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Abstract
We study how some coefficients of two-variable coboundary polynomials can be derived
from Betti numbers of Stanley–Reisner rings. We also explain how the connection with these
Stanley–Reisner rings forces the coefficients of the two-variable coboundary polynomials
and Möbius polynomials to satisfy certain universal equations.
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1 Introduction

There are variousways to extract information about linear codes over finite fields.Many prop-
erties, like the length, dimension, generalized Hamming weights, and (generalized) weight
spectra of a linear code are only dependent on the matroid(s) determined by the generator
matrix (and the parity check matrix). The lattice of flats of the matroid derived from any
generator matrix plays a key role in understanding properties of the code, and to this lat-
tice one associates interesting two-variable polynomials; the Möbius polynomial and the
coboundary polynomial. The coboundary polynomial determines the Tutte polynomial if the
matroid coming from the generator matrix is simple, and it is well known how one may
find much information about codes and matroids, knowing their Tutte polynomials. See for
example [12] and [11]. Therefore it is interesting to investigate how one may find techniques
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that reveal the behaviour of these polynomials, in particular the two-variable coboundary
polynomial.

In this article we show, using [15] and [8], how one can identify important coefficients
of the Möbius polynomial with ungraded Betti numbers of the Stanley–Reisner ring of the
matroid of a linear code, associated to its parity check matrices. If the minimum distance d⊥
of the dual code is at least 3 (this is the same as saying that the generator matroid is simple),
we also show how one can identify important coefficients of the coboundary polynomial
with functions derived from Betti numbers of the Stanley–Reisner ring of the parity check
matroid.

Regardless of whether the matroid of the generator matrices is simple or not, we use such
identifications to derive "universal equations" that the coefficients of the coboundary polyno-
mial must satisfy. Those are given in Theorem 36. To complete the picture we also list other
such universal equations, both for the coefficients of theMöbius polynomial (Propositions 30
and 31), and the coboundary polynomial (Proposition 37). The identification of some coeffi-
cients of the Möbius polynomial with the mentioned ungraded Betti numbers provides a new
way to prove Proposition 30. This is analogous to how one can identify other coefficients
with dimensions of summands of relevant Orlik-Solomon algebras (see [13] and [2] to obtain
information about such identifications, which we will not study in this paper). An important
tool to give as many equations as possible, and to determine the coefficients in question, are
the truncation formulas given in [3] , [11] and [12].

In general terms the purpose of this article is to demonstrate howBetti numbers of Stanley–
Reisner rings, and invariants derived from them, constitute a natural ingredient in the theory
of all themost commonly studied two-variable polynomials associated to codes andmatroids.
It might also be interesting in the future to investigate to what extent (q-)analogues of the
results presented here also are valid for other types of codes, like Delsarte rank metric codes
(even if the technical tools may be different).

2 Definitions and notation

2.1 Matroids

There are many equivalent definitions of a matroid. We refer to [14] for a deeper study of the
theory of matroids.

Definition 1 A matroid is a pair (E, r) where E is a finite set and r : 2E → N is a function
satisfying:

(R1) If X ⊂ E , then 0 ≤ r(X) ≤ |X |,
(R2) If X ⊂ Y , then r(X) ≤ r(Y ),
(R3) If X , Y are subsets of E , then

r(X ∩ Y ) + r(X ∪ Y ) ≤ r(X) + r(Y ).

The rank of a matroid M = (E, r) is r(E). The nullity function of the matroid is the
function n(X) = |X | − r(X). By (R1), this is a integer-valued non-negative function on 2E .

In this paper, some subsets of the ground set of a matroid will play a central role, namely
flats and cycles, that we will define now.

Definition 2 Let M = (E, r) be a matroid. A flat of the matroid is a subset F ⊂ E satisfying

∀x ∈ EF, r(F ∪ {x}) = r(F) + 1.
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By definition E is a flat itself. If X ⊂ E , then the set Y = {x ∈ E, r(X ∪ {x}) = r(X)}
is a flat. It is the smallest flat containing X , and moreover, r(Y ) = r(X). The set Y is also
called the closure of X . The intersection of two flats is a flat.

