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Abstract
We derive upper bounds on the complexity of ReLU neural networks approximating
the solution maps of parametric partial differential equations. In particular, without
any knowledge of its concrete shape, we use the inherent low dimensionality of the
solution manifold to obtain approximation rates which are significantly superior to
those provided by classical neural network approximation results. Concretely, we use
the existence of a small reduced basis to construct, for a large variety of parametric
partial differential equations, neural networks that yield approximations of the para-
metric solution maps in such a way that the sizes of these networks essentially only
depend on the size of the reduced basis.
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Constructive Approximation

1 Introduction

In this work, we analyze the suitability of deep neural networks (DNNs) for the numer-
ical solution of parametric problems. Such problems connect a parameter space with
a solution state space via a so-called parametric map [51]. One special case of such
a parametric problem arises when the parametric map results from solving a par-
tial differential equation (PDE) and the parameters describe physical or geometrical
constraints of the PDE such as, for example, the shape of the physical domain, bound-
ary conditions, or a source term. Applications that lead to these problems include
modeling unsteady and steady heat and mass transfer, acoustics, fluid mechanics, or
electromagnetics [33].

Solving a parametric PDE for every point in the parameter space of interest indi-
vidually typically leads to two types of problems. First, if the number of parameters of
interest is excessive—a scenario coined many-query application—then the associated
computational complexity could be unreasonably high. Second, if the computation
time is severely limited, such as in real-time applications, then solving even a single
PDE might be too costly.

A core assumption to overcome the two issues outlined above is that the solution
manifold, i.e., the set of all admissible solutions associated with the parameter space,
is inherently low-dimensional. This assumption forms the foundation for the so-called
reduced basis method (RBM). A reduced basis discretization is then a (Galerkin)
projection on a low-dimensional approximation space that is built from snapshots of
the parametrically induced manifold [60].

Constructing the low-dimensional approximation spaces is typically computa-
tionally expensive because it involves solving the PDEs for multiple instances of
parameters. These computations take place in a so-called offline phase—a step of
pre-computation, where one assumes to have access to sufficiently powerful computa-
tional resources. Once a suitable low-dimensional space is found, the cost of solving
the associated PDEs for a new parameter value is significantly reduced and can be
performed quickly and online, i.e., with limited resources [5,56]. We will give a more
thorough introduction to RBMs in Sect. 2. An extensive survey of works on RBMs,
which can be traced back to the seventies and eighties of the last century (see, for
instance, [22,49,50]), is beyond the scope of this paper. We refer, for example, to [33,
Chapter 1.1], [16,29,57] and [12, Chapter 1.9] for (historical) studies of this topic.

In this work, we show that the low-dimensionality of the solution manifold also
enables an efficient approximation of the parametric map by DNNs. In this context,
the RBMwill be, first and foremost, a tool to model this low-dimensionality by acting
as a blueprint for the construction of the DNNs.

1.1 Statistical Learning Problems

The motivation to study the approximability of parametric maps by DNNs stems
from the following similarities between parametric problems and statistical learning
problems: Assume that we are given a domain set X ⊂ R

n , n ∈ N and a label set
Y ⊂ R

k , k ∈ N. Further assume that there exists an unknown probability distribution
ρ on X × Y .
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Given a loss function L : Y × Y → R
+, the goal of a statistical learning problem

is to find a function f , which we will call prediction rule, from a hypothesis class
H ⊂ {h : X → Y } such that the expected loss E(x,y)∼ρL( f (x), y) is minimized [14].
Since the probability measure ρ is unknown, we have no direct access to the expected
loss. Instead, we assume that we are given a set of training data, i.e., pairs (xi , yi )Ni=1,
N ∈ N, which were drawn independently with respect to ρ. Then one finds f by
minimizing the so-called empirical loss

N∑

i=1
L( f (xi ), yi ) (1.1)

over H . We will call optimizing the empirical loss the learning procedure.
In view of PDEs, the approach proposed above can be rephrased in the following

way. We are aiming to produce a function from a parameter set to a state space based
on a few snapshots only. This function should satisfy the involved PDEs as precisely
as possible, and the evaluation of this function should be very efficient even though
the construction of it can potentially be computationally expensive.

In the above-described sense, a parametric PDE problem almost perfectly matches
the definition of a statistical learning problem. Indeed, the PDEs and the metric on the
state space correspond to a (deterministic) distributionρ and a loss function.Moreover,
the snapshots are construed as the training data, and the offline phase mirrors the
learning procedure. Finally, the parametric map is the prediction rule.

One of the most efficient learning methods nowadays is deep learning. This method
describes a range of learning procedures to solve statistical learning problems where
the hypothesis class H is taken to be a set of DNNs [24,40]. These methods outper-
form virtually all classical machine learning techniques in sufficiently complicated
tasks from speech recognition to image classification. Strikingly, training DNNs is a
computationally very demanding task that is usually performed on highly parallelized
machines. Once a DNN is fully trained, however, its application to a given input is
orders of magnitudes faster than the training process. This observation again reflects
the offline–online phase distinction that is common in RBM approaches.

Basedon the overwhelming success of these techniques and the apparent similarities
of learning problems and parametric problems, it appears natural to apply methods
from deep learning to statistical learning problems in the sense of (partly) replacing
the parameter-dependent map by a DNN. Very successful advances in this direction
have been reported in [17,34,39,42,58,68].

1.2 Our Contribution

In the applications [17,34,39,42,58,68] mentioned above, the combination of DNNs
and parametric problems seems to be remarkably efficient. In this paper, we present
a theoretical justification of this approach. We address the question to what extent
the hypothesis class of DNNs is sufficiently broad to approximately and efficiently
represent the associated parametric maps. Concretely, we aim at understanding the
necessary number of parameters of DNNs required to allow a sufficiently accurate
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approximation.Wewill demonstrate that depending on the target accuracy the required
number of parameters of DNNs essentially only scales with the intrinsic dimension of
the solutionmanifold, in particular, according to its Kolmogorov N -widths.We outline
our results in Sect. 1.2.1. Then, we present a simplified exposition of our argument
leading to the main results in Sect. 1.2.2.

1.2.1 Approximation Theoretical Results

The main contributions of this work are given by an approximation result with DNNs
based onReLU activation functions. Here, we aim to learn a variation of the parametric
map

Y � y �→ uy ∈ H,

where Y is the parameter space and H is a Hilbert space. In our case, the parameter
space will be a compact subset of Rp for some fixed, but possibly large p ∈ N, i.e.,
we consider the case of finitely supported parameter vectors.

We assume that there exists a basis of a high-fidelity discretization ofHwhich may
potentially be quite large. Let uy be the coefficient vector of uy with respect to the
high-fidelity discretization.Moreover, we assume that there exists a RB approximating
uy sufficiently accurately for every y ∈ Y .

Theorem 4.3 then states that, under some technical assumptions, there exists a DNN
that approximates the discretized solution map

Y � y �→ uy

up to a uniform error of ε > 0, while having a size that is polylogarithmical in ε, cubic
in the size of the reduced basis, and at most linear in the size of the high-fidelity basis.

This result highlights the common observation that if a low-dimensional structure
is present in a problem, then DNNs are able to identify it and use it advantageously.
Concretely, our results show that a DNN is sufficiently flexible to benefit from the
existence of a reduced basis in the sense that its size in the complex task of solving
a parametric PDE does not or only weakly depend on the high-fidelity discretization
and mainly on the size of the reduced basis.

The main result is based on four pillars that are described in detail in Sect. 1.2.2:
First, we show that DNNs can efficiently solve linear systems, in the sense that, if
supplied with a matrix and a right-hand side, a moderately sized network outputs the
solution of the inverse problem. Second, the reduced-basis approach allows reformu-
lating the parametric problem, as a relatively small and parametrized linear system.
Third, in many cases, the map that takes the parameters to the stiffness matrices with
respect to the reduced basis and right-hand side can be very efficiently represented
by DNNs. Finally, the fact that neural networks are naturally compositional allows
combining the efficient representation of linear problems with the NN implementing
operator inversion.

In practice, the approximating DNNs that we show to exist need to be found using
a learning algorithm. In this work, we will not analyze the feasibility of learning these
DNNs. The typical approach here is to apply methods based on stochastic gradient
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descent. Empirical studies of this procedure in the context of learning deep neural
networks were carried out in [34,39,42,58,68]. In particular, we mention the recent
study in [23], which analyzes precisely the setup described in this work and finds a
strong impact of the approximation-theoretical behavior of DNNs on their practical
performance.

1.2.2 Simplified Presentation of the Argument

In this section, we present a simplified outline of the arguments leading to the approx-
imation result described in Sect. 1.2.1. In this simplified setup, we think of a ReLU
neural network (ReLU NN) as a function

R
n → R

k, x �→ TL�(TL−1�(. . . �(T1(x)))), (1.2)

where L ∈ N, T1, . . . , TL are affine maps, and � : R → R, �(x) := max{0, x} is
the ReLU activation function which is applied coordinate-wise in (1.2). We call L the
number of layers of the NN. Since T� are affine linearmaps, we have for all x ∈ dom T�

that T�(x) = A�(x)+b� for a matrix A� and a vector b�. We define the size of the NN
as the number of nonzero entries of all A� and b� for � ∈ {1, . . . , L}. This definition
will later be sharpened and extended in Definition 3.1.

1. As a first step, we recall the construction of a scalar multiplication operator by
ReLU NNs due to [69]. This construction is based on two observations. First,
defining g : [0, 1] → [0, 1], g(x) := min{2x, 2−2x},we see that g is a hat function.
Moreover, multiple compositions of g with itself produce saw-tooth functions. We
set, for s ∈ N, g1 := g and gs+1 := g ◦ gs . It was demonstrated in [69] that

x2 = lim
n→∞ fn(x) := lim

n→∞ x −
n∑

s=1

gs(x)

22s
, for all x ∈ [0, 1]. (1.3)

The second observation for establishing an approximation of a scalarmultiplication
by NNs is that we can write g(x) = 2�(x)−4�(x−1/2)+2�(x−2) and therefore
gs can be exactly represented by a ReLU NN. Given that gs is bounded by 1, it
is not hard to see that fn converges to the square function exponentially fast for
n → ∞. Moreover, fn can be implemented exactly as a ReLU NN by previous
arguments. Finally, the parallelogram identity, xz = 1/4((x + z)2 − (x − z)2)
for x, z ∈ R, demonstrates how an approximate realization of the square function
by ReLU NNs yields an approximate realization of scalar multiplication by ReLU
NNs.
It is intuitively clear from the exponential convergence in (1.3) and proved in [69,
Proposition 3] that the size of a NN approximating the scalar multiplication on
[−1, 1]2 up to an error of ε > 0 is O(log2(1/ε)).

2. As a next step, we use the approximate scalar multiplication to approximate a
multiplication operator for matrices by ReLU NNs. A matrix multiplication of two
matrices of size d×d can be performed using d3 scalar multiplications. Of course,
as famously shown in [64], amore efficientmatrixmultiplication can also be carried
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out with less than d3 multiplications. However, for simplicity, we focus here on
the most basic implementation of matrix multiplication. Hence, the approximate
multiplication of twomatriceswith entries bounded by 1 can be performed byNNof
sizeO(d3 log2(1/ε))with accuracy ε > 0.Wemake this precise in Proposition 3.7.
Along the same lines, we can demonstrate how to construct aNN emulating matrix-
vector multiplications.

3. Concatenating multiple matrix multiplications, we can implement matrix poly-
nomials by ReLU NNs. In particular, for A ∈ R

d×d such that ‖A‖2 ≤ 1 − δ

for some δ ∈ (0, 1), the map A �→ ∑m
s=0 As can be approximately imple-

mented by a ReLU NN with an accuracy of ε > 0 and which has a size of
O(m log22(m)d3 · (log(1/ε)+ log2(m)), where the additional log2 term inm inside
the brackets appears since each of the approximations of the sum needs to be per-
formed with accuracy ε/m. It is well known that the Neumann series

∑m
s=0 As

converges exponentially fast to (IdRd −A)−1 for m →∞. Therefore, under suit-
able conditions on the matrix A, we can construct a NN �inv

ε that approximates the
inversion operator, i.e., the map A �→ A−1 up to accuracy ε > 0. This NN has
size O(d3 logq2(1/ε)) for a constant q > 0. This is made precise in Theorem 3.8.

4. The existence of �inv
ε and the emulation of approximate matrix-vector multipli-

cations yield that there exists a NN that for a given matrix and right-hand side
approximately solves the associated linear system. Next, we make two assump-
tions that are satisfied in many applications as we demonstrate in Sect. 4.2:

• Themap from the parameters to the associated stiffnessmatrices of theGalerkin
discretization of the parametric PDEwith respect to a reduced basis can be well
approximated by NNs.

• The map from the parameters to the right-hand side of the parametric PDEs
discretized according to the reduced basis can be well approximated by NNs.

From these assumptions and the existence of �inv
ε and a ReLU NN emulating a

matrix-vector multiplication, it is not hard to see that there is a NN that approxi-
mately implements the map from a parameter to the associated discretized solution
with respect to the reduced basis. If the reduced basis has size d and the imple-
mentations of the map yielding the stiffness matrix and the right-hand side are
sufficiently efficient, then, by the construction of �inv

ε , the resulting NN has size
O(d3 logq2(1/ε)). We call this NN �rb

ε .
5. Finally, we build on the construction of �rb

ε to establish the result of Sect. 1.2.1.
First of all, let D be the size of the high-fidelity basis. If D is sufficiently large, then
every element from the reduced basis can be approximately represented in the high-
fidelity basis. Therefore, one can perform an approximation to a change of bases by
applying a linear map V ∈ R

D×d to a vector with respect to the reduced basis. The
first statement of Sect. 1.2.1 now follows directly by considering the NN V ◦�rb

ε .
Through this procedure, the size of the NN is increased toO(d3 logq2(1/ε))+dD).
The full argument is presented in the proof of Theorem 4.3.
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1.3 Potential Impact and Extensions

We believe that the results of this article have the potential to significantly impact the
research on NNs and parametric problems in the following ways:

• Theoretical foundation:We offer a theoretical underpinning for the empirical suc-
cess ofNNs for parametric problemswhichwas observed in, e.g., [34,39,42,58,68].
Indeed, our result, Theorem 4.3, indicates that properly trained NNs are as effi-
cient in solving parametric PDEs as RBMs if the complexity of NNs is measured
in terms of free parameters. On a broader level, linking deep learning techniques
for parametric PDE problems with approximation theory opens the field up to a
new direction of thorough mathematical analysis.

• Understanding the role of the ambient dimension: It has been repeatedly observed
that NNs seem to offer approximation rates of high-dimensional functions that do
not deteriorate exponentially with increasing dimension [24,45].
In this context, it is interesting to identify the key quantity determining the achiev-
able approximation rates of DNNs. Possible explanation for approximation rates
that are essentially independent from the ambient dimension have been identified
if the functions to be approximated have special structures such as composi-
tionality [48,55], or invariances [45,53]. In this article, we identify the highly
problem-specific notion of the dimension of the solutionmanifold as a key quantity
determining the achievable approximation rates by NNs for parametric problems.
We discuss the connection between the approximation rates that NNs achieve and
the ambient dimension in detail in Sect. 5.

• Identifying suitable architectures: One question in applications is how to choose
the right NN architectures for the associated problem. Our results show that NNs
of sufficient depth and size are able to produce very efficient approximations.
Nonetheless, it needs to be mentioned that our results do not yield a lower bound
on the number of layers and thus it is not clear whether deep NNs are indeed
necessary.

This work is a step toward establishing a theory of deep learning-based solutions
of parametric problems. However, given the complexity of this field, it is clear that
many more steps need to follow. We outline a couple of natural further questions of
interest below:

• General parametric problems:Belowwe restrict ourselves to coercive, symmetric,
and linear parametric problems with finitely many parameters. There exist many
extensions to, e.g., non-coercive, non-symmetric, or nonlinear problems [10,11,25,
38,67,70], or to infinite parameter spaces, see, e.g., [2,4]. It would be interesting
to see if the methods proposed in this work can be generalized to these more
challenging situations.

