

FAT:

A Framework for Automated Regression
Testing of Protocol Stacks

MASTER OF ENGINEERING THESIS

Karl Magnus Nilsen

December 15th, 2003

UNIVERSITY OF TROMSØ
DEPARTMENT OF COMPUTER SCIENCE

 ii

Abstract

Software systems today are becoming larger and more complex, resulting in a

growing need for good and efficient testing routines. An approach used by several
software developers is to automate the test process. Test automation has the benefits
that it reduces the time of the testing process and that automated tests are more
accurate and precise than manual tests.

Manufacturers who wish to develop products using the Bluetooth technology,

the Bluetooth logo and trademark has to go through a qualification program. This
program is expensive, thus the manufacturer has incentives to make sure that the
product is well tested before sending it to qualification. A Bluetooth stack is an
example of a product that must be qualified. An automated tool for testing of
Bluetooth stacks is therefore desired.

FAT is a framework that provides functionality to write and execute tests on a

Bluetooth stack. The framework makes use of the ability to stitch generic test layers
in-between the layers of the stack. These test layers can operate on messages passing
through the stack. Our test layers provide an API to insert, modify, copy and delete
messages. FAT introduces a test system client (TSC) where a tester can write tests
and choose tests for execution. The tests are written in Java, where each test is a
single method. The tester uses the test layer’s API to interface with the stack. The
communication mechanism between the TSC and the test layer is XML-RPC. The
TSC may therefore be executed on a different node than the stack itself.

This thesis motivates FAT, and describes how the framework is designed and

implemented.

 iii

 iv

Preface

 This thesis presents the final work of my education at the University of
Tromsø. The thesis is a joint project between the University and ObexCode AS.

 ObexCode AS is a worldwide leading vendor of short-range connectivity
products and solutions. ObexCode is an enabling company, which means that they
deliver key components to other companies in the ad-hoc wireless business. Such
components will include IrDA and Bluetooth stacks, object exchange and
synchronization layers. The name ObexCode can be read as “development of systems
and application for technologies that have OBEX in common.” OBEX refers to the
standard IrOBEX, which is currently used by IrDA, Bluetooth, SyncML, WAP and
3G. The headquarters is located in Tromsø. The company also has offices in Oslo and
Shanghai.

 ObexCode is currently involved in several different development projects. The
company has during these, and previous projects, discovered the need for
standardized test processes, which can be automated. One of the current projects is the
development of a Bluetooth stack. The framework described in this thesis is meant to
be used for regression testing during the development of the Bluetooth stack.

 The ideas and main principles of the framework were already adopted by
ObexCode before the whole framework was completed.

 v

 vi

Acknowledgements

 First of all, I would like to thank my supervisors, Dag Brattli, Åge Kvalnes
and Haakon Bryhni for supervising and guiding me on this thesis. Special thanks to
Dag for helpful hints and suggestions of the design and implementation of the system
and interesting discussions about the subject of this thesis. Special thanks also to Åge
for helpful comments and guidelines during the writing process.

Special thanks also go to Frank Ronny Larsen. Without his help, the
implementation process probably would have taken considerably longer time. I don’t
think there is anything this man does not know about programming! He has also
reviewed my thesis and provided me with useful comments.

I will also thank my co-students Rune Devik and André J. Henriksen for

interesting discussions about different subjects related to the thesis. These discussions
have made several things clearer and I feel this have improved my thesis. Rune has
also reviewed parts of my thesis and contributed with useful comments. They have
both also contributed to a nice and attractive working environment. It has made the
days working with the thesis a real pleasure.

Thanks to Jan Fuglesteg for providing us with office supplies and coffee. The

importance of the coffee shall not be underestimated!

I will also thank my whole family for supporting me during my studies in

Tromsø and especially during the work with the thesis. It has been very important to
me.

Tromsø, December 15th, 2003.

