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Abstract 

The ocean is vulnerable to oil related activities such as oil production and transport 
that can harm the environment. Environmental damages from oil spills can be large if 
not dealt with. Satellite images from radar are useful to detect oil spills because they 
cover both day and night and penetrates clouds. However, detecting oil spills in ocean 
areas from satellite images are not a trivial task due to abundance of lookalikes from 
other natural sources, like river inputs or geological seepage. Auxiliary data such as 
wind speed in the monitored area, are used to separate oil spills from natural 
occurring slicks in the manual oil detection process. One solution to detect oil spills is 
applying artificial intelligence techniques like convolutional neural networks. These 
convolutional neural networks have usually been a candidate to create an automatic 
oil detection process. However, the convolutional neural networks have problems 
with distinguishing between spilled oil spills and look-alikes.  
 
This project is about exploring the possibility of detecting oil spills from satellite 
images and distinguish between spilled oil spills and natural occurring ones by using 
wind speed data of the area. The convolutional neural network takes in both satellite 
images and auxiliary wind speed data of the area monitored. 
 
Two convolutional neural networks are designed and setup, where one includes 
auxiliary wind speed data and the other does not. Both CNN’s will have the same 
satellite images and oil spills to detect such that a direct comparison can be made 
between them. This work will also be a proof of concept to an automated oil spill 
detection process that specifically uses wind data in addition to the satellite images. 
 
To measure any difference in validation loss, precision or recall by using wind data, 
both convolutional neural networks are tuned to the same recall such that the false 
negatives are as low as possible for both neural networks. The comparison between 
the two neural networks shows that the neural network that includes wind data has 15 
% lower validation loss and a slightly higher precision than the neural network that 
does not include wind data. However, this result is achieved by using wind data 
generated from the satellite image itself, which metrological wind data is not. A 
comparison test like this but with metrological wind data instead of wind data 
generated from the satellite image is considered future work that is worth exploring. 
 
Keywords 
Convolutional neural network, Oil spill detection, Synthetic Aperture Radar, Wind 
speed, Auxiliary data 
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1 Introduction  

Oceans are vulnerable to the activities of trafficking and energy production like oil, 
gas and wind that can harm the environment. Environmental damages from leaks that 
creates oil slicks (also called oil spills) can be large if not dealt with [1]. Monitoring 
oceans for oils slicks can be done in several ways like patrolling the sea and taking 
photos from the air, but some of the more efficient ways are using satellites that are 
able to take images of large areas from their altitude. More specifically, images from 
Synthetic Aperture Radar appear to be able to detect oil slicks well, since the radar 
does not get affected by weather and lack of light due to their penetration of clouds 
and active illumination [2].  

1.1 Background and motivation 
Oil spills are a source of hydrocarbons in the ocean. Hydrocarbons are molecules of 
solely carbon and hydrogen. They usually come from human-made sources that spill 
them in oceans, but they occur naturally as well [3]. Human-made sources like vessels 
and oil rigs are the most common to identify whereas natural sources are from 
seepage, usually around rivers along coastlines [3]. In addition, there exists look-
alikes to oil slicks that occur from still waters and biological sources. These look-
alikes and actual oil spills appear very similar and differentiating between them can 
be problematic. False alarms of oil spills are expensive due to redundant use of 
resources to further monitor and combat such an oil spill. To combat false alarms, the 
amount of wind in the same area can reveal spilled oil slicks from look-alikes [4]. 
Thus, both radar satellite images and wind data are used to conclude which of the 
detected oil slicks are real or not, which makes it possible to avoid more look-alikes. 
Currently, the work of detecting oil slicks is manual work carried out by a trained 
crew at a company named Kongsberg Satellite Services (KSAT). There is also other 
firms that do the same work in the world. 
 
KSAT [5] is a partly state-owned company in Norway. The company monitor and 
report activities in oceans by analyzing images retrieved from satellites. One of the 
company’s objectives is to report any oil slicks detected. Detecting oil spills from 
different sources like vessels and oil production platforms are done manually today 
with the help of computer software. KSAT produces reports with oil spills from areas 
monitored by satellite images. These reports include where, if any, spilled oil slicks 
appear and suggest possible oil slick sources from auxiliary data, like the automatic 
identification system (AIS). The work of the department has time constraints from 
when images are received to when marked oil slicks are to be delivered. This is 
because oil detections are time sensitive to discovery, as earlier warnings will provide 
valuable time to limit the damages. 
 
KSAT is in the process of automating oil slick detection from satellite images to 
provide an oil slick detection service to their customers. To automate the oil detection 
from satellite images, a convolutional neural network (CNN) is a possible solution. 
CNN’s [6] are one of several types of artificial neural networks in the field of 
artificial intelligence and deep learning.  
 
An artificial neural network (ANN) has a collection of artificial neurons that are 
inspired by biological neurons in the human brain. Artificial neural networks work by 
giving some input values and expect some output values from the neurons. The neural 
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network are trained by giving penalty to wrong output values in each neuron. These 
properties of an ANN are useful to create some automatic behavior from a given 
input. A subgroup of artificial neural networks called deep neural networks, DNN, has 
a property of learning a greater amount of information than simpler artificial neural 
networks. This is useful in image analysis tasks such as detection and classification of 
objects, but also in other fields such as text analysis and speech recognition. Deep 
neural networks consist of several layers of neurons, where each layer feeds the next 
with their output value. One use case of deep neural networks is image classification, 
where objects are identified and recognized. A CNN is a type of deep neural network 
which is particularly good at image detection and classification. CNN’s use and 
combines ANN-components in such a way that CNN’s excel in tasks with grid-like 
structures, like images. The CNN has revolutionized the field of computer vision the 
past decade.  
 
Because of these properties a CNN is a candidate to detect oil spills from the satellite 
images provided by KSAT. Furthermore, a study [7] of using CNN’s to detect oil 
spills shows that these networks can be utilized to implement efficient oil spill 
detectors. Thus, a CNN is expected to play a part in the solution to the automation of 
oil spill detection. 

1.2 Problem 
Identifying oil slicks and discriminate between spilled oil slicks and look-alikes are 
both difficult problems. To solve these problems, the wind data can be treated as an 
input value alongside satellite images to a CNN. However, from this proposal another 
problem arises. For example, the data are not in the same format. Moreover, the wind 
datapoints of speed and direction are not structured datapoints with high resolution 
like satellite images, and structured datapoints is a requirement to CNN’s [8]. Then, 
the problem is that the structure of wind data has different structure than the satellite 
images. Thus, it is demanding to put together these two data types.  

1.3 Hypothesis 
The most direct way of comparing two structurally equal neural networks against each 
other is by comparing the validation loss. The validation loss is the penalty of 
wrongly classifying oil or background from a given loss function. This is the main 
measurement used in this project. 
 
Another typical measurement of performance of the detection application is the use of 
precision and recall. The precision and recall are defined below: 
 

• Precision is defined as the fraction of actual oil slicks detected among detections 
regardless of actual or not.  

• Recall is defined as the fraction of actual oil slicks detected among all actual oil 
slicks. 

 
Wind speed is a determining factor in the detection process of oils slicks [4]. By 
comparing a CNN with wind speed as input against a CNN with identical structure 
without wind speed as input, the hypothesis is that the neural network with wind 
speed as input has a lower validation loss of 0 to 15 %. An additional hypothesis is 
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that the same CNN with wind speed as input has a higher precision and recall by 0 to 
5 percent points and 0 to 1 percent points. 

1.4 Purpose 
The main purpose of this thesis is to present and describe the development of two 
CNN’s. One CNN can handle a combination of satellite images and wind data to 
detect oil spills and the other CNN can handle only satellite images with the same 
task. 

1.5 Goals 
There are several goals in this project. These goals are listed below. 
 

• An algorithm that transforms wind data into an input that can be accepted by 
the CNN. 

• A CNN that can detect oil spills while ignoring look-alikes to some degree. 
• Provide a proof of concept of automated oil spill detection with wind data along 

satellite images as inputs to a CNN. 
 
The proof of concept is valuable to KSAT as they are exploring possibilities of 
automating oil spill detection. A successful automated oil spill detection system can 
benefit society by reducing costs of monitoring and possibly decrease detection time 
by advancement in efficiency.  

1.5.1 Benefits, Ethics and Sustainability 
The project and its results will show a potential proof of concept, or not, to KSAT and 
other interested parties in the oil detection business. This can potentially provide a 
positive impact of protecting the environment by more easily preventing disasters 
related to oil pollution. In addition, this can potentially lower the cost of earth 
observation service of detecting oil slicks. In overview, the potential benefits to 
society are less oil pollution at sea with a lower cost of preventing it in the long run. 
 
The ethics of this project is on topics such as potential loss of jobs. If this project is 
working towards an eventual automated oil detection service, then several jobs in that 
service today are at risk. However, even if those jobs were at risk, the benefits are that 
resources used on manual work can be directed to other sectors that are important and 
potentially create more jobs. Other topics are for example loss of sensitive data to the 
public or foreign intelligence. However, this is unlikely to happen due to the usage of 
that sensitive data is performed exclusively at the facility of KSAT, which has the 
appropriate security standards. The data will never leave the building, and only image 
examples used in this thesis are a trace of it and is approved by KSAT to be released. 
 