• Bounding the number of snapshots:The interpretation of the parametric problemas
a statistical learning problem has the convenient side-effect that various techniques
have been established to bound the number of necessary samples N , such that
the empirical loss (1.1) is very close to the expected loss. In other words, the
generalization error of the minimizer of the learning procedure is small, meaning
that the prediction rule performs well on unseen data. (Here, the error is measured
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in a norm induced by the loss function and the underlying probability distribution.)
Using these techniques, it is possible to bound the number of snapshots required
for the offline phase to achieve a certain fidelity in the online phase. Estimates
of the generalization error in the context of high-dimensional PDEs have been
deduced in, e.g., [7,19,20,26,59].

• Special NN architectures: This article studies the feasibility of standard feed-
forward NNs. In practice, one often uses special architectures that have proved
efficient in applications. First and foremost, almost all NNs used in applications
are convolutional neural networks (CNNs) [41]. Hence, a relevant question is to
what extent the results of this work also hold for such architectures. It was demon-
strated in [54] that there is a direct correspondence between the approximation
rates of CNNs and that of standard NNs. Thus, we expect that the results of this
work translate to CNNs.
Another successful architecture is that of residual neural networks (ResNets) [32].
These neural networks also admit skip-connections, i.e., do not only connect neu-
rons in adjacent layers. This architecture is by design at least as powerful as a
standard NN and hence inherits all approximation properties of standard NNs.

• Necessary properties of neural networks: In this work, we demonstrate the attain-
ability of certain approximation rates by NNs. It is not clear if the presented results
are optimal or if there are specific necessary assumptions on the architectures,
such as a minimal depth, a minimal number of parameters, or a minimal num-
ber of neurons per layer. For approximation results of classical function spaces,
such lower bounds on specifications of NNs have been established, for example, in
[9,28,53,69]. It is conceivable that the techniques in these works can be transferred
to the approximation tasks described in this work.

• General matrix polynomials:As outlined in Sect. 1.2.2, our results are based on the
approximate implementation of matrix polynomials. Naturally, this construction
can be used to define and construct a ReLU NN based functional calculus. In
other words, for any d ∈ N and every continuous function f that can be well
approximated by polynomials, we can construct a ReLU NN which approximates
the map A �→ f (A) for any appropriately bounded matrix A.
A special instance of such a function of interest is given by f (A) := etA, t > 0,
which is analytic and plays an important role in the treatment of initial value
problems.

• Numerical studies: In a practical learning problem, the approximation-theoretical
aspect only describes one part of the problem. Two further central factors are the
data generation and the optimization process. It is conceivable that in comparison
with these issues, approximation theoretical considerations only play a negligible
role. To understand the extent to which the result of this paper is relevant for
applications, comprehensive studies of the theoretical setup of this work should
be carried out. A first one was published recently in [23].
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1.4 RelatedWork

In this section, we give an extensive overview of works related to this paper. In par-
ticular, for completeness, we start by giving a review of approximation theory of NNs
without an explicit connection to PDEs. Afterward, we will see how NNs have been
employed for the solution of PDEs.

1.4.1 Review of Approximation Theory of Neural Networks

The first and most fundamental results on the approximation capabilities of NNs were
universality results. These results claim that NNs with at least one hidden layer can
approximate any continuous function on a bounded domain to arbitrary accuracy if
they have sufficiently many neurons [15,35]. However, these results do not quantify
the required sizes of NNs to achieve these rates. One of the first results in this direction
was given in [6]. There, a bound on the sufficient size of NNswith sigmoidal activation
functions approximating a function with finite Fourier moments is presented. Further
results describe approximation rates for various smoothness classes by sigmoidal or
even more general activation functions [43,44,46,47].

For the non-differentiable activation function ReLU, first rates of approximation
were identified in [69] for classes of smooth functions, in [53] for piecewise smooth
functions, and in [27] for oscillatory functions. Moreover, NNs mirror the approxi-
mation rates of various dictionaries such as wavelets [62], general affine systems [9],
linear finite elements [31], and higher-order finite elements [52].

1.4.2 Neural Networks and PDEs

A well-established line of research is that of solving high-dimensional PDEs by NNs
assuming that the NN is the solution of the underlying PDE, e.g., [7,19,20,30,36,
37,59,63]. In this regime, it is often possible to bound the size of the involved NNs
in a way that does not scale exponentially with the underlying dimension. In that
way, these results are quite related to our approaches. Our results do not seek to
represent the solution of a PDE as a NN, but a parametric map. Moreover, we analyze
the complexity of the solution manifold in terms of Kolmogorov N -widths. Finally,
the underlying spatial dimension of the involved PDEs in our case would usually be
moderate. However, the dimension of the parameter space could be immense.

One of the first approaches analyzing NN approximation rates for solutions of
parametric PDEs was carried out in [61]. In that work, the analyticity of the solution
map y �→ uy and polynomial chaos expansions with respect to the parametric variable
are used to approximate the map y �→ uy by ReLU NNs of moderate size. Moreover,
we mention the works [34,39,42,58,68] which apply NNs in one way or another
to parametric problems. These approaches study the topic of learning a parametric
problem but do not offer a theoretical analysis of the required sizes of the involved
NNs. These results form our motivation to study the constructions of this paper.

Finally, we mention that the setup of the recent numerical study [23] is closely
related to this work.
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1.5 Outline

In Sect. 2, we describe the type of parametric PDEs that we consider in this paper, and
we recall the theory of RBs. Section 3 introduces a NN calculus which is the basis for
all constructions in this work. There we will also construct the NN that maps a matrix
to its approximate inverse in Theorem 3.8. In Sect. 4, we construct NNs approximating
parametric maps. First, in Theorem 4.1, we approximate the parametric maps after a
high-fidelity discretization. Afterward, in Sect. 4.2, we list two broad examples where
all assumptions which we imposed are satisfied.

We conclude this paper in Sect. 5 with a discussion of our results in light of the
dependence of the underlying NN complexities in terms of the governing quantities.

To not interrupt the flow of reading, we have deferred all auxiliary results and proofs
to the appendices.

1.6 Notation

We denote byN = {1, 2, . . .} the set of all natural numbers and defineN0 := N∪{0}.
Moreover, for a ∈ R we set 
a� := max{b ∈ Z : b ≤ a} and �a� := min{b ∈
Z : b ≥ a}. Let n, l ∈ N. Let IdRn be the identity and 0Rn be the zero vector on R

n .

Moreover, for A ∈ R
n×l , we denote by AT its transpose, by σ(A) the spectrum of A,

by ‖A‖2 its spectral norm and by ‖A‖0 := #{(i, j) : Ai, j �= 0},where #V denotes the
cardinality of a set V , the number of nonzero entries of A. Moreover, for v ∈ R

n we
denote by |v| its Euclidean norm. Let V be a vector space. Then we say that X ⊂s V ,

if X is a linear subspace of V . Moreover, if (V , ‖ · ‖V ) is a normed vector space, X
is a subset of V and v ∈ V , we denote by dist(v, X) := inf{‖x − v‖V : x ∈ X} the
distance between v, X and by (V ∗, ‖ · ‖V ∗) the topological dual space of V , i.e., the
set of all scalar-valued, linear, continuous functions equipped with the operator norm.
For a compact set 	 ⊂ R

n , we denote by Cr (	), r ∈ N0 ∪ {∞}, the spaces of r
times continuously differentiable functions, by L p(	,Rn), p ∈ [1,∞] theRn-valued
Lebesgue spaces, where we set L p(	) := L p(	,R) and by H1(	) := W 1,2(	) the
first-order Sobolev space.

2 Parametric PDEs and Reduced Basis Methods

In this section, we introduce the type of parametric problems that we study in this
paper. A parametric problem in its most general form is based on a map P : Y → Z ,
where Y is the parameter space and Z is called solution state space Z . In the case
of parametric PDEs, Y describes certain parameters of a partial differential equation,
Z is a function space or a discretization thereof, and P(y) ∈ Z is found by solving a
PDE with parameter y.

We will place several assumptions on the PDEs underlying P and the parameter
spaces Y in Sect. 2.1. Afterward, we give an abstract overview of Galerkin methods
in Sect. 2.2 before recapitulating some basic facts about RBs in Sect. 2.3.
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2.1 Parametric Partial Differential Equations

In the following, we will consider parameter-dependent equations given in the varia-
tional form

by
(
uy, v

) = fy(v), for all y ∈ Y, v ∈ H, (2.1)

where

(i) Y is the parameter set specified in Assumption 2.1,
(ii) H is a Hilbert space,
(iii) by : H × H → R is a continuous bilinear form, which fulfills certain well-

posedness conditions specified in Assumption 2.1,
(iv) fy ∈ H∗ is the parameter-dependent right-hand side of (2.1),
(v) uy ∈ H is the solution of (2.1).

Assumption 2.1 Throughout this paper, we impose the following assumptions on Eq.
(2.1).

• The parameter set Y: We assume that Y is a compact subset ofRp,where p ∈ N

is fixed and potentially large.

Remark In [12, Section 1.2], it has been demonstrated that if Y is a compact subset
of some Banach space V , then one can describe every element in Y by a sequence of
real numbers in an affine way. To be more precise, there exist (vi )

∞
i=0 ⊂ V such that

for every y ∈ Y and some coefficient sequence cy whose elements can be bounded
in absolute value by 1 there holds y = v0 + ∑∞

i=1(cy)ivi , implying that Y can be
completely described by the collection of sequences cy . In this paper, we assume these
sequences cy to be finite with a fixed, but possibly large support size.

• Symmetry, uniform continuity, and coercivity of the bilinear forms:Weassume
that for all y ∈ Y the bilinear forms by are symmetric, i.e.,

by(u, v) = by(v, u), for all u, v ∈ H.

Moreover, we assume that the bilinear forms by are uniformly continuous in the
sense that there exists a constant Ccont > 0 with

∣∣by(u, v)
∣∣ ≤ Ccont‖u‖H‖v‖H, for all u ∈ H, v ∈ H, y ∈ Y .

Finally, we assume that the involved bilinear forms are uniformly coercive in the
sense that there exists a constant Ccoer > 0 such that

inf
u∈H\{0}

by(u, u)

‖u‖2H
≥ Ccoer, for all u ∈ H, y ∈ Y .

Hence, by the Lax-Milgram lemma (see [57, Lemma 2.1]), Eq. (2.1) iswell-posed,
i.e., for every y ∈ Y and every fy ∈ H∗ there exists exactly one uy ∈ H such that
(2.1) is satisfied and uy depends continuously on fy .
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• Uniform boundedness of the right-hand side: We assume that there exists a
constant Crhs > 0 such that

∥∥ fy
∥∥H∗ ≤ Crhs, for all y ∈ Y .

• Compactness of the solution manifold: We assume that the solution manifold

S(Y) := {
uy : uy is the solution of (2.1), y ∈ Y

}

is compact inH.

Remark The assumption that S(Y) is compact follows immediately if the solution
map y �→ uy is continuous. This condition is true (see [57, Proposition 5.1, Corollary
5.1]), if for all u, v ∈ H the maps y �→ by(u, v) as well as y → fy(v) are Lipschitz
continuous. In fact, there exists a multitude of parametric PDEs, for which the maps
y �→ by(u, v) and y → fy(v) are even in Cr for some r ∈ N ∪ {∞}. In this
case,

{(
y, uy

) : y ∈ Y
} ⊂ R

p × H is a p-dimensional manifold of class Cr (see
[57, Proposition 5.2, Remark 5.4]). Moreover, we refer to [57, Remark 5.2] and the
references therein for a discussion under which circumstances it is possible to turn a
discontinuous parameter dependency into a continuous one ensuring the compactness
of S(Y).

2.2 High-Fidelity Approximations

In practice, one cannot hope to solve (2.1) exactly for every y ∈ Y . Instead, if we
assume for the moment that y is fixed, a common approach toward the calculation
of an approximate solution of (2.1) is given by the Galerkin method, which we will
describe shortly following [33, Appendix A] and [57, Chapter 2.4]. In this framework,
instead of solving (2.1), one solves a discrete scheme of the form

by
(
udiscy , v

)
= fy(v) for all v ∈ U disc, (2.2)

where U disc ⊂s H is a subspace of H with dim
(
U disc

)
< ∞ and udiscy ∈ U disc is the

solution of (2.2). For the solution udiscy of (2.2) we have that

∥∥∥udiscy

∥∥∥H ≤ 1

Ccoer

∥∥ fy
∥∥H∗ .

Moreover, up to a constant, we have that udiscy is a best approximation of the solution
uy of (2.1) by elements in U disc. To be more precise, by Cea’s Lemma, [57, Lemma
2.2],

∥∥∥uy − udiscy

∥∥∥H ≤ Ccont

Ccoer
inf

w∈Udisc

∥∥uy − w
∥∥H . (2.3)
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Let us now assume that U disc is given. Moreover, if N := dim
(
U disc

)
, let (ϕi )Ni=1 be

a basis for U disc. Then, the matrix

By :=
(
by

(
ϕ j , ϕi

))N
i, j=1

is non-singular and positive definite. The solution udiscy of (2.2) satisfies

udiscy =
N∑

i=1
(uy)iϕi ,

where

uy :=
(
By

)−1 fy ∈ R
N

and fy :=
(
fy (ϕi )

)N
i=1 ∈ R

N . Typically, one starts with a high-fidelity discretization
of the space H, i.e., one chooses a finite but potentially high-dimensional subspace
for which the computed discretized solutions are sufficiently accurate for any y ∈ Y .
To be more precise, we postulate the following:

Assumption 2.2 We assume that there exists a finite dimensional spaceU h ⊂s Hwith
dimension D < ∞ and basis (ϕi )

D
i=1. This space is called high-fidelity discretization.

For y ∈ Y, denote by Bh
y :=

(
by(ϕ j , ϕi )

)D
i, j=1 ∈ R

D×D the stiffness matrix of the

high-fidelity discretization, by fhy :=
(
fy(ϕi )

)D
i=1 the discretized right-hand side, and

by uh
y :=

(
Bh
y

)−1
fhy ∈ R

D the coefficient vector of the Galerkin solution with respect

to the high-fidelity discretization. Moreover, we denote by uhy :=
∑D

i=1
(

uh
y

)

i
ϕi the

Galerkin solution.
We assume that, for every y ∈ Y , supy∈Y

∥∥∥uy − uhy

∥∥∥H ≤ ε̂ for an arbitrarily small,

but fixed ε̂ > 0. In the following, similarly as in [16], we will not distinguish between
H and U h, unless such a distinction matters.

In practice, following this approach, one often needs to calculate uhy ≈ uy for a
variety of parameters y ∈ Y . This, in general, is a very expensive procedure due to the
high-dimensionality of the space U h. In particular, given (ϕi )

D
i=1 , one needs to solve

high-dimensional systems of linear equations to determine the coefficient vector uh
y .A

well-established remedy to overcome these difficulties is given by methods based on
the theory of reduced bases, which we will recapitulate in the upcoming subsection.

Beforewe proceed, let us fix some notation.We denote byG := (〈ϕi , ϕ j 〉H
)D
i, j=1 ∈

R
D×D the symmetric, positive definiteGrammatrix of the basis vectors (ϕi )

D
i=1.Then,

for any v ∈ U h with coefficient vector v with respect to the basis (ϕi )
D
i=1 we have (see

[57, Equation 2.41])

|v|G :=
∣∣∣G1/2v

∣∣∣ = ‖v‖H. (2.4)
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2.3 Theory of Reduced Bases

In this subsection and unless stated otherwise, we follow [57, Chapter 5] and the
references therein. The main motivation behind the theory of RBs lies in the fact
that under Assumption 2.1 the solution manifold S(Y) is a compact subset of H.

This compactness property allows posing the question whether, for every ε̃ ≥ ε̂, it
is possible to construct a finite-dimensional subspace U rb

ε̃
of H such that d(ε̃) :=

dim
(
U rb

ε̃

) � D and such that

sup
y∈Y

inf
w∈U rb

ε̃

∥∥uy − w
∥∥H ≤ ε̃, (2.5)

or, equivalently, if there exist linearly independent vectors (ψi )
d(ε̃)
i=1 with the property

that

∥∥∥∥∥∥

d(ε̃)∑

i=1
(cy)iψi − uy

∥∥∥∥∥∥H
≤ ε̃, for all y ∈ Y and some coefficient vector cy ∈ R

d(ε̃).

The starting point of this theory lies in the concept of the Kolmogorov N -width which
is defined as follows.

Definition 2.3 [16] For N ∈ N, the Kolmogorov N -width of a bounded subset X of a
normed space V is defined by

WN (X) := inf
VN⊂sV

dim(VN )≤N

sup
x∈X

dist (x, VN ) .

