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Abstract 

To predict the coral abundance of the Northern of Myeik, I compared various progressions 

of model techniques, including stepwise regression (using OLS), GWR, and Random forest 

analysis methods, to investigate relationships between coral abundance survey data and 

environmental variables such as depth, slope, aspect, rugosity, chlorophyll, sea surface 

temperature, and turbidity. Depth and SST have the most significant effect on predicted coral 

species abundance. Increased reef abundance was associated with a reduction in sea surface 

temperature stability and shallower optimum depths. Even then, GWR outperformed the other 

studied approaches in places with a substantial degree of input-output disagreement. The GWR 

model production was used to produce a final predicted coral abundance modelling map. The 

accuracy of the GWR model was determined by using Random forest predict modelling to map 

and comparing the higher R2 and predicted and observation graphs to the slope and interest 

value of each model. This sampling tool for a reef prediction model can be used in preference 

of potential species abundance modelling (e.g., seagrass, mangrove) in future Myanmar coastal 

management projects, resulting in more accurate predictions and more educated species 

management decisions. It can assist the Department of Fisheries in making fisheries 

management decisions and help to keep fish stocks stable in the long run by fostering a greater 

understanding of key environmental variables.
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1 Introduction 

Coral reefs are highly beneficial and rich biodiversity ecosystems found around the 

globe. They provide shelter for many aquatic organisms up on the food chain, act as a barrier 

to the coastline, and help to keep sandy beaches stable (Chabanet et al., 2005). Likewise, coral 

reefs are critical for biodiversity because they provide habitat for 35,000–60,000 plant and 

animal species (more than a quarter of all aquatic life worldwide)(El-Naggar, 2020). Corals act 

as nursery grounds and shelters for many natural damages for many marine species (Ko et al., 

2019). Coral covering and terrain complexity of the coral habitat have an important good 

impact on fish abundance. They support more affluent and fishing communities with 

subsistence, commercial fisheries, and source of medicines (Chabanet et al., 2005). As a result,  

they provide ecosystem products and services to humans, such as cultural ecosystem services, 

seafood, touristic opportunities, stability of the coastal, appealing and (Moberg & Folke, 

1999a). 

Global reefs have been attacked by combined natural and anthropogenic drivers such as 

global climate change, hurricanes, increased human activities, eutrophication, and coral 

diseases (Meer et al., 2015). Increased seawater temperature has a detrimental effect on aquatic 

ecosystems and alters their biological processes. This impact results in the development of 

harmful algae, creating a layer on the water’s surface and obstructing sunlight's passage  

(Mansour, 2020). Because of the susceptibility and vulnerability of these ecosystems to 

stressful conditions, increased sea surface temperatures (SST), ultraviolet radiation, 

eutrophication, salinity, sedimentation, and thermal emissions in marine habitats cause coral 

reef habitats to deteriorate (ibid.). High marine water temperatures cause mass bleaching of 

coral reefs (Brown, 1997), while ocean acidification hinders the calcifying abilities of corals 

(Hoegh-Guldberg et al., 2007). 

 Nonetheless, a significant amount of non-climate related threats that harm coral reefs are 

caused by humans’ activities. Activities such as overuse of reef resources, climate change, 

illegal fishing, oceanic acidification, global warming, overcrowding from  tourism, overfishing, 

fishing with explosives, and water pollution may damage reefs by encouraging algal 

overgrowth (Halpern et al., 2008; Sadorus, 2014). Mansour (2020) also recognized 

anthropogenic activities such as urbanization, increased leisure activity, and overfishing are the 

significant causes of reef habitat degradation. Terrestrial runoff such as fertilizer and sewage 

input increases turbidity, leading to increased macroalgal cover (Bell, 1992; Coles SL, 2003; 
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Halpern et al., 2008; Hoegh-Guldberg et al., 2007). Moreover, increased anthropogenic threats 

and their interactions with natural stressors are believed to trigger reef diseases and bleaching, 

resulting in coral cover loss (Mona et al., 2019). Hence, there is a need to assess these threats 

and seek to eliminate or reduce their effects by using effective methods and different tools to 

protect coral reef ecosystems.  

Coastal and marine ecosystems are essential for the developing economies of the 

Myanmar people. Myanmar has diverse habitats that support endemism and high species 

diversity (Mandle et al., 2017). More than 90% of the human populations depends on coral 

fish. A more significant number of fishing households settlements live within 30 kilometers of 

coral reefs in Myanmar and depend considerably on them for revenue, tourism, stability of the 

coastal environment, employment, and cultural significance (Burke et al., 2011a; Howard, 

2018).  

 However, Myanmar reportedly has few measures in place to protect coral reefs (Howard, 

2018). Because of historical and political insecurity, proper conservation of the marine 

environment has been lacking for an extended period (Jones, 2018). Latest surveys on coral 

reefs and demersal stocks in Myanmar have shown a dramatic reduction in species diversity in 

Myanmar (Howard, 2018; Jens-Otto Krakstad, Bjørn Krafft, 2016). The range of fishing 

activities close to islands is extensive (Saw Han Shein, 2013), and evidence of overfishing and 

destructive fishing is observed underwater (Howard, 2018). Especially near the inner islands 

of the archipelago, where subsistence fishing is common. Trawling is the dominant fishing 

activity in the archipelago on the extensive shallow platforms (40-70 m deep) between the 

islands (Obura et al., 2014). There has been an overall scarcity of fish,  a heavy density of sea 

urchins, and coral entanglement, indicating a high level of fishing pressure  (ibid.). 

Additionally, coral reefs in the Myeik Archipelago are under pressure from growing 

unlawful human activity (Anelli et al., 2019; Sarginson, 2019), pollution, and nutrient additions  

(Howard, 2018). There is an immediate need to minimize these risks while increasing 

protecting areas of high ecological importance. Coral reefs continue to face threats, and because 

they are very patchy, it is difficult to identify a point of impact for reef protection (True, 2015). 

Marine protected areas (MPA) also emerged as an effective management measure for the 

protection of coral reefs from all human-related threats and from  the effects of climate change 

(Bridge et al., 2012a). Data on the geographic distribution of vulnerable marine species  is 

necessary to establish suitable marine nature reserves (Sundahl et al., 2020). However, there 
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have been very few studies in Myanmar to map and model coral abundance to inform decisions. 

There has been very little information about coral reef abundance and changing patterns of 

environmental factors due to the constraints of technical and financial capacities (Rao et al., 

2013b). There is a consensus among scholars that relatively little is understood regarding the 

abundance and distribution of coral reefs in Myanmar since direct observations are difficult 

and often expensive to reveal the spatial distribution and geographic location of coral reefs (El-

Naggar, 2020, Bridge et al., 2012a). 

Though preservation efforts have increased over the decades, the usable information is 

limited, and mapping the spatial abundance of coral is logistically demanding and costly. There 

are technical and financial challenges to using expensive video-based surveys, a widely used 

method in developed countries to map the abundance of coral reefs. The species distribution 

and abundance model has been wildly applied in marine ecology to better of a species' 

interaction with its biotic and abiotic atmosphere by studies for biogeographical and ecological 

theories regarding species occurrence (Franklin, 2010). Different methods based on species 

distribution models have been widely used in many ecosystems (Elith & Graham, 2009). They  

have been applied to make habitat distribution and biological functional classes (Garza-Pérez 

et al., 2004) and coral reef community metrics (Harborne, 2006). SDMs are useful instruments 

for investigating a wide variety of aquatic ecological and biogeographical issues using readily 

accessible data, to map and generate the knowledge about the distribution of coral reefs, and 

thus to identify priority sites for management, conserve and prevent many threats  (Davies & 

Guinotte, 2011; Hill et al., 2014; Sundahl et al., 2020).This thesis aims to  determine and map 

the abundance of coral reefs in the Myeik Archipelago, Myanmar, using a simple species 

abundance model based on readily available data.  

Predictive modelling relies on capturing the relationship between explanatory variables 

and the predicted variables from part occurrence and exploiting this relationship to predict 

future outcomes (Frees et al., 2014). Environmental and physical drivers of species richness 

are often used as proxies to predict the  future abundance of benthic marine habitats across vast 

spatial scales and  prioritize management sites (Bridge et al., 2012b). Numerous studies have 

proven that a variety of environmental factors that effect on coral reef species abundance. Some 

of these factors include,  depth (Costa et al., 2015), sea surface temperature (Alexander, 2016; 

Franklin et al., 2013a; McClanahan et al., 2019; Veazey et al., 2016), slope (Costa et al., 2015; 

Huff et al., 2013; Miles, 2018), water current (Sundahl et al., 2020), salinity (Guinotte et al., 
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2003; Huff et al., 2013), chlorophyll (Hill et al., 2014), turbidity (Maina et al., 2008), distance 

from the shoreline (Costa et al., 2015), substrate, and food availability (Bryan & Metaxas, 

2006; Davies & Guinotte, 2011; Sundahl et al., 2020). Similarly, other factors that determine 

the abundance pattern of coral species are light and water clarity (Holmes & Subedee, 2014).  

This study examines both geophysical (depth, slope, aspect, rugosity) and environmental 

variables (e.g., chlorophyll, turbidity, sea surface temperature) that significantly influence coral 

reefs abundance to identify and predict coral abundance location. Developing a simple and 

good predictive model using widely and freely available data might serve as a good place to 

start learning about processes and spatial patterns and generate knowledge about the abundance 

of coral habits without expensive field surveys. This study explores, influence of readily 

available geophysical variables on depth, slope, aspect, rugosity, and environmental variables, 

such as Chlorophyll, sea surface temperature (SST) and turbidity on coral reefs abundance. 

Objectives 

The study aims to develop a simple predictive model for coral reef abundance in Myeik 

Archipelago in Myanmar using openly and readily available remote sensing products and GIS 

layers.  It has been achieved through the following twofold specific objectives: 

• To identify environmental and physical factors that determine coral reef abundance in 

Myeik Archipelago, Myanmar. 

