suitable for the imaging.  

 

Table 3 Dyes and labeling conditions applied for SIM imaging of sperm cells. 

 

Dye Working concentration Incubation time 

CellMask Orange 5 µg/ml 10 min 

MitoTracker Green 200 nM 20 min 

Hoechst 34580 5 µg/ml 20 min 

SiR-tubulin 1 µM 2 h 

PicoGreen 100 nM 10 min 

 

3.9 Structured Illumination Microscopy and image processing 

Fluorescent imaging of living human sperm cells was done using Structured 

Illumination Microscopy. For the imaging process, the suspension of the cells was placed on 

slides (#1.5, Thermo Fisher Scientific, Germany) and covered with patches of 2% agarose 

(High-resolution, Sigma Aldrich, Germany) in 1×PBS for the immobilization of sperm cells. 

After placing the agarose patches, the samples were protected by a plastic lid against drying 

during imaging.  

As described in Paper I (Oppstad et al., 2018), a DeltaVision OMX V4 Blaze imaging 

system (GE Healthcare, Chicago, USA) equipped with a 60X 1.42NA oil-immersion objective 

(Olympus, Tokyo, Japan), three sCMOS cameras, and 405, 488, 568, and 642 nm lasers for 
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excitation were used for imaging. The optical resolution of the system depended on a color 

channel and was rated at 110-160 nm laterally and 340-380 nm axially. The reconstruction 

software was used to obtain super-resolution images. Deconvolution and 3D SIM image 

reconstruction were completed using the manufacturer-supplied SoftWoRx program (GE 

Healthcare, USA). Image registration (color alignment) was also performed in SoftWoRx using 

experimentally measured calibration values compensating for minor lateral and axial shifts, 

rotation, and magnification differences between cameras. Fiji/ImageJ software was applied for 

image processing (Schindelin et al., 2012).  

3.10 Quantitative Phase Microscopy  

For quantitative phase imaging of human spermatozoa the partial spatial coherence gate 

QPM/DHM system (PSC-DHM) with He-Ne light source was applied. The diagram of the PSC-

DHM system is shown in Figure 14. A polydimethylsiloxane chamber (PDMS) on a reflecting 

silicon (Si) chip was used for sperm imaging. Samples were fixed with 4% PFA for 30 min at 

RT and washed in 1×PBS for 5 min to immobilize the sperm cells. Finally, the PDMS chamber 

with fixed cells was filled with 50μL of 1×PBS, and the samples were covered by a 170 μm 

thickness cover glass (Thermo Fisher Scientific, Germany).  

3.11 Data analysis  

Sperm cells were classified into control and oxidatively stressed groups by extracting 

the phase maps from recorded off-axis holograms using a Matlab program (Paper II). A 

graphical user interface (GUI) was developed for the automated selection of sperm heads from 

the background of phase maps by putting a threshold value. The reconstructed and segmented 

phase maps of sperm heads were utilized to calculate the various morphological and texture 

parameters. These parameters were used for the binary classification of the specimen’s state 

using the SVM algorithm. The samples were divided into two different sets of data, i.e., training 

and testing data. The algorithm was trained by 60% of the total samples, while 40% were used 

for the classification. Receiver Operative Characteristic (ROC) curves were used to describe 

and to compare the performance and accuracy of the classification.  
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Figure 14 The diagram of the DHM setup with a pseudo thermal light source for acquiring 

the quantitative phase maps of a sperm sample. RD – rotating diffuser, L – lens, BS – beam 

splitter, MO – microscope objective, MMF – multiple multi-mode fiber bundle (Paper II). 

 

Convolutional Neural Networks (CNNs) were used for the classification of sperm cells 

under four different conditions (control, cryopreserved, after oxidative stress, and ethanol 

exposure) (Paper III). CNNs is an advanced machine learning technique that automatically 

generates abstract convolutional features from the training dataset. All image processing was 

implemented in MATLAB 2019a on a 64-bit Windows OS, Intel Xeon CPU E5-1650 v4 at 

3.6 GHz with 64 GB RAM and NVIDIA 2080 Ti GPU. For the classification of phase maps of 

normal and stress affected sperm cells seven DNNs were used. The classifier was trained by 

70% of the total samples, and the rest of 30% was used for the testing.  

3.12 Meta-analysis and systematic review 

We performed a systematic review and meta-analysis to study the difference in 

mtDNAcn between the sperm cells of males with normal semen analysis and males with an 

abnormal semen analysis. The review protocol was developed following CRD’s guidance in 

health care (Centre for Reviews and Dissemination). PRISMA guidelines were followed to 

report the results. The current review was registered in the international prospective register of 

systematic review (PROSPERO: CRD42019118841). 



 

46 

Cochrane methodology was used for electronic and hand searching in Embase Classic 

and Ovid MEDLINE databases on December 07, 2020. The search covered the period from 

1946 to 2020. The controlled vocabulary of Medical Subject Headings (MeSH) terms “Male 

Infertility” and 17 additional keywords related to outcome or participants were used. Only the 

English language manuscripts providing the human study were included. Moreover, the studies 

that analyzed the semen following either the WHO 1999 or the WHO 2010 criteria were 

included in the meta-analysis. The Newcastle-Ottawa Scale (NOS) modified for non-

interventional observational cross-sectional studies was applied to assess the study’s quality.  

The pooled estimates for the outcome were presented as Standardized Mean Difference 

(SMD) with 95% confidence intervals using the random-effects model and inverse variance 

method. Statistical significance was assumed when p<0.05. The authors were contacted when 

the studies presented the results in an inappropriate way for our data extraction, for example, 

in the form of correlation analysis.  
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4 SUMMARY OF RESULTS 

Paper I: Live-cell imaging of human spermatozoa using Structured Illumination 

Microscopy (SIM). 

Super-Resolution Imaging by SIM of living human sperm cells was done for the first time. 

Sample movement was effectively eliminated using agarose patches being placed on top of the 

sample. Various live-cell compatible biomarkers were used for single and multi-color super-

resolution imaging (CellMask Orange for cell membrane; MitoTracker Green for mitochondria; 

Hoechst 34580 for DNA and SiR-tubulin for microtubulin). The contrast and resolution 

enhancement of SIM was prominent for all cell structures, especially for mitochondria-

containing midpiece, where structures around 100 nm length-scale were resolved. The 

resolution doubling provided by SIM made it possible to resolve the centriole from the rest of 

the axoneme completely. The usage of photostable dyes with lowered illumination intensities 

and longer exposure times enabled multi-color super-resolution imaging of living human sperm 

cells. Optical aberrations were reduced due to the thickness of the sample, the sample placement 

directly on the coverslip and by optimizing the immersion oil. 

 

Paper II: Partially spatially coherent digital holographic microscopy and machine 

learning for quantitative analysis of human spermatozoa under oxidative stress condition. 

Quantitative Phase Microscopy made it possible to detect changes in the optical thickness of 

human sperm heads after exposure to oxidative stress. It was proved that the maximum phase 

value of sperm cells upon the different concentrations of H2O2 decreased gradually compared 

to the control. Moreover, the decrease in phase value of sperm heads upon gradual peroxidation 

correlated with a dose-dependent decrease in the clinically relevant parameter such as 

progressive motility. The head morphological changes after oxidative stress were measured by 

extracting numerical parameters from the phase maps. Further, normal and oxidatively stressed 

sperm cells were classified by a support vector machine based classifier (SVM). The SVM 

classifier was trained using the numerical parameters extracted from phase maps. Namely, 60% 

of the total samples were used as a training dataset, while the rest of 40% were used for testing. 

For the classification of sperm cells SVM model provided an accuracy of 89.93%.  
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Paper III: High spatially sensitive quantitative phase imaging assisted with deep neural 

network for classification of human spermatozoa under stressed condition. 

In this study, a total of 10.163 interferograms (2.400 normal, 2.750 cryopreserved, 2.515 

oxidatively stressed, and 2.498 ethanol-affected) of human spermatozoa were imaged using 

PSC-DHM system. The deep neural networks were trained by 70% of the reconstructed phase 

maps of spermatozoa and the remaining 30% were used to check the classification accuracy of 

the networks. It has been shown that different DNN architectures had a sufficient classification 

accuracy in separating the different groups of human spermatozoa. The DNN ResNet-101 

presented the best accuracy with the result of 85.6%. In addition, the accuracy of DNN 

architectures was higher than the accuracy of old machine learning algorithms for the 

classification of sperm cells. 

 

Paper IV: Sperm mitochondrial DNA copy numbers in normal and abnormal semen 

analysis: a systematic review and meta-analysis. 

The systematic review and meta-analysis summarized the evidence from 10 published studies 

regarding the association of mtDNAcn and semen quality, emphasizing spermatozoa motility. 

Sperm mitochondrial DNA copy numbers were reported as a primary outcome. Significantly 

higher mtDNAcn have been shown in abnormal semen analysis in comparison to normal semen 

analysis. Moreover, a significant negative correlation between mitochondrial DNA copy 

numbers and semen parameters has been revealed in three studies excluded from the meta-

analysis. The quality of evidence was assessed as good to very good in 60% of the studies. 

 

 

 

 

 

 

 



 

49 

5 GENERAL DISCUSSION 

The development of precise and robust methods for semen analysis and spermatozoa 

selection is important for male fertility assessment and medically assisted reproduction. 

Specifically, the ART outcome is being rapidly improved since the active development and 

innovations in reproductive biology and medicine. Since the development of ICSI, hundreds of 

thousands of men became fathers, which was not even considered to be possible before. 

Nevertheless, children conceived with ICSI tend to have adverse perinatal outcomes than 

naturally conceived (Pinborg et al., 2013). Moreover, it has been reported on a limited number 

of studies that the fertility of ICSI conceived men is affected, probably, due to inheritance of 

infertility factors from their fathers (Katagiri et al., 2004; Palermo et al., 2008; Belva et al., 

2016; Belva et al., 2017; Rumbold et al., 2019). For that reason, the accuracy and safety aspects 

of ART technologies are pivotal for research projects.  

 

5.1 Morphological analysis of sperm cells at the nanoscale level 

The development of methods for semen analysis and sperm cell selection is one of the 

key targets in ART. Along with other sperm factors, the characterization of sperm morphology 

is an important parameter to consider male fertility status when analyzing semen. The predictive 

value of sperm morphology for male fertility potential and ART outcome has been reported in 

a number of studies (Kruger et al., 1986; Ombelet et al., 1994; Li et al., 2014; Kohn et al., 

2018; Liu et al., 2021). It is well known that subfertile or infertile patients with a lower 

likelihood of contributing to pregnancy have a higher level of morphologically abnormal forms 

of spermatozoa (Palermo et al., 1992; Guzick et al., 2001). Nevertheless, in contrast to sperm 

motility, cell concentration and seminal fluid volume of ejaculate, spermatozoa morphology 

analysis seems to be a debated predictor of semen quality and fertilizing potential of the cells 

(Auger et al., 2016; Danis and Samplaski, 2019). For example, current evidence suggests sperm 

cell morphology has a limited predictive value for pregnancy outcome in ART (Aziz et al., 

1996; Karabinus et al., 1997; Li et al., 2017; Zhou et al., 2021) or in natural conception (Kovac 

et al., 2017). The reasons for these rather contradictory results are still not entirely clear. We 

believe that the modern achievements in physics and biomedical optics might shed light on the 

predictive value of morphology for semen analysis and cell selection, which might be 

implemented in infertility treatment.  
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In our work, we use two types of super-resolved microscopies for the analysis of human 

sperm cell morphology: label-based Structured Illumination Microscopy (Paper I) and 

Quantitative Phase Microscopy, which does not rely on using any fluorescent markers (Paper 

II). In the first paper, we succeeded in performing super-resolution imaging of living human 

sperm cells with an axial resolution of ∼120 nm (Jost & Heintzmann, 2013). So far, multiple 

studies have been performed to characterize sperm cell biology using different fluorescent 

super-resolution techniques. For instance, the analysis of actin dynamics in live mouse sperm 

cells during the acrosomal reaction was done by the Total Internal Reflection Fluorescence 

(TIRF) method (Romarowski et al., 2018); the actin-based cytoskeleton in the mouse sperm 

flagellum was described by using stochastic optical reconstruction microscopy (3D STORM) 

(Gervasi et al., 2018); the precise localization of tetraspanin family protein CD151 in male 

germ cells was determined by SIM (Jankovikova et al., 2020); the positioning of the flagellar 

ion channel Hv1, which is important for sperm rotation was done by 3D STORM (Miller et al., 

2018), and protein kinase A localization dynamics during capacitation in mouse sperm cells 

was analyzed by Stimulated Emission Depletion Microscopy (STED) (Stival et al., 2018).  

The high-resolution microscopy of living sperm cells is challenging to work with due 

to an extremely high sperm velocity of ~ 90 µm/s that creates aberrations and imaging 

inaccuracy, especially while taking the nanoscale images (Beauchamp et al., 1984). For that 

reason, the above-mentioned studies performed experiments on immobile sperm cells, except 

the study of Romarowski (2018) with cell immobilization on concanavalin-A coated coverslips 

for the live cell imaging by TIRF (Romarowski et al., 2018). We first attempted to image living 

human sperm cells using SIM applying sperm immobilization with agarose patches. As a result, 

we succeeded in acquiring SIM images at a high resolution and contrast of cell structures such 

as cell membrane, mitochondria, nucleus, centriole and tail tubulin. The most prominent 

resolution has been shown for the longitudinal section of the sperm midpiece, where structures 

around 100 nm length-scale were resolved, which suggested the helical organization of 

mitochondrial sheath. The resolution beyond the diffraction limit (∼250 nm) makes it possible 

to count the number of full helical turns in the midpiece around the flagellum of living human 

spermatozoa, which is confirmed by transmission electron microscopy (Fujita et al., 1970). 

Similarly, the periodical structure of mitochondria using SIM has been reported by Gervasi and 

colleagues on fixed mouse sperm cells (Gervasi et al., 2018).  

In our next study (Paper II), we applied QPM to analyze human sperm morphology 

quantitatively. We also compared the quantitative data of normal sperm cells to those sperm 

cells with externally induced oxidative stress conditions in order to distinguish the sperm cells 
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under pathophysiological conditions. QPM reconstructs the image based on the optical light 

delay associated with the biological sample. Thereby the information about the local thickness 

of the sample without any labeling becomes available. Moreover, due to interferometry, QPM 

provides nanoscale sensitivity of morphological changes in the sample (Park et al., 2018). 

Using the advantages of the QPM technique, we found out that the thickness of the sperm heads 

decreases with the gradual increase of externally induced oxidative stress caused by hydrogen 

peroxide. The decrease in the optical thickness means flattening of the sperm head. These 

gradual head morphology changes might be associated with decondensation of genetic material 

due to DNA fragmentation upon oxidative stress. For example, it has been shown that in vitro 

human sperm incubation with H2O2 induces DNA fragmentation in a dose-dependent manner 

(Duru et al., 2000). Interestingly, our result might be consistent with a previously reported study 

showing that the mean optical thickness of human sperm cells acquired with QPM declines 

from the most DNA fragmented group to the least fragmented (Barnea et al., 2018). In addition, 

the decrease in the optical thickness of sperm heads upon peroxidation was found to be 

associated with clinically relevant motility parameters of the sperm cells. Namely, our results 

support the previous studies that concentrations of H2O2 above the physiological level produce 

a concentration-dependent effect on motion parameters probably due to lipid peroxidation, 

which can alter sperm fertilizing potential (De Lamirande and Gagnon 1992; Duru et al., 2000; 

Kao et al., 2008; Gibb et al., 2020). Taken together and considering the sensitivity of the QPM 

method, the optical thickness of the cell might be a good marker of the pathophysiological 

condition, for example, oxidative stress and DNA fragmentation. Moreover, the 

characterization of optical thickness of sperm, measured by QPM, might be an important 

parameter to consider when selecting the individual sperm cell for ICSI during ART procedure.  

 

5.2 Automated classification of sperm cells by QPM-AI framework 

Considering the ability of QPM to detect the tiny changes in morphological features of 

sperm cells in a non-label manner, merging QPM with artificial intelligence might have a 

promising value for virtual image classification of the phase data. Moreover, the QPM-AI 

framework might minimize observer bias and inter-individual variability to provide more 

objective sperm analysis and cell selection (Eustache and Auger, 2001). In a broader context, 

the synergistic application of holographic microscopy and deep learning have been successfully 

employed, for example, to distinguish two types of macrophages cultured under gravity and 

microgravity (Li et al., 2020), to convert QPM images of tissue sections into BFM images that 
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are equivalent to histological staining (Rivenson et al., 2019), to classify individual Bacillus 

spores in diagnostic of pathogens (Jo et al., 2017).  

Until now, there is scant data looking at the sperm cell classification by DNNs in 

combination with QPM. However, the classification of QPM data of human spermatozoa was 

done using simple machine learning systems by extracting the numerical parameters from the 

phase maps (Mirsky et al., 2017; Dubey et al., 2019). Opposite to simple machine learning 

algorithms, in our study (Paper III), we applied deep learning without extracting any numerical 

parameters from the phase images. Put it another way, our QPM-AI framework utilizes 

information about the whole sperm cell and does not require segmentation of head parts as in 

the case of simple machine learning techniques (Paper II).  

To get various classes of sperm cells for the classification, we performed sperm 

cryopreservation, peroxidation and ethanol incubation. Morphology changes of spermatozoa 

upon cryopreservation have been reported in many studies (Hammadeh et al., 1999; Donnelly 

et al., 2001; O’Connell et al., 2002; Ozkavukcu et al., 2008; Boitrelle et al., 2012; Raad et al., 

2018). At the same time, the effect of oxidative stress on sperm cell morphology can be assessed 

indirectly through the level of antioxidant defense and seminal ROS, which has been found to 

be associated with male infertility (Lenzi et al., 1994, Vezina et al., 1996; Said et al., 2005; 

Colagar et al., 2013; Eroglu et al., 2014; El-Taieb et al., 2015; Roychoudhury et al., 2016; 

Majzoub et al., 2018; Oumaima et al., 2018). Similarly, multiple studies have been performed 

to characterize direct and indirect effects of ethanol on different parameters of semen quality, 

including sperm cell morphology (Donnelly et al., 1999; Rahimipour et al., 2013; Jensen et al., 

2014; Silva et al., 2017).  

In our study, the percentage of progressive and nonprogressive motility was chosen for 

cross-validation of stress agent’s effect on spermatozoa. The progressive motility decreased 

significantly in all three stress groups. One explanation of the ethanol-affected decrease in 

spermatozoa motility is an alteration in membrane proteins structure (Donnelly et al., 1999). 