Definition 3 Let M = (E, r) be a matroid, and n be its nullity function. For 0 ≤ i ≤ n(E),
let

Ni = {X ⊂ E, n(X) = i}
and Ni be the inclusion minimal elements of Ni . The elements of Ni are called cycles of
nullity i . Cycles of nullity 1 are called circuits.

It is well known that cycles are union of circuits, and of course, by definition, ∅ is a cycle
(of nullity 0).

Definition 4 Let M = (E, r) be a matroid. The dual matroid of M is the matroid M∗ =
(E, r∗) with

r∗(X) = |X | + r(EX) − r(E).

Flats and cycles will be described in further detail in Sect. 2.3.
If C is a [n, k]-linear code given by a k × n generator matrix G, then we can associate to

it a matroid MG = (E, r), where E = {1, · · · , n} and if X ⊂ E , then r(X) is the rank of the
submatrix of G consisting of the columns indexed by X . It can be shown that this matroid is
independent of the choice of the generator matrix of the code, and we will therefore call it
the matroid associated to the code, and denote it by MC . Notice that (MC )∗ = MC⊥ where
C⊥ is the dual of the code C .

Definition 5 Let M = (E, r) be a matroid of positive rank. The truncation of M is the
matroid tr(M) = (E, r ′) where

r ′(X) = min{r(M) − 1, r(X)}.
Note that the flats of tr(M) are exactly the flats of M except those of rank r(M) − 1.

Definition 6 – A matroid is called simple when r({x, y}) = |{x, y}| for every x, y ∈ E .
– Any non-simplematroidM = (E, r) can be simplified to a simplematroidM ′ = (E ′, r ′),

called a simplification of M , where E ′ is obtained by deleting from E all its loops, and
also all elements but one, from each flat of rank one. Moreover r ′(X) = r(X) for all
X ⊂ E ′.

2.2 Stanley–Reisner resolutions

Any matroid M = (E, r) gives rise to a simplicial complex �M , where the faces of the
complex are given by

I = {X ⊂ E : r(X) = |X |}.
These are the independent sets of thematroid. IfK is a field,we can associate to the underlying
simplicial complex a monomial ideal IM ⊂ S = K[Xe, e ∈ E] defined by

IM =< Xσ : σ /∈ �M >,

where Xσ = ∏
e∈σ Xe. We refer to [6] for the study of such ideals. The Stanley–Reisner ring

of the matroid, is then the quotient SM = S/IM . This ring has minimalNn andN graded free
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resolutions, where n = |E |, and as described in [8], they are of the form

0 ← SM ← S ←
⊕

α∈N1

S(−α)β1,α ← · · · ←
⊕

α∈Nn−r(M)

S(−α)β|E |−r(M),α ← 0

and
0 ← SM ← S ←

⊕

j∈N
S(− j)β1, j ← · · · ←

⊕

j∈N
S(− j)β|E |−r(M), j ← 0.

Here S(−α) and S(− j) are the same rings as S, but the gradings are shifted by α ∈ N
n ,

and j ∈ N, respectively (As a starting point, each α is a subset of E , and interpreted as
an element of Nn , its coordinates are 1 for those indices corresponding to elements of this
subset, and 0 for the other coordinates). It is known in particular, that the numbers βi,α and
βi, j are independent of the minimal free resolution, and when the simplical complex comes
from a matroid as in our case, also independent of the field K. These numbers are called the
N
n-graded, and the N-graded Betti numbers of the matroid. We have

βi, j =
∑

|α|= j

βi,α.

Here |α| is the cardinality of α while interpreted as a subset of E . We also define:

βi =
n∑

j=0

βi, j ,

for i = 0, · · · , k. By convention, we say that βi,∅ = β0,0 = 1. It is known that the Stanley–
Reisner ring of amatroid is Cohen–Macaulay. As a consequence, theN-graded Betti numbers
associated to a matroid satisfy so-called Herzog–Kühl equations [7], namely:

Theorem 7 Let M be a matroid of rank k on a ground set with n elements. Then, for every
0 ≤ d ≤ n − k − 1, we have:

∑

0≤i≤n−k
0≤ j≤n

(−1)i j dβi, j = 0,

where by convention, 00 = 1.