• To develop a simple methodology for predicting coral reef abundance in Myanmar and 

data poor regions using openly available and accessible spatial data. 
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2 Literature Review and Conceptual Framework 

This chapter summarizes relevant literature and establishes the study's methodological and 

analytical foundations. 

 The importance of coral reefs 

Coral reefs are home to most of the world’s biodiversity (Connell 1978; Moberg & Folke 

1999; Odum & Odum 1955). The most diverse collection of marine life is discovered in the 

coral reefs (Turner et al., 2009). Many organisms would perish if the reef did not exist (Miller 

1995, Turner et al. 2009). They produce more living biomass in a tiny region than any other 

marine ecosystem (Rao et al., 2013a). For example, fishes and most  species depend on vital 

resources from the coral reef habitat, e.g., food, nursery (Moberg & Folke, 1999b) marine 

shelter (Anelli et al., 2019) and survival and reproductive requirements (Jones & Syms, 1998; 

Wilson et al., 2006). Similarly, many reef species' pelagic juvenile stages that migrate into these 

nearby habitats serve as food sources for commercially valuable fish, or they may live and 

mature until they are harvested (Moberg & Folke, 1999b). Coral reef habitats also provide live 

resources to humans, e.g., fish, shellfish, and algae (Moberg & Folke, 1999b) and services, e.g., 

tourism and coastal protection (Bridge et al., 2012a) as well as shore protection against a waves 

and storms (Moberg & Folke, 1999b; Turner et al., 2009) and supply essential drugs such as 

anti-cancer and ultraviolet-blocking compounds (Odum & Odum 1955, Turner et al. 2009). 

Coral reefs are essential for the food and livelihoods of local human communities in island 

nations (Burke et al., 2011; Moberg & Folke 1999; Sarginson, 2019). For example, it is reported 

that overexploitation and deforestation have resulted in the destruction of at least 100,000 local 

fishermen jobs in the Philippine Islands (Moberg & Folke, 1999b).  Coral reefs are valuable 

ecosystems for a diverse range of organisms and offer critical ecological services to thousands 

of families (Burke et al., 2011b). Thus, coral reefs are the most important aquatic environment 

for their tremendous ecological diversity, ecosystem resources, and economic sectors 

(Bryant,1998). 

 Coral reef in Myanmar 

The Indian Ocean has the world's second-largest coral reef biodiversity (Siringoringo et 

al., 2019). The Andaman Sea has the most diverse reef biomass of any Indian Ocean area 

because of its similarities to the Reef Triangle that are found as fringing reefs, with a proclivity 

to rise faster on the eastern side islands (Sarginson, 2019). Southeast Asia's coral reefs represent  
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28% of the world's total active coral reef population that provide various essential ecosystem 

services to indigenous costal fisher communities (Brander et al., 2015; Burke et al., 2011a). 

Coral reefs cover an area of roughly 600,00 square kilometers worldwide; more than 

50% are located in the Indian Ocean (Myint, 2003). Since Myanmar is a tropical country 

situated in the southeastern hemisphere, it is home to a diverse range of coral ecosystems 

distributed  along the country's coast (Myint, 2003). Myanmar's biodiversity is unique due to 

its varied habitats and ecosystems. (Rao et al., 2013b). The Myeik Archipelago (Figure 3.1) 

extends from Mali island to Kawthoung's Za Det Gyi island with its vast coral reefs and other 

differing aquatic resources (BOBLME, 2015). The Myeik Archipelago's southern waters, along 

the Tanintharyi coast, are densely populated by various coral species, consisting of hard and 

soft corals (Zöckler et al., 2013).  

The FAO recorded that Myanmar's coastal regions annually catch over two million tons 

of marine fish, according to the CBI Market Intelligence Database (Anelli et al., 2019). More 

than 500 large numbers commercial fishing vessels are currently working in the Tanintharyi 

area, using unsustainable fishing gear and techniques, resulting in a dramatic reduction of fish 

stocks and the loss of coral reefs (BOBLME, 2015). Myanmar's coral reefs are still endangered 

by blast harvesting, a damaging and straightforward form of fishing that utilizes explosives to 

stun fish concentrated in coral reefs and, collaterally, blow up reef areas.  In addition to killing 

a few target species, this strategy causes huge by-catches by killing all other creatures in the 

coral environment and destroying reef structures that could take years to recover, if at all 

(Holmes & Subedee, 2014). The Myanmar Fisheries Act (1990) legislation and fishing rights 

of international vessels (1984) expressly forbids explosives, damaging gears, harmful agents, 

toxic chemicals, and poison. However, difficulties in reaching remote fishing grounds, lack of 

proper logistical facilities, insufficient qualified human resources in addition to imperfections 

of governance are significant limitations for law enforcement and the efficient use of resources. 

More detail is also missing to analyze this environment correctly (Myint, 2003). 

 Threats to coral reefs 

The total, about 58% of the global coral reefs are under immediate threat (Holmes & 

Subedee, 2014) and declining globally because of many challenges, including demographic 

growth in coastal areas,  overfishing, soil erosion, climate change, and pollution caused by a 

watershed, or ocean pollution and destruction (Bridge et al., 2012a). Natural and anthropogenic 

factors at a broad and regional level endanger reefs worldwide (Turner et al., 2009). In several 
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(not all) regions of the planet, long-term data suggest that the reef cover is declining (Bellwood 

et al., 2004; Gardner et al. 2003, Wilson et al., 2006). Nowadays, overfishing marine reefs or 

fish connected with reefs is a primary concern (Moberg & Folke, 1999b). 

Coral reefs are affected by both environmental and anthropogenic stresses (Anelli et al., 

2019). Sea Surface Temperature, tsunami, and years of El-Nino are the primary triggers of coral 

bleaching in the Andaman Sea (Sarginson, 2019). Natural hazards include reef bleaching due 

to rising sea surface temperatures (Bridge et al., 2012a), storms, cyclones, earthquakes, and 

disease outbreaks (Turner et al., 2009). Globally, the EI-Nino epidemic of 1997-98 resulted in 

excessively rising sea temperatures, resulting in coral bleaching and death (Turner et al., 2009). 

Increased temperatures may cause the symbiotic algae to die off (bleaching) and corals to die 

(Williams et al., 2010). Sea surface temperature effects may include reducing reef cover, a rise 

in algal cover, a decrease in species richness, and a decrease in fish biomass.  Additionally, 

rising carbon dioxide (CO2) emissions are gradually acidifying the world's oceans. Coral reefs 

are becoming more vulnerable to disruption or harm due to hurricanes, infestations, and 

pathogens resulting from global warming and acidification (Burke et al., 2011b).  

Coral bleaching due to thermal stress has been observed on the outer islands and the 

hazard spread around the islands in Myanmar (Kleypas et al., 1999; Obura et al., 2014). 

Trawling is a typical fishing operation on shallow water areas (40-70 meters deep) in the 

archipelago's outer part (Obura et al., 2014). Overfishing and destructive fishing are seen 

underwater in Myanmar (Howard, 2018), especially in the seascape's inner islands, where 

subsistence fishing is widespread. Dynamite fishing and anchoring have long-term effects on 

corals  (Sarginson, 2019). The increase of the sediment load correlated with humans from the 

transition to land or in particular the dredging of tropical and sub-tropical countries, as well as 

global climate change or the rise of sea surface temperatures, are one of the most urgent 

problems faced by the current coral reef (Dikou & Van Woesik, 2006). Myanmar's under-

resourced government cannot control the threat of illegal and unregulated fishing (Howard, 

2018), which is reflected  a significant decrease in marine resources over the last three decades 

(BOBLME, 2015; Sarginson, 2019). Climate change will worsen established biodiversity 

problems in Myanmar by (a) indirect mechanisms such as human reliance on goods and services 

provided by marine ecosystems and (b) direct mechanisms such as the reduction of suitable 

ecosystem for species with reduced ecological resilience (Sarginson, 2019). Therefore, coral 

reefs need to recover from current damages and threats to be minimized so as to safeguard the 

abundant ecosystem services they provide (Burke et al., 2011b). The study aims to close this 
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information gap by determining the location and abundance of coral reefs to protect them from 

threats in the Myeik Archipelago. Efficient knowledge of SDM mapping for coral protection 

would benefit fisheries managers, regulators, and development partners, who will use these 

models to recognize resources for reef protection, prioritize strategies, and prepare 

interventions.  

 Status and challenges of coral reef management in Myanmar 

Myanmar's long coastline currently has just four marine protected areas, and the country 

cannot conserve and manage natural resources (Milano, 2011). This is due to insufficient 

environmental funding to adequately resolve the dangers posed to biodiversity by decades of 

economic and political sanctions (Rao et al., 2013a). In addition, there are no precise 

conservation mechanisms for coral reefs in Myanmar (Holmes & Subedee, 2014). Lunn (2015) 

reported that coral reef threats still remaining and that the reefs are highly patchy. Thus, 

identifying a target reef position in the face of numerous threats is not easy. Since there is 

currently a lack of investigative resources in the region to acquire sufficient data, Myanmar has 

urgently needed several researchers to fill the knowledge gap for coral reef protection and 

communication on marine priority issues (BOBLME, 2015; Holmes & Subedee, 2014). 

In Myanmar marine species are at a hazard of habitat loss and over-exploitation in and 

outside protected areas (Rao et al., 2013b). While fishing within the limits of protected areas is 

forbidden, the subsistence and industrial fishermen are using various fishing gears for different 

target species including illicit activity of dynamite fishing (or blast fishing) prevalent in certain 

areas. Their devastating effects are evident on corals around Lampi island, the  Marine National 

Park (MNP) in Myanmar and the protected area in the Myeik archipelago (Milano, 2011). 

