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Summary  

Cold seeps are locations on the seafloor where CH4 migrates from reservoirs below sediments 

towards the atmosphere, sustaining thereby a high microbial and macrofaunal biomass and a 

diversity contrasting from the surrounding seafloor. The oxidation of methane and sulphide are 

typically the main sources of primary productivity of these ecosystems and have therefore 

gained a particular attention in the global oceans. Yet, despite the ubiquitous presence of these 

seeping sites and the presence of gas hydrates in the Arctic Ocean and its adjacent shelves, the 

impact of methane on benthic and pelagic microbial communities in this region have remained 

limited. Recently, five gas hydrate bearing mounds with ongoing methane seeping activity were 

discovered south of Svalbard, in the northern Barents Sea. In this PhD project, I studied changes 

in the structure of microbial communities, including both prokaryotes and eukaryotes, and 

geochemical profiles at these mounds to highlight key microbial groups and to provide insights 

on their ecological roles. Different niches were addressed, including: deep anaerobic sediments 

(Paper I and II); niches at the sediment surface at gas flare locations and within bacterial mats 

and siboglinid fields (Paper III); and above gas flares in the shallow shelf water column (Paper 

IV). The microbial biodiversity and the structure of communities were successfully identified 

for each of the habitats listed above. Our investigations revealed a microbial composition 

similar to other cold seeps: a predominance of archaeal anaerobic methanotrophs (ANME) and 

sulphate-reducing bacteria (SRB) in CH4-rich sediments, a higher abundance of methane 

oxidizing bacteria associated to the Methylococcales in the surface sediments and water 

column; and a co-occurrence of other commonly found prokaryotic groups. Yet, uncommon 

biological traits were also uncovered at these methane seeping sites: the anaerobic oxidation of 

methane was merely only driven by ANME-1 without the co-occurrence of a specific SRB 

clade; an abundant methanotroph with little genetic similarity in databases was detected; and a 

strong niche differentiation of sulphide-oxidizing bacteria within the different bacterial mats. 

This project has thereby extended our knowledge on the microbial biodiversity at Arctic cold 

seeps and opened further future research perspective toward microbial activity and metabolism 

at these high latitudes. 
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1 

1. Introduction chapter  

1.1 Cold seeps 

Cold seeps are locations on the seabed found at various depths where hydrocarbon-rich fluids, 

primarily composed of methane (CH4), are emitted from the seafloor to the hydrosphere. They 

were first discovered in early 80’s in the Gulf of Mexico by CK et al. (1984). On a seafloor 

generally deprived of marine life, they observed a high biomass and diversity at what resembled 

biological communities typically found near venting systems but without hydrothermal activity 

measured. The area was particularly characterized by large bacterial mats and fields of 

vestimentiferans worms, in addition to a high abundance of mussels, starfishes and shrimps. 

Such biodiversity hotspots were later observed to be sustained by chemoautotrophy through the 

assimilation of carbon from the available CH4, both in aerobic (Distel and Cavanaugh, 1994; 

Valentine et al., 2001; Tavormina et al., 2008) and anaerobic environment (Hoehler et al., 1994; 

Hinrichs et al., 1999; Boetius et al., 2000). In addition to their roles in the local food webs, later 

studies also showed that the CH4 oxidizing microorganisms, also named methanotrophs, 

prevent 20 to 80% of the CH4 emitted through the sediments to reach the atmosphere and 

accelerate the ongoing global warming (Boetius and Wenzhöfer, 2013). These ecological roles 

stressed thereby over the past decades the need to understand the diversity and function of 

microbes at cold seeps.  
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Figure 1: Global distribution of cold seeps along active (blue), passive (orange) and transformative (green) 

margins. Black dots represents cold seeps where microbial communities were investigated in Ruff et al. (2015). 

The figure was modified from Suess (2014). 

Following the publication of the observations from the cold seeps system in the Gulf of Mexico 

in 1984, similar CH4-fuelled environments have been found throughout the global oceans 

(Figure 1). Cold seeps are primarily found along active margins where oceanic and continental 

plate convergences cause splay faults through which fluids are expelled (Kulm et al., 1986; Le 

Pichon et al., 1987; Torres et al., 2002). In addition, cold seeps can also be found along passive 

margins, but then their geological settings are more diverse as various geological events leading 
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to differences of permeability in the sediments can open ways for CH4 to migrate upward 

(Suess, 2014).  

 

Figure 2: Results count of publications on Web of Knowledge where the words “Cold Seeps” (left), “ANME” 

(middle) and “Methane oxidizing Bacteria”+”Marine”(right) were used either within the title, keywords or abstract 

of a publication. In the figure, addition of the word “Arctic” (red bars) is compared to the overall available 

publications (blue bars). The timescale span from the first discovery of cold seeps in 1987 until July 2021. 

Trends in the number of publications related to cold seeps per year have been rapidly increasing 

(Figure 2). Similar pattern can also be found for archaeal anaerobic methanotrophs (ANME) 

and aerobic methane oxidizing bacteria (MOB), two key microbial groups involved in CH4 

consumption at cold seep ecosystems (Distel and Cavanaugh, 1994; Boetius et al., 2000). 

Today, some of the most investigated cold seeps microbial communities include the areas of 

the Guaymas Basin (Teske et al., 2002; Dhillon et al., 2003; Vigneron et al., 2013, 2019; Portail 

et al., 2016), the Gulf of Mexico (Aharon, 1994; Joye et al., 2004; Cordes et al., 2007; Lessard-

Pilon et al., 2010), the Hydrate Ridge (Boetius et al., 2000; Boetius and Suess, 2004; Knittel et 

al., 2005; Marlow et al., 2014) and the Haakon Mosby Mud Volcano (HMMV; Milkov et al., 

2004; Beer et al., 2006; Niemann et al., 2006a; Lösekann et al., 2007a, 2008). Microbial 

communities at other cold seeps have also been studied, but at a lesser extend. Nevertheless, 

the recent work of Ruff et al. (2015) illustrates well the geographical distribution of microbial 

investigated CH4 seep systems (Figure 1). In addition to the known areas listed above, Ruff et 

al. also integrated additional microbial communities retrieved from the Black Sea, Antarctica, 

along the eastern Asian continent and near Africa. The investigated CH4 seeping sites are 
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obviously not limited to this study, as microbial communities from cold seeps have also been 

investigated near South America and in the Mediterranean Sea (Omoregie et al., 2009; Giongo 

et al., 2016). However, the study of Ruff et al. (2015) reflects well the latitudinal distribution 

of research efforts conducted in microbial biodiversity at cold seeps, where our knowledge 

rapidly diminishes at high latitudes.  

Above the Arctic Circle, investigations at cold seeps remain scarce and the HMMV in the 

Barents Sea (~72°N) is the only relatively well described cold seep ecological system (see list 

of references above). Furthermore, it presents geomorphological settings (mud volcano) that 

differ to other cold seeps systems observed in other parts of the Arctic Ocean, such as the 

Beaufort (Paull et al., 2007), Kara (Serov et al., 2015) and Laptev (Savvichev et al., 2018) Seas. 

In the Barents Sea, several thousands of CH4 gas flares have been detected around Svalbard 

and some sites have gained recent attention from geophysicists and macrobiologists, such as 

the Vestnessa Ridge, the shelf near Prins Karl Forland and at the mouth of Storfjordrenna 

(Sahling et al., 2014; Åström et al., 2016; Serov et al., 2017; Sen et al., 2018a), all demonstrating 

different geochemical and biological settings compared to the HMMV.  

1.1.1 Origin of methane in the global oceans  

Methane is the second most abundant greenhouse gas in the atmosphere after carbon dioxide 

(CO2). Despite having an atmospheric concentration that is more than 200 times lower than 

CO2, it still contributes for approximately 20 to 23% of the radiative forcing in the atmosphere 

(Myhre et al., 2013; Etminan et al., 2016). This is because of its global warming potential being 

28 times stronger than CO2. While CH4 emissions from anthropogenic activities contribute to 

a significant fraction (approximately 60%) of the atmospheric CH4 pool, CH4 also originate 

from natural sources, such as wetlands, termites and from freshwater/marine environments 

(Reeburgh, 2007; WMO, 2019). Ecosystems releasing CH4 can also uptake it through physical, 

chemical, or biological processes. Globally, 5-25 Tg CH4 yr-1 are estimated to be emitted from 

the oceans to the atmosphere, representing 2.7 to 10% of the CH4 emitted from natural sources 

(Saunois et al., 2016, 2020; Weber et al., 2019). 

In the oceans, CH4 is mainly formed through biogenic or thermogenic processes (Schoell, 1983, 

1988; Joye et al., 2010). Biogenic CH4 is formed by some archaeal groups through 

methanogenesis, a step in the remineralization process of organic matter that can be performed 

in marine sediments primarily through CO2 reduction and at a lesser extent by acetate 

fermentation (Whiticar et al., 1986; Ferry and Lessner, 2008). Methanogenesis primarily occurs 
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in anoxic sediments, although it can also be observed within anoxic micro-environments in 

pelagic particles (van der Maarel et al., 1999). Methane of thermogenic origin is formed by the 

break down of buried organic molecules through thermocatalytic reaction in sedimentary basins 

(Floodgate and Judd, 1992). The CH4 produced in marine sediments can either migrate toward 

the hydrosphere or be trapped in reservoirs of impermeable geological layers, such as 

submerged permafrost (Yakushev and Chuvilin, 2000; Shakhova et al., 2010) or layers of gas 

hydrates (Dickens et al., 1997; Archer, 2015), that prevents its upward movement.  

1.1.1.1 Methane and gas hydrates in marine environments 

Methane in marine sediments, either locally produced or transiting through, can be trapped in 

ice-like crystalline cages of water molecules. These latter are referred as gas hydrates and are 

formed under certain thermobaric conditions, at high pressure and low temperature (Sloan and 

Koh, 2008). This range of environmental conditions is referred to as the gas hydrate stability 

zone (GHSZ) and the depth and thickness of this GHSZ vary in the different sections of the 

globe (Kvenvolden, 1988; Wallmann et al., 2011). In the Arctic Ocean, the upper limit of the 

GHSZ may be as shallow as 300 meters below sea surface (Ruppel, 2007) and usually deepen 

with warmer bottom waters, as in the Barents Sea (Ferré et al., 2012) where it reaches nearly 

500m depth in the southern section. Gas hydrates are globally distributed (Ruppel, 2007) and 

are also widely found in the Arctic Ocean (Collett et al., 2011). An estimated 100-9000 Gt of 

CH4 is stored as gas hydrate in Arctic marine sediments (Kvenvolden, 1988; Biastoch et al., 

2011; Hunter et al., 2013; Kretschmer et al., 2015), and an additional ~2-1400Gt could be 

trapped as either hydrate or free gas under submerged permafrost.  

A shallower GHSZ in the Arctic Ocean has raised concerns over the ongoing increase in bottom 

seawater temperature that is particularly stronger in the Arctic Ocean that could further deepen 

the upper boundary of the GHSZ (Westbrook et al., 2009). This process could expose gas 

hydrates to dissociation, and explain the observation of CH4 gas flare slightly above the GHSZ 

(Westbrook et al., 2009; Sahling et al., 2014). However, whether the warming ocean will 

subsequently lead to the dissociation of large reservoirs of gas hydrates in the Arctic Ocean 

remains unknown. Several factors, such as depth of gas hydrates in the sediments, could 

mitigate the influence of increasing bottom water temperature on gas hydrates dissociation 

(Hong et al., 2017; Ruppel and Kessler, 2017). While changes in bottom water temperature may 

not lead to the previously suggested catastrophic scenarios of vast quantities of CH4 reaching 

the atmosphere , investigations revealed seasonality on CH4 seeping activity in the Barents Sea, 

where colder bottom water in May correlated with reduced CH4 fluxes from the seafloor (Ferré 



 

6 

et al., 2020). Thereby, changes in bottom water temperatures may still have an effect on the 

biogeochemistry of cold seeps, and eventually also on the microbial communities hosted in the 

sediments.  

In addition of gas hydrate formation, other physical events can also contribute to prevent the 

CH4 to reach the atmosphere. As the CH4 escapes the seafloor, it reaches the hydrosphere and 

migrate toward the sea surface. Yet, low or negligible concentrations of CH4 were measured at 

sea surface level above cold seeps (Myhre et al., 2016; Mau et al., 2017; Silyakova et al., 2020). 

This rather low fraction is caused by a combination of physical, chemical, and biological 

processes that dissipate the CH4 before it reaches the atmosphere, acting as important CH4 sinks 

in the oceans. Examples of physical and chemical processes include bubble-stripping (i.e. the 

replacement of CH4 with O2 or N2 in the gas bubbles from gas flares; McGinnis et al., 2006), 

in addition to lateral water mass movements that disperse the CH4 horizontally away from the 

cold seeps (Silyakova et al., 2020). Furthermore, changes in water masses through vertical 

mixing, stratification and advection, was shown to influence CH4 fluxes (Steinle et al., 2015). 

A large fraction of CH4 is also removed in its ascent  through biologically mediated oxidation 

(Beer et al., 2006; Niemann et al., 2006; Roalkvam et al., 2012; Hong et al., 2016). The aerobic 

and anaerobic biological oxidation of CH4 acts thereby as a biological filter and can uptake 

generally 20 to 80% of the CH4 emitted (Boetius and Wenzhöfer, 2013). These biological 

processes will be further described in subsection 1.2.1. 

1.1.1.2 Geomorphology of cold seeps 

Cold seeps are a broad concept of geological features referring to an area at the seafloor where 

hydrocarbon-rich fluid seepage occurs. In addition of hydrocarbons, these fluids can also 

contain sulfur compounds, silica, phosphate, and ammonia (Suess, 2014). Regimes of CH4 

transiting through the sediments and the environmental conditions can further shape the 

topography of the seeping sites. For instance, the pressure created by CH4 flow and the 

formation or dissociation of gas hydrates has been suggested to generate various seafloor 

features such as pockmarks, craters and gas domes (Vogt et al., 1994; Hovland and Svensen, 

2006; Suess, 2014; Koch et al., 2015; Portnov et al., 2016; Serov et al., 2017; Riboulot, 2018). 

In the Barents Sea five gas hydrates bearing mounds, referred as gas hydrates pingos (GHPs), 

have been located and were suggested to be formed by the formation of gas hydrates (Serov et 

al., 2017). Similar features in the Arctic have been observed in the Beaufort  (Paull et al., 2007) 

and South Kara (Serov et al., 2015) Seas.  



 

7 

Finally, the biological communities thriving at cold seeps influence the biogeochemistry of the 

environment. For instance, the oxidation of CH4 can enhance the pore water sulphide (H2S) 

concentrations, beneficial for chemosynthetic organisms but toxic for most background species 

(biological implications of H2S toxicity are reviewed in Wang and Chapman (1999). It can also 

lead to the formation of authigenic carbonates, adding hard substrates for sessile organisms to 

attach to (Cordes et al., 2007, 2009; Vaughn Barrie et al., 2011; Levin et al., 2015). In or near 

H2S-rich sediments, fields of siboglinid worms proliferating near H2S-rich sediments 

retroactively irrigate the seabed surface (Berner, 1980), allowing a deeper penetration of 

oxygen, a major environmental factor in the distribution of microbes in the sediments (Hughes 

and Gage, 2004; Fischer et al., 2012; Guillon et al., 2017). Thereby, cold seeps represent a 

complex mosaic of micro-habitats. These should be considered when investigating the 

microbial communities thriving at those cold seeps, their roles and metabolism and their impact 

on the biogeochemistry.  

1.1.1.3 Geochemical and hydrological settings of cold seeps in the northern 
Barents Sea 

In the Barents Sea, sources of hydrocarbons are widely distributed and include organic-rich 

Triassic-Jurassic formations (Mørk and Bjorøy, 1984; Grogan et al., 1999). During the last 

glaciation maximum that was initiated approx. 35,000 years ago, an ice sheet covered the 

Barents Sea and its carbon-rich sediment layers, creating subglacial high pressure and low 

temperature across the continental shelf, which in turn extended the GHSZ up to 500m 

thickness (Portnov et al., 2016). Both the thick GHSZ and the formation of subsea permafrost 

acted as geological sinks and seals. This limited the vertical flux of CH4 or organic matter to be 

decomposed, causing accumulation of CH4. Since the ice sheet started to retreat approx. 20,000 

years ago, changes in temperature and pressure linked to the latest glacial period and last glacial 

maximum have been influencing CH4 seeping activity that is suggested to have been ongoing 

in the northern Barents Sea for several millennia (Portnov et al., 2016). In Storfjordrenna, the 

observation of CH4 seeping activity above gas chimneys suggest that faults built a connection 

between the deeper hydrocarbon reservoirs and the seafloor surface (Waage et al., 2019). 

Today, the GHSZ is estimated to have been reduced to few tens of meters (Serov et al., 2017). 

Several cold seep features have been observed in the northern Barents Sea, including 

pockmarks (Goswami et al., 2015; Portnov et al., 2016), craters (Andreassen et al., 2017) and 

GHPs (Serov et al., 2017). Along the western coast of Svalbard, gas flares are observed at a 

depth higher than the upper boundary of the GHSZ without showing signs of gas hydrate 
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storage or faults below the CH4 seeping sites. Instead, it was proposed that fractions of the CH4 

could originate from lateral migration paths from a deeper shelf reservoir (Sarkar et al., 2012). 

Isotopic signature of CH4 (Whiticar, 2000) revealed that seeps along the western coast of 

Svalbard was formed by biogenic processes (Graves et al., 2017; Mau et al., 2017), while CH4 

from seeps in Storfjordrenna, south of Svalbard, is of thermogenic origin (Serov et al., 2017). 

The hydrodynamics around Svalbard are complex and known to influence CH4 fluxes along the 

shallow shelf (Silyakova et al., 2020). The location of Svalbard near the Polar Front lead to the 

influence of two major water masses: the warm, saline and nutrients-rich Atlantic Water 

(salinity >34.65, >3.0°C) travelling along the western coast of Svalbard (Western Spitsbergen 

Current) and to the colder and fresher Arctic Water (salinity 34.30-34.80,-1.5 to 1.0°C) that 

circulates downward from the Arctic Ocean northeast of Svalbard resulting in the Eastern 

Spitsbergen Current to deviate around Sørkapp to finally move northward along the shallow 

shelf west of Svalbard (Figure 7; Aagaard et al., 1987; Nilsen et al., 2008). Both water masses 

can further mix and, with the influence of local environmental conditions and seasons, lead to 

the formation of additional water masses, including the Transformed Atlantic Water and 

Intermediate Water (Cottier et al., 2005).  

1.2 Microbial diversity and functions at cold seeps 

Cold seeps are commonly regarded as biodiversity hotspots on the seafloor because they often 

visually contrast from the surrounding environment with a higher biomass and a larger 

macrofauna diversity (Sibuet and Olu, 1998; Vanreusel et al., 2009; Cordes et al., 2010; Åström 

et al., 2016). Because the macrofauna cannot directly benefit from the CH4-rich fluids, 

macrofaunal species rely on microbial activity to connect the geochemical settings at cold seeps 

to its occupants (Duperron et al., 2007; Van Gaever et al., 2009; Niemann et al., 2013; Portail 

et al., 2016; Toone and Washburn, 2020). Methane acts as carbon sources for the ecosystem 

and is uptaken by methanotrophs (Kohzu et al., 2004; Fernández-Carrera et al., 2016; Portail et 

al., 2016; Demopoulos et al., 2018), which in turn provide energy in form of their for the upper 

food webs. Subsequently, H2S, a product of the oxidation of CH4 with sulphate (SO4
2), is 

reduced, which then can become a source of energy for chemosynthetic organisms through 

endosymbionts or for mat-forming bacteria, supporting colonies of clams, siboglinid worms 
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and crustaceans (Figure 3; Fisher, 1990; 

Fisher et al., 1993; Duperron et al., 2007b, 

2008; Bernardino et al., 2012).  

Authigenic carbonates, to which various 

sessile macrofaunal species can attach to, are 

product derived from the microbial anaerobic 

oxidation of CH4 (Levin et al., 2003, 2015; 

Quéric and Soltwedel, 2007; Gaudron et al., 

2010). Furthermore, microbes are involved in 

several biogeochemical cycles within the cold 

seep ecosystems and are therefore 

unequivocally the foundation supporting this 

observed oasis of life.  

Microbial communities at cold seeps 

compose with contrasting environmental 

conditions to the surrounding environment, such as highly sulfidic porewater toxic for several 

common benthic taxa, shaping the biota composition and structure (Powell and Somero, 1986; 

Bagarinao, 1992; Sears et al., 2004; Bouillaud and Blachier, 2011). These communities are 

commonly composed of several taxa that have yet not been cultivated, limiting further our 

understanding of their roles and impacts on the local habitat (Ruff et al., 2015). The 

environment of the Arctic Ocean poses conditions that are known to affect the composition and 

structure of pelagic (Lovejoy et al., 2007; Falk-Petersen et al., 2009) and benthic (Balmonte et 

al., 2018) microbial communities. Some of these conditions include: i) the exposure to sub-zero 

temperature in bottom waters (Carmack and Wassmann, 2006) and ii) the dynamical 

movements along the Polar Front and the properties exchanges between the warm and saline 

Atlantic Water and the colder and fresher Arctic Water (Vernet et al., 2019). Another 

characteristic is iii) the strong sedimentation of organic matter following spring blooms 

combined with long starvation periods of allochthonous carbon deposited to the seabed 

(Piepenburg et al., 1997; Carmack and Wassmann, 2006; Renaud et al., 2008). Thereby, in 

addition of cold seeps hosting distinct microbial communities from CH4-absent arctic 

sediments, these could also potentially contrast from other cold seeps found at lower latitudes.  

 

 

Figure 3: Lithotid crabs grazing on bacterial mats at the 

Haakon Mosby Mud Volcano. Picture modified from 

Niemann et al. (2013). 
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Microbes are involved in several metabolic cycles, including carbon, sulphur and nitrogen 

among others. Covering actors involved in all of these cycles would thereby be too voluminous 

for the scope of this Thesis. Therefore, this introduction will primarily focus only on microbial 

processes relevant for this Thesis, i.e. on the carbon, more precisely on the CH4 oxidation 

pathways, and on sulphur biogeochemical cycles, both SO4
2- reduction and H2S oxidation.  

1.2.1 Methane oxidation 

As CH4 migrates from hydrocarbon source 

layers to the hydrosphere, its fate through 

the biological filter depends primarily on 

the availability or absence of oxygen 

(Figure 4). Therefore, CH4 is initially 

oxidized in anaerobic sediments relying on 

electron acceptors other than oxygen. This 

mode of CH4 oxidation has been termed 

the anaerobic oxidation of CH4 (AOM). At 

the sediment surface and within the water 

column, the availability of oxygen favors 

the aerobic oxidation of methane (MOx).  

 

 

 

1.2.1.1 Anaerobic oxidation of methane (AOM) and sulphate reduction (SR) 

AOM is the major biological sink of CH4 in marine environments (Reeburgh, 2007; Knittel and 

Boetius, 2009) because it is estimated that AOM could filter 20 to 80% of the CH4 released 

(Boetius and Wenzhöfer, 2013), and even higher amounts at some locations (Wegener et al., 

2008).. The anaerobic oxidation of CH4 in marine sediments is primarily mediated by the 

transfer of electrons from the CH4 to SO4
2- through the combination of CH4 oxidation and SO4

2- 

reduction, leading to the formation of HCO3
-, HS- and H2O (Hoehler et al., 1994), according to 

the net reaction: 

𝐶𝐻4 + 𝑆𝑂4
2− → 𝐻𝐶𝑂3

− + 𝐻𝑆− + 𝐻2𝑂 

 

Figure 4: Anaerobic oxidation of methane (AOM) in 

combination with sulphate reduction to form HCO3
- and 

H2S, before reaching the seafloor surface and the seawater 

column where it is aerobically oxidized to form CO2. Figure 

from James et al. (2016). 
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The SO4
2- concentration in seawater is generally around 28 mM (Canfield, 2004). The 

occurrence of methyl-coenzyme M reductase, a key enzyme for methanogenesis and AOM, 

extracted from various CH4 oxidation zones in the environment suggest CH4 uptake by 

microbes to be a reverse methanogenesis process resulting from a coevolution of the processes 

(Hallam et al., 2003; Krüger et al., 2003; Holler et al., 2009; Wegener et al., 2021). Zones of 

high activity of AOM can be inferred from steep variations of CH4 and SO4
2- concentrations, 

referred to the sulphate-methane transition zone (SMTZ). The depth of the SMTZ depends on 

various environmental settings such as the CH4 production and the penetration depth of the 

SO4
2-. The shallower the SMTZ is, the higher the CH4 flux is suggested to be (Valentine and 

Reeburgh, 2000; Knab et al., 2009; Meister et al., 2013). AOM has also been observed to be 

coupled with the reduction of oxidized iron, manganese and nitrate/nitrite (Beal et al., 2009; 

Ettwig et al., 2010, 2016; Hu et al., 2014). However, the contribution of these electron acceptors 

in the AOM budget remains less constrained, especially in the Arctic Ocean (Boetius and 

Wenzhöfer, 2013).  

AOM is driven by anaerobic methanotrophic archaea (ANME) and three main ANME clades 

of phylogenetically distinct groups have been detected: ANME-1 forms a distinct group within 

the Halobacterota while ANME-2 and ANME-3 are placed within the Methanosarcinales, in 

accordance to the latest classification made within the SILVA Database v138.1 (Knittel et al., 

2005; Quast et al., 2012; Yilmaz et al., 2014). However, assigning ecotypes or specific 

metabolism particularities to the different clades has remained unresolved. Several hypotheses 

were proposed, but they are accompanied with contradicting observations at other cold seeps. 

Results from previous studies suggested that ANME-2, the most widely distributed ANME 

clade in global oceans, might be more sensitive to high concentrations of H2S and/or low 

concentrations of SO4
2- than ANME-1 (Timmers et al., 2015; Bhattarai et al., 2018). The 

ANME-2 group would then often be limited to the layers above the SMTZ and ANME-1 would 

dominate in more sulfidic sediments, at deeper layers (Ruff et al., 2015). This distribution 

pattern has been observed in the southern Barents Sea, at the Nyegga Ridge (Roalkvam et al., 

2011). However, in other studies, ANME-2 groups were also retrieved in H2S-rich sediments 

(Knittel et al., 2003), indicating that other factors than levels of H2S or SO4
2- might affect 

stratification of ANME groups. Additional environmental conditions that were suggested to 

select for differential ANME groups include temperature (Nauhaus et al., 2005; Rossel et al., 
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2011), salinity (Maignien et al., 2013) or CH4 flux rates (Girguis et al., 2005; Yanagawa et al., 

2011; Vigneron et al., 2013, 2019; Marlow et al., 2014).  

AOM generally relies on sulphate reducing bacteria (SRB; Boetius et al., 2000; Knittel et al., 

2003) and therefore syntrophic consortia between ANME and SRB are commonly observed 

(Boetius et al., 2000; Wegener et al., 2015). SRB are ubiquitous in marine sediments where 

they play a role in degrading organic matter. However, distinctive clades, referred as SEEP-

SRB 1 to 4, have been exclusively found at cold seeps. Typically, ANME-1 and -2 would be 

found associated with the clades SEEP-SRB1 or SEEP-SRB2 (Orphan et al., 2001; Michaelis 

et al., 2002; Knittel et al., 2003; Pernthaler et al., 2008), and epifluorescence micrographs 

visualized by Fluorescence in situ hybridization (FISH) or CARD-FISH have demonstrated 

aggregates of ANME and SRB (Knittel and Boetius, 2009). However, in the last decade, 

community studies of methanotrophs have shown evidence of free-living cells particularly 

assigned to the ANME-1 group, but also to the ANME-2 group (Orphan et al., 2002; Knittel et 

al., 2005; Roalkvam et al., 2011; Milucka et al., 2012; Stokke et al., 2012). One suggested idea 

is that they could be able to perform SO4
2- reduction alone. The detection of F430-dependent 

sulfite reductase in ANME-1 could support this hypothesis (Vigneron et al., 2019), although 

the presence of other key genes to reduce H2S to sulfite, such as the adenosine-59-

phosphosulphate and the sulfite reductase, has not been detected (Hallam et al., 2003; 

Pernthaler et al., 2008).  

1.2.1.2 Aerobic oxidation of methane 

In aerobic environments, which are generally limited to the water column and the first few mm 

to cm below seabed sediment surface (Boetius and Wenzhöfer, 2013; Niemann et al., 2013), 

the oxidation of CH4 is driven by methane oxidizing bacteria that utilize oxygen as the electron 

acceptor (Hanson and Hanson, 1996; Trotsenko and Murrell, 2008). These methanotrophs 

oxidize CH4 with the available oxygen to form formaldehyde for living and cell mass 

production, and subsequently metabolize it in CO2 according to the net formula: 

𝐶𝐻4 + 2 𝑂2  →  𝐶𝑂2 + 2 𝐻2𝑂 

Aerobic microbial methane oxidation (MOx) is generally filtering less CH4 than AOM in 

marine systems (Knittel and Boetius, 2009), but is the final biological sink for CH4 before it is 

liberated to the atmosphere (Reeburgh, 2007; Tavormina et al., 2008; Valentine, 2011). The 

impact of MOx can be significant: for instance, high amounts of CH4 were rapidly consumed 
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by MOB following the deep-water horizon accident and MOB were found to effectively 

consume CH4 from the water column if hydrographic conditions and nutrients would provide 

continuity for MOB (Dubinsky et al., 2013; Kleindienst et al., 2015; Rogener et al., 2018). 

However, MOx can also be low despite high CH4 concentrations in marine waters for reasons 

that are still unclear. Absence of benthic biomass and strong gas emissions are factors that can 

further reduce the efficiency down to 10% (Niemann et al., 2006).  

MOB have been described primarily within the Gammaproteobacteria and 

Alphaproteobacteria, commonly referred to Type I and II methanotrophs, respectively, in 

addition to Verrucomicrobia and Crenotrix (Stoecker et al., 2006; Dunfield et al., 2007; Dedysh 

and Knief, 2018; Kalyuzhnaya et al., 2019). Yet, clustering particulate methane 

monooxygenase (pmoA) gene sequences of cultivated and uncultivated methanotrophs at the 

genus level showed that only half of the formed operational taxonomic units (OTUs) contained 

cultivated representatives (Knief, 2015).  This suggests a large diversity remains yet 

undiscovered, especially within the Gammaproteobacteria, further supported through 

phylogenetic analyses using both 16S rRNA and pmoA genes with the formation of several 

ecotypes of uncultivated sequences. Some clades, such as the Deep-Sea Clusters (DSC) 1-5 

(Lüke and Frenzel, 2011; Knief, 2015), are almost exclusively found in the oceans. 

Environmental factors driving the nature of the dominating MOB include CH4, H2S and O2 

concentration (Graham et al., 1993), pH (Rahman et al., 2011; Danilova and Dedysh, 2014) and 

temperature (Trotsenko and Khmelenina, 2002).  

1.2.1.3 Sulphide oxidation 

Sulphide oxidizers are another major microbial functional group in cold seeps ecosystems, 

being in addition to methanotrophs an alternative source of primary/secondary production of 

biomass for higher trophic levels (Taylor et al., 2001; Lichtschlag et al., 2010; Niemann et al., 

2013). They are diverse and are found within the Archaea and Bacteria (SOB), common H2S 

oxidizers taxa in H2S-rich sediments include the Campylobacterota, previously known as the 

Epsilonproteobacterota, particularly the Sulfurimonadaceae and Sulfurimonadaceae families, 

and the gammaproteobacterial Beggiatoales (Friedrich et al., 2005; O’Brien et al., 2015).  
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SOB are ubiquitous in marine 

sediments, but they present shifts 

in dominating SOB taxa 

depending on environmental 

conditions (Friedrich et al., 

2005; and see Figure 5). They 

also present different life 

strategies as some 

chemoautotrophs can be present 

as intracellular or extracellular 

symbionts within larger fauna 

(Fisher et al., 1993; Cary et al., 

1997; Dubilier et al., 2001; 

Nakagawa and Takai, 2008; 

Thurber et al., 2011), such as 

siboglinid worms (Figure 6) or 

crabs, but also in eukaryotic 

euglenozoans and ciliates (Ott et 

al., 1998; Buck et al., 2000; 

Rosati, 2001; Dziallas et al., 

2012).  

 

Figure 6: Sediment surface at cold seeps in the northern Barents Sea showing two different species (yellow and 

black arrows) of frenulates tubeworms hosting H2S oxidizing endosymbionts. Picture from Sen et al. (2020).  

 

Figure 5: Bacterial mats composed of different sulphide-oxidizing 

bacteria and retrieved at different locations of a cold seeps (A-C-E). 

Bacterial mats particularly showed distinctive characteristics at higher 

magnification (B-D-F). Pictures are from Grünke et al. (2011).  
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Siboglinids are frenulates known to host SOB as endosymbionts. Recent studies in the northern 

Barents Sea confirmed the presence of gammaproteobacterial SOB in fields of Oligobrachia 

species (Sen et al., 2018b, 2020). Investigations on niche differentiation by SOB, although they 

remain limited at cold seeps, highlighted that availability and flux rates of O2 and nitrate, 

electron acceptors and H2S, the electron donor, were key environmental factors driving changes 

in the SOB communities (Grünke et al., 2011; Anderson et al., 2013; Meier et al., 2017). 