Karl Magnus Nilsen

 vii

 viii

Table of Contents
1. INTRODUCTION ..1

1.1 BACKGROUND ..1
1.2 PROBLEM DEFINITION...2
1.3 METHOD AND APPROACH ...2
1.4 LIMITATIONS ..3
1.5 OUTLINE OF THE THESIS ...3

2. BACKGROUND AND RELATED WORK...4
2.1 BLUETOOTH..4

2.1.1 Bluetooth – An Introduction...4
2.1.2 The Bluetooth protocol stack ...5
2.1.3 The Bluetooth product qualification process ...8
2.1.4 The Bluetooth test specifications..10

2.2 TESTING..11
2.2.1 Motivation..11
2.2.2 Positive and negative testing..12
2.2.3 Black box testing ..12
2.2.4 White box testing..12
2.2.5 Regression testing ..13
2.2.6 Conformance testing ..13
2.2.7 Interoperability testing...14
2.2.8 Performance testing ...14
2.2.9 Fault tolerance testing ...15
2.2.10 Reliability testing ...15
2.2.11 Test automation..16
2.2.12 More testing techniques ...17

2.3 EXISTING SYSTEMS...19
2.3.1 Tree and Tabular Combined Notation (TTCN)..19
2.3.2 IVT BlueTester ...24
2.3.3 JUnit...24

3. ARCHITECTURE ...28
3.1 OVERVIEW..28
3.2 THE TEST LAYER COMPONENT...29

3.2.1 The Test Layer..29
3.2.2 The XML-RPC Module...29

3.3 THE TEST SYSTEM CLIENT ...30
3.4 SUMMARY ..30

4. DESIGN AND IMPLEMENTATION ..31
4.1 INTRODUCTION ...31

4.1.1 Overview ..31
4.1.2 Approach..32

4.2 THE GENERIC TEST LAYER...33
4.2.1 ObexCode Protocol Stack Development Framework...33
4.2.2 The Test Layer..35
4.2.3 The XML-RPC Module...38
4.2.4 Summary ..40

4.3 THE TEST SYSTEM CLIENT ...41
4.3.1 Introduction..41
4.3.2 Analysis ..42
4.3.3 Test Module..43
4.3.4 GUI Module ...47
4.3.5 Control Module..49
4.3.6 XML-RPC Module ...51
4.3.7 Miscellaneous ..52
4.3.8 Summary ..52

 ix

5. EXPERIMENTS...53
5.1 INTRODUCTION ...53
5.2 TEST PLATFORM CHARACTERISTICS...53
5.3 EXPERIMENTS ...53

5.3.1 Delay introduced when forwarding a message ..54
5.3.2 Delay introduced when modifying a message ..54

5.4 RESULTS ...55
5.5 SUMMARY ..56

6. DISCUSSION AND CONCLUSION ..57
6.1 SUMMARY OF THE THESIS...57
6.2 EVALUATION ..58
6.3 DISCUSSION AND FUTURE WORK..58
6.4 CONCLUSION ..59

7. REFERENCES ...60

APPENDIX ...65

 x

Table of Figures

FIGURE 1 - THE BLUETOOTH PROTOCOL STACK..5
FIGURE 2 - AUTHORITY DELEGATION FOR THE BLUETOOTH QUALIFICATION PROCESS (FIGURE TAKEN

FROM [PRD, 2002]) ...9
FIGURE 3 - PROCESS FOR BLUETOOTH PRODUCT SPECIFICATION (FIGURE TAKEN FROM [PRD, 2002])...10
FIGURE 4 - BLUETOOTH QUALIFICATION PROCESS FLOWCHART (FIGURE TAKEN FROM [PRD, 2002]) ...10
FIGURE 5 - COST OF SOFTWARE DEVELOPMENT (FIGURE TAKEN FROM [BOEHM, 1987]).........................11
FIGURE 6 - BLACK BOX TESTING ...12
FIGURE 7 - EXAMPLE OF AN ASP TYPE DEFINITION (FIGURE TAKEN FROM [IEC, 2003])21
FIGURE 8 - EXAMPLE OF TEST CASE VARIABLE DEFINITION (FIGURE TAKEN FROM [IEC, 2003])21
FIGURE 9 - EXAMPLE OF TEST SUITE OPERATION DEFINITION (FIGURE TAKEN FROM [IEC, 2003])21
FIGURE 10 - EXAMPLE OF ASP CONSTRAINT DECLARATION (FIGURE TAKEN FROM [IEC, 2003])...........22
FIGURE 11 - THE BEHAVIOUR TREE REPRESENTED IN TTCN USING INDENTATION (FIGURE TAKEN FROM

