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A B S T R A C T   

Liver Sinusoidal Endothelial Cells (LSEC) line the hepatic vasculature providing blood filtration via trans
membrane nanopores called fenestrations. These structures are 50− 300 nm in diameter, which is below the 
resolution limit of a conventional light microscopy. To date, there is no standardized method of fenestration 
image analysis. With this study, we provide and compare three different approaches: manual measurements, a 
semi-automatic (threshold-based) method, and an automatic method based on user-friendly open source machine 
learning software. Images were obtained using three super resolution techniques – atomic force microscopy 
(AFM), scanning electron microscopy (SEM), and structured illumination microscopy (SIM). Parameters 
describing fenestrations such as diameter, area, roundness, frequency, and porosity were measured. Finally, we 
studied the user bias by comparison of the data obtained by five different users applying provided analysis 
methods.   

1. Introduction 

Liver Sinusoidal Endothelial Cells (LSEC) are the interface between 
the blood stream and the surrounding hepatocytes in the liver. Filtration 
is maintained by LSEC nanopores which are also known as fenestrations. 
Their diameter of 50− 300 nm is crucial for size dependent passive 
transport of plasma soluble molecules (e.g., albumin, glucose, drugs) 
and small nanoparticles such as chylomicron remnants (Braet and Wisse, 
2002). These nanopores are typically found in groups of 5–100 called 
sieve plates which are located mostly in the area outside the nuclear 
region. Fenestrations are dynamic structures that can react to various 
stimuli such as drugs or change in local environment (Braet and Wisse, 
2002) and adapt their diameter and/or number within minutes or even 
seconds (Zapotoczny et al., 2019, 2017). Along with the passive trans
port of macromolecules via fenestrations, LSEC also participate in the 
clearing of circulating waste through active uptake via scavenging re
ceptors. A diverse array of macromolecular waste material is constantly 
removed from the blood circulation by clathrin-mediated endocytosis 
(Sørensen et al., 2012). LSEC also play an active role in the clearance of 

circulating polyoma virus (Simon-Santamaria et al., 2014) and bacte
riophages (Øie et al., 2020). 

Both the number and diameter of fenestration are important for 
proper liver function. Defenestration – the loss of porous morphology is 
an early indication of liver fibrosis, which can cause atherosclerosis due 
to lack of filtration of lipoproteins from the blood stream (Rogers et al., 
1992). It has been reported that porosity decreases in ageing and can be 
a main factor contributing for the need of increasing doses of drugs 
targeting hepatocytes (e.g. statins) that have to pass through the pores to 
reach their target (Le Couteur et al., 2002; Hunt et al., 2018a). 
Conversely, hepatocyte mediated detoxification of drugs from the 
plasma, requires porous LSEC – age related loss of porosity can result in 
drug doses, otherwise safe for young people, being toxic for the elderly. 
Moreover, hepatocytes regulate the glucose plasma concentration and 
LSEC are responsible for the passage of insulin (via fenestrations) to 
facilitate glucose disposal (Tsuchiya and Accili, 2013). All these aspects 
confirm that the lack of a healthy LSEC phenotype plays an important 
role in the development of many diseases. However, recent work has 
shown that the ageing related loss of LSEC fenestrations may be 
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reversible by repurposing a number of existing medicines (Hunt et al., 
2018b, a). In addition, new nanomedicines show promise in this regard 
(Hunt et al., 2020b, 2021). 

To date, in almost every article describing LSEC, the fenestration size 
is typically shown as a histogram of diameter distribution and/or mean 
value of fenestration diameter. Other parameters describing LSEC’s 
porous morphology are fenestration frequency (number of fenestrations 
per area, less often per cell) and porosity (percentage of cell area covered 
by fenestrations). Altogether, these three features allow for complete 
evaluation and comparison between the LSEC phenotype in health and 
diseases, as well as after challenge with various drugs, with ageing, etc. 
However, the methods by which researchers obtain these data are often 
vaguely described. The lack of standardization results in cumbersome 
comparisons between the separate experiments conducted by different 
researchers. 

Only a few studies proposed to standardize and automate the anal
ysis of fenestrations using images obtained by different microscopy 
techniques. In 2015, Cogger et al. (2015) proposed a method for isola
tion, sample preparation and analysis using scanning electron micro
scopy (SEM). The authors suggested to manually mark the cell surface 
area and then measure the longest fenestration diameter using free ac
cess software such as Fiji/ImageJ (Schindelin et al., 2012). Although this 
method can be precise, it is time consuming and requires an assumption 
of fenestration circularity, which may bias the results. The magnification 
or pixel size issues resulted from poor image resolution are not discussed 
in the protocol. In 2018, Di Martino et al. (2018) proposed the analysis 
method for STED (Stimulated Emission Depletion) microscopy images of 
fenestrations using contour trace and macro programming to obtain 
semi-automatization of the process. The brief description suggests also 
that some manual steps are required. The authors made assumptions 
about fenestration circularity, but the exact roundness parameters for 
exclusion were not specified. Kong and Bobe (2021) proposed a well 
described semi-automated processing of human LSEC images obtained 
by Structured Illumination Microscopy (SIM). A Python based auto
mated image processing macro utilizes an adaptive thresholding process 
and segmented images are further analysed to calculate both the number 
and diameter of fenestration. In 2017, we proposed the quantitative 
method for atomic force microscopy (AFM) image analysis of LSEC 
(Zapotoczny and Szafranska, 2017). Fenestration diameters were 
manually measured from high magnification images and, together with 
the manually counted fenestration number, then converted into 
porosity. The proposed method was precise, yet time consuming simi
larly to the other methods described above that involve manual 
measurements. 

Recent developments in machine learning resulted in new possibil
ities for automatization or semi-automatization of the LSEC morphology 
analysis. Li et al. (2020) proposed an in house developed image recog
nition program based on a fully convolutional network for fenestration 
analysis. Unfortunately, many algorithms require programming skills in 
various programming languages, which is the main obstacle for the wide 
use of machine learning in biology. Recently, new software was devel
oped with user friendly interfaces such as Weka Segmentation (Argan
da-Carreras et al., 2017) or Ilastik (Berg et al., 2019). The combination 
of machine learning, basic image analysis and manual adjustments of
fers new ways to optimize the previously proposed methods and adjust 
them to sample size and precision needed for future experiments. 