Consequently, unregulated and illegal fishing activities and vessel anchoring pose significant 

challenges to the coral reef environment in the Myeik Archipelago due to relatively limited 

knowledge accessible on this region and has not been revised since 1995 (Milano, 2011). These 

challenges call for appropriate responses to deal with them. Mapping and modelling the spatial 

abundance of coral reefs could be the first step toward this goal.  

 Environmental and geophysical factors affecting the 
abundance of coral  

Management priorities for benthic marine ecosystems in specific locations can potentially 

be identified by predictions of environmental and physical factors of species (Davies & 
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Guinotte, 2011; Ward et al., 1999). Corals have a substantial temperature range to thrive, but 

their development is slightly higher in summer than in winter (Miller, 1995). Nevertheless, the 

highest growth rates were reported under warm weather and high light conditions, which are 

more typical of tropical waters than temperate waters. (Miller, 1995). Globally, that sea surface 

temperatures are a significant factor in the loss of coral reefs. (Selig et al., 2012). 

Furthermore, Sea surface temperature can forecast coral abundance and development 

(Hill et al., 2014). Temperature rises may have several adverse effects on corals, including coral 

bleaching death, slower recovery, and increased disease prevalence (Selig et al., 2012). Corals 

have symbiotic algae living in their tissues, without these algae, the corals become white and 

die if the algae are not reabsorbed from the ambient water in the immediate future (Holmes & 

Subedee, 2014). When corals are subjected to temperatures more than 1 degree Celsius above 

average mean summertime temperatures, they may lose their symbiotic algae or zooxanthellae, 

resulting in widespread mortality at regional scales (Selig et al., 2012). Increases in 

sedimentation, temperature, pollutants, or disease tension corals, forcing them to expel the 

symbiotic algae residing in their tissues, resulting in coral bleaching (Holmes & Subedee, 2014).  

Besides SST, several studies have shown that other environmental variables, such as 

substrate type, salinity, and winds have an impact on the abundance and distribution of corals. 

West & Salm (2003) published a list of environmental causes that are likely to be linked to coral 

bleaching tolerance and resilience, such as turbidity, absorption of light, climate, temperature 

fluctuations, high-energy waves, cloud cover, upwelling and deep water's proximity.  However, 

SST and radiation variables significantly impact the abundance and distribution of coral reefs 

(Maina et al., 2008). Maina (2008) concluded that the most critical environmental variables 

determining coral distribution are SST, currents, calcite/aragonite saturation, and substrate. The 

distribution of deep water corals was primarily linked to physical factors around the North 

American continental margins such as depth and slope, besides SST (Miles, 2018). 

 Costa and Veazey (2016) identified sea surface temperature, depth, euphotic depths, 

shore distance as major, important environmental variables in their Hawaiian mesophotic reef 

colonization prediction model (Veazey et al., 2016). Similarly, Kleypas (1999) identified 

temperature as significant determinant of global scale reef abundance between salinity, 

nutrients, light supply, and aragonite saturation. Franklin (2013) also identifies different 

environmental variables as important factors for coral abundance, such as turbidity, benthic 

geomorphology and wave ability. Other non-thermal factors including light, turbidity, water 
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motion, have a significant effect on coral bleaching and molarity but can differ depending on 

other stressors and geographically.    

Huff  (2013) used ocean currents, ocean temperature, sea-floor slope, depth, primary 

surface abundance, dissolved oxygen and salinity as candidate covariates to assess coral density 

and height.  Turner et al. (2009) mentioned the most physically perceivable surrogates for the 

depth being dominant. An especially significant indicator of coral density is the depth since it 

is very well defined and easily calculated, and reliable data sets of coral density may be available 

(Hill et al., 2014). Depth usually rises, the volume of light decreases, and sensitivity to waves 

and temperature falls. Coral reefs develop faster in brighter water that helps the symbiotic algae 

in the coral's tissue grow The algae typically observed populations occur in deeper water (both 

nearshore and offshore coral reefs), while larger forms can endure powerful waves and swell 

forces (Hill et al., 2014). Slope and roughness were also necessary to predict Leptoseris (Costa 

et al., 2015). Higher coral density was associated with more remarkable chlorophyll survival 

and optimum depths around 400 m, according to Hill (2014), and Christmas tree reef abundance 

is significantly predicted by the depth and January currents.  

 Modelling spatial abundance of a coral reef: data sources 

Marine environment management is also hindered by insufficient of detailed geographical 

information on the distribution and abundance of biodiversity and biophysical processes that 

structure local ecosystem (Hill et al., 2014). Several approaches are used to model species, but 

they are sometimes constrained by data availability (Leverette & Metaxas, 2006). The lack of 

basic and reliable knowledge about biodiversity, environments, and ecosystems is one of the 

most important challenges that developing countries face when it comes to protecting 

ecosystems or awarding protected status to particular species (Lopes et al., 2019). Lack of good 

quality information pose a serious threat to successful ecosystem management and risks failure 

in the worst case (Hilborn, 2007). However, the acquisition of data on organisms, ecosystems, 

or fisheries in developing nations is proportionately expensive, not least because support for 

sciences and exploration is small; as sciences generally ranks inferior in government 

preferences in such countries (Chao et al., 2015; Pinheiro et al., 2015). Additionally, data 

collection in deep-water habitats is far more difficult, yet new technological developments 

provide more sophisticated tools for the mapping of shallow-water marine systems (Selig et al., 

2012). 
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Information from field surveys, satellites, established interaction between coral 

bleaching and other environmental factors have been used to identify and create a synthetic 

model that can be used to forecast the exposure of corals to climate change and bleaching 

(Maina et al. 2008). Data from intensive field surveys is one of the widely used sources of reefs 

in shallow waters (down to 30 meters in depth). However, the focus taxa, primary aims, and 

sampling techniques significantly restrict the comparability of data across regions and over 

time. Intensive field surveys such as scuba diving and remotely operated video-assisted surveys 

are expensive, time-consuming, and labor-intensive (Downie et al., 2013) for developing 

countries. Besides this, field surveys sometimes provide details on a species/location basis, but 

often at a much smaller geographical level (Franklin et al., 2013a). Owing to the special 

conditions for studying these remote areas and depth structures, the coral reefs of the Myeik 

Archipelago have received little attention. Specifically, high prices for the purchase of fuel, 

advanced equipment, and lack of experts and specialists are the significant challenges for coral 

reef studies in Myanmar (Holmes & Subedee, 2014).  

Remote sensing products are important data sources for characterizing coral reef 

morphology and ecosystem complexities. Several studies have shown that spectral knowledge 

can be used to map reef cover on a medium to large scale (around hundreds to tens of thousands 

of square kilometers), using conventional remote sensing technologies such as hyperspectral or 

multispectral satellite images or aerial photos (Anelli et al., 2019). It has been successfully used 

in applications such as Mapping, detecting the change in coastal zones, monitoring 

environmental changes, mapping sea bed topography, habitat mapping, and stock assessment, 

e.g., estimating marine gastropods biomass (Mumby, 1997). Remote sensing data and products 

have been widely applied to predict ecological responses to climate change and anthropogenic 

stresses (Maina et al., 2008). 

Satellite image provides cost-effective methods to monitor coral reefs at a regional and 

global scale than intensive field-based studies. Moreover, satellite data are the primary source 

of several physical, climatic, and environmental data such as sea surface temperatures, wave 

height and direction, and other sea properties. Even in very shallow waters, they can also help 

discriminate between live and dead coral (Bryant et al., 1998). Aerial photography images and 

data from reef overflights will give a more accurate picture of reef position and bathymetric 

data down to tens of meters. On the other hand, aerial surveys and the study of their results are 

much more expensive than those based on satellite data. They are difficult or impractical to 

perform legally in certain countries due to security considerations (Bryant et al., 1998).   Remote 
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sensing technologies enabled the mapping of shallow coral reefs on a global and regional scale. 

At the same time, the field surveys may often provide details at the species level, and they are 

usually restricted to a specific geographic area. SDMs may incorporate field observations data 

into statistical models that predict macroecological scale spatially continuous coral species 

distribution to combine the capabilities of different approaches to improve the biological 

characterization of the reefs (Franklin et al., 2013b). 

Besides problems of data availability, available environmental and coral reef field 

survey data (e.g. Fauna & Flora International (FFI) coral field observation data, Nansen Cruise 

ship survey data, and Wildlife Conservation Society (WCS), data) have also not been widely 

used in Myanmar. In this study, I aim to use readily available coral data (from the FFI field 

survey - covering the period 2013–2014) and freely and openly available remote sensing 

products of environmental factors to model the distribution of corals in Myanmar. 

 Spatial abundance modelling: approaches and methods 

SDMs are widely being used by conservation scientists, ecologists, and government 

agencies to map the potential distribution of Vulnerable Marine Ecosystems (VME) at global 

and regional and supply information about the underlying environmental factors that influence 

their abundance (Lauria et al., 2017). Several statistical models have been developed to map 

and model species abundance patterns and trends (Secondi, 2014). SDMs are statistical models 

that may include primary surveys, mapped ecosystems, or observational models. Those with 

microclimatic (satellite) observations are especially useful for predicting global coral species 

abundance (Franklin et al., 2013a). 