This result has an easy corollary for ungraded Betti numbers, namely

Corollary 8 Let M be a matroid. Then
∑

i

(−1)iβi = 0.

We recall here the main result of [8]:

Theorem 9 Let M be a matroid. Then

βi,σ �= 0 ⇔ σ ∈ Ni .

In particular, βi, j �= 0 if and only if there exists a cycle of cardinality j and nullity i .

The cycles described in Definition 3 appeared in an important way in the proof of Theorem 9.
These cycles can also be described as non-redundant unions of circuits of thematroid in ques-
tion, where themaximal number of non-redundant circuits appearing in such a decomposition
is equal to the nullity of the cycle.

For a matroid M of rank k, we have the following convenient notation:

123



Möbius and coboundary polynomials for matroids 2167

Definition 10

φ j (M) =
n−k∑

i=0

(−1)iβi, j .

By Theorem 7 these quantities satisfy the following equations:

n∑

j=0

jdφ j (M) = 0, (1)

for 0 ≤ d ≤ n − k − 1 (with the convention that 00 = 1). It is clear that these equations are
independent in the variables φ j (M), with a Vandermonde coefficient matrix. These quantities
appear naturally when computing the generalized weight polynomials of the higher weight
spectra of a linear code. Namely, from [10], the knowledge of all the generated weight
polynomials, or all of the higher weight spectra, or of all the φ j for the associated matroid
and (all of) its elongations are equivalent. Moreover, from [4] it is known that the knowledge
of each of these three information pieces is equivalent to knowing the Tutte polynomials, and
therefore the two-variable coboundary polymomials of the associated matroid and its dual.

2.3 Lattices of flats and cycles

Definition 11 Let (E,R) be a poset. The opposite of a poset (E,R) is the poset (E,S)

where xS y ⇔ yRx . Some authors use the term “dual” instead of “opposite”.

Definition 12 – Let (E,R) be a finite poset. A chain in E is a totally ordered subset of E
(meaning aRb or bRa for a, b in E).

– The length of a chain is equal to the cardinality of the chain minus 1. The length of a
finite poset is the maximal length of chains in the poset.

– If the poset has the Jordan–Dedekind property (all maximal chains have the same length),
then the rank of an element x ∈ E is the length of the poset ([0, x],R).

Definition 13 A finite lattice is a finite poset P = (E,R), where there exists a maximal
element, denoted by 1, a minimal element, denoted by 0, and for any two elements a, b ∈ E ,
there exists a least upper bound (or join) a ∨ b and a greatest lower bound (or meet) a ∧ b.
An atom is a minimal element of the subset E\{0}.

The opposite lattice P∗ of a lattice P satisfies 0P∗ = 1P , 1P∗ = 0P , a ∨P∗ b = a ∧P b
and a ∧P∗ b = a ∨P b.

Let M a matroid on the ground set E . It is well known that the set of flats of M is a
lattice, where the order is the inclusion order. Moreover it is well known that this lattice has
the Jordan–Dedekind property, and therefore has a well-defined rank function. The minimal
element of the lattice is the closure of ∅, its maximal element is E , while the meet of two
flats is their intersection, and the join is the closure of their union. We denote this lattice by
P(M).

We have the following well known fact:

Proposition 14 Let M be a matroid. Then the cycles of M∗ are the complements of flats of
M.

Because of this the cycles of M∗ are often called open sets for M (complements of closed
sets). In view of this proposition, we see that the set of cycles ofM , together with the inclusion
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order (meaning XRY iff X ⊂ Y ), is a lattice, called the lattice of cycles, which is isomorphic
to the opposite of the lattice of flats of the dualmatroid.Wewill denote by LF (M) and LC (M)

the lattice of flats and the lattice of cycles respectively of the matroid. It is not difficult to see
that if M is a matroid of rank k on the ground set E , and F is a flat of rank r (in the lattice
LF (M)), then EF is a cycle of rank k − r (in the lattice LC (M∗)).

3 Möbius and coboundary polynomials

3.1 Möbius polynomial of a matroid

We start this section with a result by Stanley [15], relating the Betti numbers of the resolution
of a matroid, to certain Möbius functions on lattices.

