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1 Abstract 

Heart failure is a condition with increasing incidence, and remains a global pandemic. In vitro 

studies of molecular mechanisms aid in understanding the processes leading to and 

augmenting heart failure. The H9c2 cell line is an established model for the research of 

cardiac metabolism, toxicity studies and heart failure, mainly due to its origin from 

myocardial tissue. It possesses the ability to differentiate from an embryonic undifferentiated 

phenotype toward a cardiac muscular phenotype, induced by all-trans-retinoic acid (RA) and 

low serum concentrations in the culturing media. The alterations following differentiation 

increases its resemblance with adult cardiomyocytes with regard to morphology and 

metabolism. This study aims to further increase knowledge about the cell line’s metabolic and 

morphologic characteristics after RA-treatment. We differentiated H9c2 cells for 5, 10 and 15 

days and assessed the cells by respirometry, real-time qPCR and immunostaining. Our results 

are not conclusive, but still shows major remodeling during RA-induced maturing of the 

H9c2 cells. During RA-induced differentiation the cells appear larger and elongated, ordering 

themselves in a parallel fashion. Results from qPCR shows an early increase in expression of 

structural genes, while metabolic genes are upregulated later in the differentiation. Results 

from respirometry shows increased oxidative phosphorylation and increased spare capacity 

due to increased mitochondrial content.  

2 Introduction  

The incidence of heart failure (HF) is still rising, and is considered a global pandemic (1). 

Heart failure is a clinical syndrome and the terminal manifestation of a series of pathological 

processes leading to a non-functional, poorly contracting heart (2, 3). This means that the 

pathophysiology and etiology of HF is complex, and the knowledge about the underlying 

mechanisms that ultimately leads to a failing heart is still to be fully understood (3). The 

patient group is heterogeneous and frequently have comorbidities, which complicates the 

study of the condition (4). Cellular and molecular mechanisms are therefore commonly 

studied by the use of in vitro cell and animal models. In vitro models of the heart are difficult 

to establish, as the heart have one very characteristic feature – it is continuously contracting. 

Additionally, cardiomyocytes have low proliferative capacity, which makes them difficult to 

culture and sustain over a longer period of time (5). The H9c2 cell line has been established as 

an important in vitro model for studies on the failing heart as well as toxicity studies and 

metabolic studies (6). The H9c2 cell line was isolated and immortalized in the late 1970s 
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from the ventricular part of a BDIX rat heart in a 13 days old embryo (7, 8). Because of its 

similar responses to hypertrophy and cardiotoxic agents as in vivo cardiomyocytes, it has 

become an established model for cardiac research (9). The H9c2 cell line is beneficial in use 

as it is easy to stimulate and treat, cheaper than animal studies and this is a resilient cell line.  

One characteristic of heart failure is metabolic remodeling, and the study of metabolism in 

heart failure models is important to get a better understanding of the condition (10). As 

opposed to a primary cardiomyocyte, the H9c2 cells are not contracting and their metabolism 

are therefore much lower. Additionally the H9c2 cells are glycolytic whereas cardiomyocytes 

primarily have an oxidative metabolism. The mainly glycolytic profile of the undifferentiated 

H9c2 might be explained by their fetal origin. The fetal environment is more hypoxic with 

higher levels of lactate and lower levels of fatty acids compared to the adult heart (11). 

However, the H9c2 cell line possesses the ability to differentiate toward a cardiac phenotype 

under the right conditions. During this differentiation, the metabolism shifts from mainly 

glycolytic to more oxidative metabolism (8, 12). Although the metabolism changes towards 

oxidative during differentiation of the H9c2 cells, it is difficult to compare this with the 

maturing of the myocard that happens during the first days of life. However, we know that 

there is an increase in mitochondrial mass and that the main consumption of oxygen in a cell 

is through generation of adenosine triphosphate (ATP) in oxidative phosphorylation in the 

mitochondria (6, 12). The maturing of the H9c2 cells by RA-induced differentiation also 

creates a more energy efficient cell with better coupling between the glycolytic and oxidative 

pathway (11). The adult heart can utilize any substrate available, but in the healthy heart, the 

main substrate used for oxidative phosphorylation is free fatty acids (11, 13). The adult 

cardiomyocyte both requires, but also have better access to, oxygen, glucose and free 

circulating fatty acids than the fetal cardiomyocytes (11). Whether the H9c2 cells have a 

preference towards glucose or fatty acid utilization is unknown remains elusive.   

Because of the continuous mechanical work, the heart requires a high delivery of substrates to 

produce ATP. ATP can be produced both via glycolytic and oxidative pathways, and in the 

heart the oxidative metabolism dominates (14). In fact, 95 % of all produced ATP comes from 

oxidative phosphorylation in the complexes in the inner membrane of the mitochondria (14). 

As the generation of ATP is essential for contraction, the myocytes are flexible in substrate 

utilization depending on workload, feeding state and pathophysiological processes proceeding 

heart failure (13). The mitochondrion plays a crucial role in the homeostasis of the cells, and 

is central in both health and pathological processes. ATP-production in the mitochondria 
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happens through oxidative phosphorylation (OXPHOS) (13). This is a process where at least 

five large proteins embedded in the inner mitochondrial membrane, cooperate to yield ATP 

(Fig. 1). Complex I-IV participate in the electron transport chain (ETC), where oxygen is 

ultimately reduced to water at complex IV. Complex I, III and IV are transmembrane, and 

simultaneously with receiving electrons, they transfer protons across the inner mitochondrial 

membrane to the intermembrane space (IMS) between the two double lipid membranes that 

makes the mitochondrial wall. The transfer of protons to IMS, generates an electrochemical 

gradient across the membrane. The last complex in oxidative phosphorylation is complex V 

or the ATP-synthase. The ATP-synthase consists of two functioning units, F0 and F1, where 

F0 is within the inner mitochondrial membrane and F1 is in the matrix. F1 consists of several 

subunits that forms a rotating ring around a stalk. The energy released when ATP-synthase 

transport protons back to the mitochondrial matrix, causes a conformational change in F1, 

which in turn, enables binding of adenosine diphosphate (ADP) and simultaneously 

phosphorylation of ADP to ATP (15, 16).   

 

Figure 1: Schematic illustration of oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane. 

