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ABSTRACT Computer-aided detection, localization, and segmentation methods can help improve
colonoscopy procedures. Even though many methods have been built to tackle automatic detection and
segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This
is due to the increasing number of researched computer vision methods that can be applied to polyp
datasets. Benchmarking of novel methods can provide a direction to the development of automated polyp
detection and segmentation tasks. Furthermore, it ensures that the produced results in the community are
reproducible and provide a fair comparison of developed methods. In this paper, we benchmark several
recent state-of-the-art methods using Kvasir-SEG, an open-access dataset of colonoscopy images for polyp
detection, localization, and segmentation evaluating both method accuracy and speed. Whilst, most methods
in literature have competitive performance over accuracy, we show that the proposed ColonSegNet achieved
a better trade-off between an average precision of 0.8000 and mean IoU of 0.8100, and the fastest speed
of 180 frames per second for the detection and localization task. Likewise, the proposed ColonSegNet
achieved a competitive dice coefficient of 0.8206 and the best average speed of 182.38 frames per second
for the segmentation task. Our comprehensive comparison with various state-of-the-art methods reveals the
importance of benchmarking the deep learning methods for automated real-time polyp identification and
delineations that can potentially transform current clinical practices and minimise miss-detection rates.

INDEX TERMS Medical image segmentation, ColonSegNet, colonoscopy, polyps, deep learning, detection,

localization, benchmarking, Kvasir-SEG.

I. INTRODUCTION

Colorectal Cancer (CRC) has the third highest mortality rate
among all cancers. The overall five-year survival rate of colon
cancer is around 68%, and stomach cancer is only around
44% [1]. Searching for and removing precancerous anomalies
is one of the best working methods to avoid CRC based
mortality. Among these abnormalities, polyps in the colon
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are important to detect because it can develop into the CRC
at late stage. Thus, an early detection of CRC is crucial for
survival.

After modification in the lifestyle, the prevention from
the CRC is the screening of the colon regularly. Differ-
ent research studies suggest that population-wide screening
advances the prognosis and can even reduce the incidence
of CRC [2]. Colonoscopy is an invasive medical procedure
where an endoscopist examines and operates on the colon
using a flexible endoscope. It is considered to be the best
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diagnostic tool for colon examination for early detection and
removal of polyps. Therefore, colonoscopic screening is the
most preferred technique among gastroenterologists.

Polyps are abnormal growths of tissue protruding from
the mucous membrane. They can occur anywhere in the
gastrointestinal (GI) tract but are mostly found in the col-
orectal area and are often considered a predecessor of
CRC [3], [4]. Polyps may be pedunculated (having a well-
defined stalk) or sessile (without a defined stalk). The
colorectal polyps can be categorised into two classes: non-
neoplastic and neoplastic. Non-neoplastic polyps are further
sub-categorised into hyperplastic, inflammatory, and hamar-
tomatous polyps. These types of polyps are non-cancerous
and not harmful. Neoplastic is further sub-categorised into
adenomas and serrated polyps. These polyps can develop
into the risk of cancer. Based on their size, colorectal
polyps can be categorised into three classes, namely, diminu-
tive (<5mm), small (6 to 9 mm), and advanced (large)
(=10mm) [5]. Usually, larger polyps can be detected and
resected.

There exists a significant risk with small and diminu-
tive colorectal polyps [6]. A polypectomy is a technique
for the removal of small and diminutive polyps. There
are five different polypectomy techniques for resection of
diminutive polyps, namely, cold forceps polypectomy, hot
forceps polypectomy, cold snare polypectomy, hot snare
polypectomy, and endoscopic mucosal resection [5]. Among
these techniques, cold snare polypectomy is considered best
polypectomy technique for resectioning small colorectal
polyps [7].

Colonoscopy is an invasive procedure that requires high-
quality bowel preparation as well as air insufflation during
examination [8]. It is both an expensive and time-demanding
procedure. Nevertheless, on average, 20% of polyps are
missed during examinations. The risk of getting cancer there-
fore relates to the individual endoscopists’ ability to detect
polyps [9]. Recent studies have shown that new endoscopic
devices and diagnostic tools have improved the adenoma
detection rate and polyp detection rate [10], [11]. However,
the problem of over-looked polyps remains the same.

The colonoscopy videos recorded at the clinical centers
store a significant amount of colonoscopy data. However,
the collected data are not used efficiently as they are labour
intense for the endoscopists [12]. Thus, a second review of
videos are often not done. This might lead to missed detec-
tion at an early stage largely. Automated data curation and
annotation of video data is a prerequisite for building reliable
Computer Aided Diagnosis (CADx) systems that can help to
assess clinical endoscopy more thoroughly [13]. A fraction
of the collected colonoscopy data can be curated to develop
computer-aided systems for automated detection and delin-
eation of polyps either during the clinical procedure or after
the reporting. At the same time, to build a robust system,
it is vital to incorporate data variability related to patients,
endoscopic procedure, and endoscope manufacturers. Even
though recent developments in computer vision and system
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designs have enabled us to built accurate and efficient sys-
tems, these largely depend on the data availability as most
recent methods are data voracious. The lack of availability
of public datasets [14] is a critical bottleneck to accelerate
algorithm development in this realm.

In general, curating medical datasets are challenging and
it requires domain knowledge expertise. Reaching a con-
sensus to achieve ground truth labels from different experts
on the same dataset is again another obstacle. Typically,
in colonoscopy, smaller polyps or flat/sessile polyps that
are usually missed out during a procedure can be difficult
to observe even during manual labeling. Other challenges
include the patient variability and presence of different sizes,
shapes, textures, colors, and orientations of these polyps [3].
Therefore, during polyp data curation and developing of auto-
mated systems for the colonoscopy, it is vital that all various
challenges often come along routine colonoscopy has to be
taken into consideration.