Definition 15 (Hall’s Theorem, [16, Prop. 3.8.5]) Let L = (E,R) be a lattice, and a, b ∈ E
such that aRb. Then

μL(a, b) =
∑

(−1)l(C)

where C runs over all chains of L with minimal element a and maximal element b, and l(C)

denotes the length of the chain C .

From [15, p. 59] we have:

Theorem 16 Let M = (E, r) be a matroid, LC (M) its lattice of cycles, and LF (M∗) the
lattice of flats of its dual matroid. Let X ⊂ E be a cycle of nullity i . Then

βi,X = |μLF (M∗)(E − X , E)| = |μLC (M)(∅, X)|.
Following [12, Definition 10.8], we give the following definition:

Definition 17 The Möbius polynomial of a lattice L , which has the Jordan–Dedekind prop-
erty, is

μL (S, T ) =
∑

x∈L

∑

y∈L
xRy

μ(x, y)Sr(x)T r(L)−r(y).

For any matroid, its Möbius polynomial is the Möbius polynomial of its lattice of flats. Note
that this is a polynomial of total degree equal to the rank of the matroid.

The aim of this section is to relate some of the coefficients of the lattice of flats of amatroid
to the Betti numbers of its dual matroid. In order to do so, we need a result, which is a little
finer than Theorem 16:

Definition 18 Let L be a lattice with the Jordan–Dedekind property. Its Möbius function
alternates in sign if

(−1)l([a,b])μL (a, b) ≥ 0 ∀aRb.

Definition 19 A lattice L is semi-modular if it has the Jordan–Dedekind property, and if its
rank function satisfies: r(a) + r(b) ≥ r(a ∧ b) + r(a ∧ b) for all a, b ∈ L .

Then, we have, from [16, Proposition 3.10.1]

Proposition 20 The Möbius function of a finite semi-modular lattice alternates in sign.
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Corollary 21 With the notation of Theorem 16, we have

βn(X),X = (−1)n(X)μLF (M∗)(E\X , E) = (−1)n(X)μLC (M)(∅, X).

Proof It is well known (See for example [16, Prop. 3.3.3]) that the lattice of flats of a matroid
is semi-modular. Then the Möbius function of LF (M∗) alternates in sign, by Proposition
20. It is then immediate from the definition that also its opposite, LC (M), alternates in sign.
Furthermore lLF (M∗)(E\X , E) = lLC (M)(∅, X) = n(X). Hence the rank function on the
cycles X ∈ LC (M) is n(X). Then we get by Proposition 20 that μLC (M)(∅, X) is positive if
and only if n(X) is even. Hence Theorem 16 gives:

βn(X),X = |μLF (M∗)(E\X , E)| = (−1)n(X)μLF (M∗)(E\X , E) = (−1)n(X)μLC (M)(∅, X).

��
Theorem 22 Let M = (E, r) be a matroid of rank k. Then the coefficient of SsT 0 in its
two-variable Möbius polynomial is (−1)k−sβk−s(M∗).

Proof Since E is the only subset with r(E) = r(L), the coefficient of SsT 0 is equal to
∑

x∈LF (M)
r(x)=s

μLF (M)(x, E) =
∑

y∈LC (M∗)
η∗(y)=k−s

μLC (M∗)(∅, y).

Here η∗ is the nullity function of M∗. From Corollary 21, this is
∑

y∈LC (M∗)
η∗(y)=k−s

μLC (M∗)(∅, y) =
∑

y∈LC (M∗)
η∗(y)=k−s

(−1)η
∗(y)βη∗(y),y(M

∗) = (−1)k−sβk−s(M
∗).

��
Example 23 Let C be the [6, 3]2-code with generator matrix

G = MC =
⎡

⎣
1 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 0 1

⎤

⎦

A straightforward computation shows that

μMC (S, T ) = S3 + S2(4T − 4) + S(4T 2 − 9T + 5) + (T 3 − 4T 2 + 5T − 2).

The ungraded minimal free resolution of the Stanley–Reisner ring R of (MC )∗ is

0 ← R ← S ← S4 ← S5 ← S2 ← 0,

and we see that the Betti numbers correspond to the S0 term of μMC . Given a subset X ⊂ E
for a matroid M = (E, r) we let the restriction M |X be the pair (X , r |X ). The Si terms
of μMC , for i > 0 correspond to Betti numbers of restrictions of the matroid MC as the
following corollary shows.