OXPHOS is closely linked to the tricarboxylic acid (TCA) cycle, as shown here, by feeding NADH and FADH2 
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to complex I and complex II respectively. OXPHOS include complex I-V, while natural uncouplers are important 

in case of high rate of substrate utilization and proton buildup in the inter membrane space (15). 

The differentiation potential of the H9c2 cells is carried out by a protocol using all-trans-

retinoic acid (RA) and lowering the concentration of fetal bovine serum (FBS) in the 

culturing media. RA-induced differentiation pushes the cells towards an adult cardiac 

phenotype. RA is a morphogen, known to be essential for the finely tuned embryonal 

development of the heart (17). Under culturing conditions with high levels of FBS, the cells 

have high proliferative capacity. By reducing the serum concentration, their proliferative 

capacity is lowered (18). The morphological changes are apparent after a few days of 

differentiation, where elongated cells are seen using a microscope. Simultaneously, the cells 

rearrange to order themselves in clusters in a parallel fashion. It is commonly claimed that 

during differentiation, the cells transform from mononucleated to multinucleated. If this 

happens by cell fusion or by a process of karyokinesis is somewhat unclear (19). 

Additionally, there has been shown presence of multinucleated cells at the undifferentiated 

state (5), while others have shown exclusively mononucleated cells in newly plated cells (19). 

Studies of genetic profiling of the RA-differentiated H9c2 cells are sparse, although some 

studies show that RA-induced maturation of the H9c2-cells have great impact on the gene 

expression and transcription. Cardiac specific markers like cardiac troponin T, myomesin2, 

myogenin, ryanodine receptor 1, sarcolipin and sarcoplasmic calcium transporter ATP2a1 has 

shown to be upregulated in several studies (6, 8, 20), and can be used to confirm the validity 

of the differentiation protocol. There has been shown an upregulation of genes involved in 

mitochondrial energy production, i.e. genes involved in oxidative phosphorylation as well as 

upregulation of genes involved in handling of fatty acids (8). There has also been shown an 

upregulation of the uncoupling proteins UCP2 and UCP3. Uncoupling proteins are located in 

the inner mitochondrial membrane, and are involved in the regulation of the proton gradient. 

This supports the knowledge that the mature H9c2 cell line is mainly oxidative, even though 

the high turnover of ATP for contraction is absent in a non-beating cell line.  

Even, being a popular model for cardiac research, the H9c2 cell line has lost many of its 

cardiac properties, such as the morphology and the contracting phenotype of primary cells. 

This is apparent with the first glance in the microscope, and is due to lack of the classical 

organization of the contractile apparatus, which make up a great part of the cytoskeleton and 

thereby the shape and mechanical function of the cells. The characteristics of the 

differentiated cells are still to be fully understood, and more knowledge about the cell will 
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enable improved protocols for culturing of the cells. Although the protocol seems straight 

forward, there is no straight forward way to assure that the cells have reached a differentiated 

state, if they are to be used for other purposes (11). When assessing the cells in the 

microscope after 5 days, the morphological changes are obvious. However, it is also apparent 

that the population is not homogenous. The differentiation protocol used at our research group 

is a 5-day protocol using 1µM RA and 1% FBS in the culturing media. This is a well-

established protocol, but there is no good evidence for the duration of the protocol, and there 

are little literature testing longer/shorter protocols. There has been suggested that other 

growth factors than RA could be used to induce differentiation towards a cardiac phenotype in 

the H9c2 cell line (21). Studies show that activation of the phosphoinositide-3 kinase (PI3K) 

and protein kinase C-δ (PKC- δ) pathways are involved in differentiation of cardiomyocytes 

and H9c2 cells (7). These pathways also have important roles both in physiologic and 

pathophysiologic hypertrophy. The binding of interleukin-6 (IL-6) to the IL-6 receptor 

activates PI3K and PKC-δ pathways, and thus makes IL-6 a contributor to cardiac 

hypertrophy (22, 23). There are few studies on the effect of IL-6 on the embryonic H9c2 cells, 

but one study shows that treating H9c2 cells with IL-6 induces differentiation(22).   

The main aim for this work was to make adjustments to the existing protocol for 

differentiation of H9c2 cells in order to culture a more homogenous cell population of cells 

with a cardiac phenotype. Additionally, we wanted to do experiments with other growth 

factors to look for any synergistic effect. We have performed experiments using IL-6 for 

differentiation with or without RA and FBS. We wanted to investigate the effect of a longer 

differentiation protocol on gene expression, metabolism and the morphologic alterations and 

did experiments of differentiation for 5, 10 and 15 days 

3 Materials & methods 

3.1 Cell culturing  

The H9c2 cells were cultured in Dulbecco’s Modified Eagles medium (DMEM) with high 

glucose concentration of 4500 mg/L (HG DMEM), supplemented with 10% FBS (Sigma-

Aldrich), and 1% penicillin/streptomycin (Sigma-Aldrich) in a CO2 incubator (Nuair, 

Plymouth, USA) at 37oC and 5% CO2 humidified air. At 70-80% confluence they were 

passaged.  
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3.2 Differentiation of H9C2 cells 

3.2.1 Comparing various differentiating protocols 

Cells were plated in 6-well plates. At a confluence of about 60%, differentiation was initiated. 

The cells were treated for five days with five differentiation protocols and one control group. 

To differentiate the cells we lowered the concentration of fetal bovine serum (FBS) from 10% 

under culturing conditions to 1-2% during differentiation. We utilized RA (Sigma-Aldrich) at 

a concentration of 1µM, and IL-6 (Sigma-Aldrich) at a concentration of 10µg/L. The 

differentiation protocols were as follows: 1% FBS, 1%FBS + 1µM RA, 1% FBS, 1µM RA + 

10µg/L interleukin 6, 2% FBS, 2% FBS + 10µg/L IL-6. Differentiation medium were 

changed every second day in the dark as RA is sensitive to light. After 5 days, the cells were 

harvested for cDNA synthesis and analysis of mRNA expression. 

3.2.2 Differentiation for 5, 10 and 15 days.   

Based on the results from the various differentiation strategies, we chose the 1%FBS + 1µM 

RA protocol to assess longer differentiation protocols and compared them to undifferentiated 

cells (T0)  Cells were differentiated for 5 (T5), 10 (T10) and 15 days (T15). Experiments were 

performed on passage 9, 11 and 13. At a confluence of 50-60%, differentiation were initiated.  