Campylobacterota were found to dominate environments with both availability of H2S and 

electron acceptors at the oxic-anoxic interfaces (Madrid et al., 2001; Macalady et al., 2008; 

Grünke et al., 2011). In contrast, the Beggiatoales create suitable conditions and dominate 

sediments where H2S and O2 do not overlap. Because Beggiatoales are motile and can store 

nitrate in vacuoles (McHatton et al., 1996), they are able to migrate vertically in the sediments 

to reach H2S-richer sediments (Preisler et al., 2007).  

1.2.1.4 Grazers, organic compounds degraders and other functional roles 

Other “signature” groups of cold seeps (Ruff et al., 2015) include the Chloroflexi spp. (Zhang 

et al., 2012; Cruaud et al., 2017) and the uncultivated groups of Thermoplasmata Marine 

Benthic Groups (MBG) B and D (Vigneron et al., 2014; Cruaud et al., 2017; Ramírez et al., 

2020), Bathyarchaeota (Bathyarcheia) and the candidate division Japan Sea 1 (JS1; Webster et 

al., 2004, 2007; Zhang et al., 2012). The Bathyarcheia, previously known as the Miscellaneous 

Crenarchaeotal Group (MCG), and the thermoplasmatales MBGs B-D are globally abundant in 

marine sediments and therefore not necessarily unique to CH4-rich sediments. The detection of 

protein-degrading enzymes in some representatives of these groups suggests a role in anaerobic 

organic matter degradation (Webster et al., 2010; Kubo et al., 2012; Lloyd et al., 2013). 

However, they may contain ecotypes adapted to cold seep habitats that are not detectable at the 

genetic resolution of available databases due to the lack of cultivated species or metagenomes 

(Zhou et al., 2018). The Wosearchaeales is another abundant group found in marine sediments 

potentially pursuing a fermentation-based lifestyle (Castelle et al., 2015), but large gaps of 

knowledge on their distribution and metabolism exist (Liu et al., 2018). Beyond the degradation 

of organic compounds, additional roles played by these groups in CH4-rich sediments have been 

investigated. For instance, correlations suggested links between CH4 cycle and Bathyarchaeia 

(Evans et al., 2015; Harris et al., 2018; Zhou et al., 2018; Qi et al., 2021), in addition to between 

JS1 and AOM (Phelps et al., 1998; Cambon-Bonavita et al., 2009; Harrison et al., 2009; 

Vigneron et al., 2014). Finally, some members of these groups may also be more resilient 

toward H2S-rich sediments than others, favoring their selection in CH4-rich sediments where 
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AOM is ongoing (Suominen et al., 2021). Our knowledge of these groups in global oceans is 

limited; the genetic diversity within some of these groups demonstrated different metabolisms 

and the assignation of habitats to ecotypes has remain generally unresolved (Liu et al., 2018; 

Zhou et al., 2018).  

In addition to prokaryotes, eukaryotes are a microbial group that is often neglected in microbial 

investigations at cold seeps, despite the observed changes at cold seeps on their community 

composition and structure (Edgcomb et al., 2007; Takishita et al., 2007, 2010; Olsen et al., 

2014; Wang et al., 2014; Takishita, 2015; Kouduka et al., 2017). RNA-based studies have 

suggested particularly strong activity of ciliates at cold seeps (Takishita et al., 2010). These 

eukaryotes are generally bacterivorous, suggesting that they can play a role as grazers. 

However, they are found in a wide range of habitats, including aerobic and anaerobic sediments, 

and have been observed to adopt to a wide diversity of life strategies (Embley et al., 2003; 

Rinke et al., 2006; Searcy, 2006; Lynn, 2008). The higher densities of prokaryotes involved 

directly or indirectly in AOM can therefore be a food source for these potential heterotrophic 

eukaryotes. However the toxicity of sulfidic may also have an selective effect that impacts 

eukaryotic  growth negatively (Massana et al., 1994; Coyne et al., 2013). Eukaryotic groups 

thriving in CH4-rich sediments may also included parasitic species, such as Apicomplexa, that 

could be benefiting from a higher biomass of larger fauna at cold seeps (Moreira and López-

García, 2003; Takishita et al., 2007; Guillou et al., 2008). 

A significant number of metabolic processes related to other taxonomic groups at cold seeps, 

are not presented in this introduction. For instance, while functions related to the nitrogen cycle 

have not been addressed, nitrogen compounds remain important elements for the distribution 

of MOB (Lees et al., 1991; Lee and Childress, 1994; Tavormina et al., 2015) and SOB (Han 

and Perner, 2015). Therefore, the role of microbes involved in the consumption/production of 

ammonium/nitrate/nitrite likely have a significant impact on the distribution of the functional 

groups mentioned above. Just as for the groups listed above, distinct nitrogen cycling microbes 

have also been observed at other cold seeps, but the degree of influence of CH4-rich fluids on 

these groups remain poorly understood.  
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1.3 Objectives 

The overall aim with the PhD Thesis was to study the microbial community structure and 

activity at cold seeps in the northern Barents Sea, with a particular focus on microbes 

responsible for the oxidation of CH4. We particularly focused on three gas hydrates bearing 

pingos retrieved south of Svalbard in Storfjordrenna and along the western coast of Svalbard to 

present microbial diversity along the migration path of CH4 from few meters below the seafloor 

to the water column. The specific objectives were: 

1. To assess the prokaryotic and eukaryotic diversity that form the Arctic cold seeps 

microbial community impacted by CH4; 

2. To study the composition, distribution and activity of methane oxidizing bacteria in cold 

seep sediments and the Arctic water column; 

3. To summarize the interaction between environmental factors and habitats based on the 

microbial community structure and activity. 
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2 Materials and Methods 

2.1 Sampling area 

In the current Thesis, different study sites along the southern and western coast of Svalbard, an 

Arctic archipelago in the northern Barents Sea, have been investigated. The Barents Sea is 

located on a continental shelf, with an averaged depth of 230m. The archipelago of Svalbard is 

placed along the edge of the continental shelf, and water depth vary from few tens of meters 

along the coastline to 2,000-3,000m depth behind the shelf break toward the Fram Strait.  

 

Figure 7: Bathymtric map of the study areas west and south of Svalbard, in the northern Barents Sea, with the 

illustrated paths of the main Atlantic Water (red arrows) and Arctic Water (blue arrows) masses. Investigations in 

Papers I, II and III were conducted in Storfjordrenna (1) while seawater samples were taken for Paper IV nearby 

Prins Karls Forland and Isfjodren (2), Outer Bellsundet (3) and Hornsund (4), in addition to around Sørkapp.  
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Storfjordrenna 

 

Figure 8: Seafloor characteristics of GHP 1 including fields of siboglinid worms (top left), a diversity of 

macrofauna attached to carbonates (top right) and large areas covered by bacterial mats (lower left). The distance 

between the two green lasers is 20 cm. The lower right picture was taken at a reference site outside of the GHPs 

area and showed a muddier seafloor with little biomass and biodiversity. 

Study area in papers I, II and III is located at gas hydrate bearing domes that were discovered 

in Storfjordrenna, at ∼390 m below sea level (Figure 7; Serov et al., 2017), south of Svalbard. 

They are referred to as pingos, after similar terrestrial features observed in glacial valleys 

(Mackay, 1998), although they differ by their formation (i.e. CH4 flow pressure and gas 

hydrates instead of regular water ice; Serov et al., 2017). Hydroacoustic observations have 

revealed acoustic flares originating from CH4 gas bubbles in the water column. These were 

primarily located at the summit on four of the five Storfjordrenna pingos. At the water depth of 

the gas hydrate pingos (GHP; ∼390 m, ∼0.5–2.5°C bottom water temperature), the gas hydrates 

remain within the gas hydrate stability zone (GHSZ), but are close to its upper limit and are 

sensitive to even small changes of temperature and pressure (Hong et al., 2018). The dating of 

CH4 derived authigenic carbonates suggested that CH4 seepage has been active for several 

thousand years (Serov et al., 2017) across a chaotic distribution of channels on the GHPs 

(Waage et al., 2019). Visual observations have revealed a higher biomass in sediments of the 
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pingos compared to the surrounding seafloor (Figure 8; Åström et al., 2018; Sen et al., 2018a), 

including the chaotic distribution of large white bacterial mats and fields of siboglinid worms.  

Western shelf of Svalbard 

In paper IV, we focused on the pelagic methanotrophic communities and therefore our study 

area stretched along the continental margin off western Svalbard. Study sites include the 

shallow shelf west of Prins Karls Forland towards the southern tip of Svalbard including 

Isfjorden, Isfjorden Trough, Outer Bellsundet, Outer Hornsund, and Sørkappøya (Figure 7). 

Water depth in these areas ranges from 50 to 160 m. The shallow shelf west of Prins Karls 

Forland is characterized by an irregular bathymetry showing numerous large depressions 

encompassed by a series of moraine ridges termed the Forlandet moraine complex (Landvik et 

al., 2005). Here, along the Forlandet moraine complex in 80–90 m water depth, a vast number 

of gas flares (~200 flares, identified by acoustic signatures of gas bubbles in the water) were 

previously mapped (Sahling et al., 2014; Silyakova et al., 2020).  

2.2 Sampling procedure 

Samples analyzed within the different publications and manuscript were taken during several 

CAGE research campaigns (Table 1) onboard research vessels R/V Helmer Hanssen and R/V 

Kronprins Haakon. Sediments samples were taken using various platforms and tools. Those 

sampling platforms included a TowCam-Multicore System (TC-MC), a Remotely Operated 

Vehicle (ROV) and a gravity corer (Figure 9). The ROV is a submersible vehicle that is 

controlled from the ship. It has its own propelling system, allowing operations requiring 

manoeuvers on the seafloor and can be equipped with different sampling tools. The TC-MC is 

also lowered from the boat, but it is dragged by the movement of the ship. On both ROVs and 

TC-MC a live camera system was mounted that allowed the visual observation of the seafloor 

(Daniel et al., 2003). On research campaigns CAGE 16-5 and 18-5, the use of ROV allowed to 

precisely target features of the cold seep ecosystem, such as CH4 gas flares, bacterial mats and 

worm fields. The arms of the ROVs were used to deploy either push cores or blade cores to 

sample sediments.  
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Table 1: Research campaigns where samples analyzed in the different papers of this Thesis. Information regarding 

the dates, the location, the sample type (sediment or water samples) in addition to the publications in which samples 

from this campaign were used is listed. In superscript is indicated the vessel (R/V Helmer Hanssen or R/V 

Kronprins Haakon) on which the research campaign was performed. The * indicated campaigns where VC 

participated.   

Research campaign 

(date) 

Location Sample type Publication 

CAGE 15-31 

(1-3/07/2015) 

Western shelf of Svalbard Water Paper III 

CAGE 16-41 

(2-4/05/2016) 

Western shelf of Svalbard Water Paper III 

CAGE 16-51 

(16/06-04/07/2016) 

Storfjordrenna, Western shelf of 

Svalbard 

Sediments, 

Water 

Papers I, II, III 

CAGE 17-11 

(16-20/05/2017) 

Western shelf of Svalbard Water Paper III 

CAGE 17-21* 

(21/06-03/07/2017) 

Storfjordrenna Sediments Paper I 

CAGE 18-52* 

(22/10-02/11/2018) 

Storfjordrenna Sediments Paper III 

1Research campaign done onboard R/V Helmer Hanssen 

2Research campaign done onboard R/V Kronprins Haakon 
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Figure 9: Fieldwork campaigns were performed onboard the vessels (A) R/V Helmer Hanssen and (B) R/V 

Kronprins Haakon. To sample sediments, a (C) TowCam-Multicore System and two (D-E) remotely operated 

vehicles were used to deploy push and blades cores. 

The TC-MC performs less precise sampling compared to the ROV: the platform cannot move 

itself and relies on the movements of the ship to target sites and it is not possible to visualize 

the seafloor characteristic specifically sampled by each core of the multicore system. However, 

the platform is cost efficient and easier to implement. In addition, the platform allowed us to 

collect several cores in a short period of time. Finally, the sediment depth sampled with the 

coring systems of both ROVs and TC-MC was generally limited to 30 to 40 cmbsf, at some 

locations even down to 15 cmbsf. The use of a gravity corer allows sediment sampling up to 

approximately 3 meters below seafloor (mbsf). However, it is a time-consuming sediment 

coring system and is generally preferred for a limited number of cores. Hereby, combining the 

different sediment sampling platforms allowed to investigate the microbial ecosystem at the 

Storfjordrenna GHPs at various scale. Further processing for the retrieved sediment cores was 

immediately performed either on deck or in cold rooms.  

2.3 Environmental geo- and physico-chemistry 

Within sediments (Papers I, II, III), CH4 was measured with a head space technique and gas 

chromatography equipped with a flame ionization detector (Hoehler et al., 2000; Panieri et al., 

2017). For this, 3 mL of bulk sediments at selected 2 cm intervals in a core were immediately 

transferred to a 20 mL headspace vial with 7mL of NaOH solution (1M) and two glass beads, 
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before being instantly capped. After an equilibration period of 24h, samples were analyzed and 

porosity was determined from weight and volume measurements (Boyce, 1973). In Paper I, 

alkalinity and dissolved iron was measured onboard by titration and by spectrophotometry. 

Sulphate and H2S were measured onshore using ion chromatography and a spectrophotometer, 

respectively(Cline, 1969; Hong et al., 2017). In Paper III, probes were used to measure in situ 

concentrations of oxygen and sulfur. Microsensor profiling of the oxygen in the upper 

sediments was performed using a miniaturized 100 µm width Clarks type electrode (OX-100, 

Unisense, Aarhus, Denmark) and a microsensor multimeter (Unisense, Aarhus, Denmark). 

Oxygen concentrations were profiled vertically, perpendicular to the surface of the sediment, 

with a resolution of 100 to 250 μm using a motorized micromanipulator. Sulfur was measured 

using a micro sensor that converts H2S into HS- ions in the electrode tip, which contained 

alkaline electrolyte. It is then immediately oxidized by ferricyanide, producing sulfur and 

ferrocyanide. The sensor signal is generated by the re-oxidation of ferrocyanide at the anode 

within the tip of the sensor (Jeroschewski et al., 1996).  

For the physicochemical profiles of the water column in Paper IV, hydrographic parameters 

(salinity, temperature, pressure) were recorded at 24 Hz with a Conductivity-temperature-depth 

profilers (SBE 911 plus CTD; Sea-Bird Electronics, Inc., USA). With the CTD-mounted Niskin 

bottles, we collected discrete water samples from selected depths to measure CH4 

concentrations.  

2.4 Microbial communities 

Amplification of environmental total nucleotides, sequencing and sequences analyses 

For Papers I, II and III, sediment cores were extruded, and 2 cm thick layers were transferred 

in Whirl-Pak® sterile sampling bags (Nasco, United States) and stored at -80°C. For Papers I 

and II, following the measurements of the different environmental parameters in the laboratory, 

55 samples were selected for amplicon libraries sequencing. These samples were selected at 

regular depths (surface, ∼5, ∼10, and ∼15 cm) and at clear geochemical interfaces as detected 

by porewater geochemical gradients (e.g., SMTZ). Sediments were manually ground and 

homogenized in liquid nitrogen using a sterilized mortar. The DNA was extracted using the 

DNeasy PowerSoil Kit (Qiagen, Germany). For Paper III, the top 2 cm sediment layer were 

similarly transferred in sterile sampling bags. However, samples were homogenized using a 

TissueLyzer II (Qiagen, Germany) and the total nucleotides were extracted following a 

phenol/chloroform extraction protocol (Griffiths et al., 2000; Urich et al., 2008). Seawater 
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samples for molecular analysis (Paper IV) were collected in sterile, high-density polyethylene 

bottles and usually processed immediately after subsampling. We filtered a volume of 1 liter of 

sample on membrane filters (Whatman Nuclepore Track-Etched PC, 0.22 μm, Merck Millipore. 

Total DNA from membrane filters was extracted following the method of Pilloni et al. (2012). 

All samples for molecular community analyses were sent to the IMGM Laboratories GmbH for 

library preparation and amplicon sequencing. Prokaryotic communities for each sample in our 

studies were investigated by the amplification of the V3-V4 region of 16S rRNA gene using 

the same pair of degenerate primers (Alm et al., 1996; Jorgensen et al., 2012; Klindworth et al., 

2013), while eukaryotic communities in Paper I were amplified using 18S rRNA gene 

degenerate primers to target the V4 region (Hugerth et al., 2014). For Papers III and IV, the 

bacterial methanotrophic communities were investigated using a modified pair of degenerated 

primers targeting the particulate monooxygenase gene (pmoA) adapted for the marine 

environment (Tavormina et al., 2008). Library generation was conducted in accordance with 

the company’s protocols before being sequenced using a Miseq System (Illumina inc., United 

States). Paired-end nucleotide reads were deposited at Sequence Read Archive Genebank as 

BioProjects, with the exception of sequences from Paper IV which will be available upon the 

submission of the manuscript to a journal. Subsequently, obtained sequences were quality 

filtered (generally following the suggested USEARCH protocol1 with USEARCH v.10.0.240; 

Edgar, 2010)  before being clustered in OTUs at 97% similarity for 16S and 18S rRNA gene 

libraries, and at 86% similarity for pmoA libraries (Wen et al., 2016), estimated to represent 

diversity at the genus level. Representative sequences from the OTUs were thereafter assigned 

to taxonomy using the SILVA database v132 (Papers II and IV) and the SILVA database v138 

(Papers I and III) (Quast et al., 2012; Yilmaz et al., 2014). Libraries built from pmoA gene 

were assigned using the database published by Yang et al. (2016). Subsequent statistical 

analyses varied between the different manuscripts. Therefore, please find the details within the 

respective publications or manuscript. 

 

 

                                                 

1 http://drive5.com/usearch/manual/uparse_pipeline.html 

http://drive5.com/usearch/manual/uparse_pipeline.html
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Complementary microbial community and activity analyses 

Additional to the amplification and sequencing of environmental nucleotides, we used 

complementary methods throughout the different studies. In Paper II, we used fluorescence-

in-situ-hybridization (FISH) to visually observe the densities of ANME and SRB cells. We 

performed FISH using double-labelling-of-oligonucleotide-probes (DOPE; Stoecker et al., 

2010) for Archaea (ARCH915; Stahl, 1991) and Desulfobacteraceae (DSS658; Mußmann et 

al., 2005). Imaging was done with a confocal laser scanning microscope. 

In Paper IV, we combined microbial community analyses based on libraries of the 16S rRNA 

and pmoA genes with measurements of oxidation rates to monitor microbial activity in the water 

column. We used ex situ incubations with trace amounts of tritium-labelled CH4 (C3H4), 

allowing tracing of 3H-label transfer from the substrate to the MOx product pool, to measure 

MOx rates by measurement of the activities of the produced 3H2O.  
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3 Summary of Papers 

3.1 Paper I: The Impact of Methane on Microbial Communities 
at Marine Arctic Gas Hydrate Bearing Sediment 

Cold seeps are characterized by high biomass, which is supported by the microbial oxidation 

of the available CH4 by capable microorganisms. The carbon is subsequently transferred to 

higher trophic levels. South of Svalbard, five geological mounds shaped by the formation of 

CH4 gas hydrates, have been recently located. Methane gas seeping activity has been observed 

on four of them, and flares were primarily concentrated at their summits. At three of these 

mounds, and along a distance gradient from their summit to their outskirt, we investigated the 

eukaryotic and prokaryotic biodiversity linked to 16S and 18S rRNA gene. Here we show that 

local CH4 seepage and other environmental conditions, particularly the availability of O2 and 

CH4, did affect the microbial community structure and composition. We could not demonstrate 

a community gradient from the summit to the edge of the mounds, in contrast to what is found 

at mud volcanos. Instead, a similar community structure in any CH4-rich sediments could be 

retrieved at any location on these mounds. Both prokaryotic and eukaryotic communities were 

similarly influenced by the porewater geochemistry, as dissimilatory analyses revealed that 

formed clusters for each Domain usually included the same sediment samples. The oxidation 

of CH4 was largely driven by ANME-1 and the communities also hosted high relative 

abundances of SO4
2- reducing bacterial groups although none demonstrated a clear co-

occurrence with the predominance of ANME-1. This ANME was represented by a single OTU 

that was distributed over a 2.5 km2 area, highlighting its importance for the local ecosystem. In 

contrast to ANME, MOB were only detected at the gas flare. The absence or low detection of 

CH4 detected near sediment surface could be a factor in MOB distribution. Additional common 

taxa were observed, and their abundances were likely benefiting from the end products of CH4 

oxidation. Sulphide-oxidizing Campilobacterota Sulfurimonas and Sulfurovum were 

particularly abundant at the gas flare and could be detected in communities above ANME-1 

dominated sediment layers, although at a lower fraction. Other bacteria able to use the H2S 

generated by AOM, such as Beggiatoa, could not be detected. The higher microbial biomass 

also likely explained the higher observed abundance of organic matter degraders, such as 

Bathyarchaeota, Woesearchaeota, or thermoplasmatales marine benthic group D, and 

heterotrophic ciliates and Cercozoa. 
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3.2 Paper II: Methane-fuelled biofilms predominantly 
composed of methanotrophic ANME-1 in Arctic gas 
hydrate-related sediments 

Sedimentary biofilms comprising microbial communities mediating the anaerobic oxidation of 

CH4 are rare. Here, we describe two biofilm communities discovered in sediment cores 

recovered from Arctic cold seep sites (gas hydrate pingos) in the north-western Barents Sea, 

characterized by steady CH4 fluxes. We found macroscopically visible biofilms in pockets in 

the sediment matrix at the depth of the SMTZ, at ~70 and ~300 cm below seafloor. 16S rRNA 

gene surveys revealed that the microbial community in one of the two biofilms comprised 

exclusively of putative anaerobic methanotrophic archaea of which ANME-1 was the sole 

archaeal taxon. However, two genetically different ANME-1 OTUs dominated each biofilm 

and were also distinct from the ubiquitous ANME-1 OTU from Paper I. The bacterial 

community consisted of relatives of SRB belonging to uncultured Desulfobacteraceae 

clustering into SEEP-SRB1 (i.e. the typical SRB associated to ANME-1), and members of the 

atribacterial JS1 clade. The biofilm retrieved at a shallower depth showed nevertheless a higher 

biodiversity, where the archaeal groups Bathyarchaeia, Thermoplasmata and Woesearchaeia, 

in addition to the bacterial groups Aceothermiia and Chloroflexi, were also detected. The co-

existence of ANME-1 and SEEP-SRB1 could support the hypothesis of a consortium to perform 

anaerobic oxidation of CH4. However, the confocal laser scanning microscopy demonstrates 

that this biofilm is composed of multicellular strands and patches of ANME-1 that are loosely 

associated with SRB cells and were not tightly connected in aggregates. This observation differs 

from previously observed wall-to-wall clusters of ANME and SRB observed, suggesting 

different mechanisms on how AOM is mediated. This discovery of methanotrophic biofilms in 

sediment pockets closely associated with CH4 seeps constitutes a hitherto overlooked and 

potentially widespread sink for CH4 and SO4
2- in marine sediments. 
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3.3 Paper III (manuscript): Niche differentiation of prokaryotic 
communities and aerobic methanotrophs in surface 
sediments of an Arctic cold seep 

At cold seeps in the Storfjordrenna, south of Svalbard, distinctive features characterized the 

sediment seafloors: white bacterial mats, dense fields of siboglinids and zones where CH4 gas 

flares were emitted from the seafloor. These different features are suggested to present different 

geochemical characteristics of the pore water, thereby influencing the microbial biodiversity. 

However, our knowledge on this biodiversity at sediment surface of Arctic cold seeps, and how 

particularly the functional group of MOB is influenced within these different microhabitats, is 

limited. In this study, we collected two clusters of nearby sediment cores covering those 

different features. Geochemistry analyses of the porewater revealed steep changes where CH4 

and HS- concentrations were higher and shallower at gas flare and below bacterial mats. In 

contrast, penetration of O2 was deeper in fields of siboglinids. We investigated thereafter for 

each sediment cores surface layers the prokaryotic biodiversity linked to 16S rRNA gene and 

attempted at identifying key aerobic methanotrophs based on the 16S rRNA and the pmoA 

genes. Dissimilatory analyses demonstrated distinct community composition for both Archaea 

and Bacteria. At CH4 gas flares, the Archaea were characterized by the detection of ANME-1, 

the same OTU retrieved in Paper I, near the surface. Archaeal within siboglinid fields were 

instead distinct from the composition of Woesaerchaeota. Bacterial communities at CH4 gas 

flares were largely dominated by the SOB Campylobaterota. The relative abundance of SOB is 

reduced at other features and Beggiatoa became only detected at the edges of bacterial mats. 

SOB in fields of siboglinids were barely detected, despite that SOB endosymbionts were 

detected in these worms. Another key bacterial functional group investigated was the MOB. 

Relative abundances of Methylococcales were higher at CH4 gas flares and within bacterial 

mats, and both 16S rRNA and pmoA gene analyses suggest CH4 oxidation to be mediated by 

three bacteria: one methanotroph appeared to growth preference at CH4 gas flare, while another 

one was more predominant within bacterial mats. The latter showed limited genetic similarity 

to available sequences on sequence databases. Finally, the third one showed an approximately 

homogenized distribution. Bacterial groups also demonstrate different community structure 

where siboglinid fields contained a higher diversity of abundant groups. These included 

representatives of Chloroflexi, Desulfobacterota, Steroidobacterales and Verrucomicrobiota. 

Overall, our study demonstrates distinct microbial communities, suggesting key activity rates, 

including CH4 and HS- oxidation, to vary between these habitats.  
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3.4 Paper IV: Seasonal shifts of microbial methane oxidation in 
Arctic shelf waters above gas seeps 

The Arctic Ocean subseabed holds vast reservoirs of the potent greenhouse gas CH4, often 

seeping into the ocean water column. Today, CH4 is largely retained in the water column due 

to physical processes, but also by the activity of MOB that thrive there. Predicted future 

oceanographic changes, bottom water warming and increasing CH4 release may alter efficacy 

of this microbially mediated CH4 sink. Here we investigate the composition and principle 

controls on abundance and activity of the MOB communities at the shallow continental shelf 

west of Svalbard, which is subject to strong seasonal changes in oceanographic conditions. 

Covering a large area (364 km2), we measured vertical distribution of MOx rates, MOB 

community composition, dissolved CH4 concentrations, temperature and salinity four times 

throughout spring and summer during three consecutive years. Temperature and salinity were 

used to identify the water masses. We found highest MOx rates (7 nM d−1) in summer in 

bathymetric depressions filled with stagnant Atlantic Water containing moderate 

concentrations of dissolved CH4 (< 100 nM). MOx rates in these depressions during spring were 

much lower (< 0.5 nM d−1) due to lower temperatures and mixing of Transformed Atlantic 

Water flushing MOB with the Atlantic Water out of the depressions. Sequencing analyses of 

the pmoA gene revealed a small, relatively uniform community mainly composed of type-Ia 

methanotrophs (deep-sea 3 clade). Our results show that MOB and MOx in CH4-rich bottom 

waters are highly affected by geomorphology and seasonal conditions.  
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4 Results and Discussion 

The primary goal of this Thesis was to provide new insights on the microbial community 

structure and activity at cold seeps in the Arctic Ocean, presenting cold seeps under different 

dimensions (Figure 10). 

 

Figure 10: Illustrational overview of studies included in this Thesis and some of the devices used for sampling 

(ROV on the left, and CTD-rosette on the right, section 2.2). Major microbial interactions and environmental 

influences at gas hydrate bearing pingos in Storfjordrenna, including AOM in anaerobic sediments and MOx in 

the oxygenated water column and surface sediments are shown. The illustration also depicts the areas of interest 

in which the different publications are focusing on, i.e. microbial communities along depth gradients (Paper I), in 

a biofilm in deeper sediments (Paper II), along different niches in surface sediments (Paper III) and in the water 

column (Paper IV). Figure was made by Rudi Caeyers, UiT The Arctic University of Norway. 
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Throughout this Thesis, we have been able to describe the whole microbial communities at cold 

seeps along the migration path of CH4 along vertical and horizontal gradients, in addition to 

above, on and below the seafloor (Figure 10). The combination of all papers shows the 

microbial community shifts in CH4-rich environments from deeper anoxic sediments toward 

aerobic surface sediments and seawater. This Thesis illustrates the structure of microbial 

communities of various sections of an arctic cold seep along the upward flow of CH4 (Figure 

10), including: (1) rarely observed ANME-1 biofilms in deep sediments (Paper II), (2) the 

shallow anaerobic sediments (<40 cm depth) (Paper I & III), (3) the surface sediments (Paper 

III), and (4) the oxygenated overlaying water column (Paper IV). We integrated horizontal 

gradients in community composition, both at large scale (>20m distance between sediment 

cores) and smaller scale (<1 m distance between cores) across various microhabitats.  

Such combination of studies combined in this Thesis presents one of the most thorough 

microbial investigations at a cold seeps site. Its importance is further strengthened as most of 

the well studied CH4-fuelled microbial systems are located at low and mid latitudes. 

Furthermore, multiple observations of similar GHPs in other Arctic Seas (Paull et al., 2007; 

Serov et al., 2015; Savvichev et al., 2018). My work presents thereby a strong background for 

further studies on microbial community structures and functions at marine cold seeps in the 

Arctic. I will further discuss below the novelty of our findings, and I will address especially (i) 

how the cold seeps in Storfjordrenna do compare to other CH4 seeping sites, (2) how the local 

geochemical/geohydrological settings within the sediments and the overlaying seawater at 

studied cold seeps affect the composition of the microbial communities in the Arctic, and (3) 

what the key drivers for microbial methane oxidizing along the southern and western coastline 

of Svalbard are. Through each section I will place the main findings in perspective to the current 

knowledge of cold seep ecosystems and I will open the discussion for further questions needed 

to be answered.  

4.1 Biogeochemistry of cold seeps in the Arctic 

Two of the GHPs (GHPs 1 & 3) showed gas flare activity visible on echo sounder, while none 

was found on GHP 5 (Papers I & III). These gas flares have been mainly observed at the apex 

of the mounds, suggesting thereby higher CH4 fluxes and concentrations. Nevertheless, our 

visual surveys using ROVs also revealed flares several tens of meters away from the apex of 

GHP 3 (Paper III). Through the measurements of geochemical parameters at the GHPs 

(Papers I, II & III), we identified SMTZs at various depths ranging from 15 cmbsf at GHP 1 
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(Paper I) and 8-10 cmbsf at GHP 3 (Paper III) to >300 cmbsf (Paper II). Similarly to the 

distribution of CH4 gas flares, sediment cores characterized by shallow SMTZ (< 30 cmbsf) 

were found at various distances from the apex of GHPs 1 or 3, presenting a heterogeneous 

distribution of CH4 fluxes in the investigated area, causing subsequently the observed patterns 

of microhabitats dispersed on the GHPs. This suggests a more chaotic distribution of CH4 in 

the sediments at these mounds than at other CH4-derived geological structures, such as the 

HMMV, which is characterized by a stronger CH4 flux in the center with a specific microbial 

assemblage (Beer et al., 2006; Niemann et al., 2006; Lösekann et al., 2007). The active center 

of HMMV is surrounded by transition zones of few hundreds’ meters length with shifts in both 

environmental conditions and microbial communities.   

Our analyses of the porewater geochemistry in Paper III showed microhabitats separated only 

by less than a meter resulting in steep gradients in O2, CH4 and HS-. Such heterogeneity is 

important to consider for future investigation. Despite the particularities of the GHPs mentioned 

above, similar range of SMTZ depths, in addition to comparable profiles of H2S and O2, have 

also been observed at other cold seeps, such as along the Nyegga Ridge further south in the 

Barents Sea (Roalkvam et al., 2012). This makes the GHPs a suitable location to compare the 

microbial communities found at the GHPs with more southern cold seeps.  

4.2 Microbial community changes in CH4-rich Arctic 
environments 

In Paper I, distant sediment cores shared higher community similarity under the presence of 

CH4 than two nearby cores with contrasting porewater characteristics. Similar observations 

were made in surface sediments in Paper III where communities retrieved from similar 

microhabitats (CH4 gas flares, bacterial mats, siboglinid fields) shared higher similarity than 

two proximate cores. Our results are therefore aligned with a stronger role of environmental 

selection rather than geographical barriers in determining the microbial community 

composition in these environments, supporting the Baas Becking hypothesis where “everything 

is everywhere, but the environment selects” (Becking, 1931; Wit and Bouvier, 2006). 

Nevertheless, pelagic communities in Paper IV showed strong dissimilarity between different 

water masses, suggesting that the relative weight of geographical barriers in the establishment 

of local microbial communities could be more predominant in the water column. The 

dominating ANME-1 OTU retrieved from the GHPs in Papers I, II & III shared highest 

similarity with environmental sequences retrieved from along the eastern Asian coast, 

supporting the widespread distribution of few identical OTUs at global cold seeps (Ruff et al., 
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2015). It is possible therefore that our findings in the composition of microbial communities is 

reflective of communities at other cold seeps in the northern Barents Sea and Fram Strait. 