The sustainability of this project is about how a potential better automated oil spill 
detector can affect economics, society, and environment where it is used. There are 
potential economic benefits because the cost of operating an oil spill detection service 
is probably cheaper with less humans and more working computers. In addition, the 
work can potentially be done faster, giving other positive side effects to those who 
need the service. This is usually companies that need to monitor themselves and 
governmental agencies that monitor the ocean. Society can benefit as well since oil 
spills can potentially be detected faster and dealt with quicker, limiting the burden of 
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dealing with oil covered shores and further implications. This can potentially benefit 
the environment as well, since dealing with it faster can limit the damages to shores, 
wildlife, and ecosystems. 
 
The task of detecting oil spills is an important service to the environment and the 
consequences of not detecting actual spills are greater than detecting false positives. 
This is taken into consideration in this project. 

1.5.2 Preventing release of confidential material 
There will be used confidential material in the form of data and tools which are not to 
be publicly available. Thus, this material will not be included in this thesis if 
published and will remain a goal during the work with this project to obscure it to any 
other party than KSAT. Usage of this material will be exclusively on the location of 
KSAT in Tromsø with the necessary security measures in place. KSAT has agreed to 
usage of their material, which is in form of image data and products of these, as well 
as tools. 

1.6 Methodology / Methods 
In general, there are two methods of researching: 
 

• Quantitative research method, which is in general in support of deductive and 
experimental methods. It supports measuring variables, experimenting, and 
testing hypothesizes and usage of statistics to verify the results [9]. 

• Qualitative research method, which is in general in support of inductive and 
theoretical methods. It supports discovering and understanding meanings, 
opinions, and behaviors. The understanding of such things can help the 
development of tentative hypothesizes or new inventions [9]. 

 
A triangulation of the two is possible, but some methods of each direction may not be 
compatible to achieve efficient research [9]. This project will use the quantitative 
research method. 

1.6.1 Research method 
There are several methods of researching that can apply to the topic of this project. 
However, not all are appropriate to the purpose of this project. There is experimental 
research, which studies causes and effects by manipulating variables and study their 
relationships. In contrast to experimental research there is non-experimental research, 
which draws conclusions from observations of already existing scenarios. In addition, 
there is descriptive research, which studies new observations and document them 
without drawing any conclusions. This method is useful to document phenomena 
which not necessarily has an established explanation yet. There are other research 
methods as well, such as analytical research, fundamental research, applied research, 
conceptual research, and empirical research [9]. 
 
The project is about detecting oil slicks from the source material of satellite images 
and wind speed of the area, which demands a large amount of data to achieve a 
network that can detect oil slicks with a precision and recall that is similar to the 
manual work. The CNN contains several variables that will need to vary to 
experiment. Thus, the research method of this project will be experimental research. 
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1.6.2 Research approach 
The research approach will guide in concluding statements from research [9]. There 
are several approaches to this, which includes: 
 

• Inductive approach, where one formulates theories from observed data usually 
collected with qualitative methods and in quantities that is enough to support 
the theories [9]. 

• Deductive approach, where one test theories or hypothesizes from usually 
quantitative methods with large datasets [9]. 

• Abductive approach, where one uses both an inductive and a deductive 
approach to conclude which hypothesis that best explains the data available and 
result in a plausible explanation [9]. 

 
The research approach of this thesis will be to test the hypothesis previously stated 
about the effect of wind data in a CNN with a quantitative approach of experimental 
data. CNN’s are testable and comparable with the expected output (ground truth) from 
KSAT, which delivers services on oil-detection and -classification. Thus, a deductive 
approach is most appropriate.  

1.6.3 Research strategy 
Research strategy is guidelines of researching [9]. The most common research 
strategies to quantitative research are: 
 

• Experimental research, where the strategy verifies hypothesizes by altering 
factors that affects experiments and provide an overview of causes and effects 
[9]. 

• Ex post facto research, where the strategy verifies hypothesizes by observing 
already existing experiments and provide an overview of causes and effects [9]. 

• Surveys, where the strategy assess attitudes and characteristics of a subject. It 
describes phenomena of frequency and relationships between variables that are 
not directly observed [9]. 

• Case study, where the strategy are empirical studies of phenomena where there 
are blurry boundaries between phenomena and context [9]. 

 
This project will use large amount of data to verify or refute the hypothesis previously 
stated about the effect of wind data in a CNN. The research strategy will be to alter 
factors that affects the results to test the hypothesis. This is expected to lead to an 
overview of causes and effects. Thus, an experimental research strategy is most 
appropriate. 

1.7 Delimitations  
The delimitations of this project are the information stored in the training data, which 
will limit the capabilities of the trained model, and the tools available when this 
project is done, which will limit the performance of the trained model. 
 
The data does not cover every scenario of an oil slick. The effect of this is that the 
trained models will not be able to detect every oil slick in every condition. Regardless, 
it is assumed that the large amounts of data will cover most known scenarios and thus 
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has the potential to guess other scenarios that is close to them. In addition, the model 
can train on other scenarios should they appear later. 
 
Other delimitations are the work of KSAT to present the ground truth to where actual 
oil slicks are in the satellite images. The data stems from operational services, where 
speed is a higher priority than pixel perfect segmentation labels. It is assumed the data 
are good enough for this project to succeed. 

1.8 Contribution and stakeholder 
The main stakeholder to this project is Kongsberg Satellite Services, KSAT for short. 
KSAT expects to collect and interpret the results from this master project and how it 
can contribute to their current work in the field of oil detection. The contribution of 
this project to them is to show how a convolutional neural with satellite images and 
wind data performs compared to CNN with only satellite images and show one way of 
including wind data into a CNN. 

1.9 Outline 
In chapter 2, 3 and 4 several topics are clarified to create a foundation for the original 
work of this project in chapter 5 and onwards. These topics include what type of data 
is used, what type of techniques are used in detection, and scientific methods. Chapter 
5 includes the design and requirements of the project. Chapter 6 will go into details of 
the implementation of this project. The results are shown and discussed in chapter 7. 
These results include wind interpolation, validation loss, and detections. The 
evaluation of the project is described in chapter 8 and the possible next steps after this 
project are described in chapter 9. Finally, the thesis is concluded in chapter 10. 
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2 Synthetic Aperture Radar and Related Data Types 

Topics related to this project is presented in this chapter. This chapter describes what 
oil slicks do to the surface of the ocean, the type of wind speed data KSAT has, type 
of satellite images and why they are used in oil slick detection. It also describes deep 
neural networks that are used and why they are appropriate for oil slick detection. 
Additional topics like interpolation and measurements techniques are described to 
clarify how they work. Related work includes previous attempts to detect oil slicks 
and how to automate the process. 

2.1 Oil slicks and look-alikes 
One key aspect of oil detection is to distinguish between oil spills and look-alikes. Oil 
spills have usually recognizable patterns and does not vanish easily by higher wind 
speeds. However, they come in different shapes and can resemble look-alikes when 
the wind is low enough. Sources of oil spills are usually oil rigs, oil tankers, and oil 
pipes and seeps from the bottom of the ocean [10]. Look-alikes are usually more 
diffuse with less defined edges but can in some cases resemble oil spills. They usually 
appear with lower wind speeds and in the wind-shadow of islands. The sources of 
such look-alikes are several, such as rain, grease ice, wakes, and natural films from 
fish oil, vegetable oil and algae [11].  
 

 
Figure 1: Example of oil spill and look-alike from a paper called Observing 
marine pollution with Synthetic Aperture Radar  [12] 
 
The figure above shows examples of an oil spill to the left and a look-alike to the 
right. The oil spill to the left is more defined and has trail that likely follows the path 
it has taken from the source. The look-alike to the right resembles oil but is more 
diffuse in its shape. 

2.2 Damping of ocean waves by oil slicks 
Oil slicks on the surface of the ocean dampens ocean waves in rough seas and the 
dampening increases quadratically by higher wind speeds [13]. This fact makes it 
possible to differentiate oil slicks from the surface of the ocean by observing ocean 
waves given that the wind speed is sufficiently high enough. In addition, this strong 
dampening on wave lengths larger than some maximum value is not possible by any 
known substances that exists in the ocean surface naturally [13]. Thus, it is highly 
probable that any substance that causes strong dampening in waves lengths larger than 
this maximum value (that is correlated with higher wind speeds) is of human origin. 
 
From this it is apparent that wind speed has an important role in detecting oil slicks. 
However, wind speed data must be collected such that it is useable with associated 
satellite images. 
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2.3 Types of wind data at KSAT 
KSAT supplies two types of wind data. These are under the names of MET-wind and 
SAR-wind internally at KSAT and the same names will be used in this thesis as well. 
 
MET-wind is a result of an advanced process of data from sensors at sea, weather 
balloons and region and global weather-systems. This wind-data is like a weather 
report and creates a grid-structure of wind speeds and directions over the sea 
monitored. This wind-data has a lower typical resolution of wind points per area 
covered than SAR-wind. 
 