Differentiation medium were changed every second day in the dark. After the designated 

duration of differentiation, the cells were harvest for gene expression analysis (rt-PCR), 

respirometry, and immunostaining.  

3.3 High-resolution respirometry  

Mitochondrial respiration/respirometry studies were performed to assess oxygen consumption 

in the cells after the predetermined days of differentiation. Respirometry was performed at T0, 

T5, T10 and T15. Immediately before mitochondrial respiration, the cells were detached from 

the bottom of the flask using 2 ml trypsin (Sigma-Aldrich), neutralized with high glucose 

(HG) DMEM, 10% FBS and transferred to a 15 ml Falcon tube. The cell suspension was 

centrifuged for 5 minutes at 500 G, and the supernatant was removed. The remaining cell 

pellet was then diluted in 0.8 ml respiration medium and the cell concentration was quantified 

using a Countess IIFL cell counter (Invitrogen ThermoFischer, Roskilde, Denmark). The cell 

concentration was used to calculate volume needed of the cell suspension to obtain 600 000 

cells in each respiration chamber. Measurement of oxygen consumption in the cells were 

performed using a high-resolution respirometer (Oxygraph 2K, Oroboros Instruments, 

Innsbruck, Austria) and data recorded using the Datlab4 software (Oroboros instruments). On 
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each cell passage, we did respirometry both on intact and permeabilized cells. The data results 

from respirometry were normalized to «per million cells” obtained from the cell count and to 

citrate synthase (CS) activity.  

3.3.1 Citrate Synthase Assay 

Stored cells (-70°C) in MiR05 were analyzed for citrate synthase activity. Briefly this was 

done in the following manner. TritonX100, 4 µL of the cell sample was added to the assay 

buffer consisting of 0,25% 0.31 mM acetyl coenzyme A, 0,5 mM oxaloacetate (in 0.1M 

triethanolamine-HCl buffer, pH 8.0). The kinetic enzyme reaction was initiated by adding 0.1 

mM 5,5′-Dithiobis(2- nitrobenzoic acid) (DTNB) dissolved in 1M Tris_HCl, pH 8,1. CS 

activity was determined by measuring optical density (OD) at 412 nm every 15 sec in 2-3 min 

using a microplate reader (VersaMax, Molecular Devices, San Jose, CA, USA). The CS 

activity is expressed as nmol/(mL*min). All chemicals were obtained from Sigma Aldrich. 

3.3.2 Protocol for permeabilized cells 

To permeabilize the cell membrane, we added 5µg/mL Digitonin, which allow added 

substrates to move freely from the media to the mitochondria. Permeabilized cells were 

respiring in Mir05 (Appendix 1) with no substrates initially, however addition of substrates 

are necessary to feed the oxidative phosphorylation. 5µM Carnitine, 1mM Malate, 10µM 

Palmitate and 5mM Pyruvate was added as substrates for oxidative phosphorylation through 

complex I and electron-transferring flavoprotein complex (CETF). 2.5mM ADP was then 

added as a substrate for ATP-synthesis. In order to assess whether the mitochondrial 

membrane was intact, we added 10µM Cytochrome C. 10mM Succinate was added as a 

substrate for complex II. Figure 2 shows a representative example of the protocol used, with 

sequential addition of chemicals.  
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Figure 2: A representative example of the protocol for permeabilizing the cells. The permeabilized protocol uses 

Mir05 as respiration medium. Substrates to feed oxidative phosphorylation, is added during the experiment. The 

chemicals are added to the chamber in the following order 1)Digitonin (Dig): To permeabilize the outer cellular 

membrane, and make the cell available for substrates. 2) Carnitine, Malate & Palmitate (C+M+Pal): Substrates 

for complex I in oxidative phosphorylation. 3) Adenosine diphosphate (ADP): Added as a substrate for ATP 

synthesis at complex V (ATP synthase). 4) Pyruvate (Pyr): Is added as a substrate for complex I. 5) Cytochrome 

C (CytC): Added to assess the outer mitochondrial membrane. 6) Succinate (Succ): Added as a substrate for 

complex II. 7) Carbonyl cyanide m-chlorophenylhydrazone (Cccp): Added by titration, indicated with 2+ mark 

in the figure, until maximal oxygen consumption is reached. Cccp is a protonophore enabling protons to leak 

across the inner mitochondrial, and free-couple electron transport chain from ATP-synthesis at complex V. 8) 

Rotenone (Rot): Rotenone is added to inhibit respiration through complex I. 9) AntimycinA (AntiA): Added to 

inhibit complex III and measure oxygen consumption through complex I and III.  

3.3.3 Protocol for intact cells. 

Intact cells were respiring in HG DMEM supplemented with 20 µM palmitate, 1mM pyruvate 

and 5mM HEPES. Sequential addition of complex inhibitors influences the oxygen 

consumption rates as shown in figure 3. 10nM oligomycin, an inhibitor of ATP-synthase, was 

added to measure proton leak caused by the proton gradient across the inner mitochondrial 

membrane. 0.4-0.9µM Carbonyl cyanide m-chlorophenyl hydrazine (Cccp) was added by 

titration to free-couple the electron transfer (use of oxygen) from the phosphorylation of ADP 

to ATP. This enables measurement of the cells’ maximal capacity to reduce oxygen and 

respire under the experimental conditions. Adding 0.5µM rotenone inhibits complex I, and 

2.5µM Antimycin A inhibits the cytochrome C reductase (complex III). 
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Figure 3: A representative example of the protocol for intact cells.  Red line: O2 flux per volume (pmol/s-1*ml). 

Blue line: Oxygen (µM) concentration in the chamber. X-axis: time (h:min). Vertical lines marks addition of a 

chemical to the respiration chambers. The protocol for additions of chemicals is as follows:1) Oligomycin 

(Oligo): Inhibitor of the ATP-Synthase. 2) Carbonyl cyanide m-chlorophenylhydrazone (Cccp): Free-couples the 

electron transport chain from the phosphorylation at complex V (ATP-Synthase). Cccp is added by titration until 

a maximum oxygen consumption is reached (indicated in the figure with the +2 mark). 3) Rotenone (Rot): 

Inhibitor of complex I. 4) Antimycin A (AntiA): Inhibitor of complex III.  