Determining the biogeography of the different taxonomic groups is an important aspect for 

future studies to anticipate the colonization of new CH4-rich locations on the seafloor that could 

emerge from new sources of CH4 releases originating from the dissociation of shallow gas 

hydrates as a consequence of the increase of bottom water temperature.  

Another particular aspect of this Thesis is that it contains a thorough analysis of the biodiversity 

of Archaea, Bacteria and Eukarya Domains within the same study, where the latter has often 

been ignored in microbial investigations on marine cold seeps. In Paper I, our results further 

supported the importance of eukaryotes inCH4-rich sediments at cold seeps presenting a high 

relative abundance of sequences assigned particularly to ciliates, Cercozoa and parasites-related 

genera. These may hold potential roles as sources of top-down pressure on other microbes and 

megafauna via parasitology or predation, or through hosting SOB or MOB as symbionts. Their 

contribution to the uptake of CH4-originated carbon in the food web remains still poorly 

understood but could represent missing links in the cold seep ecosystems. Our findings strongly 

emphasize the need for additional studies on the role of eukaryotes at cold seeps.  

4.2.1 Anaerobic sediments 

Overall, prokaryotic groups retrieved from GHP sediments were not unique in comparison to 

the reference community (i.e. communities thriving in the surrounding CH4-poor environment) 

or to other cold seeps. The predominant taxonomic groups found in the GHP sediments (Papers 

I, II & III; Figure 11) were the archaeal ANME-1 clade, the thermoplasmatales MBG-D and 

the Nanoarchaiea Woesearchaeota. They were also regularly found in CH4-poor sediments, 

although at lower relative abundances, outside of the GHP area, similarly to the bacterial SO4
2- 

reducers Desulfobacterota, including seeps-related clades SEEP-SRB1 and SEEP-SRB2, the 

atribacteria JS1 group and Chloroflexi. The diversity and role of ANME-1 in AOM at the GHPs 

is further discussed in subsection 4.3.1. 
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Figure 11: Archaeal (left diagrams) and bacterial (right diagrams) typical communities of abundant OTUs retrieved 

in anaerobic CH4-poor and –rich sediments. The group non-abundant includes all sequences assigned to OTUs 

that did not represent at least 1% of the sequence in one sample.   

Yet, preliminary analyses at the OTUs level for the Woesearchaeota presented in Papers I & 

III demonstrated that CH4- and H2S-rich sediments favor the growth of few abundant OTUs 

that are not present (or only in low abundance) in sediments, which are less influenced by CH4 

seeping activity. Woesearchaeota, similarly to the thermoplasmatales MBG-D or the 

Bathyarchaiea, are vast genetically diverse clades of uncultivated representatives that can also 

possess a wide variety of metabolisms - a hypothesis supported by preliminary metagenomic 

analyses (Liu et al., 2018; Zhou et al., 2018). Filling gaps of knowledge related to these groups 

could potentially demonstrate additional traits in the vertical succession of other groups than 

ANME-1, highlighting additional particularities of cold seeps at high latitudes. 

4.2.2 Aerobic sediments and water column 

The seafloor at the GHPs primarily featured four distinct microhabitats: CH4 gas flares, large 

white bacterial mats, dense siboglinid fields and areas of regular surface sediments showing no 
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particular features. These different habitats also enhanced niche differentiation in the 

prokaryotic communities, especially within the H2S oxidizers. H2S-rich sediments, at the CH4 

gas flares and bacterial mats were mainly composed of the Campylobacterota Sulfurovaceae 

and Sulfurimonadaceae. At the GHPs, the gammaproteobacterial Beggiatoa, typically found in 

bacterial mats at other cold seeps (Barry et al., 1996; Mills et al., 2004; Zhang et al., 2005; 

Grünke et al., 2011) were instead found in high relative abundance toward the edges of bacterial 

mats and siboglinid fields. This shift of SOB is potentially caused by the availability of H2S, 

where the free-living Campylobacterota are not able to store nitrate and/or oxygen and migrate 

toward H2S-rich sediment layers, in contrast to the Beggiatoa (McHatton et al., 1996). Finally, 

the fraction of H2S oxidizers was smaller within the siboglinid fields, but the known 

chemosynthetic endosymbionts SOB were also not detected (Sen et al., 2018b). The absence of 

SOB in siboglinid fields could be due to their presence in the lower section of tubeworms, 

below the sampled depth.  

While we were speculating about the suitable adaptation of each SOB to its respective habitat, 

questions arose on how this succession was established. Environmental characteristics could 

cause the spatial distribution of SOB, but it was also suggested that the SOB could follow a 

temporal succession (Patwardhan et al., 2018). Furthermore, at the HMMV, it was reported that 

bacterial mats and tubeworm fields did not overlap (Beer et al., 2006; Niemann et al., 2006), 

but at the GHPs we observed overlaps of siboglinid fields and bacterial mats. Expanding our 

knowledge on SOB at arctic cold seeps could further fill the gaps of knowledge in 

understanding the establishment of these oasis of life within those special habitats. 

Another key process in aerobic environments we identified is the aerobic oxidation of CH4. We 

observed a higher relative abundance of MOB within the 16S rRNA gene libraries at gas flares 

and within bacterial mats in contrast to fields of tubeworms or without noticeable features. 

Similar preliminary observations could be made at a gas flare at the GHPs described in Paper 

I, being the only site characterized by more than 1% of the sequences assigned to the 

Methylococcales in the surface sediment. While CH4 gas flares are sporadically distributed on 

the GHPs, bacterial mats occupy large areas on the GHPs and MOx could therefore play an 

important role in filtering CH4. Biodiversity of MOB will be further discussed in section 4.3. 
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4.3 Methane oxidation at arctic cold seeps 

4.3.1 Anaerobic methane oxidizing ANME-1 

In Papers I and II, we noted the predominance of ANME-1 throughout all samples; a 

community profile distinctive from most global cold seeps that are typically dominated by 

ANME-2 (Ruff et al., 2015). We showed that a single ANME-1 OTU dominated regardless of 

CH4 and H2S concentrations or depth. In contrast, representatives from ANME-2 were never 

found to predominate in any sediment layers, including the layers above the SMTZ. Yao et al. 

(2021) demonstrated a strong influence of ANME-1 at Vestnessa Ridge, in the Fram Strait 

along the northeastern coast of Svalbard. Thereby, the ANME-1 OTU ubiquitous in my studies, 

or closely genetically related representatives, could potentially be responsible of most of the 

AOM in the northern Barents Sea and the Arctic Ocean basin.  

Another particular finding about this ANME-1 is the absence of correlation with any particular 

sulphate-reducing bacteria groups. At global cold seeps, representatives of ANME-1 have been 

known to form these consortium with representatives of the SEEP-SRB1 or -2 groups (Knittel 

et al., 2003, 2005; Knittel and Boetius, 2009). In Paper II, we show that we have found a high 

representation for both ANME-1 and SEEP-SRB1, and these observations would support the 

assumption that ANME-1 would be mediating AOM in synthrophy with SEEP-SRB1. 

However, the abundance of the different ANME and SRB groups change along the SMTZ 

within two sediment cores taken at GHP 1 (Paper I) demonstrated different patterns of 

distribution of SEEP-SRB groups. Furthermore, the detection of ANME-1 at CH4 gas flares at 

the GHPs described in Paper III could not correlate with the detection of any SEEP-SRB 

groups. Overall, our findings have revealed particular traits of an ANME-1, demonstrating 

potentially different metabolism to the generally assumed traits of this clade. Further 

approaches are needed to better understand this ubiquitous ANME-1 OTU in Storfjordrenna. 

Extending the use of microscopic platforms, such as FISH, particularly along the SMTZ, would 

allow to confirm or infirm the agglomeration of ANME-1 and SRB cells. Using metagenomics 

analyses could further describe pathways for both taxa.  

4.3.2 Aerobic methane oxidizers 

We used both pmoA and 16S rRNA genes to investigate the MOB communities in the water 

column (Paper IV) and in surface sediments (Paper I & III). Both the water column and the 

surface sediments presented a different composition of methanotrophic communities, whereas 

most dominating OTUs in the pmoA libraries belonged to the uncultivated clades Deep-Sea 
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Clusters (DSC) 1 and 3 within the Methylococcales. One particularly abundant OTU in the 

surface sediment also belonged to the Methylomonas-like group. Overall, OTUs belonging to 

the DSC1 dominated surface sediments while DSC3 was more predominant in the seawater 

(Paper IV). Such distinction between the pelagic and benthic systems has been observed at 

multiple cold seeps (Tavormina et al., 2008), although both DSC groups were alternatively 

found in both environments (Knief, 2015), preventing further assumption on their ecological 

preferences. In Paper III, we present the occurrence of two possibly different MOB presenting 

contrasting distribution patterns both assigned to the DSC1, but in two different subclades. 

Those patterns were visible concomitantly within the pmoA and 16S rRNA gene libraries, 

further strengthening the interpretation of our results. Various environmental factors were 

found to influence the composition of aerobic methanotrophic communities, including levels 

of CH4 , O2 and H2S (Hernandez et al., 2015; Mayr et al., 2020; Delgado Vela et al., 2021). In 

Paper III, we could not clearly explain why the MOB community shifted between dominance 

of different aerobic methanotrophs based on these environmental parameters. Further studies 

on cultivation experiments would be required to identify these MOB and the growing factors 

that caused these distribution patterns. In addition, these differences could also be represented 

in their CH4 oxidation ability, impacting future estimates on the CH4 oxidation activity at the 

GHPs.  

5 Conclusion  

In this project, microbial communities at CH4 seeping sites in the northern Barents Sea 

demonstrated a contrasting composition compared to the surrounding environment, both within 

the sediments and the water column. In the following, I like to summarize the biological fate of 

CH4 following its migration upward through the sediments and to the sea surface and I will 

highlight key microbial groups, which are influencing this process: 

1- Anoxic sediments: The CH4 is first anaerobically oxidized primarily by ANME-1. These 

were found ubiquitous at the seeping sites and while SRB were also abundant, both groups did 

not show significant correlation. Both ANME and SRB were shown at the GHPs to dominate 

the composition of biofilms, an uncommon feature observed at other cold seeps. Within the 

same anoxic sediments, other key prokaryotic groups demonstrating high relative abundances 

and that were suggested to be involved in different organic compounds degraders included the 

archaeal thermoplasmatales MBG-D, the Asgardarchaeota and the Woesearchaeota. 

Within the Bacteria, Chloroflexi was particularly abundant in deeper sediments whereas 



 

38 

Campylobacterota was primarily abundant in deeper sediments only at a gas flare. At the 

GHPs, the chaotic distribution of faults through which the CH4 escapes create a similar 

distribution of the microbial communities. Two communities further distant but with similar 

environmental conditions were more similar at the OTUs level than two sediment cores taken 

nearby.  

2- Aerobic sediments: The chaotic dispersal of CH4 seeping through the sediments at the GHPs 

and the consequential distribution of H2S generated from AOM contributed to the observed 

tumultuous dissemination of bacterial mats, siboglinid fields and gas fares visible at the oxic 

sediment surface. These created different microhabitats that were hosting different microbial 

communities. Gas flares and bacterial mats were hotspots for the detection of aerobic 

methanotrophs, where the Paper III showed MOx to be mediated by three distinct 

Methylococcales: two affiliated to the DSC1 and one genetically similar to Methylomonas sp. 

The different habitats also harbor different SOB diversity: gas flares and bacterial mats are 

more densely populated by Campylobacterota, while Beggiatoa are more abundant at 

boundaries between mats and siboglinid fields. In siboglinid fields SOB represented a small 

fraction, but its density could be higher in deeper sediments in the trophosome of the worms. 

Finally, the different habitats shaped the rest of the microbial communities, including a higher 

proportion of ANME-1 at gas flares, and a more diverse composition of different organic 

compounds degraders toward the H2S-poor sediments in siboglinid fields.    

3- Water column: High level of CH4 was only detected in the bottom water where geological 

depressions limited the dissipation of CH4 through hydrodynamic process. Within these water 

layers, MOx were also higher and methanotrophic communities were primarily represented by 

Methyloccales associated within the pmoA database to the Type Ia Deep-Sea Cluster 3. This 

contrasted with the MOB community retrieved at sediment surface of cold seeps in Paper III, 

adding a fourth potential key player in MOx in the northern Barents Sea.  

This PhD project has therefore been able to identify how CH4 impact the microbial biodiversity 

in the northern Barents Sea, in addition of providing insights within the Arctic Ocean, and 

identified key microbial players. Our scope included various gradients, including depth related 

(anoxic sediments, oxic sediments, water column), distance related (both at few meters scale 

(Paper III), few tens and hundred meters scale (Paper I & II) and tens of kilometer scale (Paper 

IV), and geochemistry related (such as changes in CH4, O2, H2S). Results demonstrate on one 

side similar microbial characteristics observed also at other cold seeps, such as the 
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predominance of a known ANME clade near SMTZ. But on another side, our results also 

highlighted uncommon observations, such as AOM being mainly mediated by ANME-1, 

raising further questions for future research.  

6 Outlook 

When considering the broad distribution of CH4 sources and their importance in the Arctic 

Ocean, there is emphasis on extending microbial investigations to the other uninvestigated 

Arctic regions. Geomorphological and biogeochemical properties of the different Arctic 

shelves strongly vary, leading potentially to a different selection of microbes thriving. 

Furthermore, this Thesis provided particularly an in-depth analysis of the methane and sulphur 

related microbial diversity, but microbes associated to other biogeochemical cycles were only 

superficially covered. Consequently, gaps of knowledge on the biodiversity of several other 

functional groups, such as groups associated to nitrogen cycle and degradation of organic 

matter, remain to be addressed. Yet, microbial ecosystems investigated in this Thesis presented 

particular traits, extending our original question of Who is there? into a myriad of new 

questions. 

Our research efforts set foundations to extend further knowledge on metabolism and 

distribution of key taxa identified in these studies, in addition to improving our comprehension 

of the CH4 budget (sinks and sources) in the Arctic Ocean. In addition, conditions in the Arctic 

Ocean are predicted to experience amplified impacts from climate changes compared to other 

oceans (Carton et al., 2015; James et al., 2016; Lewis et al., 2020; Timmermans and Marshall, 

2020), underlining the importance of knowledge to investigate potential impacts on the local 

microbial communities at cold seeps. The impact of other anthropogenic activities on benthic 

microbial communities, such as bottom trawling where traces where clearly visible near our 

sampling sites, remain unknown. With the growing interest in the Arctic Ocean to extend 

economic activities such as fisheries, oil & gas, and mining industries, there are legitimately 

some concerns for the environmental stability of these microbes, where some require several 

months for doubling generation time.  
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Cold seeps are characterized by high biomass, which is supported by the microbial
oxidation of the available methane by capable microorganisms. The carbon is
subsequently transferred to higher trophic levels. South of Svalbard, five geological
mounds shaped by the formation of methane gas hydrates, have been recently
located. Methane gas seeping activity has been observed on four of them, and
flares were primarily concentrated at their summits. At three of these mounds, and
along a distance gradient from their summit to their outskirt, we investigated the
eukaryotic and prokaryotic biodiversity linked to 16S and 18S rDNA. Here we show
that local methane seepage and other environmental conditions did affect the microbial
community structure and composition. We could not demonstrate a community
gradient from the summit to the edge of the mounds. Instead, a similar community
structure in any methane-rich sediments could be retrieved at any location on these
mounds. The oxidation of methane was largely driven by anaerobic methanotrophic
Archaea-1 (ANME-1) and the communities also hosted high relative abundances of
sulfate reducing bacterial groups although none demonstrated a clear co-occurrence
with the predominance of ANME-1. Additional common taxa were observed and their
abundances were likely benefiting from the end products of methane oxidation. Among
these were sulfide-oxidizing Campilobacterota, organic matter degraders, such as
Bathyarchaeota, Woesearchaeota, or thermoplasmatales marine benthic group D, and
heterotrophic ciliates and Cercozoa.

Keywords: Arctic, methane seeps, prokaryotes, methanotrophs, ANME, Sulfate-reducing bacteria, eukaryotes,
foraminifera

INTRODUCTION

Cold seep microbial communities thrive where geofluids, characterized by high concentrations of
hydrocarbons, in particular methane (CH4), provide a primary energy source for these organisms
(Boetius et al., 2000; Orphan et al., 2002; Niemann et al., 2013). These geofluids and/or free gas
migrate upward through faults, cracks, and sediment pores that provide a transport vector from
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sub-seafloor reservoirs to the seafloor. The origin of methane
can be either from the geological cracking of organic matter at
high temperature or from biologically mediated decomposition
of organic matter (Schoell, 1988; Joye et al., 2010). Under certain
thermobaric conditions, CH4 forms gas hydrates, i.e., an ice-
like lattice comprising molecules of CH4 trapped in crystalline
cages of water molecules. The formation or the dissociation of gas
hydrates can modify the seafloor morphology, and subsequently
can lead to the genesis of pockmarks, craters, and gas domes
(Vogt et al., 1994; Hovland and Svensen, 2006; Koch et al., 2015;
Portnov et al., 2016; Serov et al., 2017; Waage et al., 2019).

The CH4 present in the fluid can be oxidized aerobically
or anaerobically (Krüger et al., 2005; James et al., 2016).
In aerobic environments, the oxidation of CH4 is driven by
methane oxidizing bacteria that utilize oxygen as an electron
acceptor. Most of them are associated with the alpha and gamma
proteobacteria, but also with Verrucomicrobia or Crenothrix
(Hanson and Hanson, 1996; Knief, 2015). Nevertheless, microbial
activity at the cold seep seafloor rapidly depletes the available
oxygen in marine sediments and limits its penetration depth
to a small surface layer, usually of a few millimeters thickness
at most (Niemann et al., 2006, 2009; Reeburgh, 2007; Boetius
and Wenzhöfer, 2013). In the absence of oxygen, methane
is oxidized anaerobically through a process that has been
termed the anaerobic oxidation of methane (AOM; Reeburgh,
2007). Anaerobic oxidation of methane is driven by anaerobic
methanotrophic Archaea (ANME) and so far, three main ANME
clades of phylogenetically distinct groups were detected: ANME-
2 and ANME-3 are placed within the methanosarcinales, while
ANME-1 forms a distinct group within the Halobacterota
(Knittel and Boetius, 2009; Quast et al., 2012; Yilmaz et al.,
2014). The phylogenetic dissimilarity of these ANME groups
suggests different levels of tolerance to various environmental
parameters. Previous study results suggested that ANME-2
might be more sensitive than ANME-1 to high concentrations
of sulfide and low concentrations of sulfate (Timmers et al.,
2015; Bhattarai et al., 2018). The ANME-2 group would then
often be limited to the layers at the sulfate-methane transition
zone (SMTZ) and ANME-1 would dominate in more sulfidic
sediments, at deeper layers (Knittel et al., 2005; Roalkvam
et al., 2012). Nevertheless, ANME-2 groups were also retrieved
in sulfide-rich sediments (for example at the Hydrate Ridge;
Knittel et al., 2003), insinuating the impact of other factors
on the observed stratification of ANME groups. Additional
environmental conditions that were suggested to select for
differential ANME groups include temperature (Nauhaus et al.,
2005; Rossel et al., 2011), salinity (Maignien et al., 2013), or
CH4 flux rates (Girguis et al., 2005; Yanagawa et al., 2011;
Marlow et al., 2014).

Most ANME use sulfate, but some were also found to use
iron, manganese, and nitrite/nitrate as electron acceptors (Beal
et al., 2009; Ettwig et al., 2010, 2016; Hu et al., 2014). Reduction
of sulfate at the SMTZ generally requires sulfate reducing
bacteria (SRB) and a syntrophic consortium with ANME that are
commonly found as AOM drivers (Boetius et al., 2000; Wegener
et al., 2015). However, in the last decade, community studies
of methanotrophs have shown evidence of free-living ANME

cells particularly assigned to the ANME-1 group, but also to
the ANME-2 group, that might perform sulfate reduction alone
(Orphan et al., 2002; Knittel et al., 2005; Roalkvam et al., 2011;
Milucka et al., 2012; Stokke et al., 2012; Gründger et al., 2019).

The AOM coupled with sulfate reduction generates HS−
which can subsequently be oxidized by sulfide-oxidizing
bacteria, such as the bacterial mat forming Beggiatoa or
Campilobacterota species. Some chemoautotrophs can also be
present as intracellular and extracellular symbionts within larger
fauna, but also in the eukaryotic euglenozoans and ciliates (Buck
et al., 2000; Rinke et al., 2006). Additionally, a higher bacterial and
archaeal biomass becomes a trophic basis for grazing megafauna
or microbial eukaryotes, including diverse bacterivore ciliates,
Cercozoa, and stramenopiles (Werne et al., 2002; Takishita
et al., 2007, 2010; Niemann et al., 2013). Potentially parasitic or
pathogenic eukaryotes, such as Apicomplexa, Ichthyosporea, and
fungi, are also likely to benefit from the denser faunal community
(Atkins et al., 2002; Takishita et al., 2006).

In the Arctic, gas hydrate bearing domes were observed
50 km south of Svalbard in Storfjordrenna, at ∼390 m below sea
level (Serov et al., 2017). They are referred to as pingos, after
similar terrestrial features observed in glacial valleys (Mackay,
1998), although they differ by their formation (i.e., gas hydrates
instead of regular water ice; Serov et al., 2017). At the water
depth of the gas hydrate pingos (GHP; ∼390 m, ∼0.5–2.5◦C
bottom water T◦C), the gas hydrates remain within the gas
hydrate stability zone (GHSZ), but are close to its upper limit
and are sensitive to even small changes of temperature and
pressure (Hong et al., 2018). Hydroacoustic observations have
revealed acoustic flares originating from methane gas bubbles
in the water column. These were primarily located at the
summit on four of the five Storfjordrenna pingos. The dating
of methane derived authigenic carbonates suggested that CH4
seepage has been active for several thousand years (Serov et al.,
2017). Visual observations have revealed a higher biomass in
sediments of the pingos compared to the surrounding seafloor
(Åström et al., 2018). This can be explained by the presence
of a carbonate crust induced by AOM, which offers a hard
substrate for the attachment of benthic organisms, such as
sponges and anemones (Niemann et al., 2005; Cordes et al., 2010;
Vaughn Barrie et al., 2011).

Past investigations at the Storfjordrenna pingos have primarily
addressed the geochemical conditions (Serov et al., 2017; Hong
et al., 2018) or the biodiversity of larger fauna (Sen et al., 2018;
Åström et al., 2018), but the microbial community structure
remains mostly unknown [with the exception of a biofilm
retrieved within deeper sediments at the pingos (Gründger et al.,
2019)]. At a circular seep further south, the Haakon Mosby
Mud Volcano (HMMV), the composition of the bacterial and
archaeal communities varied between concentric zones around
the apex of the edifice, i.e., along a methane flux/concentration
gradient (Niemann et al., 2006; Lösekann et al., 2007). In
Storfjordrenna, the gas flares at the summit of the structures
could suggest a similar concentric arrangement of microbial
habitats. However, these pingos contrast with HMMV by
presenting a multitude of small geological fractures and gas
hydrates chaotically distributed around the structures through
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which methane migrates to the seafloor surface (Hong et al., 2018;
Waage et al., 2019).

Our study aimed at determining spatial variations in the
microbial community structure along a gradient from the apex to
the edge of three pingos. We addressed key environmental factors
that are influencing the prokaryotic and eukaryotic community
structures and their spatial distribution. Finally, we identified
key taxa characteristics for these Arctic CH4-rich environments,
demonstrating the uniqueness of this ecosystem.

MATERIALS AND METHODS

Study Site
The sampling site was located in the Arctic Ocean at the mouth
of Storfjordrenna, 50 km south of Svalbard at approximatively
390 m water depth (Serov et al., 2017). A group of 5 GHPs
(∼10 m high, 500 m in width) distributed on the seabed over
a 2.5 km2 area were recently found1. Hydroacoustic surveys
and real time visually guided observations with a TowCam-
Multicore (see footnote 1) System (TC-MC) and Remotely
Operated Vehicle (ROV) dives2 have revealed acoustic flares
of gas bubbles consisting predominantly of CH4 and being
emitted from 4 of the 5 GHPs. One structure (GHP 5)
did not show any visible flares or gas hydrate in sediments
(Serov et al., 2017). During the sampling campaigns for
this study, seep activity at the different sampling sites was
assessed by tracking flares through hydro acoustic surveys with
a multibeam echosounder (Kongsberg Simrad EM 302) or
by visual observations using a TC-MC system configuration
(Panieri et al., 2017).

Sampling Procedure
Field campaigns were conducted with RV Helmer Hanssen and
sediment cores at the GHP 3 and at GHPs 1 and 5 were taken
in June 2016(see footnote 2) and June 20173, respectively. Cores
were taken along a spatial gradient from the apex of the geological
feature to its edge. Core IDs MC_900 (apex), MC_902, MC_918,
and MC_919 (edge) were taken at GHP 1. Core IDs MC_1061
(apex), MC_1062, MC_1063, and MC_1065 (edge) were collected
at GHP 3 while core IDs MC_920 (apex), MC_922, and MC_923
(edge) were collected at GHP 5 (Figure 1). A reference core
(core ID 898) was retrieved at one kilometer away from the
closest GHP. The use of the multicore system KC Denmark
DK8000 integrated with a TC-MC with a real time transmission
of images (Daniel et al., 2003) allowed for the collection of six
60 cm long real time visually guided cores. The combined TC-
MC was used to visually survey and sample sediments from
the study site and the sediment recovery varied between 15
and 40 cm. Exceptionally, core ID BC_1029 was taken using
a blade core mounted on a Sperre Subfighter 30k ROV to

1https://cage.uit.no/wp-content/uploads/2019/02/15-2.cage-cruise-report-
public-1.pdf
2https://cage.uit.no/wp-content/uploads/2019/02/16-5.cage-cruise-report-
public.pdf
3https://cage.uit.no/wp-content/uploads/2019/02/17-2.cage-cruise-report-
public.pdf

target directly sediments in close vicinity to a CH4 gas flare at
GHP 3 in June 2016.

Porewater Geochemistry
Porewater geochemistry was measured for all cores, and data
for BC_1029 and MC_1063 were collected from Hong et al.
(2020). CH4 concentrations were measured with a head space
technique and gas chromatography (Thermoscientific Trace
1310) equipped with a flame ionization detector (Hoehler et al.,
2000; Panieri et al., 2017). For this, we extruded 3 mL of bulk
sediments per 2 cm intervals in all cores which were immediately
transferred to a 20 mL headspace vial with 7 mL of NaOH
solution (1 M) and two glass beads, and instantly capped. Samples
were analyzed subsequently to an equilibration period of 24 h and
are represented as concentration per sediment volume. Sediment
porosity was determined from weight and volume measurements
as presented in Boyce et al. (1973).

Dissolved iron (Fe2+), alkalinity, total sulfide (6HS), sulfate
(SO4

2−), and dissolved inorganic carbon (DIC) were measured
from a neighboring core of the multicore system, recovered
during the same sampling round. Using rhizon samplers
(Seeberg-Elverfeldt et al., 2005), up to 18 mL of porewater was
collected at each cm in the upper 10 cm and at intervals of
4–10 cm in the lower part of the core. Alkalinity and Fe2+

were measured onboard by titration and by spectrophotometry,
respectively (Hong et al., 2017). SO4

2− was measured onshore
using ion chromatography (Hong et al., 2017), while 6HS
was measured using a spectrophotometer at a wavelength of
670 nm (Cline, 1969). A detailed protocol on the measurement
of 6HS can be found in the Supplementary Material of
Hong et al. (2020). Due to equipment availability on the
two field cruises, 6HS and DIC concentrations were not
measured for all sediment cores while alkalinity and Fe2+

concentrations were only measured for a selection of sediment
layers (Supplementary Tables 1–5).

DNA Extraction, Sequencing, and
Sequences Analyses
Sediment cores were extruded and 2 cm thick layers were
transferred in Whirl-Pak R© sterile sampling bags (Nasco,
United States) and stored at -80◦C. Following the measurements
of the different environmental parameters in the laboratory,
55 of these samples were selected for amplicon libraries
sequencing. These samples were selected at regular depths
(surface, ∼5, ∼10, and ∼15 cm) and at clear geochemical
interfaces as detected by porewater geochemical gradients
(e.g., SMTZ). In a cold room (4◦C), sediments were manually
ground in liquid nitrogen using a sterilized mortar. The
DNA was extracted using the DNeasy PowerSoil Kit (Qiagen,
Germany). The manufacturer protocol was followed, except
that the samples were placed in G2 DNA/RNA Enhancer beads
tubes (Ampliqon, Denmark) for physical lysis (Jacobsen et al.,
2018) instead of the kit lysis tubes. Once the DNA samples
were quality checked using electrophoresis gels, the DNA
concentrations were measured using a NanoDropTM 2000
spectrophotometer (Thermo Fisher Scientific, United States)
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FIGURE 1 | Geological dome structures referred to as Gas Hydrate Pingo (GHP) located at the mouth of Storfjordrenna, 50 km south of Svalbard. The upper panel
gives an overview of this area. The lower panels show the three selected GHPs for this study. White dots represent locations of the different sediment cores at GHPs
1, 3, and 5 using a multicore system. Core MC_898 was sampled as reference site and core BC_1029. GHP 3 was taken using a blade core mounted on a ROV to
sample in the vicinity of a methane gas flare.

and normalized before being sent to the IMGM Laboratories
GmbH for library preparation and amplicon sequencing. For
each sample, eukarya were amplified using 18S rDNA degenerate
primers to target the V4 region, and bacteria and archaea were
amplified using 16S rDNA degenerate primers to target the
V3-V4 region (Supplementary Table 6). Library generation
was conducted in accordance with the company’s protocols
before being sequenced using a Miseq System (Illumina inc.,
United States). Paired-end nucleotide reads were deposited
at Sequence Read Archive Genebank4 as BioProject accession
number PRJNA593930.

4http://www.ncbi.nlm.nih.gov/sra

Paired-end reads were meticulously processed and the
workflow was derived from the USEARCH suggested protocol5.
Pairs were merged before being length trimmed and quality
filtered with USEARCH v10.0.240. Thereafter, operational
taxonomic units (OTUs) were constructed using the UPARSE-
OTU greedy algorithm at 97% pairwise sequence identity.
Singleton OTUs were removed and taxonomy was assigned using
the method Wang implemented in Mothur to the SILVA database
release 138 (Edgar, 2010; Quast et al., 2012; Yilmaz et al., 2014).
Sequences that were not classified to their domain were discarded
prior to further statistical analyses. Finally, sequences from

5http://drive5.com/usearch/manual/uparse_pipeline.html
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multicellular organisms are likely detected within the 18S rDNA
libraries and therefore OTUs that were assigned to Metazoan
groups and unclassified eukaryotes were discarded to focus only
on the microbial community.

Statistical Analyses
Archaeal, bacterial, and eukaryotic libraries were rarefied at
8900, 4700, and 1300 sequences, respectively, corresponding to
the lowest number of sequences in one sample. Preliminary
analyses of the libraries demonstrated a large fraction of OTUs
that contained just a few sequences in a sample, especially
for the bacterial communities (Figure 6). In this study, we
aimed to determine the distribution patterns of key microbes.
The inclusion of a large fraction of rarer taxa in the diversity
analyses, despite sharp gradients in the dominating OTUs,
prevented the visualization of these gradients of community
changes. Therefore, only OTUs containing at least 1% of
the overall sequences of one sample were kept for further
statistical analyses.

For the bacterial and archaeal communities, beta diversity,
measuring changes in the composition of communities between
different samples, was calculated on the relative abundance of
the selected abundant OTUs using the Bray–Curtis dissimilarity
index implemented in the Vegan v2.5-5 package on R (Oksanen
et al., 2019). Clusters of sediment samples sharing similar
OTUs abundance and composition for both domains of life
were formed at a dissimilarity index of ca. 0.5–0.6. For each
cluster, the relative abundance of each OTU was averaged
and used to build a doughnut diagram with the R package
ggplot2 v3.2.1. Thereafter, distance-based redundancy analyses
(dbRDA) were performed to reveal whether the environmental
parameters measured had an impact on the observed community
dissimilarity between the different sediment cores. A dissimilarity
matrix was built using the Bray–Curtis dissimilarity index. As
the environmental parameters differed between the GHPs, and
the fact that missing values can affect the outcome of the
analyses, the dbRDA were performed and presented for each
GHP separately. Environmental parameters were logarithmically
transformed and standardized through Z scoring (Legendre
and Legendre, 1998). The significance of the resulting axis
from the dbRDA was evaluated through permutation tests
(n = 999). Both functions for dbRDA and permutations
tests are implemented in the Vegan v2.5-5 package on R
(Oksanen et al., 2019).