At the same time, the peroxidation of unsaturated fatty acids in membrane lipids is a principal 

mechanism of peroxidation on spermatozoa motility. Consequently, the changed physical 

qualities of cell membrane result in disrupted tail motion (Gibb et al., 2020). The functional 

changes of sperm cells after cryopreservation lead to motility and survival rate decrease 

(Kopeika et al., 2015), ultrastructure and cell morphology changes (Woolley & Richardson 

1978; Barthelemy et al., 1990; Ozkavukcu et al., 2008) and mitochondrial activity reduction 

(O’Connell et al., 2002). 
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Seven deep neural networks were applied to classify the phase maps of four different 

groups of spermatozoa. The best sensitivity (85.5%), specificity (94.7%), and accuracy (85.6%) 

were provided by ResNet-101 network. Further, the accuracy of DNNs was compared with a 

total of 3 feature extraction-based machine learning classifiers, which were less specific and 

accurate in comparison to DNN architectures. However, the classification accuracy of the 

QPM-AI system might be improved by applying virtual staining of different sperm subcellular 

structures, which can improve the chemical specificity of the QPM technique (Jiang et al., 2019; 

Rivenson et al., 2019; Dardikman-Yoffe et al., 2020). Another method for classification 

improvement is Phase Imaging with the Computational Specificity method (PICS) recently 

proposed by Gabriel Popescu and colleagues at the University of Illinois at Urbana Champaign 

(Kandel et al., 2020b). PICS encompasses software based on deep-CNN (U-Net architecture). 

Kandel and colleagues (2020) applied PICS for the classification of the bovine sperm cells 

using an automated spatial light-interference microscopy system (SLIM) (Kandel et al., 2020a). 

PICS provides the pixel labeling in the phase image with computational specificity to 

distinguish parts of the sperm cell such as head, midpiece and tail. As a result, the combination 

of nanoscale morphological information provided by interference microscopy and deep 

learning made it possible to measure dry mass of each component of the cell, which represented 

the predictive value for zygote cleavage and embryo blastocyst development (Kandel et al., 

2020a).  

 

5.3 Mitochondrial DNA content in human sperm cells 

Fluorescent microscopy is a commonly used method for mitochondrial DNA detection 

and visualization in different types of eukaryotic cells (Legros et al., 2004; Ashley et al., 2005; 

Kasashima et al., 2014). However, the location of mtDNA in human sperm cells has not been 

imaged so far. In our paper (Paper I), we present the imaging of different sperm parts, including 

mitochondria and nuclear DNA by using high-resolution microscopy (SIM). At the same time, 

the data about mtDNA imaging have been excluded from the article due to negative results. 

Namely, combining PicoGreen labeling for nuclear/mtDNA and Mitochondrial Import 

Receptor Subunit TOM20 labeling for mitochondria did not reveal the location of mtDNA in 

the midpiece of human sperm cells (Figure 15a). Similarly, the negative result was found upon 

living sperm cell imaging by using PicoGreen only (Figure 15b).  

 

b 



54 

Figure 15 The sperm nucleus and mitochondria-containing midpiece. (a) 

Immunofluorescence on human sperm cells stained with antibodies against the Mitochondrial 

Import Receptor Subunit TOM20, clearly showing the localization of the sperm mitochondria 

(red). PicoGreen was used as a DNA counterstain for the sperm nucleus (green). (b) Stacks 

projection of average intensities of living sperm cell stained with PicoGreen. All images 

acquired by SIM. 

The negative results might be explained by the overlapping of mtDNA signals with 

extensive fluorescence from nuclear DNA. Other reasons for the failure of mtDNA detection 

in spermatozoa is mtDNA degradation or insufficient quantity of these molecules for the 

detection by label-based microscopy. For that reason, mtDNA imaging failure in sperm cells 

led us to perform a meta-analysis and a systematic review about mtDNA copy numbers.  

The aim of our systematic review and meta-analysis was to summarize the evidence 

from literature regarding the association of mitochondrial DNA content and semen quality with 

special attention on spermatozoa motility. It has been shown a significant difference in sperm 

mtDNAcn in abnormal human spermatozoa in comparison to normal sperm cells. Three studies 

presented a negative correlation between sperm mtDNAcn and (1) motility (Tian et al., 2014, 

Bonano et al., 2016, Faja et al., 2019), (2) total count of spermatozoa (Song et al., 2008), (3) 

sperm concentration per ml (Amaral et al., 2007, Tian et al., 2014) and (4) morphology (Amaral 

et al., 2007) between patients with abnormal semen parameters and control groups. Moreover, 

the intrasample variation of mtDNAcn has been described in two studies by Díez-Sánchez 

(2003) and May-Panloup (2003), where cells with abnormal morphology and motility had 

higher mtDNAcn than sperm cells having normal characteristics (Díez-Sánchez et al., 2003; 

May-Panloup et al., 2003). Of note, our review revealed that mtDNAcn increased more 

significantly in the group of multiple abnormalities, namely, those who have more than two 

abnormal parameters (AOT patients). At the same time, mtDNA content per sperm from the 

Nucleus 

Mitochondria Nucleus b a 
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group with the only motility defect did not differ significantly from the sperm of the normal 

group.  

The molecular mechanisms behind the negative association of mtDNAcn and semen 

analysis are still unknown. During spermiogenesis at the stage of elongated spermatids, 

mitochondria are eliminated with a large part of cytoplasm in the form of residual bodies 

(Figure 16). As a result, only 22-75 mitochondria are present in the mature mammalian 

spermatozoa (Otani et al., 1988). Concomitantly, the number of mtDNA decreases during 

spermiogenesis through the downregulation of TFAM protein, which is known to be the 

regulator of transcription and replication processes (Larsson et al., 1997; Larsson et al., 1998; 

Rantanen and Larsson, 2000). Maintaining of mtDNAcn during spermiogenesis might have a 

compensatory significance in case of genetic abnormalities in mitochondrial DNA. For 

example, it was found that the increase of mtDNAcn could improve a severe disease 

manifestation resulted from mtDNA mutations in testis (Jiang et al., 2017). In other words, the 

level of normal mtDNA without mutation will be higher, but the mtDNA mutation load remains 

the same. 

Apart from male fertility assessment, mtDNA copy numbers might have a predictive 

value for early ART outcome. For instance, the association of sperm mtDNAcn with lower 

pregnancy probabilities has been demonstrated in the study of Rosati (2020). Moreover, it was 

found that the fertilization by sperm with high mitochondrial DNA content might lead to lower 

odds of embryo development to the blastocyst stage (Wu et al., 2019). At the same time, Tiegs 

(2020) reported no correlation among sperm mitochondrial DNA quantity and fertilization, 

blastocyst development, and live birth rates from patients undergoing ICSI. However, the 

analysis confirmed the association between increased sperm mtDNAcn and decreased 

spermatozoa motility (Tiegs et al., 2020). 

The level of mtDNAcn may also indicate spermatogenic dysfunction. For example, 

mtDNAcn have been proposed as an indicator of spermatogenesis’s efficiency based on the 

significant decrease of mtDNAcn after varicocelectomy (Gabriel et al., 2012). Moreover, the 

mtDNAcn in human sperm have been associated with different environmental pollutants such 

as air pollutants (Zhang et al., 2020), polycystic aromatic hydrocarbons (PAHs) (Ling et al., 

2017) and synthetic organic chemicals such as monocarboxy-isononyl phthalate (Huffman et 

al., 2017). Interestingly, the study by Luo (2012) demonstrated increased mtDNAcn at high 

altitudes (5.300 m), i.e., at hypoxic conditions (Luo et al., 2011). Given the impact of 

environmental factors and lifestyle on mtDNAcn, Wu (2019) suggested mtDNAcn as an 
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indicator of male fertility based on consecutive diagnoses rather than a single abnormal sample 

(Wu et al., 2019). 

 

 

Figure 16 Morphologic changes during spermiogenesis. (1) The round spermatids start the 

formation of the acrosomal vesicle from the trans-Golgi stacks. (2) More advanced round 

spermatids develop the acrosome, cluster the Golgi apparatus and initiate nucleus condensation. 

(3, 4) The process of spermatid elongation. The proximal centriole participates in flagellum 

formation. Mitochondria are organized into longitudinal rows in the cytoplasmic lobes of the 

spermatids in preparation for loading onto the outer dense fibers. (5, 6) Elongated spermatid 

with well defined acrosome, hyper condensed nucleus, and excess cytoplasm containing 

residual mitochondria (not specified in the figure). (7) Fully mature spermatozoon released at 

spermiation, without a residual body.  

____________________________________________________________________________________________________ 

This figure was published in Fertility and Sterility Reviews, 2(1), Oehninger S., Kruger T.F., Sperm 

morphology and its disorders in the context of infertility, pp.75-92, Copyright Elsevier (2021). 

 

5.4 Limitations of the study 

In Paper I, we provide a methodology for high-resolution imaging of human 

spermatozoa applying live-cell compatible fluorescent probes and subsequent cell 

immobilization with patches of agarose. A background signal has been detected for the 
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uppermost part of the imaging stacks contacting with the agarose patch. Despite this, the 

method revealed structural details of the cells. However, SIM of living spermatozoa cannot be 

applied directly to the clinical practice due to the usage of fluorescent probes and the expensive 

equipment.  

For the analysis and classification of human sperm cells in Papers II-III we applied 

QPM assisted with AI. Despite the feasibility of the non-labeled nanoscopic imaging technique, 

a clinical trial is required to translate the innovation into life. However, there are some concerns 

to consider before clinical trial and application steps. One important aspect is the time required 

for imaging processing, which might be crucial for sperm analysis and selection upon 

manipulations in reproductive clinics. Moreover, a specially trained operator is required to 

interpret the results of the QPM imaging. Instead of this, the system should be user-friendly, 

provide fast and automated results. Additionally, the precision of the resulted interferogram is 

defined by the technical equipment, which might be expensive for routine use in the IVF 

laboratory.  

For our systematic review and meta-analysis (Paper IV) on differences in mtDNAcn 

between the patients with normal and abnormal semen analyses, only five of 10 selected studies 

were included for quantitative synthesis. Moreover, some studies performed the semen analysis 

based on WHO 1999 criteria (May-Panloup et al., 2003; Amaral et al., 2007), whereas others 

used the WHO 2010 criteria (Tian et al., 2014; Bonanno et al., 2016; Faja et al., 2019). A 

subgroup analysis including different sperm abnormalities, i.e., astheno-, oligoastheno-, 

asthenoterato-, oligoasthenoteratospermia, etc., was not possible to conduct due to not all 

studies divided the abnormal semen analyses into subgroups. Some studies included groups of 

patients with only reduced sperm motility and normal sperm counts as the abnormal semen 

analysis for the study group.  

 

5.5 Future perspectives  

There are several translational points on the way to the clinical implementation of any 

innovation. The proof of principle and feasibility of non-invasive QPM has been demonstrated 

effectively for analyzing human spermatozoa. However, before initiating a clinical trial, 

researchers and clinicians have to establish the correlation between sperm cell morphology and 

fertilizing potential of the individual cell. Assessment of fertilizing potential of individual 

sperm cell might be performed by measuring different features, including mtDNAcn. The 

optimization of the QPM method has to be done to improve the system’s specificity for the 
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sperm cells analysis. First, the development of holographic approaches to image motile 

spermatozoa is needed. Second, the implementation of virtual staining achieved by advanced 

deep learning analysis of unlabeled QPM data may provide detailed information about different 

cellular components, which appears to be one of the most promising tools in ART settings in 

the future. 

Finally, uncovering the association between mtDNAcn and semen quality suggests 

future research, including detection of the underlying mechanisms behind mtDNA increase at 

abnormal semen analysis. Moreover, further works need to be done on the connection of sperm 

mtDNAcn and ART outcome.  
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6 CONCLUSIONS  

Given the importance of characterizing the sperm cell morphology, which is a relevant 

parameter for semen analysis and spermatozoa selection, we employed the advantages of nano-

optics to study and classify human sperm cells. First, we provided a methodology for live-cell 

imaging of human spermatozoa using Structured Illumination Microscopy, which has shown a 

significant resolution of spermatozoa features compatible with transmission electron 

microscopy imaging. This methodology is expected to be a promising tool for sperm cell 

research, especially in subcellular structures analysis. Secondly, we used the technical 

capability of holographic microscopy to detect the morphology changes of spermatozoa upon 

oxidative stress. The result of our study suggests the shift of optical properties of human sperm 

heads after exposure to oxidative stress. Moreover, QPM provided an opportunity to distinguish 

the normal sperm cells from those under pathophysiological conditions applying deep learning 

algorithms. This quantitative non-invasive imaging method may be of great significance for 

automated analysis of the semen and spermatozoa selection in ART.  

Additionally, our systematic review and meta-analysis on published literature provided 

evidence that the increase of sperm mitochondrial DNA copy numbers is associated with 

abnormal semen quality. The mechanism by which mtDNAcn is increased in males with semen 

abnormalities is still unclear. However, considering the presence of a higher number of 

mitochondrial DNA in abnormal semen, the detection of mtDNAcn may be used for diagnostic 

purposes. 
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Abstract: Structural details of spermatozoa are interesting from the perspectives of 
fundamental biology and growing reproductive health problems. Studies of nanostructural 
details of these extremely motile cells have been limited to fixed cells, largely using electron 
microscopy. Here we provide the protocols for and demonstrate live-cell multi-color super-
resolution imaging of human spermatozoa using structured illumination microscopy (SIM). 
By using patches of agarose for immobilization, we achieved four-channel 3D SIM imaging 
of the plasma membrane, nucleus, mitochondria and microtubulin in the same living sperm 
cells. We expect that high-resolution imaging of living spermatozoa will be implemented for 
research on fundamental cellular mechanisms together with morphological aberrations 
involved in male infertility for a future improved cell selection process in in vitro fertilization 
treatments. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Research on subcellular organization of human reproductive cells and preimplantation 
embryos is becoming increasing popular as it is considered to be important to tackle growing 
reproductive health problems. Along with female infertility, male factor infertility is a 
significant issue which may result from different causes, such as anatomical anomalies, 
hormonal imbalances, infections or genetic abnormalities. However, the etiology of male 
infertility remains undiagnosed in about one third of the cases [1,2]. Nowadays, male 
reproductive health assessment is primarily based on sperm quality, and morphology is one of 
the main characteristics evaluated in clinical practice. Changes in the ultrastructure and 
general morphology of sperm cells serves as an indicator of the influence of different physical 
(e.g. freezing in reproductive technologies) [3,4], chemical (occupational exposure to toxic 
substances) or environmental factors on semen reflecting male reproductive health during life 
[5,6]. 

Until recently, numerous studies have been performed to study the ultrastructure of sperm 
cells using transmission electron microscopy (TEM) to obtain high resolution images [3,7–9]. 
Compared to TEM, optical microscopy often enables the analysis of living cells, resulting in 
the elimination of artifacts specific to cell fixation, such as changed protein conformation 
with associated loss of staining specificity [10,11]. Though a valuable tool, the diffraction 
limit renders conventional light microscopy unable to resolve details finer than about 250 nm 
laterally and 500 nm axially using a high-end microscope. Optical nanoscopy (or super-
resolution optical microscopy) encompass an array of techniques for overcoming the 
resolution limit of conventional microscopy, opening avenues for studying biological samples 
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in much greater detail than previously possible without the extensive sample preparation 
required for electron microscopy [12]. 

Structured illumination microscopy (SIM) is a live-cell compatible super-resolution 
technique that achieves greatly enhanced contrast along with a factor of two resolution 
enhancement in all three spatial dimensions as compared to the diffraction limit [13]. For 
biological structures just below the conventional resolution limit, SIM can thus be applied as 
a tool for valuable additional structural information in living cells. In the case of sperm cells, 
structural analysis using multi-color SIM offers opportunities for a more precise description 
of disease specific defects responsible for infertility, like morphological aberrations 
associated with teratozoospermia [14] or asthenozoospermia [15,16]. In addition to a better 
description of morphology, we expect that live-cell studies of sperm cells at super-resolution 
and enhanced contrast will contribute to a gain in knowledge about fundamental cellular 
mechanisms that might be implemented for an improved reproductive cell selection process in 
future in vitro fertilization (IVF) treatments. 

The biggest hurdle for live-cell high-resolution imaging of sperm cells has been the 
extreme motility associated with their progressive swimming (~66 µm/s [17]), in addition to 
their free-floating nature as suspension cells. Until now, to the best of our knowledge, all 
super-resolution imaging of human spermatozoa has been limited to fixed cells. Other 
challenges associated with multi-color super-resolution microscopy of any cell type are 
labeling, label induced toxicity and phototoxicity. Here we provide a methodology for 
overcoming above-mentioned hurdles and demonstrate up to four-channel 3D SIM imaging 
of different sub-cellular structures in living human spermatozoa. We also provide labeling 
protocols and discuss associated challenges and opportunities. 

2. Materials and methods 

2.1 Sample preparation 

Semen preparation 

The Regional Committee for Medical and Health Research Ethics of Norway (REK-Nord) 
approved the project. Experiments were performed using semen of donors from the IVF clinic 
of the University Hospital of North Norway, Tromsø, Norway. All participants signed a 
written informed consent. Semen samples were collected according to the guidelines of the 
World Health Organization (WHO) with an abstinence period of 3–5 days. 

After liquefaction, semen samples were examined using light microscopy and Neubauer-
improved counting chambers. In the experiments, all samples contained no less than 60 
million cells per milliliter and had progressive motility >50%. The swim up method was used 
to wash the samples. The semen samples were diluted with 5 mL of sperm washing medium 
(Sage) and centrifuged for 10 min at 700 x g. Supernatant was removed and the pellet was 
washed again. After removing the supernatant, 0.5 mL of swim up medium was layered and 
the tube was put into an incubator (5.0% CO2, 37°C). During 60 min of incubation, highly 
motile spermatozoa migrated to the above layered medium. After incubation, the supernatant 
was aspirated with pipette, centrifuged and the sediment was used for the following 
procedures. 

Labeling, immobilization and imaging conditions 

Labeling and imaging were done at room temperature (~23°C) in PBS or Live Cell Imaging 
Solution (Molecular Probes) as summarized in Table 1. For multi-color experiments, the label 
requiring the longest incubation time was added to the cells first, and then sequentially the 
rest of the probes, so that at the end of the incubation time, the cells had been subjected to 
approximately the concentrations and labeling times as listed in Table 1. After incubation 
with the labels, the samples were diluted in PBS (~1:15) and spun down using 800 x g for 10 
min. The supernatant was removed and the samples resuspended in PBS to a concentration 
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found suitable for the respective sample and experiment. Drops of about 8 µL were placed on 
coverslips (#1.5 washed in 100% ethanol and placed in sample holders for live-cell 
microscopy) and covered with refrigerated patches of ~2% agarose (High-resolution, Sigma-
Aldrich) in PBS. When the cells after a couple of minutes had become fully immobilized, the 
samples were covered with a plastic lid to prevent further drying during imaging. SiR-tubulin 
was purchased from Spirochrome (Cytoskeleton kit), while all other probes were purchased 
from Thermo Fisher Scientific. 