In this article we compare three different methods of image analysis: 
fully manual, semi-automatic (thresholding using ImageJ/Fiji) and 
automatic – machine learning (based on Ilastik software). We apply all 
three analysis methods for images obtained using each type of micro
scopy – AFM, SEM, and SIM. For clarity, both methods and results sec
tions are divided according to the three imaging techniques. Finally, 
user bias is discussed based on the cross-correlation of image analysis 
performed independently by five researchers. 

2. Materials and methods 

2.1. Cell isolation 

The cells were isolated as described in Zapotoczny and Szafranska 
(2017) for AFM and SIM (mouse LSECs) and in Mönkemöller et al. 
(2018) for SEM (cryopreserved rat LSEC). The experiments followed 
protocols approved by the local Animal Care and User Committees. 
Briefly, mice/rats were anesthetized using a mix of ketamine/xylazine 
and liver was perfused to remove blood and digested using Liberase™ 
(Roche, Germany). Thereafter, parenchymal cells were removed by a 
series of centrifugations. Mouse LSECs were isolated using immuno
magnetic separation and CD146 conjugated magnetic beads (MACS, 
MiltenyiBiotec, Germany) while rat LSEC were separated by density 
gradient centrifugation (50/25 % Percoll gradient) followed by selective 
adherence to remove stellate cells and Kupffer cells, respectively. After 
separation, cells were seeded on glass coverslips and washed with media 
after 1 h incubation in 37 ◦C, 5 % CO2, 5 % O2 (cell culture media and 
surface coating specified for each technique below). 

2.2. Sample preparation, imaging, and quantitative analysis 

The differences in properties of the images obtained by each mi
croscopy modality affect the analysis strategies. Therefore, each quan
titative analysis is described separately for each imaging technique. For 
more detailed examples of the analysis see Supplementary Materials. 
The list of the parameters of interest can be found in Table 1. 

2.2.1. Atomic Force Microscopy (AFM) 

2.2.1.1. Sample preparation and imaging. In our analysis, we used im
ages of samples prepared according to Zapotoczny and Szafranska 
(2017) and Mönkemöller et al. (2018). LSEC were cultured for 12− 16 h 
on uncoated glass coverslips in EGM-2 full media (Lonza) and fixed for 2 
min in 1 % glutaraldehyde in PBS and stored in PBS (with Mg2+, Ca2+) 
until imaging for up to two weeks. The measurements were performed 
using a JPK Nanowizard 3 AFM system (JPK Instruments AG, Germany) 
in PBS (with Mg2+, Ca2+) in a commercial liquid cell with the temper
ature control (25 ◦C). High magnification images were obtained using 
Quantitative Imaging mode with semi-soft (k = 0.03− 0.06 N/m) 
triangular cantilevers with sharpened tips (radius <12 nm); low 

Table 1 
Parameters used for description of LSEC morphology.  

Parameter Definition Unit 

Cell area 
(SEM/SIM) area of single cell surface 

nm2 (μm2) (AFM) area of all cells in the image reduced by 
nuclei region of height above 700nm 

Fenestration 
diameter 

Max diameter – the longest diameter of single 
fenestration 

nm 
Min diameter – the shortest diameter of single 

fenestration 
For (semi-)automatic methods max and min 

diameter are calculated with the assumption of 
elliptical shape 

Roundness min diameter
max diameter  

0− 1, 
unitless 

Single 
fenestration 
area 

(circularity assumption) π× diameter2  

nm2 (elliptical assumption) π× min diameter ×

max diameter  

Total area of 
fenestrations 

(Manual method, SI2) Number of fenestrations x 
fenestration diameter distribution 

nm2 (μm2) ((Semi-)automatic methods) total detected area 
of fenestration 

Porosity total area of fenestrations
cell area

× 100%  % 

Fenestration 
frequency 

number of fenestrations
cell area  

No. of fen.
μm2   
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magnification images of whole cells were imaged with contact mode and 
semi-soft triangular cantilevers with a regular tip (radius <60 nm). 
Precise imaging description and parameters such as loading force can be 
found in our previous work (Zapotoczny and Szafranska, 2017). 
Collected data were processed with JPK Data Processing Software and 
converted to tiff format for further analysis using ImageJ/Fiji. 

2.2.1.2. Quantitative analysis.  

1 Fenestration diameters 

Single fenestration diameters were measured in three different ways 
from 26 high magnification images displaying a total of 625 fenestra
tions. A representative image is presented in Fig. 1A.  

I Manual quantification was performed as follows: First, images 
were scaled to the scale bar individually for every image. Then, 
the shortest and the longest diameter of each fenestration were 
measured (minor and major axis respectively, assuming an 
elliptical shape of fenestration). Finally, the area of every pore 
was calculated with the assumption of an elliptical shape. The 
roundness parameter was defined as a ratio between the minor 
and major axes measured. Every fenestration was assigned with a 
number for further identification and comparison with another 
two methods. Holes on the edge of the image or clearly distorted 
i.e., not having a round shape or merged due to imaging or 
sample preparation artifacts were excluded.  

II The semi-automatic method is based on the difference in contrast 
between the inside of fenestration and LSEC membrane. A simple 
threshold tool in Fiji was used to manually set cut off values for 
every independent image to ensure maximal precision (image 
from same imaging conditions are recommended when applying 
the same thresholding value to reduce bias). Next, the image was 
converted into a binary mask and then every fenestration was 
measured. Parameters such as fenestration area, fenestration 
diameter (min, max, mean), and roundness were calculated 
automatically (under “Analyze particles” tool in Fiji, size and 
circularity were set the same for all the images) and assigned to 
each fenestration according to the previously established order 
(for fenestration-by-fenestration analysis). Similarly to the 

manual quantification, the scale bar was used to adjust the scale 
for every image.  