SAR-wind is a result of a combination of the associated radar image and data from 
MET-wind [14]. The algorithm that creates the SAR-wind data is made by NORCE 
[15] but the algorithm is not public knowledge. The general idea is that wind speed is 
retrieved from the features of waves in the ocean. However, since SAR-wind has a 
180-degree ambiguity a wind direction cannot be determined. Thus, MET-wind is 
used to determine wind direction at KSAT. This wind-data has a higher typical 
resolution of wind points per area covered than MET-wind. 
 
Only SAR-wind was used in this project since this wind type was sufficient to test if 
there are any difference in results between including wind data and not. In addition, 
MET-wind has a connection to the satellite image like SAR-wind. Thus, results from 
MET-wind are not expected to deviate much to results from SAR-wind. That said, it 
is not known what the difference might be. 

2.4 Synthetic aperture radar 
The satellite images used in this project are created by a synthetic aperture radar, or 
SAR [2]. It is a form of radar that can create images from radar pulses that illuminates 
areas where the echo of those pulses is received and processed [2]. SAR placed in 
satellites takes advantage of the motion of a satellite to simulate a larger antenna. 
From this larger antenna it is possible to achieve higher resolution images than 
physical antennas [2]. However, there is a tradeoff in resolution and area covered, 
such that resolution is sometimes not favored to cover larger areas [2]. 

2.4.1 Polarization channels 
The relevant SAR images to this project comes in different types of combinations of 
polarization, with a total of 4 combinations. These combinations are made of either 
vertical or horizontal polarization in transmission and receival [16]. These 
combinations of different polarizations are divided into two different categories from 
their best use cases, like oil [17] or ships [18]. One category is altering polarization 
where the transmitted and received polarization alters from horizontal and vertical or 
vice versa [16]. These polarization combinations appear to reveal ships and other 
objects in the ocean better than the other category [18]. The other category of 
polarization combinations is non-altering polarization where the transmitted and 
received polarization are the same [16]. These polarization combinations appear to 
reveal oil and waves in waters better than the other category [17]. The non-altering 
polarization combinations category will be the most relevant in this project since 
those combinations are superior in detecting oil slicks. 

2.4.2 The project’s satellite imagery and wind data 
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In this project it is used satellite images from SAR in combination with wind data 
over the given area to be monitored.  
 
The satellite image from SAR shows features from the ocean where features that 
resemble oil are searched for. The benefits of using SAR images are the availability of 
vision at night and through clouds. The satellite actively sends radar signals that are 
reflected by the ocean such that features of waves and other motions of the ocean are 
visible. 
 
The wind data from KSAT shows geographical points where a wind speed is 
measured. These geographical points are then transformed into an image of same size 
as the satellite image, where the empty space between wind points is estimated. 
 
By combining satellite images with wind data, the CNN receives information from 
both data sources to decide if the features that resembles oil are to be classified as an 
oil slick. The wind data has the role of giving a signal to discarding look-alikes since 
they often appear with lower wind speeds. 
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3 Deep Learning and CNN’s 

This chapter describes deep learning that is used in this project and why this is chosen 
for oil slick detection. Additional topics are overfitting, interpolation, and 
measurements of accuracy in detecting oil slicks. In the end of the chapter, related 
work is presented with previous attempts to detect oil slicks and how to automate the 
process. 

3.1 CNN’s 
Convolution neural networks from deep learning provide the opportunity to specialize 
machine learning models to grid-like structures and with the opportunity to scale the 
model to large sizes for enhanced learning capabilities [8]. This subchapter is going to 
discuss the relevant deep CNN’s for this project. 
 
ResNet, or Residual neural networks, are deep neural networks that can extend to 
greater depths than other conventional deep neural networks to achieve higher 
accuracy in object detection by using skip-connections between its layers. ResNet 
won the ILSVRC object detection task of 2015 [19]. ILSVRC is short for ImageNet 
Large Scale Visual Recognition Challenge and is about evaluating algorithms for 
object detection and image classification at large scales. The object detection 
challenge specifically penalizes algorithms for objects not detected and duplicate 
detections for several classes of objects to generate an accuracy score. ResNet had the 
highest accuracy score of this challenge. Thus, ResNet proves useful in image-based 
detection and has the advantage of a variable size to fit the need of the data available 
to learn the model. 
 
An option considered is the VGG network, which is also a CNN. This network 
proves useful in image-based classifications as it also won the object localization 
challenge in ILSVRC  2014 [20]. The object localization challenge is a slightly 
modified detection challenge where only a single object for each class is detected 
even though there are more objects of the same classes. However, the VGG network 
has worse error rate than ResNet in an Image Net comparison done by the ResNet 
paper [19]. 
 
There are multiple ways of using such CNN’s, like detection, classification, and 
semantic segmentation. The latter is the most relevant to this project because oil spill 
data from KSAT is arranged for semantic segmentation specifically. 

3.2 Semantic segmentation 
Semantic segmentation is a technique of classifying each pixel in an image. It differs 
from object-detection by classifying every pixel instead of a focused area of the 
image. By using CNN’s to achieve semantic segmentation, there usually is an end-to-
end learnable architecture that uses deep CNN architectures as an encoder, where 
information is compressed, and a mirrored version as a decoder, where the 
information is decompressed again. This combination is illustrated in figure 2, which 
is from the SegNet-architecture paper [21]. This figure shows a typical CNN 
architecture used in semantic segmentation, where different colors represent the 
different types of layers used in such an architecture. The flow of information goes 
from left to right, starting with the input image and ending up with the segmented 
image. 
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Figure 2: Semantic segmentation illustration from the SegNet-architecture 
paper [21] 

3.2.1 U-Net 
The architecture of a CNN that is mirrored but without fully connected layers in the 
middle is often called a U-Net architecture [22]. The convolutional layers to the right 
increase the resolution to achieve a replication of the important information at a 
higher resolution. By using this architecture with semantic segmentation, an output 
image of the same resolution as the input image is possible. 

3.2.2 Training CNN’s 
The training of CNN’s works by giving some input value, such as an image. This 
input value is forwarded through the CNN and finally gives some output value. The 
CNN gives predictions in this output value, for example where an oil spill is detected. 
The output value from the CNN during training is then compared against some 
preferred output value, such as a two-dimensional grid with whole numbers for each 
class, marking the actual class of each pixel. This comparison is used to alter weights 
in the CNN in such a way that it corrects the error. This comparison is specifically 
calculated by a given loss function. 
 
When there is imbalance in training data, the training of semantic segmentation 
networks handles the imbalance by using a specific loss function. 

3.2.3 Loss function 
In semantic segmentation tasks with images, one of the commonly used loss functions 
is pixel-wise cross entropy loss, where each pixel has its own loss from all possible 
classes, and the loss value for the whole image is calculated from the average of all 
pixels. Since the data for this project is very unbalanced between each class, the 
training with this loss function is likely to result in the most abundant class 
dominating the learning progress [23]. There are several ways of combating this. One 
way is weighting the loss for each output channel (class) as done in the Fully CNN’s 
paper [24]. Another way is pre-computing a weight map where there is a higher 
weight at borders of objects in the segmentation as proposed in U-Net [22]. 
 
Another loss function is Focal Loss [25]. In focal loss, the loss function addresses 
imbalance between detections and background during training by down-weighting 
easy classified negatives. Focal loss comes with a parameter that tunes the down-
weighting depending on the class-imbalance in the data.   
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There are other challenges such as overfitting, which applies to machine learning 
models in general. 

3.3 Overfitting 
When training a network, a model needs to make both the training error and the gap 
between training and test error small to perform well. Consequences of where the gap 
between training and test error is too high are challenges like overfitting. Overfitting 
tends to apply with models of too high capacity of learning. To combat this either the 
amount of training sessions needs to decrease, or the data set needs to increase. [6] 
 
To generate any data sets of wind data that match the resolution of satellite images, a 
technique called interpolation is worth considering.  

3.4 Interpolation 
Interpolation [26] is a technique to estimate new data points from a set of known data 
points. This technique is possible to use with images and thus increase resolution 
based on a combination of estimated and known pixels. In this project two ways of 
doing interpolation are considered, bilinear and bicubic interpolation. Both are 
described and compared.  
 
Bilinear interpolation is linear interpolation in a two-dimensional grid of data points. 
Linear interpolation is interpolation by creating new data points on a linear line 
between two known data points. By combining two dimensions of data points, the 
linear interpolation of both dimensions combined is bilinear interpolation. Bilinear 
interpolation in images takes a total of 4 pixels into account for every pixel.  
 
Bicubic interpolation is cubic interpolation in a two-dimensional grid of data points. 
Cubic interpolation is interpolation by creating new data points on a polynomial curve 
between four known data points. By combining two dimensions of data points, the 
cubic interpolation of both dimensions combined is bicubic interpolation. Bicubic 
interpolation in images takes a total of 16 pixels into account for every pixel. 
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Figure 3: Illustration of linear, cubic, bilinear, and bicubic interpolation from 
the Wikipedia page of cubic interpolation1 [27].  
 
Figure 3 illustrates linear and cubic interpolation in both one dimension and two 
dimensions. The black dot is the interpolated value (pixel), while the other coloured 
dots are neighbouring values (pixels). The height of the dot is the scalar of the pixel 
value in the image. 
 
