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ARTICLE INFO ABSTRACT
Keywords: Objectives: To observe changes in sleep from baseline and during an altitude training camp in elite endurance
acclimatization athletes.
biathlon B Design: Prospective, observational.
;foss'?ountfy skiing Setting: Baseline monitoring at <500 m for 2 weeks and altitude monitoring at 1800 m for 17-22 days.
ypoxia

Participants: Thirty-three senior national-team endurance athletes (mean age 25.8 + S.D. 2.8 years, 16 women).
Measurements: Daily measurements of sleep (using a microwave Doppler radar at baseline and altitude), oxy-
gen saturation (Sp0;), training load and subjective recovery (at altitude).
Results: At altitude vs. baseline, sleep duration (P = .036) and light sleep (P < .001) decreased, while deep
sleep (P < .001) and respiration rate (P = .020) increased. During the first altitude week vs. baseline, deep
sleep increased (P = .001). During the first vs. the second and third altitude weeks, time in bed (P = .005),
sleep duration (P =.001), and light sleep (P < .001) decreased. Generally, increased SpO, was associated with
increased deep sleep while increased training load was associated with increased respiration rate.
Conclusion: This is the first study to document changes in sleep from near-sea-level baseline and during a
training camp at 1800 m in elite endurance athletes. Ascending to altitude reduced total sleep time and light
sleep, while deep sleep and respiration rate increased. SpO, and training load at altitude were associated
with these responses. This research informs our understanding of the changes in sleep occurring in elite
endurance athletes attending training camps at competition altitudes.
© 2021 The Authors. Published by Elsevier Inc. on behalf of National Sleep Foundation. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

subjective recovery

Introduction changes are considered to represent the main mechanism for

improved endurance performance at sea level following periods of

Altitude training is a common strategy employed by elite endur-
ance athletes to induce physiological adaptations, with a potential to
improve subsequent performance at altitude and/or sea level.'”
Thus, elite endurance athletes commonly integrate training camps at
low-to-moderate altitudes (eg, ~ 1400-2500 m) lasting 2—4 weeks
into their annual training periodization.> The most extensively stud-
ied adaptive response linked to altitude training is the erythropoie-
tin-driven increases in red blood cell volume and total hemoglobin
mass.? Although there are conflicting views,>* these hematological

*Corresponding author: Maria Hrozanova, MSc, Centre for Elite Sports Research,
Smistadvegen 11, 7026 Trondheim, Norway.
E-mail address: maria.hrozanova@ntnu.no (M. Hrozanova).

https://doi.org/10.1016/j.sleh.2021.08.007

altitude training.”

Optimization of altitude adaptations depends on various factors, such
as the hypoxic dose, training load and recovery, oxygen saturation
(Sp0,), iron and energy availability and illness status.>>° The combined
stressors of training and hypoxia at altitude place increased demands on
recovery, posing a larger risk for illness, maladaptation, overreaching
andjor overtraining.>>” Sleep is essential for physiological processes that
facilitate recovery from training and is crucial for long-term performance
development.® However, when acutely exposed to altitude athletes often
report sleep disruptions, such as reduced sleep duration and sleep effi-
ciency (for a review, see Roberts et al”). Living at altitude during a train-
ing camp may, therefore, have a detrimental effect on athletes’ sleep,
recovery and subsequent adaptations.

2352-7218/© 2021 The Authors. Published by Elsevier Inc. on behalf of National Sleep Foundation. This is an open access article under the CC BY license
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Most existing studies on the altitude-related changes in sleep
have investigated nonathletes exposed to high altitudes (eg, ~ 4000-
5000 m).'°~'3 Previous findings in athletes have shown that immedi-
ately upon ascent from near sea level (430 m) to high altitude (3600
m), a group of soccer players exhibited reduced rapid eye movement
(REM) sleep, which was measured using polysomnography (PSG).!*
In the same group of athletes, actigraphic recordings showed acute
effects of altitude leading to reduced sleep duration and sleep qual-
ity.'> A comparison group of altitude-native peers did not experience
such sleep changes, which suggests chronic adaptations or underly-
ing differences in sleep patterns in athletes residing permanently at
moderate-to-high altitudes.’® Reductions in deep and REM sleep
have also been reported in recreational endurance athletes acutely
exposed to a simulated altitude of 2000 m.'®