The inhibitors and free-coupler (Cccp) used in the protocol for intact cells (Fig. 4) can be used 

to further examine several parameters and characteristics of the cells, as shown in figure 3.  

 

Figure 4: The cellular bioenergetic profile. Parameters we can assess using the protocol for intact cells. The 

figure is adapted from the work of Chacko et. Al (2014). Analysis of the bioenergetic profile for a cell can be 
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used to measure several indicators of mitochondrial respiration in intact cells in real-time. It may identify 

respiratory changes and defects. First in the protocol, cellular respiration (orange box in the illustration) is 

recorded and represent all the processes consuming oxygen in the cells, under the context given by the media 

composition. This include both mitochondrial respiration and other oxidases. Next, oligomycin an inhibitor of 

ATP-Synthase is added, and respiration linked to ATP production is uncovered (yellow box). Furthermore, Cccp 

a proton ionophore is titrated step-wice to generate the maximal respiration. Then the electron transfer is not 

anymore controlled by the proton gradient and ATP-Synthase activity. This is mirroring the spare capacity for 

the mitochondria (light blue box). Non-mitochondrial O2 use consumption by the cell is emerging by using 

rotenone (CI inhibitor) and Antimycin A (CIII inhibitor). Finally, the difference between oxygen consumption 

rate (OCR) with oligomycin and non-mitochondrial- mitochondrial O2 consumption, reflects the proton-leak 

(green box). For review, see Chacko with coworkers 2014 and Hill with coworkers 2012.(24, 25).  

3.4 RNA isolation and cDNA synthesis 

Cells intended for RNA-isolation were cultured in 6-well plates. Examining altered gene 

expression is performed in a three-step manner, where the first step is to isolate RNA from the 

cells. The total RNA was isolated from the H9c2 cells according to the protocol for the 

RNaeasy Plus Mini kit (Qiagen, Hilden, Germany).  

Step two is to synthesize cDNA from the isolated RNA. cDNA synthesis was performed 

using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems) according to 

the manufacturer’s protocol.  

3.5 Real-time quantitative PCR (RT-qPCR) 

The third step in examining gene expression is analysis of the cDNA using polymerase chain 

reaction (PCR). Primers (table 1) used in the qPCR were obtained from Sigma, and for each 

run we used Fast Start Essential DNA Green Master (Roche diagnostics, Mannheim, 

Germany). The real-time PCR reactions were analyzed in Roche LightCycler96 (Roche 

diagnostics) with 40 PCR cycles and melting curve analysis after the PCR. Quantification 

cycle (Cq) is automatically reported by the Light cycle software 4.1. Cq 37 was set as the 

highest Cq that was possible to accurate measure. Analyzed genes were chosen, based on 

existing literature and our own previous research.  

The expression of genes is normalized to a reference gene. We tested four different reference 

genes, and chose the most stable gene according to the results from the GeNorm-analyzis 

(26). mRNA expression was also normalized to the control group, i.e. the undifferentiated 

cells. In the differentiation protocols using IL-6, cyclo was set as reference gene. In the 

differentiation protocols of varying duration, gapdh was set as reference gene. 
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Table 1: Forward and reverse primers used in qPCR with primer sequences. 

Gene Protein Function Sequence 

Tnnt2 Cardiac Troponin T Structural/Differentiation FP: CGACCACCTGAATGAAGACC 

RP: CGGCCTCTAGGTTGTGGA 

Myom2 Myomesin2 Differentiation FP: AATCGTGGCAAGGTGATTG 

RP: GTGCAGGTGAGGTTCAAGGT 

ATP2a2 ATPase, Ca++ 

transporting, cardiac 

muscle, slow twitch 2 

(Serca2) 

Calciumhandling/Differen

tiation 

FP: GAGAACGCTCACACAAAGACC 

RP: CAATTCGTTGGAGCCCCAT 

PGC1β Peroxisome 

profliferator-activated 

receptor gamma, 

coactivator 1 beta 

Metabolic FP: TGGCCCAGATACACCGACTA 

RP: TTGCTTTTCCCAGACGAGGG 

SLC25A4 Adenine nucleotide 

translocase (ANT1) 

Metabolic FP: CCTCTGCTTCGTCTACCCAC 

RP: GACCCTTCAGGCCATCAGAC 

UCP3 Uncoupling protein 3 Metabolic FP: TACAGAACCATCGCCAGGA 

RP: TATCGGGTCTTTACCACATCCA 

PDK4 Pyruvate dehyodreganse 

Kinase 4 

Metabolic FP: GCATTTCTACTCGGATGCTCATG 

RP: CCAATGTGGCTTGGGTTTCC 

CD36 CD36 Metabolic FP: GCGACATGATTAATGGCACA 

RP: TGGACCTGCAAATGTCAGAG 

CPT1α Carnitine 

Palmitoyltransferase 1A 

Metabolic FP: GCACCAAGATCTGGATGGCTTATGG 

RP: TACCTGCTCACAGTATCTTTGAC 

 

Plin2 Perilipin2 Metabolic FP: AGAAGGAGCTCGAGAAAGCAA 

RP:TTGTTTGGCGTCTTTGATCCTGCC 

GAPDH Glyceraldehyde 3-

phosphate 

dehydrogenase  

Housekeeping gene FP: TGGGAAGCTGGTCATCAAC 

RP: GCATCACCCCATTTGATGTT 

CYCLO Peptidylprolyl isomerase 

A 

Housekeeping gene  FP: CTGATGGCGAGCCCTTG 

RP: TCTGCTGTCTTTGGAACTTTGTC 
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3.6 Immunostaining of H9c2 cells 

Undifferentiated cells and differentiated cells (T0, T5, T10 and T15) were seeded on glass 

coverslips and fixed (4% PFA for 20 min at 37 °C). Before immunostaining, cells were 

permeabilized with methanol for 5 min. The permeabilized cells were blocked with 3% goat 

serum in PBS for 1 hour, before incubation with the primary antibody (anti-TOM20 FL-145 

1:500 dilution) and incubated overnight (4 °C). Cells were washed 6 x in PBS and incubated 

with the secondary antibody (Alexa 488 anti-rabbit antibody, Invitrogen,1:500 dilution)  and 

PE conjugated cardiac troponin T antibody (Miltenyi Biotek, 1:50 dilution) in 1% goat serum 

for 1 hour in room temperature. Before mounting, cells were washed and stained with DAPI 

(1:1000, 5 min). Confocal images were obtained using a 40x/NA1.2 water immersion 

objective on a LSM780 (Carl Zeiss) using the ZEN Imaging Software.  