Table 1. Labeling conditions applied for SIM imaging 

Label Concentration Incubation time  
CellMask Orange 1:1000 10 min  
MitoTracker Green 200 nM 20 min  

Hoechst 34580 5 µg/mL 20 min  
SiR-tubulin 1 µM 2 h  

2.2 Microscope 

Images were acquired using a DeltaVision OMX V4 Blaze imaging system (GE Healthcare) 
equipped with a 60X 1.42NA oil-immersion objective (Olympus), three sCMOS cameras, and 
405, 488, 568, and 642 nm lasers for excitation. The vendor specified optical resolution of the 
system (3D SIM) is 110-160 nm laterally, and 340-380 nm axially, depending on color 
channel. To surpass the diffraction limit, this SIM set-up uses sinusoidal illumination patterns 
and acquires 120 images per 1 µm z-stack thickness (3 illumination angles times 5 phase 
shifts times 8 planes/µm thickness) per color channel. Super-resolution 3D images are then 
obtained via image processing using the reconstruction software described below. 

2.3 Image processing 

Deconvolution and 3D SIM image reconstruction were completed using the manufacturer-
supplied SoftWoRx program (GE Healthcare). Image registration (color alignment) was also 
performed in SoftWoRx using experimentally-measured calibration values compensating for 
minor lateral and axial shifts, rotation, and magnification differences between cameras. 
Further image processing was done using Fiji/ImageJ [18] 

3. Results and discussion 

3.1 Single-color imaging and immobilization 

Immobilization using patches of agarose made high-resolution imaging of living spermatozoa 
possible. Figure 1 shows fluorescence microscopy images of living spermatozoa acquired 
using deconvolution microscopy (upper panel) and SIM (lower panel) for various live-cell 
compatible probes (CellMask Orange, panels (a) and (e); MitoTracker Green, panels (b) and 
(f); Hoechst 34580, panels (c) and (g); SiR-tubulin, panels (d) and (h)). The contrast and 
resolution enhancement for SIM compared to conventional deconvolution microscopy is 
apparent for all structures, but most prominent for the mitochondria-containing mid-piece, 
panels (a), (b), (e) and (f), where structures around 100 nm length-scale are prominent. For 
the nucleus, only minor contrast enhancement is visible, while for microtubulin (panels (d) 
and (h)) the resolution doubling provided by SIM makes it evident that the centriole 
(indicated by arrows) is completely separated from the rest of the axoneme. 

Imaging from below through the coverslip (and not through the agarose) resulted in 
images not significantly affected by the agarose with absorbed leftover dye. Imaging a few 
planes below the agarose enabled us to acquire high quality SIM images of most of the living 
sperm cells, although not for the uppermost part (0.2 - 0.3 µm) of the cells, which was stuck 
in the agarose. To illustrate, the sample plane in Fig. 2(a) is unusable because of the signal 
from the agarose (with absorbed leftover dye), while for the neighboring sample planes 
shown in Fig. 2(b) and 2(c), the agarose is now above and not in the image plane, enabling us 
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to observe the cell at high resolution and contrast. In the particular cell depicted, an 
abnormally `puffed up’ membrane morphology is revealed, clearly different from the tightly 
wrapped membrane in e.g. Fig. 1(e). 

Though immobilization for live-cell microscopy using patches of agarose (often combined 
with cell growth medium) is widely applied in microbiology (e.g. discussed in [19]), this 
technique is not extensively used in the ‘eukaryotic cell community’. We expect this 
immobilization technique applied here successfully for SIM of spermatozoa to be also 
directly applicable to other types of suspension cells that are challenging to image live 
otherwise. The addition of an agarose patch on top of the sample is suitable for imaging set-
ups where both illumination and detection are conducted through the coverslip (and not 
through the agarose), as is often the case in fluorescence microscopy. 

 

Fig. 1. Comparison of deconvolution microscopy (upper panels) and SIM (lower panels) 
images of living human spermatozoa for different probes. (a), (e) Plasma membrane labeled 
using CellMask Orange; (b), (f) Mitochondria labeled using MitoTracker Green; (c), (g) 
Nucleus labeled using Hoechst 34580; (d), (h) Microtubulin labeled using SiR-tubulin. The 
contrast and resolution enhancement are apparent for all probes, but most significant for the 
region containing mitochondria (panels (a), (b), (e) and (f)), but also for the centriole, indicated 
by arrows in panels (d) and (h). The images are single z-sections. 

 

Fig. 2. Comparison of background signal in z-planes 2 (a), 3 (b) and 4 (c) counted from the 
agarose patch (top) used for immobilization. The distance between the z-slices is 125 nm. The 
agarose patch (with absorbed leftover dye) only causes significant background signal in the 
uppermost planes. The cells were labeled using CellMask Orange, MitoTracker Green and 
Hoechst 34580 and imaged live using SIM. 
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Fig. 3. Four-channel SIM image of living human spermatozoa labeled using CellMask Orange 
(yellow), MitoTracker Green (green), Hoechst 34580 (turquoise) and SiR-tubulin (magenta). 
The image is a 1 µm maximum intensity projected z-stack. 

3.2 Multi-color SIM imaging 

Figure 3 shows a four-channel SIM image of living human spermatozoa labeled using 
CellMask Orange, MitoTracker Green, Hoechst and SiR-tubulin. CellMask (yellow) labels 
the plasma membrane and outlines the entire cell, MitoTracker (green) labels mitochondria in 
the mid-piece clutching around the axoneme labeled using SiR-tubulin (magenta). Hoechst 
(cyan) labels DNA and is here visible only in the lower part of the head. For multi-color 
experiments, similar concentrations and labeling times were applicable as described for the 
single-probe experiments, though the labels were added sequentially to fit their individually 
optimized labeling time (with a single washing step in the end), resulting in slightly varying 
concentrations compared to the single-color experiments. Multi-color super-resolution 
imaging of living sperm cells unlocks exciting new possibilities regarding detailed analysis of 
subcellular structures for various cellular conditions, that can be employed to e.g. better 
understand diseases and the effect of different treatments in the field of reproductive 
medicine. 

Four-channel SIM imaging of living cells is in general challenging for four reasons in 
particular: sample movement, photobleaching, phototoxicity, and depth-induced spherical 
aberrations. Sample movement was effectively eliminated using agarose patches. 
Photobleaching was countered using high labeling concentrations of bright photostable dyes 
with lowered illumination intensities and instead longer exposure times (20-30 ms) to ensure 
sufficient modulation contrast of the illumination pattern. Phototoxicity was not found 
problematic for these experiments as only single time-points were considered, although the 
four-channel imaging time for a 1.5 µm z-stack was around 20 s. Spherical aberrations were 
mitigated in these samples, through optimization of the immersion oil refractive index in use 
(1.516 was found appropriate for the four-channel imaging experiments), the tenuity of the 
samples (~0.5 – 3 µm thickness) and the sample placement directly on the coverslip. For 
thicker samples, spherical aberrations often cause SIM reconstruction artifacts, as the sample-
induced aberrations can only be optimally corrected for one channel at a time. 

4. Conclusions and summary 

We provide a methodology for live-cell imaging of human spermatozoa using SIM, which is 
also applicable for a wide variety of other types of suspension cells and for imaging 
techniques where both illumination and detection are conducted through the coverslip. 
Labeling with fluorescent probes compatible with live-cell imaging, and subsequent 
immobilization using patches of agarose, enabled up to four-channel SIM imaging that 
revealed an unprecedented level of structural details of living sperm cells. This methodology 
shows great promise for shedding new light on sub-cellular structures and cellular 
mechanisms of the male reproductive cell in both healthy and diseased subjects, as live-cell 
imaging at super-resolution enables a much more precise description of e.g. morphological 
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aberrations responsible for infertility. As compared to electron microscopy, the proposed 
methodology not only enables live-cell experiments, but also eliminates fixation steps and 
fixation related artefacts. This enables reduced sample preparation time and allows for multi-
channel colocalization experiments by means of standard labeling protocols. In addition to a 
better description of morphology, we expect that live-cell studies of sperm cells at high 
resolution and contrast will contribute to an increased knowledge of fundamental cellular 
mechanisms that might be implemented for an improved reproductive cell selection process in 
IVF treatments in the future. 
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Partially spatially coherent digital 
holographic microscopy and 
machine learning for quantitative 
analysis of human spermatozoa 
under oxidative stress condition
Vishesh Dubey   1,2, Daria Popova3, Azeem Ahmad1,2, Ganesh Acharya3,4, Purusotam Basnet3, 
Dalip Singh Mehta1 & Balpreet Singh Ahluwalia2

Semen quality assessed by sperm count and sperm cell characteristics such as morphology and motility, 
is considered to be the main determinant of men’s reproductive health. Therefore, sperm cell selection 
is vital in assisted reproductive technology (ART) used for the treatment of infertility. Conventional 
bright field optical microscopy is widely utilized for the imaging and selection of sperm cells based on 
the qualitative analysis by experienced clinicians. In this study, we report the development of a highly 
sensitive quantitative phase microscopy (QPM) using partially spatially coherent light source, which is 
a label-free, non-invasive and high-resolution technique to quantify various biophysical parameters. 
The partial spatial coherence nature of light source provides a significant improvement in spatial phase 
sensitivity and hence reconstruction of the phase of the entire sperm cell is demonstrated, which was 
otherwise not possible using highly spatially coherent light source. High sensitivity of the system 
enables quantitative phase imaging of the specimens having very low refractive index contrast with 
respect to the medium like tail of the sperm cells. Further, it also benefits with accurate quantification 
of 3D-morphological parameters of sperm cells which might be helpful in the infertility treatment. The 
quantitative analysis of more than 2500 sperm cells under hydrogen peroxide (H2O2) induced oxidative 
stress condition is demonstrated. It is further correlated with motility of sperm cell to study the effect 
of oxidative stress on healthy sperm cells. The results exhibit a decrease in the maximum phase values 
of the sperm head as well as decrease in the sperm cell’s motility with increasing oxidative stress, i.e., 
H2O2 concentration. Various morphological and texture parameters were extracted from the phase 
maps and subsequently support vector machine (SVM) based machine learning algorithm is employed 
for the classification of the control and the stressed sperms cells. The algorithm achieves an area under 
the receiver operator characteristic (ROC) curve of 89.93% based on the all morphological and texture 
parameters with a sensitivity of 91.18%. The proposed approach can be implemented for live sperm cells 
selection in ART procedure for the treatment of infertility.

Infertility affects approximately 15% of couple worldwide1. Male factor infertility affects approximately 7% of 
the general male population, and poor semen quality is considered to be one of the main factors2. Along with 
inherited genetic problems, meiotic abnormalities causing miscarriages and inflammation, sperm abnormalities 
can be due to oxidative stress activated during the process of in-vitro fertilization (IVF) itself3. Standard sperm 
manipulations, such as wash from seminal plasma, cryopreservation and centrifugation, may impair antioxidant 
defence and increase the production of reactive oxygen species (ROS)4,5. Low level of ROS modulates signalling 
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pathways required for human sperm activation, whereas high level impairs sperm function, leading to infertility. 
Specifically, oxidative stress is known to affect the integrity of the sperm genome, result in lipid peroxidation, loss 
in membrane fluidity, and decrease in sperm motility6,7.

Adverse effects of oxidative stress might not be explored with light microscopy. For that reason, sperm cells 
with impaired fertilizing potential can be picked by embryologists for intracytoplasmic sperm injection (ICSI). 
At the same time, routine oxidative stress screening is not performed in IVF laboratories because of high cost and 
complexity of standard tests8. Moreover, implementation of rapid diagnostics could replace long and cumbersome 
multi-step analytic procedures that require complex experimental equipment.

The human sperm cells are relatively transparent in nature and have almost similar optical properties as sur-
roundings leading to low refractive index (RI) contrast. Therefore, it is difficult to obtain a good contrast image 
by using bright field microscope. Several optical techniques have been developed for the contrast enhancement 
of sample images9–11, however, they do not provide any quantitative information of the specimen12,13. When the 
light passes through the specimen, the optical path delay (OPD) is generated in light field due to the RI differ-
ence between the cell and the surrounding medium. The OPD is measured using quantitative phase microscopy 
(QPM) techniques, which are based on the principle of interferometry. It can be further utilized to measure 
several optical properties of specimen. The QPM techniques have been employed for the visualization and the 
evaluation of specimens that are particularly useful in cell biology12–14. The key advantage of these techniques is 
that they provide high resolution 3-D quantitative information of the specimen without any labelling.

In this study, we have investigated the effects of externally induced oxidative stress by treating healthy sperm 
cells with hydrogen peroxide (H2O2) using spatially low coherent QPM and further the findings are correlated 
with clinically relevant motility parameter of the sperm cells. A number of studies have been implemented for 
the quantitative assessment of normal and immotile sperm cells utilizing QPM15–19, however the effect of oxida-
tive stress on the morphology and motility of the sperm cells is not done previously. In addition, existing QPM 
either utilized a narrowband (i.e., lasers) or broadband (i.e., light emitting diodes and halogen lamp) light sources 
for phase imaging of sperm cells17–20. The use of highly temporal and spatial coherent light sources, like lasers, 
degrades the interferogram’s quality due to speckle and spurious fringe formation, which eventually reduces the 
spatial sensitivity of the system21–23. This makes difficult to perform quantitative phase imaging (QPI) of the tail 
of sperm cells as it offers minute OPD18,19. The phase sensitivity can be improved by utilizing broadband light 
sources like white light, light emitting diodes and super-luminescent diodes24–26. However, such light sources 
require chromatic aberration corrected optics and dispersion compensation mechanism. In addition, single shot 
phase recovery over the whole camera field of view (FOV) is not possible due to low fringe density with low tem-
poral coherent light sources25. Thus, a monochromatic extended (i.e., pseudo-thermal) light source can be imple-
mented in QPM technique, which carries advantages of both narrow-band and broad-band light sources. Several 
methods have been proposed to synthesize pseudo-thermal light sources using rotating diffuser and vibrating 
multiple mode fiber bundle (MMFB), previously22,23.

A monochromatic laser beam is passed through a rotating diffuse to synthesize a pseudo-thermal light source 
which carries high temporal coherence (helps to obtain high fringe density over whole camera FOV) and low spa-
tial coherence (generate speckle and spurious fringe free interfergrams) properties. Such light source is employed 
with Linnik-type interference microscopy system to record off-axis holograms of sperm cells. The phase maps of 
sperm cells are then recovered with improved spatial phase sensitivity of the order of 20 ± 1.5 mrad. It is exhibited 
that phase map of the tail of sperm cell is nicely recovered with pseudo-thermal light source, which is otherwise 
not possible in laser based phase imaging. Most of the QPM techniques are, therefore, implemented only on dried 
sperm cells to recover phase map of the tail of sperm cells, previously17,19. Further, diagnosis of both the head 
and the tail of sperm cells are important for the procedures of artificial reproductive technologies. According 
to the WHO criteria, healthy tail having principle piece should be uniform along its length, be thinner than the 
midpiece, with a length of about 45 µm and without any sharp angle27. Thus, quantitative assessment of sperm tail 
can help to choose a healthy sperm in the clinical practice. QPM may also provide a better visualization to detect 
the abnormalities like defects of head neck attachment, primary ciliary dyskinesia (PCD), or dysplasia of fibrosis 
sheath (DFS).

It was observed that the optical thickness of the sperm’s head decreases as a function of increase in the H2O2 
concentration. Several morphological and texture parameters were extracted from the phase maps to measure the 
changes during oxidative stress. A support vector machine (SVM) based classifier is developed for the classifica-
tion of normal and stressed sperm cells. The morphological and texture parameters extracted from phase maps 
were used to train the algorithm for better classification. For the training of the classifier, 60% of total samples 
were used and rest 40% were used as test specimen. We have achieved an accuracy of 89.93% for the classification 
of control and test sperm cells with SVM model. The observations support the hypothesis that changes caused 
by the oxidative stress could result in the decrease of maximum phase value of the sperm cell as compared to the 
normal one. The findings of QPM were correlated with a dose-dependent decrease in progressive motility of the 
sperm cells. The decrease in sperm motility with an increase in the H2O2 concentration was observed as com-
pared to the controlled samples.

Methods and Materials
Principle of DHM.  DHM is based on the principle of interferometry, in which a full or partially coherent 
light is divided into two beams, one as reference and other illuminates the specimen called object wave. Further, 
the scattered wave from object and reference waves interfere to generate the hologram and the 2D intensity dis-
tribution can be expressed as:

π φ= + 


+ + Δ 


h x y a x y b x y cos i f x f y x y( , ) ( , ) ( , ) 2 ( ) ( , ) (1)x y
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where a(x, y) and b(x, y) represent the background (DC) and the modulation terms, respectively, Δφ(x, y) is the 
phase difference between the object and reference fields, fx and fy are the spatial frequencies of the interference 
pattern along x and y directions, respectively.

For the convenience, the above intensity pattern of hologram can be rewritten in the following form

π π= + + + − +⁎h x y a x y c x y exp i f x f y c x y exp i f x f y( , ) ( , ) ( , ) [2 ( )] ( , ) [ 2 ( )]x y x y

where

φ=c x y b x y exp i x y( , ) ( , ) ( ( , ))

The hologram reconstruction allows the retrieval of the complex object field. To retrieve the phase informa-
tion, Fourier transform of the hologram is taken and one of the twin image peaks is filtered with numeric band 
pass filter in the frequency domain. Further, inverse Fourier transform is performed to reconstruct the hologram 
(hfilt) as a 2D array of complex numbers. The phase profile of the specimen is then simply measured as:

φΔ =












( )
( )

arctan
imag h

real h (2)

filt

filt

The phase Δφ depends on the thickness of the specimen and the RI difference of the specimen and the media 
containing the object itself. This phase variation having information of the morphology of specimen under inves-
tigation thus holography provides a 3D topographic profile of the specimen. The phase is related to the optical 
path difference (OPD) by the relation12:

φ π
λ

= × ∗ −x y h x y n x y n x y( , ) 2 2 ( , ) { ( , ) ( , )}
(3)s 0

where λ is the wavelength of incident light, h is the geometrical thickness of the specimen; ns and no are the 
refractive indices of the specimen and surrounding medium, respectively and there is an extra factor of 2 appears 
because the reflection configuration is utilized to record the hologram.