Automatic polyp detection and segmentation systems
based on Deep Learning (DL) have a high overall per-
formance in both colonoscopy images and colonoscopy
videos [15], [16]. Ideally, the automatic CADx systems for
polyps detection, localization, and segmentation should have:
1) consistent performance and improved robustness to patient
variability, i.e., the system should be able to produce reli-
able outputs, 2) high overall performance surpassing the set
bar for algorithms, 3) real-time performance required for
clinical applicability, and 4) easy-to-use system that can pro-
vide with clinically interpretable outputs. Scaling this to a
population sized cohort is also a very resource-demanding
and incurs enormous costs. As a first step, we therefore
target the detection, localization, and segmentation of col-
orectal polyps known as precursors of CRC. The reason for
starting with this scenario is that most colon cancers arise
from benign adenomatous polyps (around 20%) containing
dysplastic cells. Detection and removal of polyps prevent the
development of cancer, and the risk of getting CRC in the
following 60 months after a colonoscopy depends largely on
the endoscopist ability to detect polyps [9].

Detection and localization of polyps are usually critical
during routine surveillance and to measure the polyp load
of the patient at the end of the surveillance while pixel-wise
segmentation becomes vital to automate the polyp boundary
delineation during the surgical procedures or radio-frequency
ablations. In this paper, we evaluate DL methods for both
detection (and localization referring to bounding box detec-
tion) and segmentation (pixel-wise classification or semantic
segmentation) SOTA methods on Kvasir-SEG dataset [17]
to provide a comprehensive benchmark for the colonoscopy
images. The main aim of the paper is to establish a
new strong benchmark with existing successful computer
vision approaches. Our contributions can be summarised as
follows:

« We propose ColonSegNet, an encoder-decoder archi-

tecture for segmentation of colonoscopic images. The
architecture is very efficient in terms of processing speed
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(i.e., produces segmentation of colonoscopic polyp in
real-time) and competitive in terms of performance.

o A comprehensive comparison of the state-of-the-art
computer vision baseline methods on the Kvasir-SEG
dataset is presented. The best approaches show real-
time performance for polyp detection, localization, and
segmentation.

« We have established strong benchmark for detection and
localization on the Kvasir-SEG dataset. Additionally,
we have extended segmentation baseline as compared
to [3], [17], [18]. These benchmarks can be useful to
develop reliable and clinically applicable methods.

« Detection, localization, and semantic segmentation per-
formances are evaluated on standard computer vision
metrics.

o Detailed analysis have been presented with the spe-
cific focus on the best and worst performing cases that
will allow to dissect method success and failure modes
required to accelerate algorithm development.

The rest of the paper is organized as follows: In Section II,
we present related work in the field. In Section III, we present
the material. Section IV presents both detection, localiza-
tion, and segmentation methods. Result are presented in
Section V. Discussion on the best performing detection,
localization, and semantic segmentation approaches are pre-
sented in Section VI and finally a conclusion is provided in
the Section VII.

Il. RELATED WORK

Automated polyp detection has been an active topic for
research over the last two decades and considerable work has
been done to develop efficient methods and algorithms. Ear-
lier works were especially focused on polyp color and texture,
using handcrafted descriptors-based feature learning [27],
[28]. More recently, methods based on Convolutional Neural
Networks (CNNs) have received significant attention [29],
[30], and have been the go to approach for those competing
in public challenges [31], [32].

Wang et al. [33] designed algorithms and developed
software modules for fast polyp edge detection and polyp
shot detection, including a polyp alert software system.
Shin et al. [34] have used region-based CNN for automatic
polyp detection in colonoscopy videos and images. They
used Inception ResNet as a transfer learning approach and
post-processing techniques for reliable polyp detection in
colonoscopy. Later on, Shin er al. [14] used generative
adversarial network [35], where they showed that the gen-
erated polyp images are not qualitatively realistic; how-
ever, they can help to improve the detection performance.
Lee et al. [15] used YOLO-v2 [36], [37] for the development
of polyp detection and localization algorithm. The algorithm
produced high sensitivity and near real-time performance.
Yamada er al. [38] developed an artificial intelligence sys-
tem that can automatically detect the sign of CRC dur-
ing colonoscopy with high sensitivity and specificity. They
claimed that their system could aid endoscopists in real-time
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detection to avoid abnormalities and enable early disease
detection.

In addition to the work related to automatic detection
and localization, pixel-wise classification (segmentation) of
the disease provides an exact polyp boundary and hence
is also of high significance for clinical surveillance and
procedures. Bernel et al. [31] presented the results of the
automatic polyp detection subchallenge, which was the part
of the endoscopic vision challenge at the Medical Image
Computing and Computer Assisted Intervention (MICCAI)
2015 conference. This work compared the performance of
eight teams and provided an analysis of various detec-
tion methods applied on the provided polyp challenge data.
Wang et al. [16] proposed a DL-based SegNet [39] that had
a real-time performance with an inference of more than
25 frames per second. Geo and Matuszewski [40] used
fully convolution dilation networks on the Gastrointesti-
nal Image ANAlysis (GIANA) polyp segmentation dataset.
Jha et al. [3] proposed ResUNet++ demonstrating 10%
improvement compared to the widely used UNet baseline
on Kvasir-SEG dataset. They also further applied the trained
model on the CVC-ClinicDB [23] dataset showing more
than 15% improvement over UNet. Alietal [32] did a
comprehensive evaluation for both detection and segmenta-
tion approaches for the artifacts present clinical endoscopy
including colonoscopy data [41]. Wang et al. [42] proposed a
boundary-aware neural network (BA-Net) for medical image
segmentation. BA-Net is an encoder-decoder network that is
capable of capturing the high-level context and preserving
the spatial information. Later on, Jha et al. [43] proposed
DoubleUNet for the segmentation, which was applied to
four biomedical imaging datasets. The proposed DoubleUNet
is the combination of two UNet stacked on top of each
other with some additional blocks. Experimental results on
CVC-Clinic and ETIS-Larib polyp datasets show the state-of-
the-art (SOTA) performances. In addition to the related work
on polyp segmentation, there are studies on segmentation
approaches [44]-[47].

