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Summary  

Venous thromboembolism (VTE) is the formation of a blood clot in, most commonly, the 

deep veins of the lower extremities and the pulmonary circulation. VTE is a prevalent disease 

associated with severe short- and long-term complications. Negatively charged procoagulant 

phospholipids (PPL), and phosphatidylserine (PS) in particular, are vital to efficient 

coagulation activation, and found expressed on the surface of extracellular vesicles (EVs) and 

activated platelets.  

The overall aim of the present thesis was to develop an easily available and 

reproducible FXa-dependent clotting assay to measure PPL activity in plasma, and further use 

the assay to investigate the association between plasma PPL activity and the risk of VTE.  

In paper I, we investigate the impact of several pre-analytical conditions on EV 

concentration and size measured by Nanoparticle Tracking Analysis (NTA) and scanning 

electron microscopy (SEM). In paper II, we developed a modified FXa-dependent clotting 

assay by substituting the chemically phospholipid depleted plasma with PPL-depleted plasma 

obtained by ultracentrifugation. In paper III, we used our modified PPL assay to investigate 

the association between PPL clotting time (PPLCT) and the risk of incident VTE in a nested 

case-control study derived from a population based cohort (the Tromsø study). Previous 

studies have suggest that statin treatment reduced the risk of recurrent VTE. In paper IV, we 

investigated the impact of statin treatment (rosuvastatin) on PPL activity, using the modified 

PPL assay and plasma samples from the STAtins Reduce Thrombophilia trial. 

The impact of pre-analytical conditions (i.e. anticoagulants, centrifugation protocols, 

and fasting status) on EV measurements was demonstrated, and the obstacle of post-prandial 

lipoproteins interfering with NTA analysis was particularly highlighted. We found that the 

modified PPL assay displayed similar sensitivity and reproducibility compared to commercial 

assays based on chemically phospholipid-depleted plasma. We observed an inverse 

association between plasma PPLCT, assessed by the modified assay, and the risk of future 

VTE in a population-based nested case-control study. Additionally, rosuvastatin treatment 

aused a substantial decrease in plasma PPL activity in subjects with a history of VTE. The 

development of the modified PPL assay enabled us to perform high-quality measurements in 

large-scale studies. The inverse association between PPLCT and VTE risk supports an 

important role of plasma PPL in the pathogenesis of VTE and may partly explain the reduced 

risk of VTE recurrence observed by statin treatment.  
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Sammendrag  

Venøs tromboembolisme (VTE) er en fellesbetegnelse for blodpropp som dannes i de dype 

venene i underekstremitetene eller i lungekretsløpet. VTE er en vanlig sykdom med alvorlige 

kort- og langtidskomplikasjoner. Negativt ladede prokoagulante fosfolipider (PPL), og da 

spesielt fosfatidylserin, er avgjørende for en effektiv aktiveringen av koagulasjonskaskaden, 

og finnes uttrykt på overflaten av ekstracellulære vesikler (EVs) og aktiverte blodplater.  

 Det overordnede målet med denne avhandlingen var å utvikle et lett tilgjengelig og 

reproduserbart FXa-avhengig koagulasjonsassay for å kunne måle PPL-aktiviteten i 

plasmaprøver. Vi brukte så assayet til å undersøke sammenhengen mellom PPL-aktivitet i 

plasma og risikoen for VTE.  

 I artikkel I undersøkte vi effekten av ulike pre-analytiske faktorer på konsentrasjonen 

og størrelsen av EVs, målt ved hjelp av Nanoparticle Tracking Analysis (NTA) og skanning 

elektronmikroskopi (SEM). I artikkel II utviklet vi et modifisert FXa-avhengig 

koagulasjonsassay ved å erstatte plasma hvor PPL var kjemisk fjernet med plasma hvor vi 

brukte ultrasentrifugering for å oppnå samme effekt. I artikkel III brukte vi det modifiserte 

PPL assayet for å undersøke sammenhengen mellom PPL-koagulasjonstid (PPLCT) og 

risikoen for førstegangs VTE i en nøstet kasus-kontroll studie avledet fra en populasjonsbasert 

kohortestudie (Tromsøundersøkelsen). Tidligere studier har vist at statinbehandling reduserte 

risikoen for residiv av VTE. I artikkel IV undersøkte vi effekten av statinbehandling 

(rosuvastatin) på PPL-aktiviteten, målt ved hjelp av det modifiserte PPL assayet i 

plasmaprøver fra studien STAtins Reduce Thrombophilia. 

Effekten av pre-analytiske faktorer (dvs. antikoagulanter, sentrifugeringsprotokoller og 

fastestatus) på EV-målinger ble demonstrert, og utfordringen med at postprandiale 

lipoproteiner forstyrret NTA-analysene ble fremhevet spesifikt. Vi fant at det modifiserte PPL 

assayet viste lik sensitivitet og reproduserbarhet som kommersielle assay hvor fosfolipider fra 

plasma er fjernet kjemisk. Vi observerte en invers sammenheng mellom PPLCT, målt i det 

modifiserte PPL assayet, og risikoen for fremtidig VTE. I tillegg viste vi at 

rosuvastatinbehandlingen gav en betydelig reduksjon i PPL-aktiviteten i plasma hos personer 

med tidligere VTE. Utviklingen av det modifiserte PPL assayet gjorde det mulig for oss å 

utføre målinger av høy kvalitet i stor skala. Den inverse sammenhengen mellom PPLCT og 

VTE-risiko underbygger en viktig rolle for plasma PPL i sykdomsutviklingen av VTE og kan 

delvis forklare den reduserte risikoen for residiv av VTE under statinbehandling.   
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1. Introduction  

Venous thromboembolism (VTE), encompassing deep vein thrombosis (DVT) and pulmonary 

embolism (PE), is the formation of a blood clot in, most commonly, the deep veins of the 

lower extremities. The clot prevents the return of blood from the legs to the heart and cause 

pain, swelling and redness in the affected limb. Traditionally, a PE has been seen as a 

complication of a DVT, where a part of the thrombus breaks off and travels with the blood-

stream through the heart to the lungs 1. In later years, research has found that a PE might also 

arise de novo in the lungs 2 or originate from a right intracardiac thrombi in patients with atrial 

fibrillation 3,4. VTE is effectively treated with anticoagulation, but at the cost of increased risk 

of potentially lethal major bleeding events 5. VTE is considered a multicausal disease, where 

the sum of an individual’s risk factors at a particular point in time might exceed the 

thrombosis threshold and cause and event 6. A number of acquired and inherited risk factors 

for VTE have been identified. However, only a few of the currently known risk factors are 

modifiable and related to lifestyle. A VTE event is classified as provoked if it occurs in the 

presence of known risk factors (transient or persistent), while an unprovoked event occurs in 

the absence of known triggers. The classification of an event influences both the prognostics 

as well as the treatment strategy 7,8. 

 

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are bi-

layered vesicles, which are either released from or bud off a parental cell membrane 9. EVs 

have been extensively studied in recent years and found to be associated with several disease 

states 10-18. The proposed role of EVs in VTE has mainly been thought to be caused by the 

surface expression of tissue factor (TF), a well-known trigger of the coagulations system. In 

contrast to TFs vital role in activating coagulation, elevated levels of TF+EVs are only found 

in certain disease states such as severe cancers or disseminated intravascular coagulation 

(DIC) 19-22. Negatively charged procoagulant phospholipids (PPL), and particularly 

phosphatidylserine (PS), are exposed on the EV surface as a consequence of the budding 

process 9,23. They are vital to coagulation activation, and the mere presence of negatively 

charged phospholipids increases the activity of the extrinsic tenase complex (TF-FVII) by 

several orders of magnitude 24. Given the importance of PPL to coagulation, we sought out to 

modify a clot-based FXa dependent assay, creating a sensitive and reproducible method for 

measuring PPL clotting time (PPLCT). We addressed several pre-analytical challenges when 

working with plasma EVs, like the choice of anticoagulant, plasma preparation and fasting 
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status. Further, we investigated the association between procoagulant phospholipids, and the 

risk of incident and recurrent VTE.  

 

1.1 Epidemiology of VTE 

VTE is considered the third most common cardiovascular disease, following myocardial 

infarction and ischemic stroke 25. The annual incidence rate of VTE for people of European 

ancestry is estimated to 1-2 per 1000 person years 7,26,27. The annual incidence has remained 

unchanged or even increased over time 28,29, in contrast to the decreasing incidences of 

myocardial infarction 30 and ischemic stroke 31.  

 

VTE is primarily a disease of older age and the incidence increases exponentially with age for 

both sexes. The reported incidences of VTE for men and women separately range from 

studies reporting an overall higher risk in women 28, to a higher risk in men 29,32,33 to no 

difference between the sexes 34. However, when considering sex and age groups together, it 

appears that in the younger population (< 50 years) women have a higher risk of VTE than 

men, most probably due to female reproductive risk factors 35. Though, in the middle aged (50 

to 70 years) the risk was reported higher for men than women 32,36. Still, the life-time risk of 

VTE for men and women individually is not known. The incidence rate of VTE differs with 

regards to patient ethnicity. The African-American population has the highest incidence rate 

of a first time VTE, followed by the Caucasian, Hispanic and Asian/Pacific Islander 

populations, respectively 37,38.  

 

VTE most commonly presents as DVT, which accounts for approximately two-thirds of all 

events, while one-third of patients experience a PE 39. However, recent studies have 

challenged this ratio where an increase in PE events were observed, while the number of DVT 

events remained unchanged or even decreased over the same period of time 28,36, most 

probably explained by improved diagnostic tools as well as growing awareness of the disease 

28. Approximately 30% of patients will experience a recurrent event within 10 years. The risk 

of recurrence is highest the first 6 to 12 months after the initial VTE event 40. DVT patients 

are at higher risk of a recurrent event than PE patients, with a 1.4-fold higher hazard ratio 41. 

Recurrent events are more likely to occur at the same site as the initial event, hence patients 

experiencing a first DVT are more likely to develop a recurrent DVT, than a PE 41,42. 
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Similarly, a first unprovoked event more likely recurs as an unprovoked event, while a 

provoked first event is as likely to recur as an unprovoked as a provoked event 41.  

 

In addition to the risk of recurrence, VTE can lead to severe short- and long-term 

complications such as the post-thrombotic syndrome (PTS), the post PE- syndrome including 

its most extreme manifestation chronic thromboembolic pulmonary hypertension (CTEPH), 

and death. PTS is a chronic complication of DVT where the venous valves are damaged by 

insufficient thrombus resolution, leading to venous hypertension, structural changes in the 

vessel wall, and impaired venous return 43. The clinical signs of PTS include chronic pain, 

swelling, edema, skin changes, and heaviness of the affected leg. PTS develops in 20 to 50% 

of DVT patients, with 5% developing severe ulcers within a 10-year period 44. Risk factors for 

developing PTS include obesity, female sex, proximal DVT and varicose veins 45. The health 

burden of PTS is substantial, both in terms of cost to the healthcare system as well as the 

reduced quality of life of the patients 43,44.   

 

Long-term follow-up studies have consistently reported that 50% of patients, after an acute 

PE event, suffer from functional limitations and/or decreased quality of life. The concept of 

“post-PE syndrome” was suggested as a collective term encompassing all complications of 

PE, where CTEPH is the most extreme manifestation of the syndrome 46. CTEPH affects 0.4 

to 4% of PE patients and is a serious complication 47,48 which may ultimately result in right 

ventricular failure 49. CTEPH leads to occlusive vascular remodeling and obstruction of 

pulmonary arteries, as well as increased resistance in the pulmonary circulation due to 

incomplete thromboembolic resolution after a PE event 43,50. CTEPH patients typically suffer 

from exertional dyspnea, and with disease progression leading to further limitations of cardiac 

output, exertion-related presyncope, frank syncope, and exertional chest pain may develop 49. 

As the clinical presentation of CTEPH is often nonspecific and subtle, and survival without 

intervention is poor, correct and early diagnosis is of high importance 49.  

 

The 30-day case-fatality rate for all VTE was reported to be from 6 to 11 %, while the 1-year 

case-fatality rate ranged from 21 to 24% 27,41,51,52. PE is the most fatal manifestation of VTE, 

and presents an almost 2.5-fold higher 30-day case fatality rate compared to DVT 51. A PE 
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event is regarded as an independent predictor of reduced survival for up to three months post 

event. It has been reported that 25% of PE cases present with sudden death 53. Still, the 

highest fatality rates are found in cancer-related VTE with a 1-year case fatality rate reported 

to range from 63% to 88% 27,54.  

 

1.2 Pathophysiology of VTE 

In 1856 the German scientist Rudolph Virchow proposed three components, later named 

Virchow’s triad, which he found essential in thrombus formation. The triad is comprised of 

changes in blood flow (stasis), changes in the composition of blood (hypercoagulability) and 

vessel wall injury (Figure 1) 55. The triad is still used today to explain the pathophysiology of 

VTE, and most known risk factors for the disease can be classified under one or more of the 

three components of the triad.  

 

Figure 1. Illustration of Virchow’s triad with risk factors for VTE categorized by the triad 

component; stasis, vessel wall injury and hypercoagulability.  
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Autopsy and phlebography studies have suggested that non-trauma related venous thrombi 

typically originate in the deep recess of the valvular sinuses in the presence of an intact 

endothelium 1,56,57. The observation of intact endothelium advocates for a TF driven fibrin 

generation and deposition as the initiating event 1. As blood crosses the leaflets of the venous 

valves, some blood begins a vortical flow (Figure 2). As a consequence, blood cells and blood 

components are trapped in the deepest recesses of the valvular sinuses, where a severely 

hypoxic environment develops. Local hypoxia leads to a proinflammatory state where 

leukocytes and platelets are activated and release procoagulant EVs 1,56,58. It has been shown 

that the number of venous valves positively correlates with the risk of VTE, and that a limb 

with more valves has a higher risk of DVT 59. As we age, veins lose their compliance and the 

venous valves stiffen from fibrosis, which further results in disrupted blood flow. Such 

physical changes in the veins likely contribute to the increased incidence of VTE with 

increasing age 1.  

 

Figure 2. The pathophysiology of venous thrombosis. Blood is trapped in the valve pockets 

by a counter rotating vortex at the base of the sinus, creating a hypoxic and proinflammatory 

milieu. Blood cells, as well as the endothelium, are activated and produce procoagulant 

extracellular vesicles. EVs= Extracellular vesicles, Plt= Platelet, Mc =Monocyte 

 

The evidence for a relationship between stasis and thrombosis is substantial. Contrast media 

used for venography was found to linger in the veins of the elderly for up to 60 minutes after 
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the procedure, supporting the presence of stasis in the venous valves 60. Observations of VTE 

after long-haul flights, increased incidence of DVT in a paralyzed leg compared to the normal 

leg, increasing risk of DVT with the length of immobilization of a patient, as well as a 

decrease in risk of DVT in hospitalized patients when they begin to walk again or use 

pneumatic leg compression, all strengthen the role of stasis in the development of VTE 1,61.  

 

Hypercoagulability is the abnormal tendency for blood to clot and can either be due to 

inherited genetic factors or caused by external factors. An inherited hypercoagulable state can 

be caused by single nucleotide polymorphisms, such as Factor V Leiden and prothrombin 

mutation G20210A, and deficiencies in natural anticoagulants such as protein S, protein C or 

antithrombin (AT) 62. External factors that cause a hypercoagulable state include oral 

contraceptive use, hormone replacement therapy, pregnancy and obesity 8,63.   

 

An undamaged endothelium expresses a range of anticoagulants like tissue factor pathway 

inhibitor (TFPI), heparin-like proteoglycans, thrombomodulin, and endothelial protein C 

receptor 64. Upon activation, the endothelium will downregulate the expression of its 

anticoagulant properties, while the procoagulant properties are upregulated. In response to 

vessel wall injury, TF as well as adhesive molecules like P-selectin, E-selectin and vWF are 

exposed initiating the extrinsic coagulation pathway and recruit platelets and leukocytes to the 

site of injury 64. Hypoxia and inflammatory mediators have been suggested as causes of 

endothelial dysfunction in relation to VTE 8. However, the role of the third component of the 

triad, vessel injury, in venous thrombosis is debated, and most often associated with surgery 

or trauma related thrombosis 56. In a study from 1974, Sevitt investigated 50 small thrombi 

from femoral valve pockets without finding any significant evidence of preceding intimal 

damage in the vessel wall 57. This indicates that “endothelial dysfunction” would possibly be a 

more fitting term.    

 

1.3 Risk factors for VTE 

A risk factor is defined as any attribute, characteristic or exposure of an individual that 

increases the chance of developing a disease. As VTE is a multicausal disease, a combination 

of risk factors is required for disease development. The risk factors for VTE can further be 

divided into categories based on whether they are acquired or inherited. The complex 



 

16 
 

relationship between an individual’s risk factors is illustrated by the thrombosis potential 

model (Figure 3) 6. The model describes how the combination of two or more risk factors at a 

particular point in time exceeds a threshold and results in a VTE event. Figure 3 exemplifies 

the effect of different types of risk factors on the thrombosis threshold. An inherited risk 

factor, like FVL, is constant over time. While age, an acquired risk factor, will increase an 

individual’s risk over time. The combination of risk factors is the individual’s baseline 

potential. If a provoking factor, like immobilization, cancer or pregnancy, occurs it could 

potentially lead to a combined effect that exceeds the thrombosis threshold and cause an 

event. The baseline risk of an individual is higher after a first event, and about 30% of patients 

will experience a recurrent event within 10 years. The risk of recurrence is highest the first 6 

to 12 months after the initial VTE event 40. The presence of a residual thrombus after a first 

DVT event is considered an independent risk factor for recurrence 65. Potential mechanisms 

leading to the higher baseline risk after a first event are alterations in the vessel wall, impaired 

venous outflow, or the presence of additional risk factors.   

 

Figure 3. The thrombosis potential model. Factor V Leiden (FVL) (blue) exemplifies a 

hereditary risk factor, while age (green) represents an acquired risk factor that increases with 

time. The orange line illustrates an individual’s baseline potential, with provoking factors (red 

bars) at different time points in life. The thrombosis threshold is illustrated by the dotted line 

(grey). When the combination of the baseline potential together with a provoking factor 
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exceeds the thrombosis threshold, a VTE event occurs, and potentially reoccurs. (Adapted 

from Rosendaal, Lancet 1999 6)   

 

1.3.1 Hereditary risk factors  

VTE has a strong genetic component with an overall heritability of 50-60% as estimated by 

twin and family studies 66,67. The functional and clinical importance of the genetic risk factors 

has been unraveled over time through case reports, observations and knock-out mouse studies 

on abnormal levels of coagulation factors, regulators and anticoagulants 68,69. The 

methodological advances in science, such as high-throughput micro-array based genotyping 

and genome-wide association studies (GWAS), have contributed greatly in both confirming 

previous gene findings as well as discovering novel genes and loci associated with the risk of 

VTE 70. Although several gene variants have been proposed, only 16 of the genes have been 

robustly associated with VTE risk 71. More recent GWAS studies and meta-analysis have 

discovered additional gene variants and loci associated with VTE, however the strength of the 

associations and effect sizes found might suggest that the most important common variants 

have already been discovered 72-74.  

 

The thrombotic tendency caused by inherited thrombophilias can either be by mutations 

leading to the loss of anticoagulant function or by gained procoagulant function. Inherited 

loss-of-function thrombophilias include antithrombin, protein S and protein C deficiencies. 

They are all natural inhibitors of the coagulation cascade, and the loss of function is often 

quite severe. AT deficiency is associated with a 10-50 fold increased risk of VTE but rarely 

occurs in the general population (0.02%) although it can be caused by more than 200 different 

mutations 68,71. Protein C and protein S deficiencies are also rare in the population (<1%). 

These deficiencies are associated with an 8-10 fold higher risk of VTE and several mutations 

have been reported 71,75.  

 

Inherited gain-of-function thrombophilias are more prevalent in the general population but 

often less severe in effect. The non-O blood group, with a prevalence of approximately 60%, 

is the most common gain-of-function mutation affecting VTE risk 76-78. The risk of VTE is 

1.5-2 fold higher for individuals with blood groups A1 and B compared to blood group O 76,79. 

Although the increase in VTE risk is small, the prevalence of the non-O blood group in the 
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general population makes this an important inherited risk factor for VTE. The factor V 

Leiden mutation (FVL) is caused by a single point mutation (G to A substitution) in the factor 

V gene causing APC resistance 80. The FVL variant varies among ethnicities, with the highest 

prevalence of approximately 5% found in the Caucasian population 71,81. The risk of VTE for 

heterozygous carriers of FVL is 2-5 fold increased, while homozygous carriers have a 10-80 

fold increased risk, compared with non-carriers 82,83. The prothrombin G20210A mutation is 

similarly more prevalent in the Caucasian population with a prevalence of 1-3% 83,84, and 

carriers have a 3-4 fold increased risk of VTE compared to non-carriers 71,85. The prothrombin 

mutation leads to a hypercoagulable state through increased levels of prothrombin, and 

consequently enhanced thrombin generation 85.  

 

1.3.2 Acquired risk factors   

A number of acquired risk factors for VTE have been identified through epidemiological 

studies. High and advancing age is one of the strongest risk factors for VTE, and about 70-

90% of VTE events in the population can be ascribed to aging 86,87. The risk increases 

exponentially after the age of 50, while at  85 years of age the risk of VTE is 80 fold higher, 

compared to individuals aged 20-30 years 27,29,88. The proposed mechanisms behind the 

observed association are increased levels of procoagulant factors in blood, degenerative and 

functional changes to the vessels and valves, and general frailty and immobility due to illness, 

infection and comorbidities. The loss of muscle mass following inactivity also contributes to 

reduced venous return and stasis in the lower extremities 1,56,86.  

 

Obesity, defined as body mass index (BMI) above 30 kg/m2, is associated with a 2-3 fold 

higher risk of VTE, compared with normal weight individuals 89. Furthermore, there is a dose-

dependent relationship between increasing BMI and increasing VTE risk 89. Weight gain 

increases the risk for VTE, particularly for already obese individuals where a 4-fold increase 

in risk is seen, compared to obese individuals maintaining a stable weight 90. Although BMI is 

the most commonly used anthropometric measure of obesity, waist circumference has been 

shown to be a more precise measure for detecting and predicting the risk of VTE in obese 

individuals 91. The proposed mechanisms behind the association are venous stasis due to intra-

abdominal pressure, changes in blood components leading to a procoagulant state 

accompanied by decreased fibrinolytic activity and chronic low-grade inflammation 89. Recent 
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Mendelian randomization studies imply a causal relationship between obesity and VTE 92-94. 

As the prevalence of obesity increases worldwide 95, it is an important risk factor to consider 

when evaluating VTE risk as it is one of the few modifiable lifestyle risk factors currently 

known. Additionally, studies on the synergistic effects of obesity in combination with risk 

factors like prothrombotic genotypes (FVL, prothrombin mutation G20210A, non-O blood 

group), and oral contraceptive use on VTE risk have been reported 96-99. The joint effect of 

obesity and FVL and prothrombin mutation G20210A increased the risk of VTE 6-8 fold, 

compared to normal weight individuals without the genetic predispositions 96. Similarly, the 

joint effect of obesity and oral contraceptive use imposed a 24-fold higher risk of VTE 

compared to normal weight women who did not use oral contraceptives 96.  

 

Body Height is a risk factor for VTE observed particularly in men 33,100. A prospective cohort 

study reported a 34% increased risk of VTE per 10 cm increase in body height in men, and a 

13% increase in risk in women 100. The link between tall stature and VTE could be explained 

by the fact that an increase in height will subsequently also increase the vessel area at risk, the 

hydrostatic pressure, as well as the number of venous valves in the legs 101,102. Height has 

been found to be more strongly associated with DVT than PE, supporting the proposed 

mechanisms behind the observed association 102. A synergistic effect of body height and 

obesity on VTE risk has been reported 103. Men who were tall (182 cm) and obese had a 5-

fold higher risk of VTE than short (≤172 cm) and normal weight men 103. For women, the 

combination of tall stature and obesity increased the risk of VTE 3-fold, compared to short, 

normal weight women 103.  

 

Cancer imposes a major risk for VTE, and about 20-30% of all incident VTE events are 

associated with cancer 27,104,105. Overall cancer increases the risk of VTE 4-7 fold compared to 

the general population, but the risk varies considerably according to both cancer type and 

treatment regime 106,107. The cancer types associated with the highest risk of VTE include 

pancreatic, ovarian, brain, hematological and lung cancers 104,108. The risk of VTE in cancer 

patients is found to be the highest 6 months before cancer diagnosis and up to 12 months after 

diagnosis 104,109. The potential explanations for the association between VTE and cancer can 

be grouped into treatment-, patient- and cancer-related factors. The treatment related factors 

include surgery, chemotherapy, radiotherapy, central venous catheters, blood transfusion and 
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erythropoiesis-stimulating agents. Patient-related factors include increasing age, a previous 

history of VTE, comorbidities, obesity and immobilization. Cancer type, cancer stage and 

time since cancer diagnosis are cancer-related factors 104,110. The impact of the tumor itself 

may play a greater role on the risk of VTE than the treatment related risk factors, as it has 

been shown that the risk of VTE was similar six months prior to and after a cancer diagnosis, 

when taking competing risk by death into account 109. Tumor growth can lead to a physical 

obstruction in the vessels and result in stasis. Additionally, tumor cells are known to enhance 

the procoagulant potential by activating coagulation through TF positive extracellular vesicles 

(TF+EVs), interacting directly with platelets and endothelial cells, influencing the release of 

proinflammatory cytokines and dysregulating the fibrinolytic system 106. For instance, in 

pancreatic cancer a hypercoagulable state is caused by the release of TF+ tumor-derived EVs 

into the circulation, which in turn triggers a VTE event 22,111. Lung cancer has been found 

associated with leukocytosis, which may enhance the risk of VTE through neutrophils and the 

generation of neutrophil extracellular traps (NETs) 111.  

 

Hospitalization, current or recent, is estimated to account for more than 50% of all VTE 

events, due to factors like immobilization, infection, surgery and fractures 105,112. 

Hospitalization-related VTE events were found to be the leading cause of disability-adjusted 

life-years lost in low and middle income countries, and second in high income countries 

worldwide emphasizing the global burden of VTE 113. Major surgery, that is surgery under 

general anesthesia exceeding 30 minutes, is one of the most important hospital-related risk 

factors for VTE, accounting for about 20% of the VTE events in the general population 87.  

Major surgery in general is associated with a 4-22 fold increased risk of VTE 114, but the risk 

estimates vary according to the type of surgery. Orthopedic surgery, and particularly total hip 

arthroplasty, as well as major vascular surgery and neurosurgery are procedures with 

particularly high risk for VTE 115. Patients suffering major trauma are at a 12-fold increased 

risk of VTE 107, and it has been estimated that as many as 58% of trauma patients may suffer 

from DVT in the absence of thromboprophylaxis 116. Similarly, acute medical conditions, 

like myocardial infarction, ischemic stroke, heart failure, infections and respiratory diseases 

are all associated with increased risk of VTE 117. Immobilization is a risk factor often 

accompanying hospitalization in the form of confinement to bed or wheelchair, bed rest for 

more than three days, plaster casts or paralysis and presents with an approximately 2-fold 
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increased risk for developing VTE 118. Additionally, immobilization as a risk factor for VTE 

can also be in the form of long-haul air travel 119.  

 

Pregnancy is associated with a 4-5 fold higher risk of VTE compared to non-pregnant 

women of similar age. The risk increases further to 20-fold in the postpartum period, 

compared to non-pregnant women 120,121. Pregnancy alters the hemostatic system to a more 

procoagulant state, characterized by an increase in several coagulation factors (FVII, FVIII, 

and FX) and a decrease in the natural anticoagulant protein S, leading to acquired APC 

resistance 122 . The alterations to the hemostatic system favoring a more procoagulant state 

during pregnancy are thought to be an important measure in minimizing potentially lethal 

blood loss during child birth. The risk of VTE during pregnancy is also increased due to 

mechanical changes caused by the expanding uterus leading to stasis by the increased intra-

abdominal pressure and compression of the vena cava 123.  

 

The use of exogenous hormone supplements, that is combined oral contraceptives (COC) or 

hormone replacement therapy, increases the risk of VTE by causing alterations to coagulation 

and fibrinolysis leading to an overall more procoagulant state 124,125. The risk of VTE 

increases 3-4 fold for COC users, and 2-4 fold for those undergoing hormone replacement 

therapy, compared to non-users. For both types of hormone supplements the increase in risk is 

most profound in the first months of use 124,125. The combined effect of COC use and the 

genetic risk factor FVL has been shown to account for a 35-fold higher risk of VTE, 

compared to non-users without FVL 126. Similarly, it has been reported that other genetic risk 

factors (non-O blood group, SNP rs2289252 in FXI), as well as environmental factors 

(smoking, high BMI) additionally increase the risk of VTE in women using COC 127,128.  

 

1.4 Treatment of VTE 

Anticoagulant treatment is associated with a 90% risk reduction for recurrent events and all-

cause mortality following two weeks treatment compared to no treatment 5. VTE treatment 

can be divided into the three following phases; acute (first 5-10 days), long-term (first 3 

months) and extended (beyond 3 months). Generally, all DVT and PE patients are treated for 

3 months with anticoagulation. However, decisions regarding extended treatment need to 

carefully balance the risk of recurrence against the risk of major bleeding 129. Vitamin K 
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antagonists (VKA), low molecular weight heparin (LMWH) and unfractionated heparin were 

for a long time the treatment options of choice, but in recent years additional options are 

available in the form of direct oral anticoagulants (DOACs). In 2014 the first DOAC, the 

direct thrombin inhibitor Dabigatran, was approved for the treatment of VTE in the United 

States. Shortly after, the first direct factor Xa inhibitors, namely Rivaroxaban, Apixaban and 

Edoxaban were launched and included in the 2016 American College of Chest Physicians’ 

(ACCP) guidelines 130. Several randomized controlled trials (RCTs) have compared the use of 

DOACs to LMWH and Warfarin and concluded that they are non-inferior when it comes to 

efficacy in preventing recurrent events and VTE-related deaths. However, the RCTs report 

diverging results regarding the risk of major bleeding ranging from statistically significant 

lowered risk 131,132 to no difference between the study drugs 133-136. To date, there is no 

treatment or prophylactic option that effectively reduces VTE without the accompanying risk 

of major bleeding.   

 

1.5 The coagulation system 

Blood is a liquid that circulates in the vasculature under pressure. In case of injury to the 

vasculature it is important to minimize blood loss by rapidly converting liquid blood into a 

gel-like clot to serve as a plug. 137. Blood consists of a cell portion including erythrocytes, 

leukocytes and platelets, as well as a plasma portion containing soluble proteins which act 

together to form a fibrin clot. Hemostasis is the normal process where the clotting cascade 

prevents blood loss following vascular damage. It can further be divided into primary 

hemostasis covering platelet activation, aggregation and adhesion at the site of injury, and 

secondary hemostasis covering the activation of the coagulation factors, the formation of 

fibrin and plug stabilization. Thrombosis, on the other hand, is the formation of a blood clot 

caused by coagulation triggered inside the lumen of a blood vessel, often in the absence of 

tissue damage 137,138.  

 

In 1964 two research groups proposed at about the same time a cascade or waterfall model for 

blood coagulation. The models were based on a series of steps in which one coagulation 

factor would lead to the activation of the following factor, and so on, resulting in the 

generation of thrombin and the formation of a fibrin clot 139,140. Initially, all coagulation 

factors were suggested to be proenzymes which upon activation would be converted to an 
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active enzyme. However, this concept has later been modified after some of the coagulation 

factors, like FVa and FVIIIa, were found to serve as cofactors for other coagulation factors 

and not hold enzymatic activity individually 141. The coagulation system is comprised of the 

intrinsic and extrinsic pathways that merge into the common pathway with FX activation to 

FXa. FXa activates prothrombin to thrombin, which culminates in the formation of cross-

linked fibrin (Figure 4) 142.  