For the eukaryotic libraries, biodiversity analyses were likely
affected by the removal of sequences assigned to Metazoa, as
in some samples they could represent on average 40% of the
sequences. Furthermore, a large fraction of the community
structure at the GHPs site was dominated by reads assigned
to photosynthetic eukaryotes that might have originated from
the sedimentation of phytoplankton cells, undermining any
subsequent attempts at describing the structure of the eukaryotic
communities thriving at the GHPs and evaluating the impact
of environmental factors on the biodiversity (Rey and Rune
Skjoldal, 1987). Therefore, a different approach was used
for the eukaryotic libraries and we emphasized instead on
the contrast of the abundant OTUs composition between

the reference site and CH4-rich sediments. To do so, once
sequences assigned to Metazoa or unclassified eukaryotes were
removed and eukaryotic libraries were rarefied, OTUs that were
abundant at the reference site were subtracted and presented
separately. We hypothesized that the remaining abundant
OTUs would be indicators of taxonomic groups influenced
by local conditions at the GHPs. Analyses on the relative
abundances of these taxonomic groups were calculated using
the Bray-Curtis dissimilarity index (Oksanen et al., 2019) and
clusters of sediment samples were formed at a dissimilarity
index of 0.5–0.6.

Benthic Foraminiferal Analyses
We observed that the relative abundances of certain prokaryotic
taxonomic groups, including the genus Sulfurimonas, increased
in CH4-rich sediments. To ensure that the changes in
relative abundances of these taxonomic groups were caused
by the presence of CH4, we compared results from DNA
sequences with an independent proxy for surface CH4-
rich sediments. Agglutinated foraminifera are often observed
in Arctic seas (Wollenburg and Mackensen, 1998; Jernas
et al., 2018) and are particularly sensitive to cold seeps
where they are very rare or even absent (Panieri and Sen
Gupta, 2008; Martin et al., 2010; Dessandier et al., 2019).
Accordingly, changes in their abundances can be used to
assess the impact of CH4 seepage disturbance on the local
biological communities. Foraminiferal samples (0–1 cm sediment
depth) from GHP 1 were stored for 14 days at 4◦C in a
2 g L−1 Rose Bengal solution in ethanol 96%, in order to
identify the living (Schönfeld et al., 2012), or recently alive
individuals (Rose Bengal stained foraminifera; Corliss, 1991).
All samples were wet sieved using 63 and 125 µm mesh
sieves and dried at 40◦C (48 h). We considered “living”
individuals as the ones characterized by a pink stain of all
chambers in their test, with the exception of the last one.
In case of doubt, the test was broken to investigate the
staining of the endoplasm (Schönfeld et al., 2012). All benthic
foraminiferal specimens from >125 µm size fraction were
handpicked, identified, and counted. The density was calculated
by dividing the number of agglutinated foraminiferal individuals
(Supplementary Table 10) in each core by the surface of the
core (5.02 × 103 m2). The relationship between the density
of agglutinated foraminiferal cells and the logarithm of the
number of resampled Sulfurimonas sequences was tested using
a linear model.

RESULTS

Environmental Characterization and
Geochemistry
At the reference site, CH4 was nearly absent, gas flares were not
detected on the echosounder, and CH4 sediment concentrations
did not exceed 4 µM (Figure 2). 6HS remained undetectable
throughout the reference core, while measured concentrations
of SO4

2− slightly decreased from 28 mM at the sediment
surface to 26 mM at 11 cm below seafloor (bsf), correlating
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FIGURE 2 | Geochemical profiles of the different sediment cores collected at the reference site (MC_898) and GHPs 1, 3, and 5, with the exception of BC_1029 that
is presented in Figure 3. Profiles for CH4, SO4

2-, and 6HS at these sediment depths are given. Black bars correspond to the sediment layers from which the DNA
was extracted and sequenced.
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to seawater concentration of the Barents Sea. The seafloor
was muddy and authigenic carbonates were not observed
(Supplementary Table 4).

At GHP 1, gas flares and high CH4 sediment concentrations
were suggestive of high CH4 seepage activity (Figures 1, 2).
Dense patches of chemosynthetic organisms, such as siboglinids,
as well as carbonate crusts colonized by anemones and
sponges, were scattered across GHP 1 (Supplementary Table 4).
Concentrations of CH4 were low in the sediment surface layer,
ranging from 0.61 to 6.73 µM, and increased with depth in
cores taken at the GHP 1 apex, reaching a maximum of 169 µM
at 37 cmbsf in core MC_900 and 1109 µM at 19 cmbsf in
core MC_902 (Figure 2). MC_902 was also characterized by a
stronger depletion of SO4

2− with depth than at the reference
site as concentration dropped below 5 mM at 15 cmbsf. With
the decrease in SO4

2−, 6HS concentrations increased, peaking
at 4558 and 2078 µM in MC_900 and MC_902, respectively.
MC_918 was collected close to the rim of the GHP, where
concentrations of CH4 and 6HS increased with depth, but at
lower concentrations than at cores taken near the apex of GHP
1. The SO4

2− concentrations values at MC_918 ranged from
27.8 mM at the surface to 25.9 mM at 19 cmbsf. MC_919 was
taken outside the GHP, but close to its edge. Here, environmental
parameters became more similar to the reference site. Low
concentrations of CH4 (yet still slightly higher than at the
reference site) were detectable and SO4

2− concentrations were
only slightly lower than at the reference site and remained above
26 mM within this core.

At GHP 3, BC_1029 had the highest CH4 concentrations of
all sites, reaching up to 12.8 mM at 12 cmbsf (Figure 3). This
core was taken in the vicinity of a CH4 gas flare (Figure 1). The
four other cores from GHP 3 had lower CH4 concentrations than
BC_1029 (<15 µM). Still, the cores MC_1061 and MC_1062,
located close to the GHP 3 apex, had higher CH4 concentrations
than cores MC_1063 and MC_1065, collected near the edge and
outside GHP 3, respectively. SO4

2− maximum concentrations in
the surface sediment layers were in the range of 27-28 mM for all
cores, but the SO4

2− level decreased to 12.21 mM at 12 cmbsf and
at 23.83 mM at 14 cmbsf for BC_1029 and MC_1061, respectively.
Within other cores taken at GHP 3, the decreasing concentrations
of SO4

2− showed a similar pattern to the reference site. Fe2+

concentrations were only measured in two cores (BC_1029 and
MC_1063) and showed a sharp decrease at the sediment surface
in core BC_1029, but remained high in core MC_1063, where it
was depleted only at 20 cmbsf (Supplementary Table 2).

At GHP 5, similar CH4 concentrations in the upper sediment
layer were measured in core MC_920 and at the apex of
GHP 3 (Figure 2). However, gas flares were not visible on
the echosounder at the apex of GHP 5. In addition, a CH4
concentration of ∼18 µM was measured at 19 cmbsf in
core MC_922, occurring concomitantly with an increasing
concentration of 6HS. The seafloor was covered with hard
surfaces, mostly ice raft debris, and colonized by anemones
and sponges (Supplementary Table 5). Complementary
information on visual observations at the sampling sites and
on concentrations of Fe2+, alkalinity, and DIC are available as
Supplementary Information (Supplementary Tables 4, 5).

FIGURE 3 | Geochemical profiles of the sediment core BC_1029 collected at
GHP 3 near a CH4 gas flare. Profiles for CH4 and SO4

2- at these sediment
depths are shown. Black bars correspond to the sediment layers from which
the DNA was extracted and sequenced.

Taxonomy and Abundant OTUs
Once pair-ends reads were quality filtered, 8 129, 36 301, and
8184 OTUs were successfully assigned to the archaeal, bacterial,
and eukaryotic domains, respectively (Supplementary Table 7).
After rarefaction, within the archaeal OTUs, 87 were found to be
abundant in at least one of the sediment layers collected from the
reference site or the GHPs. Among the bacteria and eukaryotes,
107 and 140 abundant OTUs were identified, respectively.

Composition Similarities of the Microbial
Communities
Based on the beta-diversity dissimilarity analyses in the GHP
sediments (Figure 4), six different community clusters designated
A1, A2, A3, A4, A5, and A6 were identified for the archaeal
domain. Cluster A1 included nearly all surface sediment samples
and was dominated by the Crenarchaeota Nitrososphaera and
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FIGURE 4 | The sediment archaeal communities clustered in six different groups, calculated based on the Bray–Curtis dissimilatory index from the composition of
abundant archaeal OTUs (A1, A2, A3, A4, A5, and A6). The averaged taxonomic composition of each cluster is illustrated in a doughnut chart with colors indicating
taxa listed in the box. “Non-abundant” includes sequences assigned to archaeal OTUs that were not retrieved in abundance in this study. Finally, the heatmap gives
standardized values (Svalue) of depth and of the logarithmic concentrations of CH4 and HS. Non-available data are represented by striped squares.
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the Nanoarchaeota Woeserchaeales, with 61.4 and 10.0% of
the total archaeal community, respectively. Sediment layers
associated to the cluster A2 were from different depths, although
most were collected between 4 and 10 cmbsf. The cluster A2
was characterized by a stronger dominance of Woeserchaeales
(21.86%), Bathyarchaeia (12.14%), Nitrososphaera (11.73%), the
marine benthic group D (MBG-D) within the Thermoplasmatota
(4.49%), and Asgardarchaeota (3.35%). In addition, 2.1% of
the sequences were associated to an unclassified archaeal OTU.
The community of the cluster A3 was driven by the MBG-D
(20.1%), the Bathyarchaiea (14.5%), and the Woesearchaeales
(12.7%). The Asgardaeota groups of Heimdallarchaeia (7.3%)
and Lokiarchaeia (1.1%), and the Halobacterota ANME-1 group
(1.3%) were also predominant. The cluster A4 had a similar
community composition to the cluster A3 and was dominated by
the MBG-D (18.5%), the Wosearchaeales (10.8%), and ANME-1
(8.8%). Bathyarchaeia (7.7%) and Asgardarchaeota (5.8%) were
also major components of the A4. The clusters A5 and A6
differed from the other groups particularly by a higher relative
abundance of sequences associated to ANME groups. The cluster
A5, representing sediment layers at the gas flare (core BC_1029)
was mainly composed of ANME-1 (17.9 %), ANME-2a/-2b (6.6
%), and ANME-2c (6.1%). Other abundant taxonomic groups
included Wosearchaeales (13.2 %) and the MBG-D (4.9%), in
addition to the Asgardarchaeota Heimdallarchaeia (6.1%) and
Lokiarchaeia (5.3%). The ANME communities of A6 was in
contrast to A5 by a stronger dominance of ANME-1 (60.7%;
Figure 7), in comparison to the ANME-2a-2b (2.9%) and ANME-
2c (4.1%; Figure 5), were also abundant in the cluster A6
representatives from the MBG-D (8.3%).

For the bacterial domain, five community clusters, designated
B1, B2, B3, B4, and B5, were identified for the GHP sediments
(Figure 6). The rare biosphere represented by the non-
abundant OTUs composed of a large fraction of all the bacterial
communities and particularly for the clusters B1 and B2. Within
these two clusters, the rare biosphere composed of an average
of 76.7% of the bacterial sequences. Among the abundant
OTUs, sequences within the cluster B1 were mostly assigned
to the Gammaproteobacteria (5.2%), the Verrucomicrobiota
(3.2%), and the Campilobacterota Sulfurimonadaceae (1.6%).
The cluster B2 had stronger presence of Desulfobacterota
Desulfobacterales (4.5%), including sequences associated to the
cold seeps clade SEEP-SRB1 and Desulfobulbales (3.1%), in
addition of Bacteroidota (4.7%). Cluster B3 represented sediment
communities retrieved at the gas flare (core BC_1029) and
was dominated by the Campilobacterota Sulfurovaceae (20.2%)
and Sulfurimonadaceae (13.5%). Throughout all cores, the
Sulfurovaceae and Sulfurimonadaceae were strictly represented
by the genera Sulfurovum and Sulfurimonas, respectively.
Additionally, B3 was characterized by the occurrence of
Dissulfuribacterales (1.5%), mainly due to an OTU of the SEEP-
SRB2 group, Desulfatiglandales (1.6%) and Desulfobacterales
(2.9%). Remaining abundant taxa of the cluster B3 were
assigned to the Bacteroidota (7.8%) and the Chloroflexi
Anaerolinaeae (3.2%). It is also to be noted the presence
of the Gammaproteobacteria Methylococcales in cluster B3
(1.2%). Communities within the cluster B4 primarily hosted

sequences assigned to the Desulfobacterota (9.0%), largely
included within the Desulfobacterales (5.2%), and the Chloroflexi
Anaerolinaeae (6.1%) and Dehalococcoidia (3.6%). Additionally,
abundant OTUs characterizing the cluster B4 were assigned
to the Bacteroidota (4.3%), the Caldatribacteriota Japan Sea
1 (JS1) clade (4.8%), the Campilobacterota Sulfurimonadaceae
(2.2%), and Sulfurovaceae (1.6%). The cluster B5 was dominated
by the Desulfobacterota (19.6%), including representatives
of Desulfobacterales (6.0%), Desulfatiglandales (4.4%), and
Dissulfuribacterales (9.1%). One OTU assigned to SEEP-SRB2
and two OTUs assigned to SEEP-SRB1 composed 9.1 and
4.7% of the overall sequences, respectively (Figure 5). In
comparison to other bacterial clusters, the cluster B5 was
also characterized by a higher relative abundance of the
Caldatribacteriota JS1 (10.7%) in addition to the Chloroflexi
Dehalococcoidia (11.7%) and Anaerolinaeae (4.4%). Sediment
samples clustering within the groups B3–B5 were mostly
dominated by abundant OTUs, as the rare biosphere composed
ca. 43% of the overall sequences.

With the eukaryotic primers, 39 abundant OTUs were
retrieved at the reference core MC_898 and they composed
from 20 to 100% of the sequences in all sediment communities.
In Figure 7, these 39 OTUs are presented separately from
the 101 eukaryotic OTUs retrieved exclusively at the GHPs.
Beta diversity in the relative abundances of the taxonomic
groups of these 101 OTUs retrieved in sediment communities
at the GHPs site resulted in four clusters, designated as E1,
E2, E3, and E4 (Figure 7). The proportions of sequences
assigned to these OTUs varied between clusters, where an
average of 8.5, 19.8, 29.8, and 24.1% of the sequences for
the clusters E1, E2, E3, and E4 were assigned to them,
respectively. In cluster E1, Cercozoa and ciliates corresponded
respectively to 2.7 and 1.5% of the overall sequences. Within
the cluster E2, these groups were more abundant, and their
relative abundances increased to 8.2% for the Cercozoa and
to 5.4% for the ciliates. For clusters B1 and B2, sequences
were primarily assigned to an unclassified group of Cercozoa,
while the class Spirotrichea primarily dominated the ciliates.
Within the cluster E3, the taxonomic diversity was higher than
for E1 or E2. Other cercozoan groups, such as Granofilosea,
Phytomyxea, and Thecofilosea, in addition to the ciliates classes
Armophorea and Conthreep, are frequently seen in higher
abundances. In addition to Cercozoa and ciliates, abundant taxa
exclusive to these sediment layers included representatives of the
Holozoa, uncultivated marine stramenopiles (MAST) groups 6
and 12, in addition to the fungi (Ascomycota, Basidiomycota,
and Chrytridiomycota). Sediment samples clustering within
the cluster E4 were characterized by a higher proportion of
Apicomplexa among the OTUs.

Similarly to the distribution of the 101 eukaryotic OTUs
presented above, the community structure of the 39 OTUs also
thriving at the reference site varied between the clusters. The
relative abundances of Ochrophyta were lower in clusters E2, E3,
and E4, which are more predominantly composed by Cercozoa
and ciliates. Finally, alpha diversity metrics that were used to
assess biodiversity richness and evenness and the taxonomic
composition for all domains within each sediment community
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FIGURE 5 | Physico-chemical and biological vertical profiles of the cores MC_900 and MC_902 (GHP 1) where a SMTZ was identified. For each core, the left figure
presents the CH4, SO4

2-, and HS concentration profiles. The centered and right figures present the relative abundances of archaeal methane oxidizers (ANME
groups) and sulfate-reducing bacteria groups, respectively.
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FIGURE 6 | The sediment bacterial communities clustered in five different groups, calculated based on the Bray–Curtis dissimilatory index from the composition of
abundant bacterial OTUs (B1, B2, B3, B4, and B5). The averaged taxonomic composition of each cluster is illustrated in a doughnut chart with colors indicating taxa
listed in the box. “Other” relates to sequences that are assigned to OTUs abundant throughout the whole communities, but not within the illustrated cluster. As for
the group “non-abundant”, it includes sequences assigned to bacterial OTUs that were not retrieved in abundance in this study. Finally, the heatmap gives
standardized values (Svalue) of depth and of the logarithmic concentrations of CH4 and HS. Non-available data are represented by striped squares.
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FIGURE 7 | Relative abundance of the taxonomic groups that contain sequences associated to abundant eukaryotic OTUs. Overall, 140 abundant OTUs were
retrieved, but 39 of them, abundant at the reference site, were mostly associated to taxa that are suggested to be allochthones and have fallen from surface waters.
Therefore, for each sediment community library, these 39 OTUs were separated and are shown in the left bar charts (OTUs shared), while the remaining GHP OTUs
are shown to the right (OTUs GHP). Bray-Curtis dissimilarity hierarchical clustering of the microbial communities at selected sediment depths was based on the GHP
OTUs and separated these in four different clusters (E1, E2, E3, and E4). The eukaryotic communities from MC_902 at 15 cmbsf, from MC_900 at 29 cmbsf, from
MC_919 at 35 cmbsf, and from MC_922 at 15 cmbsf strongly diverged and were therefore not included in these clusters. Leaves correspond to the core ID of the
sediment layer and its depth [CoreID – depth (cm)]. “Other” corresponds to the relative abundance of sequences that were associated to taxonomic groups that are
not illustrated in the figure.
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are available as Supplementary Information (Supplementary
Tables 8, 9 and Figures 1–3).

Distribution and Co-occurrence of the
Domain Clusters
The community clusters showed particular patterns of co-
occurrence between each domain, especially for the prokaryotes
(Supplementary Figure 4). For instance, 12 of the 13 sediments
communities within cluster A1 were associated with the bacterial
cluster B1. The pairs A2/B2, A3-A4/B4, and A6/B5 were
also commonly co-occurring. However, concomitance patterns
between prokaryotic and eukaryotic clusters were less supported.
Still, the eukaryotic cluster E1 usually fell together with the pairs
A1/B1 or A2/B2. The clusters E2 and E3, instead, coincided with
the pairs A3-A4/B4 and A6/B5, respectively. The paired clusters
A1/B1 were retrieved at the surface of nearly all sediment cores
while the clusters A2/B2 generally corresponded to the subsurface
communities at the reference site and at cores taken toward
the edge of a GHP. Pairs of A3/B4 or A4/B4 occurred below
the sediment surface at the apex of GHP 1 (cores MC_900 and
MC_902) and of GHP 3 (MC_1061 and MC_1062). The pair
A6/B5 occurred in subsurface sediments at the apex of GHP
1, but also toward the outskirt of the GHPs at the surface of
MC_918 (GHP 1) and in subsurface sediments of GHP 5 (core
MC_922). Finally, the microbial communities retrieved at the gas
flare (core BC_1029) of the GHP 3 could not be related to other
communities at the GHPs site for all domains of life and clustered
separately. Communities from all sediment depths at BC_1029
clustered within A5, B3, and E4.

Impact of Environmental Conditions on
the Microbial Community Structure
The community clusters for the two prokaryotic domains
demonstrated a profile primarily related to sediment depth
and methane availability (Figure 8). The impact of measured
environmental parameters on the dissimilarity between the
different prokaryotic communities, observed through the
formation of six archaeal and five bacterial community types, was
assessed through dbRDA. Overall, the unconstrained proportions
of the two principal axes (RDA 1 and 2) explained 43.71–
62.52% of the dissimilarity between the different prokaryotic
communities and were all significant (Figure 8). Depth correlated
negatively with the prokaryotic community types A1 and B1
while CH4 concentrations drove the dissimilarity between the
other community types. At all GHPs, A2 and B2 correlated
negatively with CH4 concentrations, while A3-4-5-6 and B3-4-5
correlated positively. At GHP 1, these community types were
also impacted by higher concentrations of 6HS, while types A2
and B2 thrived in sediments richer in Fe2+ and SO4

2−.

Sulfurimonas and Agglutinated
Foraminifera Relationship
In general, we found lower numbers of agglutinated foraminifera
at habitats characterized by higher densities of the sulfide-
oxidizing Suflurimonas. The relationship between the logarithm
of the number of resampled Sulfurimonas sequences at the

sediment surface and the density of agglutinated foraminiferal
species showed a significant (F = 43.122, p-value = 0.007183),
negative, and linear correlation (Supplementary Figure 5).

DISCUSSION

Community Types Distribution Across
the Pingos
Our first objective was to test the hypothesis that variations in
the community structure occur along a radial gradient from
the apex of the GHPs, which was expected to concentrate most
of the gas seeping activity (Serov et al., 2017). Investigating
the microbial communities thriving along spatial and depth
pingos gradients led to the distinction of different community
clusters for each domain of life (Figures 4, 6, 7). CH4-rich
sediments hold distinct community clusters (A3–A6, B3–B5, E2–
E4) while communities retrieved in CH4-poor sediments were
more similar to the reference site (Figure 8). According to our
hypothesis, CH4-rich sediments were recovered from coring
locations close to the apex of GHP 1 (MC_900 and MC_902)
or GHP 3 (BC_1029) where active gas flares were visible.
However, we did also find high dissolved methane concentrations
sediments hosting the CH4-rich community clusters we have
described at the edge of GHPs 1 (MC_918) and 5 (MC_922;
Supplementary Figure 4). This unpredicted spatial distribution
of the different microbial community types at the GHPs was
further supported through the observed significant negative
correlation between the relative abundance of Sulfurimonas
and the density of agglutinated foraminifera on the seafloor
(Supplementary Figure 5). While Sulfurimonas is a genus that
is often retrieved in higher relative abundances in CH4-rich
sediments (Figure 6; Niemann et al., 2013; Bomberg et al., 2015),
agglutinated foraminifera are known to be sensitive to CH4-rich
environments (Panieri and Sen Gupta, 2008; Martin et al., 2010;
Dessandier et al., 2019).

The use of these two independent methods further confirmed
that there was no radial gradient at the GHPs. This contrasted
thereby with earlier studies on active mud volcanoes where
the community composition and the nature of the dominating
methane oxidizers varied along concentric zones around the
apex of the structure (Niemann et al., 2006; Lösekann et al.,
2007; Lee et al., 2019). Instead, across the GHPs, community
types were scarcely distributed and mainly depth and the
availability of CH4 appeared to drive the transition between them
(Figure 8). Furthermore, changes in community composition
at the GHPs occurred on a smaller scale than at the HMMV,
where the identified concentric zones extended over tenth
to hundreds meters. In our study, nearby sediments cores
MC_918 and MC_919, or BC_1029 and MC_1061, were less
than 40 m apart, but the first hosted a community type
dominated by ANME-1 while the latter was more similar to
the reference site. This suggests that the microbial community
spatial succession at these pingos is still not yet fully grasped.
Thereby, further investigations on the variability of the microbial
community composition should be addressed at a higher
site resolution.
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FIGURE 8 | The impact of different environmental parameters on the archaeal and bacterial community structure within the sediments of the different GHPs
assessed through dbRDA. A distance matrix was calculated based on the Bray-Curtis dissimilarity index from the composition of abundant archaeal and bacterial
OTUs for each GHP. The correlation between the environmental variables and the built distance matrices are presented by biplots. The unconstrained proportion for
each axis explaining the variability in a distance matrix is presented in percentage along the axis. Permutation tests were used to assess the solidity of the analyses
and axes with a * were found significant.
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Microbial Biodiversity Across the Study
Area
Our second objective was to describe the microbial biodiversity
at the GHPs and to identify key taxa influenced by this CH4-
rich environment. Overall, the communities presented different
assemblages, depending on their vertical positioning in the
sediment matrix; i.e., surface, a few cm below the seafloor, in
CH4-rich sediments, or at the gas flare (BC_1029). The variability
in the structure of eukaryotic communities and the nature and
quantities of Foraminifera at the GHPs were analyzed differently
than for prokaryotes. We therefore discuss the composition of
the prokaryotic and eukaryotic communities within the different
sediment habitats separately.

Prokaryotes
Sediment characterized by a CH4 depletion and 6HS increase
hosted a microbial community dominated by ANME and SRBs,
strongly suggesting ongoing AOM. The archaeal community
was primarily dominated across all GHPs by the anaerobic
CH4 oxidizing group ANME-1 (Figures 4, 5). Interestingly,
methanotrophic communities primarily driven by ANME-1 have
been less frequently observed than by ANME-2, or were found
only in deeper sediments (Girguis et al., 2005; Ruff et al., 2015;
Gründger et al., 2019). Our understanding of the factors favoring
the growth of the different ANME groups is still limited. Their
tolerance levels to various environmental factors and the impact
of CH4 flux rates on their growth rate have been two common
orientations used by studies to investigate their biogeography.
Within the first orientation, it is suggested that the ANME-
1 would be more tolerant to broader ranges of environmental
conditions, and could predominate over ANME-2 in low SO4

2−

and high HS− environments (Timmers et al., 2015). These
different tolerances to the presence of SO4

2− and HS− has
been suggested to explain vertical successions in dominance
of these groups along different SMTZ (Roalkvam et al., 2011;
Biddle et al., 2012; Ruff et al., 2015). However, at the GHPs,
although ANME-2 and ANME-3 were also detected, their relative
abundances remained low, and there was no clear vertical
transition in the nature of the dominant ANME group along
the SMTZ in cores MC_900 and MC_902. This could suggest
that other factors at the GHPs favor the growth of ANME-1
and/or inhibit the proliferation of ANME-2. Within the second
orientation, observations were made at the Hydrate Ridge or
the Gulf of Mexico that ANME-2 groups were more commonly
retrieved in areas with highly active CH4 seepage (Vigneron et al.,
2013, 2019). In our study, although ANME-1 still predominated
the methanotrophic community near the gas flare (BC_1029),
the relative abundances of ANME-2 groups were in contrast
higher than in other clusters. However, this hypothesis would
contradict previous observations where ANME-2 demonstrated
higher growth rates than ANME-1 at low CH4 flux rates
(Girguis et al., 2005). Beyond these two hypotheses presented
above, the hydrographic conditions above the GHPs could also
induce an additional set of environmental constraints, as the
bottom-water temperature seasonally varies (Ferré et al., 2020).
This creates fluctuations in both CH4 seeping activity from

the sediments and subsequently CH4 oxidation rates in the
water column. This seasonality in CH4 seepage activity could
potentially also impact the selection of the ANME groups. The
biogeography of ANME groups remains therefore still unclear.
With its five GHPs presenting different CH4 flux history and its
multiple ecological niches, the GHPs, combined with the usage
of appropriate tools for sampling sediments at a higher precision,
present thereby an ideal site to provide further insights into the
distribution of ANME groups.

Furthermore, to mediate AOM, ANME groups require an
electron acceptor, such as sulfate, and have therefore been
frequently observed in consortia with microorganisms capable of
reducing these compounds. The ANME-1 group have regularly
been assigned to the uncultured groups of SEEP-SRB1 and SEEP-
SRB2, where both are detected in CH4-rich sediments at the
GHPs. In our study, the relative abundance of Desulfobacterota
was higher in microbial communities dominated by ANME
groups (Figure 6). Furthermore, the decreasing concentration
of SO4

2− with depth in CH4-rich sediments, combined with
an increasing availability of 6HS, strongly suggested the use
of sulfate as the electron acceptor for AOM. However, across
all the GHPs, there was no positive correlation between the
relative abundance of ANME-1 and a particular SRB group,
either SEEP-SRB 1 or 2, further supporting the hypothesis that
ANME-1 could metabolize CH4 alone (Figures 4–6). Indeed,
it was observed that ANME-1 could perform both AOM and
sulfate reduction within the same cell (Milucka et al., 2012) and
the detection of F420-dependent sulfite reductase in ANME-
1 communities may be part of this novel pathway (Vigneron
et al., 2019). Nevertheless, a previous study could not find
a correlation of ANME-1 and the abundance of dissimilatory
sulfite reductase, an essential enzyme for active SRB (Vigneron
et al., 2019), demonstrating that ANME-1 may not be able
to perform SR. Finally, a different explanation of the absent
correlation between ANME-1 and SRB groups could be due to
the usage of intercellular wires forming cell-to-cell connections
for electron transfers, a hypothesis supported by the detection
of genes expressing for extracellular cytochrome production,
between distanced ANME-1 and SRB cells (Wegener et al., 2015).
Our results, based on the sulfate and sulfide profiles, advocate an
anaerobic oxidation of CH4 supported by the reduction of sulfate,
but the role of Desulfobacterota and its relation with the ANME
groups remain unclear.

While AOM is mediated by ANME in anaerobic environment,
methanotrophy in an aerobic environment is primarily
performed by distinct bacterial groups (Hanson and Hanson,
1996; Knief, 2015). In our study, higher concentrations of CH4
than at the reference site were detected at the surface of some
sediment cores collected at the GHPs. However, despite the
availability of oxygen suggested by the presence of aerobic
taxonomic groups, aerobic bacterial methanotrophs were barely
detected. We retrieved abundant Verrucomicrobiales OTUs at
the surface of most sediment cores, but their assigned family
Rubritaleaceae is not known to include aerobic methanotrophs.
Aerobic methanotrophs (Methyloccocales) could only be
detected at the surface of BC_1029, collected near the gas
flare, but this OTU was composed of only 1.2% of all bacterial
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sequences. Surprisingly, the apparent rarity of aerobic CH4
oxidizers is contrasting to most seep sites where they were found
when both CH4 and O2 are present (Lösekann et al., 2007;
Roalkvam et al., 2011; Ruff et al., 2015). Nevertheless, we cannot
disregard that the near absence of aerobic methanotrophs in
our amplicon libraries could be caused by the choice of primers
used (McDonald et al., 2008). Different approaches, including
the use of primers targeting functional genes such as pmoA,
would be required to improve the study of the biodiversity of
aerobic methane oxidizers. Finally, CH4-rich sediments also
harbored higher relative abundances of other groups, but which
are likely not directly involved in the AOM. Chloroflexi, the
Caldatribacteriota JS1, and Campilobacterota groups were
also in higher abundance in CH4-rich sediments than at other
sediment layers. Similarly to the distribution of ANME groups,
these bacterial groups showed different relative abundances
between CH4-rich sediments collected at the gas flare to the
other samples. While most communities in CH4-rich sediments
demonstrated high proportions of Chloroflexi and JS1, the
bacterial communities at the gas flare was primarily dominated
by sulfide oxidizing bacteria (Figure 6). More precisely, two
Campilobacterota genera mediating the oxidation of sulfur,
sulfide or thiosulfate, Sulfurimonas and Sulfuvorum, were
found in abundance. These genera are commonly found in
abundance near hydrothermal plumes and in diffusive flow
sediments, as well as at cold seeps (Yamamoto and Takai,
2011; Adams et al., 2013), while sulfide oxidization in marine
sediments tends to be driven primarily by Alphaproteobacteria or
Gamma proteobacteria (Lenk et al., 2011). In our study, similar
observations suggest that these bacteria play an important role in
sulfur cycling and largely dominated the bacterial communities
at the gas flare, in comparison to the other sites.

In the absence of CH4, the sediment microbial composition
at the GHPs was highly similar to the reference site and
was primarily driven by depth (Figure 8). Depth is likely
influencing the shape of microbial communities at the GHPs
through the presence or absence of oxygen, a parameter well-
known to shape the structure of microbial communities in
sediments (Fenchel and Finlay, 2008). Surface sediments were
primarily dominated by the aerobic ammonia-oxidizing archaea
(AOA) Nitrosopumilaceae that plays, along with ammonia-
oxidizing bacteria, an important role in the transformation of
nitrogen compounds in marine systems, including cold seeps
or at hydrothermal vents (Könneke et al., 2005; Dang et al.,
2009; Miyazaki et al., 2009; Stahl and de la Torre, 2012). In
deeper sediments, the archaeal community (A2) was dominated
by Woesearchaeales and Bathyarchaeia (Figure 4). The most
abundant OTU of the 38 associated to the Woeserchaeia across
all clusters was found predominantly at nearly all sediment layers
below the seafloor, including in the CH4-rich sediments. As
oxygen availability is suggested to be the main factor determining
the nature of the thriving Wosearchaeales (Liu et al., 2018), its
detection in deeper sediments likely suggest an anoxic ecotype
that may be involved in a fermentation-based lifestyle (Castelle
et al., 2015). Bathyarcheia, previously known as the Miscellaneous
Crenarchaeotal Group (MCG), and the thermoplasmatales MBG-
D are globally abundant in marine sediments. The detection

of protein-degrading enzymes suggest a role in organic matter
anaerobic degradation (Webster et al., 2010; Kubo et al.,
2012; Lloyd et al., 2013). The relative abundance of OTUs
assigned to the Desulfobacterota within the bacterial community
increased with depth, but remained lower than in CH4-rich
sediments (cluster B5). The presence of these Desulfobacterota
groups are common in marine sediments as they play a major
role in mineralizing organic matter through sulfate reduction
(Jørgensen, 1982; Abu Laban et al., 2015; Robador et al., 2016).