Zhao (2016) used a semi-parametric geographically weighted regression method that was 

useful in his research on social and economic variables influencing forest vulnerability. In 

recent years, classical regression methods such as the Resource Selection Function (RSF), 

algorithmic modelling, which focuses on machine learning, Classification & Regression Trees 

(CART), Generalized Linear Models (GLM), and Maximum Entropy (MAXENT) have grown 

in popularity (Secondi, 2014). Logistic regressions and logit models, random forests, or  

MAXENT have been widely used in habitat suitability modelling using presence and absence 

data (Pittman et al., 2007). Shi (2006) reported that GWR models outperformed ordinary least-

squares models and offered valuable knowledge about the local ecological change impacting 

deer spread (Shi et al., 2006). Mart and Spain (2011) have used GWR to investigate involve 

spatial variance in managing biodiversity and decisions.  
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The majority of previous GWR implementations in SDM have concentrated on 

contrasting the GWR model to a global model like OLS, with combinations of model fit, 

prediction accuracy, or spatial autocorrelation in residuals as reference metrics. Different 

methods and software have been used to coral reef distribution using several parameters such 

as sea surface temperature, turbidity, slope  (Bridge et al., 2012b; Hill et al., 2014; Huff et al., 

2013; Leverette & Metaxas, 2006; Siringoringo et al., 2019; Veazey et al., 2016; Williams et 

al., 2010). However, most of these researches focused on one or a few combinations of these 

parameters. In my study, I use a combination of all parameters that can be easily accessed. 

While all the mentioned methods have their merits, this study combines multiple linear 

regression, Global Weighted Regression (GWR), and data-driven forest classification (Random 

forest) methods to find the driving factors and predict coral abundance in the Myeik archipelago. 

These methods were chosen because they are simple and do not need advanced statistical 

analysis. Even more, these methods are readily available in software packages like Arc GIS Pro. 

OLS method was chosen because it is commonly used in regression analysis before a starting 

point for all spatial regression analysis. GWR was chosen to analyze spatially varying 

relationships, if any. The random forest, an ensemble learning method, was selected because it 

is considered to provide higher accuracy and is more robust to deal with noisy data, though I 

have a very small sample size.   

 Research Gaps 

The Myeik Archipelago's species abundance and environment health is largely unknown 

and thus little understood till recently (Anelli et al., 2019; Rao et al., 2013a). The species 

diversity causing reefs to bleach, and the health of these systems are poorly known (Holmes & 

Subedee, 2014). Myanmar faces challenges such as lack of adequate infrastructure, insufficient 

human resources, limited funds, lack of trained personnel to manage the resources effectively, 

and insufficient ability to analyze and interpret data to support government decision-making    

(Myint, 2003). Therefore, there is a need to increase research to explore coral reefs in the Myeik 

archipelago to enable appropriate management and conservation for future generations in 

Myanmar. 

There is also limited information, knowledge, and understanding about the coastal and 

marine ecosystems. There is no comprehensive marine biological/ ecological survey, and the 

only available data is old and outdated. This research will aim to fill critical data gaps, increase 

knowledge and awareness, help Myeik Archipelago's biodiversity, and improve its fisheries and 
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sustainable tourism. Developing potential Marine Protected Areas (MPAs) encouraged as one 

such strategy for preserving and managing exploited fisheries and marine communities; 

however, managers lack reliable and relevant data on the archipelago’s aquatic ecosystems 

implement such a tool. 
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3 Materials and methods 

This chapter briefly presents the coral reef abundance data and the biological and 

environmental datasets used in the study. It describes in details the approaches used to predict 

reef abundance in the Northern Myeik Archipelago.  

 Study areas 

The study area (Figure 3.1)  is located in the Myeik (formerly Mergui) Archipelago, 

which is located in the Andaman Sea's northeastern waters off Myanmar's southern coast in the 

Tanintharyi Region. The Myeik Archipelago, a cluster of approximately 800 islands that 

spreads from Mali isle to Similand isle and covers about 6,000 km2 along Myanmar's southern 

Tanintharyi coast, is Myanmar's most expanded coastal region and is surrounded on the west 

by the Andaman Sea  (Jones, 2018; Myint, 2003; Obura et al., 2014). The Archipelago is 

dwelled by at least a community of 2000–3000 semi-nomadic people known as the Moken, 

commonly called Sea Gypsies (Jones et al., 2018). Fishers migrate between islands to fish in 

coral areas and for invertebrates (Myint, 2003).  

The extensive Tanintharyi coastal region operates both inshore and offshore fisheries. 

Many trawlers and squid light luring fishing boats target various marine resources like fish, 

rays, squid, shrimp, and crabs within shallow water (Obura et al., 2014; Zöckler et al., 2013). 

The district of Myeik is wealthy in natural resources and biodiversity, having diverse seagrass 

meadows, mangroves, mudflats, and coral reefs that provide for many marine species including 

threatened and rare species of cetaceans and turtle rays, sharks (Rao et al., 2013a; Sarginson, 

2019, Zöckler et al., 2013).  Myeik Archipelago areas are recognized as a critical Biodiversity 

area and a UNESCO site. Moreover, it provides many ecosystem services, including food from 

reef fish, sea urchins, molluscs, fishes, crustaceans, other recreation sites for tourists. In this 

region, coral reefs are vital for the sustainability of two industries: tourism and fisheries (Myint, 

2003).  

The region has essential protected areas such as; Lampi National Park (Figure 3.1). It is 

the only national marine protected area of the country established in  1994 (Giardino et al., 

2015; Myint, 2003; Zöckler et al., 2013). There are also two major Shark Protected Areas of 

1706 km2 (Figure 3.1) and 11,734 km2, albeit without specific management controls (Howard, 

2018; Obura et al., 2014). The region has a tropical monsoon climate. The sea surface 

temperature generally varies with around 27 to 34 (Howard et al., 2014). The sea surface 
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temperature declines of depth, with a thermocline area extending from 50 to 230 meters off the 

Tanintharyi shore, while salinity rises steadily with depth and remains constant below 130 

meters. (Myint, 2003). 

Different hard and soft coral types occur in the southern part of the marine area of 

Tanintharyi, and all kind of coral species can be found near the isles of the Myeik Archipelago 

and along the Taninthayi Coastline (Holmes & Subedee, 2014; Zöckler et al., 2013). Coral 

reefs, mangrove flourish, seagrass beds primarily in the Myeik archipelago. Many of the inner 

islands are covered in mangroves, while the outer islands are surrounded by coral reefs (Myint, 

2003). Specifically, coral communities are most abundantly distributed from Tanintharyi 

coastal areas to the offshore island of Myeik Archipelago. As recent research, a family of 

Acroporidae, hard coral (Genus- Montipora) (dominant overall 33%), is the most complex and 

distributed species, although several species remain unexplained (Ko, 2019; Obura et al., 

2014). Coral reefs that surround the uninhabited islands of the Myeik Archipelago are also 

plentiful.  It is especially strong near islands that are located off the coast, on the offshore 

islands (Ko, 2019). 

Myeik Archipelago contains 1,700 km² of coral formations with about 512 species of 

hard corals,  reef invertebrate fauna 258 specimens (Howard, 2018) are to be found in that area 

to according to the recent research by the Department of Marine Science at Mawlamyine 

University (Milano, 2011). However, dragging seagrass beds and reefs, blast fishing, trawlers, 

and overexploitation a devastating impact on Myanmar's coral reefs both within and outside 

conservation areas (Anelli et al., 2019; Rao et al., 2013a, Holmes & Subedee, 2014; LWIN, 

2009).  
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Figure 3.1Location of the study area in the Thintharyi region within the Myeik Archipelago .   

 Data and materials 

3.2.1 Coral survey data 

The present study is using the hard coral survey data from  Howard (2018) that included 

102 sites surveyed for coral and resilience indicators during January 2013 and May 2014. It 

was conducted at a depth between 0-30m below sea level around all islands within the 

Tanintharyi region of Myanmar (Figure 3.2). Most of the datasets were collected by SCUBA 

divers using the reefs check method and consist of latitude and longitude coordinates of each 

observation and hard coral parentage cover. This survey data was checked for invalid point 

location and extreme values, imported into GIS, and cleaned data using visual inspection. 

Details about the coral reef survey data used in this study are provided in Appendix A.   
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Figure 3.2 Coral reef survey locations by FFI  (Howard, 2018) using reefs check survey from 
2013 to 2014 within the Northern Myeik Region . 

3.2.2 Exploratory variables: environmental and biophysical data 

Based on existing literature (see section 2.5), potentially important environmental and 

biophysical variables-(depth, bathymetric aspect, bathymetric slope, rugosity, sea surface 

temperature, chlorophyll, and turbidity) were selected as exploratory variables for the study 

(Table 3.1). Data on the seven predictors were compiled from different sources and were 

chosen based on their availability. All environmental and biophysical data layers were 

projected to the Indian 1954 UTM Zone 47N coordinate system. Processing of exploratory 

variables and further analysis was carried out in ArcGIS Pro. The processing and analysis 

workflow is provided in Figure 3.3.  
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Table 3.1 The seven environmental variables that were used as predictor variables in sample 
coral abundance modeling are mentioned below table.   

No. Variable Unit Descriptor Type of 

data 

Data source 

1 Depth meter Bathymetry Continuous 

digital map 

https://allencoralatlas.org/ 

2 Slope degrees Substrata 

Typology  

Derived 

from 

bathymetry 

data 

Slope calculated using ArcGIS 

Pro's Slope tool. 

3 Rugosity no unit Derived 

from  

bathymetry 

data 

Seafloor complexity was 

calculated with the ArcGIS 

Pro's focal statistics tools. 

4 Aspect  Radians The 

substrate's 

orientation  

Derived 

from 

bathymetry 

data 

Compass direction of a 

maximum slope calculated 

using ArcGIS Pro's Aspect 

tool. 

5 Sea Surface 

Temperature 

°C Temperature Derived 

from 

model 

The temperature of the sea 

surface during the daytime as 

measured by the MODIS Aqua 

sensor. 4x4 km 

http://oceancolor.gsfc.nasa.gov/ 

6 Chlorophyll-

a 

concentration 

mg/ m-3 Chlorophyll Derived 

from 

model 

Chlorophyll-a concentration 

during the daytime as measured 

by the MODIS Aqua sensor. 