Sleep changes during longer sojourns at altitude have been exam-
ined using both terrestrial'*'>!” and simulated'® altitude. In the
aforementioned group of soccer players ascending from near sea
level to 3600 m, the reduction in REM sleep returned to sea-level val-
ues following 14 days of exposure.'* In a study of recreational cyclists
who slept at a simulated altitude of 2650 m for 15 nights, REM sleep
increased on nights 8 and 15 compared to the first night.'® Another
study conducted on soccer players showed that acute reductions in
total sleep time and subjectively-measured sleep quality following
transmeridian travel and ascent to 1600 m stabilized after 4-6 days,
and that a further ascent to 2150 m did not negatively influence
sleep.’” While these findings demonstrate changes in sleep at moder-
ate-to-high altitudes, no previous studies have examined potential
changes in sleep and sleep-stage distributions during acclimatization
at low-to-moderate altitude (~ 1400-2500 m) in elite endurance ath-
letes.

Existing studies have utilized PSG (considered the gold standard
in sleep measurement),'* actigraphy,’” and sleep diaries.'” While
PSG can reliably detect the different sleep stages, it is costly and typi-
cally limited to short time periods (see eg, Sargent et al'*). Actigraphy
and sleep diaries are easy to use and cheaper than PSG, and have rep-
resented the primary choice for sleep monitoring in athletes’ natural
surroundings. However, actigraphy has limited specificity'® and can-
not differentiate between sleep stages, while sleep diaries may be
subject to biases linked to recall,’® common method?! and social
desirability.? Recently, the development of a reliable, noninvasive
tool for sleep monitoring using the microwave Doppler radar (DR)
technology has evidenced good estimation ability of sleep stage clas-
sification when compared to PSG?>. The technology has already been
applied in long-term monitoring of sleep in athletes.”*

To extend our current understanding of elite endurance athletes’
sleep characteristics at altitude, the present study aimed to observe
sleep during an ~ 3-week altitude training camp with elite endur-
ance athletes residing at 1800 m, and the time course of sleep
changes in relation to near-sea-level baseline measures, using a
novel, noninvasive microwave DR sleep monitor. It was hypothesized
that exposure to altitude would lead to variations in athletes’ sleep.
Specifically, it was hypothesized that acute exposure to altitude
would result in shorter total sleep time and changes in sleep-stage
distributions (ie, reduced deep and REM sleep). It was further
hypothesized that the acute effects of altitude on sleep would be
diminished in the second and third weeks at altitude.

Materials and methods
Participants
Thirty-seven senior national-team endurance athletes, of which

25 were cross-country (XC) skiers and 12 were biathletes, volun-
teered to participate in the study. Of these athletes, 4 dropped out

due to illness and early departure from the altitude training camp.
Thus, 33 athletes completed the study (22 XC skiers and 11 biath-
letes; 16 women and 17 men). The mean =+ S.D. characteristics of the
final sample were: age 25.8 + 2.8 years, body mass 71.3 + 10.3 kg,
height 171.9 + 21.1 cm. All athletes were lifelong residents at near
sea level (ie, 0—500 m), and none suffered from sleep disorders at the
time of, or prior to the study. All athletes were fully informed about
the nature of the study before providing written consent to partici-
pate. The study was conducted in accordance with the Declaration of
Helsinki (1964) and its later revisions, and approved by the regional
ethical review board in Umea, Sweden (reference: 2018-46-31M).

Procedures

A prospective, observational design was employed to monitor sleep
before and during an ~ 3-week-long altitude training camp. Prior to the
data collection period, athletes received face-to-face and written instruc-
tions on how to place and operate the sleep monitoring equipment. Sleep
was initially monitored at baseline (ie, <500 m) for 2 weeks, then at a ter-
restrial altitude of 1800 m (defined as low altitude by Birtch and Saltin?°)
during the teams’ preseason training camps in Font Romeu, France. This
altitude was chosen based on its relevance to the Beijing 2022 Olympic
Winter Games, where most endurance events are due to be held at an
altitude of ~ 1650-1700 m. During the training camps, the XC skiers and
biathletes spent 17 and 22 nights at altitude, respectively. Athletes slept
and trained at altitude, employing the so-called “live high-train high”
method.>?° No sleep education was provided before or during the sleep-
monitoring period and athletes were free to consume caffeine and other
nutritional supplements under the guidance of their coaches and support
staff. Athletes were offered technical support throughout the data collec-
tion period to address and solve issues related to the sleep monitoring. In
addition to daily monitoring of sleep, athletes’ resting peripheral, training
load and subjective recovery were measured daily during the altitude
training camp.