Eukaryotes
Microbial eukaryotic communities at cold seeps have received
less attention than the prokaryotes, despite their active role as
part of bacterial mat type habitats for instance, or the capacity of
some to harbor sulfur oxidizing bacteria (Buck and Barry, 1998;
Buck et al., 2000). In this study, we investigated protists and fungi
based on the V4 region of the 18S rDNA and have identified key
taxonomic groups thriving at the GHP sites. Across all sediments
layers, large fractions of sequences that clustered into OTUs were
assigned to Metazoa and to sedimenting allochthonous cells. The
removal of these sequences likely affected the following analyses
of the GHPs eukaryotic communities. Therefore, we assessed
separately the 39 OTUs proliferating at the reference site from
the 101 OTUs found in abundance only at the GHPs to highlight
eukaryotic taxa thriving in CH4-rich sediments. Communities
clustering in E1 demonstrated high similarity to the reference site
and could be retrieved at different distances from the apex of all
GHPs, but were limited to sediments characterized by low CH4
concentrations. We thereby demonstrated that in the absence
of CH4, eukaryotic communities across the GHPs have similar
composition than to the reference site. In contrast, clusters E2–E4
were retrieved in or near CH4-rich sediments and demonstrated
higher relative abundances of OTUs that are absent or barely
found at the reference site.

Within the cluster E2, these OTUs were primarily assigned to
ciliates and Cercozoa. We also noted that within the 39 subtracted
OTUs, the fraction of alveolates and Cercozoa increased and
even surpassed their relative abundances in E3 and E4. Higher
densities of prokaryotes involved directly or indirectly in AOM
can be a food source for these potential heterotrophic eukaryotes,
but their growth in communities clustering in E3 and E4
may be limited by the toxicity of sulfidic conditions (Massana
et al., 1994; Coyne et al., 2013). Communities clustering in E3
occurred primarily in CH4-rich sediments with the prokaryotic
communities of clusters A4-A6/B5, composed of taxa involved in
AOM and sulfate reduction (Supplementary Figure 4). Nearly
all communities within the cluster E3 hosted the highest relative
abundances of sequences associated to the 101 OTUs that are
exclusively found in abundance at the GHPs (Figure 7). The
contrast in these relative abundances, in comparison to the cluster
E1, demonstrates the impact of CH4 on the eukaryotic diversity.
The assignment of these OTUs was strongly heterogeneous as
several taxonomic groups, such as the Protoalveolata Syndiniales,
were present only in few communities (Figure 7). The eukaryotic
communities within this cluster were also characterized by the
emergence of fungal taxonomic groups. Communities within the
cluster E3 were especially affected by the proportion of sequences
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associated to Metazoa, as on average 40% of the sequences were
assigned to this taxon and had to be removed. Thereby, while
the heterogeneity in the structure of the communities clustering
in E3 could be caused by local conditions, we cannot rule
out that it may be due to limitations in the coverage of the
eukaryotic biodiversity. Communities at the gas flare (BC_1029),
similarly as for the prokaryotes, hosted a distinctive eukaryotic
biodiversity clustering exclusively in E4. Among the sequences
assigned to the OTUs exclusively abundant at the GHPs within
E4, most were primarily assigned to Apicomplexa (up to 15%).
Apicomplexa are parasitic alveolates, but the nature of potential
hosts at the gas flare remains unknown. Overall, our results
demonstrated that changes in the eukaryotic biodiversity occur
in CH4-rich sediments. Using different approaches, such as
targeting specific genes or using blocking primers, may provide
a more accurate profile of eukaryotic biodiversity at the GHPs.
These investigations would further improve our understanding
on the role of these protists and fungi at the GHPs site on
the microbial community, the biogeochemical cycles, and on
food web structures.

Overall, our approach suggests that CH4 and oxygen
are two key factors influencing the microbial community
structure. Nevertheless, communities within a cluster had
up to approximately 60% similarity and the dendrograms
(Figures 4, 6, 7) present additional sub-clusters at higher
thresholds. It advocates therefore for additional factors
influencing the distribution patterns of the microbial taxonomic
groups at the GHPs site. Thereby, our study revealed that the
GHP ecosystem has to be considered in further investigations as
a myriad of ecological niches. In this perspective, the distance
between the cores (approx. 20 m) at a GHP is likely too long to
investigate gradual changes in microbial communities in relation
to fluxes of CH4. Designing an approach at a small scale may
better fill these gaps of knowledge.

SUMMARY AND CONCLUDING
REMARKS

This study shows that both prokaryotic and eukaryotic
communities at the GHPs formed a unique structure influenced
by the complex distribution of CH4 seepage. The distribution
of the community types presented similar chaotic patterns
and methane oxidizing communities could be retrieved at
different locations over a GHP. In CH4-rich sediments, AOM
seemed to be primarily driven by a single OTU associated
to ANME-1 and had no correlation with a group of SRB.
This further supports the hypotheses that ANME-1 can
mediate AOM alone or use different sources of electron
receptors. Our approach also illustrated that at the GHPs site,
metabolites of AOM, such as sulfide and organic compounds,
likely explain the predominance of additional taxa, including
the Campilobacterota, the thermoplasmatales MBG-D, and
the Bathyarchaeia. Eukaryotic communities in the CH4-rich
sediments had a dominance of heterotrophic ciliates and
Cercozoa, likely benefiting from the higher abundances of
prokaryotes as a food source. The retrieval of these taxa,

distributed specifically among the GHPs, suggests a complex
functional microbial system supported by, or contributing to, the
local oxidation of CH4.
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Methane-fuelled biofilms 
predominantly composed of 
methanotrophic ANME-1 in Arctic 
gas hydrate-related sediments
Friederike Gründger1, Vincent Carrier1, Mette M. Svenning1,2, Giuliana Panieri   1, 
Tobias R. Vonnahme   2, Scott Klasek3 & Helge Niemann   1,4,5

Sedimentary biofilms comprising microbial communities mediating the anaerobic oxidation of methane 
are rare. Here, we describe two biofilm communities discovered in sediment cores recovered from Arctic 
cold seep sites (gas hydrate pingos) in the north-western Barents Sea, characterized by steady methane 
fluxes. We found macroscopically visible biofilms in pockets in the sediment matrix at the depth of the 
sulphate-methane-transition zone. 16S rRNA gene surveys revealed that the microbial community in 
one of the two biofilms comprised exclusively of putative anaerobic methanotrophic archaea of which 
ANME-1 was the sole archaeal taxon. The bacterial community consisted of relatives of sulphate-
reducing bacteria (SRB) belonging to uncultured Desulfobacteraceae clustering into SEEP-SRB1 (i.e. the 
typical SRB associated to ANME-1), and members of the atribacterial JS1 clade. Confocal laser scanning 
microscopy demonstrates that this biofilm is composed of multicellular strands and patches of ANME-1 
that are loosely associated with SRB cells, but not tightly connected in aggregates. Our discovery of 
methanotrophic biofilms in sediment pockets closely associated with methane seeps constitutes a 
hitherto overlooked and potentially widespread sink for methane and sulphate in marine sediments.

Microbial biofilms are structured multicellular aggregates of microbes that are enclosed in a matrix of mucoid 
self-produced extracellular polymeric substances (EPS, or exopolysaccharides)1–3. The structural features enhance 
the ability of microbial interactions within the biofilm, but also increase tolerance to adverse conditions and 
persistence against hostile environments. In natural marine ecosystems, biofilms are found on different types of 
surfaces ranging from animal skins and algae, various kinds of particles and aggregates, inert or bio-reactive min-
erals, and submerged constructions such as pilons or ship hulls4,5. Sediments are excellent substrates for microbial 
colonisation, providing nutrients and different types of electron acceptors and donors6. However, knowledge on 
the formation of biofilms in pockets, cracks or fractures within the sediment matrix is limited, and it is unclear 
how extensive such subsurface microbial aggregations are7 along with their potential role as a geological sink for 
methane and sulphate.

A globally important microbial process in anoxic marine sediments is the anaerobic oxidation of methane 
(AOM) with sulphate as the terminal electron acceptor8,9:

+ → + +− − −CH SO HCO HS H O4 4
2

3 2

This process is mediated by anaerobic methanotrophic archaea (ANME-1, -2, -3), typically with partner 
sulphate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus-related clade Seep-SRB1 (ANME-1, -2) 
or Desulfubulbus sp. (ANME-3)10–15. Because AOM communities depend on the availability of sulphate and 
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methane, they normally occupy (and shape) sulphate-methane transition zones (SMTZ), which are located in 
reduced sediment layers. These layers can be found several tens to hundred meters below the sediment surface, 
but at cold seeps (such as Gas Hydrate Pingos - GHPs), elevated methane fluxes lead to a shallower SMTZ in 
near-surface sediments16–19. Indeed, the abundance of AOM communities was generally found to peak at depth 
of SMTZ12. So far, the buildup of biofilms/aggregations primarily comprising ANME/SRB biomass has only been 
observed in the anoxic waters of the Black Sea where AOM biomass may form reef like structures20,21. In addi-
tion, at two sites in fractured gas hydrate-bearing sediments of the Pacific and Indian Ocean, Briggs, et al.7 found 
AOM communities dominating biofilms at depth of the SMTZ. However, our knowledge on AOM community 
distribution is primarily based on sediment core analyses, which typically does not resolve horizontal variations 
of microbes clumped in spatially confined biofilms in sediment pockets/cracks22.

In this study, we report on the finding of macroscopically visible biofilms that we found in pocket-like features 
in reduced, methane-rich sediments from a GHP area south of the Svalbard archipelago in the Arctic Ocean. 
Furthermore, we describe the exceptional microbial community composition, which differ strongly from any 
other environmental biofilm investigated to date.

Material and Methods
Sample collection and processing.  Sediments were collected with a gravity corer (GC) during a research 
expedition (CAGE16-5) with R/V Helmer Hanssen in June 2016 to the GHP area at Storfjordrenna, which is south 
of the Svalbard archipelago in the north-western Barents Sea (Storfjordrenna Trough Mouth Fan, ~390 m water 
depth). The area is characterized by five GHPs. Four of them show active gas discharge in form of numerous gas 
flares rising up to 20 m below sea level23. At GHPs with active methane seepages, shallow gas hydrate layers were 
discovered, some of them only 40 cm below sea floor23. GHP 5 is proposed to be in a post-active phase of seep-
age16, being the one without observed flare activity and gas hydrate recovery. We recovered one sediment core 
(GC1070; length: 326 cm) from the rim of GHP 5 and a second one (GC1048; length: 335 cm) ~350 m to the west 
of the edifice (Fig. 1). Immediately after recovery, the cores were cut into 100 cm sections, split longitudinally and 
sub-sampled in a cold room. In both cores, we found pockets of 4–5 cm length in the sediment matrix filled with 
a macroscopically visible slimy yellow-greenish biofilm (Fig. 2). Subsamples from these biofilms were taken with 
a sterile spatula. We obtained a pure biofilm sample from GC1048 (i.e. no sediment particles were visible in the 
sample), while the sample collected from core GC1070 contained some visible sediment admixture. The samples 
were transferred into sterile 2-ml Eppendorf tubes. Samples for DNA analyses were stored at −20 °C. Samples for 
microscopy studies were fixed in 4% (w/v) formaldehyde solution as described by Pernthaler, et al.24 and stored in 
1:1 mix of PBS / ethanol at −20 °C. After the cruise, sedimentological descriptions were performed in our home 
laboratory. For the examination of the core’s sediments, smear slides were prepared from the sediments close to 
the biofilm following the methods described by Marsaglia et al.25 and observed with a petrographic microscope.

Figure 1.  Regional bathymetry and the geographic core positions of GC1048 (76° 06.737N; 15° 59.845E) and 
GC1070 (76° 06.703N; 16° 00.162E) (white diamonds) at Storfjordrenna south of Svalbard Archipelago. Names 
to the gas hydrate pingos (GHPs) are given.
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Fluorescence-in-situ-hybridization.  For fluorescence-in-situ-hybridizations (FISH), 50 µl of fixed biofilm 
sample was diluted in 1 ml 1 × PBS, filtered on a 25 mm polycarbonate filter (0.2 µm pore size) and embedded in 
0.2% w/v Agarose. FISH was done using double-labelling-of-oligonucleotide-probes (DOPE; Stoecker, et al.26) 
for Archaea (ARCH915; Stahl and Amann27) and Desulfobacteraceae (DSS658; Mußmann, et al.28) synthesized 
by biomers.net GmbH (Ulm/Donau, Germany). The antisense probe NON33829 was used to test for unspecific 
staining for the given formamide concentrations. The probes were labelled at the 5′ and 3′ end with Cyanine 
3 (ARCH915) and 6-FAM (DSS658, NON338). Hybridizations were done in accordance to published work30 
with 3 h hybridization with DSS658 (50% formamide) followed by ARCH915 (0% formamide). The NON338 
probe was incubated for 3 h (0% formamide). After DOPE FISH, the samples were counterstained with DAPI 
as described by Glöckner et al.31. Imaging was done with a confocal laser scanning microscope (Axio Observer 
LSM800, Carl Zeiss Microscopy GmbH, Jena, Germany) using a Plan-Apochromat 63x/1.40 Oil M27 objective. 
Emission and detection wavelengths were 561 and 535–700 nm for Cy3, 488 and 450–545 nm for 6-FAM, and 405 
and 400–600 nm for DAPI.

DNA extraction, 16S rRNA gene amplification and sequencing analysis.  DNA from 10 mg of bio-
film sample from core GC1048 and 245 mg from core GC1070 was extracted in a clean laminar flow hood using 
a Qiagen DNeasy PowerSoil kit according to the manufacturer’s instructions.

For the amplif ication of 16S rRNA genes, we used the degenerated primer sets A519F 
(5′-CAGCMGCCGCGGTAA)32 and A906R (5′-CAATTCMTTTAAGTTTC)33 for Archaea and Bakt_341F 
(5′-CCTACGGGNGGCWGCAG) and Bakt_805R (5′-GACTACHVGGGTATCTAATCC) for Bacteria34. 16S rRNA 
gene amplification and sequencing were carried out by IMGM Laboratories GmbH (Martinsried, Germany). Cluster 
generation and bidirectional sequencing by synthesis was performed on Illumina MiSeq next generation sequencing 
system (Illumina, CA, USA) using reagents kit 500 cycles v2 under the control of MiSeq Control Software v2.5.0.5. 
Obtained reads were meticulously processed following a modified version of the USEARCH protocol (http://
drive5.com/usearch/manual/uparse_pipeline.html; Supplementary Information S1). Taxonomy was assigned using 
the SILVA database release 13235. Non-16S rRNA gene sequences as well as OTUs containing single sequence or 
best assigned to non-targeted domains were removed. Nucleotide sequences have been deposited at SRA database 
(https://www.ncbi.nlm.nih.gov/sra) as BioProject with accession number PRJNA506542.

Furthermore, phylogenetic analyses of the abundant OTUs associated with the ANME-1 group and 
Desulfobacteracae were conducted to accurately assess their evolutionary origin from our Illumina MiSeq 
reads36. For this, we selected 19 ANME-1 (min. length: 1300 bp) and 32 Desulfobacteraceae sequences (min 
length: 807 bp) from published phylogenies to form a phylogenetic tree for each taxonomic group. Sequences 
were aligned using MUSCLE37 implemented in MEGA 7 and a best-scoring maximum likelihood phylogenetic 
tree was built in Randomized Axelerated Maximum Likelihood (RAxML; Stamatakis3) using the General Time 
Reversible (GTR) Gamma model. Thereafter, shorter reads of the OTUs collected from biofilm in core GC1048 
and GC1070 were aligned to the previously selected sequences and were placed on the built phylogenetic trees 
using the Evolutionary Placement Algorithm implemented in RAxML3,36. Resulting trees were visualized and 
annotated in Interactive Tree Of Life38.

Results and Discussion
At GHP 5 and its close vicinity, we recovered two sediment cores (Fig. 1) comprising pockets in the sediment matrix 
that were filled with a macroscopically visible, slimy, yellow-greenish biofilm (Fig. 2). Pockets/biofilms of 4–5 cm 
length were found at 305 cmbsf within core GC1048 and at 68 cmbsf within core GC1070 (visualized as yellow 
symbol in Fig. 3A), which is in both cases less than ten centimetres below the depth of the SMTZ16. The cores were 
composed of glacigenic sediments, with hemipelagic grey mud comprising variable amounts of ice-rafted debris. 
Ice-rafted debris were deposited during several phases of extensive iceberg production. In both cores, the sediment 
horizons where the biofilms were found were characterized by laminated hemipelagic grey mud and silts mainly 
composed of quartz, carbonates, feldspar, and clay minerals. Besides the pockets, we did not observe any other 
sedimentological feature or sediment colour changes that could indicate a preferential site for biofilm formation.

Figure 2.  Sediment core GC1048 with biofilm pocket after retrieval, cutting the core into half and sampling. 
Scale bars = 1 cm.
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Biofilm microbial composition.  For microbial diversity analysis of the two biofilm samples, we processed 
82654 archaeal and 74083 bacterial read pairs. In total, reads clustered into 136 archaeal and 238 bacterial OTUs.

The microbial community in the biofilm from GC1048 showed an extremely low diversity 
(Shannon diversity index of 0.001 and 1.22 for Archaea and Bacteria, respectively; see Supplementary 
Table  S1). All archaeal sequences clustered exclusively into one OTU (OTU8) that was associ-
ated with the anaerobic methanotrophic archaea (ANME) clade ANME-1b (Fig.  4). Among the 
most abundant bacterial groups, we found members closely related to the typical partner SRB of 
ANME-1, i.e. Desulfobacteraceae clustering into the SEEP-SRB1 clade (26% of all bacterial sequences; 
Fig.  5). Additional 3% of bacterial sequences were identified as Desulfatiglans (Desulfarculaceae), 
which is another common SRB in methane seep environments often associated with ANME39–41.  
Together with the vertical positioning of the biofilm close to the SMTZ, our sequence analyses suggest that the 
biofilm was predominantly involved in AOM and was mostly comprised of AOM-related biomass.

ANME-1-dominated biofilms in natural environments are very rare. Michaelis, et al.20 reported on microbial 
mat biomass from microbial reefs in the Black Sea that was comprised of only one archaeal population (belong-
ing to ANME-1) forming consortia with partner SRB of the Desulfosarcina/Desulfococcus group. Treude et al.21 
described similar mat structures in sediments from the Black Sea. The only other finding of biofilms in ‘regular’ 
ocean sediments was made by Briggs, et al.7, who described ANME-dominated biofilms in fractures at depth 
of the SMTZ at the northern Cascadia Margin and the Indian Ocean. In those biofilms, the ANME-1 clade 
was identified as the most abundant taxon of a more diverse archaeal community, which included members of 
Thermoplasmatales and Methanosarcinales. Thus, our findings of an archaeal community in the biofilm from 

Figure 3.  Data from sediment core GC1048 and GC1070. In each box, (A) Depth profile of concentrations 
of alkalinity (TA), sulphate (SO4

−2), and dissolved methane (CH4)16. The dashed grey line indicates the SMT 
depth of each core. The position of the biofilms is indicated as yellow symbol (GC1048: 305 cmbsf, GC1070: 
68 cmbsf). Symbol size do not represent the actual size of biofilm. (B) Sequence-based relative abundances of 
bacterial and archaeal 16S rRNA genes. ‘Other’ includes taxa with less than 1% relative sequence abundance 
within the sequence data set. ‘Unassigned’ includes sequences that could not be assigned to a taxonomic group 
within their respective domain.
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GC1048, which was exclusively comprised of members of the ANME-1b clade is unique and not comparable to 
any other environmental biofilm found so far.

In addition to AOM-related biomass in core GC1048, we detected members of Atribacteria (JS1 clade, 60% 
of all bacterial sequences). The JS1 clade co-occur especially predominant with organic carbon replete, and 
methane-rich conditions in anaerobic marine sediments. It has been suggested that this group has an anaerobic 
heterotrophic lifestyle42,43 rather than being direct involved in AOM44,45. However, the metabolic potential of this 
uncultured clade and its relation to AOM remains unconstrained, because knowledge on the metabolic poten-
tial of JS1 is based on single-cell amplified genome analyses42. Other bacterial taxa found in biofilm from core 
GC1048 were Bacteroidetes (4%), Spirochaetes and uncultured TA06 clade (3% each; Fig. 3B).

Figure 4.  Phylogenetic tree showing evolutionary connections of the dominant OTUs representing biofilm 
16S rRNA gene sequences to selected reference sequences of uncultured archaea of ANME-1 clades. Boldface 
type indicates the sequences obtained in this study. The tree was calculated by using RAxML algorithm. Biofilm 
sequences (~500 bp) were inserted by using EPA. Black dots at branches represent bootstrap values higher than 
50. The bar indicates 10% estimated phylogenetic divergence.

Figure 5.  Phylogenetic tree showing evolutionary connections of the dominant OTUs representing biofilm 16S 
rRNA gene sequences to selected reference sequences of Desulfobacteraceae from the environment and isolated 
strains. Boldface type indicates the sequences obtained in this study. The tree was calculated by using the 
RAxML algorithm. Biofilm sequences (~500 bp) were inserted by using EPA. Black dots at branches represent 
bootstrap values greater than 50. The scale bar indicates 10% estimated phylogenetic divergence.
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Similar to the biofilm from core GC1048, the archaeal community of the biofilm within core GC1070 was 
dominated by members of the ANME-1 clade (43%), though, in contrast to GC1048, ANMEs in GC1070 most 
probably belonged to subgroup a, rather than subgroup b. Furthermore, contrary to GC1048, the microbial diver-
sity within the GC1070 biofilm was higher (Shannon diversity index of 2.28 and 3.29 for Archaea and Bacteria, 
respectively). In addition to ANME-1a, we identified members of Woesearchaeia (24%), Thermoplasmata 
(MBG-D and DHVEG-1; 14%), Thermococci (Methanofastidiosales; 3%) and Bathyarchaeia (6%). Among mem-
bers of the domain Bacteria, we found the AOM-associated taxa SEEP-SRB1 (24%) and Desulfatiglans (8%). 
Other abundant taxa were Chloroflexi (23%, Anaerolineae/Dehalococcoidia), Acetothermia (9%), Atribacteria 
(JS1 clade, 7%), Cloacimonetes (6%), and Planctomycetes (2%) (Fig. 3B). We suggest that the higher diversity is 
caused by the admixture of sediments (and sediment-associated microbes) to the biofilm sample. Indeed, repre-
sentatives belonging to Anaerolineae, Dehalococcoidia, Atribacteria, Woesearchaeia, and MBG-D and DHVEG-1, 
commonly encountered at methane seeps, can be related to organic matter degradation (e.g. Inagaki, et al.45, Pop 
Ristova, et al.46, Nunoura, et al.47, Trembath-Reichert, et al.48, Inagaki, et al.49, Cruaud, et al.50). Woesearchaeia 
are often found in marine environments with high organic matter content47,51, but are also linked to symbiotic 
or parasitic lifestyles based on small genome sizes and limited metabolic capabilities52. However, at our sampling 
site, neither siboglinid tubeworms nor any other chemosynthetic macrofauna species were observed53. MBG-D 
and DHVEG-1, Anaerolineae, and Dehalococcoidia might play a major role in protein, amino acid and fatty acid 
re-mineralization50,54; Dehalococcoidia could also mediate reductive dehalogenation and potentially reduce sul-
phate55–57. All those substrates are probably available (at least to some degree) at the sediment horizon where the 
biofilm within GC1070 was found.

Biogeochemical functioning of biofilm microbes.  According to the methane and sulphate con-
centration profiles (Fig. 3A)16, the SMTs were likely located at ~300 cmbsf in core GC1048 and ~60 cmbsf in 
GC1070, i.e. less than ten centimetres above to where we discovered the biofilms. Both cores are characterized 
by steady-state sulphate-methane dynamics that ensures a consistent supply of both sulphate and methane at the 
SMTZ16. However, the differential depths of the SMTZ in the two cores suggest dissimilar methane fluxes. In 
GC1048, the SMTZ appeared to be deeper compared to GC1070 implying a lower methane flux in GC1048 than 
in GC1070.

The co-localisation of the biofilm and the SMTZs together with the prevailing presence of ANME-1 archaea 
and potential partner SRB in the biofilm samples, thus suggests that these microbes mediate sulphate-dependent 
AOM12.

We analysed the cellular structure of the AOM biofilm community from GC1048 by confocal laser 
scanning microscopy. Images revealed numerous globular tight cell clusters of sulphate-reducing 
Desulfobacteraceae ranging 1–3 µm in diameter (Fig. 6B), but also loose cell formations. Archaeal cells 
(identified as ANME-1b by sequencing analysis) formed many small tight globular clusters (<1 µm) as 
well as patches of loose cell formations (Fig. 6A). Similar to previous findings58,59, we found ANME-1b cells 
as multicellular strands/chains with length of several tens of micrometres. SRB cells seemed to be loosely 
associated with some of the multicellular ANME-1b strands and patches (Fig. 6C). In our biofilm sample, 
we did not observe any direct cell-to-cell contact of SRB and ANME-1b cells as shown for ANME-2/DSS 
aggregates10,59,60 or the shell-type consortia of ANME-3 and Desulfobulbus spp.11,61. Previous studies showed 
that in sediments, ANME-1 may exist as single cells or as mono-specific chains or clusters without direct, 
physical association of partner SRB59–62 raising the question if ANME-1 could also mediate AOM alone12, as 
found in some cases for ANME-215.

ANME-1a and ANME-1b subgroups only contain uncultivated strains and their phylogenetic distance 
to each other shows sequence similarity values of <96% based on 16S rRNA genes60. In our biofilms, OTU8 
clustered confinently into subclade 1b, while OTU12 seems to be closer associated to subclade 1a although 
that its assignment to one of the two clades is less certain. Still, the phylogenetical assignments of our OTUs 
to either ANME-1a and 1b is supported by the reference sequences from methane-rich environmental sam-
ples shown in Fig. 4. The environmental factors for selecting the two subgroups are still unknown. Both sub-
groups have been found at methane seeps12. The dominance of ANME-1 archaea in or below a SMTZ located 
some meters below seafloor has also been reported from sediments from a North Sea gas seep (up to 2.5 mM 
CH4; Niemann, et al.63), the Santa Barbara Basin (>3 mM CH4; Harrison, et al.64), the Sea of Japan (~1.8 mM 
CH4; Yanagawa, et al.65), all of which are characterized by relatively high methane but rather low sulphate 
availability. Similarly, ANME-1b archaea were found to dominate highly sulphate-depleted sediments at 
Haima cold seeps in the South China Sea66. Moreover, flow chamber incubation experiment have shown that 
ANME-1 archaea are more active at high methane flow rates compared to ANME-2, which are only mini-
mally affected by increased flow rates67. Only at the Black Sea microbial mat reefs, an ANME-1-dominated 
AOM community was found in an environment with high methane and high sulphate supply20. On the other 
hand, ANME-1 archaea were also found to dominate highly saline environments with moderate sulphate 
and rather low methane concentrations at a mud volcano in the Gulf of Cadiz (<0.6 mM CH4; Maignien, 
et al.62) and in hypersaline environments of the Gulf of Mexico (<0.2 mM CH4; Lloyd, et al.68). While high 
methane fluxes, low sulphate concentrations and hypersaline conditions may thus select for ANME-1 clades, 
the ecological niches of ANME-1a vs. ANME-1b are not well constrained. We can thus only speculate why 
ANME-1a and ANME-1b clades separately dominate each of the biofilms. Nevertheless, our findings sug-
gest that ANME-1b, when compared to ANME-1a, seems to prevail in deeper, more sulphate-depleted sed-
iments at sites of low methane flux.
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Summary and Conclusion
In this paper, we report on biofilms that occupy sediment pockets located just below the SMTZ in two cores recov-
ered from a cold seep area characterized by steady-state sulphate-methane dynamics. Both biofilms were domi-
nated by AOM communities comprised of members of ANME-1 and SEEP-SRB1, which have only been reported 
once previously in the literature7. Furthermore, one of the biofilms was exclusively comprised of ANME-1b 
archaea, which built multicellular strands and patches only loosely associated with SRB cells. This raises the gen-
eral question if ANME-1 can mediate AOM alone without any partner SRB. The second biofilm was characterized 
by a higher microbial diversity, possibly caused by admixture of the biofilm sample with surrounding sediments, 
but with ANME-1a as the dominant archaeal taxa. It remains ambiguous as to which environmental factors 
control the selection of subgroups ANME-1a or ANME-1b in natural environments. This investigation suggests 
that ANME-1b, in comparison with ANME-1a, appear to prevail in deeper, more sulphate-depleted sediments 
with a lower methane flux. Our findings also support the proposition that sub-seafloor sediment pockets and 
micro-fractures in a methane-related advective system promote AOM biofilm formation by providing pockets 
and conduits within sediment matrices where methane potentially accumulates or flows through. This constant 
supply of methane supports the development of AOM communities, which, over time, form biofilms22. Sediment 
pockets and micro-fractures could be more extensive at methane seeps than previously assumed.