 

 

Figure 4. Simplified overview of the intrinsic (blue), extrinsic (orange), and common 

pathway (red) of the coagulation system. (Adapted from Mackman N., J Clin Invest 2012 8) 

 

The extrinsic pathway is also known as the tissue factor pathway. TF is an integral 

membrane protein expressed by specific cells within the vessel wall and surrounding the 

blood vessels, like periocytes, vascular smooth cells, and adventitial fibroblasts. TF is also 

expressed by monocytes under pathological conditions 138. TF deficiency in humans has never 

been discovered, and mouse models show that TF deficiency is incompatible with life, 
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underscoring the fact that TF is essential to hemostasis 138. TF initiates the coagulation 

cascade by binding with high affinity to the circulating coagulation factor FVII and the trace 

amounts (~1%) of circulating activated FVII(a) 143. The inactive zymogen FVII is rapidly 

converted to FVIIa after complexing with TF. Negatively charged phospholipids, like 

phosphatidylserine expressed on the surface of damaged cells, activated platelets and 

microvesicles are crucial for the assembly of both the extrinsic and the intrinsic tenase 

complex 137,138. The activity of the extrinsic tenase complex increases by several orders of 

magnitude in the presence of negatively charged surfaces 144. In the absence of an appropriate 

surface, most coagulation enzymes show low activity with their substrate within a biologically 

relevant time frame. The TF:FVIIa complex activates its substrates FIX and FX to FIXa and 

FXa, respectively. Thrombin is subsequently formed in small amounts leading to the 

activation of cofactors FV and FVIII. In order for the coagulation cascade to propagate 

further, both FIXa and FXa need an appropriate surface in order to assemble together with 

their individual cofactors, FVIIIa with FIXa, and FVa with FXa. The prothrombinase 

complex, FXa-FVa, activates prothrombin to thrombin 137,138. With the formation of large 

amounts of thrombin fibrinogen is cleaved to fibrin monomers. The monomers polymerize 

spontaneously and FXIIIa cross-links the fibrin chains in order to stabilize the clot 145.  

 

The intrinsic pathway of the coagulation system is activated by FXII coming in contact with 

negatively charged artificial surfaces. For in vivo activation of the intrinsic pathway, several 

potential activators are proposed like platelet-derived polyphosphates 146 and extracellular 

nucleic acids 147,148. The activation of FXII leads to the formation of small amounts of FXIIa. 

A positive feedback loop is initiated by FXIIa activating prekallikrein (PK) to kallikrein, 

which again activates FXII. FXIIa further activates FXI to FXIa. FXIa activates FIX to FIXa, 

which together with cofactor FVIIIa forms the intrinsic tenase complex. This activates FX to 

FXa in the common pathway, leading to the generation of thrombin and ultimately the 

formation of fibrin 137,149. Interestingly, neither mice nor humans deficient in FXII suffer from 

defects in hemostasis 150, suggesting that the intrinsic pathway does not contribute 

significantly to hemostasis. However, several studies have suggested a role for FXII and the 

intrinsic pathway in thrombosis 151,152, and for FXII and FXI as potential therapeutic targets 

153. 
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Excessive clotting is harmful to the host, hence coagulation must be tightly regulated through 

the natural anticoagulants TFPI, AT and protein C. TFPI directly inhibits FXa, and therefore 

the activity of the prothrombinase (FXa/FVa) complex. TFPI also inhibits the TF/FVIIa 

complex. TFPI is the only endogenous protein that effectively inhibits these complexes under 

physiological conditions 154. No human deficient in TFPI has ever been reported, emphasizing 

the importance of TFPI in hemostasis. Observations from mouse studies show that TFPI 

deficiency leads to death in utero, strongly suggesting that TFPI deficiency is not compatible 

with life 155. Antithrombin, another natural anticoagulant, primarily inhibits FXa and thrombin 

in the common pathway, as well as the TF/FVIIa complex in the presence of heparin 156. 

Heparin and heparin-like glycosaminoglycans enhance the anticoagulant activity of AT by 

100 to 1000-fold 157,158. APC bound to its cofactor protein S, inhibits FVa and FVIIIa 159. 

Defects in the regulation of coagulation can lead to either bleeding events or thrombosis 

160,161. As previously discussed, deficiencies in AT, protein C and protein S are established 

genetic risk factors for the development of VTE 68,71,75.  
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1.6 Extracellular vesicles  

Our knowledge on EVs has grown immensely during the last decades from the first 

observations of “thromboplastic substances” 162 and “platelet dust”163 to the vast knowledge 

of EVs that we hold today. As early as 1946 Chargaff and West published their observations 

of “thromboplastic substances” in blood affecting coagulation. These substances were 

sedimentable by high speed centrifugation, and the sedimentation of these substances resulted 

in prolonged plasma clotting time 162. In 1967 Peter Wolf published his findings on what he 

named “platelet dust”. The platelet dust could be separated by ultracentrifugation, was rich in 

phospholipids and described to hold coagulant properties like Platelet Factor 3 163. With time 

and advances in technology and methodology numerous papers have been published on the 

topic of EVs 164.  

 

EVs are small vesicles that are released from a parental cell either by direct budding from the 

plasma membrane or by fusion of multivesicular bodies with the plasma membrane releasing 

small vesicles into the extracellular space (Figure 5). EVs are enclosed by a phospholipid 

bilayer membrane, which distinguishes them from other membrane vesicles like lipoproteins 

9,23. From an evolutionary perspective, the secretion of bi-layered membrane vesicles seems to 

be a common and conserved process. The release of EVs has been reported for both 

eukaryotic as well as prokaryotic cells. In humans, EVs have been isolated and studied in 

most bodily fluids like blood, urine, breast milk, saliva, amniotic fluid and semen 9,23,165. 

Several different names have been proposed for the vesicles, and for a long time a common 

consensus was lacking. This gave rise to a vast nomenclature either referring to their size 

(using the prefixes micro or nano for microparticles, microvesicles, nanoparticles, 

nanovesicles), to a proposed function (calcifying matrix vesicles), the cell or tissue they 

derived from (prostosomes, oncosomes), or by their presence outside of a cell (using the 

prefixes exo or ecto for exosomes, ectosomes) 165. However, the most commonly used 

subgroups are exosomes, microvesicles (MVs) and apoptotic bodies. Exosomes are the 

smallest of the EVs ranging from 30 to 100 nm and are released into the extracellular space by 

multivesicular bodies fusing with the plasma membrane. Microvesicles range in size from 100 

to 1000 nm and bud directly from the plasma membrane. Apoptotic bodies are the largest of 

the released vesicles and have been described to range from 1000 to 5000 nm. These bud off 

the plasma membrane of apoptotic cells 9,23.  
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Figure 5. Overview of the different types of membrane vesicles released by eukaryotic cells. 

Microvesicles and apoptotic bodies are released by direct budding from the plasma membrane 

(PM), while exosomes are released by fusion of internal multivesicular bodies (MVB) with 

the PM. (Used and modified with permission of Annual Reviews, Inc., from Biogenesis, 

secretion, and intercellular interactions of exosomes and other extracellular vesicle. 

Colombo, M., Raposo, G., and Théry C. Annu Rev Cell Dev Biol, 2014. 30: p. 255-89 165; 

permission conveyed through Copyright Clearance Center, Inc.) 

 

EVs are important as they are able to transfer information from one cell to another, and 

influence the recipient cell function. EVs can transfer messages in the form of proteins, lipids, 

nucleic acids (mRNA, microRNA) and sugars 9,23,166. The phospholipid bilayer membrane 

surrounding the vesicle protects the message molecule and allows for the vesicle to travel 

with the biological fluid to sites remote to the parental cell 23. The release of EVs is a natural 

process 167, however most of the attention in research has been focused on the role of EVs in 

disease states. Pathological mechanisms known to trigger EV release include inflammation, 

shear stress, inducers of apoptosis, as well as activation of the coagulation system and the 

complement system 168.  
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1.6.1 Formation and uptake of EVs 

The cytoplasmic membrane of eukaryotic cells has an asymmetric distribution of 

phospholipids, where negatively charged phospholipids like PS are located in the inner leaflet 

of the membrane of resting cells (Figure 6). There are three important enzymes that maintain 

the lipid asymmetry of the membrane: flippase, floppase and scramblase 166,169. The formation 

of EVs is initiated by an increase in the cytosolic concentration of calcium ions, which in turn 

activates scramblase. This results in a loss of membrane phospholipid asymmetry by 

increased scramblase activity together with the activation of floppase and the inactivation of 

flippase. PS is subsequently translocated to the outer leaflet of the membrane and exposed to 

the surroundings. Calpain, a calcium-dependent proteolytic enzyme is also activated, and 

causes a calcium dependent degradation of various proteins, allowing for the outward budding 

of MV from the membrane 166,169. The importance of proper enzymatic maintenance of the 

lipid asymmetry of the membrane is emphasized by the rare bleeding disorder Scott 

syndrome. Scott syndrome is characterized by a dramatic impairment of the procoagulant 

activity of stimulated platelets due to a functional defect in the surface exposure of anionic 

phospholipids 170. Scramblase is found to be defective and thereby unable to translocate PS 

from the inner to the outer leaflet of the membrane of activated platelets in addition to causing 

impaired membrane vesiculation. 166,170.   

 

Figure 6. The cytoplasmic membrane of eukaryotic cells has an asymmetric distribution of 

phospholipids with negatively charged phospholipids, shown in green, mainly located in the 
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inner leaflet of the membrane of resting cells. During EV formation the negatively charged 

phospholipids are translocated to the outer leaflet of the membrane and exposed to the 

surroundings. (Modified from Schindler S. M., Microparticles: A New Perspective in Central 

Nervous System Disorders, BioMed Res Int 2014 171. Printed with permission through the 

Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/). 

 

The biogenesis of exosomes starts with the inward budding of the endosomal membranes 

generating intraluminal vesicles (ILV) within large multivesicular bodies (MVBs) (Figure 5). 

Cytosolic components are engulfed within the ILV, while transmembrane proteins are 

incorporated into the invaginating membrane 172. Intracellular MVB can either be subjected to 

proteosomal degradation in the lysosomes, or fuse with the plasma membrane. Upon fusion 

with the plasma membrane, the MVBs release their contents (ILV) into the extracellular 

space. The intraluminal vesicles are referred to as exosomes as they are released from the 

MVB and into the extracellular space 172,173.  

 

Several mechanisms has been proposed for EV uptake into cells, including phagocytosis, 

clathrin- and caveolin-mediated endocytosis, macropinocytosis and plasma or endosomal 

membrane fusion 174. EV uptake by the target cell may depend on the type of recipient cell 

and its physiological state, as well as ligand-receptor recognition by the EV and the target cell 

173. Different mechanisms for EV internalization has been described, with clathrin-dependent 

endocytosis or phagocytosis in neurons, caveolin-mediated endocytosis in epithelial cells and 

cholesterol and lipid raft dependent endocytosis in tumors 173. In addition, EVs can exert their 

functional effect on the target cell through direct receptor-ligand interaction 173. The level of 

EVs in circulation reflects the balance between generation and clearance. Studies differ with 

regard to the reported half-life of EVs 23. A study conducted in rabbits reported that biotin-

labelled platelet-derived EVs which were reintroduced into the animal were cleared within 10 

minutes from the circulation 175. In rats, red blood cell derived EVs which were labelled and 

injected into the animal, were found to be 91% cleared from circulation within 30 minutes 176. 

A similar clearance of 90% within half an hour was also reported for EVs derived from 

splenocytes 177, and B16 melanoma cells 178 in mouse models. The biodistribution of EVs 

varies with the cellular origin of the EVs. Melanoma-derived EVs were mainly taken up by 

lungs and spleen 178. However, red blood cell derived EVs were mainly taken up by the liver 
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(44.9%) followed by bone (22.5%), skin (9.7%), muscle (5.8%), spleen (3.4%), kidney (2.7%) 

and lung (1.8%) 176.  

 

1.6.2 EVs and coagulation   

EVs are procoagulant due to their surface expression of procoagulant proteins such as TF and 

negatively charged phospholipids (mainly phosphatidylserine, PS), which explains their role 

in coagulation activation. In contrast to TFs vital role in activating coagulation, elevated 

levels of TF+EVs are only found in certain disease states such as certain cancers or 

disseminated intravascular coagulation (DIC) 19-22. During EV formation the phospholipid 

asymmetry in the cell surface membrane is distorted and PS is exposed on the surface of the 

EV. PS facilitates the assembly of coagulation factors FVII, IX and X, as well as prothrombin 

on the EV surface, and it has been shown that the cleavage of factor X by soluble TF-VIIa 

showed a more than 100-fold enhanced reaction rate in the presence of phospholipids 144,179. 

PS binds to the γ-carboxyglutamic acid (GLA) domains located at the N-terminal of 

coagulation factors FVII, IX, X and prothrombin. PS binds in a reversible and calcium-

dependent manner to the GLA domains 180. The impact of PS+EVs on coagulation can be 

assessed directly in plasma using a PPL activity clotting assay.  

 

1.6.3 EVs and VTE 

Several studies have investigated the association between plasma levels of EVs and VTE. 

While some report elevated plasma levels of EVs 181,182, others focus on the expression of 

particular antigens 11,19, the procoagulant activity 20, or a combination of the above 21,181,182. 

However, the relationship between EVs and VTE is to date still best understood in cancer 

patients 19-22.  

 

There are limited original papers on the relationship between EV procoagulant activity as 

measured by clotting assays, and VTE. However, in a cross-sectional study including 100 

patients referred to the Emergency Department under suspicion of VTE, plasma clotting time 

was assessed by the STA Procoag PPL assay. It was found that PPL clotting time did not 

discriminate between patients with (n=31) and without VTE 183. Still, the lack of 

discriminatory diagnostic power by the PPL assay may have been diluted by other conditions 

associated with shortened clotting time among patients without VTE, and therefore do not 
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exclude the potential of plasma clotting time as a potential predictive biomarker of VTE. Still, 

circumstantial evidence supports an association between procoagulant plasma clotting time 

and future risk of VTE. First, the procoagulant clotting time is inversely associated with 

annexin V+ EVs 184,185 and the plasma levels of EVs are associated with VTE risk in most 181, 

but not all studies 186. Second, in a cross-sectional study including 100 samples from healthy 

individuals and patients with obstructive sleep apnea, plasma clotting time presented strong 

and inverse correlations to parameters of thrombin generation. This was measured using the 

Calibrated Automated Thrombogram method with the addition of minimal amounts of 

phospholipids and TF (1 pM) to trigger thrombin generation 185. Several studies have shown 

that parameters of the thrombogram are associated with incident 187-189 and recurrent 190 VTE. 

Third, carriers of rare (e.g. deficiencies of antithrombin, protein C and S) 191 and common 

(e.g. factor V Leiden and the prothrombin mutation G20210A) 192,193 prothrombotic genotypes 

had significantly shorter plasma clotting time than non-carriers, providing indirect evidence 

for lower risk of VTE with prolonged plasma clotting time. However, most of the current 

studies are cross-sectional or retrospective, making it difficult to deduce whether EVs play a 

causal role of the disease or are merely a consequence of it. In addition, methodological 

challenges such as reverse causation and selection bias may hamper the interpretation of the 

results.  
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2. Aims of the thesis 

 

The overall aim of the present thesis was to develop an easily available and reproducible FXa-

dependent clotting assay to measure plasma procoagulant phospholipid (PPL) activity, and 

investigate the association between plasma PPL activity and the risk of VTE.  

 

The specific aims were:  

I. To investigate the impact of plasma preparation, assessed by freezing plasma before 

(PPP) or after (PFP) a second high-speed centrifugation, various anticoagulants in 

commercial blood collection tubes (Citrate, EDTA, CTAD, and Heparin), and fasting 

status on plasma concentration and size distribution of EVs using Nanoparticle 

Tracking Analysis (NTA) and scanning electron microscopy (SEM). 

 

II. To develop a modified PPL-dependent clotting assay, capable of measuring the PPL 

activity in human plasma and cell supernatants of in vitro experiments, by removing 

PPL from plasma by sequential centrifugation, including final ultracentrifugation.  

 

III. To investigate the association between plasma PPL clotting time and the risk of 

incident VTE in a nested case-control study derived from the general population.  

 

IV. To investigate the impact of rosuvastatin treatment on plasma PPL activity in 

individuals with a previous history of VTE in a randomized controlled trial, and 

explore the effect of rosuvastatin treatment on total- and platelet-derived EV counts 

using a sensitive flow cytometer.  
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3. Methods   

3.1 Study populations 

For the papers included in the current thesis, different study populations were used including 

healthy volunteers (paper I and II), a nested case-control study derived from a population-

based cohort (paper III) and a randomized controlled trial (paper IV). The two latter 

populations will be further addressed in this section.   

 

3.1.1. The Tromsø study  

The Tromsø study is a single-center population-based cohort study with repeated health 

surveys on the inhabitants of the municipality of Tromsø 194. Tromsø is the largest city in 

northern Norway with a population of about 77,000 inhabitants. The first Tromsø study was 

conducted in 1974 to investigate why there was such high mortality from cardiovascular 

disease among young men in Norway, and particularly in the northern part of the country. The 

University of Tromsø was fundamental in the creation, as well as the continuation of the 

health surveys, resulting in numerous research findings made available through publications 

and doctoral thesis. Overall, more than 45,000 unique individuals, aged 25-97 years, have 

participated in one or more of the Tromsø studies. The participation rates for the studies have 

been high, ranging from 65-85% 194. To date seven surveys have been completed, with an 

eighth survey planned for 2024-25.   

 

The fourth survey of the Tromsø study (Tromsø 4) was conducted in 1994-95. All inhabitants 

of the municipality of Tromsø aged 25 years or older were invited to participate in the study. 

Tromsø 4 is the largest of the studies with 27,158 participating individuals, and a participation 

rate of 77%. The participants were followed from the date of inclusion in 1994-95 and until 

migration from the municipality, death or end of follow-up (September 1, 2007). Baseline 

information was collected through self-administered questionnaires, blood sampling, and 

physical examinations. The questionnaires assessed aspects of the participant’s general health, 

lifestyle, diet, medication use, and the occurrence of particular disease states in the immediate 

family (arterial cardiovascular diseases and cancer). All participants had their height (to the 

nearest cm) and weight (to the nearest 0.5 kg) measured, wearing light clothing and no shoes. 

Body mass index (BMI) was calculated using weight in kilograms divided by height in meters 

squared (kg/m2). Non-fasting blood samples were collected by venipuncture of an antecubital 

vein, with minimal stasis, into blood collection tubes containing ethylenediaminetetraacetic 
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acid (K3-EDTA 40 µL, 0.37 mol/L per tube) (Becton Dickinson, Meylan Cedex, France). Cell 

counts were performed using a Coulter Counter (Coulter Electronics, Luton, UK). Platelet 

poor plasma (PPP) was prepared by centrifugation at 3000 x g for 10 minutes at room 

temperature. Plasma aliquots were transferred to 1 mL cryovials (Greiner Laboratechnik, 

Nürtringen, Germany) and stored at -80°C until analysis 34,194. The Regional Committee for 

Medical and Health Research Ethics, North Norway (REC Nord) approved the study, and all 

participants provided informed written consent.   

 

Identification and validation of the VTE events 

All incident VTE events occurring among the participants from inclusion and until the end of 

follow-up were identified by searching the hospital discharge diagnosis registry, autopsy 

registry and the radiology procedure registry at the University Hospital of North Norway 

(UNN). UNN is the sole provider of all hospital-based and outpatient medical care in the 

region, including all relevant diagnostic radiology and treatment of VTE. International 

Classification of Diseases (ICD), revision 9 (ISC-9), codes 325, 415.1, 451, 452, 453, 671.3, 

671.4 and 671.9 were used to identify VTE events occurring from 1994 to 1998, while 

revision 10 (ICD-10) codes I26, I80, I81, I82, I67.6, O22.3, O22.5, O87.1, and O87.3 were 

used for the time period 1998 to 2007. After the identification of events, trained personnel 

reviewed the medical records for every potential VTE case for validation. VTE events from 

the hospital discharge diagnosis registry and the radiology procedure registry were recorded 

and found valid only if all of the following criteria were met: 

1. Clinical signs and symptoms of DVT or PE, or both, were present 

2. The event was objectively confirmed by a diagnostic procedure (compression 

ultrasound, venography, computed tomography, perfusion-ventilation scan, pulmonary 

angiography, or autopsy) 

3. A physician noted the diagnosis of DVT or PE in the patient’s medical record  

4. Treatment was initiated (anticoagulant medication, thrombolysis, vascular surgery) 

unless contraindications were specified 

VTE cases from the autopsy registry were recorded if VTE was indicated as the cause of 

death, or was noted as a significant contributing condition to death in the autopsy report.  
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The confirmed VTE events were further classified as a DVT or PE, and in the case of both 

present, the event was classified as a PE. A VTE was classified as provoked if one of the 

following risk factors were found in the medical records up to 8 weeks preceding diagnosis; 

major surgery, trauma, active cancer, acute medical conditions like acute myocardial 

infarction, ischemic stroke or major infectious disease, immobilization defined as bed 

confinement exceeding 3 days, wheelchair confinement or long haul travel exceeding 4 hours 

within two weeks before VTE event, or other factors specified in the medical records to be 

provoking, like plaster cast or intravascular catheter. For unprovoked events, none of the 

above mentioned risk factors were present 34.  

 

Paper III is based on a nested case control study derived from the 4th survey of the Tromsø 

study. There were 462 individuals who experienced a VTE event during the follow-up period 

(1994-2007). For each case, two age- and sex-matched controls, who were alive at the index 

date of the corresponding VTE-case were randomly sampled from the source cohort (n=924). 

In total, 349 (140 cases and 209 controls) lacked plasma samples and 67 (26 VTE cases and 

41 controls) had plasma samples of insufficient quality (e.g. due to hemolysis). Hence, our 

study population consisted of 296 subjects with incident VTE and 674 age- and sex-matched 

controls. We measured the PPL clotting time in all samples using our modified FXa-

dependent clotting assay as described in detail previously 195. Information on age, sex, BMI, 

previous cardiovascular disease and cancer were obtained from the Tromsø study.  

 

3.1.2 The Statins Reduce Thrombophilia (START) Trial  

STAtins Reduce Thrombophilia, or the START trial (NCT01613794), is a multicenter, 

randomized, controlled, open label clinical trial aimed to investigate the impact of 

rosuvastatin treatment on the coagulation profile of individuals with a previous history of 

VTE. The study has been described in detail elsewhere 196-199. In brief, participants were 

recruited from three Dutch anticoagulation clinics (Leiden, Hoofddorp, and Rotterdam) which 

monitor anticoagulant treatment of VTE patients within a geographical area. Subjects with 

confirmed initial or recurrent symptomatic proximal DVT or PE allowed to stop oral 

anticoagulation treatment by their treating physician and aged 18 years or older, were invited 

to participate. Exclusion criteria were the following; individuals already using statins or other 

lipid lowering drugs, or if contraindications for 20 mg/day rosuvastatin use were present, 
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based on information provided by the instruction leaflet of the drug manufacturer. Participants 

were randomly assigned to either 20 mg/day of rosuvastatin or no study medication for the 

28-day study duration. The random allocation sequence was implemented by a central 

telephone, and the sequence was concealed until interventions were assigned. Adherence to 

the study protocol was assessed in two ways. First, participants in the treatment group took 

the first tablet of rosuvastatin in the presence of an investigator. Second, compliance to 

treatment was assessed by measurements of total cholesterol levels at baseline and at study 

end in all participants. The START trial was approved by the Medical Ethics Committee of 

the Leiden University Medical Center, Leiden, the Netherlands, and all study participants 

gave written informed consent prior to participation.  

 

The study baseline was set as the last regular visit of the participants to the anticoagulation 

clinic. All participants were screened on acquired risk factors for VTE through a 

questionnaire, in addition to being tested on kidney and liver function. The participants had 

stopped using their vitamin K antagonist one month prior to baseline blood draw to allow a 

wear off of the anticoagulant drugs. Non-fasting blood samples were collected in Vacutainer 

tubes containing 3.2% sodium citrate (Becton Dickinson, Meylan Cedex, France) at baseline 

and at study end (i.e. 28 days later). Samples were centrifuged at 2,500 x g for 15 minutes at 

18°C and platelet poor plasma (PPP) was stored at -80°C until analysis. 

 

In paper IV we measured the PPL clotting time in plasma samples from 125 participants who 

received rosuvastatin treatment and 120 participants from the control group. Measurements 

were performed using our modified FXa-dependent clotting assay previously described 195. In 

addition, we measured total and platelet-derived microvesicle counts using a sensitive flow 

cytometer (CytoFLEX, Beckman Coulter) in a selection of the trial participants (40 from the 

treatment group and 20 from the control group).  
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3.2 Methods used for EV measurements  

3.2.1 Isolation of EVs   

EVs can be isolated from their source fluid by several methods, such as ultracentrifugation 

(UC), size-exclusion chromatography, ultrafiltration, sucrose-gradient UC, density-gradient 

UC, or by a combination of the above 200. Precipitating agents like PEG and other commercial 

reagents have been suggested as rapid methods to use in order to enrich EVs from a biological 

fluid. However, these reagents also co-precipitate contaminant like lipoproteins 200,201. 

Choosing the method of EV isolation is a process of considering the pros and cons of each 

method while keeping in mind the source of the biological fluid, the input volume, the 

downstream application (required degree of purity), and the number of samples to be 

processed. For the work in the current thesis, the biological fluids used have been human 

blood and blood plasma. EVs have either been measured directly in plasma (PPL activity and 

CAT assay) or isolated by ultracentrifugation (20,000 x g for 30 minutes) and resuspended in 

buffer for subsequent analysis (NTA, flow cytometry, and electron microscopy).  

 

Ultracentrifugation is considered the gold standard for EV isolation. Blood is first centrifuged 

by one or more low-speed centrifugations to remove cells and cell debris and to generate 

plasma. Larger EVs (microvesicles) are most commonly pelleted from plasma by 

centrifugation speeds in the range of 10,000-20,000 x g for approximately 30 minutes. 

Smaller EVs (exosomes) are pelleted at a higher speed (100,000-120,000 x g) for a longer 

duration of  time (from 1 hour and longer) 200. Ultracentrifugation as a method cannot be used 

to absolutely discriminate between EV sizes, since sedimentation also will depend on the 

density and cargo of a vesicle, as well as the distance it needs to travel to be pelleted 200. To 

overcome the latter obstacle, it has been recommended to dilute biological fluids with PBS in 

order to alter the viscosity of the sample fluid and thereby enhance the sedimentation of EVs 

202. Ultracentrifugation has been described to induce aggregation of EVs as a result of the high 

speed applied 203. The method will also to some extent co-isolate contaminants from the 

source fluid. However, it is a relatively quick and easy isolation procedure with the possibility 

of high throughput of samples, and it requires minimal sample handling. The importance of 

reporting all aspects of EV isolation, in order to ensure reproducibility of study findings 

procedures has been stressed. The physical separation of vesicles not only depends on the g 

force applied, but also the type of rotor used (fixed angle, swinging bucket), the pelleting 

efficiency (rotor k-factor) and sample viscosity 200 
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3.2.2 Quantification and size distribution of EVs 

Nanoparticle tracking analysis (NTA) is an advanced technique allowing for direct and 

real-time visualization and analysis of vesicles in solution. The technique combines the light 

scattering properties of vesicles with their Brownian motion in order to determine the size 

distribution and concentration. The technique is unique in that each particle is individually 

tracked and analyzed. In brief, the sample of interest, in this case vesicles in suspension, is 

inserted into a sample chamber. The vesicles are then visualized using a conventional optical 

microscope connected to a video camera. The sample is recorded by the camera for a set 

period of time, typically 60s, and for a number of repeats, and video files are generated. The 

software uses the videos generated to track individual vesicles frame-by-frame as they move 

in the sample chamber throughout the length of the video. The size is determined using the 

mean squared displacement to calculate their theoretical hydrodynamic diameter using the 

Stokes Einstein equation. NTA also estimates the concentration of vesicles in the sample 

204,205.  

 

The NanoSight (Malvern, UK) instruments are the most commonly used NTA instruments in 

the EV field. According to the manufacturer they offer a detection range of approximately 10-

1000 nm. The detection range depends on the refractive index of the particles or vesicles in 

question. Analyzing particles at the lowest end of this range is possible only for particles 

composed of materials with high refractive index, for example gold and silver, while 

biological vesicles have a lower refractive index. The upper size limit is restricted by the 

limited Brownian motion of large particles. The viscosity of the solvent also influences the 

movement of particles, and it too plays a part in determining the upper size limit for a specific 

system 205. All the models of the NanoSight instruments are based on the same principle of 

detection, but the more advanced models also offer measurements in fluorescence mode 

(NS300 and NS500) and measurements of single particle zeta potential (NS500) 206.  

 

The advantages of NTA are that it is a rapid method that provides information on both the size 

and count of individual vesicles in a sample. The method discriminates well between size 

populations in heterogeneous samples 207, which biological samples most often are. As NTA 

measures vesicles in suspension, it does not require major handling or processing of a sample 

prior to analysis. This limits potential artifacts, like shrinkage due to fixation 205,206. As for 
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disadvantages, NTA is unable to identify the phenotype of the vesicles measured. The later 

models of NanoSight (NS300 and NS500) introduced a fluorescence mode allowing for the 

detection of labelled vesicles. However, labelling for NTA require fluorophores that are 

bright, photostable and small in size, so it does not add substantially to the size of the EV 

itself. Another disadvantage of the method is that NTA is not able to discriminate between 

true EVs and other spherical vesicles or particles in a sample, for example lipoproteins or 

contamination of chemical particles from the reagents used 205,206. Therefore, an absolute 

requirement for obtaining correct measurements using NanoSight is the removal of 

contaminating particles from buffers, reagents and culture media used.  

 

There are several publications evaluating the performance of the NanoSight instruments 204-

208, as well as publication comparing their performance to other established methods like flow 

cytometry and electron microscopy 205,209. NanoSight was shown to be a sensitive instrument 

able to accurately determine the size distribution of both monodisperse and polydisperse 

samples 205,207. The coefficients of variation (CV) for NTA have been reported for intra-day 

variation to range from 1-7% for size measurements, and 5-12% for concentration, while the 

inter-day variations ranged from 1-9% for size and 5-18% for concentration measurements 

208,210.   

 

NanoSight NS300 (Malvern, UK) was used in paper I to evaluate the effect of various pre-

analytical conditions on the concentration and size distribution of EVs isolated from human 

plasma by ultracentrifugation. Samples of isolated EVs were diluted (50–100×) in particle-

free Dulbecco’s phosphate buffered saline without CaCl2 and MgCl2 (Sigma-Aldrich, St. 

Louis, MO, USA), and manually inserted into the sample chamber using a 1 ml syringe. The 

samples were recorded at ambient temperature with automatic temperature monitoring. Three 

separate dilutions of the samples were used for analysis. Each dilution was recorded 3 times 

for 60 seconds each at camera level 16 (highest magnification of the microscope). The sample 

was refreshed between the captures, and the sample chamber was cleaned between each 

sample. The nine resulting videos were analyzed with NTA software version 3.0 at detection 

threshold 5, and the mean values for concentration and size distribution were calculated and 

compared.  

 



 

40 
 

Flow Cytometry is an established and commonly used method for the simultaneous 

measuring of multiple physical characteristics of a single cell, like size and granularity. In 

addition, fluorescent labelling of specific antigens using antibodies provides additional 

information on subpopulations in a sample 211. The main principle of flow cytometry is the 

light scattering and fluorescence emission generated by a cell or vesicle. The main 

components of a flow cytometer are fluidics, optics, detectors and a computer. The fluidics 

are responsible for transporting the sample through the instrument. The sample in question 

(i.e. cells or vesicles in solution) is diluted by sheath fluid in the instrument, and the cells or 

vesicles are made to align in a single file fashion by pressure differences when passing 

through the laser beam in the flow chamber. The optical system consists of a laser, lenses and 

collection optics. The laser beam is directed at the fluid stream with a single line of cells or 

vesicles, and light is scattered as the laser light strikes the cell or vesicle. Two types of light 

scatter occur, forward scatter (FSC) and side scatter (SSC). FSC is used as a measure of the 

cell/vesicle size, while SSC is a measure of cell granularity or internal complexity. In flow 

cytometers there is a variety of laser configurations able to excite a number of different 

fluorophores. The collection optics are lenses designed to collect the light emitted from the 

interaction between the laser beam and the cell/vesicle, as well as a system of optical mirrors 

and filters (long pass, short pass or band pass filters) that separate and direct specified 

wavelengths to the designated optical detectors. The light signals are converted into voltages 

by photodetectors and then into digital signals for computer processing 211.  