Measurements

Sleep

Sleep was monitored using fully unobtrusive microwave DR (Somnofy
version 0.7, VitalThings AS, Norway), which utilizes impulse radio ultra-
wideband (IR-UWB) pulse radar, Doppler effect and fast Fourier transfor-
mation to measure the movement and respiration rate of a sleeping indi-
vidual.®> The raw data for movement and respiration, processed by a
machine-learning algorithm, are used to calculate time in bed, sleep onset
latency, total sleep time, light sleep, deep/slow wave sleep, REM sleep,
sleep efficiency and respiration rate during non-REM sleep (see Table 1
for descriptions and abbreviations of the sleep variables). Recently, a full
validation against PSG showed that the accuracy of the Somnofy sleep
monitor was 0.97 for sleep, 0.72 for wake, 0.75 for light sleep, 0.74 for
deep sleep and 0.78 for REM sleep. The overall Cohen’s kappa for the
Somnofy monitor was 0.63, indicating substantial agreement with PSG.
Thus, the sleep monitor represents an adequate alternative to PSG for
quantifying and classifying sleep, wake, and sleep-stage measurements in
healthy adults,?® suggesting superiority to other portable and unobtrusive
tools for sleep assessment.?’

Oxygen saturation

Resting peripheral SpO, was monitored daily during the altitude
training camp before breakfast in a fasted state, between ~ 6:30 and
9:30 AM, in a field laboratory. Athletes wore a finger-clip pulse oxim-
eter (Onyx Vantage, Nonin Medical B.V., Netherlands) on the index
finger while seated for 60 seconds. Four individual measurements of
SpO, were taken at 5-second intervals between 45-60 seconds. The 4
measurements were averaged and reported as the daily value.
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Table 1
Descriptions of the assessed sleep variables
Sleep variable Abbreviation ~ Units  Characteristics of sleep variable
Time in bed TIB h Time spent in bed, including time awake
Sleep onset latency SOL h Time from when the athlete intends to sleep to sleep onset
Total sleep time TST h Total sleep time obtained from sleep onset to sleep offset
Light sleep LS h Total time in light sleep (stage N1 and N2)
Deep/slow wave sleep SWS h Total time in deep sleep (stage N3)
Rapid eye movement sleep REM h Total time in REM sleep
Sleep efficiency SE % The percentage of total time in bed spent asleep
Respiration rate during non-REM sleep ~ NREM RPM n The number of respiratory ventilations per minute during non-REM sleep
Training load altitude), taking into consideration the influence of SpO,, training load

Training load (arbitrary units, AU) was quantified by multiplying total
training duration by the session rating of perceived exertion (SRPE). Total
training duration, measured in minutes, was retrieved from athletes’
training diaries and verified against athletes’ heart rate data. sRPE was
rated on a modified Borg category-ratio scale, utilizing a category scale
with ratio properties ranging from 0 (“No exertion at all”) to 10
(“Maximal”).?®%° The sRPE has been shown to be a valid marker of exer-
cise intensity.>® Although measurements of training load were available
at altitude only, athletes and coaches provided verbal confirmation that
training loads did not differ considerably between the baseline and alti-
tude training camp measurement periods.

Subjective recovery

Subjective recovery was assessed immediately before the SpO,
measurements were made, using the Overall Recovery item from the
Short Recovery and Stress Scale (SRSS).>! The Overall Recovery item
was described as “Recovered, rested, muscle relaxation, physically
relaxed”. Athletes rated their current subjective perception of recov-
ery at altitude, in relation to their best subjective recovery state, on a
7-point Likert scale, ranging from 0 (“Does not apply at all) to 6
(“Fully applies”). Thus, higher scores indicated better subjective
recovery. The SRSS has been shown to be both valid and reliable for
the monitoring of athletes’ recovery-stress states.>>

Data collection compliance

The total number of nights in the study was 1078. However, some
sleep data were lost due to technical issues with connecting the sleep
monitor to the Wi-Fi, or a lack of access to electrical power. Data
points were further removed when identified as extreme outliers
(defined as data points >3 box lengths from either hinge of the box-
plot). In total, 125 nights of baseline sleep data and 173 nights of alti-
tude sleep data were removed. Thus, 780 sleep data points were
analyzed, reflecting 72.4% compliance. For SpO, and subjective recov-
ery, 3.3% of the data collected at altitude was lost due to illness. 6.2%
of training load data at altitude was lost due to illness and mistakes
with reporting training durations.