This quantity describes the best possible uniform approximation error of X by an
at most N -dimensional linear subspace of V . We discuss concrete upper bounds on
WN (S(Y)) in more detail in Sect. 5. The aim of RBMs is to construct the spaces U rb

ε̃

in such a way that the quantity supy∈Y dist
(
uy,U rb

ε̃

)
is close to Wd(ε̃) (S(Y)).

The identification of the basis vectors (ψi )
d(ε̃)
i=1 of U rb

ε̃
usually happens in an offline

phase in which one has considerable computational resources available and which is
usually based on the determination of high-fidelity discretizations of samples of the
parameter set Y . The most common methods are based on (weak) greedy procedures
(see for instance [57, Chapter 7] and the references therein) or proper orthogonal
decompositions (see, for instance, [57, Chapter 6] and the references therein). In
the last step, an orthogonalization procedure (such as a Gram–Schmidt process) is
performed to obtain an orthonormal set of basis vectors (ψi )

d(ε̃)
i=1 .

Afterward, in the online phase, one assembles for a given input y the corresponding
low-dimensional stiffness matrices and vectors and determines the Galerkin solution
by solving a low-dimensional system of linear equations. To ensure an efficient imple-
mentation of the online phase, a common assumption which we do not require in this
paper is the affine decomposition of (2.1), which means that there exist Qb, Q f ∈ N,
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parameter-independent bilinear forms bq : H × H → R, maps θq : Y → R for
q = 1, . . . , Qb, parameter-independent f q

′ ∈ H∗ as well as maps θq
′ : Y → R for

q ′ = 1, . . . , Q f such that

by =
Qb∑

q=1
θq(y)b

q , as well as fy =
Q f∑

q ′=1
θq

′
(y) f q

′
, for all y ∈ Y . (2.6)

Ashas beenpointedout in [57,Chapter 5.7], in principal three types of reducedbases
generated by RBMs have been established in the literature—the Lagrange reduced
basis, the Hermite reduced basis and the Taylor reduced basis. While the most com-
mon type, the Lagrange RB, consists of orthonormalized versions of high-fidelity
snapshots uh

(
y1

) ≈ u
(
y1

)
, . . . , uh (yn) ≈ u (yn) , Hermite RBs consist of snap-

shots uh
(
y1

) ≈ u
(
y1

)
, . . . , uh (yn) ≈ u (yn) , as well as their first partial derivatives

∂uh
∂ yi

(y j ) ≈ ∂u
∂ yi

(y j ), i = 1, . . . , p, j = 1, . . . , n, whereas Taylor RBs are built of

derivatives of the form ∂kuh

∂ yki
(y) ≈ ∂ku

∂ yki
(y), i = 1, . . . , p, k = 0, . . . , n − 1 around a

given expansion point y ∈ Y . In this paper, we will later assume that there exist small
RBs (ψi )

d(ε̃)
i=1 generated by arbitrary linear combinations of the high-fidelity elements

(ϕi )
D
i=1. Note that all types of RBs discussed above satisfy this assumption.
The next statement gives a (generally sharp) upper bound which relates the possi-

bility of constructing small snapshot RBs directly to the Kolmogorov N -width.

Theorem 2.4 [8, Theorem 4.1.] Let N ∈ N. For a compact subset X of a normed
space V , define the inner N -width of X by

W N (X) := inf
VN∈MN

sup
x∈X

dist (x, VN ) ,

where MN := {
VN ⊂s V : VN = span (xi )Ni=1 , x1, . . . , xN ∈ X

}
. Then

W N (X) ≤ (N + 1)WN (X).

Translated into our framework, Theorem 2.4 states that for every N ∈ N, there
exist solutions uh(yi ) ≈ u(yi ), i = 1, . . . , N of (2.1) such that

sup
y∈Y

inf
w∈span(uh(yi ))Ni=1

∥∥uy − w
∥∥H ≤ (N + 1)WN (S(Y)).

Remark 2.5 We note that this bound is sharp for general X , V . However, it is not
necessarily optimal for special instances of S(Y). If, for instance, WN (S(Y)) decays
polynomially, then WN (S(Y)) decays with the same rate (see [8, Theorem 3.1.]).
Moreover, if WN (S(Y)) ≤ Ce−cNβ

for some c,C, β > 0 then by [18, Corollary 3.3
(iii)] we have WN (S(Y)) ≤ C̃e−c̃Nβ

for some c̃, C̃ > 0.
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Taking the discussion above as a justification, we assume from now on that for
every ε̃ ≥ ε̂ there exists a RB space U rb

ε̃
= span (ψi )

d(ε̃)
i=1 , which fulfills (2.5), where

the linearly independent basis vectors (ψi )
d(ε̃)
i=1 are linear combinations of the high-

fidelity basis vectors (ϕi )
D
i=1 in the sense that there exists a transformation matrix

Vε̃ ∈ R
D×d(ε̃) such that

( i )
d(ε̃)
i=1 =

⎛

⎝
D∑

j=1
(Vε̃ ) j,iϕ j

⎞

⎠
d(ε̃)

i=1

and where d(ε̃) � D is chosen to be as small as possible, at least fulfilling
dist

(
S(Y),U rb

ε̃

) ≤ Wd(ε̃)(S(Y)). In addition, we assume that the vectors (ψi )
d(ε̃)
i=1

form an orthonormal system inH, which is equivalent to the fact that the columns of
G1/2Vε̃ are orthonormal (see [57, Remark 4.1]). This in turn implies

∥∥∥G1/2Vε̃

∥∥∥
2
= 1, for all ε̃ ≥ ε̂ (2.7)

as well as

∥∥∥∥∥∥

d(ε̃)∑

i=1
ciψi

∥∥∥∥∥∥H
= |c| , for all c ∈ R

d(ε̃). (2.8)

For the underlying discretization matrix, one can demonstrate (see, for instance, [57,
Section 3.4.1]) that

Brb
y,ε̃ :=

(
by(ψ j , ψi )

)d(ε̃)

i, j=1 = VT
ε̃ Bh

y,ε̃Vε̃ ∈ R
d(ε̃)×d(ε̃), for all y ∈ Y .

Moreover, due to the symmetry and the coercivity of the underlying bilinear forms
combined with the orthonormality of the basis vectors (ψi )

d(ε̃)
i=1 , one can show (see,

for instance, [57, Remark 3.5]) that

Ccoer ≤
∥∥∥Brb

y,ε̃

∥∥∥
2
≤ Ccont, as well as

1

Ccont
≤

∥∥∥∥
(

Brb
y,ε̃

)−1∥∥∥∥
2
≤ 1

Ccoer
, for all y ∈ Y,

(2.9)

implying that the condition number of the stiffness matrix with respect to the RB
remains bounded independently of y and the dimension d(ε̃). Additionally, the dis-
cretized right-hand side with respect to the RB is given by

f rby,ε̃ :=
(
fy(ψi )

)d(ε̃)

i=1 = VT
ε̃ fhy,ε̃ ∈ R

d(ε̃)
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and, by the Bessel inequality, we have that
∣∣∣f rby,ε̃

∣∣∣ ≤ ∥∥ fy
∥∥H∗ ≤ Crhs. Moreover, let

urb
y,ε̃ :=

(
Brb
y,ε̃

)−1
f rby,ε̃

be the coefficient vector of the Galerkin solution with respect to the RB space. Then,
the Galerkin solution urby,ε̃ can be written as

urby,ε̃ =
d(ε̃)∑

i=1

(
urb
y,ε̃

)

i
ψi =

D∑

j=1

(
Vε̃urb

y,ε̃

)

j
ϕ j ,

i.e.,

ũh
y,ε̃ := Vε̃urb

y,ε̃ ∈ R
D

is the coefficient vector of the RB solution if expanded with respect to the high-fidelity
basis (ϕi )

D
i=1 . Finally, as in Eq. 2.3, we obtain

sup
y∈Y

∥∥∥uy − urby,ε̃

∥∥∥H ≤ sup
y∈Y

Ccont

Ccoer
inf

w∈U rb
ε̃

∥∥uy − w
∥∥H ≤ Ccont

Ccoer
ε̃.

In the following sections, we will emulate RBMs with NNs by showing that we
are able to construct NNs which approximate the maps urb

·,ε̃ , ũh
·,ε̃ such that their com-

plexity depends only on the size of the reduced basis and at most linearly on D. The
key ingredient will be the construction of small NNs implementing an approximate
matrix inversion based on Richardson iterations in Sect. 3. In Sect. 4, we then pro-
ceed with building the NNs the realizations of which approximate the maps urb

·,ε̃ , ũh
·,ε̃ ,

respectively.

3 Neural Network Calculus

The goal of this chapter is to emulate the matrix inversion by NNs. In Sect. 3.1, we
introduce some basic notions connected to NNs as well as some basic operations one
can perform with these. In Sect. 3.2, we state a result which shows the existence of
NNs the ReLU-realizations of which take a matrix A ∈ R

d×d , ‖A‖2 < 1 as their
input and calculate an approximation of

(
IdRd − A

)−1 based on its Neumann series
expansion. The associated proofs can be found in “Appendix A.”

3.1 Basic Definitions and Operations

We start by introducing a formal definition of a NN. Afterward, we introduce several
operations, such as parallelization and concatenation that can be used to assemble
complex NNs out of simpler ones. Unless stated otherwise, we follow the notion
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of [53] where most of this formal framework was introduced. First, we introduce
a terminology for NNs that allows us to differentiate between a NN as a family of
weights and the function implemented by the NN. This implemented function will be
called the realization of the NN.

Definition 3.1 Let n, L ∈ N. A NN � with input dimension dimin (�) := n and L
layers is a sequence of matrix-vector tuples

� = (
(A1, b1), (A2, b2), . . . , (AL , bL)

)
,

where N0 = n and N1, . . . , NL ∈ N, and where each A� is an N� × N�−1 matrix, and
b� ∈ R

N� .
If � is a NN as above, K ⊂ R

n , and if � : R → R is arbitrary, then we define
the associated realization of � with activation function � over K (in short, the �-
realization of � over K ) as the map RK

� (�) : K → R
NL such that

RK
� (�)(x) = xL ,

where xL results from the following scheme:

x0 := x,

x� := �(A� x�−1 + b�), for � = 1, . . . , L − 1,

xL := AL xL−1 + bL ,

and where � acts componentwise, that is, �(v) = (�(v1), . . . , �(vm)) for any v =
(v1, . . . , vm) ∈ R

m .
We call N (�) := n+∑L

j=1 N j the number of neurons of the NN � and L = L(�)

the number of layers. For � ≤ L we call M�(�) := ‖A�‖0 + ‖b�‖0 the number
of weights in the �-th layer and we define M(�) := ∑L

�=1 M�(�), which we call
the number of weights of �. Moreover, we refer to dimout (�) := NL as the output
dimension of �.

First of all, we note that it is possible to concatenate two NNs in the following way.

Definition 3.2 Let L1, L2 ∈ N and let
∑

j�
1 = (

(A1
1, b1

1), . . . , (A
1
L1

, b1
L1

)
)
,�2 =(

(A2
1, b2

1), . . . , (A
2
L2

, b2
L2

)
)
be two NNs such that the input layer of �1 has the same

dimension as the output layer of�2. Then,�1� �2 denotes the following L1+ L2−1
layer NN:

�1
� �2 := (

(A2
1, b2

1), . . . , (A
2
L2−1, b2

L2−1), (A
1
1A2

L2
, A1

1b2
L2
+ b1

1), (A
1
2, b1

2), . . . ,

(A1
L1

, b1
L1

)
)
.

We call �1� �2 the concatenation of �1, �2.
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In general, there is no bound on M(�1� �2) that is linear in M(�1) and M(�2).
For the remainder of the paper, let � be given by the ReLU activation function, i.e.,
�(x) = max{x, 0} for x ∈ R.Wewill see in the following, that we are able to introduce
an alternative concatenation which helps us to control the number of nonzero weights.
Toward this goal, we give the following result which shows that we can construct NNs
the ReLU-realization of which is the identity function on R

n .

Lemma 3.3 For any L ∈ N, there exists a NN �Id
n,L with input dimension n, output

dimension n and at most 2nL nonzero, {−1, 1}-valued weights such that

RR
n

�

(
�Id

n,L

)
= IdRn .

We now introduce the sparse concatenation of two NNs.

Definition 3.4 Let �1,�2 be two NNs such that the output dimension of �2 and the
input dimension of �1 equal n ∈ N. Then, the sparse concatenation of �1 and �2 is
defined as

�1 ��2 := �1
� �Id

n,1
� �2.

We will see later in Lemma 3.6 the properties of the sparse concatenation of NNs.
We proceed with the second operation that we can perform with NNs. This operation
is called parallelization.

Definition 3.5 [21,53] Let�1, . . . , �k beNNswhich have equal input dimension such
that there holds �i = (

(Ai
1, bi

1), . . . , (A
i
L , bi

L)
)
for some L ∈ N. Then, we define the

parallelization of �1, . . . , �k by

P
(
�1, . . . , �k

)
:=

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

A1
1

A2
1

. . .

Ak
1

⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎜⎝

b1
1

b2
1
.
.
.

bk
1

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠ , . . . ,

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

A1
L

A2
L

. . .

Ak
L

⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎜⎝

b1
L

b2
L
.
.
.

bk
L

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠ .

Now, let � be a NN and L ∈ N such that L(�) ≤ L. Then, define the NN

EL(�) :=
{

�, if L(�) = L,

�Id
dimout(�),L−L(�) ��, if L(�) < L.

Finally, let �̃1, . . . , �̃k be NNs which have the same input dimension and let

L̃ := max
{
L

(
�̃1

)
, . . . , L

(
�̃k

)}
.

Then, we define

P
(
�̃1, . . . , �̃k

)
:= P

(
EL̃

(
�̃1

)
, . . . , EL̃

(
�̃k

))
.
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We call P
(
�̃1, . . . , �̃k

)
the parallelization of �̃1, . . . , �̃k .

The following lemma was established in [21, Lemma 5.4] and examines the prop-
erties of the sparse concatenation as well as of the parallelization of NNs.

Lemma 3.6 [21] Let �1, . . . , �k be NNs.

(a) If the input dimension of �1, which shall be denoted by n1, equals the output
dimension of �2, and n2 is the input dimension of �2, then

RR
n1

�

(
�1

)
◦ RR

n2
�

(
�2

)
= RR

n2
�

(
�1 ��2

)

and

(i) L
(
�1 ��2

) ≤ L
(
�1

)+ L
(
�2

)
,

(ii) M
(
�1 ��2

) ≤ M
(
�1

)+M
(
�2

)+M1
(
�1

)+ML(�2)

(
�2

) ≤ 2M
(
�1

)+
2M

(
�2

)
,

(iii) M1
(
�1 ��2

) = M1
(
�2

)
,

(iv) ML(�1��2)

(
�1 ��2

) = ML(�1)

(
�1

)
.

(b) If the input dimension of �i , denoted by n, equals the input dimension of � j , for
all i, j , then for the NN P

(
�1,�2, . . . , �k

)
and all x1, . . . xk ∈ R

n we have

RR
n

�

(
P

(
�1,�2, . . . , �k

))
(x1, . . . , xk) =

(
RR

n

�

(
�1

)
(x1),RR

n

�

(
�2

)
(x2),

. . . ,RR
n

�

(
�k

)
(xk)

)

as well as

(i) L
(
P

(
�1,�

2, . . . , �k
)) = maxi=1,...,k L

(
�i

)
,

(ii) M
(
P

(
�1,�2, . . . , �k

)) ≤ 2
(∑k

i=1 M
(
�i

)) + 4
(∑k

i=1 dimout
(
�i

))

maxi=1,...,k L
(
�i

)
,

(iii) M
(
P

(
�1,�2, . . . , �k

)) = ∑k
i=1 M

(
�i

)
, if L

(
�1

) = L
(
�2

) = . . . =
L

(
�k

)
,

(iv) M1
(
P

(
�1,�2, . . . , �k

)) = ∑k
i=1 M1

(
�i

)
,

(v) ML(P(�1,�2,...,�k))

(
P

(
�1,�2, . . . , �k

)) ≤ ∑k
i=1 max

{
2dimout

(
�i

)
,

ML(�i)

(
�i

) }
,

(vi) ML(P(�1,�2,...,�k))

(
P

(
�1,�2, . . . , �k

)) = ∑k
i=1 ML(�i)

(
�i

)
, if L

(
�1

) =
L

(
�2

) = . . . = L
(
�k

)
.