4 Statistics 

The results are presented as means ± standard error of means (SEM) in column bar graphs. In 

order to compare differences between two groups, paired Student’s t-tests were performed. 

 

5 Results 

5.1 Assessment of differentiation 

In order to investigate the differentiation protocols for H9c2 cells further, we initially treated 

undifferentiated H9c2 cells for five days using different protocols. We did qPCR on selective 

genes related to differentiation and metabolism.  

The protocol using 1% FBS for differentiation has 6.7-fold upregulation of myomesin-2 

(myom2) (Fig. 5). Myomesin2 also called M-protein is part of the myomesin family, proteins 

that constitute the M-band and present in the adult heart and fast fibers (27, 28). There is also 

a 3.6-fold increase in mRNA expression of cardiac Troponin T (tnnt2). These results indicate 

a differentiation towards a muscular phenotype. Differentiation using 1% FBS with RA shows 

the same trend as with 1% FBS, although with a higher increase in expression of myom2 and 

tnnt2 of 10.6 and 6.10-fold up. There is also an increase in mRNA expression of the gene 

coding for ATPase Ca2+ dependent slow-twitch cardiac muscle-2 protein (atp2a2), with a 1.9-

fold increase. The peroxisome proliferator-activated receptor gamma coactivator 1 beta 

(pgc1β), encoding a protein involved in β-oxidation in the mitochondria and mitochondrial 

biogenesis (29) is 2.0-fold up. This gene increases its expression in the protocol with RA 
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compared to differentiation only using 1% FBS. Comparing to the control group, pgc1β has 

higher expression in the group treated with 1%FBS and RA (Fig. 4). In the group using 1% 

FBS, RA and IL-6 for differentiation, there is an increase in the expression of all of the tested 

genes compared to the control group. However, when comparing to the protocol only using 

1% FBS and RA, the increase in myom2, tnnt2 and pgc1β, is lower in the group adding IL-6 

to the protocol. From these results, there is no apparent synergistic effect of adding IL-6 to the 

differentiation protocol when looking at these differentiation-related genes. The protocol 

using 2% FBS (Fig. 4) also increases its expression of myom2 (3.8-fold up), atp2a2 (1.25-fold 

up) and tnnt2 (2.5-fold up) compared to the control group, but not when comparing to the 

group using 1% FBS in mono treatment. There are no significant alterations in the mRNA 

expression of ant1 in either of these differentiation protocols.  

 

 

Figure 2: mRNA expression of selected genes: Cardiac Troponin T (tnnt2), myomesin2 (myom2), ATPase Ca2+ 

dependent slow-twitch cardiac muscle-2 protein (atp2a2) peroxisome proliferator-activated receptor gamma 

coactivator 1 beta (pgc1β) and adenine nucleotide translocase type 1 (ant1) related to differentiation and 

metabolism in five different differentiation protocols. Control: Undifferentiated cells cultured in 10% FBS (fetal 

bovine serum). RA: All-trans retinoic acid. IL-6: Interleukin 6. Data are means ± SEM, n=4 in each group, 

*p<0.05 vs control.  
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5.2 Differentiation for 5, 10 and 15 days  

5.2.1 Gene expression at different time points  

We have performed qPCR on selected structural and metabolic genes after differentiating the 

cells 0, 5, 10 or 15 days.  

In the graph (Fig. 6), the expression of each gene is relative to level of expression in the 

undifferentiated cells. The expression of atp2a2, encoding sarcoplasmic reticulum calcium 

ATPase2 (SERCA2) had no significant change in expression at any time points (Fig. 6A). 

The expression of tnnt2, had a 13.8-fold increase at T5 and a 12.2-fold increase at T10 and 6.0-

fold increase at T15 (Fig. 5A). The expression of myom2 was upregulated at T5 with an 18.9-

fold increase and further 32.9-fold increase at T10 compared to T0. At T15 it is 25.8-fold up 

compared to T0 (Fig. 6A). The expression of pgc1β, involved in mitochondrial biogenesis, is 

upregulated at T5 with a 2.7-fold increase. At T10 and T15 it is 2.65 and 1.72 up respectively 

(Fig. 6B). Cd36, coding for CD36 molecule and involved in fatty acid handling, has increased 

expression in all protocols compared to T0 (Fig. 6C), although not statistically significant. 

Ucp3, encoding uncoupling protein 3, is not expressed at T0, but is upregulated at T5 with a 

76–fold increase and again at T10 with a 220-fold increase, with no further increase at T15 

from T10 (Fig. 6D). Pdk4, a mitochondrial related protein, is significantly upregulated at T5 

with a 76,8 fold increase, 994 fold up at T10 and 4355 fold up at T15 (Fig. 6E).  
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Figure 3: mRNA expression at T0, T5, T10 and T15 for selected genes. Data are means ± SEM, n=4 in each group, 

*p<0.05 vs control. 

5.2.2 Immunostaining 

During differentiation, the H9c2 cells changed morphology as illustrated in figure 7 showing 

representative pictures of immuno-stained cells from the different timepoints. H9c2 cells 

hypertrophied with differentiation together with elongation of the cells, compared to cells at 

T0. Although not quantified in this study, the cell population appear more heterogeneous at T5, 

T10 and T15 compared to what is seen at T0. Staining of the mitochondrial outer membrane 

protein; TOM20 staining showed a more extensive network of mitochondria following 

differentiation, especially at T10 and T15, while the intensity of cardiac troponin T-stained 

cells seemed to peak around T10.  
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Figure 4: Representative pictures using confocal microscopy of differentiated H9c2 cells at different timepoints; 

0, 5, 10 and 15 days (T0, T5, T10 and T15). Cells were stained for cardiac troponin T (cTnT), mitochondrial 

network (Tom 20) and nucleus staining (DAPI). Scale bar is 20 µm.  
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5.2.3 Respirometry 

5.2.3.1 Mitochondrial respiration with permeabilized cells 

In order to further assess metabolic changes in the differentiated cells, we performed 

mitochondrial respiration.  