Bilinear interpolation, compared to bicubic interpolation, has the advantage of being 
less complex in calculations and thus fitting in time-sensitive situations. However, 
bilinear interpolation is known to cause more interpolation artifacts than bicubic 
interpolation. Bicubic interpolation is known to have the least number of artifacts 
compared to both bilinear interpolation and simpler techniques like nearest-neighbor 
interpolation. 

3.5 Precision, recall and F-measure 
Precision and recall are calculated from the number of false positives and false 
negatives compared to the number of correct detections. The correct detections 
include only the oil spill class and not the background class. False positives are 
detections made when there was nothing to detect. False negatives are failures to 
detect something which was present. 
 
Precision is a measure of the false positive rate. It is the ratio of correct detections 
among all detections, where a higher ratio is better. The definition of precision is as 
follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 
 
 
 
1  Made by user: Cmglee, under CC BY-4.0 at: https://creativecommons.org/licenses/by-
sa/4.0/ (9.9.2021). This image is cropped from the original by excluding an additional method 
of interpolating. 
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Recall is a measure of the false negative rate. It is the ratio of correct detections 
among all expected correct detections including false negatives, where a higher ratio 
is better. The definition of recall is as follows: 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 
 
F-measure is calculated from a combination of precision and recall values and thus 
says something about both in a single value. The definition of F-measure is defined 
below: 
 
 

F	measure = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
 

3.6 Related work 
There is no known (to the author of this thesis) related works that explores 
interpolating wind speed as an auxiliary data source to be used in a convolutional 
network. However, other related work to this project is known to be based on a model 
of automatic or semi-automatic detection of oil slicks based solely on images with 
image-altering techniques to discover and separate them from natural occurring slicks. 
 
One example from a paper [28] with automatic oil detection shows auxiliary data like 
wind speed used as a filter on the output data from a neural network, not as an asset 
inside it. This paper suggest wind speed is the most important parameter [28]. The 
paper validates oil spills from wind speed between 2 and 14 m/s, where detections 
with above 10 m/s wind speed are unmistakably oil spills when detecting from SAR 
images [28]. 
 
In addition, one comparison of different algorithms such as clustering, logistic 
regression, and CNN’s that detects oil slicks with image segmentation concludes that 
CNN’s are more advantageous in certain areas. These areas are more automatic 
segmentation, better balance between precision and recall of detected oil spills and a 
minimal computation time [29]. 
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4 Scientific methods 

This chapter describes the scientific methods used in this project. This includes data 
collection, data analysis, and quality control. Different methods are described, and the 
method chosen for this project is discussed. The validity, reliability and replicability 
of the quality control are also discussed. Finally, software engineering methods are 
briefly presented. 

4.1 Data collection 
Some data collection methods used in quantitative research are experiments, 
questionnaire, case studies and observations, while other data collections methods 
used in qualitative research are questionnaire, observations, interviews and language 
and text [9]. 
 

• Experiments collects large data sets from changing variables [9]. 
 
• Case studies collects data sets from some number of participants in case study 

research [9]. 
 

• Observations collects data sets from observing behaviors with a focus on 
different situations [9]. 

 
• Questionnaire collects data from questions that are either closed like multiple 

choices or open like reviewing questions [9]. 
 

• Interviews collects data from a somewhat structured deep understanding of a 
problem through a participant’s point of view [9]. 

 
• Language and text are usually collected through queries of sources of text and 

recordings of verbal language such as libraries and databases [9]. 
 
The experiments in this thesis need large amounts of data to test the hypothesis. This 
applies to both satellite images, wind data and markings of oil slicks (ground truth). 
This is a natural consequence of using deep neural networks to solve a problem. The 
data is expected to be available from KSAT. Thus, the data collection method of this 
thesis is through experiments.  

4.2 Data analysis method 
The method of analyzing data is the method that analyses the collected data by 
inspecting, cleaning, transforming, and modelling it. Some data analysis methods used 
in quantitative research are statistics and computational mathematics, while other data 
analysis methods used in qualitative research are coding, analytic induction, grounded 
theory, narrative analysis, hermeneutic, and semiotic [9]. 
 

• Statistics analyzes data through calculating results for a population and 
evaluating the significance of the results [9]. 
 

• Computational mathematics analyzes data through numerical methods, 
modelling and simulations [9].  
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• Coding analyzes interviews and observations through transcription to transform 

qualitative data to quantitative data [9]. 
 

• Analytic induction analyzes data through iterations between collecting and 
analyzing data. The iterations stop when the hypothesis ends with a validated 
theory when no cases dismiss it [9].  

 
• Grounded theory analyzes data in the same way as analytic induction by 

iterations until a validated theory emerges [9]. 
 

• Narrative analysis analyzes literacy by discussing meaning of text 
(Hermeneutic) or meaning of sign and symbols (Semiotic) [9].  

 
The project is about finding one or several algorithms that has two input sources and 
detects oil slicks as the output. The algorithm will be a type of deep neural networks, 
which are based on mathematical calculations to find the optimal weights. Thus, the 
data analysis method of this project is computational mathematics. 

4.3 Quality control 
Since this quantitative research with a deductive approach, the following topics must 
be discussed: 

4.3.1 Validity 
To achieve valid results, the algorithms will be applied against statistical demands 
when tested against an independent dataset (validation set). For example, false 
positives or negatives will decrease the validity of the results. Thus, this project will 
actively prevent these, while at the same time prioritize which is more important to 
prevent. 
 
To get a deep learning algorithm to learn the correct behavior, it is important to have 
ground truth that represents the expected results. The ground truth of oil slicks is 
available in earlier oil detection services, which are produced by hand of KSAT 
employees. 

4.3.2 Reliability 
A common problem with deep learning algorithms is overfitting, which can make the 
results less reliable. There are different methods to combat this and they will be 
considered during the design process of the neural networks.  

4.3.3 Replicability 
The replicability of this project is dependent on the availability of the data used. Thus, 
only parties with access to the same data can do the exact same experiment. KSAT is 
the owner of the data of detections and decides who can use it for what purpose. Data 
from satellites alone are open to the public. 

4.4 Software engineering method 
Determining which software engineering method is most appropriate depends on 
several factors, such as the topic and the requirements of the project. Some of these 
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software engineering methods are for example waterfall, agile, prototyping, 
incremental development, and extreme programming.  

4.4.1 The waterfall method 
The waterfall method is a software process model that is a simplified representation of 
how software is developed. The method requires planning of the whole development 
process, and each stage of the development process to be completed before moving on 
to the next stage [30]. Each of these stages has usually a schedule of completion. 
When the development is finished, the remaining operation and maintenance is done 
at the stage necessary. Repeating stages after the maintained stage may be necessary 
to ensure the often-strict requirements of the software developed. 

4.4.2 Agile methods 
The agile methods are an umbrella term for several methods that follows the 
philosophy of agile software development. This philosophy is about a more 
incremental development process with looser stages [31]. 

4.4.2.1 Test-driven development 
One of the agile methods are the test-driven method. This method approaches 
software development and testing by interchanging these stages for each incremental 
feature developed [32]. One advantage from this is the method allows features to be 
tested before the whole system is up and running. This test-driven development can 
catch issues sooner than a later testing stage in development. 

4.4.3 Prototyping method 
The prototyping method involves engineering an executable model of a system, which 
can be a proof of some concept. This executable model is then tested to see if it meets 
the requirements of the stakeholders. Stakeholders will then give feedback of any 
requirements changes or if the development should proceed. 

4.4.4 Chosen method for building two CNN’s 
The chosen software engineering method for building two CNN’s is a combination of 
several methods. This combination includes methods such as agile, prototyping and 
proof of concept. Since one of the goals is to provide a proof of concept of automated 
oil spill detection with wind data along satellite images as inputs to a CNN, the strict 
nature of the waterfall method is unnecessary and may hinder development during the 
time of this project. Thus, a more agile method was chosen with test-driven 
development steps. This development include testing and acquiring proof of the 
developed code works as intended. However, only one version of the code was 
developed since the software developed in this project is intended for a proof of 
concept, not in production at KSAT. 
 
The agile method, used in this project, includes prototyping of implementations of 
architectures necessary to fulfil the goals of this project. Several implementations 
were expected to be altered or even discarded during the development process. In 
addition, several key resources have not been available at the ideal time. This includes 
resources such as office space to handle data during the development process because 
of the strict security with codebase and data at the facility of KSAT. In addition, the 
follow-up from KSAT was not ideal, which was directly and indirectly cause by the 
ongoing covid-19 pandemic due to prioritization of home offices of employees and 
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other issues. Thus, the development process was improvised at times and tasks such 
as further planning, design and documentation was done in the meantime. 
Implications from this was some chaotic development process at times. However, 
most software engineering was done in an incremental fashion where parts were built 
on top of each other as the project moved forward. For example, the transformation of 
wind data was implemented and tested before the neural networks since one of the 
two CNN’s depended on it. 
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5  Project Design 

This chapter will go into detail about the design of this system. There are roughly 
three different parts that are designed.  
 

• A process of transforming unstructured wind datapoints into structured 
datapoints 

• A neural network that detects oil slicks with satellite images and wind 
datapoints 

• A neural network that detects oil slicks with satellite images but without wind 
datapoints 

 
The type of neural network will determine the requirements of the transformed wind 
datapoints. 