Page 20 of 68 

 

No. Variable Unit Descriptor Type of 

data 

Data source 

4x4 km 

http://oceancolor.gsfc.nasa.gov/ 

7 Turbidity FNU Turbidity Derived 

from 

model 

https://allencoralatlas.org/ 

Depth is a major environmental gradient that influences species spatial habits, and in the 

situation of corals, it is the main determinant of their abundance (Figure 4.2 a). (Davies & 

Guinotte, 2011; Greathead et al., 2015; Lauria et al., 2017; Murillo et al., 2011). I obtained 

bathymetry data from the Allen Coral Atlas database (2021) of the Arizona State University. It 

is mapped in centimeters and at a resolution of 10 m (Knapp et al., 2019). I extracted three 

measurements of benthic geomorphology (Rugosity, Slope, Aspect) from the bathymetry data. 

Slope is a morphological indicator of the seabed (Figure 4.2 b)(Franklin et al., 2013a). Low 

values indicate smooth ocean bottoms or sand accumulation areas, and higher values indicating 

possible rugged ledges (Lauria et al., 2017). 

Aspect (Figure 4.2 c)  determines the direction of the seabed at a specific position and 

offers detail on the area's sensitivity to local and regional currents (Wilson et al., 2007).  This 

seabed topographic feature is critical in affecting benthic population structure because it can 

influence current regimes and the flux of suspended food material (Guinan et al., 2009; Tong 

et al., 2012).  

Rugosity is also a critical indicator of intertidal biodiversity since it offers a range of 

microhabitats that facilitate species coexistence. Thus, increased rugosity can help intertidal 

marine biodiversity (Mazzuco et al., 2020). This parameter is primarily used to predict species 

abundance when specific knowledge about the sediment type is unavailable (Pittman et al., 

2007; Pittman & Brown, 2011). The standard deviation of depth was used to measure the 

rugosity of the seabed using the neighborhood function of three × three windows in the manner 

described by Bridge et al (2012a). 

Concentrations of chlorophyll can be connected with the export flow of organic 

particulate carbon (Jung & Kunstmann, 2007) and are the available nutrient on the seabed  

(Knudby et al., 2013). With a precision of 35 percent, the SeaWiFS sensor measures 
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chlorophyll on a scale of 0.01–64 mg/m3 (Barbini et al., 2005; Hooker & McClain, 2000).         

4 km resolution monthly average sea surface temperature data and Chlorophyll-a surface 

concentration from January 2013 to December 2013 were obtained from Aqua-MODIS and 

SeaWiFS (http://ocean color.gsfc.nasa.gov/). The extraction of data, subsetting to the studied 

area, and coordinate transformations were all included in the data processing. I worked out a 

mean monthly SST and chlorophyll concentration to get an average of all the results.  

Turbidity information (for the year 2020) was collected from the Allen coral atlas 

database team at Arizona State University (Carlson et al., 2020). Changes in turbidity (or water 

clarity, transparency) are used to examine estuarine and coastal waters (Fabricius et al., 2013). 

Increased turbidity or decreased water visibility will inhibit coral growth by reducing the 

amount of available light for photosynthesis (Fabricius et al., 2013). 

 

Figure 3.3 summary flow diagram for creating GWR method approach to predict coral 
abundance model 

 Data exploration 

I explored the data using simple descriptive statistics and exploratory spatial data analysis 

tools in ArcGIS. Histogram and normal QQ Plots were used to explore distribution patterns. 

The association between hard coral and various environmental variables was investigated using 
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scatter plots and correlation matrices. Additionally, I examined for multicollinearity in the 

selection of predictors. 

 Modelling the environmental drivers and abundance of coral 
reef 

This research began with traditional linear regression models, assessing and exploring 

spatial statistical relationships between environmental variables and coral reef abundance using 

basic GWR and random forest classification and regression. Under the principle of spatial 

stationarity, global regression models (e.g., generalized linear regression models) can only 

compute one relationship between species and environmental variables beyond broad spatial 

scales (Li et al., 2018; Tseng et al., 2013; Windle et al., 2010). I examined the spatial non-

stationarity of ecological processes using the geographically weighted regression (GWR) 

method. Additionally, previous research indicates that geographically weighted regression 

(GWR) produces more reliable predictions and fewer spatial pattern in the residuals than 

generalized additive modeling (GAM) and global logistic regression (Li et al., 2018).  

GWR's straightforward local modeling methodology will sometimes provide a more 

reliable predictive spatial distribution map for the answer variable than techniques such as 

ordinary least squares (OLS), GAM, Linear mixed model (LMM), Classification and 

regression tree (CART), GLM, multivariate adaptive regression splines (MARS), and Artificial 

neural networks (ANN) (Zhang et al., 2005). Local models can help illustrate spatially distinct 

relationships between environmental and abundance variables given the fact that the 

importance of environmental variables on species’ abundance and distribution can vary 

significantly across its range (Brunsdon et al., 1998a; Fotheringham & Brunsdon, 1999; J. 

Franklin, 2010; Li et al., 2018; Runge et al., 2014; Tseng et al., 2013; Windle et al., 2010). 

GWR is a powerful method for analyzing spatial data relationships that exhibit spatial non-

stationarity (Brunsdon et al., 1998b).  

Global (OLS) and local (GWR) methods were employed in this analysis to predict the 

abundance of hard coral in the research area. Notably, the GWR model discloses the 

coefficients and intercepts within each predictor parameter for each observation point.  

(Fotheringham & Brunsdon, 1999). These coefficient surface maps are instrumental methods 

for examining the relationship between each environmental variable and coral abundance and 

other variables around the study area.  I have used a data-driven forest-based classification and 

regression approach to predict coral reef abundance using environmental variables, an 
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adaptation of Leo Breiman's random forest algorithm (Breiman, 2001). I compared the random 

forest and GWR models to each other to see how the results differed.  

3.4.1 Model selection 

First, I used the ordinary least squares (OLS) linear regression method to investigate 

and validate relationships between and among species complexes and environmental variables 

(Fotheringham et al., 2003). The backward stepwise regression model was used to describe the 

variables or factors that impact coral abundance, the interaction between coral and significant 

factors, and exploration. The VIF (variance inflation factor), Jarque Bera model biases, 

adjusted R2 value, Koenker studentized Breusch Pagan (BP), Akaike Information Criterion 

(AIC), and spatial autocorrelation (SA) were used to test multiple linear regression models. 

The standardized residuals of the OLS model were examined using histograms and normal QQ 

plots. Diagnostics like Joint Wald, Joint F, and the Koenker statistic were used to ensure the 

model's validity. In addition, I examined spatial autocorrelation in residuals using Moran's 

(Ciotoli et al., 2017).  

Geographically Weighted Regression (GWR) was used to address the issue of non-

stationarity in the results.  Identified environmental variables from backward elimination 

regression in OLS were chosen to create the GWR model. The suitable GWR model was chosen 

based on Adjusted R2 and Akaike's Information Criterion (AIC) values.  The model with the 

highest Adjusted R2 and lowest AIC was considered the most accurate in predicting the 

validated data. We plotted the coefficient values for each explanatory variable to analyze how 

the association among each explanatory variable and the dependent variable differs around the 

study area.  

3.4.2 Comparison of model outputs and model validation 

The GWR model was evaluated by comparing the score of AIC and adjusted R2 with 

OLS results. To determine the validity of the prediction models, I used regression analysis of 

predicted versus observed coral abundance values as a model goodness of fit analysis (Smith 

& Rose, 1995). I compared coefficient of determinant, and coefficients (slope and intercept 

parameters ) (Piñeiro et al., 2008). Numerous studies demonstrate the serious importance of 

comparing predicted and observable values while evaluating the significance of regression 

analysis  (Smith & Rose, 1995).Additionally, the random forest model was evaluated by 

comparing the predicted and observed coral abundance graphs using the model performance 

report based on the training data (10%).  



Page 24 of 68 

 

4  Result 

 Observed environmental characteristics of coral habitats 

Coral was found at a various depth; the maximum depth in the study area was 22.7 m. 

Figure 4.2a shows that its depth distribution pattern in the study area. High coral abundance 

was observed in the north-east, with deeper levels ranging from 0 to 5 m.  Depth has a negative 

correlation with coral abundance (Figure 4.1). Warmer waters were identified in the study 

area's northern and northwestern regions.  However, water temperature in the study area was 

relatively warmer in the southern than in the north east and below the Lampi sites (Figure 4.2f). 

. For minimum temperature (in 2013), the Northern region distribution displayed a strong peak 

and round 28.97 ◦C, whereas Taung Pan Gyi region existence generally extended between 

28.24 ◦C and 28.56 ◦C (Figure 4.2 f). The southern part peaked at moderately warmer 

temperatures and Lampi regions peaked at slightly cooler temperatures (28.78–28.95◦C). The 

middle of the North- Eastern region had a higher minimum temperature of 28.24 ◦C, compared 

to less than 0.1 ◦C for reef abundance. SST was negatively correlated with reef abundance 

(Figure 4.1).  

Table 4.1 Summary statistics of environmental characteristic at the coral reef survey location 

points coral 

STATISTIC MEAN SD MINIMUM MEDIAN MAXIMIN 

Depth(m) 4.1 2.7 0.000065 3.2 12.56 

Sea Surface temperature 

(C) 

28.65 0.17 28.23 28.63 29.05 

Chlorophyll  1.10 0.52 0.34 0.95 2.41 

Turbidity 48.60 14.53 2.77 44.38 139.52 

Rugosity 0.54 0.07 0.29 0.53 0.92 

Slope 1.07 0.44 0.04 1.02 4.31 

Aspect 178.71 44.15 0.59 176.57 354.80 
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Figure 4.1 The relationship between coral abundance and environmental variables  

Figure 4.1present the relationship between coral reef abundance and environmental 

variables. This graph indicated that the exploratory variables (independent) are not correlated 

among the other environmental variables at each observation location, meaning there was no 

multicollinearity (Statistika, 2015; Ciotoli et al., 2017). (). The moderate negative correlation 

was observed between coral abundance and depth (r2 = 0.34) and SST and coral abundance (r2 

= 0.26), while there was weak relationship between rugosity and coral abundance (r2= 0.13). 
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a. Depth 

 
b. Slope 

 

 
c. Aspect 

 

 
d. Rogosity 

 

 

 

 

Figure 4.2 The seven environmental variables used to analyze in the predicted coral 
abundance models. These include (a) depth(m), (b) slope (degrees), (c) aspect, (d) 
rugosity, (e) Turbidity (f) Sea Surface Temperature (°C),(g) Chlorophyll  A.  