Morphological and Statistical Analysis.  The analysis of recovered phase is very important for the image 
based computer-aided diagnosis (CAD), which provides excellent accuracy in early stage disease detection28,29. 
Machine learning is a subfield of computer science having a range of applications in biomedical imaging, which 
uses the extracted morphological and texture features of the image to make predictions28,29. For the classification 
of sperm cells under control and oxidative stress conditions, the phase map of the head of sperm cells are utilized 
for the calculation of the various texture parameters, which were further utilized in SVM algorithm.

Once the phase maps of the sperm cells were extracted from the hologram, the head of the sperm cell isolated 
to extract the phase map based morphological and texture features. The optical thickness (OT) is related to the 
phase of the specimen by the relation φ λ π= ∗OT x y( , ) /4  (for reflection geometry), where λ is the wavelength 
of the light. The measured OT is utilized to measure the volume of sperm head and can be calculated by integrat-
ing OT over projected area as30,31

= ∬V OT x y dxdy( , ) (4)

where dx and dy are the calibrated pixel width along x and y directions, respectively.
The area element dS of the cell surface is calculated by Monge parameterization defined as30,32

= + +dS dxdy G G1 (5)x y
2 2

where Gx and Gy are the gradients along the x and y directions, respectively. Further, the surface area ‘S’ is defined 
as the sum of all the area elements and the projected area32. Next, sphericity ‘Ψ ’ of the sperm head was deter-
mined, whose values lie between 0 and 1 (for laminar disk and perfect sphere, respectively). It is defined as the 
ratio between the surface area (S) of a cell with the volume of the same cell and calculated as30,31,33

Ψ =
. ⁎V

S
4 84

(6)

2/3

Semen preparation.  Semen samples were obtained from men who attended the IVF clinic for the investi-
gation and/treatment of infertility. The Regional Committee for Medical and Health Research Ethics of Norway 
(REK_nord) approved the project. An informed consent was obtained from all participants.

The semen sample was collected according to the guidelines of the World Health Organization with an absti-
nence period of 3–5 days. After collection, the sample was allowed to liquefy for 30–40 min. Sperm counts were 
evaluated using the Neubauer-improved counting chambers. All ejaculates used in the experiments had an origi-
nal sperm concentration more than 60 million of cells per milliliter, progressive motility more than 50% and with 
normal morphology >14% following strict criteria. The sperm fraction with high motility was isolated by density 
gradient centrifugation method (Vitrolife, Sweeden). One milliliter of semen was carefully placed on the gradient 
layers (90% and 45% layers) and centrifuged at 500 g for 20 min. The pellet from the centrifuge tube was washed 
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twice with human Quinn’s sperm washing medium (SM; Origio, Denmark) at 300 g for 10 min. The supernatant 
was discarded, and the pellet was re-suspended in QA fert-medium supplemented with 5 mg/ml HSA and was 
used for following procedures.

To perform oxidative stress experiment, sperm sample was diluted to a concentration of 5.0 × 106cells/ml 
using culture medium. Further, 96 well tissue culture plates were filled with sperm in medium (Quinn’s Advantage 
Protein plus Fertilization medium, SAGE, Denmark) with different concentrations of H2O2 (10 µM, 40 µM, 70 µM, 
100 µM) and the reference chamber was filled with the same concentration of semen without H2O2. The samples 
were incubated for 1 hour at 37 °C, 5–6% CO2. After incubation motility of each sperm sample was graded in two 
clusters: progressive motility (PR) and non-progressive motility (NP), which were reported as in percentages.

For QPM, the cells of each concentration were placed in a PDMS chamber on reflecting silicon (Si) chip after 
1 hour of incubation. To immobilize the sperm cells, samples were fixed with 4% PFA for 30 min at RT and washed 
in phosphate-buffered saline (PBS) for 5 min. Finally, 50 μL of PBS were added in the PDMS chamber with fixed 
cells and the samples were covered by cover glass.

Experimental Details.  The schematic of the partial spatial coherence gated QPM/DHM system based on 
Linnik interferometer is shown in Fig. 1. To reduce the phase noise of the system, the spatial coherence of the 
laser light source is reduced and the resulting light beam illuminates the specimen. It is demonstrated that when a 
coherent light incident on a rotating diffuser (RD) and the diffused light is coupled into the  multiple multi-mode 
fiber bundle (MMFB)  then its output acts as a pseudo thermal light source having partial spatial and highly tem-
poral coherence properties. The detailed study of the speckle reduction can be found elsewhere21–23.

A highly coherent laser light (He-Ne @632.8 nm) beam is expanded using microscope objective MO1 and 
passed through a RD. The beam spot size of 4.5 mm is made onto the diffuser plane to match the diameter of 
MMFB. The scattered photons are collected by lens L1 (focal length f1 = 50 mm) and pumped into the MMFB. 
The light from MMFB output is first collimated and then focused at the back-focal plane of the MO3 by utilizing 
the lenses L2 (f2 = 75 mm), L3 (f3 = 150 mm) and beam splitter (BS). Thus the samples are illuminated by a nearly 
collimated beam for their accurate phase imaging. In the reference arm an optically flat mirror (of the order of 
λ/10) is used. The reflected light from the reference mirror and the specimen are re-combined at BS to form inter-
ference pattern. The interferograms are then projected on the CMOS image sensor (Hamamatsu ORCA-Flash4.0 
LT, C11440-42U) using tube lens L4 (f4 = 200 mm). The camera exposure time is kept 50 ms.

Comparison of coherent laser and pseudo-thermal light source based phase imaging.  In the 
proposed geometry, a pseudo thermal light source is used to reduce the spatial phase noise of the system which 
further enhances the measurement accuracy of the system. First, we have compared the spatial phase sensitivity 
of the system by imaging the sperm cell with fully coherent and partially coherent (pseudo-thermal) light sources. 
Figure 2 shows interferogram, reconstructed phase map of a sperm cell and the spatial phase noise of the system 
for fully and partially spatially coherence light sources. The spatial phase sensitivity of the system is enhanced 
when the test specimen is illuminated by the partially spatially coherent light source. Figure 2(a,d) show the 
interferograms of the sperm cell utilizing direct laser and synthesized pseudo-thermal light sources, respectively. 
Highly coherent nature of light source leads to speckle and non-uniform illumination of the specimen as shown 
in Fig. 2(a), while pseudo-thermal light source provides a speckle free uniform illumination (Fig. 2(d)). The object 
is clearly visible in Fig. 2(d) with illumination of pseudo-thermal light source which is otherwise not visible with 
direct laser source (Fig. 2(a)). Figure 2(b,e) show their corresponding reconstructed phase maps of the interfero-
grams depicted in Figs 2(a) and 2(d). It can be observed from the phase images that the finer features of the sperm 
cells i.e. neck and tail is not resolved in phase map of hologram recorded by the direct laser, while whole sperm 
cell is clearly reconstructed in case of pseudo-thermal light source. In case of direct laser, the generation of speckle 

Figure 1.  Schematic diagram of the DHM setup with pseudo thermal light source for the acquiring the 
quantitative phase maps of sperm sample. (RD- rotating diffuser, L- lens, BS- Beam splitter, MO-microscope 
objective, MMFB- multiple multi-mode fiber bundle).
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and non-uniform illumination reduces the over-all spatial phase sensitivity of the system which results in poor 
resolution. The spatial phase sensitivity of the system for both kind of light sources were measured and compared. 
High spatial phase sensitivity is essential where minute phase variations in the target are needed to be quantified. 
Here, we utilized pseudo-thermal light source to enhance the spatial phase sensitivity of the phase microscopy 
system. The difference in phase values of the controlled and the 10 μM sperm cells is only 8%, which would be 
difficult to differentiate with direct laser based QPM technique due to high spatial phase noise. Figure 2(c,f) show 
the spatial phase noise of the system for the direct laser and pseudo-thermal light sources, respectively, where the 
color bars having different scale values. By measuring the standard deviation of the phase distribution, one can 
estimate the spatial phase sensitivity of the system. In our case, the phase sensitivity is observed to be 300 ± 11.9 
mrad and 20 ± 1.5 mrad for direct laser and pseudo-thermal light source, respectively.

Results and Discussion
Sperm cell motility after treatment with different concentrations of H2O2.  Significant differences 
in the motility parameters were detected when comparing the control sample with exposed samples with various 
H2O2 concentrations. The effect of different concentrations of H2O2 on progressive and non-progressive motility 
of spermatozoa are shown in Fig. 3(a,b) respectively (n = 7; seven ejaculates from different donors). Four different 
concentrations of H2O2 were tested (10 µM, 40 µM, 70 µM, 100 µM) for the oxidative stress study on sperm cells. 
Sperm samples were incubated for 1 hour at 37 °C in the absence (control) or presence (test) of H2O2.

Figure 2.  Measurement of the spatial phase sensitivity of QPM for direct laser and pseudo-thermal light 
sources. (a,d) are the interferograms obtained with healthy sperm cell as a test specimen, (b,e) reconstructed 
phase map of the sperm cell corresponding to (a,d), respectively and (c,f) spatial phase noise of the 
experimental setup for laser and pseudo-thermal light sources, respectively. Note that the scale of the color bars 
used in (c,f) having different values.

Figure 3.  Effects of the H2O2 on the motility of sperm cells (a) changes in the percentage of progressive motility 
and (b) non-progressive motility of sperm cells after H2O2 treatment at different concentrations comparing to 
control (mean ± SE, p < 0.05 vs. control).
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Evaluation of cell motility was performed by experienced biologist according to WHO 2010 criteria27. The 
motility of progressive class was graded as moving actively, linearly or in a large circle, regardless of speed. 
Non-progressive motility was estimated as nonlinear movement with flagellar force hardly displacing the head, 
or with only flagellar or head trembling. At least 100 cells per each H2O2 concentration were analyzed. For the 
estimation of motility of sperm cells, the cells were kept in 96 well tissue culture plates and observed under the 
inverted microscope with 40X magnification objective lens. H2O2 produces a concentration-dependent decrease 
in progressive motility of sperm cells (ANOVA: p < 0.05). The concentration at 100 µM of H2O2 had the most 
significant effect on the decrease in numbers of progressive motile cells in comparison with other doses (Fig. 3(a), 
(10 µM: 51 ± 10.7; 40 µM: 48 ± 10.9; 70 µM: 42 ± 11.9; 100: µM 34 ± 8.8; versus control: 59 ± 10.8%, paired t-test, 
p < 0.05). At the same time H2O2 affects most on the non-progressive motility at the concentrations of 70 µM 
and 100 µM as compared with control (70 µM: 19 ± 3.9; 100 µM: 29 ± 7.4; versus control: 6 ± 6.6%, paired t-test, 
p < 0.05). Both doses 10 µM and 40 µM of H2O2 did not influence to the non-progressive motility (10 µM: 14 ± 4.8; 
40 µM: 16 ± 5.4; versus control: 6 ± 6.6%, paired t-test, p > 0.05, (Fig. 3(b)). Effects on non-progressive motility 
were statistically significant at H2O2 concentration of 70 µM and 100 µM (p < 0.05 when compared with controls).

The effect of oxidative stress on sperm motility has been demonstrated in number of studies34–36. H2O2 is exter-
nally supplemented agent to induce oxidative stress on sperm cells. Our results support the previous studies that 
the extent of motility decrease depends on the concentration of H2O2. The underlying mechanism of H2O2 influ-
ence to sperm motility is described previously37,38. Membrane lipids of sperm cells contain unsaturated fatty acids 
which are vulnerable to peroxidation. Sperm incubation with H2O2 triggers lipid peroxidation cascade results in 
membrane loss of flexibility and plasticity which determines disrupted tail motion3,34,39. Moreover, motility may 
be decreased because of restriction of energy production by damaged mitochondria after oxidation40,41.

Quantitative phase imaging of sperm cells.  The quantitative morphological analysis of the sperm cells 
provides a better understanding of the behaviour of sperm cells under control and oxidative stress conditions. 
Figure 4 shows the recorded hologram and pseudo colour unwrapped phase map of sperm cell. Figure 4(a) shows 
a typical low spatial coherence hologram of the sperm cell and 2D view of the recovered phase map is shown in 
Fig. 4(b). The basic structure of the sperm cell composed of the head, mid piece, tail and end piece, the head is 
partially covered with nucleus and acrosome. Figure 4(c) shows the pseudo 3D phase map of the same sperm cell 
where maximum optical path delay is generated by the head of the sperm cell having value approximately 4 rad.

The low spatial coherence QPM/DHM is further used for the evaluation of the effects of oxidative stress on the 
morphology of the human sperm cells. Figure 5 shows the recovered phase maps of sperm cells treated with dif-
ferent concentration of H2O2. Figure 5(a–e) show the reconstructed 3D phase maps for the control, 10 μM, 40 μM, 
70 μM and 100 μM concentration of H2O2, respectively. It is observed from the phase images that with increasing 
concentration of H2O2, the maximum value of the phase of sperm head decreases which indicates that there is a 
change in the morphology of the sperm head. For the study of morphological changes in the sperm head during 

Figure 4.  Digital holographic process and reconstructed phase maps of sperm cell (a) Typical hologram of the 
sperm cell recorded from partially coherent DHM setup, (b) reconstructed phase map of sperm cell with it’s 
basic structure and (c) pseudo 3D phase map of the sperm cell. (color bar is showing the phase in radian, blue 
for zero and deep red for maximum phase).

Figure 5.  Pseudo-color plot of reconstructed phase maps of (a) normal sperm cells, and at different 
concentrations of (b) 10 μM, (c) 40 μM, (d) 70 μM and (e) 100 μM of concentration of H2O2, respectively (color 
bar shows the phase in radian, blue for zero and deep red for maximum phase).
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oxidative stress, several morphological parameters have been extracted from the phase maps. In total, more than 
2500 sperm cells were analysed to measure the optical and morphological parameters. Figure 6(a) shows the 
whisker box plots of maximum phase of the sperm head at different concentrations of H2O2. Figure 6(b) shows 
the whisker box plot for the optical thickness of the sperm head for control and 10 μM concentration of the H2O2. 
The optical thickness decreases after oxidative stress which further changes the morphology of the sperm cells. 
The structure of sperm suggest that the nucleus is tallest part sperm followed by acrosome and mid-piece which 
allows observer to distinguish nucleus from acrosome17,18. The reconstructed phase map show a clearly detectable 
edge of cell boundary and maximum phase in the nucleus region. The identification and quantification of the 
optical thickness of nucleus may provide the deformation of nucleus during oxidative stress as shown in Fig. 5. 
The acrosome having significant low OT due to lesser thickness as compared to nucleus. Hence, the quantification 
of the change in the OT of nucleus during deformation can be a good marker for the quantification of oxidative 
stress. Here, we have chosen control and 10 μM concentration of the H2O2 only for the comparative study because 
there is almost linear decrease in the maximum phase with increasing concentration of the H2O2 (Fig. 6a).

Characterization of morphological and texture parameters during oxidative stress.  In order 
to determine the effects of oxidative stress on the morphology of the sperm cell head, the morphology of head 
is quantified from the phase maps using calculations describes in materials and method section. Surface area 
(S), volume (V), surface to volume ratio (S/V) and sphericity (Ψ) parameters were analysed for classification of 
control and 10 μM concentration of the H2O2. Figure 7(a–d) show the whisker box plots of these parameters for 
sperm head under control and oxidative stress conditions. The results show that the surface area increases in 

Figure 6.  Whisker box plot for (a) maximum phase of the sperm head for control, 10 μM, 40 μM, 70 μM 
and 100 μM concentration of H2O2, respectively, and (b) optical thickness (OT) of the control vs. 10 μM 
concentration of H2O2. The central red lines indicate the median, and bottom and top sides of blue box indicate 
the 25th and 75th percentiles, respectively. The black lines extended vertically from blue boxes specify extreme 
data points without outliers, and ‘+’ symbols in red color are plotted for outliers.

Figure 7.  Morphological parameters of sperm head as expressed with the whisker box plots of (a–d) surface 
area, volume, surface area to volume ratio (S/V), and sphericity under normal (control) and oxidative stress 
conditions.
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sperm cell head after the externally induced oxidative stress (Fig. 7a), while the volume is approximately constant 
during this process as can be seen in Fig. 7(b). There is an increase in the surface to volume ratio while sphericity 
decreases after oxidative stress. The increase in the S and S/V with decrease in ψ indicates that the flattening of the 
cells under stress assuming constant RI of the sperm head during whole process (Fig. 7(c,d)).

For the statistical analysis, selection and extraction of texture features are also important for the classification 
of any disease. Here, we have extracted various texture features from the phase maps of the sperm heads such as: 
mean, variance, entropy, kurtosis, skewness and energy. All the parameters were extracted by choosing a region 
of interest (ROI) of the sperm cells and listed in Table 1. There is a decrease in the mean value of the phase distri-
bution over entire sperm head reflects the flattening of the sperm head i.e. decrease in the optical thickness of the 
sperm head after introducing 10 μM of H2O2 concentration. The decrease in the variance shows the less spread of 
data points around its mean value, while there is an increase in entropy predicts the increase in the randomness 
of phase distribution over entire sperm head. The increase in kurtosis and skewness show the more flatness and 
asymmetricity in phase distribution of sperm head. The decrease in the energy value shows the increase of heter-
ogeneity in phase distribution of sperm cell head.

Once all the morphological and texture parameters were extracted from the phase maps of sperm cells, a sup-
port vector machine (SVM) classifier has been developed for the classification of the control and oxidative stress 
induced sperm cells28,29,42. Eleven parameters: OT, S, V, S/V, ψ, mean, variance, entropy, kurtosis, skewness and 
energy were utilized as input predictor variables and the genuine state of the sperm as a response variable i.e. 0 for 
control and 1 for 10 μM H2O2 concentration treated sperm cells. Sensitivity, specificity and area under receiver 
operating characteristic (ROC) curve were calculated to check the accuracy of the model. Total data points are 
divided into two sets, 60% for the training of the model and 40% for the testing purpose. Figure 8 shows the ROC 
curve for the testing data points with a specificity and sensitivity of 88.61% and 91.18%, respectively with an accu-
racy of 89.93% for the classification of control and test sperm cells.

Conclusion
In present study, the capability of DHM using low spatial coherence light source alongwith SVM classi-
fier exploited to measure change in morphology of sperm head after oxidative stress. It is exhibited that 
pseudo-thermal light source based phase imaging provides reconstruction of the biological structure having min-
ute optical thickness (i.e., tail of the sperm cells), which is otherwise not possible under coherent illumination. 
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Table 1.  Texture parameters of sperm cell head for normal (control) and externally induced oxidative stress 
(10 μM H2O2 concentration) conditions.