3.2 A Neural Network-Based Approach TowardMatrix Inversion

The goal of this subsection is to emulate the inversion of squarematrices by realizations
of NNs which are comparatively small in size. In particular, Theorem 3.8 shows that,
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for d ∈ N, ε ∈ (0, 1/4), and δ ∈ (0, 1), we are able to efficiently construct NNs
�

1−δ,d
inv;ε the ReLU-realization of which approximates the map

{
A ∈ R

d×d : ‖A‖2 ≤ 1− δ
}
→ R

d×d , A �→ (
IdRd − A

)−1 =
∞∑

k=0
Ak

up to an ‖ · ‖2- error of ε.
To stay in the classical NN setting, we employ vectorized matrices in the remainder

of this paper. Let A ∈ R
d×l . We write

vec(A) := (A1,1, . . . , Ad,1, . . . , A1,l , . . . , Ad,l)
T ∈ R

dl .

Moreover, for a vector v = (v1,1, . . . , vd,1, . . . , v1,d , . . . , vd,l)
T ∈ R

dl we set

matr(v) := (vi, j )i=1,...,d, j=1,...,l ∈ R
d×l .

In addition, for d, n, l ∈ N and Z > 0 we set

K Z
d,n,l :=

{
(vec(A), vec(B)) : (A, B) ∈ R

d×n × R
n×l , ‖A‖2, ‖B‖2 ≤ Z

}

as well as

K Z
d :=

{
vec(A) : A ∈ R

d×d , ‖A‖2 ≤ Z
}

.

The basic ingredient for the construction of NNs emulating a matrix inversion is
the following result about NNs emulating the multiplication of two matrices.

Proposition 3.7 Let d, n, l ∈ N, ε ∈ (0, 1), Z > 0. There exists a NN �
Z ,d,n,l
mult;ε

with n · (d + l)- dimensional input, dl-dimensional output such that, for an absolute
constant Cmult > 0, the following properties are fulfilled:

(i) L
(
�

Z ,d,n,l
mult;ε̃

)
≤ Cmult ·

(
log2 (1/ε)+ log2

(
n
√
dl

)
+ log2 (max {1, Z})

)
,

(ii) M
(
�

Z ,d,n,l
mult;ε̃

)
≤ Cmult ·

(
log2 (1/ε)+ log2

(
n
√
dl

)
+ log2 (max {1, Z})

)
dnl,

(iii) M1

(
�

Z ,d,n,l
mult;ε̃

)
≤ Cmultdnl, as well as M

L
(
�

Z ,d,n,l
mult;ε̃

)
(
�

Z ,d,n,l
mult;ε̃

)
≤ Cmultdnl,

(iv) sup(vec(A),vec(B))∈K Z
d,n,l

∥∥∥∥AB − matr
(
R
K Z
d,n,l

�

(
�

Z ,d,n,l
mult;ε

)
(vec(A), vec(B))

)∥∥∥∥
2
≤

ε,
(v) for any (vec(A), vec(B)) ∈ K Z

d,n,l we have

∥∥∥∥matr
(
R
K Z
d,n,l

�

(
�

Z ,d,n,l
mult;ε̃

)
(vec(A), vec(B))

)∥∥∥∥
2
≤ ε + ‖A‖2‖B‖2
≤ ε + Z2 ≤ 1+ Z2.
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Based on Proposition 3.7, we construct in “Appendix A.2” NNs emulating the map
A �→ Ak for square matrices A and k ∈ N. This construction is then used to prove the
following result.

Theorem 3.8 For ε, δ ∈ (0, 1) define

m(ε, δ) :=
⌈
log2 (0.5εδ)

log2(1− δ)

⌉
.

There exists a universal constant Cinv > 0 such that for every d ∈ N, ε ∈ (0, 1/4) and
every δ ∈ (0, 1) there exists a NN �

1−δ,d
inv;ε with d2-dimensional input, d2-dimensional

output and the following properties:

(i) L
(
�

1−δ,d
inv;ε

)
≤ Cinv log2 (m(ε, δ)) · (log2 (1/ε)+ log2 (m(ε, δ))+ log2(d)

)
,

(ii) M
(
�

1−δ,d
inv;ε

)
≤ Cinvm(ε, δ) log22(m(ε, δ))d3 · (

log2 (1/ε)+ log2 (m(ε, δ))

+ log2(d)
)
,

(iii) supvec(A)∈K 1−δ
d

∥∥∥∥
(
IdRd − A

)−1 − matr
(
R
K 1−δ
d

�

(
�

1−δ,d
inv;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε,

(iv) for any vec(A) ∈ K 1−δ
d we have

∥∥∥∥matr
(
R
K 1−δ
d

�

(
�

1−δ,d
inv;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε +

∥∥∥
(
IdRd − A

)−1∥∥∥
2

≤ ε + 1

1− ‖A‖2 ≤ ε + 1

δ
.

Remark 3.9 In the proof of Theorem 3.8, we approximate the function mapping a
matrix to its inverse via the Neumann series and then emulate this construction by
NNs. There certainly exist alternative approaches to approximating this inversion
function, such as, for example, via Chebyshevmatrix polynomials (for an introduction
of Chebyshev polynomials, see, for instance, [65, Chapter 8.2]). In fact, approximation
by Chebyshev matrix polynomials is more efficient in terms of the degree of the
polynomials required to reach a certain approximation accuracy. However, emulation
of Chebyshev matrix polynomials by NNs either requires larger networks than that
of monomials or, if they are represented in a monomial basis, coefficients that grow
exponentiallywith the polynomial degree. In the end, the advantage of a smaller degree
in the approximation through Chebyshev matrix polynomials does not seem to set off
the drawbacks described before.

4 Neural Networks and Solutions of PDEs Using Reduced Bases

In this section, we invoke the estimates for the approximate matrix inversion from
Sect. 3.2 to approximate the parameter-dependent solution of parametric PDEs by
NNs. In other words, for ε̃ ≥ ε̂, we construct NNs approximating the maps

Y → R
D : y �→ ũh

y,ε̃ , and Y → R
d(ε̃) : y �→ urb

y,ε̃ .
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Here, the sizes of the NNs essentially only depend on the approximation fidelity ε̃

and the size d(ε̃) of an appropriate RB, but are independent or at most linear in the
dimension of the high-fidelity discretization D.

We start in Sect. 4.1 by constructing, under some general assumptions on the para-
metric problem, a NN emulating the maps ũh

·,ε̃ and urb
·,ε̃ . In Sect. 4.2, we verify these

assumptions on two examples.

4.1 Determining the Coefficients of the Solution

Next, we present constructions of NNs the ReLU-realizations of which approximate
the maps ũh

·,ε̃ and urb
·,ε̃ , respectively. In our main result of this subsection, the approx-

imation error of the NN approximation ũh
·,ε̃ will be measured with respect to the

| · |G-norm since we can relate this norm directly to the norm on H via Eq. (2.4). In
contrast, the approximation error of the NN approximating urb

·,ε̃ will be measured with
respect to the | · |-norm due to Eq. 2.8.

As already indicated earlier, the main ingredient of the following arguments is an
application of the NN of Theorem 3.8 to the matrix Brb

y,ε̃ . As a preparation, we show

in Proposition B.1 in Appendix, that we can rescale the matrix Brb
y,ε̃ with a constant

factor α := (Ccoer + Ccont)
−1 (in particular, independent of y and d(ε̃)) so that with

Ccoerδ := αCcoer

∥∥∥Id
Rd(ε̃) − αBrb

y,ε̃

∥∥∥
2
≤ 1− δ < 1.

We will fix these values of α and δ for the remainder of the manuscript. Next, we
state two abstract assumptions on the approximability of the map Brb

·,ε̃ which we will
later on specify when we consider concrete examples in Sect. 4.2.

Assumption 4.1 We assume that, for any ε̃ ≥ ε̂, ε > 0, and for a corresponding RB
(ψi )

d(ε̃)
i=1 , there exists a NN �B

ε̃,ε
with p-dimensional input and d(ε̃)2-dimensional

output such that

sup
y∈Y

∥∥∥αBrb
y,ε̃ − matr

(
RY

�

(
�B

ε̃,ε

)
(y)

)∥∥∥
2
≤ ε.

We set BM (ε̃, ε) := M
(
�B

ε̃,ε

)
∈ N and BL (ε̃, ε) := L

(
�B

ε̃,ε

)
∈ N.

In addition to Assumption 4.1, we state the following assumption on the approx-
imability of the map f rb·,ε̃ .

Assumption 4.2 We assume that for every ε̃ ≥ ε̂, ε > 0, and a corresponding RB
(ψi )

d(ε̃)
i=1 there exists a NN�f

ε̃,ε
with p-dimensional input and d(ε̃)-dimensional output

such that

sup
y∈Y

∣∣∣f rby,ε̃ − RY
�

(
�f

ε̃,ε

)
(y)

∣∣∣ ≤ ε.
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We set FL (ε̃, ε) := L(�f
ε̃,ε

) and FM (ε̃, ε) := M
(
�f

ε̃,ε

)
.

Now we are in a position to construct NNs the ReLU-realizations of which approx-
imate the coefficient maps ũh

·,ε̃ , urb
·,ε̃ .

Theorem 4.3 Let ε̃ ≥ ε̂ and ε ∈ (0, α/4 ·min{1,Ccoer}) . Moreover, define
ε′ := ε/max{6,Crhs}, ε′′ := ε/3 · Ccoer, ε′′′ := 3/8 · ε′αC2

coer and κ :=
2max {1,Crhs, 1/Ccoer}. Additionally, assume that Assumption 4.1 and Assump-
tion 4.2 hold. Then, there exist NNs �

u,rb
ε̃,ε

and �
u,h
ε̃,ε

such that the following properties
hold:

(i) supy∈Y
∣∣∣urb

y,ε̃ − RY
�

(
�

u,rb
ε̃,ε

)
(y)

∣∣∣ ≤ ε, and supy∈Y
∣∣∣ũh

y,ε̃ − RY
�

(
�

u,h
ε̃,ε

)
(y)

∣∣∣
G
≤

ε,

(ii) there exists a constant Cu
L = Cu

L(Ccoer,Ccont,Crhs) > 0 such that

L
(
�

u,rb
ε̃,ε

)
≤ L

(
�

u,h
ε̃,ε

)

≤ Cu
L max

{
log2(log2(1/ε))

(
log2(1/ε)+ log2(log2(1/ε))+ log2(d(ε̃))

)

+BL(ε̃, ε′′′), FL
(
ε̃, ε′′

)}
,

(iii) there exists a constant Cu
M = Cu

M (Ccoer,Ccont,Crhs) > 0 such that

M
(
�

u,rb
ε̃,ε

)
≤ Cu

Md(ε̃)2 ·
(
d(ε̃) log2(1/ε) log

2
2(log2(1/ε))

(
log2(1/ε)+ log2(log2(1/ε))+ log2(d(ε̃))

)
. . .

· · · + BL(ε̃, ε′′′)+ FL
(
ε̃, ε′′

) )
+ 2BM (ε̃, ε′′′)+ FM

(
ε̃, ε′′

)
,

(iv) M
(
�

u,h
ε̃,ε

)
≤ 2Dd(ε̃)+ 2M

(
�

u,rb
ε̃,ε

)
,

(v) supy∈Y
∣∣∣RY

�

(
�

u,rb
ε̃,ε

)
(y)

∣∣∣ ≤ κ2 + ε
3 , and supy∈Y

∣∣∣RY
�

(
�

u,h
ε̃,ε

)
(y)

∣∣∣
G
≤ κ2 + ε

3 .

Remark 4.4 In the proof of Theorem 4.3, we construct a NN �B
inv;ε̃,ε the ReLU real-

ization of which ε-approximates
(

Brb
y

)−1
(see Proposition B.3). Then, the NNs of

Theorem 4.3 can be explicitly constructed as

�
u,rb
ε̃,ε

:= �
κ,d(ε̃),d(ε̃),1
mult; ε

3
� P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

)
�

(((
IdRp

IdRp

)
, 0R2p

))
and

�
u,h
ε̃,ε

:= ((
Vε̃ , 0RD

))��
u,rb
ε̃,ε

,

Remark 4.5 It can be checked in the proof of Theorem 4.3, specifically (B.4) and (B.5)
that the constants Cu

L ,Cu
M depend on the constants Ccoer,Ccont,Crhs in the following

way (recall that Ccoer
2Ccont

≤ δ = Ccoer
Ccoer+Ccont

≤ 1
2 ):
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• Cu
L depends affine linearly on

log22

(
log2(δ/2)

log2(1− δ)

)
, log2

(
1

Ccoer + Ccont

)
, log2 (max {1,Crhs, 1/Ccoer}) .

• Cu
M depends affine linearly on

log2

(
1

Ccoer + Ccont

)
,

log2(δ/2)

log2(1− δ)
· log32

(
log2(δ/2)

log2(1− δ)

)
, log2 (max {1,Crhs, 1/Ccoer}) .

Remark 4.6 Theorem 4.3 guarantees the existence of two moderately sized NNs the
realizations of which approximate the discretized solution maps:

Y → R
D : y �→ ũh

y,ε̃ , and Y → R
d(ε̃) : y �→ urb

y,ε̃ . (4.1)

Also of interest is the approximation of the parametrized solution of the PDE, i.e., the
map Y × 	 → R : (y, x) �→ uy(x), where 	 is the domain on which the PDE is
defined. Note that if either the elements of the reduced basis or the elements of the
high-fidelity basis can be very efficiently approximated by realizations of NNs, then
the representation

uy(x) ≈
d(ε̃)∑

i=1
(urb

y,ε̃ )iψi (x) =
D∑

i=1
(ũh

y,ε̃ )iϕi (x)

suggests that (y, x) �→ uy(x) can be approximated with essentially the cost of approx-
imating the respective function in (4.1). Many basis elements that are commonly used
for the high-fidelity representation can indeed be approximated very efficiently by real-
izations of NNs, such as, e.g., polynomials, finite elements, or wavelets [31,52,62,69].

4.2 Examples of Neural Network Approximation of Parametric Maps

In this subsection, we apply Theorem4.3 to a variety of concrete examples inwhich the
approximation of the coefficient maps urb

·,ε̃ , ũh
·,ε̃ can be approximated by comparatively

small NNs. We show that the sizes of these NNs depend only on the size of associated
reduced bases by verifying Assumption 4.1 and Assumption 4.2, respectively. We will
discuss to what extent our results depend on the respective ambient dimensions D, p
in Sect. 5.

We will state the following examples already in their variational formulation and
note that they fulfill the requirements of Assumption 2.1. We also remark that the
presented examples represent only a small portion of problems to which our theory is
applicable.
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4.2.1 Example I: Diffusion Equation

We consider a special case of [57, Chapter 2.3.1] which can be interpreted as a gen-
eralized version of the heavily used example −div(a∇u) = f , where a is a scalar
field (see for instance [13,61] and the references therein). Let n ∈ N, 	 ⊂ R

n, be a
Lipschitz domain andH := H1

0 (	) = {
u ∈ H1(	) : u|∂	 = 0

}
. We assume that the

parameter set is given by a compact set T ⊂ L∞(	,Rn×n) such that for allT ∈ T and
almost all x ∈ 	 the matrix T(x) is symmetric, positive definite with matrix norm that
can be bounded from above and below independently of T and x. As we have noted in
Assumption 2.1, we can assume that there exist some (Ti )

∞
i=0 ⊂ L∞(	,Rn×n) such

that for every T ∈ T there exist (yi (T))∞i=1 ⊂ [−1, 1] with T = T0 +∑∞
i=1 yi (T)Ti .

We restrict ourselves to the case of finitely supported sequences (yi )∞i=1. To be more
precise, let p ∈ N be potentially very high but fixed, let Y := [−1, 1]p and consider
for y ∈ Y and some fixed f ∈ H∗ the parametric PDE

by(uy, v) :=
∫

	

T0∇uy∇v dx +
p∑

i=1
yi

∫

	

Ti∇uy∇v dx = f (v), for all v ∈ H.