 

As EVs are only a fraction of the size of cells, analyzing EVs using conventional flow 

cytometers is rather challenging. Conventional flow cytometers have been reported to have a 

lower detection limit of approximately 300-500 nm for polystyrene beads 212. However, 

biological vesicles have a lower refractive index than beads, and the main population of EVs 

are below the detection limit of conventional flow cytometers 209,213-215. Specialized flow 

cytometers, on the other hand, have been reported to be able to detect 100 nm beads, 

corresponding to a biological vesicle of about 160-220 nm 212. Flow cytometry is a relatively 

easy method and the conventional instruments are commonly found in research laboratories 

making it an accessible method. Flow cytometry is useful as it provides information on 

multiple aspects of individual vesicles in solution. However, a major disadvantage is that 

specialized instruments are required for the optimal use of flow cytometry in EV research.  
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In paper IV we used the sensitive flow cytometer CytoFLEX (Beckman Coulter, 

Indianapolis, USA) to determine the concentration of total EVs and platelet-derived EVs in 60 

plasma samples (40 from treatment group, 20 from control group) from the START trial. EVs 

were isolated from plasma by ultracentrifugation at 20,000 x g for 30 minutes, and stained for 

phosphatidylserine with FITC-labeled bovine lactadherin (Haematologic Technologies, 

Vermont, USA) and the platelet marker CD41 with APC-H7 clone HIP8 (Biolegend, San 

Diego, USA). EV pellets were incubated with either antibody or isotype control mixture for 

20 min at 4°C in the dark. Samples were washed with 1 ml pre-filtered DPBS and centrifuged 

at 20,000 x g for 30 minutes at 4°C. The EV pellet was resuspended in Dulbecco's phosphate-

buffered saline without Ca2+/Mg2+ (Thermo Fisher Scientific). The EV gate was set using 

Rosetta calibration beads (Exometry, Amsterdam, The Netherlands), and data analysis were 

performed using the software CytExpert 2.0 (Beckman Coulter, Indianapolis, USA). EVs 

were defined according to size and lactadherin-positive staining. The total number of EVs was 

calculated from the number of detected lactadherin-positive events in a sample, and further 

converted to EV number per microliter plasma (EV/µl) using the original volume of analyzed 

plasma (150 µl).  

 

3.2.3 Measurements of EV activity  

The activity of EVs, or their contribution to coagulation, can be measured using different 

assays. For the work in the current thesis, emphasis has been given to EV procoagulant 

activity driven by negatively charged phospholipids, measured using a modified FXa-

dependent clotting assay.  

 

Procoagulant phospholipid (PPL) activity clotting assays are based on the ability of 

procoagulant phospholipids to accelerate the conversion of prothrombin to thrombin with 

subsequent fibrin formation. An equal volume of sample plasma is mixed with PPL-free 

plasma provided as a reagent by the assay, and the assay read-out is seconds of clotting time. 

The reaction is triggered by the addition of FXa in excess together with calcium 216,217. This 

eliminates the influence of coagulation factors upstream of FXa, leaving the PPL provided by 

the sample as the rate-limiting factor. Hence, procoagulant plasma clotting time should be 

considered as the potential to facilitate coagulation activation when blood is exposed to 

triggers of the coagulation system. Clotting assays offer a complex reaction as they measure 

the PPL activity of plasma and not only captured PS-positive EVs, and they measure a 



 

42 
 

physiological end-point. In addition, clotting assays do not rely on a particular instrument as 

they can be performed on a variety of routine coagulation analyzers.  

 

There are currently two main clotting assays commercially available, the STA-Procoag-PPL 

assay from Diagnostica Stago and the XACT assay from Haematex. The two assays use the 

same principal for testing the PPL activity of a plasma sample. For both assays, the 

phospholipid-free plasma provided as a reagent is chemically treated with phospholipase in 

order to remove PPL. For the XACT assay, they specify that this is achieved by the use of 

snake phospholipase 217, while it is not specified for the Stago assay [Diagnostica Stago, 

Asnières sur Seine Cedex, France]. Additionally, the origin of PPL-depleted plasma differs 

between the assays. While porcine plasma is used in the XACT assay, the Stago assay uses 

human plasma 216,217. The reasoning for using plasma from a different species was to try to 

overcome the effect of lupus anticoagulant on PPL measurements. The coagulation factors in 

the porcine plasma will not be inactivated by lupus anticoagulant, and therefore the assay 

sensitivity would remain the same 218. Both the Stago and the XACT assay use FXa of bovine 

origin 216,218. The XACT assay initially reported adjustment of the FXa concentration to give a 

clotting time of 100 seconds 218, but later standardized this to a concentration of 0.01 U/ml 217. 

The Stago assay similarly provides a bovine FXa solution of the same concentration 

[Diagnostica Stago, Asnières sur Seine Cedex, France]. The two PPL assays differ with regard 

to the use of a phospholipid calibrator. The XACT assay solves this problem by the inclusion 

of a synthetic PPL calibrator, while the Stago assay leaves it up to the users to create a 

reference range and standards for the clotting time 218 [Diagnostica Stago, Asnières sur Seine 

Cedex, France]. The benefit of including a standardized phospholipid calibrator is that the 

clotting times measured can then be converted into a unit of phospholipids.  

 

A way of measuring the degree of variability of an assay is by the coefficient of variability 

(CV). The Stago assay reports intra-assay CVs of 0.3% and 0.6% for the two samples tested, 

and inter-assay CVs of 1.3% and 2.1% [Diagnostica Stago, Asnières sur Seine Cedex, 

France]. Slightly higher CVs were reported by van Dreden and colleagues in the XACT assay, 

with intra-assay CVs of 3.3% and 3.1% for normal pooled plasma and patient plasma, 

respectively, and inter-assay CVs of 3.9% and 4.2% 217.  
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The commercial assays are sensitive, easy to use and portray low CVs. However, when 

running larger series of samples, using the commercial assays becomes quite costly. Given the 

importance of PS and PS+EVs in coagulation activation, there is a need for a cost-effective 

assay with the possibility of between-laboratory comparisons of data. We therefore set out to 

modify a FXa-dependent clotting assay. We assumed that the vast majority of procoagulant 

phospholipids in plasma were EV-bound, and we examined whether sequential centrifugation, 

including final ultracentrifugation, might substitute phospholipase treatment for the 

production of a suitable assay plasma. We additionally chose to include a standardized 

phospholipid reagent (UPTT, BioData Corporation, Horsham, Pennsylvania, USA) to allow 

for clotting times to be converted into a standardized unit of phospholipids.  

 

In paper II we developed a modified FXa-dependent clotting assay by substituting 

chemically phospholipid depleted plasma with PPL depleted plasma obtained by 

ultracentrifugation. We tested several aspects of the assay performance, like the influence of 

individual coagulation factors, postprandial lipoproteins and plasma centrifugation protocols. 

The modified PPL assay was compared to the commercial PPL assay STA-Procoag-PPL from 

Stago Diagnostica. The two PPL assays displayed similar sensitivity to exogenously added 

standardized phospholipids, and the PPL activity measured by the modified assay strongly 

correlates with the results from the commercial assay. The intra-day and between-days 

coefficients of variation ranged from 2–4% depending on the PPL activity in the sample. The 

modified PPL assay was insensitive to postprandial lipoprotein levels in plasma, as well as to 

TF+EVs isolated from stimulated whole blood.  

 

In paper III and IV, we used the modified PPL assay to measure the PPL activity of plasma 

samples from a nested case-control study derived from the general population (paper III) and 

a randomized controlled trial (paper IV). In brief, 25 μl sample plasma was mixed with 25 μl 

phospholipid-depleted plasma (PPLDP). PPLDP was generated from pooled citrated PFP (n = 

18), centrifuged at 100,000 x g for 60 minutes at 16°C (Beckman Optima LE-80K 

Ultracentrifuge, rotor SW40TI, Beckman Coulter, Indianapolis, Indiana, USA), aliquoted and 

stored at -80°C until use. The mixture of sample and PPLDP was incubated for 2 minutes at 

37°C, before the reaction was initiated by the addition of 100 μl pre-warmed factor Xa 

reagent containing bovine Factor Xa (0.1 U/ml) in 15 mM calcium chloride, 100 mM sodium 
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chloride and 20 mM HEPES buffer (pH 7.0). Clotting tests were carried out in duplicates on a 

StarT4 instrument from Diagnostica Stago (Asnières sur Seine Cedex, France) and measured 

in seconds of clotting time or converted into phospholipid activity in mU/ml by the use of a 

UPTT calibrator.  

 

The Calibrated Automated Thrombogram (CAT) is a method to measure thrombin 

generation in clotting plasma, either with or without platelets present in the sample (PRP, PPP 

or PFP). The method has previously been described by Hemker et al. 219,220. The CAT assay is 

a general physiologic function test of the thrombotic hemostatic system, and can be used to 

measure both thrombotic and bleeding tendencies. The CAT assay can detect deficiencies in 

all coagulation factors (except FXIII), as well as the effect of anticoagulant treatments (VKA, 

heparin and heparin-like, direct inhibitors). The assay CVs for endogenous thrombin potential 

(ETP) has been described to range from 15-19% for inter-individual variability, and from 4.5-

7.4% for intra-individual variability, depending on the sample type (PPP or PRP, respectively) 

219.  

 

The general principle of the CAT assay is that a plasma sample, or plasma diluted with buffer, 

is mixed with trigger(s), e.g. TF and phospholipids, in the wells of a 96-well plate. The 

concentration of TF and phospholipids can be altered according to the objective of the 

experiment. For each plasma sample used, additional wells are needed where a thrombin 

calibrator is added to plasma. The thrombin calibrator is used to correct for the inner filter 

effect, donor-to-donor variability in the color of plasma, substrate depletion and instrumental 

differences. The plate is then incubated in the instrument at 37°C for 10 minutes. The reaction 

is initiated by the addition of calcium and a fluorogenic substrate dispensed into the wells by 

the instrument. Thrombin activity is calculated as a function of time by comparing the 

fluorescent signal from the sample well to that of a known stable concentration of thrombin 

activity in a parallel non-clotting sample (the calibrator well). A computer software will then 

calculate thrombin generation parameters like lag time (LG) (min), the time to peak (tPeak) 

(min), the peak of thrombin generation (peak) (nM), the area under the thrombin generation 

curve (nM*min) and endogenous thrombin potential (ETP) (Figure 7) 219,220. 
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Figure 7. Overview of the most commonly used thrombin generation parameters; lag time 

(min), the time to peak (tPeak) (min), the peak of thrombin generation (Peak) (nM), and the 

area under the thrombin generation curve, that is the endogenous thrombin potential 

(nM*min) (ETP). (Adapted from Hemker, H.C., Pathophysiol Haemost Thromb 2003 and 

2002 219,220). 

 

In paper III we used the CAT assay to measure thrombin generation of plasma samples. 

Thrombin generation was measured in a Fluoroscan Ascent Fluorometer (Thermolabsystems 

OY, Vantaa, Finland). Fluorescence intensity was detected at wavelengths of 355 nm 

(excitation filter) and 460 nm (emission filter). Forty µl of plasma was mixed with 40 µl 

Hepes buffer (20 mM Hepes and 140 mM NaCl) and pipetted into the wells of round bottom 

96-well microtiter plates (Immulon, Lab Consult, Lillestrøm, Norway). Ten µl of TF solution 

(final concentration of 3 pM) (Innovin, Bade Behring) and 10 µl of a standardized 

phospholipid in solution (diluted 1:20) (UPTT, BioData Corporation, Horsham, Pennsylvania, 

USA.) were added as triggers. Both TF and UPTT were diluted to the stated concentrations in 

Hepes buffer. The plasma samples measured were a combination of pooled citrated PFP and 
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phospholipid depleted plasma (PPLDP) added in ratios of 100:0, 80:20, 60:40, 40:60, 20:80, 

10:90, and 0:100, respectively. For each experiment, a fresh mixture of 2.5 mM fluorogenic 

substrate (Z-Gly-Gly-Arg-AMC from Bachem, Bubendorf, Switzerland), 0.1 M CaCl2, 20 

mM Hepes (Sigma Aldrich, St Louis, USA) and 60 mg/ml BSA (A-7030, Sigma Aldrich) 

with pH 7.35 was prepared. Each dilution of PFP/PPLDP was assigned its own calibrator 

(Thrombinoscope BV, Maastricht, The Netherlands). The computer software calculated lag 

time (LG) (min), the time to peak (TTP) (min), the peak of thrombin generation (PEK) (nM) 

and the area under the thrombin generation curve (nM*min) and endogenous thrombin 

potential (ETP). Plasma samples were run in duplicates and each experiment was repeated 

three times. 

 

3.2.4 Electron microscopy  

Transmission electron microscopy (TEM) is used to image, phenotype and count EVs. 

TEM is able to detect and characterize individual EVs. TEM is highly sensitive with an 

imaging resolution down to 1 nm 209. Thus, using immuno-gold labelling for TEM, proteins 

on the EV surface can be detected. TEM is a useful method to visualize and confirm the 

presence of biological vesicles with a bi-layered membrane after an EV isolation technique 

has been applied.  However, electron microscopy is a labor-intensive method and does not 

allow for high-throughput of samples. EV sample preparation requires chemical fixation and 

dehydration, which potentially alter the morphology of the EVs. Additionally, limited and 

non-uniform adhesion of vesicles to the grid surface may affect the read-out on size 

distribution 214,221.  

 

Scanning electron microscopy (SEM) is also used to characterize individual EVs. SEM uses 

an electron laser beam to scan the surface of a vesicle and generates information on its 

topography. Similarly to TEM, EV samples are processed before analysis by fixation and 

dehydration. Immobilized samples are spray-coated with a thin layer of conductive material 

like cobber or gold before imaging, which might affect the surface structure of EVs 222.  

 

In paper I we used both TEM and SEM to investigate EVs isolated from human plasma by 

ultracentrifugation. For TEM, EVs were isolated by ultracentrifugation, resuspended in buffer 

and fixed in formaldehyde. The EVs were adsorbed onto an epoxy resin substrate containing 
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colloidal gold particles. The substrate was prepared by adsorbing 15 nm gold particles 

(Department cell biology, University of Utrecht, the Netherlands) on formvar/carbon coated 

copper specimen grids and then the gold-coated grids were embedded in a thin layer of epoxy 

resin between two layers of Aclar film and polymerized at 60 °C for 48 hours. The EV 

suspension was placed on the gold-loaded, epoxy-embedded specimen grids and in 1% 

glutaraldehyde, postfixated in 1% OsO4 and stained with 1% aqueous uranyl acetate. The 

EVs on the epoxy-embedded grids were dehydrated in a graded series of ethanol, infiltrated in 

an Epon Equivalent (AGAR 100, DDSA, MNA and DMP-30, Agar Scientific, UK) and 

polymerized at 60 °C for 48 hrs. Ultrathin sections of the embedded EVs were prepared using 

Ultracut S ultramicrotome (Lieca Microsystems, Vienna, Austria) and a Diatome diamond 

knife (Diatome, Biel, Switzerland). Images using a JEOL JEM 1010 transmission electron 

microscope (Tokyo, Japan) were acquired with a Morada camera system (Olympus Soft 

Imageing System, Münster, Germany). 

 

For immune-gold labelling the EVs were fixed with 1% buffered glutaraldehyde and adsorbed 

onto carbon-formvar coated specimen grids before immunolabelling. Unspecific labelling was 

blocked on 0.1% cold water fish skin gelatin (CWFSG) (Sigma G-7765) and 1.5% bovine 

serum albumin. Samples were incubated with anti-annexin V (Anx5) antibody (abcam, Cat# 

ab14196), diluted in Anx5 binding buffer (BD Pharmingen, Cat#556454) and protein A-gold 

(University of Utrecht, The Netherlands). All immune-reagents were diluted in CWFSG and 

the grids washed in PBS between each step. The grids were finally fixed in 1% 

glutaraldehyde, washed in distilled water and dried in 1.8% Methylcellulose containing 0.3% 

uranyl acetate. 

 

For SEM analysis, isolated EVs were negatively stained on formvar/carbon coated copper 

grids. The grids floated on sample drops for 30 minutes, and were treated with 1% 

glutaraldehyde, washed in PBS and ddH2O and contrasted/dried with the addition of 1.8% 

methyl cellulose and 0.3% uranyl acetate. EV size measurements were performed using the 

iTEM software (Olympus Soft Imaging Solutions, Münster, Germany) by measuring the 

diameter of at least 200 EV from the SEM pictures. The start and end of every diameter was 

set manually and the diameter was calculated by the program. Grids were mounted on a 
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specimen holder and coated with gold/palladium before SEM examination. The images were 

obtained using a Zeiss Merlin VP compact scanning microscope. 

 

3.3 Statistical analysis  

All statistical analyses were conducted using either SPSS for Windows (SPSS Inc., Chicago, 

Illinois, USA), GraphPad Prism for Windows (GraphPad Software, San Diego, California, 

USA) or R for Windows (The R Foundation for Statistical Computing c/o Institute for 

Statistics and Mathematics, Vienna, Austria). 

 

In paper I, median values and interquartile ranges for continuous data (EV concentrations) 

were presented, as data was not normally distributed. To test for differences in EV 

concentrations between anticoagulants we used Friedman’s test for non-parametric and 

dependent continuous data. Bar graphs were used to display (i) EV concentrations according 

to size categories of EVs (<100 nm, 100–199 nm, 200–299 nm, 300–1000 nm), and (ii) mean 

sizes of EVs measured by NTA and SEM in the different anticoagulants. The correlation 

between triglycerides and EV concentrations as well as VLDL and EV concentrations was 

calculated using Pearson’s correlation coefficient. All analyses were performed using IBM 

SPSS Statistics version 22. 

 

In paper II all statistical analyses were performed in Graph Pad Prism 9.0. ANOVA was used 

to test for differences in performance between the modified PPL assay and the STA-Procoag- 

PPL assay. 

 

In paper III statistical analyses were performed using R (Version 4.0.4). Unconditional 

logistic regression models were used to estimate odds ratios for VTE with 95% confidence 

intervals with plasma procoagulant phospholipid clotting time (PPLCT) used as a continuous 

variable, discretized to quartiles and dichotomized according to PPLCT  ≤ 25th percentile 

versus PPLCT  > 95th percentile. The analyses were adjusted for age, sex and BMI. The PPLCT 

quartile cut offs were determined using the control group. 
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As the follow-up time in the source cohort was long (more than 12 years for many 

persons), the results based on baseline PPLCT measurements could be influenced by 

regression dilution bias. To investigate this, we performed analyses where we restricted the 

maximum time from blood sampling in Tromsø 4 to the VTE events, while keeping all 

controls in the analyses. The logistic regression analyses on time restrictions were set to 

require at least 10 VTE events, and odds ratios were generated at every 0.1 year increase and 

plotted as a function of time from blood sampling to VTE. 

 

In paper IV statistical analysis were performed using R (Version 4.0.3). Descriptive statistics 

were used to describe the baseline difference between the intervention and the control group. 

For the results tables, the treatment and non-treatment group, as well as subgroups, were 

compared using two-sample t-tests with equal variance assumed and standard multivariate 

linear regression models adjusting for age and sex. Pearson’s correlation coefficient was used 

to estimate correlations. 
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4. Main results 

4.1 Paper I: Impact of preanalytical conditions on plasma concentration and size distribution 

of extracellular vesicles using Nanoparticle Tracking Analysis  

 

EVs are most often subjected to several pre-analytical handling steps before analysis. Optimal 

pre-analytical handling is therefore crucial to ensure valid measurements of parameters such 

as plasma concentration and size distribution of EVs.  

In this study we aimed to investigate the impact of plasma preparation, various 

anticoagulants, including citrate, EDTA, CTAD, and heparin, as well as fasting status on the 

concentration and size distribution of EVs measured by Nanoparticle Tracking Analysis and 

scanning electron microscopy.  

Blood was drawn from 10 healthy volunteers to investigate the impact of plasma 

preparation and anticoagulants. We also used plasma samples from 40 individuals from a 

previous population-based study to investigate the impact of postprandial lipidemia. 

Transmission electron microscopy was used to confirm the presence of EVs. The plasma 

concentrations of EVs were measured by NTA after isolation by high-speed centrifugation. 

The size distributions of the plasma EVs were determined using NTA and SEM.  

TEM confirmed the presence of EVs after isolation by high-speed centrifugation from 

plasma. TEM and SEM-analyses showed that the EVs kept a spherical morphology after high-

speed centrifugation. The plasma concentrations and size distributions of EVs were 

essentially similar for the various anticoagulants investigated. We found no statistical 

difference in either size or concentration of EVs measured by NTA, when plasma was 

prepared as PPP or PFP before freezing. Plasma levels of EVs were not significantly altered 

in response to a high-fat meal, but the mean sizes of VLDL particles were increased and 

interfered with EV measurements.  

Isolation of EVs from plasma by high-speed centrifugation yielded similar 

concentrations and size distributions of EVs for the four anticoagulants tested. We found no 

statistical difference in concentration nor size of EVs when plasma was prepared as PPP or 

PFP before freezing. Plasma VLDL particles interfered with EV measurements particularly 

under postprandial conditions due to an increase in the median particle diameter of VLDLs.   
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4.2 Paper II: A modified clot-based assay to measure negatively charged procoagulant 

phospholipids  

 

The interest in PPL activity has increased during recent years, mainly due to the increased 

understanding of the role of EVs in thrombosis and hemostasis. There are currently two 

commercial PPL-dependent clotting assays available, the STA-Procoag-PPL assay from 

Diagnostica Stago (Asnières sur Seine Cedex, France) and the XACT assay from Haematex 

(Hornsby, NSW, Australia). Both assays use chemical phospholipase treatment to deplete 

phospholipids from the reagent plasma.  

The purpose of our study was to modify the PPL assay by substituting the chemically 

phospholipid depleted plasma with PPL depleted plasma obtained by ultracentrifugation This 

in order to get readily access to a sensitive and reliable assay to measure PPL activity in 

human plasma and cell supernatants.  

The performance of the assay was tested, including the influence of individual 

coagulation factors and postprandial lipoproteins and compared to a commercial PPL assay 

(STA-Procoag- PPL assay). The two PPL assays displayed similar sensitivity to exogenously 

added standardized phospholipids. The PPL activity measured by the modified assay strongly 

correlates with the results from the commercial assay. The intraday- and between-days 

coefficients of variation ranged from 2–4% depending on the PPL activity in the sample. The 

modified PPL assay was insensitive to postprandial lipoprotein levels in plasma, as well as to 

TF+EVs from stimulated whole blood.  

Our findings showed that the modified assay performed equally to the comparator, and 

was insensitive to postprandial lipoproteins and TF+ EVs. In addition, we introduced a 

standardized PPL reagent (UPTT) which allowed for clotting times to be converted into a 

standardized unit of phospholipids. These modifications led to the establishment of an 

accessible and convenient in-house assay. 
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4.3 Paper III: Plasma Procoagulant Phospholipid Clotting Time is Inversely Associated with 

Future Risk of Incident Venous Thromboembolism 

 

Several observational studies have reported elevated plasma levels of EVs in VTE. Negatively 

charged procoagulant phospholipids, and phosphatidylserine in particular, are expressed on 

the surface membrane of EVs and are vital to coagulation. However, no previous study has 

investigated the association between plasma PPLCT and future risk of VTE.  

In this study we aimed to investigate the association between plasma PPLCT and the 

risk of incident VTE in a nested case-control study.  

We conducted a nested case-control study using 296 VTE patients and 674 age- and 

sex-matched controls derived from a general population cohort (The Tromsø Study 1994-

2007). PPLCT was measured in platelet-free plasma using our modified factor Xa-dependent 

clotting assay (Paper II). Logistic regression was used to estimate odds ratio (OR) with 95% 

confidence intervals (CI) for VTE with PPLCT modelled as a continuous variable, across 

quartiles and in dichotomized analyses.  

There was a weak inverse association between plasma PPLCT and risk of VTE per one 

standard deviation increase of PPLCT (OR 0.93, 95% CI 0.80-1.07) and when comparing those 

with PPLCT in the highest quartile (OR 0.89, 95% CI 0.60-1.30) with those in the lowest 

quartile. The inverse association was stronger when the analyses were restricted to samples 

taken shortly before the event. Subjects with PPLCT > 95th percentile had substantially 

lowered OR for VTE (OR 0.35, 95% CI 0.13-0.81). The risk estimates by categories of 

plasma PPLCT were similar for deep vein thrombosis and pulmonary embolism.  

In conclusion, our results indicate an inverse association between plasma PPLCT and 

the risk of future VTE. Our findings suggest that high plasma PPLCT is associated with 

reduced risk of VTE. The results were strongly influenced by regression dilution bias. 

  



 

53 
 

4.4 Paper IV: Rosuvastatin treatment decreases plasma procoagulant phospholipid activity 

after a VTE: A randomized controlled trial  

 

VTE is a frequent cardiovascular disease with severe complications, including recurrence and 

death. There is a great need for preventive treatment options against recurrence as 

anticoagulation is accompanied by increased bleeding risk. Statins are reported to reduce the 

risk of incident and recurrent VTE, but the mechanisms are elusive. Procoagulant 

phospholipids, and phosphatidylserine in particular, are crucial for efficient coagulation 

activation, but no studies have investigated the effect of statin treatment on plasma PPL 

activity.  

In this study we aimed to investigate the impact of rosuvastatin treatment on plasma 

PPL activity and levels of EVs in subjects with a history of VTE.  

Participants of the STAtins Reduce Thrombophilia (START) trial (NCT01613794) 

were randomized to either 20 mg/day of rosuvastatin treatment or no treatment for 28-days. 

Plasma sample were collected at baseline and study end. The PPL activity was measured in 

samples from 245 participants using our FXa-dependent clotting assay (Paper II). The levels 

of total and platelet-derived EVs were measured in a selection of the participants using a 

sensitive flow cytometer.  

Rosuvastatin treatment yielded an overall 22% (95% CI -38.2 to -5.8) reduction in 

PPL activity, and 37% (95% CI -62.9 to -11.2) reduction in PPL activity in participants with a 

history of pulmonary embolism. The effect of rosuvastatin on plasma PPL activity was not 

explained by changes in total cholesterol nor change in plasma levels of total- or platelet-

derived EVs measured by flow cytometry. 

In conclusion, rosuvastatin treatment caused a substantial decrease in plasma PPL 

activity, suggesting that a PPL-dependent attenuation of coagulation activation may contribute 

to a reduced risk of VTE recurrence following statin treatment. 
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5. General discussion 

5.1 Methodological considerations 
 

5.1.1 Study design 

Cohort studies follow a defined population from inclusion (baseline) and until the outcome 

of interest or other censoring events occur (death, end of study). Participants are classified 

according to the status of exposure(s), allowing for differences in outcome to be investigated 

based on exposure status (non-exposed vs exposed) during follow-up. With a cohort design 

one can estimate both absolute risk and relative risk. Cohort studies are useful tools to 

investigate common diseases, while other study designs are more suitable for rare outcomes 

223. Cohort studies are generally comprised of large participant pools and follow the 

participants for a long time. A major strength of the cohort study design is the clear temporal 

sequence between exposure and outcome, which is the most important prerequisite for 

determining causality. However, according to the Bradford Hill criteria for causation, 

additional criteria should also be considered including experimental evidence, the strength of 

the observed association, consistency across studies, biological gradient (dose-response) and 

biological plausibility 224. Challenges with this study design include selection bias, 

confounders and bias by differential loss to follow-up (missing data) 223.  

 

Case-control studies have a retrospective design. A group with the outcome of interest (case) 

is compared to a group without the outcome (control). The selected controls should be 

representative of the population from which the cases were drawn. The information on 

exposure status is registered for both groups, and odds ratios are estimated for the proportion 

of cases with an exposure compared to the proportion of controls with the same exposure. 

This determines the relative importance of the exposure with respect to the presence or 

absence of the outcome 223. Since the cases included in a study are chosen based on the fact 

that they have the outcome of interest, case-control studies are cost-effective and require a 

smaller sample size than for example cohort studies. The case-control study design allows for 

multiple exposures to be investigated, while the outcome of interest is limited. It can also be 

applied to investigate rare outcomes. Challenges with case-control studies include selection 

bias, recall bias and confounding. An additional potential challenge with case-control studies 

is reverse causality. Reverse causality is a temporal bias where the outcome of interest causes 

alterations in the exposure of interest. The observed association would then be the opposite of 

the hypothesized causal relationship.  



 

55 
 

Nested case-control studies encompass subjects sampled, or “nested”, from within a cohort 

study, hence the name. Random sampling of controls from the cohort strengthens the 

probability of the controls being representative for the general population. Nested case-control 

studies are both cost- and time-effective, as well as maintaining the temporal sequence of 

exposure-outcome. In addition, this study design allows for better control of confounding 

(age, sex) by the matching of cases and controls. A limitation with nested case-control studies 

is that we are unable to estimate absolute risk 223.  

 

In paper III we used a nested case-control study derived from a prospective population-based 

cohort study. In the Tromsø study participants were followed until a VTE event, death, 

migration from the municipality, withdrawal from the study, or end of study. The exposure 

statuses were recorded and blood samples were drawn at inclusion in the study. For the nested 

case-control study, two age- and sex-matched controls, alive at the index date of the VTE 

event were sampled from the cohort for each case included.  

 

Randomized controlled trials (RCTs) are considered the gold standard of study designs 

when it comes to determining causal relationships, as they provide experimental evidence, an 

important Bradford Hill criteria for causation 224. In a RCT the participants are randomly 

assigned to groups (control or intervention), followed for a set period of time and compared 

with each other according to the preset study outcomes. RCTs allow for the manipulation of 

exposures in a controlled environment. Proper participant randomization is crucial in order to 

ensure that all covariates, apart from the exposure, are randomly distributed among the study 

groups, thus minimize confounding. When controlling for confounding and bias, we allow for 

the estimation of true associations between the exposure and the outcome. RCTs have a high 

internal validity, but the strict inclusion criteria might reduce their external validity. 

Challenges with RCTs are that they are resource demanding, time consuming, and may not 

always be possible to conduct or ethically acceptable 225.   

 

In paper IV we used a randomized controlled study design. The STAtins Reduce 

Thrombophilia (START) trial, is a multicenter, randomized, controlled, open label clinical 

trial where the impact of rosuvastatin treatment on the coagulation profile of individuals with 
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a previous history of VTE was investigated. Participants were randomly assigned to either 20 

mg/day of rosuvastatin treatment or no study treatment for the 28-day study period. 

Participants were randomized by using a random allocation sequence implemented by a 

central telephone. The sequence was concealed until interventions were assigned. Adherence 

to the study protocol was assessed in two ways. First, participants in the treatment group took 

the first tablet of rosuvastatin in the presence of an investigator. Second, compliance to 

treatment was assessed by measurements of total cholesterol levels at baseline and at study 

end in all participants. The START trial was approved by the Medical Ethics Committee of 

the Leiden University Medical Center, Leiden, the Netherlands, and all study participants 

gave written informed consent prior to participation. 

 

5.1.2 Bias  

Bias is systematic error(s) in the design or execution of a study leading to incorrect estimates 

of a true association between exposure and outcome. Several systematic errors have been 

described, however most of the biases relate to the selection of participants (selection bias), 

measurements performed and the classification of exposure and outcome (information bias), 

or the presence of confounding factors 226.  

 

Selection bias is a result of any errors in selecting the study participants and/or from factors 

affecting the study participation 227. Selection bias affects the relationship between the 

included participants and the non-participants or non-responders with regards to exposure and 

disease status. As we often do not know the exposure-disease status of the non-participants, 

selection bias can most often only be hypothesized. Selection bias can further be divided into 

non-response bias, incidence-prevalence bias, loss to follow-up bias, confounding by 

indication bias and volunteer bias 227. Cohort studies are less likely to be affected by selection 

bias as all of the participants are included in the study before the outcome of interest occur. 

Still, cohort studies are prone to non-response bias, implying that the participants of the study 

differ from the non-participants. Individuals who choose to participate in cohort studies are 

generally thought to be healthier than non-participants. This is because it is unlikely that 

individuals who are immobilized or institutionalized due to disease or illness of any kind 

would attend health surveys. Cohort studies are also prone to the loss to follow-up bias. If the 

losses during follow-up are random, it will not affect the estimated associations. However, 
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differential loss to follow-up, where the exposure affects the probability of completing the 

study, will result in study bias 227.  

 

The 4th survey of the Tromsø study had a high attendance rate of 77% of the invited 

population (aged 25 years and older). Generally, the participation rates for epidemiological 

studies have declined during the last decades 228. This was similarly observed for the Tromsø 

study, with participation rates ranging from 81%-85% for the first three of the surveys (1974-

1987) and declining to 65%-77% for the last four studies (1994-2016) 194. We know that the 

non-participants of the Tromsø study tended to be male, unmarried, and younger than 35 

years old or older than 80 years 194. The profile of the non-participants are in line with 

previous findings that those more likely to not participate in epidemiological studies were 

male, unmarried, at extremes of age (younger or older), have a lower level of education and 

be of lower socioeconomic status 228. As the incidence of VTE is low in the younger 

population, and the participation rate of Tromsø 4 is quite high, we presume that the selection 

bias as well as the non-responder bias would be low in our study.  

 

In the START trial participants were randomly assigned to the treatment group or the control 

group. Generally, randomization is implemented to reduce the effect of bias in a study. 

However, in our study the distribution of age and sex were unevenly distributed among the 

study groups. The control group had more men (69.2% vs 53.6%) and the participants in this 

group were slightly older than the treatment group (59 years vs 57 years). However, adjusting 

for age and sex in statistical analysis did not alter the results, indicating that the impact of 

selection bias is low. In addition, participants were compared to themselves (baseline vs 

study-end samples) for analyses. As participants were recruited from an outpatient setting, it 

limits the risk of confounding diseases at randomization, limiting selection bias in our study. 