Figure 8.  ROC curve for testing dataset of sperm head for control and 10 μM/ml H2O2 concentration treated 
sperm cells using eleven different morphological and texture parameters.
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It is known that fertilization capability of sperm cell is impaired under biological oxidative stress. The oxidative 
stress was induced using H2O2 treatment. Concentrations of H2O2 exceeding physiological threshold trigger the 
changes in semen leading to sperm cell dysfunction7,35,38. The evidence from previous studies suggests decrease of 
sperm cell motility due to membrane translocations of phospholipids3,43. In addition to membrane peroxidation, 
H2O2 initiates concentration-dependent increase of DNA fragmentation because of DNA strand breaks3,36,44,45. 
Using conventional microscopy, sperm cells with this type of anomalies might be amongst selected cells for intra-
cytoplasmic sperm cell injection (ICSI) procedure leading to treatment failure. Therefore, it is of great significance 
to develop noninvasive methods for sperm cells selection. DHM appears to be one of the most promising nonin-
vasive technique for the quantification of optical parameters of sperm cells13,15,17.

We found that H2O2 induces oxidative stress to the sperm cells which leads to the sperm cell dysfunction by 
decreasing its motility. The result of our study suggests the association between gradual progressive motility loss 
(Fig. 3) and the shift of optical properties of the sperm head (Figs 6, 7) after exposure to various concentrations 
of H2O2. The head morphology changes resulting from peroxidation might be due to de-condensation of genetic 
material because of DNA fragmentation. Quantitative evaluation of the phase shift by DHM provides an oppor-
tunity to use SVM to obtain new information on the exact structure and better distinguish sperm cells that are 
normal from those under oxidative stress (Fig. 8). Development of such machine learning algorithms could play 
an important role in automatic classification of the healthy and stressed sperm cells. The origin of decrease in 
the maximum phase of sperm head could be due to various reasons such as: deformation in nucleus, structural 
organization of sperm DNA, condensation of chromatin etc19. The morphometric values obtained in our study 
can provide the volumetric estimation for the quantitative comparison between control and H2O2 treated sperm 
cells. The correlation of decrease in the phase and deformation in the nucleus can be quantify by multimodal 
imaging in future where the boundary can be located by fluorescence imaging and QPM can provide the changes 
in the maximum phase of nucleus. QPM may have capability to quantify the changes due to fragmentation in 
DNA after introducing oxidative stress in human sperm which can be the motivation for this kind of analysis on 
the fertilization capacitance of sperm cell46,47.

One of the obstacles in IVF treatments is to recognize the sperm cells morphology by observing them under 
optical microscope whether it is under oxidative stress or not. However, by utilizing low spatial coherence 
DHM together with machine learning algorithms might provide better sperm selection during ICSI procedure. 
Moreover, as mentioned above, “hand-picked” spermatozoon for ICSI procedure might contain fragmented 
DNA, which can be detected indirectly by measuring sperm optical features using noninvasive, label-free QPM/
DHM technique. We believe that our approach with DHM and machine learning based algorithm for sperm 
analysis at the cellular level has a strong potential for improving IVF procedures and their outcomes.

References
	 1.	 Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reproductive Biology 

and Endocrinology 13, 37 (2015).
	 2.	 Forti, G. & Krausz, C. Evaluation and treatment of the infertile couple. The Journal of Clinical Endocrinology & Metabolism 83, 

4177–4188 (1998).
	 3.	 John Aitken, R., Clarkson, J. S. & Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. 

Biology of reproduction 41, 183–197 (1989).
	 4.	 Iwasaki, A. & Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertility and sterility 57, 409–416 

(1992).
	 5.	 Shekarriz, M., Thomas, A. & Agarwal, A. Incidence and level of seminal reactive oxygen species in normal men. Urology 45, 103–107 

(1995).
	 6.	 Hughes, C. M., Lewis, S. E., McKelvey-Martin, V. J. & Thompson, W. A comparison of baseline and induced DNA damage in human 

spermatozoa from fertile and infertile men, using a modified comet assay. MHR: Basic science of reproductive medicine 2, 613–619 
(1996).

	 7.	 Twigg, J., Fulton, N., Gomez, E., Irvine, D. S. & Aitken, R. J. Analysis of the impact of intracellular reactive oxygen species generation 
on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of 
antioxidants. Human reproduction (Oxford, England) 13, 1429–1436 (1998).

	 8.	 Ochsendorf, F. Infections in the male genital tract and reactive oxygen species. Human Reproduction Update 5, 399–420 (1999).
	 9.	 Pluta, M. & Maksymilian, P. Advanced light microscopy. Vol. 1 (Elsevier Amsterdam, 1988).
	10.	 Burch, C. & Stock, J. Phase-contrast microscopy. Journal of Scientific Instruments 19, 71 (1942).
	11.	 Lang, W. Nomarski differential interference-contrast microscopy. (Carl Zeiss, 1982).
	12.	 Lee, K. et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 

13, 4170–4191 (2013).
	13.	 Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE reviews 1, 018005 (2010).
	14.	 Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. Quantitative phase imaging. Progress in optics 57, 133–217 (2012).
	15.	 Coppola, G. et al. Digital holographic microscopy for the evaluation of human sperm structure. Zygote 22, 446–454 (2014).
	16.	 Crha, I. et al. Digital holographic microscopy in human sperm imaging. Journal of assisted reproduction and genetics 28, 725 (2011).
	17.	 Haifler, M. et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells. Fertility and sterility 104, 

43–47. e42 (2015).
	18.	 Mirsky, S., Barnea, I. & Shaked, N. Label-Free quantitative imaging of sperm for in vitro fertilization using interferometric phase 

microscopy. J Fertil In Vitro-IVF-Worldwide Reprod Med Genet Stem Cell Biol 190 (2016).
	19.	 Di Caprio, G. et al. Holographic imaging of unlabelled sperm cells for semen analysis: a review. Journal of biophotonics 8, 779–789 

(2015).
	20.	 Dubey, V. et al. Multi-modal chip-based fluorescence and quantitative phase microscopy for studying inflammation in macrophages. 

Optics express 26, 19864–19876, https://doi.org/10.1364/oe.26.019864 (2018).
	21.	 Ahmad, A., Dubey, V., Singh, G., Singh, V. & Mehta, D. S. Quantitative phase imaging of biological cells using spatially low and 

temporally high coherent light source. Optics letters 41, 1554–1557 (2016).
	22.	 Ahmad, A., Srivastava, V., Dubey, V. & Mehta, D. Ultra-short longitudinal spatial coherence length of laser light with the combined 

effect of spatial, angular, and temporal diversity. Applied Physics Letters 106, 093701 (2015).
	23.	 Goodman, J. W. Speckle phenomena in optics: theory and applications. (Roberts and Company Publishers, 2007).
	24.	 Dubey, V., Singh, G., Singh, V., Ahmad, A. & Mehta, D. S. Multispectral quantitative phase imaging of human red blood cells using 

inexpensive narrowband multicolor LEDs. Applied optics 55, 2521–2525 (2016).

https://doi.org/10.1038/s41598-019-39523-5
https://doi.org/10.1364/oe.26.019864


1 0

www.nature.com/scientificreports

Scientific Reports | (2019) 9:3564 | https://doi.org/10.1038/s41598-019-39523-5

www.nature.com/scientificreports/

	25.	 Yamauchi, T., Iwai, H., Miwa, M. & Yamashita, Y. Low-coherent quantitative phase microscope for nanometer-scale measurement 
of living cells morphology. Optics express 16, 12227–12238 (2008).

	26.	 Dubey, V., Singh, V., Ahmad, A., Singh, G. & Mehta, D. S. In Quantitative Phase Imaging II. 97181F (International Society for Optics 
and Photonics) (2016).

	27.	 Organization, W. H. WHO laboratory manual for the examination and processing of human semen (2010).
	28.	 Wernick, M. N., Yang, Y., Brankov, J. G., Yourganov, G. & Strother, S. C. Machine learning in medical imaging. IEEE signal processing 

magazine 27, 25–38 (2010).
	29.	 Wu, G., Shen, D. & Sabuncu, M. Machine Learning and Medical Imaging. (Academic Press, 2016).
	30.	 Popescu, G. Quantitative phase imaging of cells and tissues. (McGraw Hill Professional, 2011).
	31.	 Girshovitz, P. & Shaked, N. T. Generalized cell morphological parameters based on interferometric phase microscopy and their 

application to cell life cycle characterization. Biomedical optics express 3, 1757–1773 (2012).
	32.	 Ahmad, A. et al. Quantitative phase microscopy of red blood cells during planar trapping and propulsion. Lab on a Chip (2018).
	33.	 Kim, Y. et al. Profiling individual human red blood cells using common-path diffraction optical tomography. Scientific reports 4, 

6659 (2014).
	34.	 Whittington, K. et al. Reactive oxygen species (ROS) production and the outcome of diagnostic tests of sperm function. International 

journal of andrology 22, 236–242 (1999).
	35.	 Kao, S.-H. et al. Increase of oxidative stress in human sperm with lower motility. Fertility and sterility 89, 1183–1190 (2008).
	36.	 Duru, N. K., Morshedi, M. & Oehninger, S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human 

spermatozoa. Fertility and sterility 74, 1200–1207 (2000).
	37.	 Sanocka, D. & Kurpisz, M. Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology 2, 12 (2004).
	38.	 Tremellen, K. Oxidative stress and male infertility—a clinical perspective. Human Reproduction Update 14, 243–258 (2008).
	39.	 Storey, B. T. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Molecular human 

reproduction 3, 203–213 (1997).
	40.	 De Lamirande, E. & Gagnon, C. Reactive oxygen species and human spermatozoa: I. Effects on the motility of intact spermatozoa 

and on sperm axonemes. Journal of andrology 13, 368–378 (1992).
	41.	 De Lamirande, E., Jiang, H., Zini, A., Kodama, H. & Gagnon, C. Reactive oxygen species and sperm physiology. Reviews of 

reproduction 2, 48–54 (1997).
	42.	 Liu, Y. Active learning with support vector machine applied to gene expression data for cancer classification. Journal of chemical 

information and computer sciences 44, 1936–1941 (2004).
	43.	 Jones, R., Mann, T. & Sherins, R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty 

acid peroxides, and protective action of seminal plasma. Fertility and sterility 31, 531–537 (1979).
	44.	 Lopes, S., Jurisicova, A., Sun, J.-G. & Casper, R. F. Reactive oxygen species: potential cause for DNA fragmentation in human 

spermatozoa. Human reproduction (Oxford, England) 13, 896–900 (1998).
	45.	 Sun, J.-G., Jurisicova, A. & Casper, R. F. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with 

fertilization in vitro. Biology of reproduction 56, 602–607 (1997).
	46.	 De Iuliis, G. N. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the 

formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biology of reproduction 81, 517–524 (2009).
	47.	 Barroso, G., Morshedi, M. & Oehninger, S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine 

and oxidative stress in human spermatozoa. Human reproduction 15, 1338–1344 (2000).

Acknowledgements
B.S.A. acknowledges Norwegian Centre for International Cooperation in Education, SIU-Norway (Project 
number INCP- 2014/10024). D.S.M. acknowledges Department of Atomic Energy (DAE), Board of Research 
in Nuclear Sciences (BRNS) for financial grant no. 34/14/07/BRNS. The publication charges for this article have 
been funded by a grant from the publication fund of UiT The Arctic University of Norway.

Author Contributions
B.S.A., D.S.M., P.B. and G.A. conceived the project and supervised this work. Most of the experiments were 
performed and analysed by V.D. and D.P. V.D. and A.A. developed the experimental set-up. D.P. prepared the 
biological cells. D.P. and P.B. designed the biological experiments. All the authors contributed towards the writing 
of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-39523-5.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-39523-5
https://doi.org/10.1038/s41598-019-39523-5
http://creativecommons.org/licenses/by/4.0/


 

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper III 

 

High spatially sensitive quantitative phase imaging assisted with deep neural network 

for classification of human spermatozoa under stressed condition 

 

Ankit Butola, Daria Popova, Dilip K. Prasad, Azeem Ahmad, Anowarul Habib, 

Jean Claude Tinguely, Purusotam Basnet, Ganesh Acharya, Paramasivam Senthilkumaran, 

Dalip Singh Mehta, Balpreet Singh Ahluwalia 

 

Scientific Reports | (2020) 10:13118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 

 

  



1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13118  | https://doi.org/10.1038/s41598-020-69857-4

www.nature.com/scientificreports

High spatially sensitive 
quantitative phase imaging 
assisted with deep neural network 
for classification of human 
spermatozoa under stressed 
condition
Ankit Butola1,2,8, Daria Popova2,3,8, Dilip K. Prasad4, Azeem Ahmad2, 
Anowarul Habib2, Jean Claude Tinguely2, Purusotam Basnet3,5, Ganesh Acharya5,6, 
Paramasivam Senthilkumaran7, Dalip Singh Mehta1,7 & Balpreet Singh Ahluwalia2,6*

Sperm cell motility and morphology observed under the bright field microscopy are the only criteria 
for selecting a particular sperm cell during Intracytoplasmic Sperm Injection (ICSI) procedure of 
Assisted Reproductive Technology (ART). Several factors such as oxidative stress, cryopreservation, 
heat, smoking and alcohol consumption, are negatively associated with the quality of sperm cell 
and fertilization potential due to the changing of subcellular structures and functions which are 
overlooked. However, bright field imaging contrast is insufficient to distinguish tiniest morphological 
cell features that might influence the fertilizing ability of sperm cell. We developed a partially 
spatially coherent digital holographic microscope (PSC-DHM) for quantitative phase imaging (QPI) 
in order to distinguish normal sperm cells from sperm cells under different stress conditions such as 
cryopreservation, exposure to hydrogen peroxide and ethanol. Phase maps of total 10,163 sperm cells 
(2,400 control cells, 2,750 spermatozoa after cryopreservation, 2,515 and 2,498 cells under hydrogen 
peroxide and ethanol respectively) are reconstructed using the data acquired from the PSC-DHM 
system. Total of seven feedforward deep neural networks (DNN) are employed for the classification of 
the phase maps for normal and stress affected sperm cells. When validated against the test dataset, 
the DNN provided an average sensitivity, specificity and accuracy of 85.5%, 94.7% and 85.6%, 
respectively. The current QPI + DNN framework is applicable for further improving ICSI procedure and 
the diagnostic efficiency for the classification of semen quality in regard to their fertilization potential 
and other biomedical applications in general.

Semen quality and male fertility potential have been continuously declining all over the world1–4. At the same 
time, biomedical and technical advances have made it possible to treat male infertility using assisted reproduc-
tive technology (ART) including intracytoplasmic sperm injection (ICSI). Evaluation of semen quality and ICSI 
procedure are the important steps for the successful outcome of ART. Generally, semen parameters evaluation 
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and ICSI procedure are guided by the bright field microscopy and experience of laboratory personnel. Recently, 
computer-assisted sperm analysis (CASA) a digital microscopic technique made it possible as a machine-based 
analysis for semen parameters such as sperm cell concentration, sperm cell motility, kinematics, and morphology. 
For instance, CASA systems acquire successive images of the cells and use special software to track the motion 
of heads of each spermatozoon5,6. However, it fails to provide any supportive information regarding subcellular 
changes within the sperm cells which could be useful to ICSI procedure. Another powerful technique is a label 
free holographic imaging, for 3D reconstruction of freely moving sperm cells7. Apart from this, other optical 
as well as spectroscopic techniques have been proposed so far to determine motility of the sperm cells8–11. For 
example, fluorescence imaging and laser scanning confocal microscopy have been demonstrated to investigate 
the mitochondrial functionality of sperm cells12 since the motility of the cells partially depends on the mito-
chondrial function13 and get affected by cryopreservation of the cells. Semen quality is also analyzed based on 
Raman micro-spectroscopy which can provide the spectral features of human sperm cells14. Oxidative stress is 
also known to affect the integrity of sperm genome, result in lipid peroxidation and decrease in sperm motility, 
which was quantified recently using partially spatially coherent digital holographic microscopy and machine 
learning15. Additionally, smoking and alcohol consumption are negatively associated with sperm concentration 
and percentage of motile sperms when compared with the persons without these habits16. All these factors can 
affect the morphology, physiology and subcellular structures of the sperm cells and these changes can be inves-
tigated by extracting the quantitative information of the cells.

For label-free sperm imaging, quantitative phase imaging (QPI) is an attractive non-invasive technique to 
extract the quantitative information of the samples17–21. QPI can measure the combined information of refrac-
tive index and local thickness of the specimens with a nanometric sensitivity, which can be utilized detecting 
any deviations from normality22–24. QPI has several biological applications, such as 3D imaging of human red 
blood cells (RBC)25, bovine embryo26, bovine spermatozoa27, tissue imaging28, and others. Although, QPI is a 
potentially powerful technique as it provides morphological changes of the specimens, it has not yet been ame-
nable to interpretation by human experts due to the lack of chemical specificity29. Therefore, merging QPI with 
artificial intelligence (AI) is a promising route to provide virtual image classification of the QPI data29. Recently, 
AI techniques have been used to differentiate between healthy and unhealthy phase images of sperm cells. In these 
techniques, morphological and texture features are extracted from the head part of the cells, and these features 
are fed to the machine learning classifier to separate them into diagnostically relevant classes15,30,31. However, 
the variations in an imaging system, and, difficulty in deriving a consistent and reliable feature out of thousands 
of features, base pose difficulty in applying conventional machine learning techniques for classification of the 
sperm cells. For example, precise segmentation of the head part is required to measure the length, width and 
area of the sperm head30. Due to the lack of chemical specificity of QPI technique, the boundary between head 
and mid-piece of the cell cannot be located very precisely. Secondly, measuring the length and area of the head 
part to differentiate between normal and stressed sperm cells depends on the human expertise and segmenta-
tion algorithm. Additionally, the actual value of morphological features such as surface area, volume, surface to 
volume ratio and sphericity cannot be accurately determined without decoupling the refractive index and thick-
ness of the cells32. Therefore, it is beneficial to use advance machine learning technique i.e. convolutional neural 
network (CNN), which does not require to extract any features and can automatically generate abstract convo-
lutional features from the training dataset. CNN/deep learning is rapidly growing as an automated technique 
in biomedical imaging for example disease classification33–35, image segmentation36, resolution enhancement37, 
digital staining18, noise reductions38, among others39,40.