5.1 Requirements for CNN 
The CNN’s, built for this project, have a requirement where one CNN shall handle 
satellite images and the other CNN shall handle both satellite images and wind data.  
Consequently, the number of input channels shall be different between the two 
CNN’s. A channel is defined as a slice of an image with same resolution but only 
shows the intensity of one color. This can also be described as a two-dimensional 
array of values. 

5.1.1 CNN that includes wind data 
The requirements of the CNN were that it shall include both satellite images and wind 
data as an image with three channels. These channels shall have same resolution and 
consist of one satellite image channel, one land mask channel, and one wind speed 
data channel. The output shall be of equal pixel-size to the input image, but with only 
one channel. This channel shall display the probability of each class, oil spill and not 
oil spill. 

5.1.2 CNN that does not include wind data 
The requirements of the CNN shall only accept satellite images as images with two 
different channels. These channels shall have same resolution and consist of one 
satellite image channel and one land mask channel. The output is required to be of 
equal pixel-size to the input image, but with only one channel. This channel shall 
display the probability of each class, oil spill and not oil spill. 

5.1.3 Commonalities 
Both CNN’s are required to be of same base type of CNN, including length and 
architecture for each input channel. Thus, whatever architecture is chosen, it must be 
the same for both CNN’s. 

5.2 Choice of base neural network 
CNN’s excel at processing grid-like structures and makes it possible for fully 
connected layers later to process the most important features.  
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Satellite images are already grid-like structures, which do not need major alterations 
before giving it to the CNN. In addition, CNN’s can accept variable input sizes. This 
means that the input images do not necessarily need to match in resolution.  
 
Wind datapoints, however, is not granted to be in a grid-like structure but is likely to 
be of some pattern over the same area the satellite image covers. Thus, these 
datapoints need some form of transformation to achieve a guaranteed grid-like 
structure before the model will accept it. 

5.3 Transformation of wind data 
The wind data is originally presented as geographical points with a wind speed in 
zonal and meridional directions and absolute wind speed. Only absolute wind speed is 
used in this project. Wind direction is rather used in detecting sources of oil spills, 
such as oil platforms and ships, which is outside the scope of this project. Given that 
the geographical points already resemble a semi-structured grid when visualized in 
combination with the associated satellite image, they can be treated like an image with 
pixel values as absolute wind speed. Thus, each datapoint needs to be ordered in such 
a way that an image can be created and match spatially with the satellite image. 
 
However, the wind datapoints are not the same resolution as the satellite image. 
Resolution of wind datapoints must be equal to resolution of satellite image to present 
them as separate channels of an image to the neural network. This is solved by 
upscaling the resolution of absolute wind speeds to match the dimensions of the 
satellite image. The upscaling technique used in this project is interpolation by either 
bilinear or bicubic algorithms. Both algorithms are tested to see if there is any 
significant time difference. If not, only the cubic algorithm will be used. 
 
Wind data is converted after the interpolation to absolute values since wind speed is 
measured in only positive values. 
 
There are areas of the image where wind speed data is misleading. This has the 
potential to happen over land areas such as islands and coasts. Thus some data about 
land masses are included as well. 

5.4 Land mask 
Every satellite image provided by KSAT supplies a land mask of potential land area 
the image covers. This land mask consists of binary values that tells where land is 
covered or not. 

5.5 Tiles 
The satellite images to be used in this project are too large for a CNN with the 
available GPU memory to handle at once. Thus, both satellite images with their 
associated wind data will be divided into tiles of a size the network can handle. Wind 
data tiles will still match in dimensions with associated satellite image tiles. 

5.6 Neural network design 
The design of the neural network that accepts wind datapoints accepts them as a 
separate channel of an image in combination with a satellite image channel and a land 
mask channel. 
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5.6.1 Channels 
The satellite image channels consist of radio amplitudes of a polarization 
combination. These channels show the potential oils slicks. 
 
The wind data channel consists of an interpolated image of absolute wind speeds in 
the same area the satellite image covers. This channel will verify the oils slicks shown 
in the satellite image channels. 

5.6.2 Purpose of neural network 
The neural network has the purpose of imitating the output of the manual work from 
TEOS. A simplified flowchart of the manual work at TEOS can be seen in figure 1. 
This flowchart is not exhaustive in factors deciding an oil detection but shows the 
most common approach without edge cases.  
 
The simplified flowchart of manual TEOS work shows the usage of both SAR-image 
and wind data. The SAR image contains features that potentially can be classified as 
oil slicks. If any oil slick features are found, then wind speed is used to verify the 
detection. There is a lower and an upper threshold of wind speed where detections 
must be in between as a requirement to be classified as spilled oil slick. 
 
Other sources like AIS-position of vessels are left out of this simplification and will 
not be used in this project as well. This is because they are more relevant to finding 
sources of any spilled oil slicks rather than confirming any suspicious oil slicks. 

5.6.3 Dataflow 
The data flow of the neural network is visualized in figure 2. Instead of using a filter, 
it is expected that the neural network will learn itself what wind speed is valid for a 
detected spilled oil slick. The lower and upper thresholds of wind speed are expected 
to be abstractions rather than actual filters in the neural network, which is expected to 
learn the thresholds in some way. 
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Figure 4: Simplified flowchart of manual TEOS work 
 
Figure 4 shows the simplified flowchart of the manual work at TEOS. The manual 
work is roughly divided into two sequential tasks. The first one is to identify any oil 
spill resembling features. The second task is to verify these oil spill resembling 
features by studying the wind speed of that area. 
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Figure 5: Neural network flowchart  
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Figure 5 shows the neural network flowchart, including both CNN’s. Wind speed data 
is transformed into and image and thereafter combined with satellite images as inputs 
to one CNN, while only satellite images are given as input to the other CNN. 

5.6.4 Components 
The design of the neural network itself is a U-Net with the components of ResNet 
with 34 layers. The neural network classifies the satellite images with semantic 
segmentation, as illustrated in figure 2. 

5.6.5 Model with only satellite imagery 
The design of the neural network that has only satellite imagery as input will be like 
the other network. This is because its purpose is to remove the effect of wind data to 
the detection process. As seen in figure 5, the removal is done by removing the wind 
data channel from the input image such that the remaining input data of only satellite 
images will predict oil slicks. Thus, the only difference between the neural networks 
are the wind data as input. A comparison between the two CNN’s will be a 
measurement of the difference in validation loss, visual interpretation of output 
images, and precision and recall.  
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6 Implementation details 

6.1 Interpolation of wind data 
The conversion and interpolation of semi-structured wind data into the structured data 
of an image is done by using SciPy.org interpolate methods. These methods are the 
LinearNDInterpolator, which is based on linear interpolation, and the 
CloughTocher2DInterpolator, which is based on cubic interpolation. These methods 
do both steps of converting unstructured data into structured data and interpolating 
missing data to get higher resolution. 
 

Figure 6: Examples of resulting structured data from linear and cubic 
interpolation methods compared to the original unstructured data points. This 
example is replicated from the original illustration at SciPy documentation page 
of interpolation [33]. 
 

6.2 Combining wind data and satellite image 
The combination of wind data and satellite images are done through concatenating the 
relevant layers in the satellite image and wind speed image into one image with 
several layers. The framework used to create the CNN and the algorithms that feeds it 
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data is called fast.ai. This framework has built-in functions for creating data loaders 
that feeds the network by providing it paths to the images and labels. 

6.3 Data setup 
The validation data is picked randomly with a ratio of 0.1 from all the data, where the 
rest will be training data. The validation data picked is replicated exactly with each 
neural network and training session by a given seed to the splitter. This is done to 
avoid accidentally picking easier validation data for one result compared to the others. 

6.4 Neural networks 
The neural networks are both built using a framework called fast.ai. The neural 
network is created by a combination of U-Net and ResNet architectures, where the U-
Net contains the components of Res-Net with 34 layers. 
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7 Results and discussion 

This chapter describes the results of this project. This includes the interpolation of 
wind data, training the neural networks and how the neural networks perform on a 
given dataset of oil slicks. In addition, this chapter compares and discuss the results. 
 
The wind interpolation, probability maps and detections are tested by judging the 
visual output. The validation loss is tested by comparing validation losses from 
several training sessions against each other.  

7.1 Wind interpolation 
The wind interpolation worked as intended and the results resemble the associated 
satellite image of the area covered. As seen in figure 7, the image to the right is the 
resulting wind interpolation with cubic interpolation and SAR-wind, while the radar 
satellite image is to the left. The color bar at the right represents absolute wind speed. 
The visible land area is nullified since the data is irrelevant to oil spill detection and 
might confuse the neural network. The nullification area is retrieved from the 
provided land mask of the product, which is seen in the satellite image to the left in 
green color. Linear interpolation was tested and worked as well but was not used 
further in learning the neural networks since cubic sufficed. 
 