Then, the parameter dependency of the bilinear forms is linear, hence analytic
whereas the parameter dependency of the right-hand side is constant, hence also ana-
lytic, implying thatW (S(Y)) decays exponentially fast. This in turn implies existence
of small RBs (ψi )

d(ε̃)
i=1 where d(ε̃) depends at most polylogarithmically on 1/ε̃. In this

case, Assumption 4.1 and Assumption 4.2 are trivially fulfilled: for ε̃ > 0, ε > 0 we
can construct one-layer NNs �B

ε̃,ε
with p-dimensional input and d(ε̃)2-dimensional

output as well as �f
ε̃,ε

with p-dimensional input and d(ε̃)-dimensional output the

ReLU-realizations of which exactly implement the maps y �→ Brb
y,ε̃ and y �→ f rby,ε̃ ,

respectively.
In conclusion, in this example, we have, for ε̃, ε > 0,

BL (ε̃, ε) = 1, FL (ε̃, ε) = 1, BM (ε̃, ε) ≤ pd(ε̃)2, FM (ε̃, ε) ≤ pd(ε̃).

Theorem 4.3 hence implies the existence of a NN approximating urb
·,ε̃ up to error ε

with a size that is linear in p, polylogarithmic in 1/ε, and, up to a log factor, cubic in
d(ε̃). Moreover, we have shown the existence of a NN approximating ũh

·,ε̃ with a size
that is linear in p, polylogarithmic in 1/ε, linear in D and, up to a log factor, cubic in
d(ε̃).

4.2.2 Example II: Linear Elasticity Equation

Let 	 ⊂ R
3 be a Lipschitz domain, �D, �N1 , �N2 , �N3 ⊂ ∂	, be disjoint

such that �D ∪ �N1 ∪ �N2 ∪ �N3 = ∂	, H := [H1
�D

(	)]3, where H1
�D

(	) ={
u ∈ H1(	) : u|�D = 0

}
. In variational formulation, this problem can be formulated

as an affinely decomposed problem dependent on five parameters, i.e., p = 5. Let
Y := [ỹ1,1, ỹ2,1]× · · ·× [ỹ1,5, ỹ2,5] ⊂ R

5 such that [ỹ1,2, ỹ2,2] ⊂ (−1, 1/2) and for
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y = (y1, . . . , y5) ∈ Y we consider the problem

by(uy, v) = fy(v), for all v ∈ H,

where

• by(uy, v) := y1
1+y2

∫
	
trace

((∇uy + (∇(uy)
T
) · (∇v + (∇v)T

)T )
dx + y1y2

1−2y2∫
	
div(uy) div(v) dx,

• fy(v) := y3
∫
�1

n · v dx + y4
∫
�2

n · v dx + y5
∫
�3

n · v dx, and where n denotes
the outward unit normal on ∂	.

The parameter dependency of the right-hand side is linear (hence analytic), whereas
the parameter dependency of the bilinear forms is rational, hence (due to the choice
of ỹ1,2, ỹ2,2) also analytic andWN (S(Y)) decays exponentially fast implying that we
can choose d(ε̃) to depend polylogarithmically on ε̃. It is now easy to see that Assump-
tion 4.1 and Assumption 4.2 are fulfilled with NNs the size of which is comparatively
small: By [66], for every ε̃, ε > 0 we can find a NN with O(log22(1/ε)) layers and
O(d(ε̃)2 log32(1/ε)) nonzero weights the ReLU-realization of which approximates the
map y �→ Brb

y,ε̃ up to an error of ε. Moreover, there exists a one-layer NN�f
ε̃,ε

with p-
dimensional input and d(ε̃)-dimensional output the ReLU-realization ofwhich exactly
implements the map y �→ f rby,ε̃ . In other words, in these examples, for ε̃, ε > 0,

BL(ε̃, ε) ∈ O
(
log22(1/ε)

)
, FL (ε̃, ε) = 1, BM (ε̃, ε) ∈ O

(
d(ε̃)2 log32(1/ε)

)
,

FM (ε̃, ε) ≤ 5d(ε̃).

Thus, Theorem 4.3 implies the existence of NNs approximating urb
·,ε̃ up to error ε

with a size that is polylogarithmic in 1/ε, and, up to a log factor, cubic in d(ε̃).
Moreover, there exist NNs approximating ũh

·,ε̃ up to error ε with a size that is linear
in D, polylogarithmic in 1/ε, and, up to a log factor, cubic in d(ε̃).

For amore thorough discussion of this example (a special case of the linear elasticity
equation which describes the displacement of some elastic structure under physical
stress on its boundaries), we refer to [57, Chapter 2.1.2, Chapter 2.3.2, Chapter 8.6].

5 Discussion: Dependence of Approximation Rates on Involved
Dimensions

In this section, we will discuss our results in terms of the dependence on the involved
dimensions. We would like to stress that the resulting approximation rates (which can
be derived from Theorem 4.3) differ significantly from and are often substantially
better than alternative approaches. As described in Sect. 2, there are three central
dimensions that describe the hardness of the problem. These are the dimension D
of the high-fidelity discretization space U h, the dimension d(ε̃) of the reduced basis
space, and the dimension p of the parameter space Y .

Dependence on D: Examples I and II above establish approximation rates that depend
at most linearly on D; in particular, the dependence on D is not coupled to the depen-
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dence on ε. Another approach to solve these problems would be to directly solve the
linear systems from the high-fidelity discretization. Without further assumptions on
sparsity properties of the matrices, the resulting complexity would be O(D3) plus
the cost of assembling the high-fidelity stiffness matrices. Since D � d(ε̃), this is
significantly worse than the approximation rate provided by Theorem 4.3.
Dependence on d(ε̃) : If one assembles and solves the Galerkin scheme for a pre-
viously found reduced basis, one typically needs O

(
d(ε̃)3

)
operations. By building

NNs emulating this method, we achieve essentially the same approximation rate of
O

(
d(ε̃)3 log2(d(ε̃)) · C(ε)

)
where C(ε) depends polylogarithmically on the approx-

imation accuracy ε.

Note that, while having comparable complexity, the NN-based approach is more
versatile than using a Galerkin scheme and can be applied even when the underlying
PPDE is fully unknown as long as sufficiently many snapshots are available.

Dependence on p:
We start by comparing our result to naive NN approximation results which are

simply based on the smoothness properties of the map y �→ ũh
·,ε̃ without using its

specific structure. For example, if thesemaps are analytic, then classical approximation
rates with NNs (such as those provided by [69, Theorem 1], [53, Theorem 3.1] or
[28, Corollary 4.2]) promise approximations up to an error of ε with NNs � of size
M(�) ≤ c(p, n)Dε−p/n for arbitrary n ∈ N and a constant c(p, n). In this case, the
dependence on D is again linear, but coupled with the potentially quickly growing
term ε−p/n . Similarly, when approximating the map y �→ ũrb

·,ε̃ , one would obtain an

approximation rate of ε−p/n . In addition, our approach is more flexible than the naive
approach in the sense that Assumptions 4.1 and 4.2 could even be satisfied if the map
y �→ Brb

y,ε̃ is non-smooth.
Now we analyze the dependence of our result to p in more detail. We recall from

Theorem 4.3, that in our approach the sizes of approximating networks to achieve
an error of ε depend only polylogarithmically on 1/ε, (up to a log factor) cubi-
cally on d(ε̃), are independent from or at worst linear in D, and depend linearly
on BM (ε̃, ε), BM (ε̃, ε), FM (ε̃, ε), FL(ε̃, ε), respectively. First of all, the dependence
on pmaterializes through the quantities BM (ε̃, ε), BL(ε̃, ε), FM (ε̃, ε), FL(ε̃, ε) from
Assumptions 4.1 and 4.2 . We have seen that in both examples above, the associated
weight quantities BM (ε̃, ε), FM (ε̃, ε) scale like pd(ε̃)2 · polylog(1/ε), whereas the
depth quantities BL(ε̃, ε), FL(ε̃, ε) scale polylogarithmically in 1/ε. Combining this
observation with the statement of Theorem 4.3, we can conclude that the governing
quantity in the obtained approximation rates is given by the dimension of the solution
manifold d(ε̃), derived by bounds on the Kolmogorov N -width (and, consequently,
the inner N -width).

For problems of the type (2.6), where the involved maps θq are sufficiently smooth
and the right-hand side is parameter-independent, one can show (see, for instance, [1,
Equation 3.17] or [51] thatWN (S(Y)) (and hence alsoWN (S(Y))) scales like e−cN Qb

for some c > 0. This implies for the commonly studied case Qb = p (such as in
Example I of Sect. 4.2.1) that the dimension d(ε̃) of the reduced basis space scales like
O(log2(1/ε̃)

p).This bound (which is based on a Taylor expansion of the solutionmap)
has been improved only in very special cases of Example I (see, for instance, [1,3]) for
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small parameter dimensions p. Hence, byTheorem4.3, the number of nonzeroweights
necessary to approximate the parameter-to-solutionmap ũh

y,ε̃ , can be upper bounded by

O
(
p log3p2 (1/ε̃) log2(log2(1/ε̃)) log

2
2(1/ε) log

2
2(log2(1/ε))+ D log2(1/ε̃)

p
)
and the

number of layers byO
(
p log22(1/ε) log2(1/ε̃)

)
. This implies that in our results there

is a (mild form of a) curse of dimensionality which can only be circumvented if the
sensitivity of the Kolmogorov N -width with regard to the parameter dimension p can
be reduced further.
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A Proofs of the Results from Sect. 3

A.1 Proof of Proposition 3.7

In this subsection, we will prove Proposition 3.7. As a preparation, we first
prove the following special instance under which M(�1� �2) can be estimated by
max

{
M(�1), M(�2)

}
.

Lemma A.1 Let � be a NN with m-dimensional output and d-dimensional input. If
a ∈ R

1×m, then, for all � = 1, . . . , L(�),

M�(((a, 0))� �) ≤ M�(�).

In particular, it holds that M((a, 0)� �) ≤ M(�). Moreover, if D ∈ R
d×n such

that, for every k ≤ d there is at most one lk ≤ n such that Dk,lk �= 0, then, for all
� = 1, . . . , L(�),

M�(�� ((D, 0Rd ))) ≤ M�(�).

In particular, it holds that M(�� ((D, 0Rd ))) ≤ M(�).

123

http://creativecommons.org/licenses/by/4.0/


Constructive Approximation

Proof Let � = (
(A1, b1), . . . , (AL , bL)

)
, and a, D as in the statement of the lemma.

Then, the result follows if

‖aAL‖0 + ‖abL‖0 ≤ ‖AL‖0 + ‖bL‖0 (A.1)

and

‖A1D‖0 ≤ ‖A1‖0.

It is clear that ‖aAL‖0 is less than the number of nonzero columns of AL which is
certainly bounded by ‖AL‖0. The same argument shows that ‖abL‖0 ≤ ‖bL‖0. This
yields (A.1).

We have that for two vectors p, q ∈ R
k , k ∈ N and for all μ, ν ∈ R

‖μp + νq‖0 ≤ I (μ)‖p‖0 + I (ν)‖q‖0,

where I (γ ) = 0 if γ = 0 and I (γ ) = 1 otherwise. Also,

‖A1D‖0 =
∥∥∥DT AT

1

∥∥∥
0
=

n∑

l=1

∥∥∥∥
(

DT AT
1

)

l,−

∥∥∥∥
0
,

where, for a matrix G, Gl,− denotes the l-th row of G. Moreover, we have that for all
l ≤ n

(
DT AT

1

)

l,− =
d∑

k=1

(
DT

)

l,k

(
AT
1

)

k,− =
d∑

k=1
Dk,l

(
AT
1

)

k,− .

As a consequence, we obtain

‖A1D‖0 ≤
n∑

l=1

∥∥∥∥∥

d∑

k=1
Dk,l

(
AT
1

)

k,−

∥∥∥∥∥
0

≤
n∑

l=1

d∑

k=1
I
(
Dk,l

) ∥∥∥∥
(

AT
1

)

k,−

∥∥∥∥
0

=
d∑

k=1
I
(
Dk,lk

) ∥∥∥∥
(

AT
1

)

k,−

∥∥∥∥
0
≤ ‖A1‖0.

� 

Now we are ready to prove Proposition 3.7.

Proof of Proposition 3.7 Without loss of generality, assume that Z ≥ 1. By [21, Lemma
6.2], there exists a NN ×Z

ε with input dimension 2, output dimension 1 such that for
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�ε := ×Z
ε

L (�ε) ≤ 0.5 log2

(
n
√
dl

ε

)
+ log2(Z)+ 6, (A.2)

M (�ε) ≤ 90 ·
(
log2

(
n
√
dl

ε

)
+ 2 log2(Z)+ 6

)
, (A.3)

M1 (�ε) ≤ 16, as well as ML(�ε) (�ε) ≤ 3, (A.4)

sup
|a|,|b|≤Z

∣∣∣ab − RR
2

� (�ε) (a, b)
∣∣∣ ≤ ε

n
√
dl

. (A.5)

Since ‖A‖2, ‖B‖2 ≤ Z , we know that for every i = 1, . . . , d, k = 1, . . . , n, j =
1, . . . , l we have that |Ai,k |, |Bk, j | ≤ Z . We define, for i ∈ {1, . . . , d}, k ∈
{1, . . . , n}, j ∈ {1, . . . , l}, the matrix Di,k, j such that, for all A ∈ R

d×n, B ∈ R
n×l

Di,k, j (vec(A), vec(B)) = (Ai,k, Bk, j ).

Moreover, let

�Z
i,k, j;ε := ×Z

ε
�

((
Di,k, j , 0R2

))
.

We have, for all i ∈ {1, . . . , d}, k ∈ {1, . . . , n}, j ∈ {1, . . . , l}, that L
(
�Z

i,k, j;ε
)
=

L
(×Z

ε

)
and by Lemma A.1 that �Z

i,k, j;ε satisfies (A.2), (A.3), (A.4) with �ε :=
�Z

i,k, j;ε . Moreover, we have by (A.5)

sup
(vec(A),vec(B))∈K Z

d,n,l

∣∣∣∣Ai,kBk, j − R
K Z
d,n,l

�

(
�Z

i, j,k;ε
)

(vec(A), vec(B))

∣∣∣∣ ≤
ε

n
√
dl

.

(A.6)

As a next step, we set, for 1Rn ∈ R
n being a vector with each entry equal to 1,

�Z
i, j;ε := ((1Rn , 0)) � P

(
�Z

i,1, j;ε, . . . , �
Z
i,n, j;ε

)
�

⎛

⎜⎝

⎛

⎜⎝

⎛

⎜⎝
Id

Rn(d+l)
...

Id
Rn(d+l)

⎞

⎟⎠ , 0
Rn2(d+l)

⎞

⎟⎠

⎞

⎟⎠ ,

which by Lemma 3.6 is a NN with n · (d + l)-dimensional input and 1-dimensional
output such that (A.2) holds with �ε := �Z

i, j;ε . Moreover, by Lemmas A.1 and 3.6
and by (A.3) we have that

M
(
�Z

i, j;ε
)
≤ M

(
P

(
�Z

i,1, j;ε, . . . , �
Z
i,n, j;ε

))

≤ 90n ·
(
log2

(
n
√
dl

ε

)
+ 2 log2(Z)+ 6

)
. (A.7)
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Additionally, by Lemmas 3.6 and A.1 and (A.4), we obtain

M1

(
�Z

i, j;ε
)
≤ M1

(
P

(
�Z

i,1, j;ε, . . . , �
Z
i,n, j;ε

))
≤ 16n.

and

M
L
(
�Z
i, j;ε

)
(
�Z

i, j;ε
)
= M

L
(
�Z
i, j;ε

)
(
P

(
�Z

i,1, j;ε, . . . , �
Z
i,n, j;ε

))
≤ 2n. (A.8)

By construction it follows that

R
K Z
d,n,l

�

(
�Z

i, j;ε
)

(vec(A), vec(B)) =
n∑

k=1
R
K Z
d,n,l

�

(
�Z

i,k, j;ε
)

(vec(A), vec(B))

and hence we have, by (A.6),

sup
(vec(A),vec(B))∈K Z

d,n,l

∣∣∣∣∣

n∑

k=1
Ai,kBk, j − R

K Z
d,n,l

�

(
�Z

i, j;ε
)

(vec(A), vec(B))

∣∣∣∣∣ ≤
ε√
dl

.

Asafinal step,wedefine�
Z ,d,n,l
mult;ε̃ := P

(
�Z

1,1;ε, . . . , �
Z
d,1;ε, . . . , �

Z
1,l;ε, . . . , �

Z
d,l;ε

)
�

⎛

⎜⎝

⎛

⎜⎝

⎛

⎜⎝
Id

Rn(d+l)
...