 Significant environmental and physical factors for coral 
abundance 

The multiple regression using OLS shows that only depth (p < 0.001) and sea surface 

temperature (p = 0.0406) were significant variables out of seven variables. There was not 

enough evidences about the influence (linear relationship) of slope, aspect, chlorophyll, 

e. Turbidity f. SST g. Chlorophyll A 
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turbidity, and rugosity or coral reef abundance. The coefficients have a negative correlation 

with both depth and sea surface temperature. Though the model with SST and depth passes all 

other assumptions, except spatial autocorrelation, linear regression, including the model, seems 

free from bias. However, spatial autocorrelation testing (Moran's I = 0.2, p = 0.005) revealed 

spatial autocorrelation in the model residuals. This suggest that the dependent variables' effects 

are non-stationary (spatially varying) around the study area. There was also an indication of 

the presence of heteroscedasticity. As a result, local regression (GWR) would provide a more 

accurate description of the procedure than a global regression model (OLS). Appendix 1 

contains a description of the OLS results table and spatial autocorrelation graph.  

Table 4.2 Result of OLS model diagnostics 

VARIABLES DEPTH SST NOTES 

Coefficient -3.61 -31.04 negative 

Probability* 0.000013 0.040601 significant p-value (p < 0.05). 

VIF 1.87 2.18 <7.5 

Akaike's Information Criterion  915.81 model fit/performance value 

Adjusted R squared 0.40 model fit/performance value  

Multiple R square 0.44 model fit/performance value  

Koenker (BP) 6.16 >0.05 

Joint Wald  0.00 <0.05 

Jarque Bera(JB) 0.69 >0.05 

 

Table 4.3 shows the essential variables on coral abundance based on forest-based 

classification and regression model. According to a Random forest statistical model, the three 

most important variables to explain coral abundance in the study area were depth, SST, 

chlorophyll (having 22% of the total sum of Gini coefficients) whereas rugosity (12%) and 

slope (8%) have also higher impact on coral reef abundance prediction.  
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Table 4.3 Importance of variables based on classif ication and regression  

VARIABLES % 

Depth 22 

SST 22 

Chlorophyll A 22 

Rugosity 12 

Slope 8 

Turbidity 7 

Aspect 7 

 Predicted abundance and niches 

Linear regression models show that slope, aspect, turbidity, chlorophyll, and rugosity 

did not contribute significantly to the abundance of coral reefs. GWR model was fitted with all 

seven variables as well as only with depth and sea surface temperature to predict coral 

abundance. The GWR model with SST and depth explains 70 percent variances in the coral 

abundance (R2 = 0.70, AIC = 913). However, the GWR model with all seven predictor variables 

has lower was R2 and higher AIC (R2 = 0.49, AIC = 920) than the GWR model with depth and 

SST. The GWR model (with depth and SST as predictors) performed better than OLS model 

(R2 = 0.44, AIC = 915) as expected.  

Spatial non-stationarity of the influence of environmental variables on the distribution 

of coral abundance were visually examined. The local coefficient estimates of each significant 

predictor parameter, local R2, and model standard residuals were used to evaluate the model 

performance. The predicted surface maps show the abundance of coral abundance vary 

spatially across the study areas, with both depth and SST having a negative relationship. The 

coefficient between depth and coral abundance ranged from 1.8 to - 4.6, while the coefficient 

of SST was from 14.4 to -80.6. The negative relationship between coral and water depth was 

significant in the north-east Taung Pan Gyi and North west of Dom island, while the south-east 

areas showed no significance (Figure 4.3).  

The effect of SST on coral abundance was influential in the northeast of Taung Pan Gyi 

island, around Dom island, Southern of Zar Dat Gyi island, and in the middle of Khin Pyae 

Son island (Figure 4.4). However, relatively higher temperatures were observed at the edge of 

North and south and far from Dom island. Figure 4.4 show that the model worked very well in 

the region edge of Khun Thee island at the northern and southern sections, with a local R2 
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greater or equivalent to 0.84.  In contrast, GWR model fit was relatively weaker in Taung Pan 

Gyi area, and between Dom island and Mee seine island, explaining only around 34 % of the 

variance of coral abundance. The standard residuals from GWR show that the residual 

distribution was random throughout the study area, showing the importance of the GWR model 

(Figure 7.3). 

 

Figure 4.3 Depth coefficient surface maps obtained from the GWR analysis.  

 

Figure 4.4 SST coefficient surface maps obtained from the GWR analysis.  
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4.3.1 Predicted coral abundance surface maps 

The predicted surface map of coral abundance using the GWR model is presented in  

Figure 4.5. The figure shows that the predicted coral abundance varied from up to 77.8, with 

several areas having notably high abundance: in the Taung Pan Gyi island (TPG) places of the 

northeastern part, Lampi island off south-east part and Khin Pyae Son island. Other areas had 

a moderate to a high abundance of hard coral abundance. However, the edge of the western 

region at Su lar island and the northern part at Khun Thee island have relatively lower 

abundance. The finding indicate that coral abundance is higher in the lowest water of the 

continental shelf areas in the northern part, as expected (Figure 4.5). The results also suggest 

that high coral abundance is associated with low sea surface water temperature.   

 

Figure 4.5 Predicted coral abundance in the Myeik areas based on GWR model, SST , and 
depth as the predictor variables 
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Figure 4.6 shows coral abundance predicts maps produced by random forest method 

using all seven explanatory variables. The predicted abundance map shows a similar spatial 

pattern as the GWR model prediction. Though the percentage of variance explained for training 

data with this model was 91%, the variance rate for validation data was only 11%. It shows the 

impact of overfitting on training data by random forest. The out-of-bag validation R squared 

indicates that the variation explains about 11 % of the model in the response. In this 

comparison, the GWR model looks better (i.e., explaining 70% of variance) than random forest. 

It clearly shows the importance of spatial clustering patterns, which can be better explained by 

the spatial model such as GWR. 

The largest coral abundance areas were located on the Taung Pan Gyi island area in the 

northern part. Both predicted maps at the Taung Pan Gyi island areas showed high abundance, 

with larger areas occurring off Khin Pyae son island. However, not many corals were observed 

off the southern part, with few abundances of coral. 

 

Figure 4.6 Predicted coral abundance in the Myeik areas using forest-based classif ication 
and regression model  
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 Validation of the models 

The findings indicated that the GWR model performs better than the OLS model in terms 

of parameter equilibrium and variance described (Ortiz-Yusty et al., 2013). The relationship 

between predicted and observed value showed the model is relatively good (Figure 4.7). The 

relationship showed how good the model is (as an R2 value near one is considered a perfect 

model).  The GWR result showed that the relationship between predicted coral abundance and 

survey hard coral have R2 = 0.71 (Figure 4.7) with a normal distribution of residuals around 

the least square line. The regression analysis of observed vs. predicted values is conceptually 

simple; the slope should equal one, and the intercept variable should equal zero.  (Smith & 

Rose, 2008). A graphical analysis of observed and predicted values for the model revealed a 

slope of 1.05, which was close to 1, and an interest of -2.4, explaining about 71% variance 

(Figure 4.7).  

 

Figure 4.7 relationship between predicted (hard coral) and observed coral  abundance based on GWR 
model  

The regression between the random forest model prediction and observed coral 

abundance shows that about 83% of total linear variance explained by the regression model 

(Figure 4.7), which is slightly higher than the GWR model. Nonetheless, the GWR model 

performance was slightly better, as indicated by the slope and intersect of the line (Figure 4.7 

and 4.8). On the other hand, both GWR and random forest models predicted a similar pattern 

of abundance. 
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Figure 4.8 relationship between predicted (hard coral) and observed coral  base on Random 

forest model  
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5 Discussion 

 Environmental and physical factors in determining coral reef 
abundance  

Regression analysis can help us understand which factors contribute to a phenomenon 

and determine how each factor contributes to that phenomenon. These methods are used when 

relationships between the target species and environmental variables are not entirely 

understood (Alexander, 2016) and predict unknown values and model spatial relationships.  

This study showed that depth was the most influential variable on coral abundance 

across the Northern Myeik. Random forest showed that all variables have an important 

contribution. There was a very high spatial dependency of coral reef abundance. Depth and 

SST were the important factors of coral abundance showing a spatial variance. The finding is 

consistent with what Costa et al. ( 2015) observed. Depth is more readily measurable, more 

reliable, and more widely available than in other model habitats features (Huff et al., 2013). 

GWR predicted model of coral abundance was highest in a shallow depth and, moderate sea 

surface temperature environments along the northern Taung Pan Gyi island around depth 2-6 

m (Giardino et al., 2015). This is similar to Ko (2019), who expressed that Taung Pan Gyi areas 

had the highest coral common species at water transparency at 5  m depth. 

The result also showed that turbidity has no significant effect on coral abundance 

because the water was transparent at 5 meters depths, according to previous research ( Ko, 

2019) allowing for photosynthesis.  The trend of highest coral abundance was found in 

shallower depth with distribution in the eastern and southern part were lower than the northern 

part of Taunf pan Gyi island Coral abundance. These corals were concentrated in shallow depth 

because it’s growth potential is higher due to light availability for photosynthesis (Hill et al., 

2014). Deeper water, however, had lower coral abundance due to unavailability of light to  

support photosynthetic systems for coral growths (Miller, 1995). 