Corollary 24 Let M be a matroid of rank k. Then the coefficient of SsT t in the Möbius
polynomial is ∑

X flat of M
r(X)=k−t

(−1)k−s−tβk−s−t ((M |X )∗).

Proof If X is a flat, the lattice of flats of M |X is equal to the interval [∅, X ]. ��
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3.2 Coboundary polynomials

Definition 25 In a (finite) lattice L (as above) the atoms are the minimal non-zero elements.
Such a lattice is atomic if every element is a join of some finite set of atoms.

We now define the coboundary polynomial of a matroid:

Definition 26 Let L be an atomic lattice. Its coboundary polynomial is

χL(S, T ) =
∑

x∈L

∑

y∈L
xRy

μL(x, y)Sa(x)T r(L)−r(y)

where a(x) is the number of atoms a of L such that aRx . If M is a matroid, its coboundary
polynomial χM (S, T ) is the coboundary polynomial of its lattice of flats.

When the matroid is simple, then for any flat F , we have a(F) = |F |. In this case indeed,
singletons are flats, and therefore form the atoms of the lattice. In this case, the coboundary
polynomial is of degree k = r(M) in T and n in S.

Given a matroid M = (E, r). We can actually always assume that the matroid is simple,
since we have the following well-known result (known at least as early as in [1], for a modern
reference, see [14, p. 54]):

Proposition 27 Let M = (E, r) be a matroid and M ′ be a simplification of M. Then their
coboundary polynomials are equal.

A proof of the proposition can be found in [14, p. 54].
We have the following:

Proposition 28 Let M be a simple matroid on a ground set of cardinality n. Then the coeffi-
cient of SsT 0 in the coboundary polynomial is φn−s(M∗).

Proof As in the proof of Theorem 22, the coefficient of SsT 0 is
∑

x∈LF (M)
a(x)=s

μLF (M)(x, E) =
∑

x∈LF (M)
|x |=s

μLF (M)(x, E).

As before, this is also
∑

x∈LF (M)
|x |=s

μLF (M)(x, E) =
∑

y∈LC (M∗)
|y|=n−s

μLC (M∗)(∅, y) =
∑

y∈LC (M∗)
|y|=n−s

(−1)η
∗(y)βη∗(y),y

= φn−s(M
∗).

��
Example 29 We continue with Example 23. A straightforward computation shows that

χMC (S, T ) = T 3 + T 2(4S − 4) + T (S3 + 3S2 − 9S + 5) + (S4 − S3 − 3S2 + 5S − 2).

The matroid MC is not simple, but a simplification M ′ is the restriction of MC to the set
E ′ = {1, 3, 5, 6}, so M ′ is the matroid associated to

⎡

⎣
1 0 0 0
0 1 1 0
0 1 0 1

⎤

⎦
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with a orthogonal matrix [
0 1 1 1

]

associated to (M ′)∗.
Let R′ be the Stanley–Reisner ring of (M ′)∗. Then a N-graded minimal free resolution is

0 ← R′ ← S ← S(−1) ⊕ S(−2)3 ← S(−3)5 ← S(−4)2 ← 0,

so that φi ((M ′)∗) = 1,−1,−3, 5,−2 for i = 0, 1, 2, 3, 4, which corresponds to the T 0

terms of χMC .

4 Equations for coefficients of Möbius and coboundary polynomials

In this section, we shall exhibit equations that the coefficients of the two-variableMöbius and
coboundary polynomials satisfy.We have seen in the previous section that some of the coeffi-
cients of these polynomials are closely related to certain Betti numbers of (Cohen–Macaulay)
Stanley–Reisner rings, and it is not unexpected that this implies that the coefficients of these
polynomials then will satisfy equations, which to a great extent can be derived from Herzog–
Kühl equations.

4.1 TheMöbius polynomial

In this subsection, wewill describe linear equations satisfied by the coefficients of theMöbius
polynomial of a matroid.