III The automatic method for the measurement of fenestrations is 
based on machine learning. Presented results were analyzed with 
Ilastik software. The algorithm was trained on a set of four 
representative images. A user teaches the software by marking 
parts of the image indicating the areas of fenestrations and the 
rest of the cell body area. Training is simple and takes about 30 
min. Then, batch processing was applied to all 26 images to 
create simple segmentation binary masks (Fig. 1A, top). Finally, 
masks were analyzed using ImageJ/Fiji similarly to the semi- 
automatic method. 

All 625 fenestrations were independently assigned with area, diam
eter (min, max, mean) and roundness obtained from three different 
quantitative methods and then compared.  

2 Fenestration frequency and porosity 

The fenestration frequency and porosity (see Table 1 for definitions) 
were measured from low magnification images of whole cells (Fig. 1B). 
27 images of 40 μm × 40 μm size were analyzed. Initially, the image size 
was artificially converted (from 1024 × 1024 pixels to 2048 × 2048 
pixels) with linear interpolation to digitally increase the resolution of an 
image (“Adjust Size” tool in Fiji). Artificially increased resolution does 
not bring any new information, however smaller pixel size is beneficial 
for better fenestration detection in all 3 analysis methods.  

I Manual quantification was utilized in a two-step process. First, 
fenestrations were counted manually for the whole AFM images. 
Second, the cell area was calculated, excluding the background 
and nuclei areas. To achieve this, by using the 3D information 
about the topography of cells, regions of heights above 0.7–1.0 
μm were excluded from analysis, by image contrast adjustment. 
We assumed that fenestrations can be formed only in flat areas of 
LSEC. Finally, the total area occupied by fenestrations, fenestra
tion frequency, and porosity were calculated using the number of 
holes and mean diameter distribution measured from high 
magnification images (detailed description of calculation can be 
found in Supplementary information SI.1.). 

Fig. 1. Representation of the AFM image anal
ysis. (A) High magnification AFM image of the 
sieve plate. Overlaid mask of fenestrations 
detected by (semi-)automatic methods and 
manually measured diameters are presented. 
Fixed cells were imaged using QI AFM mode 
and a sharp MSCT tip. (B) Low magnification 
AFM image of LSEC. Overlaid mask of detected 
fenestrations from the automatic method and 
marker points from manual fenestration count
ing are shown. Fixed cells were imaged using 
AFM contact mode and the MLCT tip.   
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II Simple thresholding could not be used for low magnification 
images due to the artefacts of AFM measurements that make the 
height (topography) images look curved/tilted. Built in image 
corrections are not sufficient and images require cumbersome 
analysis. Therefore, the semi-automatic method could not be 
applied to the low magnification AFM images.  

III Automatic image analysis was successfully applied to measure 
fenestration number and area from low magnification AFM im
ages. First, the program was trained on sets of four images 
(training time of around 1 h) and then all 27 images were 
analyzed using batch processing. Next, images were converted 
into simple segmentation binary masks and analyzed in ImageJ/ 
Fiji. To avoid fenestrations merged together the watershed tool 
was used followed by particle analysis to exclude objects from 
outside of the fenestration range of 50− 300 nm and circularity 
below 0.4. The remaining objects were automatically counted, 
and the total area measured to calculate porosity and fenestration 
frequency. 

2.2.2. Nanoscopy – Structured Illumination Microscopy (SIM) 

2.2.2.1. Sample preparation and imaging. Samples were prepared as 
previously described (Zapotoczny and Szafranska, 2017; Mönkemöller 
et al., 2018). Briefly, cells were seeded on fibronectin coated coverslips 
in RPMI-1640 medium (Sigma-Aldrich) and then fixed for 10 min with 4 
% formaldehyde (FA) in PBS and stored in PBS containing 0.1 % FA. 
Before imaging, cells were stained using CellMask Green (Thermo
Fisher) 1:1000 dilution in PBS for 30 min and then mounted onto glass 
slides using Vectashield antifading mounting media (Vector Labs). Im
ages were obtained using a commercial SIM microscope (OMX Blaze 
system, GE Healthcare) with a 60x 1.42NA oil-immersion objective 
(Olympus). 3D-SIM image stacks of 2− 3 μm were acquired with a 
z-distance of 125 nm and with 15 raw images per plane (five phases, 
three angles). Raw datasets were computationally reconstructed using 
SoftWoRx software (GE Healthcare) and z-projections in tiff format were 
prepared for further analysis. 

2.2.2.2. Quantitative analysis (Fenestration diameter, fenestration fre
quency and porosity). Initially, the image size was converted from 1024 
× 1024 pixels to 2048 × 2048 pixels, with linear interpolation, using the 
adjust size tool in Fiji to digitally increase the resolution of the image.  

I The scale was adjusted to the size of the image of 40.96 μm ×
40.96 μm and 300 fenestrations were manually measured from 
the top right quarter of each of 20 images. For every fenestration, 
both the smallest and the largest diameters were measured to 
calculate mean values. For calculation of fenestration frequency, 
the cell area was measured using the threshold tool in ImageJ/Fiji 
(fenestrations area including) and fenestrations were manually 
counted (Fig. 2 Manual). Porosity was calculated using fenes
tration diameter distribution and the number of fenestrations 
individually for every image (for detailed calculations see Sup
plementary information SI.1.). 

II For the semi-automatic method, images were converted into bi
nary masks using the threshold tool with manually adjusted 
values for each image. A watershed function was then applied to 
avoid exclusion of merged fenestrations, and only objects within 
the fenestration size range were saved (“Analyse particles” Fiji 
tool, 50− 300 nm diameter and circularity above 0.4). Finally, 
fenestration diameter, the total area and number of fenestrations 
were measured and used to calculate porosity and fenestration 
frequency (Fig. 2 Semi-automatic).  

III The machine learning based automatic method was used for fast 
image processing. After training on four images (training time of 
about 1 h) all 20 images were processed and converted into 

simple segmentation binary masks in tiff format (Fig. 2 Auto
matic). Further analysis was the same as for the semi-automated 
method described above (analyse particles, size dependent object 
exclusion). 