We demonstrate the use of QPI technique assisted with deep learning for the classification of sperm cells 
under different stressed conditions. A total of four different classes were considered in this study, which included 
healthy, externally induced oxidative stressed, cryopreserved, and externally induced alcohol affected sperm cells. 
The four classes of sperm cells were also studied using conventional techniques to quantify and compare the 
progressive and the non-progressive motility of spermatozoa. Figure 1 shows the schematic representation of a 
partially spatially coherent digital holographic microscope (PSC-DHM) developed to acquire the interferomet-
ric images of the sperm cells as can be seen in Fig. 1b. Figure 1c,d shows the quantitative phase map of sperm 
cells. The PSC-DHM system offers single shot phase reconstruction of the cells especially the thinnest i.e. tail 
part of the sperms by utilizing partial spatial coherent properties of light source. QPI system commonly uses 
direct laser light (high spatially and temporally coherent) or white light (spatially and temporally incoherent). 
Direct laser suffers with low spatial phase sensitivity and hence accurate phase estimation of a thin sample is 
usually difficult. On the other hand, white light provides high spatial phase sensitivity but due to low temporal 
coherence it requires phase shifting technique to utilize the whole field of view of the camera. In contrast, the 
PSC-DHM system offers single shot phase extraction of the sample due to high temporal coherence and high 
spatial phase sensitivity because of its spatial incoherent nature. The details of the PSC-DHM system is provided 
in “Methods” section. The spatial phase sensitivity of the system developed is around ± 20 mrad which is utilized 
to reconstruct the phase information of the cells including the tail part. The thickness of the tail of the sperm 
cells are typically 100 nm and thus more challenging to image unless high spatial phase sensitivity is achieved. 
This is particularly useful as the tail plays an important role in progressive motility of the cells and it may change 
under different stressed conditions.

In this study, total 10,163 interferometric images (2,400 normal, 2,750 cryopreserved, 2,515 oxidative stressed 
and 2,498 alcohol affected) of the sperm cells were acquired from the PSC-DHM system. The comparison 
between phase measurement sensitivity of direct laser and PSC source can be found in supplementary infor-
mation. The phase maps of these cells are used as input to the deep neural network (DNN) which is trained by 
70% of the data and validated against the 30% testing data to check the classification accuracy of the networks. 
The current PSC-DHM + DNN framework has several advantages over the conventional bright field imaging 
techniques for sperm classification. QPI offers the quantitative information i.e. combined information of the 
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refractive index and the local thickness of the sperm cells. This quantitative morphological information of the 
sperm cells is not obtained using a bright field microscopy. Additionally, the PSC-DHM system offers a label-free 
platform with nanometric sensitivity to detect any small sub-cellular changes in the head, mid-piece and tail 
of the sperm cells. These sub-cellular parts of sperm cells are influenced by the alcohol, oxidative stressed and 
cryopreservation of the cell. It has been shown that cryopreservation affects the mitochondrial dysfunctional-
ity, damage of cellular membrane, failure of chromatin de-condensation and reduction in motility of the sperm 
cells41–45. Also, oxidative stressed and consumption of alcohol damage the plasma membrane, DNA and reduce 
the percentage of motile sperm cells44. Since, head contain the nucleus i.e. hold DNA of the cells, midpiece 
packed with mitochondria and tail play an important role in the progressive motility of the cells, therefore, PSC-
DHM + DNN could be a valuable label-free tool to detect any morphological changes in these parts of the cells. 
Finally, DNN architectures provide automated classification of the phase map of the sperm cells. In contrast to 
the conventional feature extraction-based machine learning classifier15, multiple layers in DNN architectures 
can automatically characterize relevant morphological and texture features to separate the samples into their 
relevant classes. Therefore, we believe that QPI coupled with DNN would find usage in IVF clinics in diagnosis, 
and for selection of healthy cells.

Figure 1.   (a) Schematic diagram of the partially spatially coherent digital holographic microscope (PSC-
DHM) system and (b) the interferometric image of the sperm cell acquired from the PSC-DHM. (RD—rotating 
diffuser, Ref—reference mirror, BS—Beam splitter, MO—microscope objective, MMFB—multiple multi-mode 
fiber bundle). Reconstructed phase map (c) and (d) the zoomed view of head, neck and tail part of the sperm 
cell. Color bar represents the phase map in radian.
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Results and discussion
Motility test of spermatozoa exposed to ethanol, hydrogen peroxide, and cryopreserva-
tion.  The effect of ethanol, hydrogen peroxide and cryopreservation on progressive and non-progressive 
motility of spermatozoa was investigated and the results are shown in Fig.  2. Sperm motility were analyzed 
manually by the trained biologist from the IVF clinic using phase contrast microscope, 40× magnification with 
Makler counting chamber in accordance as World Health Organization (WHO) standards. Motility are cat-
egorized as progressive, non-progressive or immotile. Spermatozoa with progressive motility moves actively, 
linearly or in a large circle. Non-progressive motility has different patterns of trajectory without progression. The 
number of progressive motilities assessed first, then the number of non-progressive motility and immortality. 
Further, progressive and non-progressive motilities are important to count the percentage of motile sperm cells 
and cross-validate the effect of cryopreservation, externally induced ethanol and H2O2. After motility test, these 
sperm cells are imaged by PSC-DHM system for automated identification of normal sperm cells.

In this study, the concentration of H2O2 and ethanol were selected such that it triggers visible stress effect, i.e. 
impair the progressive motilities within 1 h. The effect of various concentration of H2O2 on the motility of sperm 
cells has been also shown in the previous study15. To simulate stress condition, we incubated sperm cells for 1 h 
in 2% ethanol or 200 µM H2O2. Lower concentration of ethanol or H2O2 did not influence the motility strongly 
in 1 h, at the same time higher concentrations eliminated cells with progressive motility. For cryopreservation, it 
is assumed that the time of storage semen mammals in liquid nitrogen at − 196 ℃ does not change the viability 
and the motility of sperm cells. For example, it is shown in the study of Ramírez‐Reveco46 that the total sperm 
motility of bull was not affected by long-term storage at − 196 ℃. In our study thawing of human semen sam-
ples were performed in 2–5 h of freezing. Sperm cells were exposed to ethanol or hydrogen peroxide for 1 h at 
37 °C. For the control group, same amount of medium as in the test group were added. Figure 2 shows the box 
plot of the sperm cells after different stressed conditions. After incubation for 1 h, ethanol and H2O2 produced 
a significant decrease in progressive motility of sperm cells as compared with control (Table 1): 18.7 ± 13.8% for 
ethanol and 2.4 ± 4.0% for H2O2 vs. 73.9 ± 19.5% for control cells. At the same the non-progressive motility after 
incubation both with ethanol and H2O2 increased: 33.1 ± 11.9% (ethanol) and 77.7 ± 16.2% (H2O2) vs. control 
14.6 ± 13.8% (ANOVA, paired t-test, p < 0.05). Cryopreservation resulted in a significant decrease in progressive 
motility (Fig. 2, Table 1). Spermatozoa with progressive motility had a mean value before cryopreservation of 
73.9 ± 19.5%, while mean value after thawing was 17.3 ± 11.9% (p < 0.01). The non-progressive motility decreased 
after thawing, but not significantly: 27.1 ± 19.5% vs. 14.6 ± 13.8% (p > 0.01).

Figure 2.   Progressive (a) and non-progressive (b) motility changes of sperm cells after incubation (1 h/37 °C) 
with ethanol, hydrogen peroxide (H2O2) and after cryopreservation as compared with control (n = 7, seven 
ejaculates from different donors). The middle line of the box represents the median, the “x” represents the mean, 
the whiskers extend from the ends of the box to the minimum value and maximum value. Outliers marked as 
dots.

Table 1.   Effect of cryopreservation, ethanol and hydrogen peroxide incubation on human sperm cells motility. 
Analysis of the differences among group means using Paired Two Sample t-Test for Means (alpha 0,05). Values 
are shown as a mean ± standard deviation (SD). P-value for the analysis of the differences between the sample 
means of control and ethanol (C/E), control and H2O2 (C/H), control and cryopreserved groups (C/Cryo).

Variable
Control
Mean ± SD

Ethanol, 2%
Mean ± SD

Cryopreservation
Mean ± SD

H2O2, 200 µM
Mean ± SD P-value

Progressive motility (PR, %) 73.9 ± 19.5 18.7 ± 13.8 17.3 ± 11.9 2.4 ± 4.0
C/E 0.00009
C/H 0.00005
C/Cryo 0.0001

Non-progressive motility (NP, %) 14.6 ± 13.8 33.1 ± 11.9 27.1 ± 19.5 77.7 ± 16.2
C/E 0.01
C/H 0.0002
C/Cryo 0.2
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A possible mechanism of decrease in sperm motility after treatment with ethanol is distortion of cell mem-
brane caused by altering of membrane protein structure47,48. On the other hand, the principle mechanism of 
the effect of hydrogen peroxide on sperm motility is peroxidation of unsaturated fatty acids, which is a part of 
membrane lipids. As a result of peroxidation, the membrane loses flexibility and plasticity which determines 
disrupted tail motion49. The functional changes of sperm cells after cryopreservation might be influenced by 
oxidative stress, cryo-protector used (type and concentration), methods of cryopreservation and thawing itself, 
and is also dependent on original semen characteristics, such as concentration and motility49. In accordance 
with the concept of “partial survival” current procedures used for sperm freezing and thawing lead to decrease 
of more than 50% in motility and survival rate50, ultrastructure and cell morphology changes51–53, mitochondrial 
activity reduction54, and damages of sperm chromatin49.

Figure 3 shows a schematic of our framework for the selection of normal sperm cells. The interferometric 
image of a sperm cell is acquired from PSC-DHM using 60×, 1.2 NA objective lens. These interferometric images 
are processed using standard Fourier transform algorithm55 and Goldstein phase unwrapping algorithm56. The 
details of the Fourier transform and steps for reconstruction of phase map are described in Methods section. 
Recently, classification of the phase map of sperm cells is performed using simple machine learning techniques15 
where texture and morphological features are extracted from the phase image. These features are fed into machine 
learning models to separate the corresponding phase images into their relevant classes30. In contrast, we develop 
an end-to-end deep learning approach for the classification of normal sperm cells, which does not require extrac-
tion of any features from the phase image.

The DNN takes a phase image as input and provide a diagnostically relevant class label as an output i.e. normal 
cells, H2O2 stressed cells, ethanol stressed cells, and cryopreserved cells. DNN architecture consists of difference 
combination of convolution layer, rectifier linear unit layer (ReLU), maxpooling layer, fully connected layer and 
finally softmax layer. Details of these layers can be found elsewhere57. A total of seven DNN, namely AlexNet, 
GoogLeNet, Inception-ResNet-V2, VGG-16, VGG-19, ResNet-50 and ResNet-101 are used for the classifica-
tion purpose. These networks are trained by total 70% of the phase images and 30% for testing the accuracy 
of each model. The training time of the model increased as the number of layers (combination of convolution 
layer, maxpooling and ReLU layer) increased in the network. The training time and other details of each model 
is mentioned in the data analysis section. Accuracy of these network are shown in terms of confusion matrices. 
Confusion matrix shows the number of correct and incorrect prediction of the network. Further, the accuracy 
of DNN models are compared with total 3 different machine learning classifiers i.e. support vector machine, 
Naive Bayes and k nearest neighbor. For machine learning classifier, total 11 parameters are extracted from the 
head part of the cells. These parameters are fed into the classifier for training and testing purpose. The details of 
all parameters and the classification accuracy of the machine learning models can be found in supplementary 
information 1.

Figure 4 represents the reconstructed quantitative phase maps of human sperm cells under different stressed 
conditions. All interferometric images were acquired using 60×, 1.2NA (UPLSAPO 60XW, Olympus) microscopic 

Figure 3.   Workflow diagram showing the important steps for the classification of quantitative phase map of 
sperm cells. Phase map of the images is reconstructed by the interferogram captured using PSC-DHM system. 
Classification of the phase images is done by total 7 deep neural networks (DNN). Each network is trained 
with total 6,720 phase images and 2,880 phase images are used to test its accuracy. The final performance and 
sensitivity of the network is reported in term of confusion matrix.
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objective lens. Figure 4a–d are the quantitative phase maps of normal, cryopreserved, externally introduced etha-
nol and H2O2 sperm cells respectively. The scale bar corresponds to 5 μm distance in both x and y directions and 
the color bar shows the phase value in radians. A total 12,332 phase images (2,906 healthy, 2,981 cryopreserved, 
3,222 ethanol and 3,223 oxidative stressed) are reconstructed from the interferometric images acquired from 
the proposed setup. Among the 12,332 images, only those phase images are retained which satisfy the following 
criteria: correct phase unwrapping, background subtraction and only one cells lies throughout the field of view. 
The first criterion allows for filtering of phase images that are reconstructed correctly and the later criterion is 
to promote accurate classification of the sperm cells using DNN. Selection of images with single cells is done 
automatically by converting phase image into a binary image and setting certain threshold value of white pixels. 
For the empirical threshold determination, a small set of images with only one cell each were hand-picked as the 
candidate images. The process of thresholding generally filtered away most images with multiple cells. Nonethe-
less, all the retained images were checked manually to assess if both the above-mentioned criteria were satisfied, 
so that the retained images are indeed suitable for classification purpose. A total of 10,163 phase images of sperm 
cells (2,400 healthy, 2,750 cryopreserved, 2,515 oxidative stressed and 2,498 alcohol affected) are thus retained.

From Fig. 4, the quantitative phase map of healthy sperm’s head is found maximum as compared to the cells 
under different stressed conditions. The color bar represents the phase map (thickness + refractive index) in 
radian. Deep red indicates the maximum phase and the deep blue corresponds to zero phase. Change in phase 
value might indicate the change in morphology of the head of the cells under different stressed condition. 
However, no general trend in the maximum phase map of the cells is observed which can be explained from 
the progressive/non-progressive motility and number of mobile (Fig. 2) cells. Although, the number of mobile 
sperms get decreased as compared to the normal class, there are still some cells which are mobile. Thus, they 
may sustain their morphology close to normal cell and therefore, no general trend of maximum phase map is 
observed between these four classes.

The performance of the different DNN architectures used in this study are shown in Fig. 5. Total 70% of the 
data is used for the training purpose while 30% is used to test the accuracy of each model. It is important to note 
that sufficient training is necessary to train the network and to achieve best accuracy while validating against 
the test dataset. Figure 5a depicts the confusion matrices of the DNN on the testing datasets of the phase image 
of sperm cells. The confusion matrices show performance of the network against the testing dataset. Rows and 
column of the matrix indicate the predicted class and the ground truth respectively. Diagonal elements of the 
matrix show the correct predictions of the data while off-diagonal elements are the wrong classified data. Con-
sider the confusion matrix of AlexNet in Fig. 5a. Total 720 phase images of the normal phase image of sperm 
cells are tested by the network. Out of 720, 525 phase images are predicted correctly and 13, 103 and 79 are the 
wrong predictions. Similarly, 525, 520 and 637 are the correct prediction by the AlexNet for Ethanol, H2O2 and 
cryopreserved cells, respectively. Performance of the GoogLeNet, Inception-ResNet-V2, VGG-16, VGG-19, 
ResNet-50 and ResNet-101 can be also seen in Fig. 5. Note that, the total test images are 30% of the total image 
(n = 9,600) i.e. 2,880 which is summation of all the elements presents in the matrix.

Figure 6 depicts the average sensitivity, specificity and classification accuracy of all deep learning architec-
tures. Out of all DNN, ResNet-101 provides the best sensitivity, specificity and accuracy of 85.5%, 94.7%, and 
85.6% respectively. Final value for ResNet-101 represents the average value of sensitivity, specificity and accuracy 
shown in the table of Fig. 5b. The training time for each architecture is shown in data analysis section. Though, 
performance of DNN classifiers is much better than the feature extraction-based machine learning classifier 
for the same datasets, the mismatch between ground truth and prediction of the network can be understand 

Figure 4.   Quantitative phase map of human sperm cells, reconstructed from the interferogram captured by 
PSC-DHM system: (a) normal cell, (b) after cryopreservation, (c) oxidative stressed cell and (d) alcohol affected 
cell. Color bar represents the phase map in radian. Scale bar: 5 μm.
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with following reasons. QPI offers optical thickness i.e. combine information of refractive index and thickness 
of the specimens but due to the lack of chemical specificity, it cannot precisely identify the changes in different 
organelles such as mitochondria, nucleus, DNA and the membrane of the cells. Therefore, a label free technique 
with high chemical specificity is required for more accurate classification of the sperm cells. Additionally, the 
technique must offer the quantitative changes in the sample under different stressed condition. Virtual staining18 
in the phase map of sperm cells using deep learning can improve the chemical specificity of the QPI technique. 
Virtual staining in the phase imaging can offer the chemical changes in the cells under different stressed condi-
tion and simultaneously the morphological changes in the cells. Therefore, combining stained information with 
QPI technique might improve the classification accuracy of the system.

However, a careful examination must be required during the training process and to locate the stained part 
i.e. head, mid-piece and tail of the cells. Any discrepancies in the training set i.e. mismatch in the correlation 
between stained mid-piece and phase map of mid-piece can degrade the final performance of the network. 
Finally, PSC-DHM can be replace with phase shifting low coherence interferometry (PS-LCI) technique58. PS-
LCI requires multiple frames but offer superior phase sensitivity as well as lateral resolution as compare to other 
QPI techniques. Using, PS-LCI might help to detect the fine structural changes in the sperm cells thus will be 
useful to detect the healthy sperm cells with better accuracy. Nonetheless, PS-LCI requires multiple frames to 

AlexNet

Normal Ethanol H2O2

Cryopre
served

Normal 525 50 106 32

Ethanol 13 525 24 8

H2O2 103 70 520 43

Cryopre
served 79 75 70 637

GoogLeNet

Normal Ethanol H2O2

Cryopre
served

Normal 479 7 62 33

Ethanol 51 640 34 52

H2O2 133 32 593 47

Cryopre
served 57 41 31 588

Inception-ResNet-V2

Normal Ethanol H2O2

Cryopre
served

Normal 563 27 79 41

Ethanol 24 636 32 37

H2O2 88 24 577 24

Cryopre
served 55 33 32 618

VGG-16

Normal Ethanol H2O2

Cryopre
served

Normal 531 26 41 69

Ethanol 13 589 13 20

H2O2 150 77 644 74

Cryopre
served 26 28 22 557

VGG-19

Normal Ethanol H2O2

Cryopre
served

Normal 575 45 74 76

Ethanol 12 604 17 24

H2O2 110 43 612 47

Cryopre
served 23 28 17 573

ResNet-50

Normal Ethanol H2O2

Cryopre
served

Normal 578 15 62 43

Ethanol 19 634 21 20

H2O2 82 35 613 35

Cryopre
served 41 36 24 622

ResNet-101

Normal Ethanol H2O2

Cryopre
served

Normal 567 17 66 25

Ethanol 23 662 23 33

H2O2 84 20 595 22

Cryopre
served 46 21 36 640

Per class accuracy of ResNet-101

Sensitivity Specificity Accuracy

Normal 84.0 92.5 78.8

Ethanol 89.3 96.9 91.9

H2O2 82.5 93.7 82.6

Cryopreserved 86.1 95.8 88.9

(a)

(b)

Figure 5.   Performance of the deep neural networks (DNN) on the testing datasets of the phase images of sperm 
cells. (a) Confusion matrices of different DNN with number of phase images for classification of healthy and 
non-healthy phase map of sperm cells. Diagonal elements show number of correct predictions and the off-
diagonally elements are the wrong classified observations. (b) Per-class sensitivity, specificity and accuracy of 
ResNet-101.
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extract the phase map of the cells whereas PSC-DHM can extract the phase map with a single frame with high 
spatial phase sensitivity.