Proposition 30 Let M be a matroid of rank k. Write

μM (S, T ) =
∑

s,t

as,t S
sT t .

Then, for every 0 ≤ t ≤ k − 1,
k−t∑

s=0

as,t = 0.

Proof By Corollary 24, we have

k−t∑

s=0

as,t =
∑

X⊂E
r(X)=k−t

k−t∑

s=0

(−1)k−s−tβk−s−t ((M |X )∗,

and we conclude by Corollary 8. Here the sum can be taken to be only over those X that are
flats of M . ��

The following result is in some sense “transversal” to Proposition 30:

Proposition 31 Let M be a matroid of rank k. Write

μM (S, T ) =
∑

s,t

as,t S
sT t .

Then, for every 0 ≤ s ≤ k − 1,
k∑

t=0

as,t = 0.
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Proof We will prove the result by induction on k. For k = 1, it is trivial, since

μM (S, T ) = S + T − 1

Assume now that k ≥ 2. The truncation formula in [11, Theorem 16] gives:

μM (S, T ) = Tμtr(M)(S, T ) + (1 − T )μM (S, 0) − Sk−1T + SkT . (2)

Set
μtr(M)(S, T ) =

∑

s,t

a′
s,t S

sT t .

Then as,t = a′
s,t when t ≥ 2, since (1− T )μM (S, 0) + Sk−1T − SkT , is linear with respect

to T .
Furthermore, by (2) we have: as,1 = a′

s,0 − as,0 if s < k − 1. Hence, if s < k − 1,

k∑

t=0

as,t =
k∑

t=2

a′
s,t−1 + a′

s,0 − as,0 + as,0 = 0.

Moreover, by (2) ak−1,1 = a′
k−1,0 − ak−1,0 − 1.

Hence

k∑

t=0

ak−1,t = ak−1,0 + ak−1,1 = ak−1,0 + a′
k−1,0 − ak−1,0 − 1 = 0

because a′
k−1,0 = 1. ��

Remark 32 This result, for s = 0, apart from using direct lattice-theoretical arguments, also
follows from studying the Orlik-Solomon algebra [2,13] of the lattice of flats of M , in a
way analogous to, and “transversal to”, the way the case t = 0 follows in Proposition 30.
Moreover, for higher s one may analyse the Orlik-Solomon algebras of various deletions of
M to obtain the result of Proposition 31.

Example 33 In [10], one describes so-calledVeronese codes for all prime powers q . For q = 5
such a code is a linear [31, 6]5-code, and one describes its generalized Hamming weights
and higher weight spectra in detail. Let M be the matroid associated to any generator matrix.
Its two-variable Möbius polynomial is

μM (S, T ) = T 6 + T 5(S − 1) + T 4(16,275S2 − 97,650S + 81,375)

+ T 3(3906S3 − 12,090S2 + 12,369S − 4185)

+ T 2(16,275S4 − 74,400S3 + 123,225S2 − 88,350 + 23,250)

+ T (3565S5 − 97,650S4 + 32,534S3 − 437,100S2 + 267,840S − 62,000)

+ (S6−3565S5+81,375S4−254,851S3 + 325,500S2−190,960S + 42,500).

One checks that the sums of coefficients in each of the parenthesis are zero, which verifies
Proposition 30.

The Möbius polynomial can also can be written as:

μM (S, T ) = S6 + 3565S5(T − 1) + S4(16,275T 2 − 97,650T + 81,375)

+ S3(3906T 3 − 74,400T 2 + 325,345T − 254,851)

+ S2(465T 4 − 12,090T 3 + 123,225T 2 − 437,100T + 325,500)
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Möbius and coboundary polynomials for matroids 2173

+ S(31T 5 − 930T 4 + 12,369T 3 − 88,350T 2 + 267,840T − 190,960)

+ (T 6 − 31T 5 + 465T 4 − 4185T 3 + 23,250T 2 − 62,000T + 42,500).

One checks that the sums of coefficients in each of the parenthesis are zero, which verifies
Proposition 31.