Datasets has been instrumental for medical research.
Table 1 shows the list of the available endoscopic image and
video datasets. Kvasir-SEG, ETIS-Larib, and CVC-ClinicDB
contain colonoscopy images, whereas Kvasir, Nerthus,
and HyperKvasir contain the images from the whole
GI. KvasirCapusle contains images from video capsule
endoscopy. All the dataset contains images acquired from
conventional White Light (WL) imaging technique except
the EDD dataset, where it contains images from both
WL imaging and Narrow Band Imaging (NBI) techniques.
All of these datasets contain at least a polyp class. Out of
nine available datasets, Kvasir-SEG [17], ETIS-Larib [22],
and CVC-ClinicDB [23] has manually labeled ground truth
masks. Among them, Kvasir-SEG offers the most num-
ber of annotated samples providing both ground truth
masks and bounding boxes offering detection, localization,
and segmentation task. All of the datasets are publicly
available.
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TABLE 1. Available endoscopic datasets.

Dataset ‘ Organ Source Findings Dataset content Task type
Detection, localizati
Kvasi-SEG [17] Large bowel WL° Polyp 1000 images clection, focaization
& segmentation
Polyps, esophagitis, ulcerative colitis,
Kvasir [19] Whole GI WL z-line, pylorus, cecum, dyed polyp, 8,000 images Classification
dyed resection margins, stool
Nerthus [20] Large bowel WL?® Stool - categorization of bowel cleanliness 21 videos Classification
. 16 different classes from upper GI & 24 110,079 images . .
HyperKvasir [21 Whole GI WL° Classificat
yperKvasir [21] o different classes from lower GI tract & 373 videos asstiication
ETIS-Larib [22] Colonoscopy WL°® Polyp 196 images Segmentation
CVC-Clinic [23] Colonoscopy WL® Polyp 612 images Segmentation
. . . 4,820,739 i e
KvasirCapsule [24] Whole GI VCE 13 different classes of GI anomalies . 1mages Classification
& 118 videos
EDD 2020 [25] Entire GI NBIT, | Polyp, Barrett’s esophagus, high-grade 386 images Detection, localization
WL° dysplasia, suspicious (low-grade), cancer & segmentation
Detection, localizati
Kvasir-Instrument [26] Large Bowel WL°® Tools and instruments 590 images etec 1on,. ocatzation,
Segmentation

 Narrow band imaging ©White light imaging

Dataset development, benchmarking of the methods, and
evaluation are critical in the medical imaging domain.
It inspires the community to build clinically transferable
methods on a well-curated and standardised dataset. Due to
the lack of benchmark papers, it becomes utmost difficult
to understand the clear strength of methods in the litera-
ture. New algorithm developments demonstrating its trans-
lational abilities in clinics is thus very minimal. Data science
challenges do offer some insight, however, a comprehensive
analysis on various different aspects such as detection, local-
ization, segmentation, and inference time estimation are still
not covered by the most.

Inspired by the previous benchmark for polyp detec-
tion [31], endoscopic artifact detection [41], endoscopic
disease detection and segmentation [25], endoluminal scene
object segmentation [48], and endoscopic instrument seg-
mentation [49], we introduce a new benchmark for the auto-
matic polyp detection, localization and segmentation using
publicly available Kvasir-SEG dataset.

Ill. MATERIALS - DATASET
We have used the Kvasir-SEG [17] for detection, localiza-

tion, and segmentation tasks. Figure 1 shows the image,
ground truth information, and their detection (their localised
bounding boxes in red). This dataset is the outcome of
an initiative for open and reproducible results. It contains
1000 polyp images acquired by high-resolution electromag-
netic imaging system, i.e., ScopeGuide, Olympus Europe,
their corresponding masks and bounding box information.
The images and their ground truths can be used for the
segmentation task, whereas the bounding box information
provides an opportunity for the detection task. The resolu-
tion of the images in this dataset ranges from 332 x 487
to 1920 x 1072 pixels. The dataset can be downloaded
at https://datasets.simula.no/kvasir-seg/. The dataset includes
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FIGURE 1. Sample images from Kvasir-SEG dataset: Annotated masks
(2nd column) and bounding boxes (3rd column) for selected samples.

images of 700 large polyps (> 160 x 160 pixels), 323 medium
sized polyps (> 64 x 64 pixels and < 160 x 160 pixels)
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and 48 small polyps (< 64 x 64 pixels). In total, the dataset
consists of 1072 images of polyps with segmentation masks
and bounding boxes.

IV. METHOD

Detection methods aim to predict the object class and regress
bounding boxes for localization, while segmentation meth-
ods aim to classify the object class for each pixel in an
image. In Figure 1, ground truth masks for segmentation
task are shown in 2nd column while corresponding bounding
boxes for the detection task are in 3rd column. This section
describes the baseline methods for detection, localization and
segmentation methods used for the automated detection and
segmentation of polyp in the Kvasir-SEG dataset.

A. DETECTION AND LOCALIZATION BASELINE METHODS
Detection methods consist of input, backbone, neck, and
head. The input can be images, patches, or image pyramids.
The backbone can be different CNN architectures such as
VGG16, ResNet50, ResNext-101, and Darknet. The neck is
the subset of the backbone network, which could consist of
FPN, PANet, and Bi-FPN. The head is used to handle the pre-
diction boxes that can be one stage detector for dense predic-
tion (e.g., YOLO, RPN, and RetinaNet [50]), and two-stage
detector with the sparse prediction (e.g., Faster R-CNN [51]
and RFCN [52]). Recently, one stage methods have attracted
much attention due to their speed and ability to obtain optima
accuracy. This has been possible because recent networks
utilise feature pyramid networks or spatial-pyramid pool-
ing layers to predict candidate bounding boxes which are
regressed by optimising loss functions (see Figure 2).