2.2.3. Scanning Electron Microscopy (SEM) 

2.2.3.1. Sample preparation and imaging. Samples were prepared as 
previously described (Mönkemöller et al., 2018). LSEC were seeded for 3 
h on fibronection covered glass coverslips in RPMI-1640 medium (Sig
ma-Aldrich) and then fixed and stored in a mix of 4 % formaldehyde and 
2.5 % glutaraldehyde in cacodylic buffer. Samples were then processed 
with 1 h treatment with freshly made 1 % tannic acid in PHEM buffer, 1 
h of 1 % OsO4 in H2O, dehydrated in ethanol gradient (30 %, 60 %, 90 % 
for 5 min each, 5 times for 4 min in 100 % ethanol, and incubated twice 
for 10 min in hexamethyldisilane (HMDS), then left overnight to evap
orate. Before imaging, samples were mounted on metal stubs using 
carbon tape and silver glue to reduce charging and then sputter coated 
with 10 nm gold/palladium. A commercial SEM system (Sigma, Zeiss) 
was used for imaging with a 2 kV electron beam. Low magnification 
images (Fig. 3B) were obtained from 5 different areas of the sample with 
20 images of single cells in total. High magnification images (Fig. 3A, 
~6.5 nm/pixel) were taken for each of the 20 cells. 

2.2.3.2. Quantitative analysis.  

1. Fenestration diameters 

Contrast and brightness were adjusted for every image and the scale 
was set according to the scale bar. 

I Fenestrations were manually measured from 20 high magnifica
tion images; assuming elliptical shape, both the smallest and the 
largest diameter (along minor and major axis respectively) were 
measured and then used for the calculation of the area and 
roundness. 

Fig. 2. Representative analysis of SIM image of LSEC stained with CellMask 
Green. Red - fenestrations detected by semi-automatic method, blue – fenes
trations detected by automatic machine learning method, yellow marks – fen
estrations counted manually. 
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II The second semi-automatic method based on the Fiji threshold 
function consists of few steps (detailed example in Supplemen
tary information SI.2.). First, the contrast was adjusted to better 
visualize the edges of fenestrations and the image was inverted. 
Next, the threshold was manually set using the Huang algorithm 
to the point where single fenestrations but not their surrounding 
edges were covered. Images were then converted into binary 
masks and objects larger than 300 nm or smaller than 50 nm and 
with roundness below 0.4 were excluded. Every fenestration was 
then automatically measured and parameters such as area, di
ameters (min, max, mean) and roundness were calculated.  

III For fast image processing, machine learning was applied. First, 
the algorithm was trained using four images (training time of 
about 2 h) and then all 20 images were processed and converted 
into simple segmentation binary images. Fenestrations were then 
measured the same way as described for the semi-automated 
method.  

2. Porosity and fenestration frequency  

I Fenestrations were manually counted (Fig. 3B, yellow) and the 
cell area was calculated from the manually marked cell shape. 
The total area of fenestrations was calculated using fenestration 
number and previously measured diameter distribution from 
high magnification images (details in SI.1.).  

II The semi-automatic method was applied with parameters 
adjusted for every image individually as for the high magnifica
tion images described above (contrast adjustment, inversion, 
threshold and particle analysis exclusion by size) (Fig. 3B red). 
The total area and number of fenestrations were automatically 
measured after scale adjustment and used for the calculation of 
porosity and fenestration frequency.  

III For automatic analysis, the algorithm was trained using five low 
magnification SEM images and then all 20 images were pro
cessed. Simple segmentation binary images were then analyzed 
using ImageJ/Fiji similarly to the semi-automated method. 

2.3. User comparison 

Five individual users with different experience with image analysis 
were asked to analyze one high magnification SEM and nine SIM images. 
For the SEM image, each user was asked to manually measure the same 
700 marked fenestrations, set the scale by measuring the scale bar and 

perform analysis using semi-automatic and automatic methods accord
ing to the descriptions above. Then each of the 700 marked fenestrations 
were assigned with parameters (area of single fenestration, fenestration 
diameters (min, max, mean), and fenestration roundness). For SIM im
ages, all participants were asked to manually count fenestrations from 
nine whole images and then analyze all images using semi-automatic 
and automatic methods as described above. The parameters were 
measured by five different users using three different analysis methods. 
Results were cross-correlated between each other (every single user with 
every other user). 

2.4. Statistics 

All statistical analyses were performed using OriginPro software 
(OriginPro 2021, OriginLab Corp., Northampton, MA). The total 
numbers of analysed cells and fenestrations are summarized in the 
Table 2. For porosity and frequency parameters, the comparison be
tween the methods was based on the relation between the (semi-) 
automatic methods and manual (standard) approach. The linear corre
lation is necessary for the method to be useful in the experiments with 
expected changes in selected parameters. Therefore, linear regression 
was fitted to the data with the R2 coefficient describing linearity (the 
closer to 1 the more linear) and slope (tangent of the angle) describing 
the correlation between the values. A slope of 1 is preferred as the 
change in porosity/frequency measured by the (semi-) automatic and 
manual methods would remain the same even if the absolute values 
vary. Slopes lower or higher than 1 mean under- or over-estimation, 
respectively. 

Fig. 3. Representation of the SEM image analysis. (A) High magnification of LSEC imaged using SEM. The upper panel of the image represents the overlaid mask of 
detected fenestration by semi- and automatic methods (white) or automatic only (magenta). (B) Low magnification of LSEC imaged using SEM. Red - fenestrations 
detected by semi-automatic method, blue – fenestrations detected by the automatic machine learning method, yellow – fenestrations counted manually. 

Table 2 
Total number of analysed images per imaging technique.  