Statistical analysis

The collected data created a clustered data structure, in which
repeated measurements of objective sleep data were clustered within
the individual athletes. By virtue of the clustered data structures,
there are dependencies of the repeated measurements within indi-
viduals. If this dependence is not taken into consideration in the sta-
tistical approach, an issue with excessive type I errors and biased
parameter estimates might occur. Therefore, multi-level modeling in
Mplus, version 8.3,>* was utilized to carry out the statistical analyses
by clustering the repeated measurements (level-1) within the ath-
letes (level-2).

Random intercept models were used to investigate whether sleep
varied between baseline (near sea level) and the training camp (at

and subjective recovery as covariates. The duration of the altitude training
camp was divided into the first week, and the second and third weeks.
The second and third weeks were merged because not all athletes spent
the full third week at altitude. Random intercept models assume that the
only variation between individuals is at their intercept and that the
effects of the predictor variables are the same for each individual (fixed
slope). Three sets of random intercept models were tested: (1) effects of
altitude (predictor, 0 = baseline, 1 = pooled days at altitude), SpO, (predic-
tor, continuous variable), training load (predictor, continuous variable)
and subjective recovery (predictor, continuous variable) on sleep (out-
come), (2) effects of the first week at altitude (predictor, O = baseline,
1 = first week at altitude), Sp0O,, training load and subjective recovery on
sleep (outcome), and (3) effects of the second and third weeks at altitude
(predictor, O = first week at altitude, 1 = second and third weeks at alti-
tude), SpO,, training load and subjective recovery on sleep (outcome).

Associations on the within level refer to the effects of the day-to-
day variation within each athlete, and with the between-level effects
(ie, the average differences between athletes) removed. These results
are presented by reporting the estimated effect 4+ standard error (S.
E.) and associated Pvalue. On the between level, the results show the
estimated variances of the predictor variables across athletes (ie,
interindividual variances). For each random intercept model, the
intraclass correlation (ICC) was calculated, representing the extent to
which the dependent values of occasions of measurement in the
same participant resemble each other compared to those from differ-
ent athletes. For all random intercept models, R? values stating the
explained variance on the within level were reported. The alpha level
was set at P< .05 for all models. IBM SPSS (version 25.0) was used to
conduct demographic and descriptive statistical analyses, which are
presented as mean =+ standard deviation (S.D.).

Results

Descriptive statistics for the sleep variables at baseline and the
sleep variables, SpO,, training load and subjective recovery at altitude
during the first week, the second and third weeks combined and
overall are shown in Table 2. Mean sleep data (with 95% confidence
intervals) are visually presented in Fig. 1.

Changes in sleep from baseline to altitude

Random intercept models showed that for altitude overall, TST
decreased by 9.0 + 4.2 minutes (P=.036), LS decreased by 12.0 4+ 3.0
minutes (P< .001), SWS increased by 7.8 + 1.8 minutes (P < .001)
and NREM RPM increased by 0.22 + 0.09 respirations per min (P=
.020) compared to baseline (Fig. 2). Additionally, each unit increase in
SpO, was associated with an increase in SWS by 1.8 £+ 0.6 minutes
(P=.017), and each unit increase in training load was associated with
an increase in NREM RPM by 0.02 + 0.01 respirations per minutes (P=
.006). The explained within-athlete variances (R?) of these effects on
sleep were low, ranging from 0.9% to 7.5%. Between-athlete variances
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Table 2

Descriptive statistics for objectively-measured sleep variables, resting peripheral oxygen saturation, training load, and subjective recovery in 33 elite
endurance athletes at near sea level (baseline) and at altitude (overall, week 1, and weeks 2 and 3 combined)

Near sea level Altitude
Baseline Overall Week 1 Weeks 2/3

Variable Mean  S.D. Mean S.D. Mean S.D. Mean S.D.