Conclusion
Our current QPI + DNN framework allows for the automated classification between normal and abnormal 
sperm cells. QPI is a promising technique which provides quantitative information of the sample and hence an 
edge over the conventional intensity-based identification of healthy cells. PSC-DHM system has been used to 
extract the quantitative phase map of the sperm cells enabling single shot phase reconstruction with high spatial 
phase sensitivity (± 20 mrad). High spatial phase sensitivity is utilized to acquire the phase map of the entire 
sperm cells, i.e. head, neck and tail of the sperm cells, which is otherwise difficult to image using direct laser 
based DHM15. Sperm cells after cryopreservation, oxidative stress and exposure to ethanol are imaged by the 
proposed setup. Previous studies show that oxidative stress initiates concentration dependent increase of DNA 
fragmentation because of DNA strand breaks47. Also, ethanol distorted the cell membrane resulting from the 
alteration of membrane protein structure4. Therefore label-free, non-invasive methods such as PSC-DHM are 
highly desirable to detect these changes and hence for the selection of good quality sperm for ICSI procedure 
that can be used to improve the success of ART however it need further clinical trials.

Quantitative analysis of sperm cells provides an opportunity to identify healthy sperm cells using deep learn-
ing approaches. Deep learning can be potentially a powerful technique for automated classification of sperm 
cells into normal and abnormal. Our results demonstrate that a variety of DNN architectures provide good clas-
sification accuracy to separate the 4 different type of sperm cells into their relevant classes. We also compared the 
proposed method with previously shown feature extraction-based machine learning models for the classification 
of sperm cells. However, these classifiers (SVM, Naive Bayes and KNN) provide very poor accuracy as compare 
to the modern DNN where ResNet-101 provided the best accuracy, i.e. 85.6%, for classification into healthy, 
oxidative stressed, cryopreserved and ethanol affected sperm cells. Moreover, the use of seven different network 
allows us to understand the capabilities of each networks and to apply best deep learning architecture for the 
identification of healthy cells. We applied our automated classification model for studying clinically relevant 
problems of semen quality in different patients attending the in-vitro fertilization clinic of University Hospital 
of North Norway, Norway. Fully automated classification of the sperm cells could be an intermediate tool for 
the expert that can be utilized for the selection of healthy sperm cells as per World Health Organization (WHO) 
criteria59. QPI + DNN framework for healthy sperm identification could be potentially used for real time selection 
of healthy living sperm cells that can be used for improving the success of fertilization during ART procedures.

Methods
Experimental setup.  PSC-DHM is developed for quantitative phase imaging (QPI) of the sperm cells. 
Schematic diagram of PSC-DHM setup is shown in Fig. 1. To reduce the spatial coherence of the direct laser 
(He–Ne laser), it first focused by using microscopic objective lens (MO1) and rotating diffuser is placed at the 
focus plane of the MO1. Rotating diffuser scattered the light into multiple directions which captured by multi-
multimode fiber bundle (MMFB). Output of MMFB consist high temporally and low spatial coherence prop-
erties and thus act as an extended light source. The extended light source coupled at an input port of the Lin-
nik type interferometer. The light beam is first collimated and then focused by using a combination of lens L1 
(f = 50 mm) and L2 (f = 150 mm) respectively. A beam splitter is placed to divide the focused beam into reference 
and sample. The sample beam is focused into the back focal plane of MO3 (UPLSAPO 60XW, Olympus) and 
hence the output beam is nearly collimated to extract the accurate phase information of the sample. The light 
beam reflected from the sample and reference mirror, interfere at the beam splitter plane which consist the coded 
phase information of the sample. The interferogram is finally projected into the camera sensor (Hamamatsu 
ORCA-Flash4.0 LT, C11440-42U) by using a tube lens L4 (f = 150 mm). The 2D intensity variation of an inter-
ferogram can be expressed as:

Figure 6.   Sensitivity, specificity and classification accuracy of different deep neural network. The blue bar 
shows the average accuracy of each architectures out of which ResNet-101 provide the best accuracy (85.6%) on 
the testing datasets.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13118  | https://doi.org/10.1038/s41598-020-69857-4

www.nature.com/scientificreports/

where fx and fy are the spatial carrier frequencies of the interferogram. Background (DC) and the modulation 
terms are defined by a

(

x, y
)

 and b
(

x, y
)

 , respectively. Phase φ
(

x, y
)

 contains information of the specimen. By 
applying Fourier transform, the phase map of the specimen can be measured by the following expression:

where

where Im and Re are the imaginary and real part of the complex signal. As the wrapped phase map lies between 
–π to + π, the unwrapping is done by standard Goldstein phase unwrapping algorithm56.

Semen preparation.  The Regional Committee for Medical and Health Research Ethics of Norway (REK_
nord) has approved the study. Ethical guideline was followed. At the IVF Clinic, Department of Obstetrics and 
Gynecology, University Hospital North Norway, Tromsø, 7 semen samples were collected from patients who 
were attended the IVF clinic for the service of ART. The sample were collected from the patients of age between 
30 and 40 years. All patients were informed, and informed consent was obtained. The semen sample was col-
lected according to the criteria established by the WHO59 after 3–5 days of assistance. After liquefaction, sperm 
counts were evaluated using the Neubauer-improved counting chamber. All ejaculates used in the experiments 
meet as the good quality semen sample as per requirements of WHO 2010 (Table  2). To eliminate seminal 
plasma and isolate cells with good quality sperm cells, one milliliter of semen was carefully placed on each 
1.5 ml of 90% and 45% gradient layers (Vitrolife, Sweeden) and centrifugated at 500g for 20 min. The resultant 
pellet was washed twice with human Quinn’s sperm washing medium (Origio, Denmark) at 300 g for 10 min. 
The supernatant was discarded, and the concentration of the cells from the pellet was adjusted to 1 × 106 sperm 
per mL with Quinn’s Advantage fertilization medium (Origio, Denmark) supplemented with 5 mg/ml Human 
Serum Albumin (Sigma).

To perform experiments, 96-well cell culture plates (Corning) were filled with purified sperm in a concentra-
tion of 2 × 104 cells per mL with 200 µM H2O2 (for oxidative stressed samples) or 2% ethanol (for alcohol affected 
samples), the reference chamber was filled with purified semen only. The samples were incubated for 1 h at 37 °C, 
5% CO2. After incubation evaluation of cell motility was graded according to WHO 2010 criteria as a progressive 
(PR) and non-progressive motility (NP). Sperm counting was performed using Neubauer-improved counting 
chamber and examined under the inverted phase contrast microscope at 40× magnification. Cryopreservation 
and thawing of purified semen were performed in accordance with Sperm Freeze medium protocol (Origio, 
Denmark). Motility of post-thaw spermatozoa was evaluated using Neubauer-improved counting chamber. For 
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Table 2.   Age and semen quality measured before the purification by gradient method (n = 7, number of 
donors). Values are shown as a mean ± standard deviation (SD).

Parameter Mean ± SD

Age (years) 34.7 ± 4.8

Semen volume (ml) 3.1 ± 1.5

Semen concentration (× 106/ml) 51.6 ± 22.8

Total sperm count (× 106) 166.8 ± 142.1

Progressive motility (%) 59 ± 11.9

Table 3.   Training time of total 7 deep neural network for the classification of normal and stressed affected 
phase map of sperm cell.

Deep neural network for classification of sperm cells Training time (s)

AlexNet 3,222

GoogLeNet 8,359

Inception-ResNet-V2 60,992

VGG-16 5,183

VGG-19 8,783

ResNet-50 7,756

ResNet-101 16,943
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the purpose of quantitative analysis by PSC-DHM the cells of each sample were transferred in a PDMS chamber 
on reflecting silicon. Sperm cells were immobilized by fixation with 4% PFA for 30 min at RT and washed in PBS 
(Phosphate-Buffer Saline, Sigma) for 5 min. Finally, fixed and attached at the surface of PDMS chamber sperm 
cells were mounted in PBS and covered by the cover glass of 170 μm thickness.

Data analysis.  Extracting phase information from the interferogram and deep learning is implemented 
in MATLAB 2019a on a 64-bit Windows OS, Intel Xeon CPU E5-1650 v4 @ 3.6 GHz with 64 GB RAM and 
NVIDIA 2080 Ti GPU. Transfer learning is performed by using pretrained DNN and retraining them for our 
desired classes. Classification results are obtained by randomly assigning 70% of the images in the dataset for 
training and the remaining 30% for testing. The training time of each DNN can be seen in Table 3. In each train-
ing iteration, the initial learning rate is set as 10-4 and stochastic gradient descent with momentum (SGDM) is 
used for training. Maximum number of epochs in the learning process is set as 30.
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DNA copy numbers. A meta-analysis including five studies showed 
significantly higher mitochondrial DNA copy numbers in abnormal semen 
analysis as compared to normal semen analysis(SMD 1.08, 95% CI 0.74-
1.43). Three other studies not included in the meta-analysis showed a 
significant negative correlation between mitochondrial DNA copy 
numbers and semen parameters. The quality of evidence was assessed 
as good to very good in 60% of studies. 
Conclusions: 
Our review demonstrates significantly higher mitochondrial DNA in 
human sperm cells of men with abnormal semen analysis in comparison 
to men with normal semen analysis. 
PROSPERO registration: 
CRD42019118841 
Funding 
None received 

 

Page 1 of 18 BJOG: An International Journal of Obstetrics & Gynaecology



For Review Only

1

1 Title page

2

3 Sperm mitochondrial DNA copy numbers in normal and abnormal 
4 semen analysis: a systematic review and meta-analysis.

5

6 Daria Popova1 M.Sc, Priya Bhide1,2 MD, FRCOG, Francesco D’Antonio3 MD, PhD, 

7 Purusotam Basnet1 PhD, Ganesh Acharya1,4 MD, PhD, FRCOG 

8

9 1 Women´s Health and Perinatology Research Group, Department of Clinical Medicine, UiT-

10 The Arctic University of Norway, Tromsø, Norway.

11 2 Homerton Fertility Centre, Homerton University Hospital, London, UK.

12 3 Department of Obstetrics and Gynecology, Centre for Fetal Care and High-risk Pregnancy, 

13 University of Chieti, Italy.

14 4 Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and 

15 Technology, Karolinska Institutet and Center for Fetal Medicine, Karolinska University 

16 Hospital, Stockholm, Sweden.

17

18 Corresponding author

19 Priya Bhide

20 Homerton Fertility Centre, Homerton University Hospital, London, UK.

21 +442085107660

22 priya.bhide@nhs.net

Page 2 of 18BJOG: An International Journal of Obstetrics & Gynaecology

mailto:Priya.bhide@nhs.net


For Review Only

2

23 Abstract

24 Background:

25 Normal mature sperm have a considerably reduced number of mitochondria which provide 

26 the energy required for progressive sperm motility. Literature suggests that disorders of 

27 sperm motility may be linked to abnormal sperm mitochondrial number and function. 

28 Objectives:

29 To summarize the evidence from literature regarding the association of mitochondrial DNA 

30 copy numbers and semen quality with a particular emphasis on the spermatozoa motility. 

31 Search strategy:

32 Standard methodology recommended by Cochrane. 

33 Selection criteria:

34 All published primary research reporting on differences in mitochondrial DNA copy numbers 

35 between the sperm of males with a normal and abnormal semen analysis.

36 Data collection and analysis:

37 Using standard methodology recommended by Cochrane we pooled results using a random 

38 effects model and the findings were reported as a standardised mean difference. 

39 Main results:

40 We included 10 trials. The primary outcome was sperm mitochondrial DNA copy numbers. A 

41 meta-analysis including five studies showed significantly higher mitochondrial DNA copy 

42 numbers in abnormal semen analysis as compared to normal semen analysis(SMD 1.08, 

43 95% CI 0.74-1.43). Three other studies not included in the meta-analysis showed a 

44 significant negative correlation between mitochondrial DNA copy numbers and semen 

45 parameters. The quality of evidence was assessed as good to very good in 60% of studies. 

46 Conclusions:

47 Our review demonstrates significantly higher mitochondrial DNA in human sperm cells of 

48 men with abnormal semen analysis in comparison to men with normal semen analysis.

49 PROSPERO registration: 

50 CRD42019118841

51 Funding

52 None received
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53 Keywords

54 Mitochondrial DNA, sperm motility, abnormal semen parameters

55 Capsule:

56 There is significantly higher mitochondrial DNA in human sperm cells of men with abnormal 

57 semen analysis in comparison to men with normal semen analysis

58

59 Introduction 

60 Mitochondria are one of the fundamental cell organelles providing the cell with energy in the 

61 form of adenosine triphosphate (ATP) by the process of oxidative phosphorylation 

62 (OXPHOS). The amount of mitochondria varies with cell type and function (1). The process 

63 of spermatogenesis results in a drastic decrease in the number of mitochondria (2). This pre-

64 fertilisation reduction in sperm mitochondrial content is aimed to reduce/eliminate paternal 

65 mitochondrial transmission in conjunction with other post-fertilisation mechanisms resulting 

66 in uniparental inheritance. Mature sperm are thought to contain between 22–75 mitochondria 

67 providing the energy required for progressive sperm motility (3). Sperm motility is dependent 

68 on the energy provided by OXPHOS (4).

69  It has been suggested that male infertility and disorders of sperm motility may be linked to 

70 abnormal sperm mitochondrial number and function. Male infertility has been reported in 

71 men with mitochondrial disorders (5). Also, associations between abnormalities of sperm 

72 mitochondrial DNA and abnormal sperm parameters have been reported (6). Early reports 

73 available on mitochondrial DNA quantification in mammalian sperm present widely varying 

74 results (2, 7). In humans, few studies report the association of mitochondrial DNA copy 

75 number (mtDNAcn) with sperm motility and other semen characteristics (8-10).  

76 The aim of this review is to summarize the evidence from literature regarding the association 

77 of mtDNAcn and semen quality with a particular emphasis on the spermatozoa motility. This 

78 aims to guide clinical practice and give direction for future research. 

79 Materials and methods 

80 Eligibility criteria:

81 Our search aimed to identify all published literature reporting on differences in mtDNAcn 

82 between the sperm of males with a normal semen analysis and males with abnormal semen 

83 analysis. All types of studies published as primary research were included for the review. We 

84 included only those studies published in the English language, published as full manuscripts 
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85 (not abstracts) and those involving humans-only.  We included studies where semen 

86 samples were analysed based on either the WHO 1999 or 2010 criteria. The protocol for 

87 undertaking the review was developed following recommendations of CRD's guidance for 

88 undertaking reviews in health care (Centre for Reviews and Dissemination) (11). Results 

89 were reported in accordance with PRISMA guidelines (12). The review was prospectively 

90 registered with PROSPERO (CRD42019118841).

91 Assessment of study quality and the risk of bias:

92 Assessment of study quality was done using the Newcastle-Ottawa Scale (NOS) modified 

93 for cross sectional studies. Further modification was used as only non-interventional 

94 observational studies were included. We conducted a comprehensive search for eligible 

95 studies in order to minimize the impact of reporting bias. 

96 Main outcome measures

97 The primary outcome measure was sperm mitochondrial DNA copy numbers. 

98 Data sources

99 DP and FD independently screened and identified studies which were relevant for the 

100 review. Standard Cochrane methodology was followed comprising electronic searches and 

101 hand searching. Embase Classic and Ovid MEDLINE were searched on December 07, 

102 2020. The study period was from 1946 to 2020.  We used the controlled vocabulary of 

103 Medical Subject Headings (MeSH) terms "Male Infertility" and 17 additional keywords related 

104 to or describing the participants and/or outcome (e.g. asthenospermia, oligospermia, sperm 

105 quality). The detailed search strategy for MEDLINE and Embase can be found in 

106 Supplementary Materials Appendix S1. We updated our search by re-conducting the search 

107 1 month prior to submission of the review for publication. The reference lists of relevant 

108 articles were screened to identify additional studies. 

109 Data collection

110 DP and FD independently screened the title, abstract and keywords (ti,ab,kw) of the 

111 retrieved articles. The full text of potentially suitable articles was retrieved. From these 

112 suitable articles were finalised for inclusion for the review. Agreement regarding potential 

113 relevance was reached by consensus. Inconsistencies were discussed among the reviewers 

114 and resolved by discussion with a third author. Conference abstracts were excluded from the 

115 quantitative analyses to avoid publication bias. 

116 DP and FD reviewed all selected articles and extracted relevant data regarding study 

117 characteristics independently. Data were collected on a bespoke data collection Excel sheet 
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118 where data were collected for study design, methodology, participant characteristics and 

119 outcome variables. Multiple publications of a single study were pooled together under a 

120 single study ID.  All identified references were exported to EndNote X 8.2 for Windows, 

121 where the list of publications was scanned for duplicates.  

122 Data analysis and synthesis:

123 The pooled estimates for the outcome were presented as Standardised Mean Difference 

124 (SMD) with 95% confidence intervals using the random effects model and inverse variance 

125 method. Statistical significance was assumed when p<0.05. In case where the information in 

126 the studies was not reported in the way appropriate for our data extraction, the authors were 

127 contacted. We were able to get this information for the study Tian 2014 (10), and have 

128 updated our analysis accordingly. Studies were excluded from meta-analyses if the data 

129 were presented using correlation analyses and without dividing the semen of patients into 

130 categories (normal/abnormal) or using different laboratory methodology. 