For each study group, a low number of participants were excluded after randomization, six in 

the treatment group and four in the control group. However, none of the participants were lost 

to follow-up. Two participants in the treatment group was excluded due to not starting the 

study drug.  

Information bias occurs during data collection and is the result of the systematic tendency to 

erroneously place participants in different exposure and outcome categories. The accuracy of 

any exposure-outcome relationship depends on the performance of the diagnostic tests used. 
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A common source of misclassification in clinical practice is the inaccuracy of diagnostic tests 

227. Misclassification bias is the most important type of information bias, and can be divided 

into differential or non-differential misclassification. Non-differential misclassification is 

when the probability of misclassifying the exposure is not related to the outcome (disease), or 

the other way around. The ability of the diagnostic test to determine exposure status is the 

same for cases and controls, and they are both equally likely to be misclassified according to 

disease status. In the case of differential misclassification, the performance of the diagnostic 

test for the exposure identification differs between cases and controls. Recall bias is an 

example of differential misclassification where the cases are more likely to remember relevant 

exposures compared to the controls 227.  

 

In paper III, information on the exposure status was obtained from blood samples which 

were drawn at study inclusion in 1994-95 and stored at -80°C until analysis. Information on 

the participants from the Tromsø study were derived from self-administered questionnaires. 

As blood samples and the questionnaires (exposure information) were collected before the 

outcome (VTE event) occurred, potential misclassification in our study is likely to be 

unrelated to the outcome (non-differential). Non-differential misclassification tends to lead to 

an underestimation of an association 226. Potential sources of information bias include 

measurements obtained by the Tromsø study personnel, our laboratory measurements and 

instrument errors. The PPL assay is a sensitive method to determine PPL clotting time of a 

sample. The assay was found to display low intra- and inter-series coefficients of variations 

(CV) ranging from 2.8% to 4.1% 195. In addition, the technician carrying out the PPL assay 

measurements was blinded to the identity and case-control status of the samples in order to 

reduce the potential information bias. The outcome of our study, VTE events, are also prone 

to information bias. All events were identified by searching the hospital discharge diagnosis 

registry, autopsy registry and the radiology procedure registry at the University Hospital of 

North Norway (UNN). The events were thoroughly validated by multiple criteria such as 

presence of symptoms, objective confirmation by diagnostic procedures, and the initiation of 

treatment. The strict criteria implemented for an event to be found valid and included in the 

study will reduce the probability of false positive cases, and reduce study bias. Potential 

misclassification in our study would most likely be non-differential.  
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In paper IV, using the START trial, we measured the exposure (PPL activity) in plasma 

samples collected at baseline and study-end. As mentioned in the section above, the PPL 

assay is a sensitive method which displays low intra- and inter-day CVs. The technicians 

conducting the laboratory analyses were blinded to sample treatment. In the trial neither the 

patients nor the physicians were blinded to study treatment. However, it is unlikely that 

knowledge of the treatment would affect the laboratory outcomes (PPL clotting time). For the 

statistical analysis performed, the participants are compared to themselves (baseline vs study-

end).   

 

Regression dilution bias is a type of information bias affecting longitudinal studies assessing 

the association between the baseline measurements of a continuous modifiable variable and 

the risk of an outcome 227. The exposure status of modifiable risk factors might change during 

follow-up. If not accounted for it may introduce regression dilution bias to a study resulting in 

an underestimation of the true association between the exposure and outcome 229.  

 

In paper III, the follow-up time in the source cohort was more than 12 years for several of 

the participants (from 1994 to September 1st 2007). Because of the long follow-up time in our 

study, we chose to investigate the potential impact of regression dilution bias. Statistical 

analyses were performed where we restricted the maximum time from blood sampling in 

Tromsø 4 to the VTE events, still keeping all controls in the analyses. The logistic regression 

analyses on time restrictions were set to require at least 10 VTE events, and odds ratios were 

generated at every 0.1 year increase and plotted as a function of time from blood sampling to 

VTE. We do observe regression dilution bias in our study, and found that the inverse 

association between high plasma PPLCT and VTE was stronger with shortened time between 

the blood sampling and the VTE events. Our exposure (PPLCT) was subject to variation over 

the long follow-up time, making our results prone to underestimation of the true association 

with the outcome (VTE).  
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5.1.3 Validity 

Validity can be divided into internal or external validity. The internal validity of a study is 

the extent to which the observed results in fact reflect the true association within the study 

population investigated. External validity, or generalizability of a study, describes to what 

extent the study findings can be applied to subjects beyond the investigated study population. 

External validity depends on internal validity, but internal validity does not necessary result in 

external validity 226. Bias will reduce the validity of a study. Population-based cohort studies 

generally have high external validity, while RCTs have low external validity, but a high 

internal validity. For extrapolation of the findings from RCTs the inclusion criteria should be 

as general as the study allows, while at the same time maintaining scientific precision 225.  

 

In paper III the mean age of the VTE cases was 68 years, and the proportion of men and 

women was approximately the same (47% male, 53% women). Both mean age at VTE and 

the sex distribution in our study were comparable to reports from a pooled Scandinavian 

cohort (Norway and Sweden)230. Similarly, the proportions of DVT (58.8%) and PE (41.2%) 

in our study, have also been reported by others 230. The VTE cases in our study are seemingly 

representative of VTE cases in the general population, strengthening the external validity of 

our study. In our nested case-control study two controls, matched for age, sex and time, where 

chosen for each VTE case. The controls were sampled from the same parent cohort (Tromsø 

4). However, with knowledge of that the non-participants of the Tromsø study tended to be 

male, unmarried, and younger than 35 years or older than 80 years, our study generalizability 

will be decreased for individuals belonging to these subgroups. In addition, the inhabitants of 

the municipality of Tromsø, hence the invited population, are predominantly Caucasian, with 

a Sami minority 194. As we know that the incidence of VTE differs with regard to ethnicity, 

the generalizability of our findings to other ethnicities is not known. High internal validity in 

our study is supported by the high participation rate (77%) in the cohort study, as well as the 

strict criteria for the validation of the included VTE events. In addition, the PPL assay is a 

sensitive method to determine PPL clotting time, and it displays low intra- and inter-series 

coefficients of variations (CV) ranging from 2.8% to 4.1% 195. The technician carrying out the 

PPL assay measurements was blinded to the case-control status of the samples, strengthening 

internal validity of our study.  
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In paper IV, our study design (RCT) suggests high internal validity, but often holds a low 

external validity. The participants in our study were recruited from three different 

anticoagulation clinics in the Netherlands (Leiden, Hoofddorp, and Rotterdam). Participants 

were included in the trial if they were 18 years or older, had an initial or recurrent confirmed 

symptomatic proximal DVT or PE, and were allowed to stop oral anticoagulant treatment by 

their treating physician. The exclusion criteria were; individuals already using statins or lipid 

lowering drugs or any contraindications for using 20 mg/day of rosuvastatin for the duration 

of the study 196. Strict inclusion criteria ensure that the study participants are as similar as 

possible before randomization to reduce study bias and increase internal validity. In addition, 

the study participants were compared to themselves for statistical analysis. However, the strict 

inclusion criteria affect the degree of generalizability of our study. The included participants 

from both study groups were slightly younger than the mean age of VTE found in studies 

derived from the general population (57 and 59 years versus 68 years). Of the 245 participants 

included in our study the majority were male (61%), and 75% of the participants had 

cardiovascular risk factors. The participants included were allowed to stop anticoagulant 

treatment, possibly distinguishing them from other VTE patients. Still, a wide age range (19 

to 83 years of age) was observed in the participants.  

 

5.1.4 Confounding  

A confounder is a variable that is both associated with the exposure and the outcome, but is 

not an intermediate variable in the causal pathway between the exposure and outcome 231. If a 

confounder is unevenly distributed across the exposure status, the association will be 

distorted. The presence of confounding may strengthen, weaken or even reverse the studied 

association. The type of study design will impact the degree of potential confounding in a 

study. For RCTs the participants are randomly assigned to the study groups which reduces the 

risk of confounding by (ideally) causing an even distribution of confounders in the treatment 

and control group. However, associations found in RCTs may be confounded if exposures, by 

random, are unevenly distributed between the groups. In paper IV, we observed that the age 

and sex distribution were unevenly distributed among the study groups. We therefore adjusted 

the statistical analysis for age and sex, but the adjustments did not alter the observed effect. In 

addition, the participants of the trial were recruited from an outpatient setting, limiting the risk 

of confounding by other diseases. Furthermore, participants were compared with themselves 

for analysis, reducing the effect of potential confounding.   
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The presence of confounding is a concern for observational studies since the non-random 

allocation to a study group may result in an uneven distribution of confounding factors among 

the groups. Strategies to overcome confounding include multivariable regression analysis, 

matching and stratification. Pairwise matching is a way of controlling for confounding at an 

early stage of a study. In a case-control study participants can be matched according to status 

of the known confounder, for example smoking status. Stratification is a way of controlling 

for confounding after the study has been completed. The confounding variable can be divided 

into subgroups for analysis. However, stratification will reduce the statistical power 232. 

Multivariable regression analysis is a way of estimating an association between exposure and 

outcome, while controlling for one or more confounding variables. In paper III, the cases and 

controls were matched on age and sex. For analysis, PPL activity was stratified into four 

groups (quartiles) of clotting time, and the logistic regression analysis was run as crude 

analysis as well as analysis adjusted for age, sex and BMI. It is important to acknowledge that 

despite applying various methods for dealing with confounding factors in our study, residual 

confounding may still affect our results. Residual confounding occurs when unrecognized 

(unknown or unmeasured) confounders exist, which in turn could potentially impact the 

observed associations. Residual confounding is recognized as a challenge in observational 

studies 233. The associations described in our study could potentially be affected by 

unrecognized confounding variables.  
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5.2 Discussion of the main results 

 

5.2.1 The impact of preanalytical conditions on plasma concentration and size distribution of 

EVs 

In paper I we assessed the impact of preanalytical conditions, such as centrifugation steps for 

plasma preparation and EV isolation, the choice of anticoagulant, and fasting status on plasma 

concentration and size distribution of EVs. As a proof of concept, we used TEM (negative 

staining and ultrathin sectioning) to confirm the presence of bilayer membrane vesicles (i.e.  

EVs) after isolation from plasma by ultracentrifugation. A bilayer membrane was 

demonstrated in the majority of vesicles from the isolated EV pellets, confirming the presence 

of EVs. As suggested in the statement paper from the International Society for Extracellular 

Vesicles (ISEV) 164, we chose to apply several different methods, including NTA, SEM and 

TEM, for investigating the presence of EVs, their concentration and size. EV isolation by 

ultracentrifugation has been described to induce aggregation and alter the shape of the EVs 

203. However, in our study we did not observe EV aggregation or great variation in the 

morphology of the EVs, assessed by TEM and SEM. The main EV population was spherical, 

and the EV population investigated by electron microscopy was relatively pure, given that the 

presence of monolayer vesicles (lipoproteins) was a rare finding. However, knowing that the 

EV sample preparation for TEM and SEM require chemical fixation and dehydration, the 

observed size and morphology should be interpreted with that in mind. We therefore applied a 

second method for size determination of the isolated EV population. Interestingly, we found 

similar size distributions of plasma EVs measured by NTA and SEM. Both methods found the 

majority of EVs to be below 200 nm in diameter, and the presence of larger vesicles (>300 

nm) were rarely observed. The mean size of the EVs were slightly smaller using SEM 

compared to NTA, and the size distribution measured by SEM was shifted towards smaller 

EVs (<199 nm). NTA and electron microscopy have previously been found to provide similar 

size measurements, where the differences observed could be explained by differences in the 

lower detection threshold (minimum detectable size) 205,209.    

 

In our study we observed that the mean diameter of EVs was between 80-90 nm, which was 

similar to findings in other studies 205,209. In our study, the majority of the EVs isolated by 

ultracentrifugation were in the smaller size categories (<100 nm: 76.4% to 78.2%). Only a 

small fraction of EVs were larger than 300 nm (300–1000nm: 0.7% to 1.3%). The majority of 
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the observed EVs were below 300 nm. The discrepancies observed for EV concentrations 

measured by flow cytometry and NTA may partly be explained by the fact that the lower 

detection limit of conventional flow cytometers is approximately 300-500 nm.  

 

We observed that the plasma concentration and size distribution of EVs were similar in 

plasma isolated from blood with various anticoagulants (citrate, EDTA, heparin and CTAD). 

Neither the total plasma concentration, nor the concentrations of EV subgroups defined by 

size (<100 nm, 100–199 nm, 200–299 nm and 300–1000 nm) differed significantly between 

the anticoagulants. However, although not statistically significant, blood anticoagulated with 

sodium citrate showed the lowest plasma concentration of EVs across all size categories, 

whereas heparinized plasma yielded an almost 2-fold higher concentration of large EVs (300–

1000 nm) compared to the other anticoagulants. The impact of different anticoagulants on 

plasma concentration of EVs has previously been investigated by several studies 234-237. It was 

similarly found that heparin gave a higher concentration of EVs compared to citrate or CTAD 

234,235. We observed that EDTA displayed the highest plasma concentrations of EVs, 

supporting the notion that EDTA promotes the formation of ex vivo microvesicles possibly 

due to platelet activation 236. Citrate, a weaker calcium chelator than EDTA, displayed the 

lowest median concentrations of EVs across all size categories. Calcium chelators, such as 

citrate and EDTA, make the ex vivo calcium unavailable to the coagulation system and 

prevents leukocyte and platelet degranulation. Calcium plays an important role in the 

phospholipid re-modelling of the membrane during EV formation. Therefore, calcium 

chelating anticoagulants are believed to prevent vesiculation, to a certain extent 236. However, 

differences in EV concentration are observed with regard to the type of chelator used, 

suggesting that other mechanisms are involved. EDTA is known to additionally affect 

platelets by inducing a P-selectin dependent platelet activation process, dissociate the platelet 

integrin αIIbβ3 complex, and result in pseudo-thrombocytopenia and platelet aggregates on 

blood smears 234,236. The use of heparin for EV research was reported as not recommended 

due to its impact on platelet activation and aggregation. As heparin does not chelate free 

calcium it will not prevent EV generation by platelets after blood collection 236. Our findings 

of a lower EV concentration in samples with citrate may indicate that in vitro vesiculation 

potentially occurs to a larger extent with the other anticoagulants, and supports the 

recommended use of citrate as anticoagulant for studies on EVs. 
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The impact of freezing PPP compared to PFP on concentration and size distribution of 

plasma-derived EVs was also evaluated in our study. Lacroix and colleagues showed that the 

choice of centrifugation protocol for the preparation of plasma impacted the levels of EVs, 

measured by flow cytometry 234. The impact of residual platelets and platelet debris poses the 

risk of generating artifactual platelet-derived EVs. It has been shown that if platelets are 

insufficiently depleted before freezing, the EV count is affected after thawing 238. Double 

centrifugation prior to freezing has been shown to decrease the number of annexin V positive 

EVs, as well as platelet-derived EVs when measured by flow cytometry 238. In addition, 

freeze-thaw cycles are known to alter the number of platelet derived EVs 239,240. However, in 

our study, no statistical differences in total concentration and size distribution of EVs between 

plasmas prepared as PPP and PFP before freezing were observed for any of the anticoagulants 

used (citrate, EDTA, CTAD and heparin), measured by NTA.  

 

NTA as a method does not allow for the distinction between EVs and other particles within 

the same size range in plasma. Triglyceride-rich lipoproteins (chylomicrons, chylomicron 

remnants and very-low-density lipoproteins) are in molar excess, but of similar size to cell-

derived EVs 241-243, and therefore detectable by light scattering. Previous studies showed that 

the plasma concentration of EVs measured by NTA was strongly correlated to the plasma 

concentration of triglycerides 210, and that the concentration of EVs declined by more than 

98% when only vesicles labelled with a cell tracker dye were counted 205. It is important to 

avoid the interference of triglyceride-rich lipoproteins on NTA measurements of EVs. As 

previously described in the methods section, ultracentrifugation as a method cannot be used to 

absolutely discriminate between EV sizes, since sedimentation also will depend on the density 

and cargo of a vesicle, as well as the distance it needs to travel to be pelleted 200. It has 

therefore been recommended to dilute biological fluids with PBS in order to alter the viscosity 

of the sample fluid and thereby enhance the sedimentation of EVs 202. In our study we diluted 

PFP in Dulbecco’s phosphate buffered saline without CaCl2 and MgCl2 when we isolated EVs 

by ultracentrifugation. This was done in order to facilitate a better separation of the plasma 

constituents. In our study, the median concentrations of EVs isolated from plasma varied 

between 1.6–2.0×1010/mL with an interquartile range from 1.3 to 2.7×1010/mL, which is in 

line with the results based on specific labelling of EVs by a cell tracker dye 205.  
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We observed that the ingestion of a standardized high-fat meal was accompanied by a 

significant increase in serum triglycerides which peaked at 4 hours and returned to baseline 

levels within 8 hours after the meal. However, the postprandial lipidemia was not 

accompanied by significant changes in the concentration of EVs in plasma determined by 

NTA. Similarly, the plasma concentration of VLDL particles did not change from the fasting 

to the postprandial state, but the median diameter of VLDL particles increased from 42 ± 6 

nm in fasting plasma to 55 ± 9 nm in postprandial plasma samples. Serum triglycerides and 

the concentration of VLDL particles in plasma collected 4 hours after ingestion of the meal 

showed a strong correlation with the plasma concentration of EVs and explained 59–66% of 

the variation in plasma EVs. These findings suggest that the particle count, measured by 

NTA, was influenced by VLDL particles under postprandial conditions. Still, our findings 

provide several lines of evidence for at least partial separation of EVs from triglyceride-rich 

lipoproteins by high-speed centrifugation of plasma. First, the concentration of triglycerides in 

the plasma supernatant remained unchanged after high-speed centrifugation, suggesting that 

VLDL-particles in fasting blood samples were not pelleted and mainly remained floating. 

Second, even though serum triglycerides and the concentration of VLDL particles in plasma 

from fasting individuals displayed a moderate correlation with the plasma concentration of 

EVs, it only explained 13–19% of the variation in plasma EVs, suggesting that the particle 

count, measured by NTA, was not dominated by VLDL particles. Third, we developed a 

novel procedure to section the EVs, and could thereby clearly visualize the bilayer 

phospholipid membrane which distinguishes EVs from lipoproteins. Fourth, the results of our 

TEM analysis confirmed that the majority of isolated vesicles in our samples were in fact EVs 

(characterized by the bilayer phospholipid membrane) and not lipoproteins or protein 

complexes. 
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5.2.2. A modified clot-based assay to measure negatively charged procoagulant phospholipids 

In paper II, we thoroughly validated a modified and easy to use PPL assay for the 

measurement of procoagulant phospholipids in test specimens (plasma samples or isolated 

EVs) and compared its performance with the commercial STA-Procoag-PPL assay from 

Stago Diagnostica. Our primary modification included preparation of PPL-depleted plasma by 

ultracentrifugation to remove EVs, which are assumed to be the main source of negatively 

charged phospholipids in plasma. This modification allowed for the establishment of an 

accessible in-house assay with comparable performance to the commercial assay. The 

addition of a standardized phospholipid reagent (UPTT) allows for clotting times to be 

converted into a standardized unit of phospholipids. 

 

There are currently two main clotting assays commercially available, the STA-Procoag-PPL 

assay from Diagnostica Stago and the XACT assay from Haematex, as previously mentioned 

in the methods section. Both assays are well established in research as reliable tools for 

assessing PPL activity in human plasma, and they have been used as tools for measuring the 

PPL activity in disease states 191,244-246, for the determination of pre-analytical parameters 

affecting EVs 234, and quality control of cell storage 247. The clotting assay, as a method, is 

favorable to use since it offers the measurement of PPL activity directly in plasma, compared 

to the antibody mediated capture based chromogenic assays. Clotting assays offer the 

measurement of a complex reaction with a physiological end-point, and can be performed on 

a variety of routine coagulation analyzers. However, for large scale application of clotting 

assay, the commercial options become quite costly.  

 

The commercial assays are based on the ability of procoagulant phospholipids to accelerate 

the conversion of prothrombin to thrombin with subsequent fibrin formation. Experimentally, 

equal volumes of sample plasma are mixed with PPL depleted plasma, provided as a reagent 

by the assay. The reaction is triggered by the addition of FXa in excess, together with 

calcium, and clotting time is measured. In both of the commercial assays, the phospholipid 

depleted plasma provided as a reagent is chemically treated with phospholipase in order to 

remove PPL. However, assuming that the vast majority of procoagulant phospholipids in 

plasma are EV-bound, we examined whether ultracentrifugation of plasma might substitute 

phospholipase treatment for the production of the PPL depleted assay plasma. As a proof of 
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concept, we subjected plasma to sequential centrifugation steps, with increasing g power and 

time, which resulted in prolongation of the PPLCT. The notion of a procoagulant property of 

plasma, removable by centrifugation is in line with the observations of “thromboplastic 

substance” by Chargaff and West in 1946 162, and “platelet dust” by Wolf in 1967 163. The 

removal of EVs by ultracentrifugation, hence the reduced PPL activity, did not affect the 

ability of the depleted plasma to clot when subjected to standard coagulation test (activated 

partial thromboplastin time, aPTT and prothrombin time, PT). Moreover, the clotting time of 

the PPL-depleted plasma we generated by ultracentrifugation was comparable to the depleted 

plasma provided by the commercial assay, supporting its use in the modified assay. As plasma 

depleted of PPL is an essential reagent in the modified assay, the importance of not 

introducing assay variations is critical. We demonstrated that three independent batches of 

PPL-depleted plasma prepared from the same donors performed similarly, supporting the use 

of ultracentrifugation as a method for PPL depletion. 

 

The performance of our modified assay was compared to the Stago assay using both dilutions 

of a standardized phospholipid reagent (UPTT) and samples from ten individuals. Our study 

provides evidence for comparable performance of the modified assay with regard to 

sensitivity and measurement of levels of PPL in plasma samples. Our modified PPL assay 

displayed minor variation in the assay performance. CVs obtained using the standards from 

the Stago STA-Procoag-PPL or in-house pooled PFP range from 2.8 to 4.1%, well within 

recommended acceptable limits for within-day and between-day variability. Similar results 

were shown by van Dreden and colleagues in the XACT assay, with intra-assay CVs of 3.3% 

and 3.1% for normal pooled plasma and patient plasma, respectively, and inter-assay CVs of 

3.9% and 4.2%. We showed that the PPL activity measured in the modified assay was largely 

dependent on PS in the test sample by blocking with lactadherin. The abundance of PS on the 

EV surface is often used to characterize EVs by exploiting the ability of annexin A5 or 

lactadherin to bind PS on the outer leaflet of the membrane. Lactadherin has been 

demonstrated to be an effective anticoagulant blocking the activity of PS and inhibiting the 

procoagulant activity of blood cells, endothelial cells and EVs by 80% 248. In our experiment, 

PPLCT was prolonged with increasing concentrations of lactadherin to the extent that it was no 

longer measurable in the assay. Aung et al. similarly showed that pre-treatment of packed red 

blood cell supernatants with lactadherin prolonged clotting times, using the XACT assay 247.  
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The effect of pre-analytical parameters such as the plasma centrifugation protocol and the 

impact of postprandial lipemia on PPL activity was investigated in this study. It was 

previously reported by Lacroix and colleagues that the choice of centrifugation protocol for 

the preparation of PFP influenced the PPLCT after a freeze-thaw cycle. Similarly, we observed 

that a common protocol for PFP preparation (3000 × g for 10 minutes followed by 13,500 × g 

for 2 minutes) yielded a 24% shorter PPLCT than PFP prepared as recommended by ISTH 

(2,500 x g for 15 minutes twice). Hence, the plasma centrifugation protocol should be taken 

into consideration when comparing plasma PPLCT between studies. An additional pre-

analytical challenge for population-based studies is the availability of fasting blood samples 

as the PPL activity in plasma may be affected by plasma levels of triglyceride-rich 

lipoproteins. We therefore tested the PPL activity in plasma isolated before and four hours 

after a high fat meal on the modified PPL assay. We observed that the PPLCT was unchanged 

in fasting and postprandial plasma, while an increase in triglycerides was observed. This 

suggests that PPLCT is independent of postprandial lipemia and that there is no need to use 

fasting blood samples to obtain reliable PPL activity in plasma samples. Our findings are 

supported by Silveira et. al. who reported no effect of postprandial lipemia on the overall PPL 

measures, using the STA-Procoag PPL assay 249. It was also shown by Mørk and colleagues 

that even a non-standardized meal and a shorter time interval between the ingestion of the 

meal and blood draw (75 min) resulted in no change in PPL between fasting and postprandial 

samples measured by the Stago assay 250.  

 

The inter-individual variability of coagulation factors in the test samples may affect the 

degree of activation measured by the modified assay. We know that procoagulant 

phospholipids, with PS in particular, affect the activity of both the intrinsic and extrinsic 

tenase and prothrombinase complexes, as well as the activation of FXI by thrombin 251. We 

therefore tested a wide range of FVIIa and FVa concentrations, where high concentrations of 

coagulation factors proved to shorten the clotting time in the modified PPL assay. However, 

these effects occurred only at supra-physiological concentrations significantly higher than 

those observed in vivo. While TF is thought to be a major procoagulant factor found in EVs, 

only minute quantities of TF are normally present in human plasma. Therefore, we also 

investigated the effect of TF on the modified PPL assay. It was previously shown by Connor 

and coworkers that the XACT assay was insensitive to increasing concentrations (0–0.1%) of 

TF added to whole blood 184. Accordingly, we found that monocyte-derived EVs expressing 
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TF after LPS stimulation (pathophysiological conditions) did not affect the clotting time in 

our assay. However, we observed a dose-dependent decrease in the clotting times with 

increasing supra-physiological concentrations of relipidated TF. Taken together, our findings 

suggest that the modified PPL assay is not influenced by physiological concentrations of the 

clotting factors or TF+EVs in the test samples. 

 

An assay designed for large-scale applications should be reproducible over time, and it should 

be possible to compare the results between different laboratories. To solve the latter challenge 

we proposed the introduction of the UPTT reagent, which is an inexpensive standardized 

preparation of rabbit brain cephalin, allowing for clotting times to be converted into a 

standardized unit of phospholipids. The XACT assay solves this problem by the inclusion of a 

synthetic PPL calibrator 218, while the Stago assay leaves it up to the users to create a 

reference range and standards for the clotting time.  

 

There are two main considerations with the modified PPL assay. First, the results will be 

influenced by the presence of lupus anticoagulants as well as high concentrations of 

coagulation factors which may lead to falsely prolonged or shortened clotting times. This is 

common for all plasma-based assays, and should be accounted for when interpreting the 

results. Second, pre-analytical conditions and inter-individual variations might influence 

plasma concentrations of coagulation factors in PPL depleted plasma. However, our modified 

assay seems to be unaffected by variations within the pathophysiological range. 
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5.2.3 PPL clotting time and the risk of future incident VTE 

In paper III, we investigated the association between plasma PPLCT and the risk of future VTE 

in a nested case-control study derived from a population-based cohort study. We found that 

prolonged PPLCT displayed a modest protective effect on VTE risk both when PPLCT was 

used as a continuous and as a categorized variable in the logistic regression models. In 

addition, we show that subjects with extremely prolonged PPLCT (above the 95th percentile) 

had lowered risk of VTE (OR 0.35, CI 95% 0.13-0.81) compared to those with PPLCT in the 

lowest quartile. We observed similar results in subgroup analysis for PE and DVT. However, 

our results appeared to be influenced by regression dilution bias, as the ORs for VTE by 

plasma PPLCT decreased substantially with shortened time between blood collection and the 

VTE events.   

 

Our study is, to the best of our knowledge, the first to investigate the association between 

plasma PPLCT and the risk of future VTE in the general population. In a paper by Riva and 

coworkers, they report their findings from a hospital based cross-sectional study exploring 

PPLCT in relation to VTE. They measured the PPLCT of 100 patients referred to the 

Emergency Department under suspicion of VTE using the commercial STA Procoag PPL 

assay from Diagnostica Stago. They reported that PPLCT did not discriminate between 

patients with (n=31) and without VTE in their study 183. However, the lack of discriminatory 

diagnostic power by the PPL assay may have been diluted by other conditions associated with 

shortened PPLCT among the acute medical patients without VTE admitted to the hospital. 

Since our study population as well as study design differ, we believe that their findings does 

not exclude the potential association between plasma PPLCT and the risk of future VTE.  

 

Ayers and colleagues published a cross-sectional study investigating if EV count, assessed by 

flow cytometry, correlated with their functional capacity 185. They measured the plasma 

PPLCT in 53 healthy individuals and 47 patients with obstructive sleep apnea, using the STA 

Procoag PPL assay, as well as thrombin generation by the calibrated automated thrombogram 

(CAT). They found that plasma PPLCT showed strong inverse correlations to parameters of 

thrombin generation, such as ETP (Spearman r=-0.77) and peak thrombin concentration 

(Spearman r= -0.72), using the addition of minimal amounts of phospholipids and TF (1 pM) 

to trigger thrombin generation 185. Accordingly, we demonstrated a clear dose-response 
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relationship between plasma PPLCT and parameters of the CAT assay. The PPLCT correlated 

strongly with both lag time (r= 0.99, p= <0.0001) and ETP (r= -0.98, p= <0.0001). 

 

An association between plasma PPLCT and the risk of future VTE is supported by 

circumstantial evidence. First, the PPLCT is inversely associated with annexin V-positive EVs 

184,185 and high plasma levels of EVs are associated with VTE risk in most 11,19,181,252 but not 

all studies 182,186. Second, in a cross-sectional study including plasma samples from 100 

healthy individuals and patients with obstructive sleep apnea, plasma PPLCT showed strong 

and inverse correlations to parameters of thrombin generation, such as ETP and peak 

thrombin concentration, using the CAT assay 185. Accordingly, we demonstrated a clear dose-

response relationship between plasma PPLCT and parameters of the CAT assay. In addition, 

several studies have shown that parameters of the CAT assay, particularly lag-time and ETP, 

are associated with incident 187-189,253,254 and recurrent 190,255,256 VTE. Third, carriers of rare 

(e.g. deficiencies of antithrombin, protein C and S) 191 and common (e.g. factor V Leiden and 

the prothrombin mutation G20210A) 192,193 prothrombotic genotypes had significantly shorter 

plasma PPLCT than non-carriers, providing indirect evidence for lower risk of VTE with 

prolonged plasma PPLCT.    

 

The plasma levels of modifiable biomarkers such as PPLCT, are expected to change over time. 

Fluctuations in the exposure variable during follow-up will lead to the phenomenon called 

regression dilution bias 257, which usually results in an underestimation of the true association 

between exposure and outcome. We therefore chose to estimate the ORs for VTE among 

subjects with the highest (highest quartile) versus lowest (lowest quartile) plasma PPLCT as a 

function of time between blood sampling and the VTE events. We observed that the inverse 

association between high plasma PPLCT and VTE was stronger with shortened time between 

the blood sampling and the VTE events. In subgroup analysis the ORs for DVT and PE as a 

function of time between blood sampling and events showed similar patterns as the ORs for 

overall VTE. The explicit impact of regression dilution in our study may indicate that we 

report an underestimation of the true association between PPLCT and the risk of future VTE. 

Regression dilution has in a similar manner previously been reported to impact other 

modifiable biomarkers such as the terminal complement complex (TCC) 258 and mannose-

binding lectin 259, both markers of complement activation.  
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Strengths of our study include recruitment of VTE patients from a population-based cohort 

with age- and sex-matched controls from the same source population where blood samples 

were collected prior to the VTE event. This allows assumptions on the direction of the 

observed association between plasma PPLCT and VTE. Additionally, the modified FXa-

dependent PPL clotting assay is highly sensitive and displayed a low CV of ≤ 4%. A 

limitation of our study is that plasma samples used were collected in 1994/95 and stored at -

80°C until analysis more than 20 years later. The long storage time, as well as freezing and 

thawing, might possibly affect the plasma PPLCT. However, it is unlikely that it would impact 

our end results, as the potential effects would be similar for both cases and controls. 

Moreover, the PPL levels were only measured in baseline samples, while potential changes 

during follow-up were not accounted for. This might lead to an underestimation of the true 

association between plasma levels of PPLCT and VTE risk due to regression dilution bias 257. 

In our study, some plasma samples were excluded due to either missing samples or poor 

plasma quality.  
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5.2.4 PPL activity and rosuvastatin treatment after a VTE event  

In paper IV we investigated the effect of rosuvastatin treatment on plasma PPL activity, 

measured by a FXa-dependent PPL clotting assay in patients with a previous history of VTE. 