Imaging 
technique 

Image 
Magnification 

Number of 
images/cells 

Number of 
measured 
fenestrations 

Pixel 
size 
[nm] 

AFM 
High 26 (M,S-A, A) 625 4− 6 
Low 27  20 

SIM Low 20 
(M) 6 000 

20 (S-A) 60 000 
(A) 63 000 

SEM 
High 20 (M) 8 100 6− 7 

(S-A, A) 16 000 
Low 20  18− 20 

M – manual, S-A- semi-automatic, A - automatic. 
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Fig. 4. Analysis of AFM images. (A) Histogram of fenestration diameter distribution. The dotted lines represent fitted Gaussian curves from which the mean values 
were calculated. Data comes from 625 fenestrations from 26 high magnification images of sieve plates (see Fig. 1A). (B) Correlation of fenestration frequency 
calculated using Automatic and Manual counting. Each dot represents a single image (see Fig. 1B), 27 images in total. S - slope of the fitted linear function, ic - 
intercept. (C) comparison of single fenestration diameter measured manually and automatically with the assumption of elliptical fenestration shape. Max, min 
diameter – major and minor axis of the ellipse. (D) comparison of single fenestration area measured manually and automatically. (C, D) each dot represents a single 
fenestration measured by 3 different techniques. (E) Distribution of fenestration roundness measured by different techniques (roundness = ratio of min to max 
diameter). (F, G) correlation of roundness parameter between manually and automatically measured fenestrations. 
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3. Results and discussion 

In this section, the terms Manual, Semi-automatic and Automatic are 
used for the 3 quantitative analysis methods described in detail in the 
Materials and Methods section 

3.1. AFM image analysis 

Fenestration diameter distribution obtained from 26 high magnifi
cation AFM images show differences between the three analysis methods 
(Fig. 4A). Gaussian curves were fitted to calculate the mean diameter 
and the width of the distribution. The smallest mean diameter of 123 nm 
was obtained from manually measured data, semi- and automatic 
methods gave values of 136 nm and 150 nm, respectively. The larger 
diameter for non-manual methods may be related to the fenestration 
edge detection. Manual measurement is based on contrast and user 
judgement and may vary between the images. For semi- and automatic 
methods, the diameter is calculated back from the measured areas of 
single fenestrations with the assumption of circularity. Moreover, the 
detection of fenestrations by machine learning may require detection of 
the edge of the hole and it could therefore increase the total area and 
diameter of fenestration. This issue is related to the pyramidal shape of 
the AFM tip which may influence the intensity gradient corresponding 
with the height on the fenestration edge (more information about the 
AFM tip shape problems for fenestration measurement can we found in 
Zapotoczny and Szafranska (2017)). A pixel size of 4− 6 nm would 
explain that difference of 13/27 nm, which correlates with 2–4 pixels 
between the manual and (semi-)automatic methods (Fig. 4A). 

Individual analysis of each of the 625 fenestrations provides a 
comparison of each of the three analysis techniques for each pore. 
Fig. 4C shows the linear relation between the manually measured min 
and max diameters and the (semi-)automatic method calculated data. 
The fitted linear regression presents a good correlation of R2 = 0.94 and 
0.95 for the automatic and semi-automatic methods, respectively. The 
slope of the regression for both methods was 1.2 and the intercepts of 16 
nm and 10 nm for the automatic and semi-automatic methods, respec
tively. Both the slope above 1 and the intercept values confirm that the 
non-manual methods detect fenestrations as larger than the manual 
data, however, the good linear correlation makes the measurement 
comparable between the samples with differences in fenestration size. 
The same results have been observed for fenestration-by-fenestration 
analysis of the areas of single pores (Fig. 4D). The linear regression 
slope of 1.1 and R2 = 0.96 show a good linear correlation. 

Most of the previously published articles dealing with the measure
ment of LSEC morphology assumed circularity of fenestrations. Here we 
show that the roundness parameter – the ratio between minimum and 
maximum diameter, concentrates about the value of ~0.85 for all 
methods (Fig. 4E). Interestingly the distribution of the manual mea
surements is wider and the number of nearly circular fenestrations 
(0.95-1) is much higher than for (semi-)automatic methods. Moreover, 
the comparison of roundness of single fenestrations between the three 
methods shows a correlation between automatic and semi-automatic 
(Fig. 4G) but not between manual and automatic methods (Fig. 4F). 
This result may suggest the user bias towards a more circular shape as 
the choice of min/max diameter is subjective. The roundness distribu
tion from the automatic and semi-automatic methods is very similar and 
a slight increase towards more round fenestrations correlates well with 
the assumption that the machine learning algorithm detects the edges of 
the holes equally enlarging both min and max diameters and therefore 
increasing the roundness parameter. 

The fenestration frequency calculated using automatic methods 
shows good correlation with the manual measurement (Fig. 4B). Almost 
all measured data lay within 95 % confidence interval and slope of 0.92 
with R2 = 0.83 indicate linear correlation. 

3.2. SIM image analysis 

Twenty LSEC SIM images were analyzed in three different ways. The 
comparison between the manual method and the (semi)automatic 
methods (Fig. 5A) showed a linear correlation with R2 values of 0.85 and 
0.82, respectively. The correlation for SIM is similar to the AFM images 
which it is enough to be useful for comparison of data from different 
treatment groups. There are no significant differences in the measured 
numbers of fenestration per image between various analysis methods 
(Fig. 5B). Fenestration frequency was not calculated due to difficulties in 
the detection of cell boundaries. The Cell Mask dyes are a group of cell 
membrane dyes that provide great contrast needed for detection of 
fenestrations but further analysis and calculations can be optimized for 
single cells only on non-confluent samples where only a single cell is 
visible in the field of view of the microscope. Alternatively, cells can be 
separated manually. For samples with tight cell monolayers, the cell 
area can be normalized according to the visible number of cells for 
porosity/fenestration frequency calculations by subtraction of the mean 
area of nuclei (10 μm is a good approximation of diameter of LSEC 
nuclei). 