 
Figure 7: Example of wind interpolation 

 
This result means that interpolation of a grid of geographical wind speed points, 
which were not perfectly lined, is possible and is useable to a CNN. This does not 
implicate that including wind data will improve the detection of oil spills. Further 
testing is done by comparing the two neural networks that are either fed with wind 
data or not. 
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7.2 Training and validation loss 
Training the neural networks was done several times to achieve lowest possible 
validation loss. Both neural networks train and validate with the same data by using 
the same seed while splitting training and validation data. Both neural networks were 
trained three times and the trained network with the lowest loss is used in the results 
later described. Training three times was done to rule out random spike values that 
does not reflect the typical loss and get an understanding of how much such loss 
varies in these models. The lowest loss is chosen because the lowest loss implies a 
better performing model that is not penalized as much by the loss function. The better 
performing model is obviously chosen to do the given task, not the average 
performing model. 
	
Validation loss table 
	
Training	iteration	
	

Model	with	wind	data	 Model	without	wind	data	

1	
	

240.98	 288.03	

2	
	

251.04	 333.57	

3	
	

260.22	 283.00	

	
Validation loss metrics table 
	
Metrics	of	
validation	loss	
	

Model	with	wind	data	 Model	without	wind	data	

Lowest	
	

240.98	 283.00	

Mean		
	

250.75	 301.53	

Standard	deviation	
of	population	

9.623	
	

27.868	

Confidence	interval	
of	95%	

240	to	262	 270	to	333	

 
The results show a difference in validation loss between the neural networks. The 
neural network including wind data has a 14.85 % lower validation loss if choosing 
the lowest validation loss for both neural networks. This difference shows that 
including wind data in the neural network has a measurable effect on the resulting 
validation loss, which implies a plausible lowering of validation loss in neural 
networks of similar design when training with this kind of data.  
 
In addition, the neural network including wind data has a 16,84 % lower validation 
loss if choosing the mean of validation losses for each neural network. This implies 
any low spike value did not create the difference between the lowest validation losses. 
However, the slightly higher difference in mean compared to lowest value can be 
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attributed to the higher spike in the second training iteration of the model without 
wind data.  
 
Furthermore, the results show the model without wind data has a 2.90 times higher 
standard deviation than the model with wind data. This is because the second iteration 
of the model without wind data show a spike value in validation loss that is 15.81 % 
higher than the second highest validation loss of all iterations. The other two iterations 
of the model without wind data do not stand out. The source for this spike is 
unknown. 
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7.3 Probability map from neural networks 
The output from the neural networks consists of a probability map of each class in the 
semantic segmentation. Since there are only two classes, each class has a map that is 
the inverse probability of the other. Thus, the image results below will only show the 
probability of oil slicks. 
 
The validation set of tiles that is used in these results is the same as the validation set 
in the training of both neural networks. The total amount of validation tiles is 100, 
where 10 of them have oil slicks in them. 
 
The figures below show in this order from left to right the output images from both 
neural networks, the ground truth, the wind channel, and the SAR-channel. Land 
mask is not shown but can be seen indirectly from wind- and SAR-channels. Each 
row represents one tile in the validation set. 

7.3.1 Ground truth 
The ground truth image shows where the actual oil slicks lie according to the data 
from KSAT. The yellow color is oil slicks, and the purple color is background. 

7.3.2 Wind channel 
The wind channel has a brighter color with higher wind speeds. Darker colors are 
lower wind speeds. The range chosen for these images are from 0 to 10 meters per 
second. 

7.3.3 SAR channel 
The SAR-image shows how it is visible to the neural network. It is typical for darker 
patches to represent either low wind speed or oil slicks. 

7.3.4 Output figures 

 
Figure 8: Tile 1 

 
Figure 8 shows small differences in probability output from the two models. Both oil 
slicks are clearly visible in the output on both models but is not obvious unless you 
already know where to look. Other areas show similar probability of oil slicks which 
would probably result in some number of false positives. That said, the model that 
includes wind data has some areas that has a more probability of oil slicks than the 
model without wind data. This additional area of higher probability shows no clear 
pattern from wind channel. However, it shows a clear pattern from the SAR channel. 
Thus, it is assumed that the wind channel somehow triggered higher probability of oil 
slicks from some features in the SAR image. Wind channel is clearly biased by the 
SAR image. 
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Figure 9: Tile 2 

 
Figure 9 shows small differences in probability output from the two models. The oil 
slick group is clearly visible in the output from both models and does stand out from 
the rest of the image except for one small area in the top right of both output images. 
This small area would possibly trigger a false positive in both models. Otherwise, the 
model that includes wind data has some more area that show a slightly higher 
probability of oil slicks. This area has some correlation with the lower wind speed in 
the area, which is also clearly visible in the SAR image by difference in contrast. 
Wind channel is again clearly biased from SAR image. 
 

 
Figure 10: Tile 3 

 
Figure 10 shows small differences in probability output from the two models. The oil 
slick is clearly visible in the output from both models and does stand out from most of 
the image. There are some additional spots that indicates oil slicks to the left of the 
actual oil slick and in the bottom left of the image in both outputs. The output from 
the model that includes wind data has a slightly higher probability for those spots. 
This would possibly result in some number of false positives in both outputs. The 
areas of higher probability in the model that includes wind data correlates to lower 
wind speeds in the wind channel but also features from the SAR image. There is still 
clearly biased from SAR image in the wind channel. 
 

 
Figure 11: Tile 4 

 
Figure 11 shows small differences in probability output from the two models. The oil 
slick is visible in the output from both models but is more clearly in the model that 
includes wind data. There are no other spots that indicates oil slicks in both models, 
but there are some areas of slightly higher probability in the model that includes wind 
data. These areas are not likely to trigger any false positives. There are no correlation 
between these areas with higher probability of oil slicks to the wind channel, but some 
correlation to the SAR image. Wind channel is again clearly biased from SAR image. 
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In addition, this tile might be a good example that it is not easy do determine dark 
spots as oil spills since other larger dark spots in the SAR image are more dominating. 
 

 
Figure 12: Tile 5 

 
Figure 12 shows some difference in probability output from the two models. The oil 
slick is visible in the output from both models. The difference between the models is 
the area of high oil slick probability is larger on output from the model that includes 
wind data, and a higher probability of oil slicks in the bottom of the output from the 
model that does not include wind data. There are no other spots that indicate oil 
slicks. The area of higher probability in the output from the model that includes wind 
data correlates with the lower wind speed in the wind channel. Again, we see the 
correlation between the wind and SAR data. 
 

 
Figure 13: Tile 6 

 
Figure 13 shows some difference in probability output from the two models. The oil 
slick is visible but is not the only high oil slick probability area of both outputs. False 
positives are likely in both outputs. The difference between the outputs is a slightly 
higher probability intensity around the oil slick in the output from the model that 
includes wind data. This area is correlated to lower wind speed in the wind channel. 
Wind channel is again clearly biased from SAR image. 
 

 
Figure 14: Tile 7 

 
Figure 14 shows some difference in probability output from the two models. The oil 
slick is not visible in neither model. However, both models indicate false positives in 
a nearby area. The model that includes wind data has a slightly higher oil slick 
probability in this area, but false positives are likely in both models. The slightly 
higher oil slick probability area in the model that include wind data has only 
correlation with the SAR image. Wind channel is again clearly biased from SAR 
image. 
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Figure 15: Tile 8 

 
Figure 15 shows little difference in probability output from the two models. The oil 
slick is visible, but not the only high probability spot in the output from both models. 
The most notable spot is around the light dot in the SAR image, which is assumed to 
be some stationary object like an oil rig. False positives are likely. In addition, there 
are some spots that has a probability between 0.4 and 0.6 in the output from the model 
that includes wind data, but not likely to trigger false positives. These spots are 
correlated to lower wind speed in the wind channel. This tile also shows the wind 
channel is clearly biased from SAR image. 
 

 
Figure 16: Tile 9 

 
Figure 16 shows little difference in probability output from the two models. The oil 
slick is visible in both outputs but does not stand out from surrounding high 
probability area. These surrounding areas are most notable around the light dots in the 
SAR image, which are assumed to be some stationary objects like oil rigs. False 
positives are likely. In addition, there are some spots in the right middle side of the 
output from the model that includes wind data that has probability between 0.4 to 0.8. 
False positives are likely here. These spots are correlated to lower wind speed in the 
wind channel. Again, wind channel is clearly biased from SAR image. 
 

 
Figure 17: Tile 10 

 
Figure 17 shows some difference in probability output from the two models. The oil 
slick is clearly visible in both outputs. No false positives are likely. The model that 
does not include wind data has a slightly larger area of high oil slick probability. This 
area is correlated with the SAR image, and especially around the light dot, which is 
likely a stationary object like an oil rig. Wind channel is clearly biased from SAR 
image. 
 
In summary the model without wind seem to perform slightly better with less false 
positives. This might be because the wind-model favor hitting oil spills more than 
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avoiding false positives and explain the contradiction from the validation loss which 
favored the model with wind data. However, these false positive areas are weak and 
may not trigger false positive detections from a detection algorithm that is based on 
some threshold. 
 
Not all validation tiles are in favor of the model without wind data. Tiles 4 and 10 
seem to favor the model that includes wind data by less false positive areas. The other 
tiles are by comparing false positive area either roughly equal or in favor of the model 
that does not include wind data. 
 
The areas where the model that includes wind data has more false positives seem to 
have a correlation with low wind. Darker spots, which might indicate oil spill, and 
areas with lower wind speed are similar in the SAR image. This might explain some 
of the correlation.  However, the correlation has yet to be verified in a potential future 
work where lower wind speeds are compared to higher probability of oil slicks by 
including wind data in the convolutional neutral network. 