Basal respiration (Fig. 8A) is not different between groups, although there is a trend for 

increased uncoupling using palmitate and carnitine as a substrate (LEAKPal) with increased 

length of the differentiation protocol (Fig. 8B). Similarly, there is also a trend for a steady 

increase in oxidative phosphorylation (OXPHOS) using these substrates (OXPHOSPal) with 

longer duration of differentiation (Fig. 8C). Adding pyruvate as a substrate for complex I (CI) 

induced a significant increase in OXPHOSPal+CI versus undifferentiated cells, but only at T10 

(Fig. 8D). Adding succinate as a complex II (CII) substrate did not result in a substantial 

increase in OXPHOS (OXPHOSPal + CI + CII, Fig. 8G). Due to the selected protocol, it is not 

possible to distinguish the CII activity alone as succinate is added after the palmitate, 

carnitine and pyruvate. The electron transport chain (ETC) capacity in the mitochondria was 

measured following addition of Cccp, which free-couples the ETC from the phosphorylation. 

Again, ETC capacity was significantly increased at T10, with a trend for increased ETC 

capacity at T5 and T15 versus T0 (Fig. 8G). We see the same trends for ETC-CI (Fig. 8H) 

when CI was inhibited by rotenone. Adding 10µM Cytochrome C (CytC) did not increase the 

OXPHOS respiration, indicating intact outer mitochondrial membrane in the cells, which was 

not affected by the differentiation protocols nor pre-experimental preparations (Fig. 8E). 
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Figure 8: A-H: Mitochondrial respiration measured in H9c2 cells permeabilized with 20 µg/ml digitonin and 

normalized to “per million cells”. A (BASAL): Basal respiration prior to addition of substrates. B (LEAKPal): 

Leak-state measuring intrinsic uncoupling in the mitochondrial membrane after addition of complex I substrates 

(5µM carnitine, 1mM malate, 10µM palmitate). C (OXPHOSPal): Measuring oxidative phosphorylation through 

complex I and electron-transferring flavoprotein complex (CETF) after addition of 2.5mM ADP for ATP-

synthesis. D (OXPHOSPal+CI):Measuring oxidative phosphorylation after 5mM pyruvate as a substrate complex 

I. E (CytC): 10µM Cytochrome C (Cytc) is added to assess whether the outer mitochondrial membrane is intact. 

F (OXPHOSPal+CI+CII): Measuring oxidative phosphorylation after addition of 10mM succinate as substrate for 

complex II. G (ETCPal+CI+CII ): Oxygen consumption after addition of Carbonyl Cyanide m-Chlorophenyl 

hydrazine (Cccp) to free-couple the electron transport from complex I to complex IV from the phosphorylation at 

complex V and measuring the maximal electron transport capacity. H (ETC-CI): Measuring respiration after 

inhibiting complex I with 0.5µM rotenone.  Values are mean ± SEM, n=3 in each group, *=p<0.05.  

When normalizing mitochondrial respiration to citrate synthase (CS) activity (Figure 9A-H), 

there is a significant reduced basal respiration at all subsequent time points (Fig. 9A). 

Interestingly, none of the other measured states were significantly altered by the 

differentiation protocols when the data were normalized to CS activity. 

 

 



 

Page 21 of 29 

 

Figure 9: A-H: Mitochondrial respiration measured in H9c2 cells permeabilized with 20 µg/ml digitonin and 

normalized to citrate synthase (CS) activity. A (BASAL): Basal respiration prior to addition of substrates. B 

(LEAKPal): Leak-state measuring intrinsic uncoupling in the mitochondrial membrane after addition of complex 

I substrates (5µM carnitine, 1mM malate, 10µM palmitate). C (OXPHOSPal): Measuring oxidative 

phosphorylation through complex I and electron-transferring flavoprotein complex (CETF) after addition of 

2.5mM ADP for ATP-synthesis. D (OXPHOSPal+CI):Measuring oxidative phosphorylation after 5mM pyruvate as 

a substrate complex I. E (CytC): 10µM Cytochrome C (Cytc) is added to assess whether the outer mitochondrial 

membrane is intact. F (OXPHOSPal+CI+CII): Measuring oxidative phosphorylation after addition of 10mM 

succinate as substrate for complex II. G (ETCPal+CI+CII ): Oxygen consumption after addition of carbonyl cyanide 

m-chlorophenyl hydrazine (cccp) to free-couple the electron transport from complex I to complex IV from the 

phosphorylation at complex V and measuring the maximal electron transport capacity. H (ETC-CI): Measuring 

respiration after inhibiting complex I with 0.5µM rotenone. Values are mean ± SEM, n=3, *=p<0.05. 

RA-induced differentiation is expected to increase the mitochondrial content in the H9c2 

cells. One way to assess this, is through activity of the mitochondrial enzyme citrate synthase. 

Figure 10A shows that there is steady increase of CS-activity per protein with longer 

differentiation protocols. Figure 10B shows the correlation between cell count and protein 

concentration. There seems to be a linear correlation, although somewhat unclear probably 

due to few experiments.  
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Figure 10: A: Activity of the mitochondrial protein citrate synthase (CS) per protein concentration at T0, T5, T10 

and T15. CS-activity: nmol/ml*min. Protein-concentration: mg/ml. B: Correlation between measured protein 

concentration in the cell suspension and cell count in from the cell suspension. Cell count from the cell 

suspension were performed immediately before adding cells to the chamber at every experiment with 

mitochondrial respiration.  

5.2.3.2 Mitochondrial respiration with intact cells 

There is a significant reduction in the basal respiration (Fig. 11A) from T0 to T5 and T10. The 

basal respiration is overall higher in the intact cells, than the permeabilized, indicating 

affected respiration by the medium in which the cells respire during experiment. By adding 

oligomycin and inhibiting the ATP-Synthase, we can measure the natural uncoupling (Fig. 

11B) or the LEAK. The oxygen consumption is significantly reduced from T0 to the following 

time points in the differentiation protocol. The ETC (Fig. 11C) shows a trend of increased 

electron transport capacity with longer differentiation protocol. By adding rotenone, and 

inhibiting CI, there is a significant reduction in respiration from T0 to the following time 

points in the protocol (Fig. 11D). The same trend was seen after addition of AntimycinA, 

inhibiting complex III (data not shown).  