Id
Rn(d+l)

⎞

⎟⎠ , 0
Rdln(d+l)

⎞

⎟⎠

⎞

⎟⎠. Then, by Lemma 3.6, we have that (A.2) is satisfied

for �ε := �
Z ,d,n,l
mult;ε̃ . This yields (i) of the asserted statement. Moreover, invoking

Lemma 3.6, Lemma A.1 and (A.7) yields that

M
(
�

Z ,d,n,l
mult;ε̃

)
≤ 90dln ·

(
log2

(
n
√
dl

ε

)
+ 2 log2(Z)+ 6

)
,

which yields (ii) of the result. Moreover, by Lemma 3.6 and (A.8) it follows that

M1

(
�

Z ,d,n,l
mult;ε̃

)
≤ 16dln and M

L
(
�

Z ,d,n,l
mult;ε̃

)
(
�

Z ,d,n,l
mult;ε̃

)
≤ 2dln,

completing the proof of (iii). By construction and using the fact that for any N ∈ R
d×l

there holds

‖N‖2 ≤
√
dl max

i, j
|Ni, j |,

123



Constructive Approximation

we obtain that

sup
(vec(A),vec(B))∈K Z

d,n,l

∥∥∥∥AB − matr
(
R
K Z
d,n,l

�

(
�

Z ,d,n,l
mult;ε̃

)
(vec(A), vec(B))

)∥∥∥∥
2

≤ √
dl sup

(vec(A),vec(B))∈K Z
d,n,l

max
i=1,...,d, j=1,...,l

∣∣∣∣∣

n∑

k=1
Ai,kBk, j − R

K Z
d,n,l

�

(
�Z

i, j;ε
)

(vec(A), vec(B))

∣∣∣∣∣ ≤ ε. (A.9)

Equation (A.9) establishes (iv) of the asserted result. Finally, we have for any
(vec(A), vec(B)) ∈ K Z

d,n,l that

∥∥∥∥matr
(
R
K Z
d,n,l

�

(
�

Z ,d,n,l
mult;ε̃

)
(vec(A), vec(B))

)∥∥∥∥
2

≤
∥∥∥∥matr

(
R
K Z
d,n,l

�

(
�

Z ,d,n,l
mult;ε̃

)
(vec(A), vec(B))

)
− AB

∥∥∥∥
2
+ ‖AB‖2

≤ ε + ‖A‖2‖B‖2 ≤ ε + Z2 ≤ 1+ Z2.

This demonstrates that (v) holds and thereby finishes the proof. � 

A.2 Proof of Theorem 3.8

The objective of this subsection is to prove of Theorem 3.8. Toward this goal, we
construct NNs which emulate the map A �→ Ak for k ∈ N and square matrices A.

This is done by heavily using Proposition 3.7. First of all, as a direct consequence of
Proposition 3.7 we can estimate the sizes of the emulation of the multiplication of two
squared matrices. Indeed, there exists a universal constant C1 > 0 such that for all
d ∈ N, Z > 0, ε ∈ (0, 1)

(i) L
(
�

Z ,d,d,d
mult;ε

)
≤ C1 ·

(
log2 (1/ε)+ log2 (d)+ log2 (max {1, Z})),

(ii) M
(
�

Z ,d,d,d
mult;ε

)
≤ C1 ·

(
log2 (1/ε)+ log2 (d)+ log2 (max {1, Z})) d3,

(iii) M1

(
�

Z ,d,d,d
mult;ε

)
≤ C1d3, as well as M

L
(
�

Z ,d,d,d
mult;ε

)
(
�

Z ,d,d,d
mult;ε

)
≤ C1d3,

(iv) sup(vec(A),vec(B))∈K Z
d,d,d

∥∥∥∥AB − matr
(
R
K Z
d,d,d

�

(
�

Z ,d,d,d
mult;ε

)
(vec(A), vec(B))

)∥∥∥∥
2≤ ε,

(v) for every (vec(A), vec(B)) ∈ K Z
d,d,d we have

∥∥∥∥matr
(
R
K Z
d,d,d

�

(
�

Z ,d,d,d
mult;ε

)
(vec(A), vec(B))

)∥∥∥∥
2
≤ ε + ‖A‖2‖B‖2
≤ ε + Z2 ≤ 1+ Z2.

123



Constructive Approximation

One consequence of the ability to emulate the multiplication of matrices is that
we can also emulate the squaring of matrices. We make this precise in the following
definition.

Definition A.2 For d ∈ N, Z > 0, and ε ∈ (0, 1) we define the NN

�
Z ,d
2;ε := �

Z ,d,d,d
mult;ε �

(((
Id

Rd2

Id
Rd2

)
, 0

R2d2

))
,

which has d2-dimensional input and d2-dimensional output. By Lemma 3.6 we have
that there exists a constant Csq > C1 such that for all d ∈ N, Z > 0, ε ∈ (0, 1)

(i) L
(
�

Z ,d
2;ε

)
≤ Csq ·

(
log2(1/ε)+ log2(d)+ log2 (max {1, Z})) ,

(ii) M
(
�

Z ,d
2;ε

)
≤ Csqd3 ·

(
log2(1/ε)+ log2(d)+ log2 (max {1, Z})) ,

(iii) M1

(
�

Z ,d
2;ε

)
≤ Csqd3, as well as M

L
(
�

Z ,d
2;ε

)
(
�

Z ,d
2;ε

)
≤ Csqd3,

(iv) supvec(A)∈K Z
d

∥∥∥∥A2 − matr
(
R
K Z
d

�

(
�

Z ,d
2;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε,

(v) for all vec(A) ∈ K Z
d we have

∥∥∥∥matr
(
R
K Z
d

�

(
�

Z ,d
2;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε + ‖A‖2 ≤ ε + Z2 ≤ 1+ Z2.

Our next goal is to approximate the map A �→ Ak for an arbitrary k ∈ N0. We start
with the case that k is a power of 2 and for the moment we only consider the set of all
matrices the norm of which is bounded by 1/2.

Proposition A.3 Let d ∈ N, j ∈ N, as well as ε ∈ (0, 1/4). Then there exists a
NN �

1/2,d
2 j ;ε with d2-dimensional input and d2-dimensional output with the following

properties:

(i) L
(
�

1/2,d
2 j ;ε

)
≤ Csq j ·

(
log2(1/ε)+ log2(d)

)+ 2Csq · ( j − 1),

(ii) M
(
�

1/2,d
2 j ;ε

)
≤ Csq jd3 ·

(
log2(1/ε)+ log2(d)

)+ 4Csq · ( j − 1)d3,

(iii) M1

(
�

1/2,d
2 j ;ε

)
≤ Csqd3, as well as M

L
(
�

1/2,d

2 j ;ε
)
(
�

1/2,d
2 j ;ε

)
≤ Csqd3,

(iv) supvec(A)∈K 1/2
d

∥∥∥∥A2 j − matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε,

(v) for every vec(A) ∈ K 1/2
d we have

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε +

∥∥∥A2 j
∥∥∥
2
≤ ε + ‖A‖2 j

2

≤ 1

4
+

(
1

2

)2 j

≤ 1

2
.
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Proof We show the statement by induction over j ∈ N. For j = 1, the statement
follows by choosing�

1/2,d
2;ε as inDefinitionA.2. Assume now, as induction hypothesis,

that the claim holds for an arbitrary, but fixed j ∈ N, i.e., there exists a NN �
1/2,d
2 j ;ε

such that

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)
− A2 j

∥∥∥∥
2
≤ ε,

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2

≤ ε +
(
1

2

)2 j

(A.10)

and �
1/2,d
2 j ;ε satisfies (i),(ii),(iii). Now we define

�
1/2,d
2 j+1;ε := �

1,d
2; ε

4
��

1/2,d
2 j ;ε .

By the triangle inequality, we obtain for any vec(A) ∈ K 1/2
d

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j+1;ε

)
(vec(A))

)
− A2 j+1

∥∥∥∥
2

≤
∥∥∥∥matr

(
R
K 1/2
d

�

(
�

1/2,d
2 j+1;ε

)
(vec(A))

)
− A2 j

matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2

+
∥∥∥∥A2 j

matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)
−

(
A2 j

)2∥∥∥∥
2
. (A.11)

By construction of �
1/2,d
2 j+1;ε , we know that

∥∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j+1;ε

)
(vec(A))

)
−

(
matr

(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

))2
∥∥∥∥∥
2

≤ ε

4
.

Therefore, using the triangle inequality and the fact that ‖ · ‖2 is a submultiplicative
operator norm, we derive that

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j+1;ε

)
(vec(A))

)
− A2 j

matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2

≤ ε

4
+

∥∥∥∥∥

(
matr

(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

))2

− A2 j
matr

(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥∥
2

≤ ε

4
+

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)
− A2 j

∥∥∥∥
2

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)∥∥∥∥
2

≤ ε

4
+ ε ·

(
ε +

(
1

2

)2 j )
≤ 3

4
ε, (A.12)
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where the penultimate estimate follows by the induction hypothesis (A.10) and ε <

1/4. Hence, since ‖ · ‖2 is a submultiplicative operator norm, we obtain

∥∥∥∥A2 j
matr

(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)
−

(
A2 j

)2∥∥∥∥
2

≤
∥∥∥∥matr

(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)
− A2 j

∥∥∥∥
2

∥∥∥A2 j
∥∥∥
2

≤ ε

4
, (A.13)

where we used
∥∥∥A2 j

∥∥∥
2
≤ 1/4 and the induction hypothesis (A.10). Applying (A.13)

and (A.12) to (A.11) yields

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j+1;ε

)
(vec(A))

)
− A2 j+1

∥∥∥∥
2
≤ ε. (A.14)

A direct consequence of (A.14) is that

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j+1;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε +

∥∥∥A2 j+1∥∥∥
2
≤ ε + ‖A‖2 j+1

2 . (A.15)

The estimates (A.14) and (A.15) complete the proof of the assertions (iv) and (v)
of the proposition statement. Now we estimate the size of �

1/2,d
2 j+1;ε . By the induction

hypothesis and Lemma 3.6(a)(i), we obtain

L
(
�

1/2,d
2 j+1;ε

)
= L

(
�

1,d
2; ε

4

)
+ L

(
�

1/2,d
2 j ;ε

)

≤ Csq ·
(
log2(1/ε)+ log2(d)+ log2(4)+ j log2(1/ε)

+2 · ( j − 1)+ j log2(d)
)

= Csq ·
(
( j + 1) log2(1/ε)+ ( j + 1) log2(d)+ 2 j

)
,

which implies (i). Moreover, by the induction hypothesis and Lemma 3.6(a)(ii), we
conclude that

M
(
�

1/2,d
2 j+1;ε

)
≤ M

(
�

1,d
2; ε

4

)
+ M

(
�

1/2,d
2 j ;ε

)
+ M1

(
�

1,d
2; ε

4

)
+ M

L
(
�

1/2,d

2 j ;ε
)
(
�

1/2,d
2 j ;ε

)

≤ Csqd
3 · (log2(1/ε)+ log2(d)+ log2(4)+ j log2(1/ε)+ j log2(d)

+4 · ( j − 1))+ 2Csqd
3

= Csqd
3 · (( j + 1) log2(1/ε)+ ( j + 1) log2(d)+ 4 j

)
,

implying (ii). Finally, it follows fromLemma 3.6(a)(iii) in combinationwith the induc-
tion hypothesis as well Lemma 3.6(a)(iv) that

M1

(
�

1/2,d
2 j+1;ε

)
= M1

(
�

1/2,d
2 j ;ε

)
≤ Csqd

3,
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as well as

M
L
(
�

1/2,d

2 j+1;ε
)
(
�

1/2,d
2 j+1;ε

)
= M

L

(
�

1,d
2; ε4

)
(
�

1,d
2; ε

4

)
≤ Csqd

3,

which finishes the proof. � 
We proceed by demonstrating, how to build a NN that emulates the map A �→ Ak

for an arbitrary k ∈ N0. Again, for the moment we only consider the set of all matrices
the norms of which are bounded by 1/2. For the case of the set of all matrices the
norms of which are bounded by an arbitrary Z > 0, we refer to Corollary A.5.

Proposition A.4 Let d ∈ N, k ∈ N0, and ε ∈ (0, 1/4). Then, there exists a NN
�

1/2,d
k;ε with d2- dimensional input and d2-dimensional output satisfying the following

properties:

(i)

L
(
�

1/2,d
k;ε

)
≤ ⌊

log2 (max{k, 2})⌋ L
(
�

1,d
mult; ε

4

)
+ L

(
�

1/2,d

2
log2(max{k,2})�;ε
)

≤ 2Csq
⌊
log2 (max{k, 2})⌋ · (log2(1/ε)+ log2(d)+ 2

)
,

(ii) M
(
�

1/2,d
k;ε

)
≤ 3

2Csqd3 · ⌊
log2 (max{k, 2})⌋ · (⌊

log2 (max{k, 2})⌋+ 1
) ·

(
log2(1/ε)+ log2(d)+ 4

)
,

(iii) M1

(
�

1/2,d
k;ε

)
≤ Csq · (⌊

log2 (max{k, 2})⌋+ 1
)
d3, as well as M

L
(
�

1/2,d
k;ε

)

(
�

1/2,d
k;ε

)
≤ Csqd3,

(iv) supvec(A)∈K 1/2
d

∥∥∥∥Ak − matr
(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε,

(v) for any vec(A) ∈ K 1/2
d we have

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε + ‖Ak‖2 ≤ 1

4
+ ‖A‖k2 ≤

1

4
+

(
1

2

)k

.

Proof We prove the result per induction over k ∈ N0. The cases k = 0 and k = 1 hold
trivially by defining the NNs

�
1/2,d
0;ε :=

((
0
Rd2×Rd2 , vec(IdRd )

))
, �

1/2,d
1;ε :=

((
Id

Rd2 , 0
Rd2

))
.

For the induction hypothesis, we claim that the result holds true for all k′ ≤ k ∈ N.
If k is a power of two, then the result holds per Proposition A.3; thus, we can assume
without loss of generality, that k is not a power of two. We define j := 
log2(k)�
such that, for t := k − 2 j , we have that 0 < t < 2 j . This implies that Ak = A2 j

At .
Hence, by Proposition A.3 and by the induction hypothesis, respectively, there exist a
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NN �
1/2,d
2 j ;ε satisfying (i)–(v) of Proposition A.3 and a NN �

1/2,d
t;ε satisfying (i)-(v) of

the statement of this proposition. We now define the NN

�
1/2,d
k;ε := �

1,d,d,d
mult; ε

4
� P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

)
�

(((
Id

Rd2

Id
Rd2

)
, 0

R2d2

))
.

By construction and Lemma 3.6(a)(iv), we first observe that

M
L
(
�

1/2,d
k;ε

)
(
�

1/2,d
k;ε

)
= M

L

(
�

1,d,d,d
mult; ε4

)
(
�

1,d,d,d
mult; ε

4

)
≤ Csqd

3.

Moreover, we obtain by the induction hypothesis as well as Lemma 3.6(a)(iii) in
combination with Lemma 3.6(b)(iv) that

M1

(
�

1/2,d
k;ε

)
= M1

(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))
= M1

(
�

1/2,d
2 j ;ε

)
+ M1

(
�

1/2,d
t;ε

)

≤ Csqd
3 + ( j + 1)Csqd

3 = ( j + 2)Csqd
3.

This shows (iii). To show (iv), we perform a similar estimate as the one following
(A.11). By the triangle inequality,

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)
− Ak

∥∥∥∥
2

≤
∥∥∥∥matr

(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)
− A2 j

matr
(
R
K 1/2
d

�

(
�

1/2,d
t;ε

)
(vec(A))

)∥∥∥∥
2

+
∥∥∥∥A2 j

matr
(
R
K 1/2
d

�

(
�

1/2,d
t;ε

)
(vec(A))

)
− A2 j

At
∥∥∥∥
2
. (A.16)

By the construction of �
1/2,d
k;ε and Proposition 3.7, we conclude that

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)

− matr
(
R
K 1/2
d

�

(
�

1/2,d
2 j ;ε

)
(vec(A))

)
matr

(
R
K 1/2
d

�

(
�

1/2,d
t;ε

)
(vec(A))

)∥∥∥∥
2

≤ ε

4
.
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Hence, using (A.16), we can estimate

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
k;ε (vec(A))

))
− Ak

∥∥∥∥
2

≤ ε

4
+

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)
matr

(
R
K 1/2
d

�

(
�
1/2,d
t;ε

)
(vec(A))

)

− A2 j
matr

(
R
K 1/2
d

�

(
�
1/2,d
t;ε

)
(vec(A))

)∥∥∥∥
2

+
∥∥∥∥A2 j

matr
(
R
K 1/2
d

�

(
�
1/2,d
t;ε

)
(vec(A))

)
− Ak

∥∥∥∥
2

≤ ε

4
+

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
t;ε

)
(vec(A))

)∥∥∥∥
2

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
2 j ;ε

)
(vec(A))

)
− A2 j

∥∥∥∥
2

+
∥∥∥A2 j

∥∥∥
2

∥∥∥∥matr
(
R
K 1/2
d

�

(
�
1/2,d
t;ε

)
(vec(A))

)
− At

∥∥∥∥
2
=: ε

4
+ I + II.