Fig. 5C shows the differences in the distribution of diameters. The 
semi-automatic method shifted distribution towards a larger apparent 
fenestration size with a mean value of 178 nm. Automatic and manual 
methods gave similar results with mean diameters of 138 nm and 130 
nm, respectively. Machine learning showed a high number of small 
pores below 75 nm which may be an artifact of the detection algorithm 
and can be optimized by the increased training time. For all methods 
objects smaller than 50 nm were excluded. A pixel size of 20 nm is not 
sufficient for the detection of holes below 50 nm due to Nyquist’s 
sampling criterion. The mean diameter values were calculated as centers 
of the fitted Gaussian distribution curves to compensate for this. The 
difference between semi-automatic and the other methods can be biased 
by the manual adjustments of the cut-off intensity value. The threshold 
must be set individually for every image so changes towards both 
smaller and larger diameters can be introduced by the users. It is not 
possible to use a fixed value as the intensity in the perinuclear area 
varies between the cells and would induce artifacts that influence the 
segmentation more than the manual adjustment. 

Similarly to the data from the AFM images, the roundness parameter 
was calculated with the assumption of fenestration elliptical shape. The 
shift towards a more circular shape can be observed for manual mea
surements which is consistent with the previous observation, most 
probably resulting from the user bias. Also, the roundness values 
concentrate around a value of 0.9 for SIM images compared to 0.82 for 
AFM images. This difference is connected with the imaging technique – 
raw SIM images require reconstruction which will make small objects at 
the edge of achievable resolution appear more round in shape due to 
Wiener filtering (part of the SIM reconstruction algorithm). Adjustment 
of the image size using bilinear interpolation makes the shape even more 
circular. Nevertheless, the benefits of the decreased pixel size, which 
allows better precision of the quantitative analysis, outweigh the 
downsides. 

3.3. SEM image analysis 

Twenty high magnification SEM images were quantitatively 
analyzed using three different methods. Comparisons between manual 
and (semi)automatic techniques showed differences in the shape of 
mean diameter distribution (Fig. 6A). Mean fenestration size was 
calculated from the manually measured min and max diameters or for 
(semi-)automatic methods calculated from the detected areas, assuming 
circularity of holes. Only manually measured values had a simple 
Gaussian distribution with the center at 175 nm. The other two methods 
show the results with at least double Gaussian shape peaks; the first one 
being within the regular fenestration size range with centers at 178 nm 
and 191 nm for semi-automatic and automatic methods respectively, 
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and the second maximum with centers at 100 nm and 120 nm. The 
additional detected objects are identified on the images as non- 
transmembrane protrusions in the cell membrane, most probably 
endocytic vesicles arising from the prominent endocytic properties of 
LSECs. Their size and contrast, being similar to fenestrations, make them 
impossible to be separated from fenestrations using threshold or Ilastik 
analysis, however, they can be removed from further calculations and 
analysis using the multi-peak Gaussian curve fitting or by cutting off all 
the objects below a certain size. The first approach requires more time as 
it should be adjusted for every cell/image but interferes less with the 
data. The second approach can be automated to a cut-off value set in the 
middle of the two maxima, but it can significantly affect the results if 
changes in fenestration diameters towards smaller values are expected 
(two peaks overlapping). 

Fenestration-by-fenestration analysis with three different methods 
shows a good linear correlation between manual and (semi)automatic 
measurements with R2 = 0.95− 0.96 and a slope of 1. The automatic 
compared to the semi-automatic approach causes a 16 nm shift towards 
larger apparent fenestration size and area of 2300 nm2. Similarly to the 

analysis of the AFM images, the machine learning algorithm is detecting 
the edge of the holes resulting in the systematic error with the value 
connected to the pixel size. This error would not affect the comparison 
between the treatment groups with expected changes in diameter but 
should be taken into consideration for comparison between data 
calculated with different methods of analysis. 

Porosity and fenestration frequency were calculated from low 
magnification images. Both semi-automatic and automatic methods 
show a linear correlation of the values of porosity when compared with 
manual measurements, R2 = 0.89 and 0.91 (Fig. 6D). However, the 
slopes of the linear regression are 0.63 and 0.9 respectively. The dif
ference in slope suggests that the semi-automatic method is under
estimating the value of calculated porosity. The difference in slope 
values between the methods can be more pronounced with the increase 
of cell porosity due to drug treatment. As a result, smaller changes in cell 
porosity can be wrongly assigned as not significant. The smaller inter
cept of linear regression of the semi-automatic compared to the auto
matic method makes it more similar to manual measurement, however, 
the difference in slope is more important for the usefulness as a tool for 

Fig. 5. Analysis of SIM images. (A) Correlation between manually and automatically counted fenestrations. Each dot represents a single image (see Fig. 2), 20 images 
in total. (B) Comparison of fenestration frequency between the studied groups. (C) Distribution of fenestration diameter. The dashed line represents fitted Gaussian 
curve from which the average value was calculated (tip of the curve). Fenestrations smaller than 50 nm were excluded due to a pixel size of 20 nm. The total number 
of fenestrations measured – 6 000, 60 000, 63 000 from manual, semi-automatic and automatic methods respectively. (D) Distribution of the roundness parameter 
calculated from measured fenestrations. 
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comparison between treatment groups. 
Fenestration frequency showed a weaker linear correlation than 

porosity with R2 = 0.63 and 0.81 for Ilastik and threshold respectively 
(Fig. 6E). These results correlate with the detection of the small 

fenestration-like objects shown as a second maximum on diameter dis
tribution (Fig. 6A). Because of the small size of these structures, they do 
not significantly affect porosity, but their number is significant 
compared to detected fenestrations and this influences fenestration 

Fig. 6. Analysis of SEM images. (A) Fenestration diameter distribution measured from high magnification SEM images (see Fig. 3A). The dashed line represents fitted 
Gaussian curves, for semi-automatic and automatic methods a multi-peak fit was used to exclude the non-fenestration objects (thin line Gaussian curve). The total 
number of fenestrations measured – 8 100 from 20 images/cells for manual measurement and 16 000 from 20 images/cells for (semi-)automatic methods. Correlation 
of single fenestration area (B) and diameter (C) between manual and automatic methods. Δ – intercept between fitted linear functions. Comparison of porosity (D) 
and fenestration frequency (E) between manual and automatic methods. Each point represents a single image (see Fig. 3B), total number of images – 18. (F) the 
relation between frequency and porosity measured using different methods. 
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frequency. The above proposed approaches of removing these structures 
may help to reduce the effect on fenestration frequency and enable 
comparison between the groups if changes in frequency are expected to 
be independent of porosity changes (for example changes in fenestration 
diameter may compensate for the difference in fenestration number and 
show no changes in porosity). The comparison between porosity and 
fenestration frequency among the studied methods (Fig. 6F) shows a 
good correlation for manual measurement due to the direct connection 
between these parameters – the fenestrated area used to calculate 
porosity is calculated from the number of fenestrations. The automatic 
method shows a good linear correlation with R2 of 0.93 while the semi- 
automatic method presents R2 of 0.74 which points to the influence of 
detected fenestration-like objects in the calculation of fenestration 
number. 