Figure 6.  Confocal laser scanning micrographs of Archaea and sulphate-reducing bacteria (SRB) in biofilm 
from GC1048 visualized by FISH. Scale bars = 2 µm. (A) Archaeal cells (probe ARCH915 labelled with Cy3 
[red]. (B) SRB belonging to Desulfobacteraceae (probe DSS658 labelled with 6-FAM [green]). (C) Overlay of 
image A and B (probe ARCH915 and DSS658). (D) Overlay of image A and B and nucleic acids stained with 
DAPI [blue].
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Data Availability
Nucleotide sequences have been deposited at SRA database (https://www.ncbi.nlm.nih.gov/sra) as BioProject 
with accession number PRJNA506542. Detailed information on sequencing read processing workflow are avail-
able in the Supplementary Information S1.
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Abstract 16 

Arctic gas hydrates bearing mounds south of Svalbard host a chaotic distribution of bacterial mats, 17 

fields of tubeworms and methane gas flares. These features typically affect local biogeochemistry, 18 

creating different sediment surface ecological niches. However, how these niches shape the 19 

microbial communities, particularly the aerobic methanotrophs, remain unknown. In this study, 20 

we investigated the surface sediment prokaryotic biodiversity linked to 16S rDNA between those 21 

habitats. We compared environmental parameters with community data based on the 16S rDNA 22 

and the pmoA genes to identify driving environmental factors. Flares and mats were characterized 23 

by high concentrations of methane and sulphide at or near sediment surface. Sediment below 24 

tubeworms contrasted with low methane and sulphide, but oxygen penetrated deeper. Habitats 25 

hosted different microbial communities, where highest diversity was within the tubeworms fields. 26 

Methane was oxidized anaerobically near flares by ANME-1. Aerobic methanotrophs were more 27 

abundant at flares and inside mats, and both 16S rRNA and pmoA genes analyses suggested three 28 

key methanotrophs. Two clustered within the uncultivated group Deep Sea Cluster 1, but were 29 

together negatively correlated suggesting different niche preferences. Sulphide oxidizing bacteria 30 

also shifted in relative abundance and composition, with higher proportions of Campylobacterota 31 

at flares and within mats, and higher proportions of Beggiatoa at the edges of mats and worm 32 

fields. The distance between sulphide and oxygen gradients could be driving distinctions between 33 

the sulphide oxidizing communities. Additional shifts in diversity were also observed among 34 

suggested organic matter degraders Woesearchaeota, Gammaproteobacteria and Desulfobacterota, 35 

which were more diverse near the worms.  36 

 37 

 38 



 

 

Introduction 39 

Up to 23% of the radiative forcing of climate change since pre-industrial time can be explained by 40 

the increase of the methane (CH4) in the atmosphere (Etheridge et al., 1998; Turner et al., 2019). 41 

Despite having a lower concentration than CO2, the significant contribution of CH4 is explained 42 

by its strong radiative efficiency (Etminan et al., 2016). The increase of CH4 in the atmosphere 43 

from anthropogenic and natural sources (Reeburgh, 2007; Saunois et al., 2016), can be attenuated 44 

by biological and physical processes. In the marine environment, this attenuation is so efficient 45 

that most of the methane released from the seabed does not reach the atmosphere (Myhre et al., 46 

2016). This reduction in the upward flux of CH4 toward the atmosphere is in a large proportion 47 

(up to 80%) driven by microorganisms (Sommer et al., 2006; Boetius and Wenzhöfer, 2013). 48 

These pelagic and benthic microorganisms, named methanotrophs, are using CH4 as a carbon and 49 

energy source in anaerobic and aerobic conditions (Hanson and Hanson, 1996; Boetius et al., 2000; 50 

Reeburgh, 2007). 51 

In anaerobic conditions, below the sediment surface, CH4 is oxidized through reverse 52 

methanogenesis by different uncultivated groups of anaerobic methanotrophic Archaea (ANME; 53 

Boetius et al., 2000). AOM was shown to be possible using nitrite/nitrate (Hu et al., 2014), 54 

manganese or iron (Beal et al., 2009; Ettwig et al., 2016), and sulphate ( SO4
2-; Nauhaus et al., 55 

2002). AOM results in the production of bicarbonate (HCO3
-), which precipitate to form authigenic 56 

carbonate, and hydrogen sulphide (HS-) when SO4
2- is used as an electron donor.  57 

In aerobic conditions, found in the water column and the first millimetres of sediment, CH4 is 58 

oxidized by bacteria using oxygen (O2) as an electron acceptor to form formaldehyde and carbon 59 

dioxyde. Methane oxidizing bacteria (MOB) have been described primarily within the 60 

Gammaproteobacteria and Alphaproteobacteria, commonly referred as Type I and II 61 

methanotrophs, respectively (Hanson and Hanson, 1996; Dunfield et al., 2007; Knief, 2015). Yet, 62 

the clustering of a key enzyme of the aerobic methane oxidation (MOx) named methane 63 

monooxygenase (pmoA) sequences, showed that only half of the formed operational taxonomic 64 

units (OTUs) contained cultivated representatives (Knief, 2015), emphasizing the need to reveal 65 

their exosystemic role.  66 

In the Arctic, south of Svalbard, CH4-rich geofluids emitted from gas hydrate mount (GHP) drove 67 

changes in the composition of archaeal, bacterial and eukaryotic communities compared to the 68 



 

 

reference site (Carrier et al., 2020). The sampling approach, inherited from previous studies in 69 

cold-seep areas (de Beer et al., 2006), revealed the biodiversity of CH4 rich anaerobic sediments. 70 

Acknowledging that the anaerobic CH4 filter is taking up most of the CH4 (Boetius and Wenzhöfer, 71 

2013), the aerobic filter at the sediment surface is usually overlooked, even it does not benefit from 72 

the high buffering capacity of the sediments, witch makes it more sensitive to physical and 73 

chemical changes (Physical: temperature, bottom trawling, currents; Chemical: electron acceptor, 74 

pH).  75 

Here we used a high-resolution approach to reveal the MOB diversity in HS- oxidizing bacterial 76 

mats, CH4 flares and chemoautorophic siboglinids worm fields. These three microhabitats, 77 

occurring at arctic cold seeps were influenced by the biogeochemistry of the surrounding 78 

sediments. However, nothing is known on how these habitats influence, if they do, the diversity of 79 

the MOB. 80 

We aimed to (i) test if the communities were significantly different between habitat, (ii) identify 81 

key taxonomic groups driving the dissimilarities and (iii) combined 16S rRNA and pmoA genes 82 

to characterize the MOB communities between the different habitats. We used amplicon 83 

sequencing combined with electrochemical measurement to describe the microbial community and 84 

their habitat. Through this study, we revealed that the different habitats are associated with 85 

contrasting physicochemical characteristics that shape the prokaryotic diversity. ANME-1 were 86 

almost solely detected at gas flares, which also hosted with bacterial mats highest relative 87 

abundances of MOB. The combination of 16S rRNA and pmoA genes analyses demonstrated that 88 

the MOB community was composed of three main bacteria: two of them were assigned to the same 89 

uncultivated environmental group of Deep Sea Clusters, but presented opposite habitat 90 

preferences. Furthermore, we revealed shifts in the composition of sulphide oxidizing bacteria, 91 

another key group of local primary producers. The Campylobacterota and Beggiatoales contrasted 92 

in niches inclination, potentially driven by the proximity of oxygen and sulphide availability.    93 

Materials and methods 94 

Sampling site 95 

Storfjordrenna is located south of Svalbard, at the entrance of Storfjorden. At  380m deep, five gas 96 

hydrate bearing pingos (GHPs) were discovered (Serov et al., 2017). The GHPs have a diameter 97 

ranging from 280m to 450m and a height from 8m to 10m. CH4 seeping from the GHPs was 98 



 

 

predominantly of thermogenic origin (Serov et al., 2017). Cores taken from the GHPs revealed gas 99 

hydrate-bearing sediments within few meters below sediment surface. The sampling campaign 100 

was carried out between 22nd October and 02nd November 2018 onboard RV Kronprins Haakon. 101 

The seafloor of 2 GHPs, GHPs 1 and 3, were visually scanned using a ROV (AEGIR6000, 102 

Norway) to locate areas where bacterial mats, siboglinid worm fields and gas flare activity could 103 

be observed. A seafloor area of GHP 3 comprising a mixture of the features mentioned above was 104 

selected for sampling (Fig. 1).  105 

Sampling procedure 106 

Using the ROV, push cores were used to sample sediments in each four habitat types (Fig.1): 107 

within a bacterial mat (BM) and a siboglinid worms field (SF), plus the edge of each habitat, 108 

defined as bacterial edge (BE) and siboglinid worms edge (SE). 109 



 

 

 110 

Figure 1: Gelogical dome structure referred to as Gas Hydrate Pingo 3 (GHP 3), located at the mouth of Storfjordrenna, 111 
50 km south of Svalbard. Dots represent locations of the different push cores (PC) and the stars indicate CH4 gas flares 112 
observed using the ROV camera. Sediment cores were taken near a gas flare (green dots), within bacterial mats (dark 113 
blue dots), siboglinid fields (dark red dots) and at edges of bacterial mats and siboglinid fields (light blue and light red 114 
dots, respectively). 115 

Two cores from SF (PC07SF and PC11SF), one core from SE (PC06SE), one core from BE (PC02BE) 116 

and two core from BM (PC04BM and PC10BM) were successfully retrieved in the first area (Fig 117 

1B). On a second dive in a nearby area on GHPs  we took additional core, one from SF (PC08SF), 118 

two from SE (PC03SE and PC15SE) and one from BE (PC01BE; Fig S1B, Fig 1C). Finally, two push 119 

cores were also retrieved directly on gas flares (PC12FL and PC 14FL). During ROV operations, 120 

push cores retrieved from the ROV were stored on the seafloor in a metallic basket. Once the 121 

basket was brought back onboard, cores were immediately moved to a cold room (4°C) for further 122 

processing. 123 

 124 



 

 

Porewater Geochemistry 125 

Porewater geochemistry (CH4, HS-, O2) was measured on a subset of cores. In a cold room, HS- 126 

and O2 were immediately measured in situ using probes from Unisense (Aarhus, DE). The 127 

microsensor profiling of the O2 in the upper sediments was performed using a miniaturized 100 128 

µm width Clarks type electrode (OX-100,Unisense, Aarhus, Denmark) and a microsensor 129 

multimeter (Unisense, Aarhus, Denmark). Oxygen concentrations were profiled vertically, 130 

perpendicular to the surface of the sediment, with a resolution of 100 to 250 μm using a motorized 131 

micromanipulator. Sulfur was measured using a micro sensor that convert H2S into HS- ions in an 132 

alkaline electrolyte contained in the electrode tip. It is then immediately oxidized by ferricyanide, 133 

producing sulfur and ferrocyanide. The sensor signal is generated by the re-oxidation of 134 

ferrocyanide at the anode within the tip of the sensor (P.  Jeroschewski et al., 1996). 135 

Afterwards, cores were cut and CH4 concentrations and porosity were measured from 3 mL of 136 

bulk sediments per approx. 4-5 cm intervals in all cores, following the same protocol used in 137 

Carrier et al., (2020). Four cores (PC04BM, PC02BE, PC06SE and PC07SF) formed a section line of 138 

few meters long and a 2D representation of the porewater geochemistry along this section was 139 

created using approximated surface calculated with the MBA package on R (Finley et al., 2017).    140 

TNA extraction, DNA Sequencing and Sequences Analyses 141 

The first 2 cm below the sediment surface (cmbsf) were transferred a Whirl-Pak® sterile sampling 142 

bag (Nasco, United States) and directly frozen at -80°C. Exceptionally, because of the angle of the 143 

sediment surface in PC12FLFlare, two surface samples were taken from PC14FL of the GF habitat 144 

(PC14sFL for surface and PC14bFL for below surface).  The samples were stored at -80°C on RV 145 

Kronprins Haakon and transferred frozen to the laboratory at UiT The Arctic University of Norway 146 

at the end of the cruise. 147 

For DNA/RNA isolation, the samples were transferred in grinding jar sets (Qiagen, Germany), 148 

priory cooled down in liquid nitrogen, and grinded using a TissueLyser II (Qiagen, Germany) at 149 

30 Hz for 30 seconds. From the grinded sediments, approximately 0.25g were transferred in G2 150 

DNA/RNA enhancer bead tubes (Ampliqon, Denmark) for physical lysis. Nucleic acids were 151 

extracted following a phenol/chloroform extraction protocol (Griffiths et al., 2000) modified by 152 

Urich et al. (2008). Once the TNA samples were quality checked using electrophoresis gels, the 153 



 

 

DNA concentrations were measured using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 154 

United States) and normalized before being sent to the IMGM Laboratories GmbH (Planegg, 155 

Germany) for library preparation and amplicon sequencing. For each sample, Bacteria and 156 

Archaea were amplified using same 16S rDNA degenerate primers to target the V3-V4 regions 157 

used for samples collected in the same area (Carrier et al., 2020).  158 

To identify the CH4 oxidising bacteria (or methanotrophs) in the different habitats, the particulate 159 

methane monooxygenase gene pmoA was amplified from each sample using the degenerated 160 

primer pair wcpmoA189f and wcpmoA661r (Tavormina et al., 2008), a primer pair optimized for 161 

targeting marine aerobic methanotrophs. Library generation was conducted in accordance with the 162 

company’s protocols before being sequenced using a MiSeq System (Illumina inc., United States).  163 

Paired-end reads were processed using derived workflow (Carrier et al., 2020) from the USEACH 164 

suggested protocol1 (Edgar, 2010). The Silva database release 138 (Quast et al., 2012) was used 165 

for taxonomy assignment of the 16S libraries and the taxonomy of the OTUs from the pmoA 166 

libraries were assigned using the pmoA gene reference database produced by Yang et al., 2016. 167 

For the 16S libraries, sequences that were not classified to their domain were discarded prior to 168 

further analyses and singletons were removed for all libraries. For the 16S libraries, OTUs were 169 

constructed at 97% pairwise sequence identity. For the pmoA libraries, OTUs were constructed at 170 

86% pairwise sequence identity, a cut-off corresponding to the 97% similarity of the 16S rRNA 171 

gene (Wen et al., 2016). Paired-end nucleotide reads will be deposited at Sequence Read Archive2 172 

Genebank as BioProject prior to publication. 173 

Statistical Analyses 174 

Archaeal libraries were rarefied at 14 800 sequences while the libraries for Bacteria and pmoA 175 

were rarefied at 15 000 sequences, corresponding to the lowest number of sequences in one sample.  176 

Alpha diversity indices (OTUs observed, Shannon, Simpson and chao1) and rarefaction curves 177 

were calculated for each library on the abundance of OTUs using USEARCH (Edgar, 2010). Prior 178 

to further analyses, OTU tables were imported and centered log-ratio transformed (CLR) on R 179 

using package Phyloseq v1.34.0 (Aitchison, 1982; McMurdie and Holmes, 2013). Beta diversity, 180 

                                                            
1 http://drive5.com/usearch/manual/uparse_pipeline.html 
2 http://www.ncbi.nlm.nih.gov/sra 

http://drive5.com/usearch/manual/uparse_pipeline.html
http://www.ncbi.nlm.nih.gov/sra


 

 

measuring divergence in the composition of communities between the different sediment samples, 181 

was calculated on the relative abundance of the OTUs using the Bray-Curtis dissimilarity index. 182 

Hierarchical clusters were calculated using the package Vegan v2.5-5 package on R (Oksanen et 183 

al., 2019) using the average method and were plotted along barplots illustrating the relative 184 

abundances of most abundant taxonomic groups using ggplot2 package on R (Wickham, 2016).  185 

To statically test if the difference in the community composition of the different habitats is 186 

significant or not for each library types (Archaea, Bacteria and pmoA), a permutational multivariate 187 

analysis of variance (PERMANOVA) was performed on the CLR transformed OTU matrices 188 

(Anderson, 2017). Using the Vegan v2.5-5 package in R (Oksanen et al., 2019), the Bray Curtis 189 

dissimilarity index was selected and PERMANOVA analyses were performed at 999 190 

permutations. The PERMANOVA was repeated twice, first with all samples segregated by their 191 

habitat types (SF, SE, BM, BE, FL), and then within each habitat (SF, BM, FL), subtracting the 192 

samples from the edges. Because the interpretation of the PERMANOVA analyses depend on an 193 

homogenous variance within the different habitats (Anderson, 2017), the multivariate dispersions 194 

was calculated using betadisper and the null hypothesis of the absence of difference in dispersion 195 

between habitats was tested using a permutation test, both functions implemented in Vegan v2.5-196 

5 package on R (Oksanen et al., 2019). Dissimilarity between the different groups was visualized 197 

using principal component analyses (PCA) on the CLR transformed OTU matrices using the 198 

package Phyloseq v1.34.0 implemented in R (McMurdie and Holmes, 2013). To identify archaeal 199 

and bacterial biomarkers of the different habitats linear discriminant analyses effect size (LEfSe) 200 

were performed and visualized in cladograms (Segata et al., 2011), i.e. taxonomic groups that 201 

explain the differences in the microbial community structure of the different habitats. These 202 

analyses were conducted using the package microbiomeMarker v0.0.1.9 on R (Cao, 2020). 203 

Phylogenetic Analyses 204 

Phylogenetic analyses of the abundant 16S and pmoA OTUs associated to bacterial methanotrophs 205 

were conducted to accurately assess their evolutionary origin and positive correlations between 206 

the dominant OTUs of the 16S and the pmoA libraries. In total, 71 gammaproteobacterial 207 

methanotrophs 16S sequences (min length: 1300 bp) and  65 pmoA sequences (min length: 460 208 

bp) were selected from published phylogenies in addition to reference sequences in the pmoA and 209 

16S Silva release 138 databases (Quast et al., 2012; Knief, 2015; Yang et al., 2016) for the 16S 210 



 

 

and pmoA tree, respectively. For both trees, pmoA and 16S sequences of the alphaproteobacterial 211 

Methylosinus sporium were used as the outgroup. Sequences were aligned using MUSCLE (Edgar, 212 

2004) implemented in MEGA 7 (Kumar et al., 2016) and best-scoring maximum likelihood 213 

phylogenetic trees, used as reference trees, were built using Randomized Axelerated Maximum 214 

Likelihood (RAxML), calculated based on the General Time Reversible (GTR) Gamma model 215 

(Stamatakis, 2014). Selected OTUs from the this study were aligned to the sequences selected to 216 

built their respective reference tree and were placed on these using the Evolutionary Placement 217 

Algorithm implement in RAxML. Resulting trees were visualized and annotated using the 218 

packages treeio and ggtree on R (Yu et al., 2017; Wang et al., 2020). Spearman correlations 219 

between the abundant OTUs of the 16S and pmoA libraries were calculated using the package 220 

rstatix on R (Kassambara, 2020) with a significance level at 0.95. 221 

Results 222 

 223 

Figure 2: Images taken by the ROV of the three clusters of sediment cores retrieved from the GHP 3 illustrated in 224 
Figure 1. PC12FL and PC14FL were taken on an active gas flare (left picture) and the remaining cores were taken in 225 
two grids covering bacterial mats and siboglinid fields. 226 

Environmental Characterization and Geochemistry 227 

Three sediment samples (PC12FL), including two extruded from the same PC (PC14sFL and 228 

PC14bFL), were taken directly on an active CH4 gas flare (Figures 1 & 2). Near the gas flare, the 229 

seafloor was generally soft, although authigenic carbonates were visible. Other sources of CH4 gas 230 

bubbles were also visible in the surrounding. Below the seafloor surface, at core PC14FL, CH4 231 

concentrations reached a maximum of 5775 µM at 8 cmbsf (Figure 3). At same depth co-occurred 232 

the maximum HS- concentration at 105.54 mV. O2 was depleted throughout the core.  233 



 

 

At SF and BM, the sediment was soft and there was an absence of antigenic carbonates. These 234 

could be found widespread on the GHP, but areas of thicker mats or denser SF were commonly 235 

less than a meter radius. We could not observe a combination of both thick bacterial mats and 236 

dense siboglinid fields. When both habitats were overlapping, mats would be thinner and fields 237 

less dense. Cores PC04BM and PC10BM were taken from sediments where bacterial mats were 238 

thicker, while cores PC01BE and PC02BE at their edges where the bacterial mats were thinner 239 

(Figure 2). Within the BM, the O2 at sediment surface is anoxic but its penetration depth increases 240 

to below 1 cmbsf toward the BE (Figure 3). Along the section, highest concentrations of CH4 and 241 

HS- were retrieved under BM. In BM, CH4 and HS- concentrations reached a peak of 6268 µM at 242 

22 cmbsf and of 197.19 mV at 28 cmbsf, respectively. CH4 and HS- concentrations below BME 243 

were lower, reaching 4660 µM at 16 cmbsf and 88.73 mV at 28 cmbsf, but remained higher than 244 

under siboglinid fields. Within the SF, the O2 could penetrate below 1 cmbsf and no apparent 245 

differences in O2 concentrations between cores taken below SF and SE (Figure 3). Below the SE, 246 

traces of CH4 could be measured, reaching an average (avg) of 1700 µM between 10 and 20 cmbsf. 247 

HS- concentrations were also detected, attaining 122.16 mV at 11 cmbsf and a maximum of 173.58 248 

mV at 23 cmsbf. Toward sediments below SF, concentrations of CH4 and HS- were reduced and 249 

could generally not be detected. Geochemical profiles (O2, CH4 and HS-) of each core are available 250 

as Supplementary Information (Supplementary Figures 1-3). 251 



 

 

 252 

Figure 3: Physicochemical profile (O2, CH4 and HS-) in 2D across an approximately 2 m long line section from the 253 
cores PC04BM, PC02BE, PC06SE and PC07SF, from the bacterial mat (BM), the edge of the bacterial mat (BE), the edge 254 
of a siboglinid field (SE) and within (SF). White dots represent data points and profiles for each cores and are available 255 
as Supplementary Information (SI Figures 1, 2 and 3). 256 

Sequence Analyses 257 

Once pair-ends reads were quality filtered, 2680, 2122 and 34 OTUs were successfully assigned 258 

to the archaeal, bacterial and pmoA libraries, respectively. After rarefaction 2314, 2101 and 34 259 

OTUs remained. For the bacterial and archaeal libraries, the coverage of biodiversity in a sample 260 

after rarefaction was assessed visually using rarefaction curves of the richness (number of OTUs) 261 

per sample and these are available as Supplementary Information (Supplementary Figure 4). 262 

Throughout the text, OTUs retrieved from the Archaeal and Bacterial 16S rRNA gene in addition 263 



 

 

to from the pmoA gene libraries will be referred as OTU aX, OTU bX and OTU pX, respectively 264 

(where X is the OTU ID).  265 

Similarities between habitats 266 

Table 1:  Permutational Multivariate Analysis of Variance (PERMANOVA; R2) and (testing for homogeneity of group 267 
dispersions; F) in addition to their significance (p). Analyses were run on their habitat types (FL, BM, BE, SE, SF) or 268 
their nature (flare, bacterial mats or siboglinid worms). A significant PERMOVA result support the hypothesis that 269 
the microbial community composition between the different groups differ and the R2 illustrate the effect size. A 270 
significant betadisper result support that the variance within each habitat or nature types is significant. 271 

    Habitat   Nature   

Library   R2 p F p   R2 p F p   

Archaea 
 

0.45063 0.001 4.6787 0.019 
 

0.24286 0.004 5.2308 0.041 
 

Bacteria 
 

0.53698 0.001 2.1235 0.181 
 

0.28437 0.004 12.905 0.001 
 

pmoA   0.40047 0.108 2.0618 0.18   0.16959 0.435 4.59089 0.048   

 272 

PERMANOVA analyses were used to test the hypothesis that the OTUs composition between the 273 

five habitats differ. Beforehand, the assumption of homogeneity of variance within groups was 274 

tested using betadisper, which a significant result would reject the null hypothesis of no different 275 

in dispersion between habitats. While the betadisper test was non-significant for the Bacteria, it 276 

was significant for Archaea (Table 1). Results from PERMANOVA analyses revealed that the 277 

OTUs composition between the five habitats significantly differed, at an effect size of 45.06% and 278 

53.70% for the Archaea and Bacteria, respectively. Dissimilarities between the different habitats 279 

were visualised using PCA (Figure 4A) where 34.5% and 43.6% of the variance are explained by 280 

the first two axis for Archaea and Bacteria, respectively. LDA analyses, revealing significant key 281 

microbial markers of the different habitats, were subsequently performed exclusively on samples 282 

taken from FL, BM and SF (Figure 4B). Within the Archaea, Methanosarcina was a taxonomic 283 

marker for the flair habitat (F), while the Woesearchaeales were composed of OTUs particularly 284 

abundant at bacterial mat habitat (BM). Within the Bacteria, campylobacterial groups were 285 

markers the communities at FL, while the proteobacteria Desulfosarcinaceae and Halieaceae were 286 

more predominant at SF habitat and Bacterioidia at BM habitat. 287 

Microbial biodiversity between habitats 288 



 

 

Within the Archaea, betadiversity analyses demonstrated that communities at BM, BE and SE 289 

showed higher similarity than with communities at SF or FL (Figure 5). At the flare, the 290 

methanotrophic Methanosarcina, particularly an OTU assigned to the ANME-1, composed a large 291 

fraction of all sequences retrieved in a sample, reaching between 17% in core PC12FL to 48% in 292 

core PC14bFL. Woesearchales was a second important taxonomic group at FL, identified by avg 293 

43% of the sequences. Within the SF, the Woesearchales was the predominant taxonomic group, 294 

composing between 49% of the sequences in PC07SF and 70% in PC08SF. The communities were 295 

also characterized by a higher proportion of Nitrosophaeira (avg of 22%), primarily assigned to 296 

the genus Nitrosopumilus, Asgardarchaeota (avg of 7%) and Bathyarchaeia (avg of 3%). The 297 

higher abundance of Nitrososphaeria at SF is primarily dominated by the emergence of OTU a2, 298 

reaching 22% in SF in contrast to 10% in BM, while the second abundant OTU a9, assigned to 299 

Nitrososhaeria, remained at similar relative abundance (Supplementary Figure 5A). Two cores, 300 

PC07SF and PC11SF, also showed 8 to 5% of the sequences assigned to ANME-1, respectively. 301 

Sediment archaeal communities retrieved at BM, BE and SE demonstrated together a similar 302 

composition, largely dominated by Woeasarchales (avg of 79%). FL and SF habitats hosted a large 303 

diversity of low abundant OTUs assigned to Woesearchales, while in contrast, abundant 304 

Woesearchales OTUs at BM, BME and SF represented a large fraction of the sequences. Within 305 

the BM, BE and SE habitats, 4 OTUs composed 14 to 36% of all sequences, while they represented 306 

4% to 10% of the sequences in the FL and SFE habitats (Supplementary Figure 5B).  307 



 

 

 308 

Figure 4: (A) Principal component analyses calculated based on the centered log ratio (CLR) transformed OTUs 309 
composition of the different sediment cores to illustrate the similarities between the different habitat types. PC1 and 310 
PC2 explains 34.5% and 43.5% of the variance within the archaeal and bacterial communities, respectively. Ellipses 311 
were built around communities taken either from bacterial mats (BM & BE) or from siboglinid fields (SF and SE). 312 
(B) Significant microbial markers of the different communities retrieved either at the flare (F), within the BM or the 313 
SF, identified using linear discriminant analyses based on the CLR transformed OTUs composition. 314 



 

 

 315 



 

 

Figure 5: Relative abundance of the most abundant taxonomic groups belonging to Archaea or Bacteria. The sediment 316 
communities were clustered using calculation based on the Bray-Curtis dissimilatory index from the composition of 317 
archaeal (left chart) and bacterial (right chart) OTUs. Communities from the same habitat type, i.e. from sediments 318 
taken either near a gas flare (FL), within (BM) or at the edge of a bacterial mat (BM & BE) or from within or at the 319 
edge of a siboglinid field (SF & SE). 320 

Within the Bacteria, beta diversity analyses demonstrated that communities differed mainly along 321 

two clusters, one grouping libraries representing FL, BM and BE, while libraries from SF and SE 322 

were in a separate cluster (Figure 5). The first cluster were dominated by Campylobacterota 323 

Sulfurimonadaceae and Sulfurovaceae. While the relative abundance of sequences assigned to 324 

Sulfurimonadaceae varied little across the different habitat, at an average of 6% ± 3%, the 325 

proportion of Sulfurovaceae increased in surface communities of FL and BM, reaching a 326 

maximum of 35% and 20%, respectively. Another taxonomic group more abundant in this cluster 327 

included Methylococcales. Higher relative abundances of sequences assigned to Methylococcales 328 

were found in communities at FL (avg of 5%) and BM (avg of 4%) habitats, while lowest was 329 

found in SF (avg. of 1%).  330 

Among communities within SF and SE, a larger fraction of the sequences was assigned to diverse 331 

predominant taxonomic groups composing a larger proportion of the communities than in FL, BM 332 

and BE. These groups included the gammaproteobacteria Beggiatoales, Cellvibrionales and 333 

Steroidobacterales, in addition to Chloroflexi, Spirochaetota and Verrucomicrobiota.  334 

Desulfubacterota was another dominating taxonomic group within habitats SF and SE, primarily 335 

composed of Desulfobacterales and Desulfobulbales. Representatives from clades of sulphate-336 

reducing bacteria (SRB) groups found at cold seeps were nearly absent. Throughout all habitats, 337 

Bacteroidota remained a predominant taxonomic group throughout all habitats.  338 

Diversity and distributions of aerobic methanotrophs 339 

Among the bacterial libraries, the relative abundance of aerobic methanotrophs was primarily 340 

assigned to the gammaproteobacteria Methylococcales (Figure 5). Within the Methylococcales, 341 

four OTUs predominated (Supplementary Figure 6A). Phylogeny of Methylococcales showed that 342 

OTUs b23 and b50 clustered closely together with a cultivated representative of Methyloprofundus 343 

sedimenti (Figure 7). Both OTUs shared approximately 98% sequence similarity with a strain of 344 

Methyloprofundus sp. (sequence KF484906.1). Their relative abundances of sequences assigned 345 

to this strain were particularly higher below FL, with an average of 3.4% of all sequences. OTU 346 

b14 clustered in a separate subclade and number of sequences assigned to OTU b14 were higher 347 



 

 

below BM, BE and SE, reaching up to 1.6% in those habitats (Figure 7; Supplementary Figure 348 

5A). The OTU b14 shared 97% sequence similarity with uncultured sequences retrieved from 349 

sediments of Haakon Mosby Mud Volcano (sequence KX581184.1) and from the intestine extract 350 

of a crab (sequence AB981863). However, it shared only 94% sequence similarity with the above-351 

mentioned strain of Methyloprofundus sp. Finally, OTU b66 had higher relative abundances in FL 352 

and BM, but the variability among the different habitats was smaller.  353 

Within the pmoA libraries, sequences were primarily associated to the groups Deep-Sea Cluster 354 

(DSC) 1 and Methylomonas sp., especially in communities at the FL, BM and BE habitats.  355 

Communities retrieved from SF and SE included a higher proportion of other groups such as DSC 356 

3, PS-80 and unclassified Methylococacceae. Most of the sequences within the pmoA libraries 357 

were assigned to three OTUs (Figure 7; Supplementary Figure 5B). 358 

 359 



 

 

 360 

Figure 6: Relative abundance of the taxonomic groups that contain sequences associated to bacterial methanotrophs 361 
based on the 16S (upper chart) and pmoA libraries (lower chart). 362 

Two OTUs (p1 and p1002) belonged to the group of uncultivated sequences DSC 1, in two separate 363 

subclades. OTU p1002 shared 97% sequence similarity with an uncultivated bacterium retrieved 364 

from a cold seep (sequence: KC751387.1), and 92% to a strain of Methyloprofundus sp. (sequence: 365 

AP023240.1). OTU p1 shared only 90% sequence similarity with an uncultivated bacterium 366 

detected at the Haakon Mosby Mud Volcano (sequence: KX581208.1). OTU p1 was more 367 

predominant in the BM, BE and SE habitats, with on average 44% of the sequences in a sample 368 

assigned to this OTU compared to 5% in the other. In contrast, an average of 48% of the sequences 369 

from pmoA libraries from habitats FL and SF were assigned to OTU p1002, compared to 20% in 370 

the other habitats. The third abundant pmoA OTU (OTU p100), showed less variation across the 371 

different habitats (avg of 29 ± 8%). Correlation analyses demonstrated significant positive 372 

correlation between abundant OTUs from 16S and pmoA libraries. The OTU b14 correlated with 373 



 

 

OTU p1, while OTUs b23 and b50 correlated with OTU p1002. OTU b66 and OTU p100 showed 374 

positive correlation, but was non-significant (Figure 7).  375 

 376 

 377 

Figure 7: Phylogenetic trees showing evolutionary connections of the dominant OTUs (relative abundance >1%) 378 
representing 16S rRNA gene sequences (left) and pmoA rRNA gene sequences (right) to selected reference sequences 379 
from the environment and isolated strains. Boldface type indicates the short sequences obtained in this study. The 380 
trees were calculated by using the RAxML algorithm and Methylosimus sporium was used as an outgroup for both 381 
trees. The approx. 464 bp long 16S OTUs were placed on a reference tree containing sequences of a minimum length 382 
of 1320 bp. The approx. 467 bp long pmoA OTUs were aligned on a reference tree contain sequences of similar 383 
lengths. White and bacterial internal nodes indicate bootstraps values of >50 and >80, respectively. Lines connecting 384 
OTUs between the trees illustrate significant positive spearman correlation values. The averaged relative abundance 385 
of each 16S OTUs at the different habitats is presented by the colored point size while the averaged relative abundance 386 
of each pmoA OTUs is presented as relative pie charts. 387 

 388 

 389 



 

 

Discussion 390 

In this study, we revealed that arctic CH4 seepages are locally transforming the seabed through the 391 

formation of a chemical gradient that promote the development of a specific microbial and 392 

macrofaunal community. 393 

It was demonstrated previously that gas hydrates pingos are not structured as mud volcano and 394 

does not show a concentric chemical gradient (Carrier et al., 2020). This typical arctic structure, 395 

formed after the last deglaciation (Serov et al., 2017) are full of authigenic carbonate (Yao et al., 396 

2021). In addition of mirroring past and actual microbial AOM, carbonates can funnel the reduce 397 

fluid formed around the gas hydrate to promote the formation of a patchy environment (Crémière 398 

et al., 2016). At the Storfjordrenna GHPs, the surface microbial community was structured 399 

according to the amount of geofluids that percolate through the sediments and by the subsequent 400 

anaerobic oxidation of this gas by ANME groups which is forming HS-. 401 

Aerobic methanotrophs takes advantage of the sediment surface methane gradient formed by the 402 

local bypass of the anaerobic methane filter 403 

At cold seeps, CH4 is consumed deep in the sediment by AOM and the remaining CH4 escapes the 404 

biological filter through advective flux of gaseous CH4 toward the sediment surface (Orphan et al., 405 

2001). Because of this local increase of CH4 potentially induced by the presence of carbonate, the 406 

relative abundance of Methylococcales retrieved in the 16S rRNA gene libraries was 3-4 fold 407 

higher at FL and BM compared to SF. Both 16S and pmoA based libraries were dominated by only 408 

3 and 4 abundant OTUs, respectively, and highlighted different MOB community structure 409 

between these different habitats (Figure 7). Within the pmoA libraries, which give a functional 410 

overview of the diversity, sequences were assigned primarily to three OTUs: two were placed 411 

within the Deep-Sea Cluster 1 (DSC 1), and one was closely related to Methylomonas spp. 412 

Compared to Methylomonas spp, which is detected at similar proportions in all samples, the DSC 413 

1 OTUs were mostly detected at gas flares and in bacterial mats surface sediments. Deep-Sea 414 

Cluster 1 enclose uncultivated sequences of the pmoA gene that have almost exclusively been 415 

retrieved from marine habitats (Lüke and Frenzel, 2011; Knief, 2015). However, further assigning 416 

environmental preferences to each groups have remained unresolved yet.  417 



 

 

Assigning habitat preferences is complex as representatives both from DSC 1 have been detected 418 

at equal frequency in the sediments and water column (Knief, 2015), highlighting the wide range 419 

of habitat that these microorganisms can colonise. This suggests that niche differentiation among 420 

marine uncultured MOB could not be resolved by the current classification of Deep-Sea Clusters. 421 

The heterogeneity of ecotypes within these groups is further strengthened in our results by the 422 

alternated dominance of OTUs phylogenetically affiliated to DSC 1.  423 

Within the DSC 1, significant positive correlations were found between the pmoA OTU p1002 and 424 

16S OTUs b23/b50, and between pmoA OTU p1 and 16S OTU b14 (Figure 7). These combinations 425 

suggests the existence of two distinct aerobic methanotrophs. Here, we will refer to the former 426 

combination as MOB1 and the latter MOB2. MOB1 shared high sequence similarity with several 427 

uncultured sequences (100 sequences with above 96% similarity). In contrast, MOB2 had 428 

sequence similarity with less sequences (13 sequences with above 86% similarity), the highest 429 

being with uncultured bacterial sequences from Haakon Mosby Mud Volcano (97.41% similarity, 430 

sequence: KX581194.1).  431 

Changes in O2, CH4 and HS- concentrations are known to impact the structure of the 432 

methanotrophic community (Hernandez et al., 2015; Mayr et al., 2020; Delgado Vela et al., 2021). 433 