In this paper, we use EfficientDet [53] which uses Effi-
cientNet [54], as the backbone architecture, bi-directional
feature pyramid network (BiFPN) as the feature network, and
shared class/box prediction network. Additionally, we also
use Faster R-CNN [51], which uses region proposal net-
work (RPN), as the proposal network and Fast R-CNN [55]
as the detector network. Moreover, we use YOLOv3 [56]
that utilises multi-class logistic loss (binary cross-entropy
for classification loss and mean square error for regres-
sion loss) modeled with regularizers such as objectness pre-
diction scores. Furthermore, we also used YOLOv4 [57],
which utilises an additional bounding box regressor based
on the Intersection over Union (IoU) and a cross-stage par-
tial connections in their backbone architecture. Additionally,
YOLOV4 allows on fly data augmentation, such as mosaic
and cut-mix.

RetinaNet [50] takes into account the data driven prop-
erty that allows the network to focus on ‘“hard” samples
for improved accuracy. The easy to adapt backbones for
feature extraction at the beginning of the network provides
the opportunity to experiment with deeper and varied archi-
tectures such as ResNet50, and ResNet101 for RetinaNet
and 53 layered Darknet53 backbone for YOLOv3 and
YOLOv4 architecture. To tackle the different aspect ratio
problem, for both one stage networks, optimal anchor
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FIGURE 2. Baseline detection, localization and semantic segmentation
method summary.

boxes [51] are searched and pre-defined for the provided data
to tackle large variance of scale and aspect ratio of boxes.
Table 2 shows the hyperparameter used by each of the object
detection methods for the detection task.

B. SEGMENTATION BASELINE METHODS

In the past years, data-driven approaches using CNNs have
changed the paradigm of computer vision methods, includ-
ing segmentation. An input image can be directly be fed
to convolution layers to obtain feature maps, which can be
later upsampled to predict pixel-wise classification provid-
ing object segmentation. Such networks learn from available
ground truth labels and can be used to predict labels from
other similar data. A Fully Convolutional Network (FCN)
based segmentation was first proposed by Long et al. [58] that
can be trained end-to-end. Ronneberger et al. [59] modified
and extended the FCN architecture to a UNet architecture.
The UNet consist of an analysis (encoder) and a synthesis
(decoder) path. In the analysis path of the network, deep fea-
tures are learnt, whereas in the synthesis path segmentation is
performed on the basis of the learnt features.
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Pyramid Scene Parsing Network (PSPNet) [60] introduced
a pyramid pooling module aimed at aggregating global con-
text information from different regions which are upsampled
and concatenated to form the final feature representation.
A final per-pixel prediction is obtained after a convolution
layer (see Figure 2, third architecture). For feature extraction,
we have used the ResNet50 architecture pretrained on ima-
geNet. Similar to the UNet architecture, DeepLabV3+ [61] is
an encoder-decoder network. However, it utilizes atrous sepa-
rable convolutions and spatial pyramid pooling (see Figure 2,
last architecture) for fast inference and improved accuracy.
Atrous convolution controls the resolution of features com-
puted and adjust the receptive field to effectively capture
multi-scale information. In this paper, we have used an out-
put stride of 16 for both encoder and decoder networks of
DeepLabV3+ and have experimented on both ResNet50 and
ResNet101 backbones.

ResUNet [62] integrates the power of both UNet and
residual neural network. ResUNet++ [3] is the improved
version of ResUNet architecture. It has additional layers
including squeeze-and-excite block, Atrous Spatial Pyra-
mid Pooling (ASPP), and attention block. These additional
layers helps learning the deep features that are capable of
improved prediction of pixels for object segmentation tasks.
DoubleU-Net [43] consists of two modified UNet architec-
ture. It uses VGG-19 pretrained on ImageNet [63] as the first
encoder. The main reason behind using VGG-19 (similar to
UNet [64]) was that it is a lightweight model. The additional
component in the DoubleUNet are squeeze-and-excite block,
and ASPP block. High-Resolution Network (HRNet) [65]
maintains high-resolution representation convolution in par-
allel and interchange the information across the resolution
continuously. This is one of the most recent and popular
method in the literature. Furthermore, we have used UNet
with ResNet34 as a backbone network and trained the model
to compare with the other state-of-the-art semantic segmen-
tation networks.

Table 4 shows the hyperparameters used for each of
the semantic segmentation based benchmark methods used.
From the table, we can see that number of trainable param-
eters of the baseline methods are large. A high number of
trainable parameters in the network makes it complex, leading
to a lower frame rate. It is therefore essential to design an
efficient, lightweight architecture that can provide a higher
frame rate and better performance. In this regard, we propose
a novel architecture, ColonSegNet, that requires only few
number of training parameters, which can save training and
inference time. More details about the architecture can be
found in the below section.

C. COLONSEGNET

Figure 3 shows the block diagram of the proposed ColonSeg-
Net. It is an encoder-decoder that uses residual block [66]
with squeeze and excitation network [67] as the main com-
ponent. The network is designed to have very few trainable
parameters as compared to other baseline networks such as
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FIGURE 3. Block diagram of ColonSegNet.

U-Net [59], PSPNet [60], DeepLabV3+ [61], and others.
The use of fewer trainable parameters makes the proposed
architecture a very light-weight network that leads to real-
time performance.

The network consists of two encoder blocks and two
decoder blocks. The encoder network learns to extract all the
necessary information from the input image, which is then
passed to the decoder. Each decoder block consists of two
skip connections from the encoder. The first is a simple con-
catenation, and the second skip connection passed through a
transpose convolution to incorporates multi-scale features in
the decoder. These multi-scale features help the decoder to
generate more semantic and meaningful information in the
form of a segmentation mask.

The input image is fed to the first encoder, which consists
of two residual blocks and a 3 x 3 strided convolution in
between them. This layer is followed by a 2 x 2 max-pooling.
Here, the output feature map spatial dimensions are reduced
to ‘—11 of the input image. The second encoder consists of two
residual blocks and a 3 x 3 strided convolution in between
them.
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The decoder starts with a transpose convolution, where the
first decoder uses a stride value 4, which increases the feature
map spatial dimensions by 4. Similarly, the second decoder
uses a stride value of 2, increasing the spatial dimensions
by 2. Then, the network follows a simple concatenation and
a residual block. Next, it is concatenated with the second
skip connection and again followed by a residual block. The
output of the last decoder block passes through a 1 x 1
convolution and a sigmoid activation function, generating the
binary segmentation mask.