7.3.5 Output figures with detection algorithm 
The following figures show the same output images with the addition of marked 
detections from a detection algorithm.  
 
The detection algorithm used is created at KSAT. Detecting oil slicks is done by 
evaluating the output probabilities of the semantic segmentation neural network. The 
places with highest probabilities that is higher than a given threshold is classified as 
oil slicks. This threshold is tuned individually for each of the two neural networks 
such that they each have the lowest number of false negatives as possible. The lowest 
number of false negatives possible is two, and both seemed impossible to detect for 
both models.  
 
False negatives are worse than false positives since the consequences of missing 
actual oil spills are higher than false alarms. Thus, it is necessary to adjust the 
detections threshold for both models such that each model detects as many oil spills as 
possible, where each model may have a different threshold. 
 
The detections are marked with a red circle such that bodies of continuous slicks are 
not counted as several oil slicks. In addition, an attempt of region growing is done at 
the nearest oil like figure to the red circle of the detection. The result from this region 
growing is marked in black. 
 
To simplify the detection process, some of the oil slicks are grouped together to 
represent a single oil slick or oil slick group. This is done because the importance of 
detecting an oil slick is more important than separating nearby oil slicks from each 
other and that nearby oil slicks have a higher probability of discovery once one of 
them are detected. This is a subjective exercise, which may be biased. 
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Figure 18: Tile 1 

 
Figure 18 shows validation tile 1. This tile shows a group of oil slicks in the lower left 
corner. There are two slicks in this group, but since they are in proximity, they are 
defined as a single group. Both models detected the oil group but appear to detect 
different slicks in the group. This is a subjective judgement as the detections are not 
far away from each other. The wind model does detect a false positive as well in the 
upper middle part of the tile. Thus, the model without wind has a slightly better 
precision in this case. However, recall remains the same for both models. 
 

 
Figure 19: Tile 2 

 
Figure 19 shows validation tile 2. This tile shows a group of oil slicks roughly in the 
center. There are four large bodies of oil slicks in this tile with proximity. Thus, they 
are defined as a single oil slick group. Both models detected the oil group but detects 
different slicks in the group. Both models detect two false positives as well. Precision 
and recall are the same for both models in this case. 
 

 
Figure 20: Tile 3 

 
Figure 20 shows validation tile 3. This tile shows an oil slick group in the upper right 
corner. There are one large body of oil slick and a smaller body in proximity to it. 
Thus, they are defined as a single oil slick group. Both models detect this oil slick 
group, but both have two false positive as well. Precision and recall are the same for 
both models in this case. 
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Figure 21: Tile 4 

 
Figure 21 shows validation tile 4. This tile shows a single oil slick in the upper right 
corner. Both models detect this oil slick with no false positives. Precision and recall 
are the same for both models in this case. 
 

 
Figure 22: Tile 5 

 
Figure 22 shows validation tile 5. This tile shows a single oil slick in the upper right 
corner. Both models detect this oil slick, but the model without wind detected two 
false positives. The wind model has better precision while recall is the same for both 
models in this case. 
 
 

 
Figure 23: Tile 6 

 
Figure 23 shows validation tile 6. This tile has a single oil slick in the lower left 
corner. Both models detect the oil slick. The wind model has a single false positive 
and the model without wind has two false positives. Thus, the wind model has better 
precision while recall is the same for both models in this case. 
 

 
Figure 24: Tile 7 

 
Figure 24 shows validation tile 7. This tile has a single oil slick in the upper left 
corner. Neither model detect the oil slick but detects two false positives instead. The 
nearest false positives from both models are considered too far from the actual oil 
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slick to count as detections. Precision and recall remain the same for both models in 
this case. 
 

 
Figure 25: Tile 8 

 
Figure 25 shows validation tile 8. This tile has an oil slick group in the lower left 
corner. Both models detected this oil slick group. Precision and recall are the same for 
both models in this case.  
 

 
Figure 26: Tile 9 

 
Figure 26 shows validation tile 9. This tile has a single oil slick in the upper left 
corner. Neither model detects this oil slick. The wind model detects two false 
positives and the model without wind detects a single false positive. The nearest false 
detections from both models are not close enough to the actual oil slick to count as 
detections. The model without wind has a higher precision while recall is the same for 
both models in this case. 
 

 
Figure 27: Tile 10 

 
Figure 27 shows validation tile 10. This tile has a single oil slick in the center. Both 
models detect the oil slick with no false positives. Precision and recall are the same 
for both models in this case. 
 
In summary the validation tiles are of varying challenge to the oil detectors, where the 
challenging tiles has oil slicks very close to the edges of the tile or are not easily 
visible on the SAR channel. Since these are randomly picked from a dataset of oil 
slicks, the varying challenge was expected and shows what an oil detector might 
expect. Both detectors seem to struggle with the same tiles but managed to detect 
most given oil slicks or oil slick groups. However, both had a high number of false 
positives, which was also expected since the number of false negatives was tuned to 
be as low as possible for both detectors. The resulting statistics from these detections 
are described and discussed in chapter 7.4.  
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7.4 Detected oil slicks 
The detection results from both neural networks are described in the tables below. 

7.4.1 Neural network with wind channel 
Tile	nr.	 Correctly	

detected	
Falsely	
detected	

False	
negatives	

Oil	slicks	or	
oil	slick	
groups	

1	 1	 1	 0	 1	
2	 1	 2	 0	 1	
3	 1	 2	 0	 1	
4	 1	 0	 0	 1	
5	 1	 0	 0	 1	
6	 1	 1	 0	 1	
7	 0	 2	 1	 1	
8	 1	 0	 0	 1	
9	 0	 2	 1	 1	
10	 1	 0	 0	 1	
Total	 8	 10	 2	 10	

7.4.2 Neural network without wind channel 
Tile	nr.	 Correctly	

detected	
Falsely	
detected	

False	
negatives	

Oil	slicks	or	
oil	slick	
groups	

1	 1	 0	 0	 1	
2	 1	 2	 0	 1	
3	 1	 2	 0	 1	
4	 1	 0	 0	 1	
5	 1	 2	 0	 1	
6	 1	 2	 0	 1	
7	 0	 2	 1	 1	
8	 1	 0	 0	 1	
9	 0	 1	 1	 1	
10	 1	 0	 0	 1	
Total	 8	 11	 2	 10	
 
As seen in tables 7.4.1, neural network with wind channel, and 7.4.2, neural network 
without wind channel, the total number of correctly detected and false negatives of oil 
slicks are the same. However, falsely detected oil slicks differ by one, as neural 
network without wind channel has one more falsely detected. 
 
Correctly detected are identical between the two tables. Both neural networks 
managed to detect oil slicks in validation tiles 1, 2, 3, 4, 5, 6, 8 and 10. Both neural 
networks did not detect oil slicks in validation tiles 7 and 9. 
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Validation tiles 7 and 9 stand out from the other validation tiles for several reasons. 
One common feature of tiles 7 and 9 are that the oil slicks are very close to the edge 
of the tile. However, this is not unique to tiles 7 and 9 as other tiles such as 1, 3, 4 and 
8 has oil slicks or oil slick groups near the edge as well. Another common feature 
between validation tiles 7 and 9 is that they both have falsely detected oil slicks near 
the actual oil slicks.   
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7.5 Precision, Recall and F-measure 
The precision, recall and F-measure are calculated form the results described in 
chapter 7.4.1 and 7.4.2. Precision, recall and F-measure are defined in chapter 3.5. 

7.5.1 Neural network with wind channel 
Precision Recall F-measure 
 

44.4% 
 

 
66.7% 

 

 
57.1% 

 
 

7.5.2 Neural network without wind channel 
Precision Recall F-measure 
 

42.1% 
 

 
66.7% 

 

 
55.2% 

 
 
The neural network with included wind data channel has a slightly higher precision 
than the neural network without wind data. There is no difference in recall, which was 
by design expected when the threshold for detection was adjusted to achieve the least 
number of false negatives for both neural networks. 
 
One should clarify that these results only represent this specific dataset which these 
neural networks has trained from, and this specific validation set which these neural 
networks has validated from. By changing the dataset and the validation set of that 
dataset the outcome could be different. However, since the dataset and validation set 
are the same for both neural networks and the best (lowest) loss of three attempts 
from training is chosen for both, the outcome from both neural networks can be 
compared against each other. 
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7.6 Result comparison and discussion 
The validation loss is the main result to evaluate since it is a direct comparison of raw 
output between the two models. This is because results from detections and visual 
interpretations of the probability maps are a subject to bias. The difference of 14.85 % 
in lowest validation loss and a difference of 16,84 % in mean validation loss is 
measurable and significant. However, the population size of 3 with each model is 
small, even though the confidence intervals of 95 % are not overlapping. Further 
testing is necessary to get any results that are certain of a lower validation loss in 
models that use wind speed in a CNN that has the task of detecting oil slicks. While 
the result implies a likely lower validation loss, it does not mean an implied likely 
increase in precision in detection. The validation loss only measures the penalty of 
wrongly classifying oil or background from a given loss function, which is focal loss 
in this instance. That loss can be distributed in a variety of ways in the probability 
images of oil slicks. When a detection algorithm is dependent on a threshold of the 
probability of an oil slick, the distribution of that probability might not benefit the 
detection algorithm even though it gives a lower computed loss. 
 