In our case, MOB1 that is predominant near the flare is detected in habitats characterised by a high 434 

concentration of CH4 and HS- and suboxic conditions. MOB2 dominates the MOB DSC 1 435 

community at the edges of the bacterial mats siboglinid fields, where CH4 and HS- were depleted 436 

and O2 available.  437 

Therefore, the concentrations of CH4 that is much higher at gas flares and within sediments below 438 

bacterial mats, in comparison to the other habitats is a good parameter to explain the MOB1/MOB2 439 

repartition. One hypothesis could be that MOB1, which is globally found in marine settings, 440 

colonized high CH4-rich sediments in the Barents Sea, whereas MOB2 thrive in CH4 depleted 441 

sediments at cold seeps. However, other factors unconsidered in this study that were previously 442 

shown to select particular groups of Methylococcaceae, such as availability of ammonium/nitrite 443 

(Nyerges et al., 2010) or pH (Danilova et al., 2013), could be driving the niche differentiation 444 

between MOB1 and MOB2. 445 

 446 



 

 

Anaerobic methane oxidation forms hydrogen sulphide that promote anoxic conditions in surface 447 

sediment. 448 

Methane consumed by AOM described previously at the GHPs (Carrier et al., 2020)  promote the 449 

release of HS-, which was detected in our sampling grid. This dissolved gas supports the 450 

development of bacterial mats made by microorganisms using HS- oxidation as energy source. 451 

Sulphide oxidizers is a major functional group in cold seeps ecosystems, being, in addition to 452 

methanotrophs, an alternative source of primary production of biomass for higher trophic levels 453 

(Taylor et al., 2001; Lichtschlag et al., 2010; Niemann et al., 2013). These chemoautotrophs can 454 

either be observed as chemosynthetic ecto- and endosymbionts for some meiofauna (Nakagawa 455 

and Takai, 2008) and microfauna (Dubilier et al., 2008), or as free-living microbes able to form 456 

bacterial mats.  457 

In the gas flare, sulphide-oxidizing bacteria (SOB) were primarily represented by the 458 

Campylobacterota, previously known as Epsilonproteobacteria, where representatives mostly 459 

belonged to the Sulfurovaceae (up to 35% of all sequences in a sample) but also to the 460 

sulfurimonadaceae. These families also remained predominant in cores taken within bacterial 461 

mats, but their relative abundance, particularly for sulfurovaceae, was reduced within the 462 

siboglinid fields. In contrast, the Beggiatoales are nearly absent at the gas flares and represent a 463 

small fraction (less than 2%) of the sequences in the bacterial mats whereas, their relative 464 

abundance increases at the edges of the bacterial mats and of the siboglinids field, concomitant 465 

with the deepening of the HS- maximum (from approximately 15 to 20 cmbsf). These observations 466 

are in line with the ecology of these organisms. Campylobacterota are known to dominate 467 

environments where HS- and electron acceptors are both present (Madrid et al., 2001; Macalady 468 

et al., 2008; Grünke et al., 2011). In contrast, the beggiatoales dominates sediments where HS- and 469 

O2 do not overlap (McHatton et al., 1996; Preisler et al., 2007). 470 

The SOB community composition could also result from a temporal succession, where mats of 471 

Sulfurovum spp. would be early colonizers and Beggiatoales would establish in more mature mats 472 

(Patwardhan et al., 2018). In the early stages, Sulfurovum spp., able to tolerate high concentrations 473 

of HS-, would detoxify the sediments from HS- leading to the colonization of more HS- sensible 474 

SOB such as Beggiatoales. However as shown by our O2 profile the use of O2 as electron acceptor 475 

by SOB is creating anoxic conditions at the sediment surface. This has a direct effect on the 476 



 

 

settlement of the fixed macrofauna larvae that cannot settle in such anoxic environment because 477 

larvae needs O2 to develop as observed on hydrothermal vent (Marsh et al., 2001). Consequently, 478 

the siboglinids are kept at the edge of the seeping point therefore explains the gradient observed 479 

in our study. 480 

Siboglinids fields has the potential to be an oasis of life fuelled by chemoautotrophic energy that 481 

can host organisms not adapted to cold seeps conditions. 482 

Siboglinids are frenulates known to host SOB as endosymbionts and recent investigations at cold 483 

seeps in northern Barents Sea confirmed the presence of primarily Gammaproteobacteria SOB in 484 

Oligobrachia sp. (Sen et al., 2018). The absence of SOB in sigoblinid fields is explained by the 485 

location of sulphide-oxidizing endosymbionts that are located within the trophosome below the 486 

sediment surface. The symbiosis between siboglinid worms and SOB endosymbionts allows the 487 

supply of O2 from the seawater and HS- from deep sediment layers. Therefore, O2 is present at the 488 

sediment surface and are not consumed by CH4 or sulfur oxidisers that would lack they reductant. 489 

The LDA analyses demonstrated that microbes involved in organic compounds degradation are 490 

influenced by the habitats (Fig 4). Within the siboglinid fields, the Chloroflexi, Desulfobacterota 491 

and Verrucomicrobiota showed higher relative abundances. These bacterial groups are commonly 492 

found in marine sediments (Miyatake et al., 2009; Leri et al., 2010; Hedlund, 2015; Dyksma et al., 493 

2018). Interestingly, none of the Desulfobacterota, were assigned to known seeps related sulfate 494 

reducing bacteria, such as the clades SEEP-SRB1 to 4 (Knittel et al., 2003). The structure of the 495 

prokaryotic communities at siboglinid fields was diverse and similar to the community structure 496 

of the reference site in Carrier et al. (2020). We hypothesised that the siboglinids mucus and faeces 497 

could be enriching the sediment in labile carbon and therefore promote the development of organic 498 

matter degradation associated microbes. 499 

Conclusion 500 

Our study demonstrated that the composition of the prokaryotic community varied between 501 

different habitats over few meters square areas. Key ecological functions at cold seeps, such CH4 502 

and HS- oxidation in addition to organic compounds degradation, were likely performed by various 503 

taxa, although more exhaustive genomic and cultivation studies would be required to confirm their 504 

role. We particularly identified three potential active MOBs, two of them thriving in contrasting 505 

niches. One of the MOBs showed little similarity to other available MOB sequences, highlighting 506 



 

 

one of the uniqueness of this ecosystem. The focus on aerobic methanotrophs in our study presents 507 

its novelty in extending our knowledge on CH4 fate at the sediments-water interface in the Arctic 508 

Ocean. Furthermore, sediment cores taken from different habitats also demonstrated a strong 509 

variability in SOBs. These presented changing biodiversity between the different habitats, features 510 

covering large proportions of the seafloor around Arctic cold seeps. In parallel of performing 511 

complementary genomic and cultivation studies to reveal the local microbial metabolisms and 512 

activity, investigations at additional Arctic cold seeps will also be needed to assess the 513 

representability of the GHPs.  514 
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 748 



 

 

 749 
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Abstract
The Arctic Ocean subseabed holds vast reservoirs of the potent greenhouse gas methane (CH4), often seeping

into the ocean water column. In a continuously warming ocean as a result of climate change an increase of CH4

seepage from the seabed is hypothesized. Today, CH4 is largely retained in the water column due to the activity
of methane-oxidizing bacteria (MOB) that thrive there. Predicted future oceanographic changes, bottom water
warming and increasing CH4 release may alter efficacy of this microbially mediated CH4 sink. Here we investi-
gate the composition and principle controls on abundance and activity of the MOB communities at the shallow
continental shelf west of Svalbard, which is subject to strong seasonal changes in oceanographic conditions.
Covering a large area (364 km2), we measured vertical distribution of microbial methane oxidation (MOx) rates,
MOB community composition, dissolved CH4 concentrations, temperature and salinity four times throughout
spring and summer during three consecutive years. Sequencing analyses of the pmoA gene revealed a small, rela-
tively uniform community mainly composed of type-Ia methanotrophs (deep-sea 3 clade). We found highest
MOx rates (7 nM d−1) in summer in bathymetric depressions filled with stagnant Atlantic Water containing
moderate concentrations of dissolved CH4 (< 100 nM). MOx rates in these depressions during spring were much
lower (< 0.5 nM d−1) due to lower temperatures and mixing of Transformed Atlantic Water flushing MOB with
the Atlantic Water out of the depressions. Our results show that MOB and MOx in CH4-rich bottom waters are
highly affected by geomorphology and seasonal conditions.

Temperature rise in the Arctic and its impact on the envi-
ronment is more severe than for any other region on Earth
(Masson-Delmotte et al. 2006; Hansen et al. 2013). The Arctic
Ocean holds vast reservoirs of CH4, which has a 32-fold higher
greenhouse warming potential than carbon dioxide and may
be released into the ocean and the atmosphere (Etminan
et al. 2016). The majority of the CH4 reservoirs across the Arc-
tic shelves are temperature-sensitive, e.g., subsea permafrost
(Shakhova et al. 2010) and gas hydrates in shallow sediments
(Westbrook et al. 2009; Berndt et al. 2014). Gaseous CH4

released from the seafloor becomes dissolved and can then be
utilized by aerobic methane-oxidizing bacteria (MOB), which use
CH4 as an energy source and carbon substrate for growth
(e.g., Hanson and Hanson 1996; Murrell 2010). In the ocean,
aerobic microbial methane oxidation (MOx) is the final sink for
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CH4 before it is liberated to the atmosphere (Reeburgh 2007),
but little is known about the diversity, abundance, distribution,
and activity of MOB (Tavormina et al. 2008; Mau et al. 2013;
Steinle et al. 2015). For example, high amounts of CH4 were
rapidly consumed by MOB following the deep-water horizon
accident (Crespo-Medina et al. 2014) and MOB were found to
effectively consume CH4 from the water column if hydro-
graphic conditions provide continuity for MOB (Steinle
et al. 2015, 2017). However, MOx can also be very low despite
high CH4 concentrations in marine waters for reasons that are
still unclear (Bussmann 2013).

Aerobic MOB are phylogenetically divided into
Gammaproteobacteria (type I MOB), Alphaproteobacteria (type
II MOB) (e.g., Hanson and Hanson 1996; Knief 2015), and Ver-
rucomicrobia (type III MOB) (Dunfield et al. 2007; Op den
Camp et al. 2009; van Teeseling et al. 2014). Common to
almost all MOB is the presence of the membrane-bound

particulate methane monooxygenase, the enzyme responsible
for the initial step of methane oxidation. The highly conserved
pmoA gene, encoding a subunit of the particulate methane
monooxygenase, is most frequently used as a molecular marker
both for detection and phylogeny of MOB via cultivation-
independent methods (Tavormina et al. 2008; Knief 2015).
Potential methane-oxidizing uncultivated clades like the deep-
sea clades 1–5 (Lüke and Frenzel 2011) have been identified by
this approach. Especially in marine environments, great uncer-
tainties exist about the factors that determine MOB activity
and community structure. From the Arctic marine environ-
ment, a number of studies report on MOx activity and MOB
community composition in relation to environmental factors
such as CH4 concentrations and hydrography (e.g., Mau
et al. 2013; Steinle et al. 2015; Osudar et al. 2016). However, all
those studies are single snap-shots of the prevailing situation at
the place and time of sampling. For example, studies focusing

Fig 1. Bathymetric map of the study areas west off Svalbard archipelago showing hydrographic sampling stations indicated by black dots at Isfjorden (Stas.
I–X), Outer Bellsundet (Sta. XI), Outer Hornsund (Sta. XII), and Sørkappøya (Sta. XIII) (A). Detailed map of the shallow shelf west of Prins Karls Forland
including gas flare locations (white dots) and 64 sampling stations arranged in a grid. At stations along the four transects (conducted from North to South
and West to East, yellow dashed lines), sampling for methane oxidation rates and microbial molecular analyses were conducted in addition to hydrographic
profiles and CH4 concentrations, which were usually conducted at all stations (B). Global view of our sampling area at the western Svalbard margin (C).
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on areas around the Svalbard archipelago, i.e., the continental
slope west of Prins Karls Forland (Gentz et al. 2014), Storfjorden
in the south-east (Mau et al. 2013), and the Svalbard margin
between Bjørnøya and Kongsfjordrenna (south to west Svalbard)
(Mau et al. 2017), were only conducted without temporal repeti-
tion in August/September. Only Steinle et al. (2015) compared
spatiotemporal replicates collected during several surveys at the
Svalbard continental margin in late August. Time series studies
covering seasonal changes of CH4 input and microbial CH4 turn-
over in the water column in the Arctic have so far not been publi-
shed, and little knowledge exists on the community composition
of Arctic Ocean MOB (James et al. 2016; Ferré et al. 2020).

In this study, we investigate the fate of CH4 in the water
column at the continental margin west of Svalbard, specifi-
cally the shallow shelf west off Prins Karls Forland. This area is
characterized by CH4 seepage (Portnov et al. 2016; Silyakova
et al. 2020). Despite extensive release of CH4 from the sedi-
ment in this area, almost no CH4 was found to reach the
atmosphere (Myhre et al. 2016). Our main objectives were
(1) to study the composition and activity of the
methanotrophic communities, (2) to investigate seasonal
shifts and, related to these, (3) the differential hydrographical
settings and their influence on MOB activity and distribution
within the study area. To meet these aims, we conducted sam-
pling surveys in the spring, late spring and summer.

We found that community changes of MOB are marginal,
but that MOx capacity is influenced by seasonal shifts and
varies according to site-specific geographical features and
changing hydrographical conditions.

Methods
Study area

Our study area stretches along the continental margin off
western Svalbard from the shallow shelf west of Prins Karls
Forland towards the southern tip of Svalbard including
Isfjorden, Isfjorden Trough, Outer Bellsundet, Outer
Hornsund, and Sørkappøya (Fig. 1). Water depth in these areas
ranges from 50 to 160 m. The shallow shelf west of Prins Karls
Forland is characterized by an irregular bathymetry showing
numerous large depressions encompassed by a series of
moraine ridges termed the Forlandet moraine complex
(Landvik et al. 2005; Fig. 1B). Here, along the Forlandet
moraine complex in 80–90 m water depth, a vast number of
gas flares (~200 flares, identified by acoustic signatures of gas
bubbles in the water) were previously mapped (Sahling
et al. 2014; Silyakova et al. 2020). The δ13C values of the emit-
ted CH4 and the absence of higher hydrocarbons in the
seeping gas indicates a microbial CH4 origin (Graves
et al. 2017; Mau et al. 2017). The seepage region west of Prins
Karls Forland lies > 200 m shallower than the upper limit of
the methane hydrate stability zone and unlikely results from
CH4 hydrates dissociating in situ. However, lateral migration
of CH4 from a hypothesized gas hydrate dissociation front at

deeper shelf settings may at least partly fuel the seeps on the
shallow shelf (Sarkar et al. 2012).

The hydrodynamics in our study area are complex (see also
Silyakova et al. 2020). The East Spitsbergen Current flows
along the Svalbard islands southwards on the east side, follow-
ing the coast around the island’s southern tip and then turns
northwards on the west side of the island (Nilsen et al. 2008).
Here, it flows as a coastal current on the shelf and is composed
of less saline and cold Arctic Water (34.30–34.80, −1.5 to 1.0�C)
into our study area. To the west of the shelf, the northernmost
extension of the North Atlantic Current, the West Spitsbergen
Current (Aagaard et al. 1987) is composed of relatively saline
and warm Atlantic Water (> 34.65, > 3.0�C) and also flows
northward. Although the East Spitsbergen Current and West
Spitsbergen Current are separated by a front, frequent mixing
occurs and the West Spitsbergen Current may also flood the
shelf (Steinle et al. 2015). Seasonality defines the different por-
tions of mixed water masses. Atlantic Water transforms into
Transformed Atlantic Water (> 34.65, 1.0–3.0�C) by losing heat
to the atmosphere and adjacent waters and freshening due to
meltwater from glaciers, snow and sea ice. Whereas Intermediate
Water (34.00–34.65, > 1.0�C) is formed by entrainment and
mixing mechanisms at the boundary of Surface Water with
underlying Atlantic Water or Transformed Atlantic Water. Sur-
face Waters are freshened by melt water and warmed by solar
heat in summer (< 34.00, < 1.0�C). Waters that overwinter in
fjords become colder and fresher, and are then classified as Local
Water mass (34.30–34.85, −0.5 to 1.0�C). Water masses are clas-
sified according to Cottier et al. (2005).

Sampling strategy
Samples were taken within three successive years

(2015–2017) during four expeditions with R/V Helmer Hansen,

Table 1. Sampling strategy and definitions of water samples/
horizon taken from the water column.

Water depth CH4 MOx
16S
rRNA

Water
level

Water
layer

5 m below sea

surface

x x x 8 Surface

15 m below sea

surface

x x 7

25 m below sea

surface

x x 6

Intermediate 2 x x x 5 Intermediate

Intermediate 1 x x 4

25 m above

seafloor

x x x 3 Bottom

15 m above

seafloor

x x 2

5 m above

seafloor

x x x 1
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CAGE16-4 (spring: 2–4 May 2016), CAGE17-1 (spring: 16–20
May 2017), CAGE16-5 (late spring: 17–22 June 2016), and
CAGE15-3 (summer: 1–3 July 2015). At the shallow shelf west
of Prins Karls Forland, we collected samples at 64 hydro-
graphic stations arranged in a grid pattern covering an area
of approximately 14 × 26 km. All stations were sampled suc-
cessively (total sampling time of the entire grid < 72 h). The
positions of transects and stations were selected according
to their coverage of specific features found at the seafloor
such as gas flares or bathymetric depressions (Fig. 1B). For
example, the western N-S transect follows the main ridge of
the Forlandet moraine complex and covers numerous CH4

flares. The southern W-E transect features a flare cluster in
the west and covers bathymetric depressions towards the
east. During the June survey in 2016, time constrains
allowed us to only sample 12 of the 64 stations. Those
12 stations were located along the western N-S, eastern N-S,
and southern W-E transects (Fig. 1B, Table S1).

At all stations, hydrographic parameters (salinity, tem-
perature, pressure) were recorded at 24 Hz with a
Conductivity-temperature-depth profiler (SBE 911 plus
CTD; Sea-Bird Electronics, Inc., USA) equipped with twelve
5-liter Teflon-lined Niskin bottles. Only downcasts were
used for hydrographic profiling. With the CTD-mounted
Niskin bottles, we collected discrete water samples from
eight water levels (1–8): 5, 15, 25 m above seafloor, 5, 15,
25 m below sea level, and two additional intermediate sam-
pling levels evenly spaced between 25 m below sea level and
25 m above seafloor (actual sampling depth depending on
water depth; Table 1). Water from the Niskin bottles was
subsampled immediately upon recovery. Dissolved CH4

concentrations were measured in all eight water levels of
the entire sampling grid. MOx rates were measured in all
eight water levels along four transects, which run from
north to south (eastern N-S and western N-S) and west to
east (northern W-E and southern W-E) (comprising 31 sta-
tions, Fig. 1B). Samples for phylogenetic analyses were
recovered during sampling campaigns in July 2015 as well
as May and June 2016 (but not in May 2017) from water
levels 1, 2, 3, 5, and 8 from all stations where MOx rates
were measured. During the May 2016 campaign, six stations
(Stas. 9, 16, 31, 44, 54, and 64) along the southern W-E
transect were repeatedly investigated 2 days after the first
sampling to monitor rapid variations of hydrographic con-
ditions and their effects on MOx activity and bacterial com-
munity changes.

In addition to the shallow shelf west of Prins Karls Forland,
in May and June 2016 we investigated the water column at
Isfjorden (Stas. I and II), Isfjorden Trough (III–X), Outer
Bellsundet (XI), Outer Hornsund (XII), and Sørkappøya (XIII)
(Fig. 1A, Table S1) in the same manner as described above.
CTD and dissolved CH4 concentration data from the surveys
in July 2015 and June 2016 of the area west of Prins Karls
Forland were published by Silyakova et al. (2020).

Methane concentration measurements
Methane concentrations were determined using a head-

space method as described by Silyakova et al. (2020). In order
to calculate the content of dissolved CH4 of the entire sam-
pling area at the shallow shelf of Prins Karls Forland, we
defined three water layers with consideration of the uneven
bathymetry (Silyakova et al. 2020). Water layers were defined
as the "Bottom Water Layer” from seafloor to 25 m above sea-
floor (comprising levels 1, 2, and 3), the “Surface Water Layer”
from the ocean surface down to 25 m depth (comprising levels
8, 7, and 6), and the ”Intermediate Layer” between 25 m
below the ocean surface and 25 m above seafloor (comprising
levels 5 and 4) (Table 1).

Methane oxidation rate measurements
Methane oxidation rates were determined according to pre-

vious publications (Niemann et al. 2015; Steinle et al. 2015)
with modifications as described in Ferré et al. (2020). For the
water column at the sampling area west of Prins Karls Forland,
the mean areal turnover of CH4 was calculated by integrating
distinct MOx rates over depth yielding results in m−2 d−1 for
each water layer and the entire water column (Steinle
et al. 2017). We then calculated weighted MOx means for
each layer, considering uneven horizontal spacing of the
hydro cast stations (for a more detailed description of the
computation of the weighted means see Silyakova
et al. (2020)). Upscaled to the size of the sampling grid
(423 km2), these weighted means translate to a total CH4 turn-
over per day for each water layer and the entire water body of
the sampling grid. To compare the capacity of MOx to retain
CH4, we then calculated the fraction of CH4 consumed
per day:

CH4 turnover per day %ð Þ=MOx=CH4 × 100 ð1Þ

Bacterial community analyses
Seawater samples for molecular analysis were collected in

sterile, high-density polyethylene bottles and usually
processed immediately after subsampling. However, time con-
straints sometimes required storage of samples at 4�C in the
dark before further processing, but storage time never exceed
4 h. We filtered a volume of 1 liter of sample on membrane fil-
ters (Whatman Nuclepore Track-Etched PC, 0.22 μm, Merck
Millipore, MA) by applying a gentle vacuum of ~ 0.5 bar and
stored filters at −20�C until further analyses. Total DNA from
membrane filters was extracted following the method of
Pilloni et al. (2012) and DNA content in each sample was
quantified using a spectrophotometer (Nanodrop, ND-1000,
Thermo Scientific, MA).

For the amplification of the bacterial 16S rRNA gene, we
selected samples retrieved in July 2015, May 2016 and June
2016 from distinct water levels from Prins Karls Forland (Stas.
9, 10, 19, 49, 54, 58; levels 1, 3, 5, and 8), from Isfjorden (Sta.
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I; levels 1 and 3) and Outer Bellsundet (Sta. XI; levels 2 and 4)
(Table S1). We used the degenerated primer pair Bakt_341F
and Bakt_805R resulting in about 450 bp amplicons covering
the V3-4 region of the 16S rRNA gene (Herlemann et al. 2011).
For the amplification of the particulate methane mono-
oxygenase gene (pmoA), we selected samples from the above-
mentioned sampling campaigns from the water level 1 from
Prins Karls Forland stations 9, 10, 49, 54, 58, and Isfjorden (Sta.
I), and from water level 2 from Outer Bellsundet (Sta. XI). Water
levels 1 and 2 were selected, because of elevated MOx rates,
which were measured at these particular water levels at the cho-
sen stations. The primer pair wcpmoA189f and wcpmoA661r for
marine water column MOB (Tavormina et al. 2008) was used for
amplification. Gene analyses of 16S rRNA and pmoA amplicons
were performed by IMGM Laboratories GmbH (Martinsried,
Germany). Cluster generation and bidirectional sequencing
(2 × 300 nt) by synthesis was accomplished on the Illumina
MiSeq next generation sequencing platform (Illumina, CA) using
reagents kit 500 cycles v2 under the control of MiSeq Control
Software v2.5.1.3. Sequence data have been submitted to the
GenBank Sequence Read Archives (https://www.ncbi.nlm.nih.
gov/sra) under BioProject ID: PRJNA642858 (16S rRNA) and
PRJNA641979 (pmoA).

Processing of 16S rRNA gene sequences was achieved as out-
lined in the following. Using BBMerge software version 37.02
(BBTools package, Brian Bushnell, Walnut Creek, CA), we per-
formed the initial data processing of the raw sequences (primer
trimming, quality filtering at a minimum of 99.1% base call
accuracy, and read assembly of forward and reverse read with an
overlap of 20 bp by default strictness setting). The resulting reads
were processed according to the MiSeq standard operating proce-
dure (Kozich et al. 2013) with MOTHUR version 1.39.5 (Schloss
et al. 2009) including pre-clustering at 99% sequence similarity
and de novo-based chimera removal using UCHIME (Edgar
et al. 2011) to remove artificial diversity. Sequences were aligned
and classified using the SILVA reference database (Release 132;
Quast et al. 2013). Sequences classified as "no relative,” chloro-
plast, archaeal and eukaryotic 16S rRNA were removed. After-
wards, bacterial sequences were clustered into operational
taxonomic units (OTUs) at 97% sequence similarity, using the
OptiClust algorithm. To reduce artificial diversity, rare OTU0.97

that were represented by only ≤ 2 sequences in the whole
dataset were removed as suggested for short fragment 16S rRNA
gene data (Allen et al. 2016). Prior to diversity analysis, OTUs
retrieved for the blank DNA extraction and the no template neg-
ative control from the library preparation were also removed
from the entire data set.

After MOTHUR sequence processing and prior to statistical
and diversity analysis, the community dataset was randomly
rarified to the lowest number of sequences found per sample
(1083). We conducted alpha and beta diversity analyses using
the program R with the vegan package (v. 2.5-6; https://
CRAN.R-project.org/package=vegan). Displaced alpha diversity
values are the means of 25 iterations. Hierarchical clustering

and Non-Metric Multidimensional Scaling (NMDS) analyses
are based on the Bray–Curtis dissimilarity index. Spearman’s
rank correlation of bacterial phyla at the family level and
selected environmental variables was conducted with R pack-
age Hmisc (v.4.4-0; https://CRAN.R-project.org/package=
Hmisc). Only those family level clades (SILVA taxonomy
v.132) that contributed ≥ 0.5% to total sequences in at least
one sample were considered.

We processed pmoA amplicons as follows: The raw sequences
were treated following our open-access pipeline (https://github.
com/dimikalen/MS_UIT_CAGE/blob/master/CAGE_MiSeq_SOP.
sh). Briefly, forward and reverse reads were merged using
BBmerge (v37.36; Bushnell et al. 2017) and quality filtered with
a maxEE parameter of 1 in VSEARCH (v2.9.0; Rognes
et al. (2016)). To reduce the computational need in the following
steps, unique sequences were extracted. Operational phyloge-
netic units (OPUs) were defined by using USEARCH (v11;
Edgar (2010)) applying a similarity threshold of 97%. The most
abundant reads of each OPU were then selected to find the clos-
est known sequences in the pmoA gene reference database
(on nucleotide level, Wen et al. (2016)) using the Wang method
in MOTHUR (v1.39; Schloss et al. 2009). All raw pmoA reads
were then mapped back to the reference reads of the pmoA
OPU0.97, as recommended in the USEARCH documentation, in
order to construct the final OPU table. The OPU table was subse-
quently rarefied at 1600 sequences. Hierarchical clustering based
on the weighted Unifrac distance metric (Lozupone et al. 2011)
was computed by using Qiime (Caporaso et al. 2010) and visuali-
zations were made in R (stats package v3.6.1). For phylogenetic
analysis of the two most abundant OPUs, we selected 52 pmoA
sequences from cultured and uncultured MOB published by
Lüke and Frenzel (2011), Knief (2015) and in the NCBI GenBank
(https://www.ncbi.nlm.nih.gov/). Sequences were aligned using
MUSCLE implemented in MEGA 7 (Edgar 2004) and trimmed to
retain only shared base pair positions. We built a best-scoring
maximum likelihood phylogenetic tree (based on nucleotides) in
Randomized Axelerated Maximum Likelihood (RAxML, version
8.2) using the General Time Reversible (GTR) Gamma model
(Stamatakis 2014). Thereafter, OPU1 and 2 were aligned to the
previously selected sequences and placed into the built phyloge-
netic tree using the Evolutionary Placement Algorithm
implemented in RAxML. The resulting tree was visualized and
annotated in Interactive Tree Of Life (Letunic and Bork 2016).

Results
Our data were collected during sampling surveys in the Arc-

tic spring (May 2016, 2017, the month with the coldest bot-
tom water temperatures; Berndt et al. (2014)), late spring (June
2016) and summer (July 2015). We mainly investigated a large
seep area at the shallow shelf west of Prins Karls Forland and
six additional regions, which are hydrographically connected
to the Prins Karls Forland shelf area: Isfjorden (I–VII), Isfjorden
Trough (VIII–X), and three stations towards the southern tip
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of Svalbard: Outer Bellsundet (XI), Outer Hornsund (XII), and
Sørkappøya (XIII). We collected discrete water samples for geo-
chemical and microbiological analyses from eight defined
water levels, whereas CTD measurements were made continu-
ously throughout the water column. To simplify the following
discussion about comparing processes at the ocean surface or
close to the seafloor, we use the three main water layers, "Bot-
tom Water Layer,” ”Surface Water Layer” and ”Intermediate
Layer” (as defined previously) in order to account for the dif-
ferential water depth at the various stations.

Hydrographic setting
In May 2016, the entire water column was dominated by

Transformed Atlantic Water with high salinity of 34.9–35.0
and temperatures between 1.6 and 2.3�C (Fig. 2A–D). In

contrast, the water column in May 2017 was dominated by
relatively warm (2–4.8�C) and saline (34.6–34.8) Atlantic
Water. Water in the bathymetric depressions was slightly col-
der (2.3–2.8�C) and therefore classified as Transformed Atlan-
tic Water (Fig. 2E–H). In June 2016, the bottom water was
composed of Transformed Atlantic Water (lowest temperature
2.3�C) at the gas flare area (southern part of the western N-S
transect) and within the bathymetric depressions, while we
found warmer Atlantic Water (3–5�C) in the upper water col-
umn. Both water masses were characterized by salinities of
34.6–34.9 (Fig. 2I–K). A strong stratification was observed in
July 2015 (Fig. 2L–O). At the bottom of the water column, spe-
cifically in bathymetric depressions, water was saline and rela-
tively warm Atlantic Water (34.9, ~3.5�C) with fractions of
Transformed Atlantic Water admixture. At the main gas flare

Fig 2. Profiles of potential temperature in the water column along transects at the shallow shelf west of Prins Karls Forland (A–O) from four sampling sur-
veys in May, June, and July within three successive years (2015–2017). For each sampling survey, water depth on the y-axis is given in meters below sea
level (mbsl). Vertical lines represent stations for continuous CTD measurements. The color code shows measured and linearly interpolated temperature
values (�C). Selected salinity horizons (values in psu) are indicated by black lines in L–O. In May and June (A–K), no salinity horizons were observed due
to a well-mixed water column with constant high salinity levels (34.6–35.0). Each plot contains the bathymetrical baseline (black line above gray area)
characteristic for each transect. In June 2016, only three transects were conducted.
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area, cold Intermediate Water (34–34.3, 1.3–2�C) lay above
warmer Atlantic Water. Surface Water with temperatures of
4.5–5.5�C and low salinity (28.5–34.0) dominated the surface
water down to ~20 m (Fig. 2L–M). The detailed hydrographic
setting in May 2016 and July 2015 at the shelf west of Prins
Karls Forland has been described by Silyakova et al. (2020).

At Isfjorden and Isfjorden Trough in May 2016, surface
water temperatures were colder compared to the Prins Karls
Forland shelf, i.e., between −0.2 and 1.2�C and with average
salinities around 34.6, indicating Local Water and Intermedi-
ate Water formed due to local cooling and freshening over
winter. Below the surface water layer, water salinity and tem-
perature increased (> 34.86, 2.2–2.7�C) indicating that the
Atlantic Water transformed into Transformed Atlantic Water
in the fjord (Fig. S1A). The water column at the central sta-
tions of the Isfjorden Trough crossing transect (Stas. IV and
V), was characterized by relatively warm Atlantic Water (35,

3.3�C) at the surface, which decreased in salinity and tempera-
ture to 34.8 and 1.6�C at 300 m water depth turning into
Transformed Atlantic Water, indicating that at deeper depths,
water masses were strongly influenced by mixing with West
Spitsbergen Current waters. The lateral stations at the trough,
i.e., those in proximity to the fjords sites, showed cold Surface
Water (southern Sta. III: T = −0.2�C, S = 34.6; northern Stas.
VI and VII: T = 0.7�C, S = 34.8), which turned into slightly
warmer (2.2�C) and more saline water (34.9) at 35 m water
depth, indicating that Surface Water lost more heat to the
atmosphere than deeper waters, and that water was still
mixing with the West Spitsbergen Current waters; Trans-
formed Atlantic Water was dominating the deep-water col-
umn down to 365 m water depth (> 34.86, 1.6–2.7�C). Further
inside Isfjorden (Stas. I and II), close to Longyearbyen, the
entire water column was comprised of Local Water with salin-
ity of 34.8 and temperatures of 0.8–1.2�C (Fig. S1A).
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In June 2016, Isfjorden surface waters down to 40 m were
considerably fresher and warmer (34.2, 4.7�C) than in May
2016, most likely due to freshening through melting of gla-
ciers, snow and sea ice and heating from the atmosphere
(Fig. S1B).

Compared to Isfjorden in June 2016, a similar structuring
of the water column was observed outside Bellsundet. In late
June, surface temperatures were ~4�C, heated up by the atmo-
sphere and surface salinities of 34.3–34.65 indicate the influ-
ence of Arctic Water, carried by the East Spitsbergen Current.
Similarly, at Outer Hornsund, southwards from Bellsundet,
surface salinity was not higher than 34.6, indicating the pres-
ence of Arctic Water transported by the East Spitsbergen Cur-
rent (Fig. S1B).