1) DATA AUGMENTATION

Supervised learning methods are data voracious and require
large amount of data to obtain reliable and well-performing
models. Acquiring such training data through data collection,
curation, and annotation is a manual process that needs sig-
nificant resources and man-hours from both clinical experts
and computational scientists.

Data augmentation is a common technique to computa-
tionally increase the number of training samples in a dataset.
For our DL models, we use basic augmentation techniques
such as horizontal flipping, vertical flipping, random rotation,
random scale, and random cropping. The images used in all
the experiments undergo normalization and are resized to a
fixed size of 512 x 512. For the normalization, we subtract
the image by mean and divide it by standard deviation.

V. RESULTS

In this section, we first present our evaluation metrics and
experimental setup. Then, we present both quantitative and
qualitative results.

A. EVALUATION METRICS

We have used standard computer vision metrics to evaluate
polyp detection and localization, and semantic segmentation
methods on the Kvasir-SEG dataset.

1) DETECTION AND LOCALIZATION TASK

For the object detection and localization task, the commonly
used Average Precision (AP) and IoU have been used [68],
[69].

o IoU: This metric measures the overlap between two
bounding boxes A and B as the ratio between the over-
lapped area.

ANB {

AUB M

o AP: AP is computed as the Area Under Curve (AUC)
of the precision-recall curve of detection sampled at all
unique recall values (r1, 12, ...) whenever the maximum
precision value drops:

AP = Z {(rn-‘rl - rn)pinterp(rn-i-l)}, 2)

IoU(A,B) =

with pinerp(rn41) = max p(¥). Here, p(r,) denotes the
F=rp+1

precision value at a given recall value. This definition
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ensures monotonically decreasing precision. AP was
computed as an average APs for IoU from 0.25 to
0.75 with a step-size of 0.05 which means an average
over 11 IoU levels are used (AP @[.25 : .05 :.75])).

2) SEGMENTATION TASK
For polyp segmentation task, we have used widely accepted
computer vision metrics that include Dice Coefficient (DSC),
Jaccard Coefficient (JC), precision (p), and recall (7), and
overall accuracy (Acc). JC is also termed as IoU. We have
also included Frame Per Second (FPS) to evaluate the clinical
applicability of the segmentation methods in terms of infer-
ence time during the test.

To define each metric, let tp, fp, tn, and fn represents true
positives, false positives, true negatives, and false negatives,
respectively.

2-tp
DSC= —————— (3)
2-tp+fp+fn
Ip
IoU= ——— 4
p+Jfp+n @
? 5)
r =
p +fn
p
= 6
P= o (6)
Spxr
F2 = @)
dp+r
1 17
Acc — L (8)
tp+tn+fp+fn
# 1
FPS — tHrames _ ©)
sec sec/frame

B. EXPERIMENTAL SETUP AND CONFIGURATION

The methods such as UNet, ResUNet, ResUNet ++, Dou-
bleUNet, and HRNet were implemented using Keras [70]
with a Tensorflow [71] back-end and were run on a Volta
100 GPU and an Nvidia DGX-2 Al system. A PyTorch
implementation for FCN8, PSPNet, DeepLabv3 +, UNet-
ResNet34, and ColonSegNet networks were done. Training
of these methods were conducted on NVIDIA Quadro RTX
6000. NVIDIA GTX2080Ti was used for test inference for all
methods reported in the paper. All of the detection methods
were implemented using PyTorch and used NVIDIA Quadro
RTX 6000 hardware for training the network.

In all of the cases, we used 880 images for training and
the remaining 120 images for the validation. Due to different
image sizes in the dataset, we resized the images to 512 x
512. Hyperparamters are important for the DL algorithms
to find the optimal solution. However, picking the optimal
hyperparameter is difficult. There are algorithms such as
grid search, random search, and advanced solutions such
as Bayesian optimization for finding the optimal parame-
ters. However, an algorithm such as Bayesian optimization
is computationally costly, making it difficult to test several
DL algorithms. We have done an extensive hyperparameter
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Ground truth

EfficientDet

YOLOv4

Faster RCNN |
(ResNet50)

RetinaNet
(ResNet50)

FIGURE 4. Detection and localization results on test dataset: On right of the black solid line, images where EfficientDet-D0, YOLOv4, Faster R-CNN and
RetinaNet (with ResNet50 backbone) have similar results and in most cases obtained highest loU. On left, images with failed case (worse localization) for
either of the method. Confidence scores are provided on the top-left of the red prediction boxes.

TABLE 2. Hyperparameters used for baseline methods for polyp detection and localization task on Kvasir-SEG. Here, CloU: complete

intersection-of-union loss, MSE: mean square error, CE: cross-entropy.

Method ‘ Learning rate | Optimizer | Batch size Loss ‘ Anchors ‘ Threshold
Faster R-CNN [51] 2.5~ 4 Adam 8 L15m00th Jog_loss 256 0.4
RetinaNet [50] le=® SGD 8 L15™00th focal loss | 15 (pyramid) 0.3
YOLOV3+spp [56] le=3 SGD 16 MSE, CE 8 0.25
YOLOv4 [57] le=3 SGD 16 CloU, CE 8 0.25
EfficientDet-DO [53] le—4 Adam 8 Focal loss default 0.4

TABLE 3. Result on the polyp detection and localization task on the Kvasir-SEG dataset. Two best scores are highlighted in bold.