3.4. User comparison 

To compare the differences between users and study user bias, sets of 
SIM and SEM images were analyzed by five researchers with different 

levels of imaging experience, from beginner to advanced user. 

3.4.1. SEM 
Firstly, 700 fenestrations from Fig. 3A were individually measured 

(fenestration-by-fenestration) by five users using the three studied 
methods and then the parameters were cross-correlated between all the 
users. Next, mean values were calculated for every user and the average 
was calculated for each method. Interestingly, the average values of 
parameters were similar for all techniques (Table 3). However, differ
ences between the users (Fig. 7) and SD values of the cross-correlation 
show significant differences among the users. The biggest deviation is 
observed with the automatic method; the cross-correlation parameter 
for a single fenestration area was only 3.5 %, but the standard deviation 
of over 20 % suggested significant differences between the users. One of 
the main reasons for that may be the specificity of the machine learning 
algorithm. Each user trained the software independently and small dif
ferences can lead to different ways of detecting fenestrations. Every 
fenestration on a SEM image has a visible, high contrast edge which can 
be included or excluded from the detected area. Differences between the 
calculated mean values of the diameter (Fig. 7B) for manual and auto
matic methods are of about 6− 7 nm which is similar to the pixel size of 
this image - 6.5 nm. The semi-automatic method is intensity and contrast 
based and therefore, less sensitive to user preferences about the fenes
tration edge. Fenestrations are detected due to high contrast edges 
characteristic for SEM images - steep edges give a higher signal 
compared to a flat cell surface or substrate in the fenestration lumen. 
This hypothesis was confirmed by merging binary images of detected 
fenestration from automatic and semi-automatic methods showing rings 
around the holes (see Supplementary information SI.3). Small differ
ences in fenestration roundness among the users using the semi- 
automatic method (Fig. 7C) also suggest that the shape of the detected 
holes is the least biased by this method. A shift towards a more circular 
shape (roundness value closer to 1) is observed for manual measure
ments which (consistent with previous observations) confirms the in
fluence of the assumption of circularity by the users. 

3.4.2. SIM 
Nine SIM images were analyzed independently by five users with the 

three methods. Each image was then cross-correlated between all users 
and (semi-)automatic methods were compared with manual counting. 

Table 3 
Parameters of fenestrations measured by 3 different methods from SEM images.  

Parameter  Manual Semi- 
automatic 

Automatic 

Area 

Average 
[nm2] 

26,926 ±
2140 

26,818 ± 443 26,488 ±
3767 

User comp. 
[%] 1.25 ± 12 0.10 ± 1.8 3.45 ± 22.6 

Max 
diameter 

Average [nm] 199 ± 7 201 ± 1.8 200 ± 13 
User comp. 
[%] 

0.34 ± 5.25 0.03 ± 0.86 0.79 ± 10.29 

Min 
diameter 

Average [nm] 168 ± 7 166 ± 1.4 165 ± 12 
User comp. 
[%] 

0.46 ± 6 0.03 ± 1 1.10 ± 12 

Mean 
Average [nm] 184 ± 7 184 ± 1.4 182 ± 13 
User comp. 
[%] 0.30 ± 5.7 0.02 ± 0.87 0.8 ± 10.9 

Roundness 
Average 0.849 ±

0.011 
0.828 ± 0.001 0.830 ±

0.009 
User comp. 
[%] 

0.000 ±
0.015 

0.000 ± 0.001 0.000 ±
0.019 

±SD; user comp. = comparison between users. 

Fig. 7. Comparison of analysis methods between the users. Each point represents one user and the mean value of the presented parameter calculated from 700 
measured fenestrations from SEM image. 
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The mean value of fenestration number per image was similar among the 
users (0.2–3.3 %), however, the difference between users within one 
method was about 10− 12 %. An example of one of the analyzed images 
(Fig. 8) shows the differences between the users and methods. Manual 
counting has the smallest variation while (semi-)automatic methods 
present a wider range of calculated numbers. The main source of dif
ferences between the users using (semi)automatic methods is the large 
pixel size which causes the merging of fenestrations within one sieve 
plate during segmentation. Lowering the threshold or retraining the 
machine learning software leads to the presence of undetected fenes
trations while the watershed function, used to split the merged holes, 
leads to splitting single fenestrations which causes an elevated number 
of detected objects (Table 4). The decision is made by each user and if it 
is standardized, the error can be minimized. 