Water column methane content
The entire water column was CH4 oversaturated with

respect to the atmospheric equilibrium concentration, which
is ~ 3 nM at the ambient salinity and temperature conditions
(Wiesenburg and Guinasso (1979) (Table S2). In the area west
of Prins Karls Forland, we observed CH4 plumes with concen-
trations of up to 437 nM. High concentrations were mainly
encountered in bottom waters within the flare cluster, most
dominantly in the southwest of the sampling grid, but the
extent of the plumes differed greatly between the surveys
(Figs. 3, S2). For example, we found elevated CH4 concentra-
tions extending widely from west to east in May 2017
(Fig. 3E–H) and June 2016 (Fig. 3I–K). In contrast, the eastward
extension was less pronounced in May 2016 (Fig. 3A–D) and a
clearly defined CH4 plume was located at the intersection of
the southern W-E and the western N-S transect (Fig. 3B,C).

Nevertheless, the mean content of dissolved CH4 in the water
column was similar when comparing the different surveys
(3483, 3547, and 3745 μmol m−2 in May 2016, May 2017, and
July 2015, respectively) (Table 2, Fig. S2). In June 2016, the
mean content of dissolved CH4 reached 5644 μmol m−2 due
to the reduced number of stations (12 out of 64 stations) that
were sampled during this survey, and that many of the sam-
pled stations were located above active flares (see sampling
strategy), which in turn translated to higher mean values (see
the calculated mean content of dissolved CH4 for the reduced
number of stations for all surveys in Table S2). Therefore, dis-
solved CH4 values from June 2016 are not directly comparable
to values from the other surveys.

In general, CH4 concentrations were highest in bottom
waters, translating to inventories that were also highest at the
Bottom Water Layer (2127–2867 μmol m−2) compared to the
Intermediate (795–1008 μmol m−2) and Surface Water Layer
(83–412 μmol m−2) (Table 2).

At Isfjorden (Stas. I and II) we observed elevated concentra-
tions of 26 and 57 nM (May and June 2016, respectively) in
the Bottom Water Layer, whereas at the Isfjorden Trough CH4

was generally low, with average values of 9 nM in the Bottom
and 3 nM in the Surface Water Layer (May 2016). At Outer
Bellsundet, Outer Hornsund and Sørkappøya, CH4 concentra-
tions in the Bottom Water Layers were 18, 12, and 24 nM,
respectively, and 11, 4, and 17 nM in surface waters
(Table S2).

Methane oxidation activity
Highest MOx activity was generally found in bottom

waters, although the magnitude of activity greatly varied

Table 2. Inventory of dissolved CH4 and microbial methane oxidation activity calculated for the sampling area at the shallow shelf of
Prins Karls Forland. Surface, Intermediate, and Bottom refers to the defined water layers (Table 1) of the water column. Total values are
the sum of all three water layer values per sampling campaign. The order of sampling campaigns in this table follows the cycle of the
seasons where May corresponds to Arctic spring and July to summer.

Dissolved methane Methane oxidation activity

CH4 oxid. per day* 100% turnover**Surface Interm. Bottom Total Surface Interm. Bottom Total

Mean content (μmol m−2) Mean turnover (μmol m−2 d−1) (%) (d)

May (2016) 100 928 2456 3483 0.006 0.18 0.33 0.51 0.015 6777

May (2017) 412 1008 2127 3547 0.104 0.48 1.46 2.02 0.057 1754

July (2015) 83 795 2867 3745 0.089 1.73 25.72 27.54 0.735 136

Dissolved methane Methane oxidation activity

Surface Interm. Bottom Total Surface Interm. Bottom Total

Total content in the area (×105 mol) Total turnover in the area (mol d−1)

May (2016) 0.37 3.38 8.94 12.68 2 65 120 187

May (2017) 1.50 3.67 7.74 12.91 38 173 532 736

July (2015) 0.30 2.89 10.44 13.63 32 630 9362 10,024

*Percentage of CH4 that is oxidized per day.
**Time in days that it would take to totally oxidize the available CH4.
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between surveys (Figs. 4, S3). We found a MOx maximum
value of 7.1 nM d−1 in the south-east part of the sampling area
at the Prins Karls Forland shelf in July 2015 (Sta. 53; Fig. S4).
In contrast, MOx maxima in May 2016, May 2017 and June
2016, were more than an order of magnitude lower with
values of 0.09, 0.16, and 0.23 nM d−1, respectively (Fig. S4).
Similarly to maximum rates, depth integrated MOx activity in
the Bottom Water Layer was also highest in July 2015
(25.72 nmol m−2 d−1) and substantially lower in May 2016
(0.33 nmol m−2 d−1), May 2017 (1.46 nmol m−2 d−1) and June
2016 (1.67 nmol m−2 d−1). In the Surface Water Layer, average
MOx activity was generally below 0.1 nmol m−2 d−1 (Table 2,
Fig. S3).

Among the stations along the transect inside Isfjorden,
highest MOx activity was in the bottom waters at Sta. I

(0.04 nM d−1 in May and 0.5 nM d−1 in June 2016 (Fig. S4);
no samples were taken in Isfjorden in 2015). MOx rates at
Outer Bellsundet, Outer Hornsund and Sørkappøya wer-
e < 0.04 nM d−1 (Table S2).

Methanotrophic community
The particulate methane monooxygenase gene (pmoA) was

sequenced from selected bottom water samples with elevated
MOx rates. The selected samples originated from the flare area
(Sta. 9 May 2016 and 10 July 2015), the bathymetric depression
zone (Stas. 54 May, June 2016, July 2015 and 58 May 2016, July
2015), Sta. 49 located at the north-east corner of the sampling
grid (May 2016 and July 2015), Sta. I at Isfjorden (May and June
2016), and from Outer Bellsundet (Sta. XI June 2016) (Fig. 1,
Table S1). The number of generated pmoA sequences ranged
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Fig 4. Profiles of microbial CH4 oxidation (MOx) rates in the water column along transects at the shallow shelf west of Prins Karls Forland (A–O) from
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from 20,132 to 44,469 per sample. After processing, quality reads
clustered into 70 OPUs with absolute abundance of maximum
34,299 and minimum 424 reads across samples. The most abun-
dant OPUs were related to the gammaproteobacterial deep-sea
3 and deep-sea 1 clades, both of which are subgroups
of gammaproteobacterial Methylococcaceae Type Ia MOB
according to Lüke and Frenzel (2011) (Figs. 5, S6). In bottom
water samples from May 2016, the relative abundance of Type Ia
deep-sea 1 MOB was higher compared to the other months. In
addition, OPUs belonging to unclassified Proteobacteria or
Methylococcaceae-related genera only showed low sequence
abundance.

Bacterial diversity
Our 16S rRNA gene analyses of water column bacterial

community compositions revealed a great phylogenetic diver-
sity and spatial variability. After sequence processing of > 1.2
million raw sequences from 57 samples, 11,705 OTUs were
generated.

The majority of the 16S rRNA gene sequences clustered into
OTUs which are taxonomically affiliated with Alphaproteobacteria
(34%), Gammaproteobacteria (30%), Bacteroidetes (25%), and
Verrucomicrobia (4%) (Fig. 6B). Among the Alphaproteobacteria,
the most abundant families were SAR11 clade I, SAR11 clade II

and Rhodobacteraceae (Planktomarina and Sulfitobacter). Rela-
tives of Gammaproteobacteria were mainly affiliated with
Nitrincolaceae, Thioglobaceae, SAR86 clade, Porticoccaceae,
and Methylophagaceae. The majority of the Bacteroidetes
sequences were classified as Flavobacteriaceae with the domi-
nant genera Polaribacter 1, Polaribacter, NS5 marine group,
and Aurantivirga. Other abundant Bacteroidetes were
NS9 marine group, Cryomorphaceae and Bacteroidaceae.
Among the Verrucomicrobia, Rubritaleaceae was the most
abundant family. Sequences affiliated with Luteolibacter and
Roseibacillus were present in low amounts in almost all sam-
ples, but slightly more abundant in bottom waters sampled
in July 2015.

Only few 16S rRNA gene sequences were associated with
known methanotrophic or methylotrophic bacteria OTUs
(related to either Alpha- or Gammaproteobacteria; Fig. 6D).
Known MOB found in the data set were related to clade
Milano-WF1B-03 (6 OTUs; Heijs et al. (2005)), found in
samples from bottom waters at Stas. 54 and 58 in July 2015
and at station IF in May and June, and to the Meth-
yloprofundus clade (4 OTUs) found at Stas. 9 and
19 sampled in May 2016. Furthermore, OTUs affiliated to
Methylobacterium, Methyloceanibacter, and unclassified
Methylomonaceae (one OTU each) were identified.
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54_1 May (2016)

9_1 May (2016)
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Others < 1%
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Fig 5. Hierarchical clustering of OPUs derived from pmoA gene sequences (A) and relative abundance (B) of the methanotrophic community from
selected stations from the shallow shelf of Prins Karls Forland, Isfjorden (I) and Outer Belsundet (XI) investigated over three sampling surveys in May
2016, June 2016, and July 2015. Sample IDs derive from the station number (see sampling grid in Fig.1B) and water levels (1: 5 m above seafloor, 2:
15 m above seafloor). Gray squares show predominant water masses found at the bottom water level at the stations (AW: Atlantic Water, TAW: Trans-
formed Atlantic Water).
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Methylotrophs were represented by members related to
uncultured Methylophagaceae (110 OTUs in total) present in
samples from the shelf west off Prins Karls Forland taken in
June 2016 and July 2015; one OTU was identified as
Methylophaga and found at Sta. I, Isfjorden. Methylotenera (two
OTUs) was encountered in the whole water column in July
2015 and other genera of the family Methylophilaceae (OM43
clade, 72 OTUs) were present at all seasons. Known MOB
accounted for 0.05% of all sequences, and known meth-
ylotrophs accounted for 1.08% of all sequences (Fig. 6D).

Community beta diversity analysis revealed the time of sam-
pling (sampling campaign) as one dominant factor shaping the
bacterial community composition (envfit, p ≤ 0.05). The dissimi-
larity of the bacterial community was particular apparent in sam-
ples retrieved in May 2016 (spring) compared to samples from
June 2016 and July 2015 (late spring/summer; Fig. 7A). In addi-
tion to the sampling campaign, water depth was a second vari-
able that significantly correlated with community dissimilarity
(p ≤ 0.05). To reduce the masking of seasonal effects on the beta
diversity analysis, we subsequently focused on samples retrieved
from single sampling campaigns. Here, water temperature and
depth, both independent environmental variables, influenced
the communities (p ≤ 0.05). Since these factors/variables
(together with salinity) also define the classification of water
masses (see section Hydrographic setting), water masses are indi-
cated in Fig. 7B–D. In June 2016 and July 2015, communities
revealed similarities according to water masses (Fig. 7C,D). Anal-
ogously, medium or high active MOB communities were more
similar to one another. At Isfjorden and Outer Bellsundet, where
water mass properties were highly affected by local features,
communities were distinctively different to most of the other
communities found at the shelf west off Prins Karls Forland,
especially in June 2016 (Fig. 7C).

Supplementing NMDS-based analysis, we conducted canoni-
cal correspondence analysis (CCA). Similar to NMDS, CCA also
indicated that water temperature, depth, and salinity signifi-
cantly influenced the community composition (Table 3). For the
bacterial communities in May and June 2016, these environ-
mental variables adequately described the variation of the com-
munity composition, as supported by a significant level for the
CCA Model (ANOVA; p ≤ 0.009 and p ≤ 0.002, respectively). In
contrast, the composition of samples retrieved in July 2015
showed a much higher variation than could adequately be
explained by the investigated environmental variables included
in the model (p ≤ 0.129), suggesting that additional unidentified
factors played a major role. When taking community-dependent
variables into account, such as amount of extracted DNA and
CH4 oxidation, both correlated with the identified communities
(Table 3).

To identify a possible correlation of bacterial phyla with
methane oxidation rates, we conducted a Spearman’s rank cor-
relation analysis on family level. Following clades depicted the
greatest positive correlations: unclassified members of the
OCS116 clade, Nitrosomonadaceae, Cellvibrionaceae, clade

OM182, clade ZD0405, Thiothrichaceae, Rubritaleaceae, and
Verrucomicrobiaceae (Fig. S7). Many of these families also
depicted a positive correlation with CH4 concentration and
water level. Methane concentration, water depth and methane
oxidation rates were also strongly correlated with another.

Repeated sampling
Hydrographical parameters (salinity, temperature, pressure),

concentration of dissolved CH4 and MOx activity were repeat-
edly measured at Stas. 9, 16, 31, 44, 54, and 64 over a 2-day
time period (Table S1). Water mass properties only showed
marginal differences (Fig. S8A,D). Stations located above or
close to the flare area (Stas. 9, 19, 31, and 44) showed stronger
variations in CH4 concentrations in samples from greater
water depths. MOx activity rates from all six stations
(Fig. S8C,F) in addition to the 16S rRNA gene sequencing
results from Sta. 9, showed high similarities when comparing
the two time points (Fig. 6B).

Discussion
The shallow shelf west off Prins Karls Forland is character-

ized by numerous gas flares at the ridge of the Forlandet
moraine complex as well as the many bathymetric depressions
extending eastwards from the moraine. The water column at
the shallow shelf is a hydrographically complex and dynamic
system with seasonal variations in water mass properties. Indi-
vidual gas flares transport differential amounts of CH4 into
the water column, and total CH4 flux on the shelf also varies
over time (Silyakova et al. 2020). However, a seasonal connec-
tion with high CH4 fluxes during the warm season and ~ 80%
lower fluxes during cold bottom water conditions, as found at
the shelf break below 360 m water depth (Ferré et al. 2020), is
not evident on the shallow shelf, where active flare clusters
occur at 90 m. Such a depth is far above the uppermost limit
of the shifting gas hydrate stability zone, which was found to
be in between 380 and 400 m water depth (Berndt
et al. 2014). We repeatedly investigated the shallow shelf over
a time period of 3 years covering the Arctic spring (May 2016,
2017), late spring (June 2016) and summer (July 2015) and
their specific hydrographic conditions. Our study reveals the
activity, distribution and structure of methane-oxidizing com-
munities in the water column on the shallow shelf west of
Svalbard.

Spatiotemporal variations of methane content in the entire
water body

Similar to previous studies on CH4 dynamics in coastal
waters of Svalbard (e.g., Damm et al. 2005; Graves et al. 2015;
Mau et al. 2017), we generally observed highest CH4 concen-
trations in bottom waters. In our sampling grid west of Prins
Karls Forland (Fig. 1B), CH4 concentrations frequently
exceeded 100 nM in particular at gas flares locations (Fig. 3).
Methane concentrations in surface waters were supersaturated
compared to atmospheric concentrations across all surveys
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(1–5 fold on average). However, substantial impacts on atmo-
spheric CH4 concentrations in the region of the western Sval-
bard continental margin could not be confirmed (Myhre
et al. 2016).

Furthermore, the integrated CH4 inventory of the three
water layers of the sampling grid during the surveys in spring
(May 2016 and 2017), late spring (June 2016) and summer
(July 2015), shows up to three times higher CH4 values at the
Bottom Water Layer compared to the Intermediate and Sur-
face Water Layers, as a result of the CH4 seepage from the sea-
floor (Table 2, Fig. S2). Moreover, the total content of
dissolved CH4 in the area (423 km2) is consistent with values
of ~ 13 × 105 mol area−1 in spring (May 2016/17) and summer
(July 2015). The seemingly high total CH4 content in late
spring (June 2016) is caused by an under-sampling of the sur-
vey area (see section Water column methane content and
Study area and Sampling strategy).

Our values from May 2016/17 and July 2015, together with
previously published flux data (Silyakova et al. 2020), indicate
comparably steady CH4 inputs in our study area during the
investigated seasons. In contrast, seep activity in deeper water
levels at the shelf break are strongly reduced during times with
low bottom water temperatures (Ferré et al. 2020), because the
uprising CH4 ”freezes out” as gas hydrate in surface sediments,
building up a seasonal gas hydrate capacitor that is reduced in
summer.

Moreover, our repeated sampling over the short time period
of 2 days in May 2016 showed negligible variations in CH4 con-
centration and water mass properties (Fig. S8A,D), and neither
the bacterial MOx activity (Fig. S8C,F) nor the community com-
position (Fig. 6B) revealed any remarkable differences between
the two time points. These findings indicate that hydrographic
and biogeochemical variations during one sampling of the entire
grid were most probably low (Steinle et al. 2015).

Spatiotemporal variations of methane oxidation activity
Methane oxidation in the ocean is the final sink for dis-

solved CH4 before its release into the atmosphere
(e.g., Reeburgh 2007; Steinle et al. 2015). Previous studies
report that elevated MOx activity in marine environments is
related to high CH4 concentrations (Valentine et al. 2001;
Mau et al. 2013; Crespo-Medina et al. 2014; Steinle
et al. 2015). In our study, we also found elevated MOx rates in
methane-rich bottom waters. But in the CH4 plumes, MOx
was not substantially elevated (Figs. S2, S3). This has been

found elsewhere, too (Crespo-Medina et al. 2014; Steinle
et al. 2015, 2017), and a literature review only revealed a cor-
relation of MOx and CH4 contents on logarithmic scales
(James et al. 2016). The rather loose dependency of MOx and
CH4 concentrations indicates that microbial community
abundance, and possibly other factors such as the availability
of micronutrients, seems at least equally important in deter-
mining the efficacy of the microbial CH4 filter in the water
column (Steinle et al. 2015).

Our study area is characterized by steady CH4 contents
between seasons, but similarly to the spatial variation of MOx
within one sampling campaign, we found large seasonal dif-
ferences in MOx activity. In the Arctic spring (May) and late
spring (June), MOx rates were generally low (weighted mean:
< 2.02 μmol m−2 d−1; total MOx: < 736 mol d−1; Table 2). In
contrast, in summer (July), MOx in the entire area was about
one order of magnitude higher (weighted mean:
27.54 μmol m−2 d−1; total MOx: 10,024 mol d−1). It is also
noteworthy that the maximum MOx value measured in sum-
mer (July; 7.2 nM d−1) was much higher compared to previous
measurements conducted in the area around Svalbard. Steinle
et al. (2015) measured MOx rates of up to 3.2 nM d−1 at the
continental slope west of our study area in Arctic summer
(August). Mau et al. (2017) published rates of up to 2.2 nM d−1

in a CH4 plume located more southerly between
Hornsundbanken and Isfjordbanken west of Spitsbergen from
the same season (August/September).

We discovered that the capacity of MOx shows a high spa-
tiotemporal variation. The high MOx rate in summer trans-
lates to a turnover time of the CH4 inventory of the entire
sampling grid (13.63 × 105 mol) of about 136 d. In contrast,
the turnover time was substantially longer in spring
(1754–6777 d). While MOx plays a substantial role in
retaining CH4 in the Arctic summer, it seems of rather lower
importance in winter. Similar seasonal differences were also
found at the shelf break west of our study area (Steinle
et al. 2015; Ferré et al. 2020). In general, the turnover times at
the Prins Karls Forland shelf are within the intermediately
high to low range when compared to previously reported
turnover times of weeks to a few years from methane-rich,
Arctic waters (Mau et al. 2013; Steinle et al. 2015; James
et al. 2016). Turnover times of several decades are rare and
typically restricted to oceanic deep waters with very low CH4

contents (< 10 nM) (Rehder et al. 1999; Heeschen et al. 2003;
James et al. 2016).

Fig. 6. Differential bacterial community structure based on 16S rRNA genes investigated over three sampling surveys of the shelf west of Prins Karls
Forland, Isfjorden and Outer Belsundet. (A) Hierarchical clustering of bacterial communities of each sampling survey is based on subsampled Bray–Curtis
dissimilarity matrix (OTU) and the complete linkage method. Stability of clusters was tested by bootstrapping 1000 times. (B) Relative abundance of bac-
teria based on 16S rRNA gene sequences are sorted according the hierarchical clustering within each sampling survey. Only taxa with abundances of
>1% of total sequences are shown. (C) Simplified ranking of measured methane oxidation (MOx) activities per sample. (D) Proportion of 16S rRNA
sequences, which were assigned to methanotrophic bacteria. Sample IDs are derived from the station number (see sampling grid in Fig. 1B) and water
levels (1: 5 m above seafloor, 3: 25 m above seafloor, 5: Intermediate water level, 8: 5 m below sea surface, I: Isfjorden, XI: Outer Belsundet). Sta. 9 was
repeatedly sampled during the sampling campaign; repeated samples are therefore marked with asterisks (9*_1 to 8).
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Hydrographical dynamics on the shelf
The spatiotemporal variations of CH4 content and MOx

activity indicate two contrasting mixing regimes at the shelf,
both of which have profound effects on MOx activity as well
as the bacterial community composition.

The first scenario is characterized by a water column domi-
nated by Atlantic Water as it was typically the case in summer
(July; Fig. 2L–O). Atlantic Water episodically floods the shal-
low shelf in the form of numerous eddies caused by the West
Spitsbergen Current that meanders eastwards onto the shelf
(Nilsen et al. 2008; Steinle et al. 2015). The dense Atlantic
Water replaces the shelf water, less saline (though colder) Arc-
tic Water brought by the East Spitsbergen Current, and fills up
the bathymetric depressions (Silyakova et al. 2020). This phe-
nomenon was particularly apparent at the eastern end of the
southern W-E transect, where the depressions are 40 m deeper

than the surrounding seafloor. There, we found hot spots of
MOx activity with 2–3 times higher rates than those reported
previously from the continental shelf around Svalbard (Mau
et al. 2013; Gentz et al. 2014; Steinle et al. 2015, 2017)
although CH4 concentrations were only moderately high in
the depressions compared to gas flare locations in the western
part of the sampling grid (Figs. S2, S3). Prior to flooding the
shelf, Atlantic Water has an offshore history where CH4 con-
centrations are low (Steinle et al. 2015). When swept over the
CH4 seeps at the shelf break (i.e., west of the study area),
Atlantic Water becomes charged with CH4, but MOx rates in
the water column are initially low because of the initially low
MOB content in this water mass (Steinle et al. 2015). When
reaching the depressions, methane-enriched Atlantic Water
becomes trapped as these depressions provide a sheltered
environment with long residence times. This supports MOB
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Table 3. Canonical correspondence analysis (CCA) significance values of independent and dependent variables. Values marked with *
indicate values of significance. Temp: temperature; Fluor: fluorescence; CH4: dissolved methane concentrations; DNA: 16S rRNA gene
sequencing analysis; MOx: methane oxidation rates. The order of sampling campaigns in this table follows the cycle of the Arctic sea-
sons where May corresponds to spring, June to late spring, and July to summer.

Independent variables Dependent variables

ANOVA, CCA model Temp. Depth Salinity Fluor. CH4 DNA MOx

May (2016) 0.009* 0.005* 0.050 0.315 0.155 0.275 0.560 0.030*

June (2016) 0.002* 0.005* 0.005* 0.150 0.015* 0.580 0.025* 0.005*

July (2015) 0.129 0.025* 0.005* 0.005* 0.465 0.165 0.005* 0.035*
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community growth and leads to an elevated MOx capacity
(James et al. 2016). Due to the hydrographic complexity of
the area, the frequency at which these depressions are filled
with dense Atlantic Water and how frequently they are
flushed with water of different origins, remains unknown.

The second scenario is characterized by frequent water
mass shifts as a result of intense mixing in the study area.
Mixing is furthermore responsible for the dispersion of dis-
solved CH4. Meandering of the West Spitsbergen Current,
flooding and flushing of the shallow shelf occur more often in
winter and spring (von Appen et al. 2016; Silyakova
et al. 2020). Moreover, the upwelling of Atlantic Water onto
the shelf and into fjords in winter enhances the mixing of
Transformed Atlantic Water and Local Water that reside there
(Cottier et al. 2007). Arctic Water, often together with sea ice
floes, both transported with the East Spitsbergen Current from
the Northern Barents Sea (Nilsen et al. 2016) additionally con-
tribute to the residing water mass replacement. The frequent
mixing does not provide stable conditions for microbial com-
munity development. In other words, the short residence
times and the frequent exchange of water masses in the bathy-
metric depressions with water masses containing only low
amounts of MOB leads to an overall low abundance of water
column MOB and thus MOx activity, which is less effective in
retaining CH4. In contrast, the CH4 charged water masses are
transported away from the CH4 point sources and disperse in
the lee of the seep (Graves et al. 2015). Consequently, we only
observed low MOx activity in spring (Fig. 4A–H).

Composition of the methane-oxidizing bacterial
community

We evaluated the methanotrophic and other met-
hylotrophic communities in bottom water level from stations
located at the shelf west off Prins Karls Forland (Stas. 9, 10, 49,
54, and 58), Isfjorden (I) and Outer Bellsundet (XI), which
were collected in the Arctic spring and late spring (May and
June), and summer (July). These samples were selected for
pmoA gene amplicon sequencing because of their elevated
MOx rates, which suggested the presence of active MOB.

The prevalent members of the MOB community in all sam-
ples, and irrespective of the water mass, were dominated by
Type Ia deep-sea 3 MOB (OPU1) with variable but minor shares
of Type Ia deep-sea 1 MOB (OPU2; Fig. 5B). OPU1 shares 98%
sequence similarity with an uncultured MOB from the water
column above the Oregon seep system at Hydrate Ridge
(sequence FJ858282, GenBank; Hansman et al. (2017); Fig. S6).
OPU2 shares 92% sequence similarity with Methyloprofundus
sedimenti (sequence KF484908; Tavormina et al. (2015); relating
to the family level, Yarza et al. (2014)), which is a known obli-
gate MOB of the family Methylomonaceae, isolated from
marine surface sediment from Monterey Canyon off the coast
of California (USA) (Fig. S6). Both, the deep-sea 1 and 3 sub-
groups, mainly constitute mesophilic uncultured MOB from
marine and freshwater environments (Lüke and Frenzel 2011;

Knief 2015; Hansman et al. 2017). Our data show that a higher
percentage of Type Ia deep-sea 3 MOB (OPU1) was found in
Atlantic Water and Atlantic Water/Transformed Atlantic Water,
i.e., the water mass prevailing in the bathymetric depressions
where we also found high MOx activities. This suggests that
Type Ia deep-sea 3 MOB is the main driver for active MOx in
our study area.

The majority of the identified OTUs from the 16S rRNA
gene sequences are related to heterotrophic bacteria that are
often found to be the predominant representatives of bacter-
ioplankton communities worldwide, seemingly having a
major ecological role in marine food webs (Giovannoni and
Stingl 2005). Where instead the relative abundance of MOB in
the total bacterial community is low (0.05% of the total 16S
rRNA gene sequences) and therefore comparisons among
MOB should be considered with care. The presence of OTUs
related to Methyloprofundus sp. and Milano-WF1B-03, the two
most abundant MOB in the 16S rRNA data set, coincide with
the locations of MOx hot spots—in the depression in summer
(July) and above CH4 flares in spring (May) (Fig. 6C,D). OTUs
related to the known methylotrophs (Methylophagaceae:
Methylophaga and Methylophilaceae: Methylotenera and OM43
clade), which are present in all of our samples, were frequently
found in marine and freshwater ecosystems where they profit
from C1-compounds, such as methanol and methylamine,
released as a product of methane monooxygenase activity of
MOB (Neufeld et al. 2007, 2008; Moussard et al. 2009). How-
ever, it also has been suggested that Methylophilaceae species
might be able to incorporate CH4 directly (Redmond
et al. 2010).

We also identified high abundances of sequences affiliated
with Verrucomicrobia (Fig. 6B). Members of this phylum have
been found globally in a variety of aerobic and anaerobic
marine environments (Freitas et al. 2012), but only a few spe-
cies were isolated and characterized so far, and relatively little
knowledge exists on the metabolic capabilities of Ver-
rucomicrobia. We found members of the family Rubritaleaceae
genus Luteolibacter, which are highly abundant in samples asso-
ciated with high MOx activity (July 2015, primarily in the bot-
tom water level; Fig. 6B). Luteolibacter comprises six known
species that are described as chemoheterotrophs utilizing a vari-
ety of carbon sources (Zhang et al. 2017). None of them has
been tested for MOx activity and to the best of our knowledge,
no genome data from this genus are available. Yet, some other
members of the Verrucomicrobia (“Ca. Methylacidimicrobium,”
“Ca. Methylacidiphilum kamchatkense” strain Kam1, V4 and
SolV) were found to mediate MOx (Dunfield et al. 2007; Pol
et al. 2007; Kruse et al. 2019). Methanotrophic Verrucomicrobia
have multiple operons encoding the particulate methane
monooxygenase with identical pmoCAB operon structure when
compared to proteobacterial MOB (Op den Camp et al. 2009).
However, despite the similar operon structure, no standard
pmoA primer set can amplify verrucomicrobial pmoA genes,
which seems to be only detectable by shot-gun genome
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sequencing (Dunfield et al. 2007; Pol et al. 2007). As a result,
the abundance, distribution and diversity of Verrucomicrobia
MOB has been overlooked in most ecological studies
(Bergmann et al. 2011). We did not detect any
Verrucomicrobia-related species with our pmoA sequencing
approach and although the obvious co-occurrence of
Luteolibacter sp. (class Verrucomicrobia) with high MOx rates
shown here is remarkable, we can only speculate if the
Luteolibacter at the Prins Karls Forland shelf are involved in
MOx (directly or indirectly) or if their abundance maximum is
related to factors that are independent of CH4-dynamics.

Origin of methane-oxidizing bacteria
The meandering of the West Spitsbergen Current causes

occasional flooding events of the shallow shelf at Prins Karls
Forland with Atlantic Water (Steinle et al. 2015; Silyakova
et al. 2020). Because of the general south–north direction of
the West Spitsbergen Current, it thus seems likely that the
residual Atlantic Water that we found in the bathymetric
depressions in summer had, before being trapped in the
bathymetric depressions, passed our southern stations,
i.e., Outer Bellsundet, Outer Hornsund, and Sørkappøya. At
these stations, we found elevated CH4 concentrations around
seeps, which were discovered along the Svalbard margin (Mau
et al. 2017). Furthermore, we found high similarities between
the MOB communities found at the shallow shelf offshore
Prins Karls Forland and at the southern stations (Fig. 5A). For
example, the MOB communities at Stas. 49, 54 and 58 (all off-
shore Prins Karls Forland) in summer (July 2015) comprise
more than 90% of Type Ia deep-sea 3 MOB, just like the MOB
community at Outer Bellsundet in late spring (June 2016;
Fig. 5B). The bottom water layers of all southern stations were
characterized by the influence of warm and saline Atlantic
Water (similar to the bathymetric depressions offshore Prins
Karls Forland in the summer).

Wilkins et al. (2013) suggested that the advection of microor-
ganisms originating from upstream-locations, which then colo-
nize sites downstream, shape the microbial community at the
downstream locations. It also appears that increasing opportuni-
ties for colonization (and subsequent growth) are more relevant
than the numbers of transported organisms. Translated to our
study, this converts into the following: the microbes from Outer
Bellsundet (upstream site) colonize the shelf west of Prins Karls
Forland (downstream site). The specific hydrographic setting at
the downstream site, i.e., sheltered conditions comprising CH4

and nutrient-rich water that is trapped in the depressions due to
flooding events and strong stratification of the water column in
summer allows MOB communities to develop. These factors are
then also more important than the sheer number of MOB cells
being transported from the southern stations to the Prins Karls
Forland shelf. Moreover, the inoculation theory leads to the
assumption that the blooming MOB community from the Prins
Karls Forland shelf could be in turn an inoculum for other ”MOx
systems” further north, and that seeding and inoculation via

water mass transport is an important vector connecting spatially
separated habitats (Wilkins et al. 2013).

Conclusion
Spatiotemporal changes in MOx activity and MOB commu-

nity structure in the water column above CH4 seeps at the
shallow shelf west of Svalbard are primarily a consequence of
the seasonal variations of the hydrographical regimes. The
two different scenarios presented in this study clearly show
that seasonality strongly affects the MOB community struc-
tures and MOx capacity. Moreover, the distribution of MOB
communities along the shallow shelf is most likely caused by
physical transport, while site-specific geomorphological char-
acteristics such as the shallow Forlandet moraine complex fea-
turing numerous bathymetric depressions, enhance this effect.
We suggest that the origin of the initial MOB ”inoculum” in
the bathymetric depressions offshore Prins Karls Forland
might originate from seep regions further south. Once the
MOB are trapped in bathymetric depressions, they are more
sheltered from rapidly changing and dynamic conditions of
the upper water column. Such sheltered conditions promote
community growth, which in turn results in elevated MOx in
summertime. Seasonality (especially in winter and spring,
when the water column is subjected to deep mixing) is pro-
foundly under-represented in studies on microbial habitat
structure in Arctic water column habitats. Systematic time-
series measurements covering the different, including harsh/
bad weather seasons, would allow for a more comprehensive
understanding of biogeochemical processes influenced by sea-
sonal change-related microbial community variations. This
would further improve our qualitative and quantitative under-
standing of important microbial processes in a warming Arctic
Ocean.
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