Method ‘ Backbone AP IoU AP35 AP5o AP75 FPS
EfficientDet-DO [53] EfficientNet-b0, biFPN | 0.4756 | 0.4322 | 0.6846 | 0.5047 | 0.2280 | 35.00
Faster R-CNN [51] ResNet50 0.7866 | 0.5621 | 0.8947 | 0.8418 | 0.5660 8.00
RetinaNet [50] ResNet50 0.8697 | 0.7313 | 0.9395 | 0.9095 | 0.6967 16.20
RetinaNet [50] ResNet101 0.8745 | 0.7579 | 0.9483 | 0.9095 | 0.7132 16.80
YOLOvV3+spp [56] Darknet53 0.8105 | 0.8248 | 0.8856 | 0.8532 | 0.7586 | 45.01
YOLOV4 [57] Darknet53, CSP 0.8513 | 0.8025 | 0.9123 | 0.8234 | 0.7594 | 48.00
ColonSegNet (Proposed) - 0.8000 | 0.8100 | 0.9000 | 0.8166 | 0.6706 | 180.00

search for finding the optimal hyperparameters for polyp
detection, localization, and segmentation task. These sets of
hyperparameters were chosen based on empirical evaluation.
The used hyperparameters are for the Kvasir-SEG dataset and
are reported in the Table 2, and Table 4.

C. QUANTITATIVE EVALUATION

1) DETECTION AND LOCALIZATION

Table 3 shows the detailed result for the polyp detec-
tion and localization task on the Kvasir-SEG dataset.
It can be observed that RetinaNet shows improvement
over YOLOv3 and YOLOv4 for mean average precision
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computed for multiple IoU thresholds and for average pre-
cision at IoU threshold 25 (AP35) and 50 (AP5g). RetinaNet
with ResNet101 backbone achieved an average precision
of 0.8745, while YOLOv4 yielded 0.8513. However, for
the IoU threshold of 0.75, YOLOv4 showed improvement
over RetinaNet with (AP75) of 0.7594 against 0.7132 for
RetinaNet with ResNetl101 backbone. Similarly, the aver-
age IoU of 0.8248 was observed for YOLOv3, which is
nearly 8% improvement over RetinaNet. IoU determines the
preciseness of the bounding box localization. EfficientDet-
DO obtained the least AP of 0.4756 and IoU of 0.4322.
Faster R-CNN obtained an AP of 0.7866. However, it only
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TABLE 4. Hyperparameters used for baseline methods for polyp segmentation task on Kvasir-SEG dataset.

No. of Learning Batch Decay
Method parameters rate Optimizer size Loss Momentum rate
UNet [58] 7,858,433 le—2 SGD 8 Cross-entropy - -
ResUNet [61] 8,420,077 le—4 Adam 8 Dice loss - -
ResUNet++ [3] 16,242,785 le—* Adam 8 Dice loss - -
HRNet [64] 9,524,036 le—4 Adam 8 Dice loss - -
DoubleUNet [42] 29,303,426 le 4 Adam 8 Dice loss - -
PSPNet [59] 48,631,850 le—2 SGD 8 Cross-entropy - -
DeepLabv3+ [60] ResNet50: 39,756,962 le—2 SGD 8 Cross-entropy 0.9 le 4
DeepLabv3+ [60] ResNet101: 58,749,090 le=3 SGD 8 Cross-entropy 0.9 le=*
FCN8 [57] 134,270,278 le=2 SGD 8 Cross-entropy 0.9 le=*
UNet-ResNet34 33,509,098 le=® Adam 8 Cross-entropy 09 le 4
ColonSegNet (Proposed) 5,014,049 le-4 Adam 8 Cross-entropy + Dice loss - -

”

TABLE 5. Baseline methods for polyp segmentation on the Kvasir-SEG dataset. Two best scores are highlighted in bold. “-” shows that there is no

backbone used in the network.

Method Backbone | Jaccard C. DSC F2-score | Precision | Recall | Overall Acc. FPS
UNet [58] - 0.4713 0.5969 0.5980 0.6722 0.6171 0.8936 11.0161
ResUNet [61] - 0.5721 0.6902 0.6986 0.7454 0.7248 0.9169 14.8204
ResUNet++ [3] - 0.6126 0.7143 0.7198 0.7836 0.7419 0.9172 7.0193
FCNB [57] VGG 16 0.7365 0.8310 0.8248 0.8817 0.8346 0.9524 24.9100
HRNet [64] - 0.7592 0.8446 0.8467 0.8778 0.8588 0.9524 11.6970
DoubleUNet [42] VGG 19 0.7332 0.8129 0.8207 0.8611 0.8402 0.9489 7.4687
PSPNet [59] ResNet50 0.7444 0.8406 0.8314 0.8901 0.8357 0.9525 16.8000
DeepLabv3+ [60] ResNet50 0.7759 0.8572 0.8545 0.8907 0.8616 0.9614 27.9000
DeepLabv3+ [60] ResNet101 0.7862 0.8643 0.8570 0.9064 0.8592 0.9608 16.7500
UNet [58] ResNet34 0.8100 0.8757 0.8622 0.9435 0.8597 0.9681 35.0000
ColonSegNet (Proposed) | - 0.7239 0.8206 0.8206 0.8435 0.8496 0.9493 182.3812

obtained an FPS of 8. YOLOv4 with Darknet53 as back-
bone obtained a FPS of 48, which is 6 x faster than Faster
R-CNN. The other competitive network was YOLOv3, with
an average FPS of 45.01. However, its average precision
value is 5% less than YOLOv4. Thus, the quantitative results
show that the YOLOv4 with Darknet can detect different
types of polyps at a real-time speed of 48 FPS and average
precision of 0.8513. Therefore, from the evaluation metrics
comparison, YOLOv4 with Darknet53 is the best model for
detection and localization of polyp. The results suggest that
the model can help gastroenterologists find missed polyps
and decrease the polyp miss-rate. Even though, the proposed
ColonSegNet is primary built for real-time segmentation of
polyps, we compared the bounding box predictions of the
proposed network with SOTA detection methods. It can be
observed that the inference of the proposed method is nearly
four times faster (180 FPS) than YOLOv4. Additionally, it
is also obtaining competitive scores on both AP and IoU
metrics (IoU of 0.81 and AP of 0.80). Therefore, it can also
be considered as one of the best detection and localization
techniques.