131 Results

132 General characteristics of studies

133 Results of the search:

134 The search of the two electronic databases retrieved 373 full text articles after removal of 

135 duplicates. No further articles were retrieved by hand searching of the reference lists. After 

136 screening of the titles and abstracts, the full text of 19 studies were retrieved for further 

137 review. 10 of these studies were selected for the systematic review and 9 excluded. Of the 

138 10 selected studies, five were suitable for meta-analysis and included for quantitative 

139 synthesis. The search and selection process are documented with a PRISMA flow chart in 

140 Figure 1 and the list of included and excluded studies with reasons for exclusion provided in 

141 Supplementary Materials, Table S1. 

142 Included studies:

143 The characteristics of the included studies are detailed in Supplementary Materials, Table 

144 S2. 

145 Study design and setting:

146 The 10 studies included in this systematic review were all single-centre observational cross-

147 sectional studies conducted across eight countries. Only five studies had a sample size of 

148 greater than 100 participants which we feel is satisfactory for providing good quality 

149 evidence. The largest study was conducted by Diez-Sanchez 2003 (13) from Spain and 

150 included 440 participants. 
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151 Participants:

152 Eight of the 10 studies recruited participants from fertility clinics, denoting a convenience 

153 sampling strategy, with only one of these studies recruiting healthy volunteers as controls. 

154 Two studies recruited volunteer donors for their studies. Only five of the 10 studies 

155 accounted for confounding factors such as age, BMI and lifestyle factors in the design and/or 

156 analysis stage of their studies. Hence, the comparability of the participants in the included 

157 studies or within study groups cannot be estimated. The study group for five of the 10 

158 studies included in the meta-analyses comprised of men with abnormal semen analysis. The 

159 criteria for abnormal semen analysis however showed significant heterogeneity.  Some 

160 studies reported results based on the WHO 1999 criteria whereas others used the WHO 

161 2010 criteria. Some studies included men with only reduced sperm motility and normal 

162 sperm counts as the abnormal semen analysis for the study group. Few studies divided the 

163 abnormal results into subgroups, these however were dissimilar amongst the studies and 

164 hence it was not possible to conduct a subgroup analysis for a pooled estimate. 

165 Outcome:

166 All studies reported the mtDNA/nuclear DNA ratio expressing the average mitochondrial DNA 

167 copy number per sperm. The values for the ratio variables differed considerably between the 

168 studies, which might be explained by the methodological differences in interventions. The 

169 concept however remained constant across the studies. The ratios were compared between 

170 patients with normal and abnormal WHO semen criteria. Two studies compared mtDNA 

171 content between sperm cells from the same semen sample in addition to mtDNA content from 

172 the different patients (May-Panloup 2003; Diez-Sanchez 2003). 

173 Five of the 10 included studies reported the primary outcome as a mean +/- SD/SEM. Two 

174 studies reported the median + IQR/range. One study which reported the mean without a SD 

175 had to be excluded from the meta-analysis (9). Three studies reported the correlation between 

176 sperm mitochondrial DNA with sperm parameters rather than differences amongst defined 

177 groups with normal and abnormal semen parameters(13-15). One study used a different 

178 methodology for estimation of DNA (16). These studies were not included in the meta-analysis.

179 Assessment of outcome: 

180 The method of mtDNAcn assessment is a multistep process and varied amongst studies. The 

181 time range between the first study and the last was 16 years, which can impact on the technical 

182 differences between the former and the latter experiments. In general, to quantify 

183 mitochondrial DNA copy number, polymerase chain reaction (PCR) assay using specific 

184 primers to mitochondrial genes was used in the studies. To quantify the number of 
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185 spermatozoa in the sample, nuclear DNA was determined. The relative mtDNA copy number 

186 was identified based on the mtDNA/nuclear DNA ratio. 

187 The first step toward mtDNA quantification is a semen sample purification from the other cell 

188 types, i.e., leukocytes, round cells, epithelial cells, and miscellaneous debris. The fresh semen 

189 samples were purified using various methods such as a combined density gradient 

190 centrifugation and a swim-up method (May-Panloup 2003) (8), only-Percoll density gradient 

191 centrifugation (Amaral 2007; Bonanno 2016; Wu 2019) (14, 17, 18), Ficol-Paque fractionation 

192 (Kao 2004) (16), or without washing at all (Faja 2019) (19). Tian (2014) (10) used 

193 cryopreserved semen samples that have been thawed with subsequent washing in 

194 phosphate-buffered saline (PBS) and sperm-wash buffer. The absence of round cells in sperm 

195 preparations was checked by light microscopy in all studies. In two studies, semen samples 

196 underwent osmotic shock to eliminate the non-gamete cell component (Kao 2004, Faja 2019). 

197 Various commercial DNA isolation kits were used by eight of ten included studies according 

198 to the manufacturer's instructions to extract total DNA. In two studies (Kao 2004 and Diez-

199 Sanchez 2003) the total DNA was extracted using the phenol-chloroform method. May-

200 Panloup 2003, Diez-Sanchez 2003, Kao 2004, Amaral 2007, and Song 2008 reported 

201 supplementation with dithiothreitol (DTT) and proteinase K to dissociate mitochondria from the 

202 mitochondrial sheath and disrupt the sperm nucleus disulfide bonds (20). The other three 

203 studies used only proteinase K as part of commercial DNA isolation kit (Tian 2014, Wu 2018, 

204 Faja 2019) or there was not any specification in the study or manufacturer's manual (Bonanno 

205 2016, Zhang 2016). 

206 Amplification of nuclear and mitochondrial genes was carried out by real-time PCR (qPCR) in 

207 eight of ten studies to determine the amount of mtDNA relative to nDNA. The mtDNA copy 

208 number per sperm cell was measured relative to a nuclear gene, for example, ß-globin gene 

209 (May-Panloup 2003, Kao 2004, Amaral 2007, Tian 2014), Glyceraldehyde 3-phosphate 

210 dehydrogenase - GAPDH gene (Song 2008, Bonanno 2016, Zhang 2016), calicin gene (Faja 

211 2019), or gene of RNase P (Wu 2019). In the study of Diez-Sanchez (2003) mtDNAcn was 

212 determined by slot-blot hybridization using specific mitochondrial (16S rRNA) and nuclear 

213 probes (to 18S human rRNA). Kao and colleagues (2004) used a hot-start concurrent PCR to 

214 determine the amount of mtDNA relative to nuclear DNA. PCR products of mitochondrial ND1 

215 and nuclear genes ß-actin were blotted onto a membrane for relative intensity measurement. 

216 This ratio was an index of the relative amount (copy number) of mtDNA with respect to nuclear 

217 DNA.

218 Melting curve analyses were done to verify the accuracy and specificity of genes amplification. 

219 Serial dilutions of recombinant plasmids containing mtDNA insert were used as the external 
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220 standard to establish a quantitative reference for mtDNA quantification (May-Panloup 2003, 

221 Diez-Sanchez 2003, Kao 2004, Song 2008, Tian 2014;,Bonanno 2016). In the study of Amaral 

222 2007, the external standard for qPCR was double-stranded DNA molecules. The linearity of 

223 the standard curve indicated the efficiency of PCR over the whole process. 

224 The relative mtDNA copy number was calculated using the formula mtDNAcn/nuclear gene 

225 copy number in all studies. In the study Faja 2019, fluorescence data were converted to cycle 

226 threshold (Ct) for each gene. The relative mtDNA content was obtained by calculating the ΔCt 

227 (ΔCt=CtCOII − Ctcalicin) for each sample and applying the exponential function 2−ΔCt (17).

228 Quality of evidence and the risk of bias:

229 The quality of evidence assessed by the NOS was good to very good in 6 of the 10 studies, 

230 and no study was considered unsatisfactory. 70% of studies were downgraded due to the 

231 use of convenience sampling and 50% for small sample sizes included. The results are 

232 summarized in Supplementary Materials, Appendix S2.

233 Synthesis of the results:

234 Of the 10 studies reporting on differences in sperm mitochondrial DNA, five studies with 530 

235 participants were included in the quantitative meta-analysis (Amaral 2007, Bonanno 2016, 

236 Faja 2019, May Panloup 2003, Tian 2014)(8, 10, 17-19). The results are seen in Figure 2. A 

237 significant difference in sperm mitochondrial DNA copy numbers was seen between the 

238 normal and abnormal semen analysis groups (SMD 1.08, 95% CI 0.74-1.43). All five 

239 included studies reported higher sperm mitochondrial DNA copy numbers in abnormal 

240 semen samples as compared to normal semen samples. Significant statistical heterogeneity 

241 was noted (Tau2=0.09, Chi2=10.23, df=4, p< 0.04, I2=61%). Three studies reported a 

242 significant negative correlation between mitochondrial DNA copy numbers and semen 

243 parameters (8, 14, 15). 

244 Subgroup analysis

245 No subgroup analysis was done due to dissimilar subgroups of abnormal semen analysis.

246 Discussion

247 Main findings:

248 Our systematic review and meta-analysis of data showed a significant difference in sperm 

249 mitochondrial DNA copy numbers in human sperm cells with abnormal parameters in 

250 comparison to normal sperm cells. Three studies reported a negative correlation between 

251 mtDNAcn and (1) sperm motility (Tian 2014, Bonano 2016, Faja 2019), (2) total sperm count 

252 (Song 2008), (3) sperm concentration per mL (Amaral 2007,  Tian 2014) and (4) morphology 
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253 (Amaral 2007) between patients with abnormal semen parameters and control groups. Animal 

254 studies also support the findings of this review, that increased mtDNAcn is associated with 

255 decreased total sperm motility (21) A single study reported a large effect size but an opposite 

256 direction of effect (16). This could be attributed to a different method for estimation of DNA.

257 Semen is a complex fluid containing different cell types. Besides leucocytes, immature germ 

258 cells, white blood cells, and epithelial cells, there is variation in sperm population regarding 

259 motility and morphology. Namely, motility within one semen sample can be graded as 

260 progressive, non-progressive, and immotile. In order to eliminate seminal plasma, diploid cells 

261 of different etiology, and separate sperm according to motility and morphology semen 

262 purification was applied in nine of ten studies as described in the outcome assessment section. 

263 Hence, the assessment of mtDNAcn was done using sperm cells selected from the best 

264 fraction of semen population between different men. Moreover, in two studies by Diez-

265 Sanchez (2003) and May-Panloup (2003), they compared mtDNA content between sperm 

266 cells from different populations of the same sample without taking into account the initial sperm 

267 quality. It was found that cells from the semen fraction of worse quality had higher mtDNA 

268 quantity than sperm cells from the fraction of better quality (8, 13). 

269 The WHO criteria classifies abnormal semen analysis into three major groups;  

270 asthenospermia (A), oligospermia (O), and teratospermia (T) and their different combinations 

271 such as AOT, AO, OT, and AT (22). Our review indicates that those who have more than two 

272 abnormal criteria have in average increased number of mtDNA copies.  Amaral 2007 analyzed 

273 the mtDNAcn between three male fertility groups: normal, with 1 or 2 sperm defects or more 

274 than to defects (AOT). The group including three defects (AOT) as low sperm number, 

275 decreased motility, and abnormal morphology statistically differed from the normal group 

276 (P<0.01) and from 1- or 2- defects group (P<0.05). Comparing all groups one by one, there 

277 was a significant negative correlation between mtDNAcn/sperm concentration (R=-0.561, 

278 P<0.001) and mtDNAcn/sperm morphology (R=-0.467, P<0.002). At the same time, mtDNA 

279 content per sperm from the group with the only motility defect did not differ significantly from 

280 the sperm of normal group, but there was a trend towards correlation (R=-0.285, P=0.067). 

281 This is similar to the negative correlation of mtDNAcn and motility in the study of Tian 2014 

282 (r=-0.37; P<0.001). This data also corresponds to the results of May-Panloup 2003 where 

283 semen with the only abnormal criteria (A or T or O) was not significantly different from the 

284 mtDNAcn in the normal group. However, highly significant difference was detected between 

285 patients with normal sperm and the group including multiple abnormalities (O, A, T, OA, AT, 

286 OAT) (P<0.0001) (8). The results of Song 2008 are are in agreement with the studies of 

287 Amaral 2007 and May-Panloup 2003 that mtDNAcn increased in the group of multiple 
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288 abnormalities (AOT) compared with normal semen and patients with the only abnormal semen 

289 criteria (P<.05, Tukey test). 

290 Two studies report mitochondrial DNA quantity specifically for asthenozoospermic patients in 

291 comparison to healthy men. In the study of Bonanno 2016, the analysis was performed in 37 

292 patients with idiopathic asthenospermia, i.e., with a high percentage of sperm with low motility. 

293 The increased quantity of mtDNAcn was detected in 45.8% of patients, that correlated with 

294 high reactive oxygen species (ROS) production. At the same time, Faja 2019 reported 

295 mtDNAcn analyses on 63 asthenozoospermic samples with progressive motility less than 

296 32%. There was a significant correlation between mtDNAcn and total motile spermatozoa (r=-

297 0.51, P<0.001), sperm concentration per mL (r=-0.50, P<0.001), and total sperm count per 

298 ejaculate (r=-0.44, P<0.001). It is important to note that in the study of Faja 2019) there was 

299 no sperm purification with cell selection regarding motility or morphology. That implies that 

300 analysis was done on the general sperm population that might result in a higher level of 

301 correlation rate in comparison to studies with sperm selection through semen purification.

302 Strengths and limitations

303 To our knowledge, the review is the first to assess the human sperm mitochondrial DNA copy 

304 numbers. Despite the general trend between the studies, there is a wide range of mtDNA 

305 quantities. Several possible aspects result in a wide variation of outcomes such as duplication 

306 of the mitochondrial genome in nuclear DNA, the use of inappropriate primes, the bias of 

307 dilution, the low efficiency of total DNA extraction (23). Among other things, accurate 

308 quantification of mtDNA depends on the residual contamination of somatic cells in the 

309 analyzed sample. Thus, Diez-Sanchez 2003 revealed a positive correlation between the 

310 percentage of round cells in the semen sample and the relative amount of sperm mtDNA (13). 

311 Considering the susceptible nature of mitochondrial DNA to degradation, there may be 

312 deletions in the analyzed gene region due to oxidative stress. This may result from the 

313 presence of leucocytes which active producers of extracellular ROS in semen (24). Hence, it 

314 might be reasonable to determine mtDNAcn in sperm cells using several mitochondrial genes. 

315 The study population may also affect the outcomes. It has been shown that the semen quality 

316 depends on the geographical region, as shown for the US and Europe (25, 26). Moreover, 

317 seasonal variation of sperm concentration and total sperm count has also been reported (26). 

318 All these factors may cause the mtDNA count variation in sperm cells. 

319 Interpretation

320 The mechanisms behind the association of mtDNAcn and abnormal semen parameters are 

321 still unknown. Several explanations have been proposed. The mature human spermatozoa 

322 contains residual quantities of mtDNA which is decreased during spermatogenesis. Rantanen 
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323 and Larsson proposed the hypothesis of mtDNAcn decrease during spermatogenesis through 

324 downregulation of Tfam proteins in spermatids, which is known to be the transcription and 

325 replication regulator of mitochondrial DNA (27-29). Adverse external factors or genetic issues 

326 may affect to the process of spermatogenesis to prevent this normal reduction in mtDNA. 

327 Sometimes, these changes might have a compensatory value; for instance, Jiang and 

328 colleagues demonstrated on the mouse model that the increase of mtDNAcn can improve a 

329 severe disease phenotype caused by mtDNA mutations in testis (30)(43). Hence, the level of 

330 normal mtDNA without mutation will be higher, but the mtDNA mutation load remains the 

331 same.

332 Based on the results mentioned above, the mtDNA copy number may potentially have a 

333 prognostic value for fertility and ART outcomes. A few studies presented the connection 

334 between mtDNAcn in sperm and clinical outcomes during ART procedures (13, 31-33) . For 

335 example, Tieg 2020 reveals no relationship between live birth rates, fertilization, usable 

336 blastocyst development, and blastocyst euploid rates with sperm mtDNAcn from infertile 

337 patients undergoing IVF with ICSI (28). It is possible that the sperm cell selected for ICSI had 

338 lower mtDNAcn than other cells from the same semen because of a heterogenic population 

339 of sperm cells. Simultaneously, Tieg's 2020 analysis has confirmed the association of lower 

340 relative mtDNAcn with increased sperm motility. Another study by Rosati 2020 revealed the 

341 association of mtDNAcn with lower pregnancy probability within 12 months and a longer time 

342 to pregnancy. The pregnancy probabilities decreased linearly with higher mtDNAcn (31). The 

343 association of mtDNAcn of sperm cells and early ART outcomes was also analyzed by Wu 

344 2019. The results suggest that sperm with higher mtDNAcn may result in lower odds of embryo 

345 development to Day 3 and Day 5 (33). 

346 Regardless of the effect on ART's clinical outcomes, the levels of mtDNAcn may be used as 

347 a predictor of spermatogenic dysfunction in men. Gabriel and colleagues suggested mtDNAcn 

348 as an indicator of spermatogenesis's efficiency based on the significant decrease of mtDNA 

349 quantity after varicocelectomy (34). Furthermore, the mtDNA content may play a role of a 

350 bioindicator of environmental pollutants such as an air pollutants exposure (35), polycystic 

351 aromatic hydrocarbons (PAHs) resulted in reproductive health problems (36), and synthetic 

352 organic chemicals as monocarboxy-isononyl phthalate, which were positively associated with 

353 mtDNAcn (37). Prolonged exposure to SO2 is negatively associated with mitochondrial 

354 quantity (35). Another study by Luo (2012) revealed the increase of mtDNAcn with hypoxic 

355 conditions at high altitudes (5.300m) (38). Given the reversible effect on sperm quality and 

356 mtDNA content of environmental and some external factors such as sexual abstinence before 

357 the collection of the semen, heating, cigarette smoking, and lifestyle,  Wu 2019 suggests that 
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358 mtDNAcn might be suited as an indicator of male reproductive status on the ground of 

359 consecutive diagnoses rather than a single abnormal sample (14). 

360 Conclusion

361 In this review, we have demonstrated a significantly higher number of mtDNA in human sperm 

362 cells of men with abnormal semen analysis in comparison to men with normal semen analysis. 

363 It is important to note that the quantity of mtDNA rises with the increase in semen abnormal 

364 parameters. Besides, the heterogeneous sperm cell population in the semen creates sperm 

365 variation of mtDNA copy number within the same sample. These findings would seem to 

366 suggest the predictive value of mitochondrial DNA quantification for male reproductive status 

367 assessment. 
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Figure 1: PRISMA Flow chart
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Figure 2: Forest plot of comparison of mtDNA between normal and abnormal semen 
analysis
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