Sea surface temperature was an important factor of coral abundance and distribution 

(Huff et al., 2013; Leverette & Metaxas, 2006). In this study, sea surface temperature 

negatively affected hard coral, similar to Selig et al. ( 2012).  GWR model indicated larger 

coral clusters in moderate warmer water. Other research has found that temperature might not 

be a limiting factor for coral growth and abundance around the Myeik archipelago  (Howard et 

al., 2014, Dullo et al., 2008, Lauria et al. 2017, Obura et al. 2014). Since SST is thought to 
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affect coral calcification rates, physiology, and biochemistry, this study shows that sea surface 

temperature can play a critical role in coral habitat selection (Guinotte et al., 2006). Other 

research has found that corals that have already been subjected to moderate degrees of thermal 

stress have a larger capacity for adaptation and are more resilient to future thermal stress events 

(Selig et al., 2012). This may be one reason for the study's findings.  

Coral bleaching is the most obvious impact of climate change on coral reefs, when 

unusually warm water temperatures disrupt the coral-algal symbiosis, potentially resulting in 

mass coral mortality (Coles SL, 2003). Additionally, sea surface temperatures greater than one 

degree Celsius above normal summertime maximums may kill their symbiotic algae or 

zooxanthellae, of corals, resulting in widespread mortality on local levels (Selig et al., 2012). 

It is essential for coral colonies since a slight rise in temperature of 0.1°C can increase the 

geographic extent of coral bleaching (McWilliams et al., 2005). The example of the 

temperature effect on coral bleaching shows how climate change may, in the long run, affect 

biodiversity and ecosystem services that are supported by coral reefs. However, this study does 

not include the effect of temporal changes and SST changes on the abundance of corals in the 

region.  

Other environmental variables (slope, aspect, rugosity, Chlorophyll, turbidity) were not 

found significant for coral abundance in the GWR model. In contrast, the random forest model 

demonstrated that all seven variables were important for coral abundance. One of the reasons 

could be that GWR is a local linear model (assuming linear relationship between dependent 

and independent variables), so linear GWR model could not capture the nonlinear relationship 

between environmental variables and coral abundance., For example, as seen in the correlation 

matrix, the relationship between coral abundance and other factors, e.g., slope, aspect was not 

linear; that’s why the GWR model with all variables was not better. On the other hand, random 

forests capture both linear and non-linear relationships, as shown by importance – all variables 

having higher than 7% importance. This may highlight the need for nonlinear spatial modelling, 

the alternative to GWR, which can capture both non- liner relationship and spatial 

heterogeneity of a relationship.   

 Spatial autocorrelation and importance of GWR  

I compared the performance of multiple regression analysis, GWR, and random forest 

in this analysis. The results showed that the best modelling method for predicting coral 
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abundance was the GWR model, compared to multiple linear regression and data-driven 

random forest classification and regression methods. OLS model was included in this study 

first to explore if there were linear relationships. GWR model provided realistic estimates of 

predictive performance, explaining 70 % of the variance in coral abundance. In comparison, 

the best OLS model (with a combination of different environmental and physical variables) 

explained only 44 % of variances, while the random forest can explain about 11 % of variances.  

The results showed the presence of spatial autocorrelation in coral reef abundance. The 

GWR model is a spatial statistical technique used to investigate spatial non stationarity as 

environmental factors vary by location. GWR's major benefit over OLS regression is its 

capacity to handle spatial non stationarity (Propastin et al., 2008). The findings show that  the 

GWR model fits differently than traditional the OLS result and offers comprehensive 

knowledge about the spatial heterogeneity of depth and SST caused by geographical and 

ecological influences (Propastin et al., 2008). Figure 4.5 illustrates a map of the GWR predicted 

value of the coral abundance based on the FFI observations data (2013-2014). GWR model 

showed a high concentration of predicted coral abundance in the Northeast Taung Pan Gyi 

island, with moderate abundance found around the Dom island.  

Regressing expected vs. observed values, where slope, intercept, and the coefficient of 

determination (R2) value represent the accuracy, model bias, and overall model fit, is a sample 

and straightforward approach to analyzing the model goodness-of-fit (Piñeiro et al., 2008). 

These parameters provide elements for assessing model success and gaining trust in it (ibid). 

Both observed and predicted coral abundance results from GWR, there was a linear relationship 

(Figure 4.7). While R2 shows the proportion of the total variance explained by the regression 

model (and also how much of the linear variation in the observed values is explained by the 

variation in the predicted values), the slope and intercept that describe the consistency and 

model bias, respectively (Piñeiro et al., 2008).  The results (R2 = 0.71, and intercept = -2.41 

and slope= 1.0) clearly show that the GWR model, though not the best, was good enough to 

predict coral reef abundance. While the random forest predicted result (R2 = 0.82, and interest 

= -11.4 and slope=1.2) (Figure 4.8). Based on Piñeiro et al. (2008), GWR was selected as the 

best model than Random forest as it has a slope near to1.0 and intercept near to 0.  

GWR is a spatial statistical tool used to analyze spatially non stationary or spatial 

autocorrelation at a local level (Mennis, 2006). Although spatial nonstationary can mean that a 

global model was mis specified, the searching for appropriate explanatory variables may be 
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more accurately guided by examining the spatial patterns in parameter estimates obtained using 

a local technique such as GWR. Alternatively, the influence of unknown variables may be 

expressed using locational data.  

Indeed, environmental factors and their interactions are scale-dependent in their spatial 

non-stationarity (Foody, 2004). Global regression models such as ordinary least squares (OLS) 

are unable to capture the effect of spatial scale heterogenity on the relationships between a 

dependent variable and independent variables where there is such scale dependence (Propastin 

et al., 2008). If the bandwidth becomes coarser, the GWR effects grow more global, showing 

more generalized regional patterns, and the relationship's spatial non-stationarity tends to 

decrease. GWR model was helpful in estimating the abundance of corals in the Myeik 

archipelago due to the spatial non stationarity of the variables. Finally, the GWR model can be 

an sample and best solution to spatial problems in geography and ecology that are non-

stationary and scale-dependent (Propastin et al., 2008). 

 MPA and coral reef abundance 

Myanmar's marine areas include protected areas for conservation purpose such as 

marine protected areas, that are mostly, locally managed. However, the habitats and ecosystems 

inside and outside protected areas in Myanmar are threatened by continuing habitat destruction 

and overexploitation, and their potential to preserve biodiversity effectively is restricted by a 

number of additional factors, including their scale, regional representation, insufficient 

management capability, and a lack of policy and regulatory structure  (Rao et al., 2013c). MPAs 

are essential for managing coral reef ecosystems, but they must be supplemented by direct 

actions to reduce anthropogenic activities that lead to climate change (Selig et al., 2012). The 

relationship between predicted coral reef abundance and marine management area in Myanmar 

depicts that the highest coral abundance areas are notably located near the two LMMA areas 

than other protected areas (Figure 5.1). It shows that the local fishing community participating 

in the local marine management project is essential in implementing a sustainable ecosystem 

and marine conservation management project. The objectives of the protected areas can be 

achieved if local communities are included in management plans and discussions (Dearden, 

2018).  

Environmental factors that can affect the geographical abundance of biodiversity are used 

in marine spatial planning and ecosystem-based strategies (Crowder & Norse, 2008). Coral 
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reefs abundance map can inform marine conservation planning (Leathwick et al., 2008). The 

results have demonstrated that a simple GWR model using openly and readily available 

datasets can be used to predict coral abundance, despite the uncertainties inherent in the 

findings. Predicted maps like this can be very useful for coral reef conservation and 

management in Myanmar.  The method and data used in this study can be helpful for further 

assessment and analysis of coral distribution and abundance in other data- poor areas. This will 

also serve as a foundation for spatially explicit ecosystem modelling and coral reef marine 

spatial planning and the implementation of large-scale species distribution modelling projects 

at Myanmar's Department of Fisheries. Furthermore, resource managers, policymakers, and 

development agencies can use these models to identify resources for coral reef conservation, 

set priorities, and prepare strategies using the accurate information of projected coral 

abundance chart.  

Knowing the best modelling method to use in a particular situation should lead to better 

predictions and more informed species management decisions (Alexander, 2016). The proper 

use of predicted coral abundance mapping and multiple methods to support fisheries 

management decision-making for the Department of Fisheries could help sustain a stable fish 

population by promoting a better understanding of the key environmental variables. Thus, 

MPAs found in the Myeik region where corals exist need to be regulated and managed to 

protect and conserve the corals.  
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Figure 5.1 compare with marine management areas in Northern Myeik  

 Limitation 

Due to the limitation of surveying large sea areas, it was hard to fully understand the 

ecological niche and coral reef distribution and abundance pattern. GWR enables us to make 

prediction surface map based on the current environmental and physical circumstances.  

This study is based on only a very few surveyed coral abundance location data (102 

sample points), which is the major limitation of this study. Importantly, random forest 

classification and regression model requires enormous sample size. However, I tried to use 

random forest model with small sample size, , which could be the main reason for poor model 

performance. This study chooses several environmental factors, including depth, slope, aspect, 

rugosity, turbidity, sea surface temperature, chlorophyll which were included in the study 

because they could be significant in assessing the prediction coral abundance map. Salinity was 

not included as an environmental variable in the analysis because the high-resolution sea 

surface salinity data was not available for the entire study area. One other major limitation of 

this study is that it does not consider critical anthropogenic drivers/factors in the modelling. 

Considering the time constraints, lack of readily available human activity data was the only 

reason for no to anthropogenic factors in the prediction models. However, this research is an 

important first step toward creating potential spatial predictions of species abundance for coral 

reef habitats in Myanmar water that can. 