Time in bed (h) 915 093 9.08 0.82 9.18 0.70 9.01 0.90
Sleep onset latency (h) 0.51 034 0.44 0.36 043 037 0.44 0.34
Total sleep time (h) 744 099 7.35 0.87 7.44 0.79 7.29 0.93
Light sleep (h) 460 072 443 0.68 4,52 0.59 435 0.73
Deep/slow wave sleep (h) 1.06 040 1.20 0.37 1.20 0.37 1.19 0.36
REM sleep (h) 1.78  0.56 1.73 0.53 1.72 0.52 1.74 0.54
Sleep efficiency (%) 80.93  8.01 80.49 6.70 80.56 6.78 80.43 6.65
NREM RPM (N) 1526  2.06 15.49 2.08 15.43 2.08 15.54 2.09
Resting peripheral oxygen saturation (%) - - 96.6 1 96.8 1 96.5 1

Training load (au) - - 77279  19.05 638.71  25.95 84328  24.87
Subjective recovery (au) - - 3.54 .03 3.79 .06 341 .04

au, arbitrary values; NREM RPM, non-REM respirations per minute; REM, rapid eye movement sleep; S.D., standard deviation.

were significant for all sleep variables (TIB: P=.027; SOL: P=.002; TST,
LS, SWS, REM, SE, NREM RPM: P< .001). ICC values showed that 14%
to 32% of the total variance in TIB, SOL, TST, LS, SWS, REM and SE was
due to differences between athletes, while 91% of the variance in
NREM RPM was due to differences between athletes. Full results for
the ICC values and between-athlete variances in sleep, comparing
altitude to baseline, are presented in Table 3A.

Random intercept models investigating the effects of the 1 week
at altitude on sleep showed that SWS increased by 7.8 + 2.4 minutes
(P= .001) compared to baseline (Fig. 2). Additionally, each unit
increase in SpO, was associated with a decrease in LS by 4.8 + 2.4
minutes (P=.023) and with an increase in SWS by 1.8 &+ 1.2 minutes
(P=.049). Furthermore, each unit increase in training load was associ-
ated with an increase in NREM RPM by 0.04 + 0.01 respirations per
minutes (P< .001). The explained within-athlete variances (R?) of
these effects on sleep ranged from 0.3% to 8.7%. Between-athlete var-
iances were significant for all sleep variables (SOL, TST, LS: -P= .001;
SWS, NREM RPM: P< .001; REM, SE: P=.002), except for TIB (P=.061).
ICC values showed that 12%-32% of the total variance in TIB, SOL, TST,
LS, SWS, REM and SE was due to differences between athletes, while
91% of the variance in NREM RPM was due to differences between
athletes. Full results for the ICC values and between-athlete variances
in sleep, comparing the first week of altitude to baseline, are pre-
sented in Table 3B.

Changes in sleep from the first week to the second and third weeks at
altitude

Random intercept models investigating the effects of the second and
third weeks at altitude on sleep showed that TIB decreased by 14.4 & 5.4
minutes (P=.005), TST decreased by 13.8 + 4.2 minutes (p=.001), and LS
decreased by 13.8 + 3.6 minutes (P< .001) compared to the first week at
altitude (Fig. 2). Additionally, each unit increase in SpO, was associated
with a decrease in TIB by 3.0 + 1.8 minutes (P= .047) and each unit
increase in training load was associated with an increase in NREM RPM
by 0.02 + 0.01 respirations per min (P< .011). The explained within-ath-
lete variances (R?) of these effects on sleep ranged from < 0.1% to 4.7%.
Between-athlete variances were significant for all sleep variables (TIB: P=
.017; SOL, REM, SE, NREM RPM: P< .001; LS, SWS: P= .001; TST: P=.009).
ICC values showed that 14%-40% of the total variance in TIB, SOL, TST, LS,
SWS, REM, and SE was due to differences between athletes, while 94% of
the variance in NREM RPM was due to differences between athletes. Full
results for the ICC values and between-athlete in sleep, comparing the
effect of the second and third weeks of altitude to the first week, are pre-
sented in Table 3C.

Discussion

This is to our knowledge the first study to observe sleep changes
in elite endurance athletes from near-sea-level baseline and during
an entire ~ 3-week altitude training camp at 1800 m. Sleep was mon-
itored using a novel, noninvasive microwave DR sleep monitor and
the main findings were that: (1) TST and LS decreased at altitude
compared to near-sea-level baseline measures and these changes
occurred between the first and second/third weeks at altitude; (2)
SWS and NREM RPM increased at altitude compared to near-sea-
level baseline measures and these changes were already present in
the first week at altitude; (3) Increased training load was associated
with increased NREM RPM throughout the entire duration of the alti-
tude training camp. At altitude, increased SpO, was associated with
increased SWS, decreased LS and with decreased TIB.