3.5. Discussion 

In this study we investigated the use of three methods for quantita
tive analysis of LSEC images: manual measurement or counting of fen
estrations, a semi-automatic threshold-based method and an automatic 
machine learning-based method. All three techniques have their ad
vantages and disadvantages, mainly time efficiency at the cost of accu
racy. The manual method was, until recently, the standard way of 
fenestration analysis due to the lack of proper software to semi-automate 
or automate the process. It was considered to be the gold standard, but 
the lack of scoring description prevents a proper comparison between 
results from different studies. Recently, attempts to apply home-made 
algorithms and machine learning have been reported (Di Martino 
et al., 2018; Kong and Bobe, 2021; Li et al., 2020), but their application 
requires a certain level of programming skills not available to every 
researcher. Here we report two methods which can be easily applied to 
experimental data where differences in fenestration diameter and/or 

number are expected. 
The efficiency of each method depends mainly on the number of 

samples which is directly correlated with the time needed for analysis. 
This can be optimized in each study by designing experiments that 
would give minimum but sufficient sets of data for statistical analyses. 
The most time consuming is the manual method but the poor image 
quality or high number of artifacts may prevent the use of other, faster 
techniques. User comparison showed also that there is significant user 
bias for manual measurements so all analyses should be performed by 
one single user, ideally blind to the sample id. If there is a need for data 
analysis to involve more than a single person, the threshold method 
would introduce the smallest bias for fenestration size measurements. 
Fenestration frequency and porosity show similar differences among the 
users for all three methods so the choice can be based on to the quality of 
the images. 

The data from all three imaging techniques suggests that the preci
sion of both (semi-)automatic methods is similar and linear correlation 
allows us to use them for comparison of the parameters between 
experimental groups. All experiments where changes in fenestration size 
and/or number are expected can be analyzed using the semi-automatic 
or automatic method. However, the porosity calculated from SEM im
ages using the semi-automatic method may seem underestimated. The 
comparison between the manual and semi-automatic methods shows a 
linear correlation with a slope below 1, which indicates that some 
fenestrated areas are not detected in the cells with higher porosity/ 
higher number of fenestrations 

The machine learning software includes a batch processing feature 
where, after training, tens or even hundreds of images can be auto
matically analyzed. The only limitation is the computer processing 
power which affects the speed. The main disadvantage of this approach 
is the requirement of images with similar contrast and brightness. In 
practice, each sample or group of samples may require adjustments for 
these parameters, and depending on the number of samples, this may 
reduce the time advantage over the semi-automatic method. Although, 
the threshold-based approach requires manual adjustment of the cut-off 
value for each image segmentation but still, the large number of fenes
trations is analyzed for each manual step. It is a significant advantage 
over the fully manual approach, where single manual step gives infor
mation about only one fenestration. 

For fenestration size measurements, both (semi-)automatic methods 
showed a systematic error that needs to be taken into consideration. The 
source of this error was identified and connected with the edge of the 
fenestration detection, related to the pixel size of the image. For the 
automatic method, the batch processing of all images using the same 
trained algorithm would solve this problem. For manual and semi- 
automatic methods inclusion/exclusion must be decided before the 
analysis. 

4. Conclusions 

All three proposed methods can be applied for fenestration analyses, 
but the best method should be selected based on the following criteria: 
the available imaging technique, the achievable quality of the images, 
the time for the analysis and the predicted outcome in measured 

Fig. 8. Comparison between users’ measurements of fenestrations number 
using three different techniques for one of the analysed SIM images. 

Table 4 
Comparison of fenestration number between the users and analysis methods for 
SIM images.  

Change in fenestration number compared to manual counting [%] 

User Semi- 
automatic 

Automatic Manual 

I 10.1 ± 13 10.2 ± 12  
II 18.5 ± 9 8 ± 11  
III − 7.4 ± 15 − 5.9 ± 11  
IV − 4.8 ± 13 − 11.5 ± 12  
V − 4.5 ± 14 3.5 ± 13  
Cross correlation between users [%] 1.9 ± 9.5 3.3 ± 12 0.17 ± 11  

Table 5 
Comparison of properties of the three methods of quantitative analysis.  

Property Manual Semi-automatic Automatic 

Speed − − − − + ++

User bias − /+ + − /+
Accuracy - fenestration number ++ − +

Accuracy - porosity +/− + +

Accuracy - diameter +/− ++ +

Artifacts sensitive ++ − − − /+
Image quality sensitive ++ − − − /+
User friendly ++ ++ +
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parameters. The pros and cons of the three selected methods are listed in 
Table 5. 

We emphasize the need for small-scale pilot experiments to assess 
both the best imaging technique as well as the predicted range of 
changes in the LSEC morphology parameters. The time invested in the 
analysis of preliminary results will lead to the best possible protocol for 
further analysis. The combination of more than one analysis method can 
also be beneficial, for example, the best accuracy of diameter mea
surement was shown with the semi-automatic method while the number 
of fenestrations is most precisely detected manually. 

The main limiting factor – time – can be overcome by automation, 
which is getting easier with the developments of new and more precise 
software and ongoing advancements in the field of microscopy. The 
results of this study show that the semi-automatic and automatic 
methods can be a timesaving alternative for the standard manual 
approach, but considerations of suitable methods are needed prior to 
application. 

The choice of the best analysis method has to be based on the quality 
of every experimental data set. We suggest to first focus on obtaining the 
best possible image quality, within reasonable imaging time. For the 
fenestration size measurements, we recommend use of semi-automatic 
or automatic method. Automatization allows measurement of thou
sands of fenestrations at the same time compared to manual measure
ment of tens of fenestrations; it provides a better statistical overview and 
removes user bias manifesting as an increase in the roundness param
eter. For the porosity and fenestration frequency measurements we 
recommend the use of the automatic method as it is the most time 
efficient simultaneously processing of many images. If the image quality 
is poor, and artifacts do not allow the use of automatic methods, the 
manual approach may be necessary. When using (semi-)automatic 
methods we recommend using the manual method for small data sets as 
a reference, especially if the changes in porosity or fenestration fre
quency between the experimental groups are small. 

The above strategies for scoring LSEC porosity using SEM, SIM and 
AFM imaging can also be applied to other super resolution imaging 
modalities applied to LSEC, e.g. dSTORM (Mönkemöller et al., 2014; 
Mao et al., 2019) or STED (Di Martino et al., 2018). These latter two 
methods have the highest reported optical resolution, at 10− 20 nm. 
(Semi-)Automation of the LSEC porosity scoring process, in combination 
with current and new developments in super-resolution imaging, will 
accelerate the evaluation of LSECs in health, disease and aging, thus 
aiding to development of therapies that reverse the effects on LSEC 
defenestration, a key phenotypic feature in various diseases and ageing. 
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