We now consider two cases: If t = 1, then we know by the construction of �
1/2,d
1;ε that

II = 0. Thus,

ε

4
+ I + II = ε

4
+ I ≤ ε

4
+ ‖A‖2ε ≤ 3ε

4
≤ ε.

If t ≥ 2, then

ε

4
+ I + II ≤ ε

4
+

(
ε + ‖A‖t + ‖A‖2 j

)
ε ≤ ε

4
+

(
1

4
+

(
1

2

)t

+
(
1

2

)2 j )
ε

≤ ε

4
+ 3ε

4
= ε,

where we have used that
( 1
2

)t ≤ 1
4 for t ≥ 2. This shows (iv). In addition, by an

application of the triangle inequality, we have that

∥∥∥∥matr
(
R
K 1/2
d

�

(
�

1/2,d
k;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε +

∥∥∥Ak
∥∥∥
2
≤ ε + ‖A‖k2 ≤

1

4
+

(
1

2

)k

.
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This shows (v). Now we analyze the size of �
1/2,d
k;ε . We have by Lemma 3.6(a)(i) in

combination with Lemma 3.6(b)(i) and by the induction hypothesis that

L
(
�

1/2,d
k;ε

)
≤ L

(
�

1,d,d,d
mult; ε

4

)
+max

{
L

(
�

1/2,d
2 j ;ε

)
, L

(
�

1/2,d
t;ε

)}

≤ L
(
�

1,d,d,d
mult; ε

4

)
+max

{
L

(
�

1/2,d
2 j ;ε

)
, ( j − 1)L

(
�

1,d,d,d
mult; ε

4

)
+ L

(
�

1/2,d
2 j−1;ε

)}

≤ L
(
�

1,d,d,d
mult; ε

4

)

+max
{
( j − 1)L

(
�

1,d,d,d
mult; ε

4

)
+ L

(
�

1/2,d
2 j ;ε

)
, ( j − 1)L

(
�

1,d,d,d
mult; ε

4

)

+L
(
�

1/2,d
2 j−1;ε

)}

≤ j L
(
�

1,d,d,d
mult; ε

4

)
+ L

(
�

1/2,d
2 j ;ε

)

≤ Csq j ·
(
log2(1/ε)+ log2(d)+ 2

)+ Csq j ·
(
log2(1/ε)+ log2(d)

)

+ 2Csq · ( j − 1)

≤ 2Csq j ·
(
log2(1/ε)+ log2(d)+ 2

)
,

which implies (i). Finally, we address the number of nonzero weights of the resulting
NN. We first observe that, by Lemma 3.6(a)(ii),

M
(
�

1/2,d
k;ε

)
≤

(
M

(
�

1,d,d,d
mult; ε

4

)
+ M1

(
�

1,d,d,d
mult; ε

4

))
+ M

(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))

+ M
L
(
P
(
�

1/2,d

2 j ;ε ,�
1/2,d
t;ε

))
(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))

=: I′ + II′(a)+ II′(b).

Then, by the properties of the NN �
1,d,d,d
mult; ε

4
, we obtain

I′ = M
(
�

1,d,d,d
mult; ε

4

)
+ M1

(
�

1,d,d,d
mult; ε

4

)
≤ Csqd

3 · (log2(1/ε)+ log2(d)+ 2
)+ Csqd

3

= Csqd
3 · (log2(1/ε)+ log2(d)+ 3

)
.

Next, we estimate

II′(a)+ II′(b) = M
(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))

+ M
L
(
P
(
�

1/2,d

2 j ;ε ,�
1/2,d
t;ε

))
(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))
.

Without loss of generality we assume that L := L
(
�

1/2,d
t;ε

)
− L

(
�

1/2,d
2 j ;ε

)
> 0. The

other cases follow similarly. We have that L ≤ 2Csq j ·
(
log2(1/ε)+ log2(d)+ 2

)

and, by the definition of the parallelization of two NNs with a different number of
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layers that

II′(a) = M
(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
t;ε

))

= M
(
P

(
�Id

d2,L ��
1/2,d
2 j ;ε ,�

1/2,d
t;ε

))

= M
(
�Id

d2,L ��
1/2,d
2 j ;ε

)
+ M

(
�

1/2,d
t;ε

)

≤ M
(
�Id

d2,L

)
+ M1

(
�Id

d2,L

)
+ M

L
(
�

1/2,d

2 j ;ε
)
(
�

1/2,d
2 j ;ε

)

+ M
(
�

1/2,d
2 j ;ε

)
+ M

(
�

1/2,d
t;ε

)

≤ 2d2(L + 1)+ Csqd
3 + M

(
�

1/2,d
t;ε

)
+ M

(
�

1/2,d
2 j ;ε

)
,

where we have used the definition of the parallelization for the first two equalities,
Lemma 3.6(b)(iii) for the third equality, Lemma 3.6(a)(ii) for the fourth inequality
as well as the properties of �Id

d2,L
in combination with Proposition A.3(iii) for the last

inequality. Moreover, by the definition of the parallelization of two NNs with different
numbers of layers, we conclude that

II′(b) = M
L
(
P
(
�

1/2,d

2 j ;ε ,�
1/2,d
t;ε

))
(
P

(
�

1/2,d
2 j ;ε ,�

1/2,d
d;ε

))
≤ d2 + Csqd

3.

Combining the estimates on I′, II′(a), and II′(b), we obtain by using the induction
hypothesis that

M
(
�
1/2,d
k;ε

)
≤ Csqd

3 · (log2(1/ε)+ log2(d)+ 3
)+ 2d2 · (L + 1)+ d2 + Csqd

3

+ M
(
�
1/2,d
t;ε

)
+ M

(
�
1/2,d
2 j ;ε

)

≤ Csqd
3 · (log2(1/ε)+ log2(d)+ 4

)+ 2d2 · (L + 2)+ M
(
�
1/2,d
t;ε

)
+ M

(
�
1/2,d
2 j ;ε

)

≤ Csq · ( j + 1)d3 · (log2(1/ε)+ log2(d)+ 4
)+ 2d2 · (L + 2)+ M

(
�
1/2,d
t;ε

)

≤ Csq · ( j + 1)d3 · (log2(1/ε)+ log2(d)+ 4
)+ 2Csq jd

2 · (log2(1/ε)+ log2(d)+ 2
)

+ 4d2 + M
(
�
1/2,d
t;ε

)

≤ 3Csq · ( j + 1)d3 · (log2(1/ε)+ log2(d)+ 4
)+ M

(
�
1/2,d
t;ε

)

≤ 3Csqd
3 ·

(
j + 1+ j · ( j + 1)

2

)
· (log2(1/ε)+ log2(d)+ 4)

)

= 3

2
Csq · ( j + 1) · ( j + 2)d3 · (log2(1/ε)+ log2(d)+ 4

)
.

� 
Proposition A.4 only provides a construction of a NN the ReLU-realization of

which emulates a power of a matrix A, under the assumption that ‖A‖2 ≤ 1/2. We
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remove this restriction in the following corollary by presenting a construction of a NN
�

Z ,d
k;ε the ReLU-realization of which approximates the map A �→ Ak, on the set of all

matrices A the norms of which are bounded by an arbitrary Z > 0.

Corollary A.5 There exists a universal constant Cpow > Csq such that for all Z > 0,

d ∈ N and k ∈ N0, there exists some NN �
Z ,d
k;ε with the following properties:

(i) L
(
�

Z ,d
k;ε

)
≤ Cpow log2 (max{k, 2})·(log2(1/ε)+ log2(d)+ k log2 (max {1, Z})),

(ii) M
(
�

Z ,d
k;ε

)
≤ Cpow log22 (max{k, 2}) d3·(log2(1/ε)+ log2(d)+ k log2 (max {1, Z})),

(iii) M1

(
�

Z ,d
k;ε

)
≤ Cpow log2 (max{k, 2}) d3, as well as M

L
(
�

Z ,d
k;ε

)
(
�Z

k;ε
)
≤

Cpowd3,

(iv) supvec(A)∈K Z
d

∥∥∥∥Ak − matr
(
R
K Z
d

�

(
�

Z ,d
k;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε,

(v) for any vec(A) ∈ K Z
d we have

∥∥∥∥matr
(
R
K Z
d

�

(
�

Z ,d
k;ε

)
(vec(A))

)∥∥∥∥
2
≤ ε + ‖Ak‖2 ≤ ε + ‖A‖k2.

Proof Let ((A1, b1), . . . , (AL , bL)) := �
1/2,d
k; ε

2max{1,Zk} according to Proposition A.4.

Then, the NN

�
Z ,d
k;ε :=

((
1

2Z
A1, b1

)
, (A2, b2), . . . , (AL−1, bL−1),

(
2ZkAL , 2ZkbL

))

fulfills all of the desired properties. � 
We have seen how to construct a NN that takes a matrix as an input and computes a

power of this matrix. With this tool at hand, we are now ready to prove Theorem 3.8.

Proof of Theorem 3.8 By the properties of the partial sums of the Neumann series, for
m ∈ N and every vec(A) ∈ K 1−δ

d , we have that

∥∥∥∥∥
(
IdRd − A

)−1 −
m∑

k=0
Ak

∥∥∥∥∥
2

=
∥∥∥
(
IdRd − A

)−1 Am+1
∥∥∥
2
≤

∥∥∥
(
IdRd − A

)−1∥∥∥
2
‖A‖m+12

≤ 1

1− (1− δ)
· (1− δ)m+1 = (1− δ)m+1

δ
.

Hence, for

m(ε, δ) =
⌈
log1−δ(2) log2

(
εδ

2

)⌉
=

⌈
log2(ε)+ log2(δ)− 1

log2(1− δ)

⌉

≥ log2(ε)+ log2(δ)− 1

log2(1− δ)
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we obtain

∥∥∥∥∥∥

(
IdRd − A

)−1 −
m(ε,δ)∑

k=0
Ak

∥∥∥∥∥∥
2

≤ ε

2
.

Let now

((A1, b1), . . . , (AL , bL))

:=
(((

Id
Rd2 | · · · |Id

Rd2

)
, 0

Rd2

))

� P

(
�

1,d
1; ε

2(m(ε,δ)−1)
, . . . , �

1,d
m(ε,δ); ε

2(m(ε,δ)−1)

)
�

⎛

⎜⎝

⎛

⎜⎝

⎛

⎜⎝
Id

Rd2

...

Id
Rd2

⎞

⎟⎠ , 0
R2m(ε,δ)d2

⎞

⎟⎠

⎞

⎟⎠ ,

where
(

Id
Rd2 | · · · |Id

Rd2

)
∈ R

d2×m(ε,δ)·d2 . Then we set

�
1−δ,d
inv;ε := (

(A1, b1), . . . ,
(
AL , bL + vec

(
IdRd

)))
.

We have for any vec(A) ∈ K 1−δ
d

∥∥∥∥
(
IdRd − A

)−1 − matr
(
R
K 1−δ
d

�

(
�

1−δ,d
inv;ε

)
(vec(A))

)∥∥∥∥
2

≤
∥∥∥∥∥∥

(
IdRd − A

)−1 −
m(ε,δ)∑

k=0
Ak

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥

m(ε,δ)∑

k=0
Ak − matr

(
R
K 1−δ
d

�

(
�

1−δ,d
inv;ε

)
(vec(A))

)∥∥∥∥∥∥
2

≤ ε

2
+

m(ε,δ)∑

k=2

∥∥∥∥Ak − matr
(
R
K 1−δ
d

�

(
�

1,d
k; ε

2(m(ε,δ)−1)

)
(vec(A))

)∥∥∥∥
2

≤ ε

2
+ (m(ε, δ)− 1)

ε

2(m(ε, δ)− 1)
= ε,

where we have used that

∥∥∥∥A − matr
(
R
K 1−δ
d

�

(
�

1,d
1; ε

2(m(ε,δ)−1)

)
(vec(A))

)∥∥∥∥
2
= 0.

This completes the proof of (iii). Moreover, (iv) is a direct consequence of (iii). Now
we analyze the size of the resulting NN. First of all, we have by Lemma 3.6(b)(i) and
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Constructive Approximation

Corollary A.5 that

L
(
�

1−δ,d
inv;ε

)
= max

k=1,...,m(ε,δ)
L

(
�

1,d
k; ε

2(m(ε,δ)−1)

)

≤ Cpow log2 (m(ε, δ)− 1) · (log2 (1/ε)+ 1+ log2 (m(ε, δ)− 1)+ log2(d)
)

≤ Cpow log2

(
log2 (0.5εδ)

log2(1− δ)

)
·
(
log2 (1/ε)+ 1+ log2

(
log2 (0.5εδ)

log2(1− δ)

)
+ log2(d)

)
,

which implies (i).Moreover, by Lemma 3.6(b)(ii), Corollary A.5 and themonotonicity
of the logarithm, we obtain

M
(
�
1−δ,d
inv;ε

)
≤ 3 ·

⎛

⎝
m(ε,δ)∑

k=1
M

(
�
1,d
k; ε

2(m(ε,δ)−1)

)⎞

⎠

+ 4Cpowm(ε, δ)d2 log2 (m(ε, δ)) · (log2 (1/ε)+ 1+ log2 (m(ε, δ))+ log2(d)
)

≤ 3Cpow ·
⎛

⎝
m(ε,δ)∑

k=1
log22(max{k, 2})

⎞

⎠ d3 · (log2(1/ε)+ 1+ log2 (m(ε, δ))+ log2(d)
)

+ 5m(ε, δ)d2Cpow log2 (m(ε, δ)) · (log2 (1/ε)+ 1+ log2 (m(ε, δ))+ log2(d)
) =: I.

Since
∑m(ε,δ)

k=1 log22(max{k, 2}) ≤ m(ε, δ) log22(m(ε, δ)), we obtain for some constant
Cinv > Cpow that

I ≤ Cinvm(ε, δ) log22(m(ε, δ))d3 · (log2(1/ε)+ log2 (m(ε, δ))+ log2(d)
)
.

This completes the proof. � 

B Proof of Theorem 4.3

We start by establishing a bound on
∥∥∥Id

Rd(ε̃) − αBrb
y,ε̃

∥∥∥
2
.

Proposition B.1 For any α ∈ (0, 1/Ccont) and δ := αCcoer ∈ (0, 1) there holds

∥∥∥Id
Rd(ε̃) − αBrb

y,ε̃

∥∥∥
2
≤ 1− δ < 1, for all y ∈ Y, ε̃ > 0.

Proof Since Brb
y,ε̃ is symmetric, there holds that

∥∥∥Id
Rd(ε̃) − αBrb

y,ε̃

∥∥∥
2
= max

μ∈σ
(

Brb
y,ε̃

) |1− αμ| ≤ max
μ∈[Ccoer,Ccont]

|1− αμ|

= 1− αCcoer = 1− δ < 1,

for all y ∈ Y, ε̃ > 0. � 
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Constructive Approximation

With an approximation to the parameter-dependent stiffness matrices with respect
to a RB, due to Assumption 4.1, we can next state a construction of a NN the ReLU-

realization of which approximates the map y �→
(

Brb
y,ε̃

)−1
. As a first step, we observe

the following remark.

Remark B.2 It is not hard to see that if
(
(A1

ε̃,ε
, b1

ε̃,ε
), . . . , (AL

ε̃,ε
, bL

ε̃,ε
)
)
:= �B

ε̃,ε
is the

NN of Assumption 4.1, then for

�
B,Id
ε̃,ε

:=
(
(A1

ε̃,ε , b1
ε̃,ε), . . . , (−AL

ε̃,ε ,−bL
ε̃,ε + vec

(
Id

Rd(ε̃) )
))

we have that

sup
y∈Y

∥∥∥Id
Rd(ε̃) − αBrb

y,ε̃ − matr
(
RY

�

(
�

B,Id
ε̃,ε

)
(y)

)∥∥∥
2
≤ ε,

as well as M
(
�

B,Id
ε̃,ε

)
≤ BM (ε̃, ε)+ d(ε̃)2 and L

(
�

B,Id
ε̃,ε

)
= BL (ε̃, ε).