Some accounts of changes in athletes’ sleep patterns from near sea
level to altitude have been reported in the scientific literature,'* 8243
but these studies have been conducted at altitudes of 2000-3600 m. In
the present study an altitude of 1800 m was used for its relevance to the
Beijing 2022 Olympic Winter Games. When pooling all nights during the
~ 3-week altitude training camp, TST and LS were reduced compared to
the near-sea-level (<500 m) baseline measures for these elite endurance
athletes, while SWS and NREM RPM were increased. Previous research at
terrestrial altitude has ascribed the observed reductions in TST to sleep
disturbances associated with ascending to altitude.'>!” However, the
mechanisms at play are unclear, as neither SpO,, training load nor subjec-
tive recovery explained the reductions in TST and LS in the present study.
Following ascent to altitude as compared to baseline, SpO, typically
decreases.'® Acclimatization to altitude is in turn associated with restored
levels of SpO,, 3. In the present study, increases in SpO, were associated
with an increase in SWS. Since TST was reduced, the increase in SWS
may have further led to a concurrent, compensatory decrease in LS. It is
worth noting that although the day-to-day variations in sleep only
ranged from 7.8 to 12.0 minutes, accumulated effects of these variations
over the entire ~ 3-week period could have a substantial influence on
subjective recovery, adaptations and performance optimization in elite
athletes. This is consistent with the suggestion of Lastella et al,*® who
have previously hypothesized that the cumulative effect of sleep loss
over multiple days may negatively influence athletic performance.

A major effect of acute hypoxia relates to an increase in ventilation (ie,
respiration rate) and sympathetic activity.” Increases in respiration rate
may be caused by the arterial desaturation that occurs at altitude, leading
to hypoxic ventilatory response.’” Importantly, changes in ventilation
due to hypoxia disrupt breathing during sleep, inducing respiratory
events and periodic breathing.>**%3° Consistent with these effects, NREM
RPM increased throughout the duration of the altitude training camp in
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Fig. 1. Visualization of the descriptive data for the measured sleep variables. Data is based on sleep monitoring in 33 elite endurance athletes at near-sea-level baseline (pink dots)
and at altitude overall (purple dots), week 1 (green dots) and weeks 2 and 3 combined (blue dots). Each data point represents each athletes’ mean score in the respective sleep vari-
ables. The filled black dot represents the mean for the whole group, with upper and lower 95% confidence intervals represented by the bar intersecting the mean. (Color version of
figure is available online.)

the present study. Increases in training load over the ~ 3 weeks, possibly observed during the altitude training camp may be attributed to the pro-
attributable to increased perceived exertion associated with training at cess of acclimatization to increasing altitude, and to increasing training
altitude, were related to this increase. Thus, the increased NREM RPM loads. However, further studies are required to examine the underlying
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Table 3

The ICC values and between-athlete variance in sleep across the analyzed time periods, controlling for the effect of resting peripheral oxygen saturation, training load and

subjective recovery, based on data from 33 elite endurance athletes

(A) Effect of altitude (IV, 0 = baseline,
1 = altitude), SpO,, training load

and subjective recovery (IVs)

on sleep (DV)

(B) Effect of the first week

at altitude (IV, 0 = baseline,

1 = first week at altitude), SpO»,
training load and subjective
recovery (IVs) on sleep (DV)

(C) Effect of the second

and third weeks at altitude
(Iv, 0 = first week at altitude,
1 =second and third weeks at
altitude), Sp0,, training load
and subjective recovery (IVs)
on sleep (DV)

DV ICC Est. S.E. Sig. ICC Est. S.E. Sig. ICC Est. S.E. Sig.