The difference of 2 percent points in precision and f-measure is not large enough to 
predict a similar difference to a larger training data set than the small population size 
of 100 tiles of oil slicks. The difference of precision and f-measure was a result of 
only one false detection less by the wind model. False negatives and correctly 
detected was the same for both models. This small difference in precision and f-
measure is not enough to know for certain that a wind data channel improves 
precision to oil detection. However, the number of detections does not show this 
model performs worse either. 
 
The output figures of the validation tiles favor the model that does not include wind 
data. A slight increase in area of higher false positive probability is seen in most 
validation tiles from the model that includes wind data. This observation contradicts 
the results from validation loss and detection since they favor the model that includes 
wind data slightly. Also worth mentioning is that the loss function used in this project 
is not as strict with false positives, but rather focuses on false negatives. However, the 
interpretation of the output figures is subject to bias. 
 
Overall validation loss and detection results favor the model that includes wind data 
while output figures favor the model that does not include wind data. Given that the 
validation loss is not subject to bias from interpretation, the hypothesis of an increase 
in validation loss of 15 % in models that include wind data is likely. However, a 
hypothesis of increase in precision and recall is inconclusive and at best still plausible 
given the low size of the dataset. The increase in area of higher false positive 
probability does not give high promise to a CNN that includes wind data specifically 
from SAR-wind. Thus, including wind data does not benefit oil detection in an 
obvious way since a lower validation loss does not imply anything other than itself in 
future experiments. The promise of a CNN that includes wind data from MET-wind is 
still unknown as it might show completely different results. Suspected changes to 
results are that MET-wind might give the model that includes wind data an advantage. 
This is because MET-wind should in theory be free of bias from the SAR image. 
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8 Evaluation of the project 

This chapter presents evaluation of the work done in this project, including 
contributions and constructive feedback. The work done in this project includes 
planning, research, design, implementation, and testing. In addition, this chapter 
presents evaluation of the proof of concept and evaluation of this project by staff from 
KSAT. 

8.1 Evaluation of the combination of Prototyping and Agile 
methods 

8.1.1 Planning and research 
The planning phase of this project was mostly done in the first half year, where 
decisions regarding approach of the problem and what previous work is used as a 
foundation for further development. Core design choices were planned and researched 
here, like how to transform wind data into an image and what type of artificial neural 
network is preferred. This phase became longer than expected due to restricted access 
to the offices because of the covid-19 pandemic. Access to workspace at the offices 
was required to handle internal data at KSAT. Thus, further design and 
implementation were delayed significantly. 

8.1.2 Design 
The design phase of this project was mostly after the planning and research phase. 
However, design choices were made during almost all phases due to the nature of 
unexpected problems and re-implementations. This phase had mostly design choices 
based on the knowledge of the codebase from KSAT, where several key elements of 
data handling and processing were borrowed and built upon. 

8.1.3 Implementation 
The implementation phase of this project was only started at the second half of the 
project due to missing workspace, and thus missing access to data and codebase to 
build upon. This phase had the implementation of data handling, data transformation 
and building the neural networks. 

8.1.4 Testing 
The testing phase of this project was the phase that came after the implementation 
phase. This phase had the testing of the neural networks, but also testing the 
transformation of the wind data. The testing of transformation of wind data was 
completed during the implementation phase since both implementing the neural 
networks and testing them depended on the results of it. 

8.1.5 Contributions 
The contributions of this work are showing how a CNN can handle satellite data and 
wind speed data while detecting oil slicks. The proof of concept was successfully 
implemented and compared against a CNN without wind speed data. This comparison 
gave some measurements that are valuable to predict any benefits of implementing 
this concept into production of an oil detection service at KSAT. 

8.1.6 Critical reflection 
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The constructive feedback of this work are some issues that have potential of 
improvement. These are an earlier start of the design and implementation phases such 
that problems and necessary re-designs are detected earlier, and more cooperation 
with KSAT to avoid long problem-solving issues related to their codebase. Both were 
some consequences of the ongoing covid-19 pandemic because of missing workspace 
and lower than normal direct contact with employees at KSAT. It is not certain that 
these issues could have been avoided, and some of them resulted in a delay of this 
project. That said, some preparedness for available workspace and more cooperation 
could have been considered if this project is to be replicated.  

8.1.7 Goals 
Given the approved delay of this project’s deadline, all three goals were achieved. 
 

• An algorithm that transforms wind data into an input that can be accepted by 
the CNN was achieved.  

• A CNN that can detect oil spills while ignoring look-alikes to some degree was 
successful with mixed results.  

• A proof of concept of automated oil spill detection with wind data along satellite 
images as inputs to a CNN was achieved as well. 

8.2 Proof of concept 
The proof of concept for this project is about automated spill detection with wind data 
along satellite images as inputs to a CNN. This proof of concept has been achieved 
since the results from this CNN is able to detect some oil spills. However, the concept 
did not detect more oil spills than the other CNN without wind data. The comparison 
between the two CNN’s had mixed results and it is not clear if this concept should 
replace current methods of oil spill detection. 

8.3 Evaluation of project by KSAT staff 
The evaluation of this project by KSAT staff is done by the head of the machine 
learning group that works with automated ship and oil detections. His evaluation is 
that this project has made significant contributions, showing how a CNN with both 
satellite images and auxiliary data such as wind performs against a similar CNN with 
only satellite images when detecting oil spills. In addition, this project provides 
valuable knowledge and lessons learned, guiding the further development of KSAT’s 
automated oil spill detection algorithm. 
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9 Next step for the CNN 

The next step for the CNN of this project concerns topics such as testing with more 
data, MET-wind, linear interpolation and a potential correlation between low wind 
speed and higher false positive probability. MET-wind and linear interpolation were 
not used in this project and has a potential of additional research. The potential 
correlation has yet to be verified. 

9.1 Testing with more data 
The results from this project can be explored further by including more data in 
training of these convolutional neural networks. This includes more oil spills, satellite 
images and wind data. This will also give a larger pool of validation data to validate 
the results from. 

9.2 MET-wind 
Since only SAR-wind was used in this project, a future work is testing the same 
neural networks with MET-wind. This will include transforming the MET-wind by 
interpolation to same resolutions SAR-wind was interpolated to even though MET-
wind has a lower original resolution than SAR-wind. It is unknown if the interpolation 
will be a success with this MET-wind resolution. 

9.3 Linear interpolation 
For this project, the processing time has not been of significance. Thus, linear 
interpolation with its theoretically faster interpolation was not needed. However, 
should an oil slick-detection algorithm benefit from shorter processing times, testing 
this interpolation algorithm would be beneficial as a future work. 

9.4 Correlation between lower wind speed and higher probability 
of oil slicks 

From the resulting tiles in chapter 0, there seem to be a correlation between a higher 
false positive probability of detecting oil slicks where the wind speed is low. This has 
yet to be verified by calculating a correlation between the samples of pixels that show 
higher oil slick probability and pixels that show low wind speed in the wind speed 
layer. The choice between including or excluding actual oil slick pixels with this 
correlation is yet to be discussed, as it is false positives that is of concern to a model 
that includes wind data.  
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10 Conclusions 

This thesis presents the work of implementing a CNN with satellite images and wind 
data for detecting oil slicks. 
 
The main problem of detecting oil spills is avoiding classifying look-alikes as oil 
spills. This problem is addressed by including wind data in the CNN. Wind speed in 
the area monitored is important information to know the difference between actual oil 
spills and look-alikes. Therefore, the potential benefits from including wind speed 
data are an increase in precision and recall of detecting oil slicks. This improvement 
in precision and recall is measured by implementing a similar CNN that only accepts 
satellite images and compare the two networks against each other. 

10.1 Discussion 
The results from comparing precision and recall between the two neural networks, 
where one of them includes wind speed data and the other does not, only show a 
slight benefit of using wind data. However, the validation loss from training the 
models show around a 15 % decrease in the CNN that includes wind data. The 
resulting detection measurements using an algorithm at KSAT is showing an increase 
of 2 percent points in precisions when using wind speed data because of the fewer 
false alarms. The resulting probability map of oil slicks does not show an obvious 
improvement by including wind speed data but may worsen the potential falsely 
detected oil slick number. Given the conflicting results and use of wind data that is 
based on the satellite image, the conclusion is that including wind speed data from 
SAR-wind in a CNN in detecting oil slicks appear to be possibly beneficial. This can 
be explored further with a larger dataset of oil spills, satellite images and wind data. 
In summary, the results from including wind data in a CNN for oil spill detection are 
promising. 

10.2 Future work  
The potential benefits of using MET-wind are still not known and is encouraged to be 
explored in a future work. This includes replacing SAR-wind with MET-wind and do 
similar measurements in precision, recall and other interpretations. Other future work 
includes linear interpolation instead of cubic interpolation that may decrease 
interpolation time, and study a possible correlation between lower wind speed and 
higher probability of detecting oil slicks from the CNN in this project. 
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