We observed that statin treatment caused a 22% reduction in PPL activity for all VTE patients 

and 37% reduction in PPL activity for PE patients compared to no treatment. The observed 

effect of rosuvastatin on PPL activity was not explained by changes in serum levels of total 

cholesterol or a parallel change in plasma levels of total- and platelet-derived microvesicles 

by statin treatment, measured by flow cytometry. The results from our study support the 

beneficial effect of statin treatment on coagulation factors and thrombin generation potential 

in plasma. As the presence of negatively charged phospholipids augment the activity of the 

extrinsic tenase complex TF-FVIIa by several orders of magnitude 144, the combined effect of 

reduced PPL activity and modest decline in several coagulation factors may reduce 

coagulation activation and contribute to the explanation of why rosuvastatin treatment lower 

the risk of VTE 260.  

 

Clinical studies have previously shown that statin treatment, with simvastatin 261, atorvastatin 

262,263, or cerivastatin 264 caused a beneficial effect on the coagulation system by a moderate 

lowering of specific coagulation factors and thrombin generation. In previous publications 

from the START trial, rosuvastatin treatment showed favorable effects on the hemostatic 

system by reducing plasma levels of coagulation factors FVII, FVIII, and FXI by 4-6% 196, D-

dimer by 3% 196 and lowering the ex vivo thrombin generation potential by 10% 198. 

Additionally, rosuvastatin treatment was found to increase the fibrinolytic potential assessed 

by shortening of the mean plasma clot lysis time and a decrease in both plasmin inhibitor 

levels and thrombin-activatable fibrinolysis inhibitor (TAFI) activity 197. The treatment effects 

of rosuvastatin on thrombin generation and plasma D-dimer levels were mainly driven by an 

increase among non-statin users 196,198. In contrast, we found a more profound beneficial 

effect of rosuvastatin treatment that was mainly driven by a significant decline in the PPL 

activity among rosuvastatin users accompanied by a minor increase in the PPL activity among 

the non-users. The increase in hemostatic factors among non-statin users in our and previous 

studies from the START trial may be interpreted as a consequence of the rebound 

hypercoagulability often seen after discontinuation of anticoagulant treatment 265,266.   
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Previous studies have demonstrated that plasma PPL activity is mainly due to the presence of 

EVs  184,185, and most 186,191-193,267 but not all 268 case-control studies have reported increased 

EV-related plasma PPL activity in VTE patients compared to controls. Therefore, our findings 

of a profound decrease in PPL activity by statin treatment may contribute to the explanation 

behind the reduction of incident and recurrent VTE by statin treatment 260,269-276. 

Microvesicles (MVs) are larger EVs (100-1000 nm in diameter), which bud directly from the 

plasma membrane of activated cells, and express surface markers of their cell of origin 179,277. 

The largest proportion of MVs in circulating blood is derived from platelets 278,279 and the 

subsequent procoagulant activity in plasma is mediated by platelet-derived MVs (PDMVs) 

267,278. A strong inverse correlation has also been reported between PPL clotting time and 

lactadherin positive EVs measured in PPP from healthy control subjects and patients with 

obstructive sleep apnoea (OSA), though the strength of the correlations was mainly driven by 

the OSA patients 185. We therefore hypothesized that the reduction we observed in plasma 

PPL activity following rosuvastatin treatment was caused by a parallel decline in plasma MV 

levels, and particularly platelet-derived MVs. In order to test our hypothesis, we isolated EVs 

from platelet free plasma and measured the total count (lactadherin-positive) and platelet-

derived MVs (lactadherin- and CD41-positive) by flow cytometry. Although we found that 

statin treatment lowered the PPL activity in the treatment group, we did not observe a 

reduction in total EV count, or platelet-derived EVs for comparisons between – or within 

study groups.  

 

In our study, rosuvastatin treatment did not affect plasma MV levels in patients with a 

previous history of VTE. Contradicting our findings, previous observational studies have 

shown that patients with arterial cardiovascular diseases or risk factors (hyperlipidemia in 

particular) had higher plasma MV levels than control individuals, and that statin treatment 

lowered plasma MV levels in most, but not all studies 280-285. Several factors may contribute to 

explain our findings. First, the effect of statin treatment on plasma MV levels may be limited 

to individuals with arterial cardiovascular diseases and risk factors, and not transferrable to 

VTE patients. Second, one might speculate that statin treatment could differentially influence 

EV formation from various intravascular cells and the subsequent process of externalization 

of PS to the outer leaflet of the cell membrane during EV formation 286. Accordingly, in a 

placebo-controlled randomized double-blinded crossover study, the treatment of 19 patients 

with peripheral arterial occlusive disease for 8 weeks with 80 mg atorvastatin daily showed a 
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reduction in plasma MV levels expressing CD62P- and CD61-positive MVs without affecting 

plasma levels of lactadherin-positive EVs 283. Third, a well-recognized limitation of flow 

cytometry as a method is the detection limit of the instrument. Even a sensitive flow 

cytometer will still only detect vesicles above approximately 200 nm in diameter, and thereby 

exclude the majority of EVs. Vesicles larger than 200 nm in diameter have been reported to 

only account for a minority of the EV population (< 5%) 287. This may imply that a possible 

decrease in plasma EVs after statin treatment could have been masked by the unchanged level 

of the EVs >200 nm in diameter.  

 

Some aspects of our randomized controlled trial need special considerations. Neither the 

patients nor the physicians were blinded to treatment. However, it is unlikely that knowledge 

of the treatment would affect the laboratory outcomes. Furthermore, the technicians 

conducting the laboratory analyses were blinded to sample treatment. In addition, despite 

randomization, the distribution of age and sex was uneven between the study arms. We 

decided a priori to adjust analysis for age and sex as potential confounders, and adjustments 

did not influence the observed treatment effect. Even though results from subgroup analysis 

revealed the most pronounced decrease in plasma PPL activity in individuals with a history of 

PE, they should be interpreted with caution as the study was not originally powered to analyze 

differences in subgroups 196. Lastly, as participants were recruited from an outpatient setting, 

it limits the risk of confounding diseases at randomization, and for analyses, participants were 

compared with themselves. 
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6. Conclusions 

 

I. Isolation of EVs from plasma by high-speed centrifugation yielded similar 

concentrations and size distributions of EVs for the four anticoagulants tested (citrate, 

EDTA, CTAD and heparin). We found no statistical difference in concentration or 

size of EVs (measured by NTA) when plasma was prepared as PPP or PFP before 

freezing. Plasma VLDL particles interfered with EV measurements assessed by NTA, 

particularly under postprandial conditions due to an increase in the median particle 

diameter of VLDLs exceeding the lower detection limit of NTA.  

 

II. The use of sequential centrifugation, including final ultracentrifugation, to deplete 

plasma of procoagulant phospholipids performed equal to enzymatic depletion of 

phospholipids from plasma in a FXa-based clotting assay to determine PPL clotting 

times. In addition, we introduced a standardized PPL reagent (UPTT) which allows for 

clotting times to be converted into a standardized unit of phospholipids. These 

modifications allowed us to establish a sensitive and reproducible in-house assay. 

 

III. Results from our nested case-control study indicate an inverse association between 

plasma PPLCT (measured by a modified FXa-dependent PPL clotting assay) and the 

risk of future VTE. Subjects with PPLCT above the 95th percentile had particularly low 

risk of future VTE and the results were strongly influenced by regression dilution bias. 

 

IV. Rosuvastatin treatment caused a substantial decrease in plasma PPL activity, 

suggesting that PPL-dependent attenuation of coagulation activation may contribute to 

a reduced risk of VTE recurrence by statin treatment. 
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Impact of preanalytical conditions 
on plasma concentration and size 
distribution of extracellular vesicles 
using Nanoparticle Tracking 
Analysis
Simin Jamaly1, Cathrine Ramberg1,2, Randi Olsen3, Nadezhda Latysheva1, Paul Webster4, 
Timofey Sovershaev1,2, Sigrid K. Brækkan1,2 & John-Bjarne Hansen1,2

Optimal pre-analytical handling is essential for valid measurements of plasma concentration and 
size distribution of extracellular vesicles (EVs). We investigated the impact of plasma preparation, 
various anticoagulants (Citrate, EDTA, CTAD, Heparin), and fasting status on concentration and size 
distribution of EVs measured by Nanoparticle Tracking Analysis (NTA). Blood was drawn from 10 
healthy volunteers to investigate the impact of plasma preparation and anticoagulants, and from 
40 individuals from a population-based study to investigate the impact of postprandial lipidemia. 
Plasma concentration of EVs was measured by NTA after isolation by high-speed centrifugation, and 
size distribution of EVs was determined using NTA and scanning electron microscopy (SEM). Plasma 
concentrations and size distributions of EVs were essentially similar for the various anticoagulants. 
Transmission electron microscopy (TEM) confirmed the presence of EVs. TEM and SEM-analyses showed 
that the EVs retained spherical morphology after high-speed centrifugation. Plasma EVs were not 
changed in postprandial lipidemia, but the mean sizes of VLDL particles were increased and interfered 
with EV measurements (explained 66% of the variation in EVs-concentration in the postprandial phase). 
Optimization of procedures for separating VLDL particles and EVs is therefore needed before NTA-
assessment of EVs can be used as biomarkers of disease.

Extracellular vesicles (EVs), including exosomes (30–100 nm in diameter) and microvesicles (100–1000 nm in 
diameter), are bilayer membrane vesicles released from various cells into their surroundings1. The EVs are char-
acterized by their size, mechanism of cellular release, and their content of proteins, RNA, and DNA molecules 
derived from the parental cell2. The functional properties of EVs are dependent on the cellular origin and patho-
logical conditions3,4. Elevated plasma levels of EVs, and microvesicles in particular, have been associated with 
several disease states such as atherosclerosis5,6, diabetes7, cancer8,9, arterial cardiovascular diseases10–12 and venous 
thromboembolism13,14. Although the majority of EVs in plasma have diameters below 200 nm15,16, most studies 
relating plasma levels of EVs with diseases have been carried out using flow cytometry for EV measurements 
with lower detection limits above 200 nm. Therefore, it would be attractive to use Nanoparticle Tracking Analysis 
(NTA) to determine plasma concentration of EVs in the size range of 50–1000 nm15,17 in order to assess associa-
tions between the predominantly smaller EVs and disease states.

Measurement of plasma EVs by NTA could possibly provide novel information on the role of EVs as poten-
tial biomarkers of risk, diagnosis, and prognosis of various diseases. However, the clinical application is cur-
rently hampered by methodological concerns related to NTA assessment of EVs. In human plasma, more than 
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98% of the particles detected by NTA are very low density lipoprotein (VLDL) particles15,18, and the measured 
particle concentrations are associated with the triglyceride concentration both under fasting and postprandial 
conditions19. Isolation of EVs from plasma is therefore an essential pre-analytical step before NTA measurement. 
However, isolation of EVs by differential centrifugation may affect EV morphology, promote aggregation of EVs, 
and to some extent pellet lipoproteins20–22. In clinical and epidemiological studies, plasma is most often prepared 
by single centrifugation at 1500–3000 × g for 10–20 min, yielding platelet poor plasma (PPP), before storage in 
biobanks. High-speed centrifugation to achieve platelet free plasma (PFP) from PPP prior to freezing has been 
shown to lower the concentration of platelet-derived EVs compared to plasma subjected only to lower speed 
centrifugation (PPP) before freezing23. However, it is not known whether high-speed centrifugation after thaw-
ing of PPP would affect concentration and size distribution of plasma derived EVs compared to PFP prepared by 
double centrifugation (including one low and one high-speed centrifugation step) before freezing. Furthermore, 
previous studies comparing the impact of various anticoagulants on plasma concentrations of EVs, assessed by 
flow cytometry, have shown higher levels of EVs in heparin than in sodium citrate, acid-citrate dextrose (ACD) 
or sodium citrate theophylline adenosine dipyridamole (CTAD)24,25.

Pre-analytical conditions such as centrifugation steps, choice of anticoagulant, and fasting status may impact 
the plasma concentration and size distribution of EVs determined by NTA. We therefore aimed to investigate the 
impact of plasma preparation, assessed by freezing plasma before (PPP) or after (PFP) a second high-speed cen-
trifugation, various anticoagulants in commercial blood collection tubes (Citrate, EDTA, CTAD, and Heparin), 
and fasting status on plasma concentration and size distribution of EVs using NTA and SEM.

Material and Methods
Study participants.  Ten healthy volunteers (5 men and 5 women, aged 28–55 years) were recruited from 
the research staff, and they donated blood used to investigate the method of blood collection, centrifugation 
steps for plasma preparation and EV isolation, and choice of anticoagulant on the concentration and size dis-
tribution of plasma EVs. The study was approved by the regional ethical committee (REK Nord), and was con-
ducted in accordance with relevant guidelines and regulations. Informed written consent was obtained from all 
participants.

Forty healthy subjects, 20 to 80 years of age, were recruited from a general population-based study (the 
Tromsø study) in order to investigate whether fasting and postprandial lipoproteins would affect the concentra-
tion and size distribution of plasma EVs. They underwent a screening visit including a complete medical history, 
physical examination, a self-administrated questionnaire which also included dietary habits, physical exercise, 
and alcohol consumption, and blood samples were taken with special emphasis on exclusion criteria. Exclusion 
criteria were any of the following conditions: regular use of lipid-lowering drugs (statins, resins or nicotinic 
acid derivates), estrogen supplementation or oral anticoagulants, cancer or other serious life-threatening medical 
conditions, present or previous cardiovascular diseases, recurrent venous thrombosis, diabetes mellitus, hypothy-
roidism, renal, hepatic, or psychiatric disease, and current abuse of alcohol or drugs. Informed written consent 
was obtained from all participants, and the Regional Committee for Research Ethics approved the study. The 
study was performed at the Clinical Research Unit at the University Hospital of North-Norway.

Blood collection.  Blood was drawn from an antecubital vein using a 21 Gauge needle in the morning 
(08:30 am). Tourniquet was only used to find a vein and was opened after needle insertion. Blood was drawn 
into regular commercially available blood collection tubes (BD Vacutainers) (BD Bioscience, New Jersey, US) 
with the following anticoagulants; Sodium citrate (2.7 ml, REF363048), Sodium heparin (6.0 ml, REF367876), 
Ethylenediaminetetraacetic acid (K2E-EDTA) (6.0 ml, REF367864) and buffered Sodium Citrate Theophylline 
Adenosine Dipyridamole (CTAD) (4.5 ml, REF367599). The first few millilitres of blood were drawn into a 
dummy tube that was discarded afterwards. The blood collection tubes were gently inverted several times in 
order to mix anticoagulants with blood. The blood collection tubes were not transported, as blood collection 
and plasma preparation was performed in the same laboratory. The blood collection tubes were held in upright 
racks until centrifuged at room temperature. Blood cell counts were performed at baseline using Micros60 (ABX 
Diagnostics, Montpellier, France).

Plasma and EV Preparation.  Platelet poor plasma (PPP) was prepared from anticoagulated whole blood 
by centrifugation at 3000 × g for 10 minutes at room temperature within 30 minutes after blood collection. PPP 
was then either subjected to a second high-speed centrifugation at 13,500 × g for 2 minutes to achieve platelet free 
plasma (PFP) or aliquoted and stored at −70 °C for at least 48 hours. After thawing, PPP was then centrifuged 
at 13,500 × g for 2 minutes to get rid of platelets and cell debris. PFP was then diluted with Hanks/Hepes buffer 
(130 mM NaCl, 5.4 mM KCl, 1.3 mM CaCl2, 0.8 mM MgSO4, 0.44 mM Na2HPO4, 20 mM HEPES, pH 7.4) (1:10 
dilution) (to be used for electron microscopy) or sterile filtered Dulbecco’s phosphate buffered saline (DPBS) 
without CaCl2 and MgCl2 (Sigma-Aldrich, St. Luis, MO, USA) (1:20 dilution) (to be used for EV concentration 
and size distribution)26. EVs were pelleted from PFP by centrifugation at 20,000 g for 30 minutes at room tem-
perature (Beckman OptimaTM LE-80K Ultracentrifuge, swinging bucket rotor SW 40 TI). The supernatant was 
discarded and the EV pellet re-suspended in DPBS, snap frozen27 and stored at −70 °C until further analysis. 
For electron microscopy the EV pellet was re-suspended in double filtered Hanks/Hepes buffer and fixed in 4% 
formaldehyde until further analysis.

Nanoparticle Tracking Analysis (NTA).  EV concentration and size distribution were determined using 
NanoSight NS300 (Malvern Instruments Ltd., Worcestershire, UK) equipped with a 488 nm blue laser and a 
CMOS camera. EV samples were thawed in 37 °C water immediately prior to analysis and diluted (50–100×) in 
DPBS. Samples were manually introduced to the instrument using a syringe. Samples were captured at ambient 
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temperature with automatic temperature monitoring. Three separate dilutions of the samples were used for anal-
ysis. Each dilution was captured 3 times 60 seconds (camera level 16), and the sample was refreshed between cap-
tures. The gasket was cleaned between each sample. The nine resulting videos were analysed with NTA software 
version 3.0 (detection threshold 5). Mean values for concentration and size distribution were calculated.

Transmission Electron Microscopy (TEM).  TEM was performed on isolated EVs. The EV pellets were 
re-suspended in 50 µl of Hanks/Hepes buffer and fixed in 4% formaldehyde in 200 ml Hepes overnight.

TEM of Ultrathin sections.  To improve localization of EVs for TEM, the EVs were adsorbed onto an epoxy 
resin substrate containing colloidal gold particles. The substrate was prepared by adsorbing 15 nm gold particles 
(Department cell biology, University of Utrecht, the Netherlands) on formvar/carbon coated copper specimen 
grids and then embedded the gold-coated grids in a thin layer of epoxy resin between two layers of Aclar film and 
polymerized at 60 °C for 48 hours. The EV suspension was placed on the gold-loaded, epoxy-embedded specimen 
grids and in 1% glutaraldehyde, postfixated in 1% OsO4 and stained with 1% aqueous uranyl acetate. The EVs 
on the epoxy-embedded grids were dehydrated in a graded series of ethanol, infiltrated in an Epon Equivalent 
(AGAR 100, DDSA, MNA and DMP-30, Agar Scientific, UK) and polymerized at 60 °C for 48 hrs. Ultrathin 
sections of the embedded EVs were prepared using Ultracut S ultramicrotome (Lieca Microsystems, Vienna, 
Austria) and a Diatome diamond knife (Diatome, Biel, Switzerland). Images using a JEOL JEM 1010 transmis-
sion electron microscope (Tokyo, Japan) were acquired with a Morada camera system (Olympus Soft Imageing 
System, Münster, Germany).

Immune electron microscopy.  EV’s were fixed with 1% buffered glutaraldehyde and adsorbed onto 
carbon-formvar coated specimen grids before immunolabelling. In short, unspecific labelling was blocked on 
0.1% cold water fish skin gelatin (CWFSG) (Sigma G-7765) and 1.5% bovine serum albumin. Samples were 
incubated with anti-annexin V (Anx5) antibody (abcam, Cat# ab14196), diluted in Anx5 binding buffer (BD 
Pharmingen, Cat#556454) and protein A-gold (University of Utrecht, The Netherlands). All immunoreagents 
were diluted in CWFSG and the grids washed in PBS between each step. The grids were finally fixed in 1% glutar-
aldehyde, washed in distilled water and dried in 1.8% Methylcellulose containing 0.3% uranyl acetate.

Scanning Electron Microscopy (SEM).  To obtain an overview of the morphology and measure particle 
size of EV samples, isolated EVs were prepared for SEM analysis. To study the surface size, shape, and features 
of EVs, they were negatively stained on formvar/carbon coated copper grids. Grids floated on sample drops for 
30 minutes were treated with 1% glutaraldehyde, washed in PBS and ddH2O and contrasted/dried with the addi-
tion of 1.8% methyl cellulose and 0.3% uranyl acetate according to Tokuyasu28,29. EV size measurements were 
performed in the iTEM program (Olympus Soft Imaging Solutions, Münster, Germany) by measuring shortest 
diameter of at least 200 EV on SEM pictures. The start and end of every diameter was set manually and the 
diameter was calculated by the program. Grid were mounted on specimen holder and coated with gold/palla-
dium before examination in the SEM. The images were obtained using a Zeizz Merlin VP compact scanning 
microscope.

Fat tolerance test.  A fat-tolerance test was conducted using a test meal prepared from standard porridge 
cream containing 70% of calories from fat of which 66% saturated fat, 32% monounsaturated fat and 2% polyun-
saturated fat. The test meals were served with two teaspoons of sugar, cinnamon, and two glasses (150 ml each) 
of sugar-free juice. The test meals were freshly prepared each morning. A weight-adjusted meal (1 gram fat per 
kg body weight) was served at 8:00 a.m. and consumed over a 15-minutes period. The participants were allowed 
to drink 350 ml calorie-free beverages and eat an apple during the following 8 hrs. Blood was drawn from an 
antecubital vein in the morning at 7:45 a.m., after a 12 hour overnight fast and a 48 hour refrain of exhaustive 
physical exercise and alcohol consumption, and then 2, 4, 6, and 8 hours after the meal, using a 19-gauge needle 
in a vacutainer system with minimal stasis for serum and plasma preparations. Blood for plasma preparation was 
collected into 4.5 ml vacutainers (Becton Dickinson, Meylan Cedex, France) containing 0.129 M sodium citrate 
(1 vol anticoagulant and 9 vol whole blood) or EDTA (K3 – EDTA 40 µl, 0.37 mol/L per tube) as anticoagulant. 
Serum was prepared by clotting whole blood in a glass tube at room temperature for 1 hour. Serum and plasma 
was prepared by centrifugation at 2000 g for 15 minutes at 22 °C, transferred into cryovials (Greiner laboratech-
nik, Nürtringen, Germany) in aliquots of 1 ml and stored at −70 °C until further analysis.

Serum lipids were analyzed on an ABX Pentra 400 (Horiba ABX Diagnostics, Montpellier, France) with rea-
gents from Horiba ABX Diagnostics (Montpellier, France). Proton nuclear magnetic resonance (NMR) spec-
troscopy was used to determine mean particle sizes of the main lipoprotein classes (very-low-density lipoprotein 
(VLDL), low-density-lipoprotein (LDL), and high-density lipoprotein (HDL)) along with concentrations of 10 
lipoprotein subclasses (chylomicron/large VLDL, medium VLDL, small VLDL, intermediate-density lipoprotein 
(IDL), large LDL, small LDL also reported as medium small LDL and very small LDL, large HDL, medium HDL, 
and small HDL) in fasting and 4-hours postprandial citrated plasma at LipoScience Inc., Railegh, NC, USA. 
Plasma concentrations of EVs in fasting and 4-hours postprandial citrated plasmas were determined using NTA 
as previously described.

Statistics.  Median values and interquartile ranges for continuous data (EV concentrations) were presented 
as data was not normally distributed. To test for differences in EV concentrations between anticoagulants, we 
used Friedman’s test for non-parametric and dependent continuous data. Bar graphs were used to display (i) 
EV concentrations according to size categories of EVs (<100 nm, 100–199 nm, 200–299 nm, 300–1000 nm), 
and (ii) mean sizes of EVs measured by NTA and SEM in the different anticoagulants. The correlation between 
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triglycerides and EV concentrations, as well as VLDL and EV concentrations, was calculated using Pearson corre-
lation coefficient. All analyses were performed using IBM SPSS Statistics version 22 (Armonk, NY, USA).

Results
The baseline characteristics of the ten healthy volunteers (aged 28–55 years) recruited from the research staff and 
the forty subjects (aged 28–76 years) recruited from the general population health study are shown in Table 1.

The impact of freezing PPP compared to PFP on concentration and size distribution of plasma-derived EVs 
is shown in Fig. 1, panel A–D. There were no statistical differences in total concentration and size distribution of 
EVs between plasmas prepared as PPP and PFP before freezing in any of the anticoagulants used (Fig. 1).

The impact of the four different anticoagulants on concentration and size distribution of plasma EVs are 
displayed in Table 2. Neither the total plasma concentration, nor concentrations of EVs within defined size 
categories (<100 nm, 100–199 nm, 200–299 nm and 300–1000 nm) differed significantly between the antico-
agulants. However, although not statistically significant, blood anticoagulated with sodium citrate showed the 
lowest plasma concentration of EVs across all size categories, whereas heparinized plasma yielded an almost 
2-fold higher concentration of large EVs (300–1000 nm) compared to the other anticoagulants (Table 2). The 
majority of EVs were in the smaller size categories (<100 nm: 76.4% to 78.2%, 100–199 nm: 18.0% to 20.2%, 
200–299 nm: 2.7% to 3.5%, 300–1000 nm: 0.7% to 1.3%) and the size distribution did not differ between antico-
agulants (Table 2).

The mean size of the EVs was marginally lower (Fig. 2, upper panel) and the size distribution was shifted 
towards smaller EVs (<199 nm) when EVs were sized by SEM compared to NTA (Fig. 2, lower panel). Similar to 
NTA, the majority of EVs determined by SEM were below 200 nm in diameter and large vesicles were rarely seen.

TEM was applied to confirm the presence of EVs after isolation by high-speed centrifugation from plasma 
samples. TEM of negatively stained (Fig. 3A) and ultrathin sections (Fig. 3B) revealed that the majority of isolated 
vesicles were EVs, characterized by the bilayer phospholipid membrane. Even though concern has been raised 
about EV aggregation and morphological changes as a result of high-speed centrifugation, we could not identify 
EV aggregates, nor large variations in the EV morphologies, as the main proportion of vesicles identified were 
spherical (Fig. 3C) and presented uneven non-smooth surfaces (Fig. 3D). Lipoprotein vesicles, characterized by 
the lack of a bilayer surface membrane, were rarely seen.

In order to determine if the concentration of triglycerides would change, and lipoproteins would sediment 
with EVs after a high speed centrifugation (20,000 × g for 30 minutes), we measured the levels of plasma lipopro-
teins before and after centrifugation, in both diluted and undiluted plasma. We found that the plasma concen-
tration of triglycerides was equal before and after high-speed centrifugation for both undiluted and diluted (1:5 
in DPBS) plasma (Fig. 4, panel A). Despite the minimal sedimentation of VLDL particles by high-speed centrif-
ugation due to unchanged plasma concentration of triglycerides, we found moderate correlations between EVs 
and plasma concentrations of triglycerides (Fig. 4, panel B) and VLDL particles (Fig. 4, panel C) under fasting 
conditions. Concentrations of serum triglycerides and VLDL particles explained (r2) 13% and 19%, respectively, 
of the plasma variation of EVs.

Ingestion of a standardized high-fat meal (1 g/kg body weight) was accompanied by a significant increase 
in serum triglycerides, which peaked at 4 hours, and returned to baseline levels within 8 hours after the meal 
(Fig. 5A). The postprandial lipidemia was not accompanied by significant changes in the concentration of EVs 
in plasma determined by NTA (Fig. 5A). Similarly, the plasma concentration of VLDL particles did not change 
from the fasting to the postprandial state (Fig. 5B), but the median diameter of VLDL particles increased from 
42 ± 6 nm in fasting plasma to 55 ± 9 nm in postprandial plasma (p < 0.0001) (Fig. 5C). However, serum triglyc-
erides and the concentration of VLDL particles in plasma collected 4 hours after ingestion of the meal showed a 
strong correlation with the plasma concentration of EVs and explained 59–66% of the variation in plasma EVs 
(r2 = 0.59 and 0.66, respectively) (Fig. 5D and E).

Volunteers 
(n = 10)

Cohort  
(n = 40)

Women, n (%) 5 (50) 20 (50)

Age (years) 41 ± 9 56 ± 14

Body mass index (kg/m2) 28.0 ± 4.0

Haemoglobin (g/dL) 13.9 ± 1.2 14.4 ± 1.3

Leukocytes (109/L) 5.1 ± 0.9 6.3 ± 1.7

Platelet count (109/L) 229 ± 47 249 ± 62

Total cholesterol (mmol/L) 5.69 ± 1.35

HDL cholesterol (mmol/L) 1.32 ± 0.45

Triglycerides (mmol/L) 1.33 ± 0.82

Table 1.  Characteristics of the volunteers recruited from the research staff (n = 10) and the participants of the 
cohort study (n = 40). Values are means ± standard deviations or numbers with percentage in brackets.
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Figure 1.  Panels of bar graphs showing concentrations across size categories of plasma EVs frozen before 
(platelet poor plasma, PPP) and after (platelet free plasma, PFP) high-speed centrifugation in order to get rid 
of cell debris and platelets. After thawing, plasmas frozen as PPP were subjected to high-speed centrifugation 
before isolation of plasma EVs. The panels represent blood anticoagulated with citrate (panel A), CTAD (panel 
B), EDTA (panel C), and heparin (panel D). EV concentrations were measured by nanoparticle tracking 
analysis (NTA).Values are means with standard error of the means (SEM) (n = 10 in each group). EDTA: 
Ethylenediaminetetraacetic acid, CTAD: sodium citrate theophylline adenosine dipyridamole.

EV size category Citrate EDTA CTAD Heparin p

<100 nm 1133 (1066–2034) 1514 (1074–2039) 1420 (928–1926) 1314 (928–2207) 0.1

100–199 nm 262 (200–450) 402 (270–443) 319 (265–474) 313 (287–372) 0.2

200–299 nm 41 (19–71) 53 (38–65) 63 (40–105) 54 (35–76) 0.7

300–1000 nm 13 (2–20) 14 (6–19) 13 (5–36) 22 (9–52) 0.5

Total Concentration 1588 (1331–2403) 2017 (1510–2528) 1980 (1320–2514) 1658 (1342–2700) 0.2

Table 2.  Plasma concentration (107 per mL) of extracellular vesicles (EVs) according to type of anticoagulant 
and size categories of EV.Values are expressed as median values with interquartile ranges (n = 10). Values 
are expressed as medians and interquartile ranges, nm: nanometer, EV: Extracellular vesicle, EDTA: 
Ethylenediaminetetraacetic acid, CTAD: sodium citrate theophylline adenosine dipyridamole.
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Discussion
We aimed to investigate the impact of various preanalytical conditions such as centrifugation steps for plasma 
preparation and EV isolation, choice of anticoagulant, and fasting status on plasma concentration and size dis-
tribution of EVs determined by NTA. The size distribution of plasma EVs was similar when determined by NTA 
and SEM, and the majority of EVs were round-shaped. The plasma concentration and size distribution of EVs 
were essentially similar in plasmas isolated from blood with various anticoagulants, even though the plasma 
concentration of large EVs was almost 2-fold higher in heparinized plasma compared to the other anticoagulants. 
A bilayer membrane of EVs was demonstrated in the majority of particles in the EV pellet by two separate TEM 
methods. The plasma concentration and size distribution of EVs, isolated from plasma by high-speed centrifuga-
tion and determined by NTA, were similar in blood collected before and 4 hours after ingestion of a high-fat meal. 
Even though triglyceride levels remained unchanged after high-speed centrifugation, serum concentrations of 
triglycerides and plasma concentrations of VLDL particles correlated with the concentration of EVs, particularly 
in the postprandial state.

Isolation of EVs from plasma by high-speed centrifugation may elicit shape change, aggregates and/or damage 
of EVs. In our study, the mean diameter of EVs isolated from plasma by high-speed centrifugation was 80–90 nm. 
Our results were very similar to those reported by Dragovic et al. who measured vesicles directly in plasma after 
labelling with a specific cell tracker dye17. We used two independent methods (NTA and SEM) to determine the 
size distribution of the EV fraction, and the results were similar for the two methods. NTA assessment of the size 
distribution revealed that only 3.5–5% of the EVs had a diameter above 200 nm, and that only 0.7–1.3% of the 
EVs had a diameter above 300 nm. The low proportion of EVs with a diameter above 2–300 nm, which is the lower 
detection limit of conventional flow cytometers, may explain the huge differences in observed plasma concentra-
tions of EVs measured by flow cytometry and NTA.

Previous studies comparing the impact of various anticoagulants on plasma concentrations of EVs assessed by 
flow cytometry, have shown higher levels of EVs in heparin than in sodium citrate, ACD or CTAD as anticoagu-
lants24,25. In line with these studies, we found that the plasma level of large EVs (>300 nm), which is detectable by 
flow cytometry, was 2-fold higher in plasma anticoagulated by heparin compared to plasma containing the other 
anticoagulants. In our study, blood anticoagulated with EDTA, a stronger chelator than citrate, displayed highest 

Figure 2.  Bar graphs displaying mean sizes of plasma EVs measured by nanoparticle tracking analysis (NTA) 
and scanning electron microscopy (SEM) (upper panel) and size distribution (lower panel) across categories of 
various blood anticoagulants (upper panel). Values are means with standard error of the means (upper panel) 
or proportions (lower panel). EDTA: Ethylenediaminetetraacetic acid, CTAD: sodium citrate theophylline 
adenosine dipyridamole.
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plasma concentrations of EVs, supporting the notion that EDTA promotes formation of artefactual microvesicles 
due to platelet activation30. Citrated plasma displayed the lowest median concentrations of EVs across all size 
categories. Citrate plays a role in membrane phospholipid remodelling and may thereby partially inhibit vesicu-
lation30. Our findings of a lower EV concentration in samples with citrate indicates that in vitro vesiculation may 
occur to a larger extent with the other anticoagulants, and support the recommended use of citrate as anticoag-
ulant for studies on EVs.