 



Page 40 of 68 

 

6 Conclusion 

This research uses a simple GIS-based approach to identify environmental and physical 

factors that influence coral reef abundance in Myeik Archipelago in Myanmar. The model 

considers seven exploratory environmental variables relevant to the coral abundance: depth, 

slope, aspect, chlorophyll, SST, turbidity and rugosity. According to the OLS findings, the 

relationship between any or possibly all explanatory variables and the dependent variable is 

non-stationary throughout the study area. This study, a relatively simple analysis, indicates that 

GWR revealed significant local variation in the coral abundance and environment relationships 

and illustrates the potential for capturing the spatial non-stationarity of the influencing factors. 

The GWR model results show that depth and Sea Surface temperature were the most important 

factors for spatial variation of the coral abundance in the Myeik. However, the random forests 

model shows that all seven variables – depth, slope, aspect, rugosity, chlorophyll, SST, and 

turbidity were important factors for coral abundance and indicated a non-linear relationship 

between some environmental variables and coral abundance.   Based on the model prediction, 

high coral abundance areas were found around the Taung Pan GYi island and Khin Pyae Sone 

island. Simple prediction models like GWR, as used in this study, can be used to identify 

priority areas for coral management plan and to create functional marine protection areas. They 

also provide beneficial information for marine conservation. Thus, such prediction models and 

predicted maps could help DOF managers and decision-makers to identify spatially potential 

coral abundance locations, providing cost effective solution to expensive coral surveys. 
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Appendix A. Supplementary Material on the Preparation of Input 

Datasets  

 

Table 7.1 Summary statistics  for OLS (significant at the α = 0.05 level) Significant variables are 
indicated with an asterisk (*).  

Variables Coefficient values Robust_Pr [b] VIF 

Depth -3.241727 0.000073* 1.878527 

Slope -0.276382 0.909747 1.026319 

Aspect 0.016285 0.428305 1.069873 

Rugosity 23.594969 0.183289 1.425434 

Chlorophyll 1.573359 0.743431 2.601162 

SST -34.104549 0.016199* 2.152849 

Turbidity -0.011159 0.898731 1.115527 

 

 

Figure 7.1 OLS Result of nearest neighbor analysis showing the coral abundance. 
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Figure 7.2 GWR result of local R2 

 

 

Figure 7.3 GWR result of Std. Residual  
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Table 7.2 FFI coral reefs survey data 

SITE AREA LATDD Y LONGDD X SITE NAME 
HARD 

CORAL 

1 TYT  12.44203 98.01769 Thawaythadangyi Kyun  35 

2 TYT  12.339 97.95778 Thawaythadangyi Kyun  13 

3 TYT  12.30397 98.03683 Ba Gyee Kyunn Southwest  30 

4 TYT  12.16753 98.15206 Wadi Kyunn Southeast  26.5 

5 TYT  12.14542 98.12672 Daung Kyunn Southwest Tip  36.5 

6 TYT  12.17211 98.02803 Ao Lei Kyunn Southwest Tip  20.5 

7 TYT  12.01889 97.97922 Kyet Paun Kyunn Northeast Bay  53 

8 LMP  10.85931 98.08764 Wa Ale Kyunn East  31.5 

9 LMP  10.76942 98.24247 Lampi  11 

10 LMP  10.47208 98.16825 Nyaung Whee  17.5 

11 ZDG  10.24697 98.23747 Shwe Kyun Gyi  43 

12 ZDG  10.24703 98.237 Pa Law Ka Kyan  20 

13 ZDG  10.12939 98.32811 Thay Yae Kyunn  50.5 

14 TYT  12.30578 98.04544 Za Latt  35 

15 TYT  12.27286 98.00242 Pearl farm  53 

16 TYT  12.34608 97.94833 Phalar Aw  53.5 

17 TYT  12.28439 97.99325 Palu Palal Hill  59.5 

18 TYT  12.30308 97.96714 Thit Lat Tan Aw  60 

19 TYT  12.32369 97.95511 Thawaythadangyi Kyun  74 

20 TYT  12.41425 98.11039 Tit Ti Tu Aw  90.5 

21 TYT  12.421 98.10864 Shar Aw  88 

22 TYT  12.43067 98.09583 Palu Palal Aw  88 

23 TYT  12.40447 98.11822 Sas Tit Aw  82 

24 TYT  12.45219 98.09483 Palu Palal Hill  77.5 

25 TYT  12.42639 98.10069 Shar Aw  81.5 

26 TYT  12.40758 98.01611 Zat Latt East  80.5 

27 TYT  12.42589 98.13167 Taung Pan Gyi  81.5 

28 TYT  12.42003 98.11914 Taung Pan Gyi  74.5 

29 TYT  12.42939 98.15019 Taung Pan Gyi  56 

30 TYT  12.40922 98.1353 Taung Pan Gyi  88 

31 TYT  12.29306 98.05336 Mee Kway Island  68 

32 TYT  12.34708 98.06619 Zalwal  78 

33 TYT  12.30769 98.06 Dahaw  71.5 

34 TYT  12.31569 98.06314 Dahaw  79.5 

35 TYT  12.42342 98.01253 That Pan Nyo  92 

36 TYT  12.1955 98.06517 Nyaung Hmine  90.5 

37 TYT  12.18942 98.0675 Nyaung Hmine  72 

38 TYT  12.06053 97.9805 Mee Kway Island  88 

39 TYT  12.16294 98.09864 Dahaw  79 

40 TYT  12.13997 98.14372 Dahaw  87 

41 TYT  12.3905 97.99528 Taung Pan Gyi  85 

42 TYT  12.41453 98.11167 Tit Ti Tu Aw  79.5 

43 TYT  12.425 98.10142 Shar aw  84 
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44 TYT  12.42083 98.12031 Taung Pan Gyi  79.5 

45 TYT  12.42167 98.0125 That Pan Nyo  87 

46 TYT  12.30447 98.04375 Bar Ge Mountain  61 

47 TYT  12.39114 97.99583 Aw Wine  67.5 

48 TYT  12.10911 97.98183 Kyun Pone  62 

49 TYT  12.07728 98.00383 Salin Taung  73 

50 TYT  12.06211 98.01906 Salin Taung  57 

51 TYT  11.96306 97.99986 Mee Sein Is.  70.5 

52 TYT  11.96758 97.97442 Mee Sein Is.  56.5 

53 TYT  12.11789 97.97258 Kyun Pone  33 

54 TYT  12.12456 97.97864 Kyun Pone  72.5 

55 LMP  10.64517 98.24794 Lampi  11.5 

56 PSB  11.32242 98.01889 La Ngan  86 

57 PSB  11.32239 98.00253 La Ngan  84.5 

58 PSB  11.34342 98.00536 La Ngan  72.5 

59 PSB  11.35439 98.01664 La Ngan  49 

60 LMP  10.71556 98.2905 Lampi  52 

61 LMP  10.9785 98.15028 Lampi  71 

62 LMP  10.92739 98.11636 Lampi  51.5 

63 LMP  10.49978 98.23775 Nyaung Whee  60.5 

64 LMP  10.46631 98.22008 Nyaung Whee  65.5 

65 LMP  10.45567 98.22061 Nyaung Whee  51.5 

66 PSB  11.27269 98.02614 Kyat Mi Thar Su Is.  22.5 

67 PSB  11.38333 98.01581 Saw Pu Is.  25 

68 TOR  11.71831 97.55844 Sular Nge Is.  7.5 

69 TOR  11.79461 97.46953 West Sular Is.  2.5 

70 TOR  11.81414 97.50667 West Sular, North Is.  10 

71 TOR  11.81719 97.66856 Kon Thee Is.  5 

72 TOR  11.83575 97.67144 East Sular Is.  5 

73 TOR  11.86275 97.67511 East Sular  17.5 

74 TOR  11.93703 97.68253 West Islet  65 

75 TOR  12.00519 97.75297 Dana Theik Di Is.  7.5 

76 TOR  12.00694 97.65561 South to Sular Kha Mouk Islet  15 

77 TOR  12.02892 97.63161 Double Is.  27.5 

78 TOR  12.05125 97.67125 Sular Kha Mout  27.5 

79 TOR  12.14792 97.74086 Bailey Is. (Jer Bout Is.)  17.5 

80 TOR  12.24808 97.76731 West Spur  70 

81 TOR  12.29519 97.80114 Metcalfe Is.  55 

82 TOR  12.43278 97.79856 Chevalier Rock  37.5 

83 TOR  12.59025 97.83269 Tanintharyi Is.  20 

84 TOR  12.77703 97.8665 Kabuzya Is.  70 

85 TOR  12.78606 97.88033 Kun Thee Is.  7.5 

86 TYT  12.42508 98.01425 Sack Is.  80 

87 TYT  11.97078 97.97094 Mee Sein Is.  62.5 
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88 PSB  11.72864 97.96819 Hlwa Sar Gyi Is.  21.25 

89 LMP  10.85514 98.04733 Wa Ale Is.  28.75 

90 LMP  10.59272 98.04103 Bo Ywe Is  7.5 

91 ZDG  10.01153 98.29047 Zar Dat Gyi  59 

92 ZDG  9.95294 98.23811 Zar Dat Gyi  52 

93 ZDG  9.93917 98.22444 Zar Dat Gyi  51 

94 ZDG  10.01822 98.30078 Zar Dat Gyi  38 

95 ZDG  10.03528 98.30075 Zar Dat Gyi  52.5 

96 ZDG  10.06394 98.18992 Zar Dat Gyi  49 

97 ZDG  10.10372 98.27603 Zar Dat Ngal  92 

98 TYT  12.11367 97.98428 Kyun Pone  33 

99 TYT  12.21793 97.94239 Kyun Gedway  66 

100 TYT  12.24042 97.94181 Kyun Gedway  45 

101 TYT  12.23269 97.94233 Kyun Gedway  46.5 

102 LMP  10.85503 98.08842 Lampi  45.5 

 