   

Figure 11: Mitochondrial respiration with intact cells, normalized to per million cells. A (BASAL): Basal 

respiration. Respiration measured before addition of any inhibitors. B (LEAK): Leak-state. Measuring leak of 

protons, not coupled to the respiratory complexes. C (ETC): Electron transport capacity (ETC) measures the 

maximal respiratory capacity of the cells by free-coupling protons from the electron transport chain. D (ETC-
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CI): Measures respiration after inhibiting complex I with rotenone, and therefore shows respiration through 

complex II, complex IV and non-mitochondrial respiration T0: Undifferentiated. T5: 5-day differentiation 

protocol. T10: 10-day differentiation protocol. T15: 15-day differentiation protocol. Values are mean ± SEM, 

n=3, *=p<0.05. 

When normalizing to CS-activity in intact cells, we saw the same trends as when normalizing 

to per million cells (data not shown).   

Looking closer at the internal characteristic of the mitochondria, we normalized the data from 

respiration in each group to the measured maximal respiratory capacity (the ETC). By using 

the theory of mitochondrial bioenergetics from figure 3, we created sector diagrams for the 

each of the timepoints (Fig. 12, A-D). The diagrams show that there is a 14-10% increase in 

spare capacity with longer duration of the differentiation protocol. There is a 5-4% reduction 

in the LEAK from T0 to the next time points. The ATP-linked respiration is reduced with 

longer differentiation protocol, and the same accounts for the non-mitochondrial respiration.   

 

 

Figure 12: Respiratory data from intact cells relative to maximal respiratory capacity. Blue sector: Spare 

capacity of the cells. Yellow sector: ATP-linked respiration. Green sector: Proton leak across the mitochondrial 

membrane. Orange sector: Non-mitochondrial respiration.  

6 Discussion  

In the experiments comparing five separate differentiation protocols, we used the mRNA 

expression of tnnt2 and myom2, which are related to differentiation in order to compare and 

select a differentiation protocol for the H9c2 cells. The use of different morphogens, other 

that RA (21) has been suggested, and one study have reported IL-6 to have the potential to 

differentiate H9c2 cells (22) we adopted the same protocol in the current study to compare it 

with the established protocol using RA. However, we were not able to reproduce the same 

results in our experiments as 2% FBS alone seemed to have the same potential for increasing 

markers of differentiation (myom2 and tnnt2) as 2% FBS supplemented with IL-6. Even 
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though we were not able to reproduce the same results, IL-6 could be relevant to use in 

differentiation protocols, as it is known to activate pathways involved in differentiation and 

hypertrophy (7, 22, 30). Most research on the effect of IL-6 signaling is however performed 

on adult cardiomyocytes, while the undifferentiated H9c2 resembles an embryonic 

cardiomyoblast (22). In our hands the expression targeted differentiation genes (myom2 and 

tnnt2) showed the highest increase in the protocol using RA and 1% FBS compared to the 

other differentiation protocols. From these results, we decided to use this protocol further for 

further differentiation.  

Looking at various lengths of the RA and 1% FBS protocol, there is a transient upregulation 

of expression of tnnt2 which peaks at T5 and then has somewhat lower expressions in the next 

time points (T10 and T15) as compared to T5. Because we see morphological changes early in 

the differentiation, the downregulation of these genes could be due to negative feedback 

following protein synthesis of the cytoskeleton at the later timepoints. The expression of 

specific proteins at certain a time point will be the sum of both synthesis and breakdown of 

these proteins, and consequently it is impossible from our gene expression data to conclude 

on protein expression or function of the different timepoints. Myom2, another structural gene, 

peaks at T5 and T10 and shows lesser expression at T15, which supports the notion of early 

upregulation of structural genes as the cells remodel. Previous studies have reported increased 

SERCA2 protein and mRNA expression following differentiation of H9c2 cells (8). We did 

however not find an increase in atpa2a2, which again does not conclude on the protein content 

of SERCA2.  

We also investigated the expression of certain genes as indicators of metabolic remodeling in 

the H9c2 cells following differentiation. PGC1β, a gene involved in mitochondrial biogenesis, 

was markedly upregulated and peaked already at T5 and T10. This supports the existing 

literature on increased mitochondrial mass with differentiation of the H9c2 cells (12). Our 

immunostaining of TOM20 on fixed cells also supports the notion of a more extended and 

dense mitochondrial network following differentiation. The metabolic genes CD36, UCP3 

and PDK4, are all involved in metabolism handling of fatty acids. The mRNA expression of 

these genes are significantly upregulated at all timepoints compared to T0. Interestingly, the 

increase in ucp3, pdk4 and cd36 happens even without any changes in the FA-content in the 

culturing medium. This favors a metabolic shift towards a more oxidative pheotype due to 

maturing of the cells, rather than environmental response. PDK4 is a gene involved in 

regulating metabolism, metabolic switches and in fatty acid handling (31, 32). As this gene 
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continues to increase its expression at every time point, it is likely that the cells improves its 

ability to metabolize fatty acids throughout the extended differentiation time. Our culturing 

media has quite low concentrations of FAs, and as the medium is changed every other day, 

the concentration of FAs would if anything be reduced by a higher metabolism, again 

pointing to intrinsic changes within the cells most likely due to a response to RA (33). 

Increased mRNA expression of PDK4 and fatty acid oxidation with treatment of RA has 

previously been reported (34), supporting our data on increased on pdk4 expression.  

Uncoupling protein 3 (UCP3) is a natural uncoupler protein associated with the mitochondria. 

Because it increases its activity with increased fatty acid β oxidation in the mitochondria, an 

upregulation of this could both be due to the higher mitochondria content together with 

differentiation and a sign of metabolic shift towards oxidative metabolism. The mitochondria 

are not only the “power house” of the cell, but also a place for production of reactive oxygen 

species (ROS). The uncoupler proteins are known to have a role in protecting the cells against 

harmful ROS-molecules, by lowering the concentration of free electrons that would otherwise 

react with oxygen to produce superoxide or hydrogenperoxide (16, 35).   