Previous studies using Nanoparticle Tracking Analysis of PFP have reported a particle concentration of 
approximately 1.5 × 1012/mL in plasma17. However, NTA does not allow for distinction between EVs and other 
particles within the same size range in plasma. Triglyceride-rich lipoproteins (chylomicrons and very-low-density 
lipoproteins) are in molar excess, but of similar size to cell-derived EVs18,31,32, and can be detected in light scatter. 
Previous studies showed that the apparent plasma concentration of EVs measured by NTA was highly correlated 
to the plasma concentration of triglycerides19, and that the concentration of EVs declined by more than 98% when 
only vesicles labelled with a cell tracker dye were counted17. To avoid interference of triglyceride-rich lipoproteins 
on the NTA measurements of EVs, we isolated EVs from plasma by high-speed centrifugation and re-suspended 
the pellet in a particle-free buffer. In our study, the median concentrations of EVs isolated from plasma varied 
between 1.6–2.0 × 1010/mL with an interquartile range from 1.3 to 2.7 × 1010/mL, which is in line with the results 
based on specific labelling of EVs by a cell tracker dye17.

Our findings provide several lines of evidence for at least partial separation of EVs from triglyceride-rich 
lipoproteins by high-speed centrifugation of plasma. First, the concentration of triglycerides in the plasma super-
natant remained unchanged after high-speed centrifugation, suggesting that VLDL-particles in fasting blood 
samples were not pelleted and mainly remained floating. Second, even though serum triglycerides and the con-
centration of VLDL particles in plasma from fasting individuals displayed a moderate correlation with the plasma 

Figure 3.  Visualization of Extracellular Vesicles (EVs) by scanning electron microscopy (SEM) and 
transmission electron microscopy (TEM). (Panel A) EVs with phospholipid bilayer membrane after ultra-thin 
sectioning of the Epon blocks. (Panel B) Representative transmission electron micrograph of purified, negatively 
stained annexin positive and negative bilayer membrane extracellular vesicles. (Panel C) Representative 
transmission electron micrograph of plasma purified, negatively stained EVs. (Panel D) Representative 
micrograph of an EV by SEM, isolated from EDTA peripheral blood of a healthy donor at the working distance 
of 2.6 mm and an accelerating voltage of 2.00 kV (Original magnification 61.12 KX). EVs were spherical and 
presented uneven non-smooth surfaces.
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concentration of EVs, it only explained 13–19% of the variation in plasma EVs, suggesting that the particle count, 
measured by NTA, was not dominated by VLDL particles. Third, we developed a novel procedure to section 
the EVs, and could thereby clearly visualize the bilayer phospholipid membrane which distinguishes EVs from 
lipoproteins. Fourth, the results of our TEM analysis confirmed that the majority of isolated vesicles in our sam-
ples were in fact EVs (characterized by the bilayer phospholipid membrane) and not lipoproteins or protein 
complexes.

Figure 4.  Bar graphs showing concentration of triglycerides before and after high-speed centrifugation  
(20,000 × g for 30 minutes) in undiluted (PFP) and diluted (dPFP, diluted 1:5 in DPBS) samples (panel A, bar 
graphs are means with 1 standard deviation), and dot-plots showing correlations between plasma concentration 
of EVs and serum triglycerides (panel B) and plasma VLDL particles (panel C) under fasting conditions. 
Proton nuclear magnetic resonance (NMR) spectroscopy was used to determine mean particle sizes of the main 
lipoprotein classes, and EV concentration was measured by NTA.
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Ingestion of a standardized high-fat meal was accompanied by significant increase in serum triglycerides 
which peaked at 4 hours and returned to baseline levels 8 hours after the meal without affecting the plasma levels 
of EVs determined by NTA. However, serum triglycerides and the concentration of VLDL particles in plasma 
collected 4 hours after ingestion of the meal showed a strong correlation with the plasma concentration of EVs 
and explained 59–66% of the variation in plasma EVs. These findings suggest that the particle count, measured 
by NTA, was highly influenced by VLDL particles under postprandial conditions. The reason(s) for the apparent 
differential impact of VLDL particles on the vesicle count measured by NTA under fasting and postprandial con-
ditions is not known. Even though the plasma concentration of VLDL particles did not increase in postprandial 
plasma, the mean particle size increased significantly from 42 ± 6 nm in fasting plasma to 55 ± 9 nm in postpran-
dial plasma. With a detection limit of a particle diameter of around 50 nm for EVs by NTA17, even a marginal 
sedimentation of VLDL particles during high-speed centrifugation may affect the particle counts, particularly 
under postprandial conditions. Thus, our measurements of EVs isolated from plasma by high-speed centrifu-
gation, should be interpreted with caution due to a potential partial interference by VLDL particles, particularly 

Figure 5.  Bar graphs showing concentrations of serum triglycerides and plasma EVs before (fasting) and every 
second hour after ingestion of a standardized high fat meal (panel A, bar graphs are means with 1 standard 
deviation, ***p < 0.0001 from fasting levels). Dot plots showing median and 25 to 75% percentiles of plasma 
concentration of VLDL particles (panel B) and mean sizes of VLDL particles (panel C); and dot plots showing 
correlations between plasma concentration of EVs (measured by NTA) and serum triglycerides (panel D) and 
plasma VLDL particles (panel E) 4 hours after ingestion of a standardized high fat meal.
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under postprandial conditions. Recently, Mørk et al. aimed to prevent VLDL interference during NTA measure-
ments of EVs by antibody-mediated removal of ApoB-exposing lipoproteins from plasma using magnetic beads33. 
However, antibody-mediated depletion of ApoB-containing lipoproteins (including VLDLs) was accompanied 
by removal of EVs most probably due to the formation of LDL-EV complexes22, and by a shift in particle size due 
to the formation of aggregates of antibodies and lipoproteins33. Future studies should optimize centrifugation 
procedures, antibody-mediated removal or combined procedures in order to separate EVs and VLDL particles, 
so that NTA can accurately and reliably be applied to measure plasma concentrations of EVs.

In conclusion, isolation of EVs from plasma by high-speed centrifugation yielded similar concentrations and 
size distributions of EVs for the four anticoagulants tested (citrate, EDTA, CTAD and heparin). We found no 
statistical difference in concentration nor size of EVs (measured by NTA) when plasma was prepared as PPP or 
PFP before freezing. Plasma VLDL particles interfered with EV measurements assessed by NTA, particularly 
under postprandial conditions due to an increase in the median particle diameter of VLDLs exceeding the lower 
detection limit of NTA. Future studies are warranted to optimize the separation of VLDL particles and EVs in 
plasma in order to promote the utility of EVs determined by NTA as potential biomarkers of risk, diagnosis and 
prognosis of diseases.
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A modified clot‑based assay 
to measure negatively charged 
procoagulant phospholipids
Cathrine Ramberg1*, S. Jamaly1, N. Latysheva1, L. Wilsgård1, T. Sovershaev1, O. Snir1 & 
J.‑B. Hansen1,2

Growing evidence supports a role for extracellular vesicles (EVs) in haemostasis and thrombosis due 
to exposure of negatively charged procoagulant phospholipids (PPL). Current commercial PPL-
dependent clotting assays use chemically phospholipid depleted plasma to measure PPL activity. 
The purpose of our study was to modify the PPL assay by substituting the chemically phospholipid 
depleted plasma with PPL depleted plasma obtained by ultracentrifugation This in order to get 
readily access to a sensitive and reliable assay to measure PPL activity in human plasma and cell 
supernatants. The performance of the assay was tested, including the influence of individual 
coagulation factors and postprandial lipoproteins and compared to a commercial PPL assay (STA-
Procoag-PPL). The two PPL assays displayed similar sensitivity to exogenously added standardized 
phospholipids. The PPL activity measured by the modified assay strongly correlates with the results 
from the commercial assay. The intraday- and between-days coefficients of variation ranged from 
2–4% depending on the PPL activity in the sample. The modified PPL assay was insensitive to 
postprandial lipoprotein levels in plasma, as well as to tissue factor (TF) positive EVs from stimulated 
whole blood. Our findings showed that the modified assay performed equal to the comparator, and 
was insensitive to postprandial lipoproteins and TF+ EVs.

Procoagulant phospholipid (PPL) activity has regained interest in recent years, mainly due to the increased 
understanding of the role of extracellular vesicles (EVs) in thrombosis and haemostasis1,2. As early as 1946, 
Chargaff and West observed that the clotting time of plasma was prolonged by applying high-speed centrifugation 
to remove “thromboplastic substances”3. Accordingly, Connor and colleagues demonstrated that the amount of 
annexin A5 positive EVs, measured by flow cytometry, showed a significant and inverse correlation with clot-
ting time4. These findings suggest that EVs play a significant role in coagulation, apparently due to exposure of 
phospholipids, and phosphatidylserine (PS) in particular, on their surface. The increase in surface expression of 
negatively charged PPL will facilitate the assembly of coagulation factors upon cell activation or apoptosis5. This 
is crucial for several stages of the coagulation pathway, namely the formation of the intrinsic and extrinsic tenase 
complexes, as well as the conversion of prothrombin to thrombin by coagulation factor Xa (FXa)6. The activity of 
the extrinsic tenase complex, the tissue factor (TF)—factor VIIa (FVIIa) complex, is increased by several orders 
of magnitude in the presence of negatively charged membrane phospholipids7.

Several assays have been developed to measure the PPL activity in human plasma. While some are based on 
the ability of annexin A5 to bind PS in the presence of Ca2+4,8, others are clot-based, utilizing the ability of PPL to 
accelerate the conversion of prothrombin to thrombin. Annexin A5-based assays are widely used, often in a flow 
cytometry setting, a method that is time consuming, requires expensive equipment and experienced personnel. 
In addition, annexin A5 is commonly used in chromogenic FXa assays, where the activity measured is based on 
the EVs exposing PS that are bound to the microplate. These EVs are then able to accelerate the cleavage of the 
chromogenic substrate by FXa9.

Compared to FXa chromogenic assays, which measure procoagulant activity of EVs in a purified system, 
clotting assays involve a more complex reaction and a physiological end-point as they measure the PPL activity of 
plasma, and not only captured PS-positive EVs9. To the best of our knowledge, there are currently two clot-based 
assays commercially available, the STA-Procoag-PPL assay from Diagnostica Stago (Asnières sur Seine Cedex, 
France) and the XACT assay from Haematex (Hornsby, NSW, Australia). Both assays use chemical phospholipase 
treatment to deplete phospholipids from plasma, but differ with regard to the phospholipase used, plasma origin, 
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and the use of a phospholipid calibrator. The XACT assay uses a snake phospholipase10 and porcine plasma, while 
an unspecified phospholipase and human plasma is used for the Stago assay.

In this study, we aimed to develop a modified PPL-dependent clotting assay, capable of measuring the PPL 
activity in human plasma and cell supernatants of in vitro experiments, by removing PPL from plasma by 
sequential centrifugation, including final ultracentrifugation. The performance of the modified assay was then 
validated against the commercially available Stago STA-Procoag-PPL assay.

Results
Impact of stepwise EV depletion on PPL clotting times.  The removal of PPL from plasma is fun-
damental for the clot-based assays. As EVs are the main source of PPL, we first tested whether sequential cen-
trifugation reliably depleted EVs from plasma. To achieve this, we compared the PPL clotting times (PPLCT) of 
plasma samples (n = 6) subjected to sequential centrifugation procedures (Fig. 1). Plasma prepared by centrifu-
gation at 2500×g for 15 min caused clotting times of 51.8 ± 4.7 s (mean ± 1 SD). A second centrifugation step 
of 2500×g for 15 min resulted in a prolongation of the clotting times to 92.5 ± 6.3 s (mean ± 1 SD). Pelleting 
larger EVs (e.g. microvesicles) from platelet free plasma (PFP) by an additional spin of 20,000×g for 30 min at 
room temperature (RT) further prolonged the clotting times to 127.8 ± 16.9 s (mean ± 1 SD). The final spin at 
100,000×g for 60 min to remove the smallest and lightest EVs (e.g. exosomes) further prolonged the clotting 
times to 159.3 ± 7.1 s (mean ± 1 SD).

Procoagulant phospholipid depleted plasma (PPL depleted plasma) prepared from pooled PFP (2500×g for 
15 min twice) by ultracentrifugation (100,000×g for 60 min) resulted in a mean clotting time of 163.2 ± 7.5 s 
(mean ± 1 SD) (Supplementary Figure S1).

PPL depletion by ultracentrifugation does not affect standard coagulation assays.  To test 
whether the preparation of PPL depleted plasma affected standard coagulation assays, we measured activated 
partial thromboplastin time (aPTT) and prothrombin time (PT). The aPTT was 30.2 (normal range 25–37 s) and 
PT 21.3 s, corresponding to a PT-INR of 1.00 (normal range < 1.1).

Comparison of the modified PPL assay and the STA‑Procoag‑PPL assay.  In order to demon-
strate that PPL depleted plasma prepared by ultracentrifugation was comparable to enzymatic depletion of PPL, 
we tested the sensitivity of the STA-Procoag-PPL assay and the modified PPL assay using serial dilutions of a 
standardized phospholipid reagent (UPTT reagent). The addition of UPTT shortened the clotting times in a 
concentration dependent manner (Fig. 2). The two assays performed similarly throughout the tested concentra-
tion range. Dilution curves of bovine FXa (bFXa) tested in PPL depleted plasma and pooled PFP supported the 
use of 0.1 U/ml bFXa for the modified PPL assay (Supplementary Figure S2). Despite a ten-fold lower concentra-
tion of bFXa used in the STA-Procoag-PPL assay, it consistently displayed shortened clotting times compared 
to the modified assay.

To compare the performance of the modified PPL and STA-Procoag-PPL assays, plasma samples from ten 
healthy blood donors were tested on both assays (Fig. 3). A strong correlation (r = 0.76, p < 0.01) was found 

Figure 1.   The effect of sequential centrifugation on plasma PPL clotting times. Citrated blood collected from 
6 healthy volunteers was subjected to consecutive centrifugations: 2500×g for 15 min to obtain platelet poor 
plasma (PPP), 2500×g for 15 min to obtain platelet free plasma (PFP), 20,000×g for 30 min and 100,000×g 
for 1 h to deplete for EVs. A sample of plasma after each centrifugation was analyzed with the modified PPL 
assay. The PPL activity is presented in seconds (s) of clotting time. Dot plot with mean ± 1 SD (n = 6 for each 
condition).
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between the assays, confirming their comparable performance. PPLCT measured by the modified assay were 
consistently longer than for the STA-Procoag-PPL assay.

Assay reproducibility.  To assess the coefficients of variation (CV) of the modified PPL assay, we used the 
two plasma standards provided by the STA-Procoag-PPL assay, one resulting in PPLCT of 16 s. and the other 
PPLCT of 54 s, as well as a pooled PFP sample with PPLCT of 85 s. The day-to-day CV for the Stago standards 
(n = 30) was 3.9% and 3.2%, respectively, whereas the within-a-day CV (n = 20) was 3.7% and 2.8%, respectively. 
Pooled PFP had a day-to-day CV of 4.1% and a within-a-day CV of 3.3%.

The reproducibility of three independent preparations of PPL depleted plasma from the same six donors was 
tested, and demonstrated highly comparable PPLCT measurements without the addition of UPTT and with the 
addition of two different concentrations of UPTT (PPL depleted plasma without UPTT: 163.2 ± 7.5 s, 1:3200 U/
ml of UPTT: 102.3 ± 5.7 s, 1:100 U/ml of UPTT: 30.6 ± 0.9 s) (Supplementary Figure S1).

Impact of  different PFP preparation protocols on  PPLCT.  We wanted to investigate to what extent 
two different centrifugation protocols (Protocol A: 2500×g for 15 min twice; protocol B: 3000×g for 10 min fol-
lowed by 13,500×g for 2 min) affected PPLCT (Fig. 4). Plasmas obtained by protocol A from 10 healthy individu-
als displayed prolonged PPLCT compared to plasmas obtained by protocol B (101.2 ± 10.9 s versus 76.5 ± 9.1 s, 
p < 0.0001).

Postprandial lipemia does not affect PPLCT in the modified PPL assay.  To test the sensitivity of 
the modified PPL assay to postprandial lipemia, we compared the PPLCT of PFP prepared from blood collected 
before (0 h) and 4 h after a standardized high fat meal (1 g fat/kg body weight) (Fig. 5). This caused a prompt 

Figure 2.   Comparison of the clotting times obtained by the STA-Procoag-PPL and the modified PPL assays 
using a standardized phospholipid reagent (UPTT reagent). Serial dilutions of UPTT (from 1/50 to 1/12,800), 
was added to PPL depleted plasma and tested on the modified PPL assay (closed circles) and the STA- Procoag-
PPL assay (empty circles). Values are means of three experiments ± 1 SD.

Figure 3.   Comparison of PPL clotting times (PPLCT) measured by the modified PPL assay (closed circles) and 
the STA-Procoag-PPL kit (empty circles). Platelet free plasmas from 10 healthy individuals were tested on both 
assays and the PPLCT is presented in seconds (s). Values are mean of duplicate measurements.
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increase in total serum triglycerides that peaked after 4 h and almost reached baseline concentrations 8 h after 
the meal11. However, postprandial lipemia was not accompanied by a significant change in the PPLCT of fasting 
and postprandial plasma samples (51.1 ± 12.4 s and 48.9 ± 9.3 s, respectively). This indicates that the modified 
PPL assay was insensitive to postprandial lipemia measured in PPP samples subjected to a second high speed 
centrifugations after thawing, that generate mean CT values around 50 s.

The impact of FVIIa, FVa and surface PS on the modified PPL assay.  Since the presence of coagu-
lation factors in human PPL depleted plasma may provide a source of preanalytical variation of the modified 

Figure 4.   The effect of platelet free plasma (PFP) preparation on clotting time. PFP from 10 volunteers were 
prepared using two different centrifugation protocols, (A) 2500×g for 15 min twice or (B) 3000×g for 10 min 
followed by 13,500×g. Clotting times were measured using the modified PPL assay. Panel (A) is a box plot of 
all ten volunteers combined for the two protocols, while panel (B) displays the individual values as mean of 
duplicate measures ± 1 SD.

Figure 5.   The effect of postprandial lipemia on plasma PPL activity. Serum triglycerides increased significantly 
after the ingestion of the standardized high fat meal without affecting the PPL activity. Dot plots are means ± 1 
SD, n = 40 for each group.
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PPL assay, we tested the assay with the addition of various concentrations of coagulation factors V/Va and VIIa 
(Fig. 6). The addition of FVa resulted in a dose dependent shortening of PPLCT (Fig. 6A). The addition of increas-
ing levels of FVIIa had minor influence on PPLCT, although the initial addition of 5 nM FVIIa slightly shortened 
the PPLCT (Fig. 6B).

To further prove that coagulation in the modified assay is mainly driven by PPL, we used lactadherin to neu-
tralize the negatively charged phospholipids. Pretreatment with lactadherin reduced the PPLCT dose-dependently 
of EVs derived both from A23187-stimulated PRP and EVs from unstimulated PRP (Fig. 6C). Pretreatment of 

Figure 6.   The effect of coagulation factors on the performance of the modified PPL assay. Exogenous 
coagulation factors were added to the reaction buffer in concentrations from 0.02 to 3.0 nM for FVa (panel A) 
and from 5 to 80 nM for FVIIa (panel B). Panel (C) shows the effect of lactadherin pretreatment on the PPL 
activity of PRP-derived EVs generated by stimulation of PRP by calcium ionophore A23187 for 15 min. Values 
are means ± 1 SD (n = 4).
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both PPL depleted plasma and PFP with 107 nM lactadherin drastically reduced their PPLCT with clotting times 
exceeding the maximum clotting time of the coagulometer.

Blood‑borne TF has no effect on PPLCT in the modified PPL assay.  Addition of recombinant relipi-
dated TF to PPL depleted plasma resulted in a dose-dependent shortening of clotting time (Fig. 7A). Since the 
artificial nature of TF and supra-pathological levels of TF may have caused the observed effect, we decided to test 
a more physiological source of TF. Whole blood was stimulated with a combination of LPS and PMA12 to induce 
the release of TF+ EVs from monocytes. Then, isolated EVs were run on the PPL assay with or without inhibitory 
TF antibody (clone HTF-1). As seen in Fig. 7B, stimulation of whole blood resulted in significant shortening of 
the clotting time. However, addition of anti-TF antibody (26 µg/ml final concentration) did not alter clotting 
times, suggesting that TF did not affect coagulation times in the modified PPL assay.

Discussion
The procoagulant potential of plasma phospholipids is modified under pathological conditions. Currently, two 
commercial assays, namely XACT and STA-Procoag PPL are widely used to monitor PPL activity plasma. We 
thoroughly validated a modified and easy to use PPL assay for the measurement of procoagulant phospholipids 
in test specimens (plasma samples or isolated EVs) and compared its performance with the STA-Procoag-PPL 
assay. Our primary modification included preparation of PPL-depleted plasma by ultracentrifugation to remove 

Figure 7.   The effect of TF on the modified PPL assay. Exogenous relipidated TF was added to the modified PPL 
assay in concentrations from 0.01 to 5.5 pM (panel A). Panel (B) illustrates the effects of EVs from LPS-PMA 
stimulated blood and inhibitory TF antibody on clotting times in the PPL assay. Values are means ± 1 SD (panel 
A,B) from three experiments.
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EVs, assumed to be the main source of negatively charged phospholipids in plasma. This modification allowed for 
the establishment of an accessible and in-house assay with a comparable performance to that of the commercial 
assay. The addition of a standardized phospholipid reagent (UPTT) allows for clotting times to be converted 
into a standardized unit of phospholipids.

The commercially available PPL assays are well established in research and provide a reliable tool for assessing 
PPL activity in human plasma. Such assays are dependent on chemically phospholipid depleted plasma provided 
by the assay as a reagent. Their performance has been assessed under different pre-analytical and experimental 
settings such as quality control of cell storage13, plasma EVs14,15, and monitoring of plasma EV levels in various 
disease states16–19. Assuming that the vast majority of procoagulant phospholipids in plasma are EV-bound, we 
examined whether sequential centrifugation, including final ultracentrifugation, might substitute phospholipase 
treatment for production of a suitable assay plasma. Indeed, subjecting plasma to sequential centrifugation 
resulted in prolonged clotting times (i.e. reduced PPL activity), thus supporting that the major part of PPL activity 
in plasma is mediated by EVs, as originally suggested by Chargaff and West3.

Since ultracentrifugation may leave residual amounts of PPL in the assay plasma, it was crucial to compare 
the properties of our PPL depleted plasma with the phospholipase-depleted plasma. Therefore, the performance 
of the modified PPL assay and the STA-Procoag-PPL assay were compared using a standardized UPTT reagent. 
The results revealed a high degree of coherence between assays. Further, measurement of endogenous plasma 
PPL in PFP obtained from 10 volunteers demonstrated strong correlations between assays assessed by PPLCT. 
These findings support that the modified assay provide comparable performance to the STA-Procoag PPL assay 
with regard to sensitivity and measurement of levels of PPL in plasma.

It is important to note the effects of pre-analytical parameters on the performance of the modified PPL assay. 
Recently, Lacroix and colleagues used the STA-Procoag PPL assay to investigate the effect of different centrifuga-
tion protocols for PFP preparation on plasma PPLCT

14. They found that PFP prepared according to the Interna-
tional Society of Thrombosis and Haemostasis (ISTH) recommended protocol (2500×g for 15 min twice) yielded 
similar PPLCT to another common centrifugation protocol (1500×g for 15 min followed by 13,500×g for 2 min) 
in fresh PFP. However, PFP obtained by the second, less intensive centrifugation protocol, displayed a substantial 
shortening of the PPLCT after a freeze–thaw cycle (− 154%). A minor effect on PPL activity (− 5%) was observed 
when analyzing frozen-thawed PFP using the ISTH recommended centrifugation protocol14. Accordingly, we 
found that a routine protocol for PFP preparation (3000×g for 10 min followed by 13,500×g for 2 min) yielded 
a 24% shorter PPLCT than PFP prepared as recommended by ISTH. Hence, the plasma centrifugation protocol 
should be taken into consideration when comparing plasma PPLCT between studies. As plasma depleted of PPL 
is an essential reagent in the modified assay, the importance of not introducing assay variations is critical. We 
demonstrated that three independent batches of PPL depleted plasma prepared from the same donors performed 
similarly, supporting the use of ultracentrifugation as a method for PPL depletion.

An additional pre-analytical challenge for population based studies is the availability of fasting blood samples 
as the PPL activity in plasma may be affected by plasma levels of triglyceride-rich lipoproteins. We therefore 
tested the PPL activity in plasma isolated before (0 h) and 4 h (4 h) after a high fat meal on the modified PPL assay. 
PPLCT was unchanged in fasting and postprandial plasma, suggesting that PPLCT is independent of postprandial 
lipemia and that there is no need to use fasting blood samples to obtain reliable PPL activity in plasma samples. 
Similar studies on the effect of lipemia should be repeated using more stringent pre-analytical conditions of 
plasma collection to see whether lipemia has a slight albeit detectable effect on the procoagulant properties of 
EVs. However, our findings are supported by Silveira et. al. who reported no effect of postprandial lipemia on the 
overall PPL measures, using the STA-Procoag PPL assay20. Using the same assay, Mørk and colleagues showed 
that even a non-standardized meal and a shorter time interval between the ingestion of the meal and blood draw 
(75 min) resulted in no change in PPL between fasting and postprandial samples21.

Procoagulant phospholipids, and PS in particular, affect the activity of both the intrinsic and extrinsic tenase 
and prothrombinase complexes, as well as the activation of FXI by thrombin6. The inter-individual variability 
may affect the degree of activation of several coagulation factors in the test samples. We therefore tested a wide 
range of FVIIa and FVa concentrations, where high concentrations of coagulation factors proved to shorten the 
clotting time in the modified PPL assay. However, these effects occurred only at supra-physiological concentra-
tions significantly higher than those observed in vivo. Another aspect is the presence of TF. While only minute 
quantities are normally present in human plasma, TF is thought to be a major procoagulant factor found in 
EVs22. Previously, Connor and coworkers showed that increasing concentrations (0–0.1%) of TF added to whole 
blood were insensitive to the XACT assay4. Accordingly, we found that monocyte-derived EVs expressing TF 
after LPS stimulation (pathophysiological conditions) didn’t affect the clotting time in our assay. However, we 
observed a dose-dependent decrease in the clotting times with increasing supra-physiological concentrations of 
relipidated TF. Taken together, our findings suggest that the modified PPL assay is not influenced by physiological 
concentrations of the clotting factors in the test samples.

Over the last decade the interest in assays measuring the negatively charged phospholipid fraction of plasma 
has increased along with the growing interest and knowledge about EVs. Elevated levels of EVs, most frequently 
measured by flow cytometry, were found in venous thromboembolism23–25, arterial cardiovascular diseases25,26, 
cancer27,28, atherosclerosis29,30 and diabetes31. In vascular disorders, the procoagulant properties of EVs are of par-
ticular interest. It has been shown that PS is the main phospholipid contributing to the procoagulant function32.

The abundance of PS on the EV surface is often used to characterize EVs, by exploiting the ability of annexin 
A5 or lactadherin to bind PS on the outer leaflet of the membrane. Lactadherin is a small glycoprotein that binds 
PS in a calcium-independent manner and with higher affinity than annexin A533. It has been demonstrated that 
lactadherin is an effective anticoagulant blocking the activity of PS, and inhibits the procoagulant activity of 
blood cells, endothelial cells and extracellular vesicles by 80%34. Here we showed that PPLCT was prolonged with 
increasing concentrations of lactadherin to the extent that it was no longer measurable in the assay, implying that 
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the measured PPL activity is largely dependent on PS in the test samples. Similarly, using the XACT assay Aung 
et al. showed that pre-treatment of packed red blood cell supernatants by lactadherin prolonged clotting times13.

Any assay designed for large-scale applications should be reproducible over time, and it should be possible 
to compare the results between different laboratories. To solve the latter challenge we propose the introduction 
of the UPTT reagent—an inexpensive standardized preparation of rabbit brain cephalin, which allows for clot-
ting times to be converted into a standardized unit of phospholipids. The XACT assay solves this problem by 
inclusion of a synthetic PPL calibrator, while the Stago assay leaves it up to the users to create a reference range 
and standards for the clotting time35. Further, our modified PPL assay displayed minor variation in the assay 
performance. CVs obtained with either the standards from the Stago STA-Procoag-PPL or in-house pooled PFP 
range from 2.8 to 4.1%, well within recommended acceptable limits for within-day and between-day variability. 
Similar results were shown by van Dreden and colleagues in the XACT assay, with intra-assay CVs of 3.3% and 
3.1% for normal pooled plasma and patient plasma, respectively, and inter-assay CVs of 3.9% and 4.2%10.

There are two main considerations with the modified PPL assay. First, the results will be influenced by the 
presence of lupus anticoagulants as well as high concentrations of coagulation factors which may lead to falsely 
prolonged or shortened clotting times. This is common for all plasma-based assays, and should be accounted for 
when interpreting the results. The creators of the XACT assay tried to overcome this issue by using plasma of 
porcine origin. However, while it significantly decreased the assay sensitivity to some of the lupus anticoagulants, 
it failed to completely eliminate the problem35. Second, pre-analytical conditions and inter-individual variations 
might impact plasma concentrations of coagulation factors in PPL depleted plasma. However, our modified assay 
seems to be unaffected by variations within the pathophysiological range.

In conclusion, the use of sequential centrifugation, including final ultracentrifugation, to deplete plasma of 
procoagulant phospholipids performed equal to enzymatic depletion of phospholipids from plasma in a FXa-
based clotting assay to determine PPL clotting times. In addition, we introduced a standardized PPL reagent 
(UPTT) which allows for clotting times to be converted into a standardized unit of phospholipids. These modi-
fications allowed us to establish an accessible and convenient in-house assay.

Materials and methods
Study subjects and sample preparations.  For the calibration of the modified PPL assay, blood was 
drawn from healthy volunteers (n = 25) aged 25–79  years old, by venipuncture of an antecubital vein using 
a 21-gauge needle and minimal stasis. Blood was collected into 3  mL tubes containing 3.2% sodium citrate 
(0.109 M, 1:9 v/v) (Vacuette®, Greiner Bio-One, Kremsmünster, Austria), 3 mL K2EDTA Vacuette® tubes (Greiner 
Bio-One, Kremsmünster, Austria) for cell count or Fragmin (Sigma-Aldrich, St. Louis, Missouri, USA) for the 
Ca-ionophore experiments (preparation of EVs from PRP). The first 3 mL of blood were discarded. Blood was 
mixed with anticoagulant by gentle inversions of the tube. The samples were kept at room temperature (20–
24 °C) and processed within 15 min of collection. Blood was centrifuged twice at 2500×g for 15 min to obtain 
platelet free plasma (PFP). Both individual PFP samples and pooled PFP (n = 11) were prepared. PFP samples 
were aliquoted and stored at − 80 °C until use.

Procoagulant phospholipid depleted plasma (PPL depleted plasma) was prepared by sequentially centrifuging 
citrated blood (n = 18) using the following protocol: 2500×g for 15 min twice followed by 100,000×g for 60 min 
at 16 °C (Beckman Optima LE-80 K Ultracentrifuge, rotor SW40TI, Beckman Coulter, Indianapolis, Indiana, 
USA). Supernatants were pooled, aliquoted and stored at − 80 °C until further use.

Activated partial thromboplastin time (aPTT) and prothrombin time (PT-INR) were determined for the 
pooled PPL depleted plasma used in the modified assay. Both aPTT and PT-INR were measured on ACL TOP 
750 CTS (Instrumentation Laboratory, Bedford, MA, USA), using the kits SynthASil (Instrumentation Labora-
tory, Bedford, MA, USA), and STA-SPA + (Diagnostica Stago, Asnières sur Seine Cedex, France), respectively.

The reproducibility of three independent preparations of PPL depleted plasma from the same six donors were 
tested. Citrated PFP from six volunteers were centrifuged at 100,000×g for 60 min at 16 °C, pooled, aliquoted and 
frozen at − 80 °C. PPLCT was measured using the modified PPL assay. Clotting tests were perform in PPL depleted 
plasma alone, or with UPTT added to mimic normal CT (1:3200 U/ml UPTT) and short CT (1:100 U/ml UPTT).