Now we present the construction of the NN emulating y �→
(

Brb
y,ε̃

)−1
.

Proposition B.3 Let ε̃ ≥ ε̂, ε ∈ (0, α/4 ·min{1,Ccoer}) and ε′ := 3/8 · εαC2
coer < ε.

Assume that Assumption 4.1 holds. We define

�B
inv;ε̃,ε :=

((
αId

Rd(ε̃) , 0
Rd(ε̃)

))
� �

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′ ,

which has p-dimensional input and d(ε̃)2- dimensional output.
Then, there exists a constant CB = CB(Ccoer,Ccont) > 0 such that

(i) L
(
�B

inv;ε̃,ε
)
≤ CB log2(log2(1/ε))

(
log2(1/ε)+log2(log2(1/ε))+log2(d(ε̃))

)+
BL(ε̃, ε′),

(ii) M
(
�B

inv;ε̃,ε
)
≤ CB log2(1/ε) log

2
2(log2(1/ε))d(ε̃)3·( log2(1/ε)+log2(log2(1/ε))+

log2(d(ε̃))
)+ 2BM

(
ε̃, ε′

)
,

(iii) supy∈Y
∥∥∥∥
(

Brb
y,ε̃

)−1 − matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥∥

2
≤ ε,

(iv) supy∈Y
∥∥∥∥G1/2Vε̃ ·

((
Brb
y,ε̃

)−1 − matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
))∥∥∥∥

2
≤ ε,

(v) supy∈Y
∥∥∥matr

(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥

2
≤ ε + 1

Ccoer
,

(vi) supy∈Y
∥∥∥G1/2Vε̃matr

(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥

2
≤ ε + 1

Ccoer
.

Proof First of all, for all y ∈ Y the matrix matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
)
is invertible. This

can be deduced from the fact that

∥∥∥αBrb
y,ε̃ − matr

(
RY

�

(
�B

ε̃,ε′
)

(y)
)∥∥∥

2
≤ ε′ < ε ≤ αmin{1,Ccoer}

4
≤ αCcoer

4
. (B.1)
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Constructive Approximation

Indeed, we estimate

min
z∈Rd(ε̃)\{0}

∣∣∣matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
)

z
∣∣∣

|z|

[Reverse triangle inequality] ≥ min
z∈Rd(ε̃)\{0}

∣∣∣αBrb
y,ε̃z

∣∣∣
|z|

− max
z∈Rd(ε̃)\{0}

∣∣∣αBrb
y,ε̃z − matr

(
RY

�

(
�B

ε̃,ε′
)

(y)
)

z
∣∣∣

|z|

[Definition of ‖.‖2] ≥
⎛

⎝ max
z∈Rd(ε̃)\{0}

|z|∣∣∣αBrb
y,ε̃z

∣∣∣

⎞

⎠
−1

−
∥∥∥αBrb

y,ε̃ − matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
)∥∥∥

2

[Set z̃ := (αBrb
y,ε̃ )z] ≥

⎛

⎝ max
z̃∈Rd(ε̃)\{0}

|(αBrb
y,ε̃ )

−1z̃|
|z̃|

⎞

⎠
−1

−
∥∥∥αBrb

y,ε̃ − matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
)∥∥∥

2

[Definition of ‖ · ‖2] ≥
∥∥∥∥
(
αBrb

y,ε̃

)−1∥∥∥∥
−1

2
−

∥∥∥αBrb
y,ε̃ − matr

(
RY

�

(
�B

ε̃,ε′
)

(y)
)∥∥∥

2

[By Equations (B.1) and (2.9)] ≥ αCcoer − αCcoer

4
≥ 3

4
αCcoer.

Thus, it follows that

∥∥∥∥
(

matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
))−1∥∥∥∥

2
≤ 4

3

1

Ccoerα
. (B.2)

Then,

∥∥∥∥
1

α

(
Brb
y,ε̃

)−1 − matr
(
RY

�

(
�

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′

)
(y)

)∥∥∥∥
2

≤
∥∥∥∥
1

α

(
Brb
y,ε̃

)−1 −
(

matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
))−1∥∥∥∥

2

+
∥∥∥∥
(

matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
))−1 − matr

(
RY

�

(
�

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′

)
(y)

)∥∥∥∥
2

=: I + II.

Due to the fact that for two invertible matrices M, N,

∥∥∥M−1 − N−1
∥∥∥
2
=

∥∥∥M−1(N − M)N−1
∥∥∥
2
≤ ‖M − N‖2‖M−1‖2‖N−1‖2,
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Constructive Approximation

we obtain

I ≤
∥∥∥αBrb

y,ε̃ − matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
)∥∥∥

2

∥∥∥∥
(
αBrb

y,ε̃

)−1∥∥∥∥
2

∥∥∥∥
(

matr
(
RY

�

(
�B

ε̃,ε′
)

(y)
))−1∥∥∥∥

2

≤ 3

8
εαC2

coer
1

αCcoer

4

3

1

Ccoerα
= ε

2α
,

wherewe have usedAssumption 4.1, Eq. (2.9) andEq. (B.2).Nowwe turn our attention
to estimating II. First, observe that for every y ∈ Y by the triangle inequality and
Remark B.2, that

∥∥∥matr
(
RY

�

(
�

B,Id
ε̃,ε′

)
(y)

)∥∥∥
2
≤

∥∥∥matr
(
RY

�

(
�

B,Id
ε̃,ε′

)
(y)

)
−

(
Id

Rd(ε̃) − αBrb
y,ε̃

)∥∥∥
2

+
∥∥∥Id

Rd(ε̃) − αBrb
y,ε̃

∥∥∥
2

≤ ε′ + 1− δ ≤ 1− δ + αCcoer

4
≤ 1− δ + αCcont

4
≤ 1− δ + δ

2
= 1− δ

2
.

Moreover, have that ε/(2α) ≤ α/(8α) < 1/4. Hence, by Theorem 3.8, we obtain that
II ≤ ε/2α. Putting everything together yields

sup
y∈Y

∥∥∥∥
1

α

(
Brb
y,ε̃

)−1 − matr
(
RY

�

(
�

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′

)
(y)

)∥∥∥∥
2
≤ I + II ≤ ε

α
.

Finally, by construction we can conclude that

sup
y∈Y

∥∥∥∥
(

Brb
y,ε̃

)−1 − matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥∥

2
≤ ε.

This implies (iii) of the assertion. Now, by Equation (2.7) we obtain

sup
y∈Y

∥∥∥∥G1/2Vε̃

(
Brb
y,ε̃

)−1 − G1/2Vε̃matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥∥

2
≤

∥∥∥G1/2Vε̃

∥∥∥
2
ε = ε,

completing the proof of (iv). Finally, for all y ∈ Y we estimate

∥∥∥G1/2Vε̃matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
)∥∥∥

2

≤
∥∥∥∥G1/2Vε̃ ·

((
Brb
y,ε̃

)−1 − matr
(
RY

�

(
�B

inv;ε̃,ε
)

(y)
))∥∥∥∥

2
+

∥∥∥∥G1/2Vε̃

(
Brb
y,ε̃

)−1∥∥∥∥
2

≤ ε + 1

Ccoer
.

This yields (vi). A minor modification of the calculation above yields (v). At last, we

show (i) and (ii). First of all, it is clear that L
(
�B

inv;ε̃,ε
)
= L

(
�

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′

)
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Constructive Approximation

and M
(
�B

inv;ε̃,ε
)
= M

(
�

1−δ/2,d(ε̃)

inv; ε
2α

��
B,Id
ε̃,ε′

)
. Moreover, by Lemma 3.6(a)(i) in

combination with Theorem 3.8 (i) we have

L
(
�B

inv;ε̃,ε
)
≤ Cinv log2 (m (ε/(2α), δ/2)) · (log2 (2α/ε)+ log2 (m (ε/(2α), δ/2))

+ log2(d(ε̃))
)+ BL(ε̃, ε′)

and, by Lemma 3.6(a)(ii) in combination with Theorem 3.8(ii), we obtain

M
(
�B

inv;ε̃,ε
)

≤ 2Cinvm(ε/(2α), δ/2) log22 (m(ε/(2α), δ/2)) d(ε̃)3 · (log2 (2α/ε)

+ log2 (m(ε/(2α), δ/2))+ log2(d(ε̃))
)

+ 2d(ε̃)2 + 2BM (ε̃, ε′).

In addition, by definition of m(ε, δ) in the statement of Theorem 3.8, for some
constant C̃ > 0 there holdsm (ε/(2α), δ/2) ≤ C̃ log2(1/ε). Hence, the claim follows
for a suitably chosen constant CB = CB(Ccoer,Ccont) > 0. � 

B.1 Proof of Theorem 4.3

We start with proving (i) by deducing the estimate for �
u,h
ε̃,ε

. The estimate for �
u,rb
ε̃,ε

follows in a similar, but simpler way. For y ∈ Y , we have that

∣∣∣ũhy,ε̃ − RY
�

(
�

u,h
ε̃,ε

)
(y)

∣∣∣
G

=
∣∣∣∣G

1/2 ·
(

Vε̃

(
Brb
y,ε̃

)−1
f rby,ε̃ − RY

�

(
�

u,h
ε̃,ε

)
(y)

)∣∣∣∣

≤
∣∣∣∣G

1/2Vε̃ ·
((

Brb
y,ε̃

)−1
f rby,ε̃ −

(
Brb
y,ε̃

)−1
RY

�

(
�f

ε̃,ε′′
)

(y)

)∣∣∣∣

+
∣∣∣∣G

1/2Vε̃ ·
((

Brb
y,ε̃

)−1
RY

�

(
�f

ε̃,ε′′
)

(y)− matr
(
RY

�

(
�B
inv;ε̃,ε′

)
(y)

)
RY

�

(
�f

ε̃,ε′′
)

(y)

)∣∣∣∣

+
∣∣∣G1/2 ·

(
Vε̃matr

(
RY

�

(
�B
inv;ε̃,ε′

)
(y)

)
RY

�

(
�f

ε̃,ε′′
)

(y)− RY
�

(
�

u,h
ε̃,ε

)
(y)

)∣∣∣

=: I + II + III.

We now estimate I, II, III separately. By Equation (2.7), Equation (2.9), Assump-
tion 4.2, and the definition of ε′′ there holds for y ∈ Y that

I ≤
∥∥∥G1/2Vε̃

∥∥∥
2

∥∥∥∥
(

Brb
y,ε̃

)−1∥∥∥∥
2

∣∣∣f rby,ε̃ − RY
�

(
�f

ε̃,ε′′
)

(y)
∣∣∣ ≤ 1

Ccoer

εCcoer

3
= ε

3
.
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We proceed with estimating II. It is not hard to see from Assumption 4.2 that

sup
y∈Y

∣∣∣RY
�

(
�f

ε̃,ε

)
(y)

∣∣∣ ≤ ε + Crhs. (B.3)

By definition, ε′ = ε/max{6,Crhs} ≤ ε. Hence, by Assumption 4.1 and (B.3) in
combination with Proposition B.3 (i), we obtain

II ≤
∥∥∥∥G1/2Vε̃ ·

((
Brb
y,ε̃

)−1 − matr
(
RY

�

(
�B

inv;ε̃,ε′
)

(y)
))∥∥∥∥

2

∣∣∣RY
�

(
�f

ε̃,ε′′
)

(y)
∣∣∣

≤ ε′ ·
(
Crhs + ε · Ccoer

3

)

≤ ε

max{6,Crhs}Crhs + εCcoer

max{6,Crhs}
ε

3
≤ 2ε

6
= ε

3
,

where we have used that Ccoerε < Ccoerα/4 < 1. Finally, we estimate III. Per con-
struction, we have that

RY
�

(
�

u,h
ε̃,ε

)
(y) = Vε̃R

Y
�

(
�

κ,d(ε̃),d(ε̃),1
mult; ε

3
� P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

))
(y, y).

Moreover, we have by Proposition B.3(v)

∥∥∥matr
(
RY

�

(
�B

inv;ε̃,ε′
)

(y)
)∥∥∥

2
≤ ε + 1

Ccoer
≤ 1+ 1

Ccoer
≤ κ

and by (B.3) that

∣∣∣RY
�

(
�f

ε̃,ε′′
)

(y)
∣∣∣ ≤ ε′′ + Crhs ≤ εCcoer + Crhs ≤ 1+ Crhs ≤ κ.

Hence, by the choice of κ and Proposition 3.7 we conclude that III ≤ ε/3. Combining
the estimates on I, II, and III yields (i) and using (i) implies (v). Now we estimate the
size of the NNs. We start with proving (ii). First of all, we have by the definition of
�

u,rb
ε̃,ε

and �
u,h
ε̃,ε

as well as Lemma 3.6(a)(i) in combination with Proposition 3.7 that

L
(
�

u,rb
ε̃,ε

)
< L

(
�

u,h
ε̃,ε

)
≤ 1+ L

(
�

κ,d(ε̃),d(ε̃),1
mult; ε

3

)
+ L

(
P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

))

≤ 1+ Cmult ·
(
log2(3/ε)+ 3/2 log2(d(ε̃))+ log2(κ)

)

+max
{
L

(
�B

inv;ε̃,ε′
)

, FL
(
ε̃, ε′′

)}

≤ Cu
L max

{
log2(log2(1/ε))

(
log2(1/ε)+ log2(log2(1/ε))+ log2(d(ε̃))

)

+BL(ε̃, ε′′′), FL
(
ε̃, ε′′

)}
(B.4)

where we applied Proposition B.3(i) and chose a suitable constant

Cu
L = Cu

L(κ, ε′,CB) = Cu
L(Crhs,Ccoer,Ccont) > 0.
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We now note that if we establish (iii), then (iv) follows immediately by
Lemma 3.6(a)(ii). Thus, we proceedwith proving (iii). First of all, by Lemma 3.6(a)(ii)
in combination with Proposition 3.7 we have

M
(
�

u,rb
ε̃,ε

)
≤ 2M

(
�

κ,d(ε̃),d(ε̃),1
mult; ε

3

)
+ 2M

(
P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

))

≤ 2Cmultd(ε̃)2 · (log2(3/ε)+ 3/2 log2(d(ε̃))+ log2(κ)
)

+ 2M
(
P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

))
.

Next, by Lemma 3.6(b)(ii) in combination with Proposition B.3 as well as Assump-
tion 4.1 and Assumption 4.2 we have that

M
(
P

(
�B

inv;ε̃,ε′ ,�
f
ε̃,ε′′

))

≤ M
(
�B

inv;ε̃,ε′
)
+ M

(
�f

ε̃,ε′′
)

+ 8d(ε̃)2 max
{
Cu
L log2(log2(1/ε

′))
(
log2(1/ε

′)+ log2(log2(1/ε
′))+ log2(d(ε̃))

)

+BL (ε̃, ε′′′), FL
(
ε̃, ε′′

)}

≤ CB log2(1/ε
′) log22(log2(1/ε′))d(ε̃)3 · (log2(1/ε′)+ log2(log2(1/ε

′))+ log2(d(ε̃))
)

+ 8d(ε̃)2 max
{
Cu
L log2(log2(1/ε

′))
(
log2(1/ε

′)+ log2(log2(1/ε
′))+ log2(d(ε̃))

)

+BL (ε̃, ε′′′), FL
(
ε̃, ε′′

)}

+ 2BM
(
ε̃, ε′′′

)+ FM
(
ε̃, ε′′

)

≤ Cu
Md(ε̃)2 ·

(
d(ε̃) log2(1/ε) log

2
2(log2(1/ε))

(
log2(1/ε)+ log2(log2(1/ε))+ log2(d(ε̃))

)
. . .

· · · + BL (ε̃, ε′′′)+ FL
(
ε̃, ε′′

) )
+ 2BM (ε̃, ε′′′)+ FM

(
ε̃, ε′′

)
, (B.5)

for a suitably chosen constant Cu
M = Cu

M (ε′,CB,Cu
L) = Cu

L(Crhs,Ccoer,Ccont) > 0.
This shows the claim.
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