We were interested in looking at the mitochondrial function at different timepoints, and 

performed respirometry to assess changes in cellular oxygen consumption. The respirometry 

experiments shows a trend for increased oxidative phosphorylation and electron chain 

capacity in permeabilized cells with longer differentiation protocols, with a peak at T10. When 

we normalize to cell count, the increase is more evident than with normalization to CS 

activity. This could be explained by the observed increase in CS activity following longer 

differentiation. CS activity is an established marker of mitochondrial content, and increased 

differentiation-induced mitochondrial density has been reported previously in several 

studies(12). Consequently, an increase in oxidative phosphorylation per cell can be explained 

largely by the increase in mitochondrial content. Normalization to cell count cannot assess 

whether the effectivity or respiration rate has increased per mitochondria. Our data shows that 

by normalizing the data to CS activity, the OXPHOS capacity and the activity of the electron 

transport chain seem to be stable across the undifferentiated and the differentiated 

permeabilized cells. Looking at the intact cells, there is no clear increase in cellular 

respiration following differentiation, neither at basal respiration on the DMEM media, or 

following addition of Cccp (electron chain capacity). Interestingly, when normalizing for CS 

activity, the respiratory capacity seems to be lower following differentiation protocols. There 

is an ongoing discussion about what method one chooses for normalization of the data. Here 
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we show normalization to “per million cells” and CS activity. The results appear somewhat 

different with each method for normalizing, which also shows why it is important to be aware 

of what method one chooses.  

The oxygen consumption was markedly down from the undifferentiated cells to differentiated 

in intact cells at ETC-CI. The exact reason is unknown, but it can be speculated that the non-

mitochondrial oxygen-consumption is higher in the undifferentiated cells than the 

differentiated ones. When calculating the non-mitochondrial respiration at T0, T5, T10 and T15, 

it is reduced from 7% at T0 to 3% in the following time points. The same trends were seen 

after addition of Antimaycin A, results not included here.  

Our data from respirometry with intact cells, shows an increase in the cells’ spare capacity. 

The increased spare capacity shows an increased tolerance of the cells toward stress or 

processes demanding a higher ATP-demand. Considering that this is a non-beating cell line, 

the ATP-demand does not vary as much as in a beating heart. This is rather a response to RA-

induced differentiation toward an adult cardiac phenotype.  

The differences seen in respiration between the permeabilized cells and intact cells, can be 

explained by the availability of substrates. The intact cells are dependent on transport proteins 

for delivery of substrates to feed the oxidative phosphorylation. This is a limiting factor, 

whereas the permeabilized cells have substrates available in abundance. Additionally, the 

content of the respiration medium will affect the cells during respiratory experiments.  

Collectively, our data from gene expression, respirometry and immunostaining, are indicative 

of a metabolic and morphologic remodeling induced by treatment with RA and low serum 

concentration in the culturing medium. This is supportive of already existing literature. In 

further studies on the cell line, environmental influences like higher FA-content in the 

culturing medium, are of interest to us.   

When doing research on the H9c2 cell line, researchers can choose whether to use 

undifferentiated or differentiated cells. The advantage to using undifferentiated ones is a 

shorter protocol and a more homogenous cell population, i.e. these are easier in use than the 

differentiated cells. Still, one has to consider if this model is relevant in use for the desired 

purpose. The outcome of a study will vary with the differentiation state of the cells, where the 

metabolic profile of the mature H9c2 is closer to what is present in an adult cardiomyocyte. 

The advantage to using differentiated H9cs cells is an oxidative metabolism and a 
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morphology resembling an adult cardiomyocyte. However, there is a problem that the cell 

population is non-homogenous. This reduces the applicability of the model, and is probably 

the reason why many researchers still prefer to use the undifferentiated H9c2 cells. Basal 

research is important to elucidate molecular mechanisms in health and disease, although there 

is always a gap between basal research and clinical manifestation of a condition in humans. 

Therefore, it is important to establish good research models to increase the applicability to in 

vivo processes.  

The use of cell line for research, enables research where systemic factors are eliminated. 

Researchers have better control of the effect of a treatment, when using a cell line compared 

to studies performed in humans. Cell-studies are beneficial in use as it is an animal-free 

alternative way to elucidate molecular and cellular mechanisms in health and disease.  

This study has some limitations. Considering that we have 3-4 n in all of our experiment 

groups, the results can only be regarded as trends at this point. Further experiments are 

needed to make conclusions about a potential new protocol. Translational experiments 

conducted in this study, does not always reflect the protein synthesis of the transcribed gene. 

Specific protein analysis are necessary to gain more knowledge about the functional proteins 

in the cell line following RA-induced differentiation.  
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8 Appendix 

8.1 Appendix 1: Chemicals  

1. Glucose medium (DMEM): Dmem (Glucose medium: D5796, Sigma Life 

Science) + 10% Fetal Bovine Serum (FBS: F7524, Sigma Life Science) + Strep pen 

(Penicillin Streptomycin: P0781, Sigma Life Science). 

2. PBS (Dulbecco’s Phosphate Buffered Saline): D8537, Sigma Life Science 

3. Trypsin: T3924, Sigma Life Science 

4. MIR05 (Mitochondrial Respiration-medium): EGTA (E3889, Sigma Life 

Science) + MgCl2x6H2O (1.05833.0250, Merck) + Taurine (15,244-2, Aldrich) + 

KH2PO4 (1.04873, Merck) + HEPES (H7523, Sigma Life Science) + Sucrose 

(16104, Rieldel) + k-lactobionate (L2398, Sigma Life Science) + BSA, essential 

fatty acid free (A6003) + Catalase (2000-5000 units/mg protein)(C9322, Sigma Life 

Science). 

5. Rotenone (Rot): R8875, Sigma Life Science 

6. Succinate (Succinate disodium alt, hexahydrate): S2378, Sigma Life Science 

7. Digitonin (Dig): 37008, Fluka 

8. Adenosine Triphosphate (ADP): A5285, Sigma Life Science 

9. Cytochrome C (Cyt C): C7752, Sigma Life Science 

10. Oligomycin (Oligo): O4876, Sigma Life Science 

11. Antimycin A (Anti A): A8674, Sigma Life science 

12. Malate (L-Malic acid): M1000, Sigma Life Science 

13. Pyruvate (Pyruvic acid sodium salt): P2256, Sigma Life Science 

14. Carnitine (Carn): C0283, Sigma Life Science 

15. Palmityl-CoA (PalCoA): P9716, Sigma Life Science 

 

 

 



 

 

 