In order to investigate the impact of postprandial lipemia, forty study participants donated blood for plasma 
and serum analysis in a previously described study11. Briefly, blood was drawn from an antecubital vein using 
a 19-gauge needle in a Vacutainer system with minimal stasis in the morning after 12 h fasting and then 2, 4, 6, 
and 8 h after a standardized high fat meal (1 g fat/kg body weight). Blood for plasma preparation was collected 
into 4.5-mL Vacutainers (Becton Dickinson, Meylan Cedex, France) containing 0.129 M sodium citrate (1:9 
v/v). Serum was prepared by letting blood clot for 1 h in a glass tube at room temperature. Plasma and serum 
were centrifuged at 2000×g for 15 min at 22 °C, transferred into cryovials (Greiner Labortechnik, Nürtringen, 
Germany) and stored at − 80 °C until further analysis. Blood samples collected before (fasting) and 4 h after the 
meal were selected for the present study. For analysis, samples were thawed, centrifuged 13,500×g for 2 min 
and measured on the modified PPL assay. Informed written consent was obtained from all participants, and 
the regional committee for medical and health research ethics (REC North) approved the study. The study was 
conducted in accordance with relevant guidelines and regulations.

Assay reagents.  The UPTT reagent was purchased from BioData Corporation (Horsham, Pennsylvania, 
USA). Bovine FXa (bFXa), FVIIa, bovine FV/Va (bFV/Va) were purchased from Enzyme Research Labora-
tory (South Bend, Indiana, USA). Human recombinant tissue factor was purchased from Sekisui Diagnostics, 
LLC (Stamford, Connecticut, USA) and lactadherin from Haematologic Technologies Inc. (Essex Junction, Ver-
mont, USA). The STA-Procoag-PPL assay was purchased from Diagnostica Stago Inc. (Asnières sur Seine Cedex, 
France). All other chemicals were from Sigma-Aldrich (St. Louis, Missouri, USA).



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9341  | https://doi.org/10.1038/s41598-021-88835-y

www.nature.com/scientificreports/

Test procedure for the modified PPL assay.  Clotting tests were carried out in duplicate by using a 
Start Max instrument from Diagnostica Stago (Asnières sur Seine Cedex, France). Twenty five µl of test plasma 
or EV suspension was mixed with 25 µl of PPL depleted plasma in a Start-cuvette containing a steel ball, and 
pre-warmed for 2 min to 37 °C. The reaction was initiated by the addition of 100 µl of pre-warmed assay buffer 
with a cabled pipette that automatically starts the timer upon pipetting, and clotting time was measured. The 
assay buffer contains bFXa (0.1 U/ml) in 15 mM calcium chloride, 100 mM sodium chloride and 20 mM HEPES 
buffer (pH 7.0). The STA-Procoag-PPL assay (Asnières sur Seine Cedex, France) was performed according to 
the manufacturer’s protocol.

Assay calibration.  Citrated blood samples from six individuals were subjected to sequential centrifuga-
tion in order to remove an increasing amount of EVs. The centrifugation protocol was as following; 2500×g for 
15 min, 2500×g for 15 min twice, 20,000×g for 30 min and 100,000×g for 60 min. Clotting time was measured 
after each centrifugation step.

Concentration of bFXa for the modified assay was determined by serially diluting bFXa from 0.01 to 2 U/ml. 
Clotting time was measured using the modified PPL assay. Pooled PFP added to PPL depleted plasma or PPL 
depleted plasma alone were used as test plasma.

Standardized UPTT reagent containing 0.1% of rabbit brain cephalin in a buffered solution was used as a 
calibrator. The UPTT reagent was reconstituted in milliQ water according to the manufacturer’s protocol, and 
set as 1 U/ml. To obtain a standard curve, serial dilutions of the UPTT reagent (1/50 to 1/12,800) in the assay 
buffer were added to phospholipid-depleted plasma. UPTT dilution curves were measured for both the modified 
PPL assay and STA-Procoag-PPL assay.

The effect of PFP preparation was tested using two different centrifugation protocols. Citrated blood samples 
from ten volunteers were split in two, one fractions was centrifuged 2500×g for 15 min twice (75,000g minutes) 
and the second fraction 3000×g for 10 min, followed by 13,500×g for 2 min (57,000g minutes). Clotting time 
was measured using the modified PPL assay.

The effect of coagulation factor V, VII, and blocking surface PS on PPL activity.  The effect of 
varying levels of coagulation factors Va and VIIa were tested on the modified PPL assay. The coagulation factors 
were added to the reaction buffer in concentrations from 0.02 to 3.0 nM for FVa, and from 5 to 80 nM for FVIIa, 
and tested in pooled PFP.

The effect of lactadherin pretreatment of PRP-derived EVs on PPL activity was tested on the modified PPL 
assay. Plasma EVs were isolated from pooled citrated PFP, diluted with PBS (without Ca2+ and Mg2+) 1:3 v/v and 
centrifuged at 20,000×g for 30 min at 22 °C. The supernatant was discarded and the EV-pellet was resuspended 
in PPL depleted plasma. PRP-derived EVs were prepared by incubation of PRP (anticoagulated with Fragmin) 
with 10 µM of calcium ionophore A23187 for 15 min at 37 °C, followed by the isolation procedure described 
above. The concentrated EV suspension was serially diluted with PPL depleted plasma and assayed within 1 h.

The effect of TF and TF + EVs on PPL activity.  Recombinant relipidated TF was added in the reaction 
buffer to pooled PFP in concentrations from 0.01 to 1.38 pM and clotting time was measured on the modified 
PPL assay.

Whole blood was stimulated with a combination of LPS (5 ng/ml, Dako, strain 026:B6, Difco Lab., Detroit, 
MI, USA) and PMA (30 ng/ml, Sigma-Aldrich, Oslo, Norway) at 37 °C for 4 h with gentle agitation. EVs were 
isolated as described above. TF activity was blocked with an inhibitory antibody at a final concentration of 26 µg/
ml (Purified Mouse Anti-Human CD142, Clone HTF-1, Catalog No.550252, BD Biosciences, Pharmingen, NJ). 
Clotting time was measured on the modified PPL assay.

Serum lipid analysis.  Serum triglycerides were measured by the use of an enzymatic photometric method 
on the ABX Pentra 400 instrument (Horiba ABX Diagnostics, Montpellier, France).

Statistical analysis.  Statistical analysis were performed in Graph Pad Prism 9.0.0 (GraphPad Software, Inc. 
La Jolla, CA, USA). ANOVA was used to test for differences in performance between the modified PPL assay and 
the STA-Procoag- PPL assay.
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Supplementary Figure S1. The batch-to-batch reproducibility of EVDP. Citrated blood 

samples from six volunteers were centrifuged twice at 2500xg for 15 minutes, then 100,000xg 

for 1hour to prepare EVDP. EVDP samples were pooled and stored at -80°C until analysis. 

Three separate batches were prepared and the clotting times (CT) were measured using the 

modified PPL assay for EVDP alone, and with the addition of UPPT concentrations of 1:3200 

(normal range CT) and 1:100 (short range CT). Values are mean of duplicate measurements ± 

1 SD.  

  



 

 

Supplementary Figure S2. Bovine FXa dilution curve. Clotting times were measured from 

serial dilutions of bFXa added to EVDP alone, or in combination with pooled platelet free 

plasma (PFP). Clotting times for EVDP alone using 0.01 U/ml bFXa exceeded the range of the 

instrument (300 s) and artificial values of 301 seconds were plotted. Values are mean of three 

experiments ± 1 SD.  
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ESSENTIALS 

 It is not known whether plasma levels of procoagulant phospholipids are associated 

with VTE risk 

 The association between PPL and risk of VTE was investigated in a nested case-

control study 

 PPL clotting time above the 95th percentile was associated with lower risk of future 

VTE 

 The association was stronger when analyses were restricted to samples taken shortly 

before the VTE 
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ABSTRACT: 

Background: Negatively charged procoagulant phospholipids, phosphatidylserine (PS) in 

particular, are vital to coagulation and expressed on the surface membrane of extracellular 

vesicles. No previous study has investigated the association between plasma procoagulant 

phospholipid clotting time (PPLCT) and future risk of venous thromboembolism (VTE).  

Objectives: To investigate the association between plasma PPLCT and the risk of incident 

VTE in a nested case-control study.  

Methods: We conducted a nested case-control study in 296 VTE patients and 674 age- and 

sex-matched controls derived from a general population cohort (The Tromsø Study 1994-

2007). PPLCT was measured in platelet free plasma using a modified factor Xa-dependent 

clotting assay. Logistic regression was used to estimate odds ratio (OR) with 95% confidence 

intervals (CI) for VTE with PPLCT modelled as a continuous variable, across quartiles and in 

dichotomized analyses.  

Results: There was a weak inverse association between plasma PPLCT and risk of VTE per 

one standard deviation increase of PPLCT (OR 0.93, 95% CI 0.80-1.07) and when comparing 

those with PPLCT in the highest quartile (OR 0.89, 95% CI 0.60-1.30) with those in the lowest 

quartile. Subjects with PPLCT > 95th percentile had substantially lowered OR for VTE (OR 

0.35, 95% CI 0.13-0.81).  The inverse association was stronger when the analyses were 

restricted to samples taken shortly before the event. The risk estimates by categories of 

plasma PPLCT were similar for deep vein thrombosis and pulmonary embolism.  

Conclusion: Our findings suggest that high plasma PPLCT is associated with reduced risk of 

VTE.  
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INTRODUCTION 

Venous thromboembolism (VTE), encompassing deep vein thrombosis (DVT) and pulmonary 

embolism (PE), is a common disease with an annual incidence of 1-2 per 1000 individuals [1, 

2]. VTE is associated with severe short- and long-term complications, such as recurrent events 

[3], post-thrombotic syndrome (PTS) [4], post-PE syndrome [5] and death [6]. The incidence 

of VTE has been stable [7] or slightly increased during the last two decades [8, 9], and VTE 

has become a major economic burden and challenge to health care systems [10, 11]. 

Therefore, there is a great need to identify novel biomarkers to improve risk-stratification and 

unravel disease mechanisms to tailor preventive and treatment strategies with the long-term 

goal to lower the incidence of the disease.  

 

Phosphatidyl serine (PS) is a negatively charged phospholipid with procoagulant potential 

expressed at the surface of activated platelets and extracellular vesicles (EVs) [12]. The 

presence of PS on the membrane surface facilitates the assembly of coagulation factors VII 

(FVII), FIX, FX and prothrombin (FII) [13], and accelerates the activity of the TF:FVIIa 

complex by several orders of magnitude [14]. Furthermore, a strong relationship between 

plasma levels of  PS-positive EVs and procoagulant phospholipid (PPL) activity has been 

reported [15]. Hence, plasma PPL clotting time (PPLCT) may be considered as a measure for 

the potential to facilitate coagulation activation when blood is exposed to triggers of the 

coagulation system.  

 

As most [16-19], but not all [20] observational studies have reported elevated plasma levels of 

EVs in VTE, we hypothesized that prolonged PPLCT was associated with lowered risk of 

VTE. We therefore aimed to investigate the association between plasma PPLCT, measured by 
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a modified factor Xa-dependent clotting assay, and the risk of incident VTE in a nested case-

control study derived from the general population.  

 

MATERIAL AND METHODS 

Study population 

The Tromsø Study is a large prospective single-center population-based cohort study with 

repeated health surveys of inhabitants of Tromsø, Norway [21]. The study participants were 

recruited from the fourth survey (1994-95) of the Tromsø Study. All inhabitants aged 25 years 

and older living in the municipality of Tromsø were invited to participate, and 77% of those 

invited participated (n=27,158). The participants were followed from the date of inclusion 

until an adjudicated incident VTE event, migration, death, or end of follow-up (September 1, 

2007). All first lifetime events of VTE occurring among the participants in this period were 

identified using the hospital discharge diagnosis registry, the autopsy registry, and the 

radiology procedure registry from the University Hospital of North Norway (UNN), which is 

the sole provider of diagnostic radiology and treatment of VTE in the Tromsø area. Trained 

personnel adjudicated and recorded each VTE by extensively reviewing medical records. The 

identification and adjudication process of VTEs has previously been described in detail [22]. 

In short, the adjudication criteria for VTE were presence of signs and symptoms of DVT or 

PE combined with objective confirmation by radiological procedures, which resulted in 

initiation of treatment (unless contraindications were specified). A VTE occurring in the 

presence of one or more provoking factors was classified as provoked. Provoking factors 

were: surgery or trauma (within eight weeks before the event), acute medical condition (acute 

myocardial infarction, acute ischemic stroke, acute infections), immobilization (bed rest > 3 

days or confinement to wheelchair within the last 8 weeks, or long distance travel ≥4 hours 
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within the last 14 days), or other factors specifically described as provoking by a physician in 

the medical record (e.g. intravascular catheter).  

 

There were 462 individuals who experienced a VTE event during the follow-up period (1994-

2007). For each case, two age- and sex-matched controls, who were alive at the index date of 

the corresponding VTE-case, were randomly sampled from the source cohort (n=924). In 

total, 349 (140 cases and 209 controls) lacked plasma samples and 67 (26 VTE cases and 41 

controls) had plasma samples of insufficient quality (e.g. hemolysis). Hence, our study 

population consisted of 296 subjects with incident VTE and 674 age- and sex-matched 

controls. The regional committee for medical and health research ethics approved the study, 

and all participants provided informed written consent. 

 

Baseline measurements 

At inclusion in Tromsø 4 (1994/95), baseline information was collected by physical 

examinations, blood samples and self-administered questionnaires. All participants had their 

height (to the nearest cm) and weight (to the nearest 0.5 kg) measured, wearing light clothing 

and no shoes. Body mass index (BMI) was calculated using weight in kilograms divided by 

height in meters squared (kg/m2). Information on previous cardiovascular disease and cancer 

was collected from the self-administered questionnaires.   

 

Handling of blood samples  

Non-fasting blood samples were collected by venipuncture of an antecubital vein, with 

minimal stasis, into blood collection tubes containing ethylenediaminetetraacetic acid (K3-
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EDTA 40 µL, 0.37 mol/L per tube) (Becton Dickinson, Meylan Cedex, France). Cell counts 

were performed using a Coulter Counter (Coulter Electronics, Luton, UK). Platelet poor 

plasma (PPP) was prepared by centrifugation at 3000 x g for 10 minutes at room temperature. 

Plasma aliquots were transferred to 1 mL cryovials (Greiner Laboratechnik, Nürtringen, 

Germany) and stored at -80°C until analysis.  

 

Measurement of procoagulant phospholipid clotting time (PPLCT) in plasma 

PPL clotting time was measured in platelet free (PFP) EDTA plasma using a modified factor 

Xa-dependent clotting assay. In short, PPP samples were thawed and centrifuged at 13,500 x 

g for 2 minutes to generate PFP. Phospholipid-depleted plasma (PPLDP) used as a reagent in 

the assay was prepared from pooled citrated PFP (n = 18) centrifuged at 100,000 x g for 60 

minutes at 16°C (Beckman Optima LE-80K Ultracentrifuge, rotor SW40TI, Beckman 

Coulter, Indianapolis, Indiana, USA). PPLDP was aliquoted and stored at -80°C until use. 

Twenty-five μl of sample PFP was mixed with 25 μl of PPLDP, and incubated for 2 minutes 

at 37°C, before the reaction was initiated by the addition of 100 μl pre-warmed factor Xa 

reagent containing bovine Factor Xa (0.1 U/ml) in 15 mM calcium chloride, 100 mM sodium 

chloride and 20 mM HEPES buffer (pH 7.0). Clotting tests were carried out in duplicate on a 

StarT4 instrument from Diagnostica Stago (Asnières sur Seine Cedex, France) and measured 

in seconds of clotting time. The variation between runs were adjusted for by an internal 

standard. The technician carrying out the measurements was blinded to the identity and case-

control status of the samples. The PPL assay displayed low intra- and inter-series coefficients 

of variations (CV) ranging from 2.8% to 4.1%.  
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Measurements of thrombin generation in plasma  

Thrombin generation was assessed using a calibrated automated thrombinoscope, and was 

performed as described by Hemker et al [23] and manufacturer’s instructions 

(Thrombinoscope BV, Maastricht, the Netherlands). Thrombin generation was measured in a 

Fluoroscan Ascent Fluorometer (Thermolabsystems OY, Vantaa, Finland) equipped with a 

dispenser. Fluorescence intensity was detected at wavelengths of 355 nm (excitation filter) 

and 460 nm (emission filter). Briefly, 40 µl of plasma was mixed with 40 µl Hepes buffer (20 

mM Hepes and 140 mM NaCl) and pipetted into the wells of round bottom 96-well microtiter 

plates (Immulon, Lab Consult, Lillestrøm, Norway). Ten µl of TF solution (final 

concentration of 3 pM) (Innovin, Bade Behring) and 10 µl of a standardized phospholipid in 

solution (diluted 1:20) (UPTT, BioData Corporation, Horsham, Pennsylvania, USA.) was 

added as triggers. Both TF and UPTT were diluted to the stated concentrations in Hepes 

buffer. The plasma samples measured were a combination of pooled citrated PFP and PPLDP 

added in ratios of 100:0, 80:20, 60:40, 40:60, 20:80, 10:90, and 0:100, respectively. For each 

experiment, a fresh mixture of 2.5 mM fluorogenic substrate (Z-Gly-Gly-Arg-AMC from 

Bachem, Bubendorf, Switzerland), 0.1 M CaCl2, 20 mM Hepes (Sigma Aldrich, St Louis, 

USA) and 60 mg/ml BSA (A-7030, Sigma Aldrich) with pH 7.35 was prepared. Each dilution 

of PFP/PPLDP was assigned its own calibrator (Thrombinoscope BV, Maastricht, The 

Netherlands). The computer software calculated lag time (LG) (min), the time to peak (TTP) 

(min), the peak of thrombin generation (PEK) (nM) and the area under the thrombin 

generation curve (nM*min) and endogenous thrombin potential (ETP). Plasma samples were 

run in duplicate and each experiment was repeated three times.  
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Statistical analysis  

Statistical analyses were performed using R (Version 4.0.4. for Windows; R Foundation). 

Unconditional logistic regression models were used to estimate odds ratios (ORs) for VTE 

with 95% confidence intervals (CIs) with plasma PPLCT used as a continuous variable, 

discretized to quartiles and dichotomized according to PPLCT  ≤ 25th percentile versus PPLCT  

> 95th percentile. The analyses were adjusted for age, sex and BMI. The PPLCT quartile cut 

offs were determined using the control group.  

 

As the follow-up time in the source cohort was long (more than 12 years for many 

persons), the results based on baseline PPLCT measurements could be influenced by regression 

dilution bias [24]. To investigate this, we performed analyses where we restricted the maximum 

time from blood sampling in Tromsø 4 to the VTE events, while keeping all controls in the 

analyses. The logistic regression analyses on time restrictions were set to require at least 10 

VTE events, and ORs were generated at every 0.1 year increase and plotted as a function of 

time from blood sampling to VTE. 

 

RESULTS 

The distribution of characteristics of the study population at baseline across quartiles of 

plasma PPLCT is presented in Table 1. The mean age and BMI were similar, while the 

percentage of men (42.9% in Q1 to 47.8% in Q4) and the proportion of individuals with self-

reported CVD (13.5% in Q1 to 18.8% in Q4) increased across quartiles. In contrast, the 

proportion of individuals with self-reported cancer decreased (7.1% in Q1 to 2.9% in Q4) 

across quartiles of PPLCT.  
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Characteristics of patients at VTE diagnosis are shown in Table 2. The mean age at the time 

of VTE was 68 years, 47% were men, and 59% of the events were deep vein thrombosis. The 

majority of the VTE events were provoked (60.1%), and the leading provoking factors were 

active cancer (27.7%), surgery or trauma (21.3%), and immobilization (18.2%).  

 

The ORs of VTE across categories (quartiles and >95th percentile) and per one standard 

deviation (i.e. 14.5 s) increase in plasma PPLCT are shown in Table 3. There was a weak 

inverse association between plasma PPLCT and risk of VTE per one standard deviation 

increase of PPLCT (OR 0.93, 95% CI 0.80-1.07), and in subjects with PPLCT in the highest 

quartile (OR 0.89, 95% CI 0.60-1.30) compared to those in the lowest quartile, in analyses 

adjusted for age, sex, and BMI.  However, subjects with particularly prolonged PPLCT (>95th 

percentile) had lower OR for VTE (OR 0.35, 95% CI 0.13-0.81) than those with PPLCT ≤25th 

percentile in analyses adjusted for age, sex, and BMI.  Similar results were found for DVT 

and PE (Table 3), but the OR for PE (OR 0.14, 95% CI 0.01-0.69) was lower than for DVT 

(OR 0.50, 95% CI 0.17-1.25) in analyses comparing individuals with PPLCT >95th percentile 

versus ≤25th percentile. The ORs for unprovoked and provoked VTE, DVT and PE, were 

similar to those found in the overall analyses (data not shown). 

 

To consider the possibility of underestimating ORs due to regression dilution bias, we 

estimated ORs for VTE among subjects with the highest (highest quartile) versus lowest 

(lowest quartile) plasma PPLCT as a function of time between blood sampling and the VTE 

events (Figure 1). The inverse association between high plasma PPLCT and VTE was stronger 

with shortened time between the blood sampling and the VTE events. The ORs for DVT and 
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PE as a function of time between blood sampling and events showed similar patterns as the 

ORs for overall VTE (data not shown).  

 

To study the effect of plasma procoagulant phospholipids on thrombin generation, mixtures of 

pooled PFP and PPLDP were analyzed using the CAT assay. As shown in Figure 2A, 

thrombin generation declined in a dose-dependent manner with declining percentage of PFP 

added (i.e. declining levels of PPL). A clear dose-response relationship was observed between 

plasma PPL levels and parameters of the CAT assay (i.e. lag-time and ETP) (Figures 2B and 

C). The PPLCT correlated strongly with both lag time (r= 0.99, p= <0.0001, Figure 2D) and 

ETP (r= -0.98, p= <0.0001, Figure 2E).  

 

DISCUSSION  

We investigated the association between plasma PPLCT and future risk of VTE in a population 

based nested case-control study. Prolonged PPLCT displayed a modest protective effect on 

VTE risk both when PPLCT were used as a continuous and as a categorized variable in the 

logistic regression models. However, subjects with extremely prolonged PPLCT (above the 

95th percentile) had lowered risk of VTE (OR 0.35, CI 95% 0.13-0.81) compared to those 

with PPLCT in the lowest quartile. Similar results were observed in subgroup analysis for PE 

and DVT. The results appeared to be influenced by regression dilution bias, as the ORs for 

VTE by plasma PPLCT decreased substantially with shortened time between blood collection 

and the VTE events. Our findings support the hypothesis of an inverse association between 

plasma PPLCT and VTE risk. 
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Our study is, to the best of our knowledge, the first to investigate the association between 

plasma PPLCT and future risk of VTE in the general population.  In a recent cross-sectional 

study including 100 patients referred to the Emergency Department under suspicion of VTE, 

plasma PPLCT, assessed by the STA Procoag PPL assay (Diagnostica Stago), did not 

discriminate between patients with (n=31) and without VTE [25]. The lack of discriminatory 

diagnostic power by the PPL assay may have been diluted by other conditions associated with 

shortened PPLCT among patients without VTE.  However, this does not exclude the potential 

association between plasma PPLCT and future risk of VTE. Further, plasma levels of 

modifiable biomarkers, such as PPLCT, are expected to change over time. Fluctuations in the 

exposure variable during follow-up will lead to the phenomenon called regression dilution 

bias [24], which usually results in an underestimation of the true association between 

exposure and outcome. Accordingly, we found that the risk estimates for VTE declined 

substantially with shortened time between measurement of plasma PPLCT and the VTE 

events. 

 

Circumstantial evidence support an association between plasma PPLCT and the risk of future 

VTE.  First, the PPLCT is inversely associated with annexin V-positive EVs [15, 26] and high 

plasma levels of EVs are associated with VTE risk in most [16-19], but not all studies [20, 

27]. Second, in a cross-sectional study including plasma samples from 100 healthy individuals 

and patients with obstructive sleep apnea, plasma PPLCT showed strong and inverse 

correlations to parameters of thrombin generation, such as ETP and peak thrombin 

concentration, using the CAT assay with the addition of minimal amounts of phospholipids 

and tissue factor (1 pM) to trigger thrombin generation [26]. Accordingly, we demonstrated a 

clear dose-response relationship between plasma PPLCT and parameters of the CAT assay. In 

addition, several studies have shown that parameters of the CAT assay, particularly lag-time 
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and ETP, are associated with incident [28-32] and recurrent [33-35] VTE. Third, carriers of 

rare (e.g. deficiencies of antithrombin, protein C and S) [36] and common (e.g. factor V 

Leiden and the prothrombin mutation G20210A) [37, 38] prothrombotic genotypes had 

significantly shorter plasma PPLCT than non-carriers, providing indirect evidence for lower 

risk of VTE with prolonged plasma PPLCT.    

 

Strengths of our study include recruitment of VTE patients from a population-based cohort 

with age- and sex-matched controls from the same source population where blood samples 

were collected prior to the VTE event. This allows assumptions on the direction of the 

observed association between plasma PPLCT and VTE. Further, the modified FXa-dependent 

PPL clotting assay is highly sensitive and displayed a low CV of ≤4%.  A limitation with our 

study is that plasma samples used were collected in 1994/95 and stored at -80°C until analysis 

>20 years later. The long storage time, as well as freezing and thawing, might possibly affect 

the plasma PPLCT.  However, it is unlikely that it would impact our end results, as the 

potential effects would be similar for both cases and controls. Moreover, the PPL levels were 

only measured in baseline samples, while potential changes during follow-up were not 

accounted for. This might lead to an underestimation of the true association between plasma 

levels of PPLCT and VTE risk due to regression dilution bias [24]. In our study, some plasma 

samples were excluded due to either missing samples or poor plasma quality. The plasma 

samples were missing completely at random, hence there was no selection bias.  

 

In conclusion, results from our nested case-control study indicate an inverse association 

between plasma PPLCT (measured by a modified FXa-dependent PPL clotting assay) and the 

risk of future VTE. Subjects with PPLCT above the 95th percentile had particularly low risk of 

future VTE and the results were strongly influenced by regression dilution bias. Further 
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studies are needed to validate our findings and unravel the mechanisms behind this 

observation.  
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TABLES AND FIGURES 

 

Table 1: Baseline characteristics of the study population (n=970) across quartiles of PPL 

clotting time. 

 Clotting time (seconds) 

 Q1  

(26.5-51.7)  

Q2 

(51.7-60.0)  

Q3 

(60.0-71.5)  

Q4 

(71.5-148.5)  

Subjects, n 252 243 230 245 

Age, years 59 ± 14 61 ± 13 61 ± 14 61 ± 14 

Sex, % men (n) 42.9 (108) 47.7 (116) 46.5 (107) 47.8 (117) 

BMI, kg/m2 26.1 ± 4.5 26.6 ± 4.0 26.6 ± 4.4 26.5 ± 4.1 

CVD*, % (n) 13.5 (34) 16.0 (39) 15.2 (35) 18.8 (46) 

Cancer*,% (n)  7.1 (18)  6.2 (15)  5.2 (12)  2.9 (7) 

WBC, 109/L  7.2 ± 1.9  7.1 ± 3.3  6.8 ± 1.7  6.8 ± 1.9 

Platelet Count, 109/L 259 ± 57 247 ± 53 240 ± 47 230 ± 52 

Hematocrit, % 41.5 ± 3.3 41.7 ± 3.6 41.4 ± 3.0 41.5 ± 3.4 

CVD: cardiovascular disease (myocardial infarction, angina, stroke). WBC: white blood cell 

count.  

*Self-reported history of disease.  

Values are mean ± 1 standard deviation or percentage with absolute numbers in parenthesis.  
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Table 2: Characteristics of the VTE patients (n=296).  

  

Age at VTE, years 68 ± 14 

Sex, % men 47.0 (139) 

Deep vein thrombosis 58.8 (174) 

Pulmonary embolism 41.2 (122) 

Unprovoked VTE 39.9 (118) 

Provoked VTE 60.1 (178) 

 Active cancer 27.7 (82) 

 Surgery/ Trauma 21.3 (63) 

 Immobilization 18.2 (54) 

 Acute medical condition 15.9 (47) 

 Other factors 4.1 (12) 

Values are mean ± 1 standard deviation or percentage with absolute numbers in parenthesis.  
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Table 3. Odds ratios (OR) with 95% confidence intervals (CI) for venous thromboembolism 

(VTE), deep vein thrombosis and pulmonary embolism, per standard deviation (SD) increase 

and across increasing quartiles of PPL clotting time (seconds). 

PPL clotting time (sec) Cases 

n 

Controls 

n 

Model 1  

(95% CI) 

Model 2  

OR (95% CI) 

Model 3  

OR (95% CI) 

Venous 

thromboembolism 

     

Per SD 296 674 0.94 (0.81-1.08) 0.94 (0.81-1.08) 0.93 (0.80-1.07) 

Q1 (26.5-54.3) 83 169 1.00 (ref)  1.00 (ref)  1.00 (ref)  

Q2 (54.3-63.5) 74 169 0.89 (0.61-1.30) 0.89 (0.61-1.30) 0.87 (0.59-1.27) 

Q3 (63.5-74.5) 63 167 0.77 (0.52-1.13) 0.77 (0.52-1.13) 0.75 (0.51-1.12) 

Q4 (74.5-148.5) 76 169 0.92 (0.63-1.34) 0.92 (0.63-1.34) 0.89 (0.60-1.30) 

      

≤ 25% (26.5-54.3) 83 169 1.00 (ref) 1.00 (ref) 1.00 (ref) 

>95% (89.9-148.5) 6 34 0.36 (0.13-0.83) 0.36 (0.13-0.83) 0.35 (0.13-0.81) 

Deep vein thrombosis      

Per 1 SD increase 174 674 0.98 (0.83-1.16) 0.98 (0.83-1.17) 0.97 (0.82-1.15) 

Q1 (26.5-54.3) 50 169 1.00 (ref)  1.00 (ref)  1.00 (ref)  

Q2 (54.3-63.5) 32 169 0.64 (0.39-1.04) 0.64 (0.39-1.05) 0.63 (0.38-1.03) 

Q3 (63.5-74.5) 47 167 0.95 (0.60-1.50) 0.96 (0.61-1.51) 0.95 (0.60-1.49) 

Q4 (74.5-148.5) 45 169 0.90 (0.57-1.42) 0.91 (0.57-1.43) 0.87 (0.55-1.38) 

      

≤ 25% (26.5-54.3) 50 169 1.00 (ref) 1.00 (ref) 1.00 (ref) 

>95% (89.9-148.5) 5 34 0.50 (0.16-1.24) 0.50 (0.16-1.25) 0.50 (0.16-1.25) 

Pulmonary embolism      

Per 1 SD increase 122 674 0.88 (0.72-1.07) 0.88 (0.71-1.06) 0.87 (0.71-1.06) 

Q1 (26.5-54.3) 33 169 1.00 (ref)  1.00 (ref)  1.00 (ref)  

Q2 (54.3-63.5) 42 169 1.27 (0.77-2.12) 1.26 (0.76-2.09) 1.22 (0.73-2.04) 

Q3 (63.5-74.5) 16 167 0.49 (0.25-0.91) 0.49 (0.25-0.90) 0.48 (0.25-0.89) 

Q4 (74.5-148.5) 31 169 0.94 (0.55-1.60) 0.92 (0.54-1.58) 0.89 (0.52-1.54) 

      

≤ 25% (26.5-54.3) 33 169 1.00 (ref) 1.00 (ref) 1.00 (ref) 

>95% (89.9-148.5) 1 34 0.15 (0.01-0.74) 0.15 (0.01-0.72) 0.14 (0.01-0.69) 

Model 1: Crude analysis 

Model 2: adjusted for age and sex 

Model 3: adjusted for age, sex and body mass index 

1 standard deviation (SD) of PPLCT = 14.5 s 

  



24 
 

 

 

 

Figure 1. Estimated odds ratios (OR) for VTE for having PPLCT in quartile 4 compared to 

quartile 1.Each circle represents an analysis for a given maximum time between blood draw 

and VTE. At each time restriction, only VTE cases with a time below this maximum were 

included in the analysis, while all controls were included. The analysis are adjusted for age, 

sex and BMI.  
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Figure 2. Pooled platelet free plasma (PFP) was mixed in varying ratios (100%, 80%, 60%, 

40%, 20%, 10% and 0% PFP) with phospholipid depleted plasma (PPLDP) and run on the 

CAT assay. Thrombin generation curves are shown in 2A. A dose dependent relationship was 

observed for both lagtime (2B) and ETP (2C) and % PFP added to the reaction. PPL clotting 

time (PPLCT) correlate strongly with both lagtime (2D) and ETP (2E).  
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KEY POINTS 

 Rosuvastatin treatment caused a 22% decrease in plasma PPL activity in participants 

with a previous history of VTE. 