Time in bed (h) 0.16 0.12 0.06 0.027 0.12 0.09  0.05 0.061 0.17 012  0.05 0.017
Sleep onset latency (h) 0.22 0.03 0.01 0.002 0.22 0.03  0.01 0.001 0.37 0.05  0.01 <0.001
Total sleep time (h) 0.27 0.23 0.06 <0.001 0.28 023 007 0.001 0.40 033 013 0.009
Light sleep (h) 0.14 0.07 0.02 <0.001 0.13 006  0.02 0.001 0.14 0.07  0.02 0.001
Deep/slow wave sleep (h) 0.22 0.03 0.01 <0.001 0.26 004 0.01 <0.001 0.20 0.03  0.01 0.001
REM sleep (h) 0.32 0.09 0.03 <0.001 0.32 0.09 003 0.002 0.36 010 0.03  <0.001
Sleep efficiency (%) 0.26 13.36 3.16 <0.001 032 1782 572 0.002 0.31 14.04 346  <0.001
NREM RPM (N) 0.91 3.75 1.02 <0.001 091 382 1.06 <0.001 0.94 3.71 1.00  <0.001

DV, dependent variable; Est., estimate; ICC, intraclass correlation; IV, independent variable; NREM RPM, non-REM respirations per minute; REM, rapid eye movement sleep;

S.E., standard error; Sig., significance; SpO,, resting peripheral oxygen saturation.

Regressions were clustered on participant. Values are unstandardized. Significant results are italicized.

mechanisms of increased respiration rate and the potential incidence of
periodic breathing in elite endurance athletes at low-to-moderate terres-
trial altitudes.

When comparing sleep in the first week at altitude with near-sea-
level measures, only increases in SWS and NREM RPM were
observed. In addition, the increase in SWS was associated with an
increase in SpO,, which was also related to a decrease in LS. This is
contrary to previous findings, which have typically reported reduced
TST and REM sleep during the first nights following ascent from near
sea level to altitude.'*'>!'” These conflicting findings might be
explained by the fact that all nights for the first week at altitude were
pooled, thereby limiting the possibility to detect potential changes in
sleep during the initial nights at altitude. Alternatively, the differen-
ces in findings could be caused by the altitude used in the present
study (ie, 1800 m), which was considerably lower than in previous
studies (ie, 3600 m).!*!> This would have posed a lower hypoxic
stress in the present study and possibly less-pronounced changes in
sleep compared to near-sea-level baseline measures as a result. This
is further supported by studies performed under more extreme con-
ditions (ie, 4559 m), where both SWS and REM sleep were substan-
tially reduced or eliminated entirely following ascent to altitude.'* !>
Although increases in SWS from near sea level remained stable dur-
ing the ~ 3-week period, TIB, TST and LS were reduced in the com-
bined second and third weeks of the training camp. While increases
in SpO, were related to the reduction in TIB, it is unclear whether any
other factors and their associated explanatory mechanisms contrib-
uted to these delayed changes throughout the sojourn at altitude.
These findings require further examination using appropriate experi-
mental designs. For instance, reduced levels of psychological stress as
athletes became more familiar with their new routines and activities,
or strategic use of napping during the daytime, should be taken into
consideration in future research.

Limitations

A limitation of our design was the lack of detailed information on
daytime napping routines at near sea level vs. altitude, which might
have influenced the sleep measures reported in the present study.
However, verbal communication with all athletes and their respec-
tive coaches revealed that daytime napping routines did not differ
considerably between the baseline and altitude training camp mea-
surement periods. In addition, it would have been beneficial to

measure subjective sleep (using sleep diaries) and psychological
stress in the present study. The absence of relevant variables in the
tested statistical models may explain the low R? values of the
reported results. Moreover, the low number of participants may have
influenced the power to detect significant associations in the investi-
gated multilevel statistical analyses. The use of novel technology for
the measurement of sleep represents another relevant limitation.
The Somnofy sleep monitor allowed us to monitor the sleep of 33
elite athletes over 2 weeks at baseline and for up to 3 weeks at alti-
tude. The device shows limitations in terms of accuracy of sleep stage
classification (0.75 for LS, 0.74 for SWS, and 0.78 for REM),%* and its
validity of estimations on a night-to-night basis has so far not been
established.

In conclusion, the present study demonstrated that TST and LS
decreased, while SWS and NREM RPM increased, compared to near-
sea-level baseline measurements in elite endurance athletes during
an ~ 3-week altitude training camp at 1800 m. Increases in SpO, and
training load were implicated in the observed variations in SWS and
NREM RPM, respectively. Further experimental studies are needed to
elucidate the role of sleep changes during altitude training camps in
elite endurance athletes.
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