2) SEGMENTATION

Table 5 shows the obtained results on the polyp segmentation
task. It can be observed that the UNet with ResNet34 back-
bone performs better than the other SOTA segmentation
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methods in terms of DSC, and IoU. However, the proposed
ColonSegNet outperforms in terms of processing speed.
ColonSegNet is faster than UNet-ResNet34 by more than
four times in processing colonoscopy frames. The com-
plexity of the network is six times smaller than the UNet-
ResNet34 network. The proposed network is even smaller
than the conventional UNet, with its size only being around
0.75 times that of the UNet with higher scores on evaluation
metrics compared to the classical UNet and its derivates such
as ResUNet and ResUNet ++-. Additionally, the recall and
overall accuracy metrics of ColonSegNet are close to the
highest performing UNet-ResNet34 network, which shows
the proposed method’s efficiency.

The original implementation of UNet obtained the least
DSC of 0.5969, whereas the UNet with ResNet34 as the
backbone model obtained the highest DSC of 0.8757. The
second and third best DSC scores of 0.8643 and 0.8572 were
obtained for DeepLabv3+ with ResNet101 and DeepLabv3-+
with ResNet50 as the backbone, respectively. From the
table, it is seen that DeepLabv34 with ResNetl01 per-
forms better than Deeplabv3+ with ResNet50. This may be
because of the top-5 accuracy (i.e., the validation results
on the ImageNet model) of ResNetl01 is slightly better
than ResNet50.! Despite of DeepLabv3+ with ResNet101

1 https://keras.io/api/applications/
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a) Top scored and bottom scored sets.
Top 16 set Bottom 16 set

b) Predicted masks for selected top scored images from (a)

U-Net-
Original U-Net RN??4 RUNet++ FcNg  D-UNet PSPNet DLabv3+ HRNet ColonSegNet

c 94990099480

c) Predicted masks for selected bottom scored images from (a

U-Net UNet‘ RUNet++ FCN8 D-UNet PSPNet DLabv3+ HRNet ColonSegNet

& | el
ERaROnn
AEREEARRDN

FIGURE 5. Best and worse performing samples for polyp segmentation: a) Top (left) and bottom (right) scored sets, b) predicted masks for top scored
images and c) bottom scored images for all methods compared to the ground truth (GT) masks. Green rectangles represent the selected images from top
scored set and red rectangle represent those from bottom set. Here, UNet-RN34: UNet-ResNet34, RUNet ++: ResUNet ++, D-UNet: Double UNet, DLabv3
+: DeepLabv3 + (ResNet50).

backbone having the total number of trainable parameters ColonSegNet is competitive compared to both of these net-
more than 11 times and DeepLabv3+ with ResNet34 being works. However in terms, of processing speed, it is almost
nearly eight times computational complexity, the DSC of 11 times faster than DeepLabv3 + with ResNetl01 and
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nearly seven times faster than DeepLabv3 with ResNet34
backbone.

FCNS8, HRNet and DoubleUNet provided similar results
with DSC of 0.8310, 0.8446, and 0.8129 while ResUNet ++
achieved DSC of only 0.7143. A similar trend can be
observed for F2-score for all methods. For precision, UNet
with ResNet34 backbone achieved the maximum score of
p = 0.9435, and DeepLabv3 4 with ResNet50 backbone
achieved the highest scores of r = 0.8616, while UNet scored
the worst with p = 0.6722 and » = 0.6171. The overall
accuracy was outstanding for most methods, with the highest
for UNet and ResNet34 as the backbone. IoU is also provided
in the table for each segmentation method for scientific com-
pletion. Again, UNet and ResNet34 surpassed others with a
mloU score of 0.8100. Also, UNet and ResNet34 achieved
the highest FPS rate of 35 fps, which is acceptable in terms
of speed and is relatively faster as compared to DeepLabv3-+
with ResNet50 (27.9000) and DeepLabv3+ with ResNet101
(16.7500) and other SOTA methods. Additionally, when we
consider the number of parameter uses (see Table 4), UNet
with ResNet34 backbone uses less number of the parameters
as compared to that of FCN8 or DeepLabv3 + network.
Due to the low number of trainable parameters and fastest
inference time, ColonSegNet is computationally efficient and
becomes the best choice while considering the need for real-
time segmentation (182.38 FPS on NVIDIA GTX2080Ti)
of polyps with deployment possible on even low-end hard-
ware devices making it feasible for many clinical settings.
Whereas, UNet with ResNet34 backbone seems the best
choice while taking DSC metric into account, however, with
speed of only 35 FPS on NVIDIA GTX2080Ti.

D. QUALITATIVE EVALUATION

Figure 4 shows the qualitative result for the polyp detection
and localization task along with their corresponding confi-
dence scores. It can be observed that for most images on the
left side of the vertical line, both YOLOv4 and RetinaNet
are able to detect and localise polyps with higher confidence,
except for the third column sample where most of these
methods can identify only some polyp areas. Similarly, on the
right side of the vertical line, the detected bounding boxes for
5th and 6th column images are too wide for the RetinaNet,
while YOLOV4 has the best localization of polyp (observe
the bounding box). Also, in the seventh column, RetinaNet
and EfficientDet DO misses the polyp. In the eighth column,
YOLOV4 and EfficientDet DO misses the small polyp com-
pletely while stool and polyp is detected as polyp by the Faster
R-CNN and RetinaNet.

Figure 5 shows the result for the top-scored and bottom
scored sets selected based on their dice similarity coefficient
values for the semantic segmentation methods. It can be seen
that all the algorithms are able to detect large polyps and
produce high-quality masks (see Figure 5(b).

Here, the best obtained segmentation results can be
observed for DeepLabv3+ and UNet-ResNet34. However,
as shown in Figure 5(c), the segmentation results are affected
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for flat polyps (very small), images with a certain degree
of inclined view, and for the images with saturated areas.
The proposed ColonSegNet is able to achieve similar shapes
compared to these of the ground truth with some outliers for
the predictions which can be seen in Figure 5(b), while for
the prediction on worse performing images in Figure 5(c),
our proposed network provides comparatively improved pre-
dictions on almost all samples.