 The effect was not explained by changes in total cholesterol nor changes in plasma 

levels of total or platelet derived EVs.  
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ABSTRACT 

Venous thromboembolism (VTE) is a frequent cardiovascular disease with severe 

complications, including recurrence and death. There is a great need for alternative prophylactic 

treatment options as anticoagulation is accompanied by increased bleeding risk. Statins are 

reported to reduce the risk of incident and recurrent VTE, but the mechanisms are elusive. 

Procoagulant phospholipids (PPL), and phosphatidylserine in particular, are crucial for efficient 

coagulation activation, but no study have investigate the effect of statin treatment on plasma 

PPL activity. We aimed to investigate the impact of rosuvastatin treatment on plasma PPL 

activity and levels of extracellular vesicles (EVs) in subjects with a history of VTE. Participants 

of the STAtins Reduce Thrombophilia (START) (NCT01613794) trial were randomized to 

either 20 mg/day of rosuvastatin treatment or no treatment for 28-days. Plasma sample were 

collected at baseline and study end. The PPL activity was measured in samples from 245 

participants using a FXa-dependent assay and plasma EV levels by a sensitive flow cytometer. 

Rosuvastatin treatment yielded an overall 22% (95% CI -38.2 to -5.8) reduction in PPL activity, 

and 37% (95% CI -62.9 to -11.2) reduction in PPL activity in participants with a history of 

pulmonary embolism. The effect of rosuvastatin on plasma PPL activity was not explained by 

changes in total cholesterol nor change in plasma levels of total- or platelet-derived EVs. 

Rosuvastatin treatment caused a substantial decrease in plasma PPL activity, suggesting that a 

PPL-dependent attenuation of coagulation activation may contribute to a reduced VTE risk 

following statin treatment. 
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INTRODUCTION 

Venous thromboembolism (VTE), comprising deep vein thrombosis (DVT) and pulmonary 

embolism (PE), is a frequent cardiovascular disease with severe short- and long-term 

complications, including recurrence and death 1-3. At present, anticoagulation is the treatment 

of choice for primary and secondary prophylaxis of VTE 4. Although highly efficient, 

anticoagulation is accompanied by increased bleeding risk, where 1-4% annually experience 

major bleeding events, depending on type of anticoagulant, dose and duration of treatment 5-7. 

As VTE recurs in up to 30-40% of patients within 10 years of the initial event 8-11, there is a 

need for alternative prophylactic treatment options in patients with high bleeding risk. 

 

HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase inhibitors, known as statins, are a 

class of cholesterol-lowering drugs with cardioprotective effects independent of LDL 

cholesterol lowering, including protection against endothelial dysfunction, anti-inflammatory- 

and antithrombotic effects 12. Observational and randomized studies have reported a 14-54% 

reduction in the risk of a first VTE 13-17 and a 27-50% reduction in recurrent events 18-21 

following statin treatment. However, there is only limited knowledge on the pleiotropic effects 

of statins that may explain their beneficial effects on the risk of VTE. The STAtins Reduce 

Thrombophilia (START) trial was established to address this knowledge gap.  Previous results 

from the START trial have shown that rosuvastatin treatment modestly reduced (3-6%) the 

plasma level of several coagulation factors 22, in particular factor VIII, lowered the tissue factor 

(TF)-induced potential for thrombin generation in plasma by 10% 23, and increased the 

fibrinolytic potential in plasma 24. However, the beneficial effect of statins on VTE could not 

be explained by reduced platelet reactivity, measured by thromboxane-A2 mediated platelet 

aggregation 25.  

 

Negatively charged phospholipids, and phosphatidylserine (PS) in particular, are vital to 

coagulation. PS is located on the surface of activated platelets as well as on extracellular 

vesicles (EVs), and they facilitate the assembly of coagulation factors VII (FVII), FIX, FX and 

prothrombin (FII) 26 in blood. The presence of negatively charged phospholipids augment the 

activity of the extrinsic tenase complex, TF-FVIIa, by several orders of magnitude 27. The 

procoagulant phospholipid (PPL) activity of plasma samples can be measured using a factor Xa 

(FXa)-dependent clotting assay. Previously, an inverse correlation has been established 
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between PPL, measured by FXa-dependant clotting assays and plasma levels of PS-positive 

(PS+) extracellular vesicles (EVs) 28,29. However, the effect of statin treatment on plasma PPL 

activity has previously not been investigated. In the present study, we aimed to (i) investigate 

the impact of rosuvastatin treatment on plasma PPL activity in individuals with a history of 

VTE in a randomized controlled trial, and (ii) explore the effect of statin treatment on total- and 

platelet-derived EV counts using a sensitive flow cytometer.  

 

MATERIAL AND METHODS 

Trial design  

STAtins Reduce Thrombophilia, or the START trial (NCT01613794), is a multicenter, 

randomized, controlled, open label clinical trial aimed to investigate the impact of rosuvastatin 

treatment on the coagulation profile of individuals with a previous history of VTE. The study 

has been described in detail elsewhere 22. In brief, participants were recruited from three Dutch 

anticoagulation clinics (Leiden, Hoofddorp, and Rotterdam) which monitor anticoagulant 

treatment of VTE patients within a geographical area. Subjects with confirmed initial or 

recurrent symptomatic proximal DVT or PE allowed to stop oral anticoagulation treatment by 

their treating physician and aged 18 years or older, were invited to participate. Exclusion criteria 

were as following; individuals already using statins or other lipid lowering drugs, or if 

contraindications for 20 mg/day rosuvastatin use were present, based on information provided 

by the instruction leaflet of the drug manufacturer. Participants were randomly assigned to 

either 20 mg/day of rosuvastatin or no study medication for the 28-day study duration. 

Compliance to treatment was assessed by measurements of total cholesterol levels at baseline 

and at study end in all participants. The START trial was approved by the Medical Ethics 

Committee of the Leiden University Medical Center, Leiden, the Netherlands, and all study 

participants gave written informed consent prior to participation.  

 

Baseline measurements 

The study baseline was set as the last regular visit of the participant to the anticoagulation clinic. 

All participants were screened on acquired risk factors for VTE through a questionnaire, in 

addition to being tested on kidney and liver function. VTE patients stopped using vitamin K 

antagonist one month prior to baseline blood draw. Non-fasting blood samples were collected 
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in Vacutainer tubes containing 3.2% sodium citrate (Becton Dickinson, Meylan Cedex, France) 

at baseline and at study end (i.e. 28 days later). Samples were centrifuged at 2,500 x g for 15 

min at 18°C and platelet poor plasma (PPP) was stored at -80°C until analysis. 

 

Measurement of procoagulant phospholipid (PPL) clotting activity in plasma  

A modified factor Xa-dependent PPL clotting assay (in-house) was used to measure plasma 

levels of PPL in citrated platelet free plasma (PFP) (n=247). Briefly, PPP samples were thawed 

and centrifuged 13,500 x g for 2 min to generate PFP. Phospholipid depleted plasma (PPL 

depleted plasma, PPLDP), was prepared from pooled citrated PFP (n = 18) centrifuged at 

100,000 x g for 60 min at 16°C (Beckman Optima LE-80K Ultracentrifuge, rotor SW40TI, 

Beckman Coulter, Indianapolis, Indiana, USA). PPLDP was aliquoted and stored at -80°C until 

further use. Twenty-five μl of test plasma was mixed with 25μl PPLDP, incubated for 2 min at 

37°C, before the reaction was initiated by the addition of 100μl of pre-warmed FXa reagent 

(0.1 U/ml bovine FXa in 15 mM calcium chloride, 100 mM sodium chloride and 20 mM HEPES 

buffer, pH 7.0). A commercially available standardized reagent containing 0.1% of rabbit brain 

cephalin in a buffered solution was used as calibrator (UPTT from BioData Corporation, 

Horsham, Pennsylvania, USA). Clotting tests were carried out in duplicate on a StarT4 

instrument from Diagnostica Stago. PPL levels were measured in seconds of clotting time, and 

converted to mU/ml, by the use of the UPTT calibrator. The PPL assay displayed low inter and 

intra CVs of ≤ 4% and variation between runs was adjusted for by an internal standard. 

 

Analysis of total- and platelet-derived microvesicles in plasma by flow cytometry  

Plasma samples were selected from 40 participants from the rosuvastatin treatment group and 

20 participants from the non-statin group. Participants with the largest decrease in plasma PPL 

activity were selected from the rosuvastatin treatment group as measurement of microvesicles 

by flow cytometry was expected to be less sensitive for changes than the plasma PPL activity. 

One sample from the no treatment group was later excluded due to technical failure. Plasma 

samples were thawed and centrifuged a second time for 2,500 x g for 15 min. Two hundred 

microliter of PFP was diluted 10x in pre-filtered (Amicon Ultra-15 filters, 10 kDa cutoff) 

Dulbecco's phosphate-buffered saline (DPBS) that is free of Ca2+/Mg2+ (Thermo Fisher 

Scientific). Samples were centrifuged at 20,000 x g for 30 min at 4°C to pellet EVs. 
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Supernatants were carefully aspirated and the EV pellets were divided and stained for PS using 

FITC-labeled bovine lactadherin (Haematologic Technologies, Vermont, USA) and CD41 

APC-H7 clone HIP8 (Biolegend, San Diego, USA), or with FITC-labeled bovine lactadherin 

and matched isotype controls. All antibodies and isotype controls were filtered using 0.22 µm 

ultrafree-MC centrifugal filter (Merck, Millipore, Carrigtwohill, Ireland) before use. EV pellets 

were incubated with antibody or isotype control mixture for 20 min at 4°C in the dark. Samples 

were washed with 1 ml pre-filtered DPBS and centrifuged at 20,000 x g for 30 min at 4°C. 

Pellets were resuspended in 200 µl pre-filtered DPBS and samples were analyzed using 

CytoFLEX (Beckman Coulter, Indianapolis, USA) at the rate of 10 µl/min. Data analysis was 

performed using CytExpert 2.0 (Beckman Coulter, Indianapolis, USA). The EV gate was set 

using Rosetta calibration beads (Exometry, Amsterdam, The Netherlands). EVs were defined 

according to size and lactadherin-positive staining. The total number of EVs was calculated 

from the number of detected lactadherin-positive events in every sample, and further converted 

to EV number per microliter plasma (EV/µl) using the original volume of analyzed plasma (150 

µl).  

 

Statistical analysis 

Statistical analysis were performed using R (Version 4.0.3 for Windows; R Foundation). 

Descriptive statistics were used to describe the baseline difference between the intervention and 

the control group. For the results tables, the treatment and non-treatment group, as well as 

subgroups, were compared using two-sample t-tests with equal variance assumed and standard 

multivariate linear regression models adjusting for age and sex. Pearson’s correlation 

coefficient was used to estimate correlation. 
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RESULTS 

Study population 

Between December 2012 and December 2016 255 participants were randomized to either the 

rosuvastatin treatment group (n=131) or the no treatment group (n=124). A study flowchart is 

shown in Figure 1 with reasons for exclusion. Two participants did not start rosuvastatin 

treatment, and another six randomized participants did not complete the study, three in each 

study arm due to various reasons. The PPL assay measurements could not be performed in two 

participants due to technical failure, one in each study arm. The baseline characteristics of the 

study population are shown in Table 1. Participants allocated to no treatment were slightly older 

(mean age 59 years) compared to the statin-users (mean age 57 years), and were more often 

male (69% vs 54%). Other characteristics of the participants associated with VTE risk were 

equally distributed among the groups.  

 

Outcomes 

Table 2 and Figure 2 show absolute and changes in plasma PPL activity levels within and 

between the study arms. Plasma PPL activity levels decreased significantly from baseline to 

study end for rosuvastatin users (mean change, -0.48 mU/ml; 95% CI -0.81 to -0.15), while a 

minor increase was observed for non-users (mean change, 0.17 mU/ml; 95% CI -0.18 to 0.53) 

for overall VTE. Similar trends were observed in subgroup analyses of participants with a 

history of provoked and unprovoked VTE, as well as for DVT and PE. However, a pronounced 

change in plasma PPL activity was observed for the PE patients in the rosuvastatin group (mean 

difference, -0.94 mU/ml; 95% CI -1.52 to -0.36), and particularly for provoked PE (mean 

difference, -1.14 mU/ml; 95% CI -2.13 to -0.16) (Table 2 and Figure 2). The absolute and 

relative changes in PPL activity between the two study arms are shown in Table 3. Rosuvastatin 

treatment yielded a 22% (95% CI -38.2 to -5.8) reduction in PPL activity among all VTEs, and 

37% (95% CI -62.9 to -11.2) reduction in PPL activity in participants with a history of PE. The 

treatment effect of rosuvastatin on PPL activity for overall VTEs, DVTs and PEs are further 

illustrated in Figure 3. The treatment effect was also investigated in a linear model adjusted for 

age and sex, as these parameters were not balanced between groups at baseline 22. Adjustments 

for age and sex only marginally altered the mean differences between groups as well as the 

treatment effects (Table 3). 
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Total cholesterol levels were reduced from baseline to study end in the rosuvastatin treatment 

group by 35% (1.96 mmol/L) and by 3% (0.17 mmol/L) in the non-treatment group. In order to 

explore whether the reduction in PPL activity by statin treatment was explained by the statin-

dependent decrease in serum cholesterol, we plotted the absolute changes in total cholesterol 

against changes in PPL activity (Figure 4). A weak and Pearson’s correlation coefficient of -

0.10 (p-value 0.28) indicates that the reduction in PPL activity by statin treatment was 

independent of the cholesterol-lowering effect.  

 

To assess whether the observed effect of statin treatment on PPL activity could potentially be 

explained by alterations in EV count, EVs were isolated from plasma by ultracentrifugation, 

labeled with lactadherin (binds to membranes expressing PS) and CD41, a platelet specific 

marker, and counted using a sensitive flow cytometer. Plasma levels of lactadherin positive and 

platelet-derived EV, in number of EVs per µL, for the two study groups are shown as box-plots 

in Figure 5. EV counts are presented for the baseline sample, and compared to the end of study 

sample. The box-plots show no change in total EV count for the no treatment group (Figure 

5A), nor the statin treatment group (Figure 5B). Similar results were found for platelet-derived 

EVs (Figure 5C and D). The mean differences in lactadherin positive and CD41 positive EV 

counts are listed in Supplementary Table 1 and 2, respectively.  
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DISCUSSION 

In the present study, we investigated the effect of rosuvastatin treatment on plasma PPL activity, 

measured by a FXa-dependent PPL clotting assay, in patients with a history of VTE. Statin 

treatment caused a 22% reduction in PPL activity for all VTE patients and 37% reduction in 

PPL activity for PE patients compared to no treatment. The observed effect of rosuvastatin on 

PPL activity was not explained by changes in serum levels of total cholesterol or a parallel 

changed in plasma levels of total- and platelet-derived microvesicles by statin treatment. The 

results from our study support the beneficial effect of statin treatment on coagulation factors 

and thrombin generation potential in plasma. As the presence of negatively charged 

phospholipids augment the activity of the extrinsic tenase complex, TF-FVIIa, by several orders 

of magnitude 27, the combined effect of reduced PPL activity and modest decline in several 

coagulation factors may reduce coagulation activation and contribute to the explanation why 

rosuvastatin treatment lower the risk of VTE 16.  

 

Clinical studies have shown that statin treatment, either with simvastatin 30, atorvastatin 31,32, or 

cerivastatin 33 caused a beneficial effect on the coagulation system by a moderate lowering of 

specific coagulation factors and thrombin generation. In the START trial, rosuvastatin 

treatment showed favorable effects on the hemostatic system by reducing plasma levels of 

coagulation factors FVII, FVIII, and FXI by 4-6% 22, D-dimer by 3% 22, lowered the ex vivo 

thrombin generation potential by 10% 23, and increased the fibrinolytic potential assessed by 

shortening of the mean plasma clot lysis time and a decrease in both plasmin inhibitor levels 

and thrombin-activatable fibrinolysis inhibitor (TAFI) activity 24. The treatment effects of 

rosuvastatin on thrombin generation and plasma D-dimer levels were mainly driven by an 

increase among non-statin users 22,23. In contrast, we found a more profound beneficial effect 

of rosuvastatin treatment that was mainly driven by a significant decline in the PPL activity 

among rosuvastatin users accompanied by a minor increase in the PPL activity among the non-

users. The increase in hemostatic factors among non-statin users in our and previous studies 

from the START trial may be interpreted as a consequence of the rebound hypercoagulability 

often seen after discontinuation of anticoagulant treatment 34,35.  

 

Previous studies have demonstrated that plasma PPL activity is mainly due to the presence of 

extracellular vesicles  28,29, and most 36-40, but not all 41 case-control studies have reported 
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increased EV-related plasma PPL activity in VTE patients compared to controls. Therefore, our 

findings of a profound decrease in PPL activity by statin treatment may contribute to the 

reduction of incident and recurrent VTE by statin treatment 13-21. Microvesicles (MVs) are 

larger EVs (100-1000 nm in diameter), which bud directly from the plasma membrane of 

activated cells, and express surface markers of their cell of origin 42,43. The largest proportion 

of MVs in circulating blood is derived from platelets 44,45 and the subsequent procoagulant 

activity in plasma is mediated by platelet-derived MVs (PDMVs) 36,44. A strong inverse 

correlation has also been reported between PPL clotting time and lactadherin positive EVs 

measured in PPP from healthy control subjects and patients with obstructive sleep apnoea 

(OSA), though the strength of the correlations was mainly driven by the OSA patients 29. We 

therefore hypothesized that the reduction we observed in plasma PPL activity following 

rosuvastatin treatment was caused by a parallel decline in plasma MV levels, and particularly 

platelet-derived MVs. In order to test our hypothesis, we isolated EVs from platelet free plasma 

and measured the total count (lactadherin-positive) and platelet-derived MVs (lactadherin- and 

CD41-positive) by flow cytometry. Although we found statin treatment to lower the PPL 

activity in the treatment group, we did not observe a reduction in total EV count, nor platelet 

derived EVs, for comparisons between – or within study groups.  

 

Our results show that rosuvastatin treatment did not affect plasma MV levels in patients with a 

history of VTE. Contradicting our findings, previous observational studies have shown that 

patients with arterial cardiovascular diseases or risk factors (hyperlipidemia in particular) had 

higher plasma MV levels than control individuals, and that statin treatment lowered plasma MV 

levels in most, but not all studies 46-51. Several factors may contribute to explain our findings. 

First, the effect of statin treatment on plasma MV levels may be limited to individuals with 

arterial cardiovascular diseases and risk factors, and not transferrable to VTE patients. Second, 

one might speculate that statin treatment could differentially influence EV formation from 

various intravascular cells and the subsequent process of externalization of PS to the outer 

leaflet of the cell membrane during EV formation 52. Accordingly, in a placebo-controlled 

randomized double-blinded crossover study, the treatment of 19 patients with peripheral arterial 

occlusive disease for 8 weeks with 80 mg atorvastatin daily showed a reduction in plasma MV 

levels expressing CD62P- and CD61-positive MVs without affecting plasma levels of 

lactadherin-positive EVs 49. Third, a well-recognized limitation of flow cytometry as a method 

is the detection limit of the instrument. Even a sensitive flow cytometer will still only detect 
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vesicles above approximately 200 nm in diameter, and thereby exclude the larger population of 

EVs. Larger vesicles (> 200 nm in diameter) have been reported to only account for a minority 

of the EV population (< 5%) 53. This may imply that a possible decrease in plasma EVs after 

statin treatment could have been masked by the unchanged level of the larger EVs (>200 nm in 

diameter).  

 

Some aspects of our randomized controlled trial need attention. Neither the patients nor the 

physicians were blinded to treatment. However, it is unlikely that knowledge of the treatment 

would affect the laboratory outcomes. Furthermore, the technicians conducting the laboratory 

analyses were blinded to sample treatment. In addition, despite randomization, the distribution 

of age and sex was uneven between the study arms. We decided a priori to adjust analysis for 

age and sex as potential confounders, and adjustments did not influence the observed treatment 

effect. Even though results from subgroup analysis revealed the most pronounced decrease in 

plasma PPL activity in individuals with a history of PE, they should be interpreted with caution 

as the study was not originally powered to analyze differences in subgroups 22. Last, as 

participants were recruited from an outpatient setting, it limits the risk of confounding diseases 

at randomization, and for analysis, participants were compared with themselves. 

 

In conclusion, rosuvastatin treatment caused a substantial decrease in plasma PPL activity, 

suggesting that PPL-dependent attenuation of coagulation activation may contribute to a 

reduced VTE risk by statin treatment. Further studies are warranted to validate our findings and 

unravel underlying mechanisms.  
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FIGURES AND TABLES  

 

Table 1. Baseline characteristics of the study participants included in analysis.  

 Rosuvastatin treatment 

(n=125) 

No treatment 

(n=120) 

General   

Age (years) 57 (19 - 83) 59 (21 - 81) 

Male 67 (53.6) 83 (69.2) 

BMI (kg/m2) 27.4 (19.2 - 43.5) 27.8 (17.2 - 43.3) 

Baseline cholesterol (mmol/L) 5.59 (2.95 - 8.98) 5.59 (3.33 - 7.89) 

Aspirin use 5 (4) 5 (4.2) 

Venous thromboembolism characteristics   

Deep vein thrombosis 71 (56.8) 64 (53.3) 

Pulmonary embolism 54 (43.2) 56 (46.7) 

Unprovoked 56 (44.8) 63 (52.5) 

Provoked 69 (55.2) 57 (47.5) 

     Surgery/trauma/immobilization 32 (25.6) 31 (25.8) 

     Travel >4 h 22 (17.6) 14 (11.7) 

     Estrogen use (% in women) 24 (41.4) 14 (37.8) 

     Pregnancy/puerperium (% in women) 0 (0) 2 (5.4) 

     Malignancy 2 (1.6) 8 (6.7) 

Recurrent venous thromboembolism 10 (8) 8 (6.7) 

Cardiovascular risk factors   

Absent 37 (29.6) 25 (20.8) 

Present 88 (70.4) 95 (79.2) 

     Current smoking 18 (14.4) 17 (14.2) 

     Hypertension 24 (19.2) 21 (17.5) 

     Diabetes 3 (2.4) 0 (0) 

     Overweight (25 ≤ BMI < 30) 53 (42.4) 51 (42.5) 

     Obese (30 ≤ BMI)  29 (23.2) 35 (29.2) 

Continuous variables denoted as mean (range) and categorical variables as number of (%).  
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Table 2. Mean difference in measures of PPL activity (mU/ml) from baseline to study end within the treatment and no treatment group and 

between groups for all VTE and subgroups provoked and unprovoked VTE, DVT and PE.  

 Treatment group (T) (n=125) No treatment group (NT) (n=120) t-test Linear model* 

Subgroup Baseline 
Study 

end 

Change over 

study 
Baseline 

Study 

end 

Change over 

study 

Change T – 

Change NT 

Regression 

coefficient statins 

VTE          

All  3.30±2.47 2.82±2.08 -0.48 (-0.81,-0.15) 2.64±1.81 2.82±2.22 0.17 (-0.18,0.53) -0.66 (-1.14,-0.17) -0.63 (-1.12,-0.14) 

Provoked 3.32±2.56 2.88±2.24 -0.44 (-0.93,0.06) 2.62±1.65 2.78±2.31 0.15 (-0.44,0.75) -0.59 (-1.35,0.17) -0.54 (-1.31,0.23) 

Unprovoked 3.29±2.37 2.75±1.88 -0.54 (-0.97,-0.10) 2.66±1.95 2.85±2.14 0.19 (-0.24,0.62) -0.73 (-1.33,-0.12) -0.72 (-1.33,-0.10) 

DVT         

All 2.99±2.10 2.85±2.09 -0.13 (-0.51,0.24) 2.50±1.64 2.59±1.89 0.09 (-0.31,0.50) -0.23 (-0.77,0.32) -0.22 (-0.77,0.32) 

Provoked 2.74±1.97 2.85±2.24 0.11 (-0.31,0.52) 2.76±1.53 2.76±1.69 0.00 (-0.60,0.60) 0.11 (-0.58,0.80) 0.13 (-0.57,0.83) 

Unprovoked 3.29±2.24 2.86±1.92 -0.43 (-1.10,0.24) 2.29±1.72 2.45±2.05 0.16 (-0.41,0.73) -0.59 (-1.45,0.27) -0.60 (-1.47,0.27) 

PE          

All 3.72±2.85 2.78±2.09 -0.94 (-1.52,-0.36) 2.81±1.98 3.08±2.53 0.27 (-0.35,0.89) -1.21 (-2.05,-0.37) -1.13 (-2.01,-0.26) 

Provoked 4.07±3.05 2.92±2.29 -1.14 (-2.13,-0.16) 2.49±1.78 2.79±2.82 0.30 (-0.75,1.36) -1.45 (-2.86,-0.04) -1.34 (-2.85,0.18) 

Unprovoked 3.28±2.58 2.60±1.85 -0.68 (-1.21,-0.15) 3.16±2.16 3.39±2.18 0.23 (-0.45,0.92) -0.91 (-1.77,-0.05) -0.90 (-1.79,-0.00) 

Values are means ± 1 standard deviation (SD) or the mean difference between groups with 95% confidence intervals in parenthesis.  

* Adjusted for age and sex.  

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein thrombosis, PE: pulmonary embolism  



 

 

Table 3. Treatment effect of rosuvastatin on measures of PPL activity in percentage change 

and as a linear model for all VTE and subgroups provoked- and unprovoked VTE, DVT and 

PE.  

Subgroup Delta T - Delta NT 
Percentage change 

(%) 

Linear model 

adjusted effect* 

Adjusted percentage 

effect* (%) 

VTE 
    

All  -0.66 (-1.14,-0.17) -22.0 (-38.2,-5.8) -0.63 (-1.12,-0.14) -21.0 (-37.5,-4.6) 

Provoked  -0.59 (-1.35,0.17) -19.7 (-45.0, 5.6) -0.22 (-0.77,0.32) -18.0 (-43.8, 7.7) 

Unprovoked  -0.73 (-1.33,-0.12) -24.7 (-45.1,-4.2) -0.72 (-1.33,-0.10) -24.3 (-45.1,-3.5) 

DVT     

All  -0.23 (-0.77,0.32) -8.2 (-28.0,11.6) -0.22 (-0.77,0.32) -8.1 (-27.9,11.8) 

Provoked  0.11 (-0.58,0.80) 3.9 (-21.2,29.0) 0.13 (-0.57,0.83) 4.6 (-20.8,30.0) 

Unprovoked  -0.59 (-1.45,0.27) -21.4 (-52.5, 9.7) -0.60 (-1.47,0.27) -21.7 (-53.3, 9.9) 

PE     

All  -1.21 (-2.05,-0.37) -37.0 (-62.9,-11.2) -1.13 (-2.01,-0.26) -34.8 (-61.7,-8.0) 

Provoked -1.45 (-2.86,-0.04) -43.9 (-86.8,-1.1) -1.34 (-2.85,0.18) -40.7 (-86.6, 5.3) 

Unprovoked -0.91 (-1.77,-0.05) -28.4 (-55.2,-1.6) -0.90 (-1.79,-0.00) -27.9 (-55.7,-0.1) 

Values are mean differences between groups with 95% confidence intervals in parenthesis or 

percentage change calculated using the mean difference and dividing it by the mean baseline 

levels of PPL for both groups.  

*Adjusted for age and sex 

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein 

thrombosis, PE: pulmonary embolism 

 

 

 

 

 

 

 



 

 

 

Figure 1. Flow chart of the study participants with numbers at enrolment, randomization, 

follow-up and reasons for withdrawal.  

* Hospitalization with acute asthma exacerbation  

  



 

 

 

Figure 2. Forest plots of changes in plasma PPL activity (mU/ml) (after minus before) within 

the rosuvastatin treatment and the no treatment group and between groups for all VTEs, 

DVTs and PEs. Values are means with 95% confidence intervals.  

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein 

thrombosis, PE: pulmonary embolism 

  



 

 

 

Figure 3. Forest plot of the treatment effects (change within the statin group minus the 

change in the no treatment group) as percentage change in PPL activity for all VTEs, DVTs, 

and PEs. Values are means with 95% confidence intervals. 

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein 

thrombosis, PE: pulmonary embolism 

  



 

 

 

Figure 4. Change in individual total cholesterol levels from baseline to study end plotted 

against change in individual PPL activity for the treatment group.   

  



 

 

 

Figure 5. The effect of rosuvastatin treatment on extracellular vesicle count, measured by 

flow cytometry. The changes in lactadherin positive EV count (A and B) and platelet-derived 

EV count (C and D) are shown for the two study groups, i.e. no treatment group (A and C) 

and the rosuvastatin treatment group (B and D). The larger circles represent the mean, and a 

line is drawn to connect the means between baseline and study end within the groups.  

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein 

thrombosis, PE: pulmonary embolism 

 

 

 



 

 

Supplementary Table 1. Mean difference in lactadherin positive EV count (count/μl) from baseline to study end within the treatment and no 

treatment group and between groups for all VTE and subgroups provoked and unprovoked VTE, DVT and PE.  

 Treatment group (T) (n=40) No treatment group (NT) (n=19) t-test Linear model* 

Subgroup Baseline  
Study 

end 

Change over 

study 
Baseline 

Study 

end 

Change over 

study 

Change T – 

Change NT 

Regression 

coefficient 

statins 

VTE          

All  833±580 776±463 -57 (-274,159) 532±410 592±304  60 (-69,188) -117 (-440,206) -123 (-451,204) 

Provoked 768±492 795±454  27 (-234,289) 511±351 623±288  112 (-73,296) -85 (-441,272) -85 (-455,285) 

Unprovoked 899±662 757±483 -142 (-508,224) 569±526 539±347 -30 (-223,163) -112 (-736,511) -178 (-777,420) 

DVT         

All 812±758 717±472 -95 (-530,341) 331±235 482±229 151 (-34,335) -245 (-827,336) -339 (-952,274) 

Provoked 425±275 654±418  229 (-536,994) 374±279 538±267 164 (-139,467) 65 (-570,700)  142 (-518,801) 

Unprovoked 988±850 746±511 -242 (-833,349) 246±96 369±48 123 (-227,473) -365 (-1508,777) -519 (-1521,483) 

PE          

All 847±441 815±463 -32 (-278,213) 713±459 691±339 -22 (-218,174) -10 (-404,384) -12 (-418,393) 

Provoked 882±501 842±470 -40 (-341,261) 648±385 707±305  59 (-265,384) -100 (-598,399) -111 (-647,426) 

Unprovoked 789±338 770±476 -20 (-538,499) 812±603 667±435 -145 (-433,144) 125 (-646,896)   61 (-765,888) 

Values are means ± 1 standard deviation or the mean difference between groups with 95% confidence intervals in parenthesis.  

* Adjusted for age and sex 

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein thrombosis, PE: pulmonary embolism 

  



 

 

Supplementary Table 2. Mean difference in platelet-derived extracellular vesicle count (count/μl) from baseline to study end within the 

treatment and no treatment group and between groups for all VTE and subgroups provoked and unprovoked VTE, DVT and PE. 

 Treatment group (T) (n=40) No treatment group (NT) (n=19) t-test Linear model* 

Subgroup Baseline  
Study 

end 

Change over 

study 
Baseline 

Study 

end 

Change over 

study 

Change T – 

Change NT 

Regression 

coefficient 

statins 

VTE          

All  419±347 407±312 -12 (-150,126) 245±253 281±199   37 ( -50,123) -49 (-256,158) -53 (-262,157) 

Provoked 386±315 408±306  22 (-146,190) 231±205 311±183   80 ( -46,205) -58 (-288,173) -60 (-299,179) 

Unprovoked 452±382 406±327 -46 (-281,189) 267±337 231±230 -37 (-151,77)   -9 (-408,390) -48 (-443,347) 

DVT         

All 411±424 381±296  -30 (-287,227) 121±86 212±168   91 (-32,214) -121 (-466,224) -179 (-542,183) 

Provoked 206±176 340±247  134 (-314,582) 150±91 267±185   117 (-88,322)    17 (-368,402)    54 (-350,457) 

Unprovoked 504±476 399±325 -105 (-458,248) 62±27 101±13   39 (-40,118) -144 (-826,538) -230 (-851,391) 

PE          

All 424±295 424±328    0 (-171,171) 356±304 344±212 -12 (-148,124)   12 (-262,286)    7 (-275,289) 

Provoked 446±332 431±328 -15 (-216,185) 312±262 355±187  42 (-179,264)  -58 (-390,275) -74 (-428,280) 

Unprovoked 387±233 413±348  26 (-351,403) 421±391 328±276 -94 (-318,130) 120 (-442,681)   78 (-537,693) 

Values are means ± 1 standard deviation or the mean difference between groups with 95% confidence intervals in parenthesis.  

* Adjusted for age and sex 

PPL: procoagulant phospholipids, VTE: venous thromboembolism, DVT: deep vein thrombosis, PE: pulmonary embolism 
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