Remark 34 For certain matroids M , the Stanley–Reisner ring of M∗ has a pure resolution.
See [5] and [9] for examples of codes giving rise to such pure resolutions. That the resolution
is pure, means that for each i , there is only one j = f (i), for an injective f , such that
βi, j �= 0. Hence we have, for each i , that

βi = βi, f (i) = φ f (i),

and there are no other non-zero φ j . Then we obviously have, from Theorem 7:
∑

i

(−1)i f (i)dβi = 0, (3)

for the relevant i, d appearing. This implies that for t = 0 the as,t appearing in Proposition 30
satisfy k − 1 weighted sum equations in addition to the single one appearing in that result
(Here k is the rank of the M as in Proposition 30).

Moreover, if M is a matroid such that M∗ has a pure resolution, and if F is a flat of M ,
then the contraction M∗/(E − F) = (M |F )∗ has a pure resolution too. Combining with
Corollary 24, and using it in the same way as Proposition 22 is used in the case t = 0, we
obtain that for each fixed t appearing in Proposition 30 the as,t satisfy k − 1 − t weighted
sum equations in addition to the single one appearing in that result.

To illustrate Remark 34 we give the following:

Example 35 Let C be the dual of a (q, 3) Hamming code. The columns of any generator
matrix ofC are in 1−1 correspondence with the points of P2

q . It is a [q2+q+1, 3]q constant
weight code, where the Stanley–Reisner ring of (MC )∗ has a pure minimal resolution ([9]).
The flats of M = MC correspond to ∅, the q + 1 points of P2

q , the q + 1 lines of P2
q and P

2
q

itself. One then obtains

μMC (S, T ) = T 3 + T 2 (
(q2 + q + 1)S − (q2 + q + 1)

)

+ T
(
(q2 + q + 1)S2 − (q + 1)(q2 + q + 1)S + q(q2 + q + 1)

)

+ S3 − (q2 + q + 1)S2 + q(q2 + q + 1)S − q3.

Keeping the same notation as in Propositions 30 and 31, the coefficients satisfy the 6 following
equations:

a3,0 + a2,0 + a1,0 + a0,0 = 0

q2a2,0 + (q2 + q)a1,0 + (q2 + q + 1)a0,0 = 0

q4a2,0 + (q2 + q)2a1,0 + (q2 + q + 1)2a0,0 = 0

a2,1 + a1,1 + a0,1 = 0

qa1,1 + (q + 1)a0,1 = 0

a1,2 + a0,2 = 0.

Equations nr.1,4,6 here follow from Proposition 30 for t = 0, 1, 2, respectively, and also
from (3) for d = 0, for M and its first two truncations. Equations nr. 2,3 follow from (3)
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applied to M for the d = 1, 2 cases, since ( f (1), f (2), f (3)) = (d1(C), d2(C), d3(C)) =
(q2, q2 +q, q2 +q+1), for the generalized Hamming weights di (C). Equation nr. 5 follows
from (3) in the d = 1 case, but applied to the first truncation of the matroid M . This example
generalizes to duals of (q, r)-Hamming codes.

4.2 The coboundary polynomial

In this section, we will describe Herzog–Kühl equations satisfied by the coefficients of the
coboundary polynomial.

Theorem 36 Let M be a matroid of rank k ≥ 2 on a set with n elements. Write

χ(S, T ) =
∑

s,t

bs,t S
sT t .

Then, for every 0 ≤ t ≤ k − 1 and for every 0 ≤ d ≤ k − t − 1,

n∑

s=0

(n − s)dbs,t = 0.

This gives a total number of k(k + 1)/2 linearly independent linear equations in the
coefficients of χ(S, T ).

Proof We may assume that M is a simple matroid, since if it not simple, we replace it by its
simplification, which has the same coboundary polynomial. The proof uses induction on k.
Since M is simple, necessarily k ≥ 2. The unique simple matroid of rank 2 is the uniform
matroid U2,n . For this matroid, the only flats are the empty set, all singletons, and the whole
ground set. Using Hall’s formula (Definition 15), we have

χ(S, T ) = Sn + nST − nS + T 2 − nT + n − 1

and it is not difficult to see that the coefficients of this polynomial satisfy the Theorem.
We now utilize a formula from [11, Theorem 12], where the authors give a truncation

formula for the coboundary polynomial of a geometric lattice. Since the poset of flats of the
truncated matroid is equal to the truncation of the poset of flats of a matroid, [11, Theorem
12] gives:

χM (S, T ) = Tχtr(M)(S, T ) − (T − 1)χM (S, 0). (4)

Since the truncation of a simple matroid of rank k ≥ 3 is a simple matroid of rank k − 1,
we can apply this formula. From the formula, if

χtr(M)(S, T ) =
∑

s,t

b′
s,t S

sT t ,

then we have that bs,t = b′
s,t−1 if t ≥ 2, bs,1 = b′

s,0 − bs,0. We also have bs,0 = φn−s(M∗)
by Proposition 28. For t ≥ 2, the result follows directly from the induction hypothesis. For
t = 0, this is exactly Eq. (1). Finally, for t = 1, this is a combination of Eq. (1) and the
induction hypothesis. ��

We also have
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Proposition 37 Let M be a matroid of rank k on a set with n ≥ 2 elements. Write

χ(S, T ) =
∑

s,t

bs,t S
sT t .

Then, for every 0 ≤ s < n,
n∑

t=0

bs,t = 0.

Proof As in the proof of Theorem 36, we may assume that M is simple. We follow the same
notation as the proof of Theorem 36. It is easily checked that the theorem applies when
k = 2. Otherwise, by induction when k ≥ 3, we have

n∑

t=0

bs,t =
n∑

t=2

b′
s,t−1 + b′

s,0 − bs,0 + bs,0 = 0.

��
Example 38 We continue with Example 33. The two-variable coboundary polynomial of M
is

χM (S, T ) = S31 + S11(T − 1) + S7(775T 2 − 4650T + 3875)

+ S6(31T 3 − 775T 2 + 6820T − 6076)

+ S4(15500T 2 − 93000T + 77500)

+ S3(3875T 3 − 73625T 2 + 321625T − 251875)

+ S2(465T 4 − 12090T 3 + 123225T 2 − 437100T + 325500)

+ S(31T 5 − 930T 4 + 12369T 3 − 88350T 2 + 267840T − 190960)

+ T 6 − 31T 5 + 465T 4 − 4185T 3 + 23250T 2 − 62000T + 42500.

One checks that this polynomial satisfies Theorem 36 and Proposition 37.

5 A recursion formula for the �j

The idea of this paper has been to use well-known identities of Betti numbers of Stanley–
Reisner rings of matroids to deduce identities for the coefficients of the two-variable Möbius
and coboundary polynomials. One may also reverse this thinking and deduce identities for
the Betti numbers, or their “derived” functions, the φ j (M), from well-known properties of
(in this case) the two-variable coboundary polynomials:

From Eq. (4) we obtain:

Tχtr(L)(S, T ) = χ(S, T ) + (T − 1)χL(S, 0),

where L is the lattice of flats of a matroid M , and tr(L) is its truncation. The (first) elongation
of a matroid is the dual of the truncation of its dual matroid.

If we view both sides of the last equation as polynomials in T with coefficients fromZ[S],
then, comparing the coefficients of the T 1-term we get:

χtr(L)(S, 0) = χ(S, T )|1 + χL (S, 0).
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The left side involves Betti numbers of the first elongation of the dual M∗. The right side
involvesBetti numbers ofM∗, through the termχL(S, 0), and of its contractions at its circuits,
through the terms χ(S, T )|1.

Let W denote a cycle of M∗. Let φ j = φ j (M∗) in the sense of Definition 10, and let

φ
(l)
j and φW

j be the corresponding invariant φ j for the l’th elongation matroid of MH , and
the contraction of M∗ in W , respectively. After a short analysis, rewriting the last recursion
formula in terms of the φ j for the matroids involved, we obtain:

φ
(1)
j = φ j + 	WφW

j−|W |,

where in this formula we sum over cycles W of nullity 1 in M∗. Having found this, one may
proceed:

φ
(l+1)
j = φ

(l)
j + 	WφW

j−|W |, (5)

where in this formula, as an analogue of Corollary 24, but now for the couboundary polyno-
mial, we sum over cycles of nullity l + 1 in M∗. Formula (5) is interesting in view of the last
paragraph of Sect. 2.2.
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