VI. DISCUSSION

It is evident that there is a growing interest in the investi-
gation of computational support systems for decision mak-
ing through endoscopic images. For the first time, we are
using Kvasir-SEG for detection and localization tasks, and
comparing segmentation methods with most recent SOTA
methods. We provide a reproducible benchmarking of the DL
methods using standard computer vision metrics in object
detection and localization, and semantic segmentation. The
choice of methods are based their popularity in the medical
image domain for detection and segmentation (e.g., UNet,
Faster R-CNN), speed (e.g., UNet with ResNet34, YOLOv3),
and accuracy (e.g., PSPNet, FCN8, or DoubleUNet) or a
combination of all (e.g., DeepLabv3+, YOLOv4).

From the experimental results in Table 3, we can observe
that the combination of YOLOv3 with Darknet53 backbone
shows improvement over other methods in terms of mloU,
which means a better localization compared to counterpart
RetinaNet. However, YOLOv4 is 3x faster than RetinaNet
and has a good trade-off between the average precision and
IoU. This is because of their Cross-Stage-Partial-Connections
(CSP) and ClIoU loss for bounding box regression. However,
RetinaNet with the backbone ResNet101 shows competitive
results surpassing other methods on average precision but
nearly 5% less IoU compared to YOLOvV4 and nearly 5% less
than YOLOV3-spp. Similarly, state-of-the-art methods Faster
R-CNN and EffecientDet-DO0 provided the least AP and IoU.

A choice between computational speed, accuracy and pre-
cision is vital in object detection and localization tasks, espe-
cially for colonoscopy video data where speed is a vital
element to achieve real-time performance. Therefore, we con-
sider YOLOvV4 with Darknet53 and CSP backbone as the best
approach in the table for the polyp detection and localization
task.

For the semantic segmentation tasks, ColonSegNet showed
improvement over all the methods. The method obtained the
highest FPS of 182.38. The quantitative results in Figure 5 (b)
showed the most accurate delineation of polyp pixels com-
pared to other SOTA methods considered in this paper.
The most competitive method to ColonSegNet was UNet
with ResNet34 backbone. The other comparable method was
DeepLabv3 4, which accuracy can be due to its ability
to navigate the semantically meaningful regions with its
atrous convolution and spatial-pyramid pooling mechanism.
Additionally, the feature concatenation from previous fea-
ture maps may have helped to compute more accurate maps
for object semantic representation and hence segmentation.
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The other competitor was PSPNet, which is also based on
similar idea but on aggregating the global context informa-
tion from different regions rather than the use of dilated
convolutions. The computational speed for DeepLabv3+
with the same ResNet50 backbone as used in PSPNet in
our experiments comes from the fact that the 1D separa-
ble convolutions and SPP network is used in DeepLabv3+-.
We evaluated the most recent popular SOTA method in seg-
mentation “HRNet” [65]. While HRNet produced compet-
itive results compared to other SOTA methods, UNet with
ResNet34 backbone and DeeplLabv3+ outperformed for most
evaluation metrics with ColonSegNet being competitive in
the recall, and overall accuracy and outperforming other
SOTA method significantly.

Figure 5 shows an example for the 16 top scored and
16 bottom scored images on DSC for segmentation. From the
results in Figure 5(c), it can be observed that there are polyps
whose appearance under the given lighting conditions is very
similar to healthy surrounding gastrointestinal skin texture.
We suggest that including more samples with variable tex-
ture, different lighting conditions, and different angular views
(refer to the samples in Figure 5(a) on the right, and (c)) can
help to improve the DSC and other metrics of segmentation.
We also observed that the presence of sessile or flat polyps
were major limiting factors for algorithm robustness. Thus,
including smaller polyps with respect to image size can help
algorithm to generalise better thereby making these methods
more usable for early detection of hard-to find polyps. In this
regard, we also suggest the use of spatial pyramid layers to
handle small polyps and using context-aware methods such
as incorporation of artifacts or shape information to improve
the robustness of these methods.

The possible limitation of the study is its retrospective
design. Clinical studies are required for the validation of the
approach in a real-world setting [72]. Additionally, in the
presented study design we have resized the images, which
can lead to loss of information and affect the algorithm
performance. Moreover, we have optimized all the algo-
rithms based on the empirical evaluation. Even though,
optimal hyper-parameters have been set after experiments,
we acknowledge that these can be further adjusted. Similarly,
meta-learning approaches can be exploited to optimize the
hyper-parameters that can work even in resource constraint
settings.

VII. CONCLUSION

In this paper, we benchmark deep learning methods on the
Kvasir-SEG dataset. We conducted thorough and extensive
experiments for polyp detection, localization, and segmen-
tation tasks and shown how different algorithms performs
on variable polyp sizes and image resolutions. The proposed
ColonSegNet detected and localised polyps at 180 frames
per second. Similarly, ColonSegNet segmented polyps at the
speed of 182.38 frames per second. The automatic polyp
detection, localization, and segmentation algorithms showed
good performance, as evidenced by high average precision,
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IoU, and FPS for the detection algorithm and DSC, IoU,
precision, recall, F2-score, and FPS for the segmentation
algorithm. While algorithms investigated in this paper show
a clear strength to be used in clinical settings to help gas-
troenterologists for the polyp detection, localization, and seg-
mentation task, computational scientists can build upon these
methods to further improve in terms of accuracy, speed and
robustness.

Additionally, the qualitative results provide insight for
failure cases. This gives an opportunity to address the chal-
lenges present in the Kvasir-SEG dataset. Moreover, we have
provided experimental results using well-established perfor-
mance metrics along with the dataset for a fair comparison of
the approaches. We believe that further data augmentation,
fine tuning, and more advanced methods can improve the
results. Additionally, incorporating artifacts [73] (e.g., sat-
uration, specularity, bubbles, and contrast) issues can help
improve the performance of polyp detection, localization,
and segmentation. In the future, research should be more
focused on designing even better algorithms for detection,
localization, and segmentation tasks, and models should be
build taking the number of parameters into consideration as
required by most clinical systems.
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