[TELELOGIC, 2001])...22
FIGURE 12 - THE BODY OF A DYNAMIC BEHAVIOUR TABLE (FIGURE TAKEN FROM [TELELOGIC, 2001]) ..23
FIGURE 13 - JUNIT GRAPHICAL TESTRUNNER TOOL. ...26
FIGURE 14 – FAT ARCHITECTURE ...28
FIGURE 15 - THE CLASS HIERARCHY OF THE TEST CLASSES ...30
FIGURE 16 - SYSTEM OVERVIEW..31
FIGURE 17 - BINDING OF LAYER TO OBEXCODE STACK...34
FIGURE 18 - MESSAGE FLOW THROUGH OBEXCODE STACK ..34
FIGURE 19 - TEST LAYER API ...35
FIGURE 20 - GET MESSAGE STATISTICS FROM TEST LAYER..37
FIGURE 21 - OVERVIEW OF XML-RPC ...38
FIGURE 22 – ACTORS OF THE TEST SYSTEM ...42
FIGURE 23 - ANALYSIS CLASSES OF THE TEST SYSTEM AND THEIR RELATIONS..42
FIGURE 24 - COLLABORATION DIAGRAM FOR STANDARD WORKFLOW ..43
FIGURE 25 - DESIGN CLASS REALIZATION OF THE TESTS ANALYSIS CLASS..45
FIGURE 26 - EXAMPLE SCREENSHOT OF THE GUI OF THE TEST SYSTEM ..48
FIGURE 27 - DESIGN CLASS REALIZATION OF THE TESTUI ANALYSIS CLASS ...48
FIGURE 28 - DESIGN CLASS REALIZATION OF THE SYSTEM ANALYSIS CLASS...50
FIGURE 29 - DESIGN CLASS REALIZATION OF THE TESTCOMMUNICATION ANALYSIS CLASS51
FIGURE 30 – MEASURING DELAY INTRODUCED WHEN FORWARDING A MESSAGE....................................54
FIGURE 31 - MEASURING DELAY INTRODUCED WHEN MODIFYING A MESSAGE..55
FIGURE 32 - EXPERIMENTS RESULTS ...55

 xi

 xii

1. Introduction

Chapter 1

Introduction

1.1 Background
Bluetooth [Bluetooth SIG, 1999] is a low-power, short-range wireless

technology that provides links between mobile computers, mobile phones and other
portable handheld devices. Bluetooth was originally developed for replacing cables
when connecting devices like mobile phones, headsets and computers. The
specification of the Bluetooth technology is developed, published and promoted by
the Bluetooth Special Interest Group (SIG).

Manufacturers who wish to develop products using the Bluetooth technology,

the Bluetooth logo and trademark has to go through a qualification program. The
qualification process tries to verify if the product conforms to the Bluetooth
specification. The specification is detailed and the qualification process is therefore a
time consuming and expensive task. The manufacturer does not wish to go through
the qualification process more than once. Hence the quality of the product should be
as good as possible before sending the product to qualification.

The development of software is a process with many steps from the beginning

to the final deployment of the system. Testing is one of the final steps towards a
complete system. The purpose of the testing phase is to verify that the product lives
up to its requirements, and is therefore a crucial part of the process. Because of the
importance of testing, software developers should have incentives to develop good
test routines.

 Software systems have a tendency to become larger and more and more
complex. As the systems grow the test process takes more time. In the software
business, as in most industries, time is money. One of the most effective ways to save
time is to automate a process. This is a known fact in many industries. Instead of
letting people do a job manually, machinery, computers or robots can do the job for us
or aid us with the job, and in most cases they will do the job not only faster but better
than us. If the test process can be automated it could save considerable time for the
testers.

 If a test is to be carried out it has to be specified in some way. This may not be
a straightforward task. It would help the test engineers if a template exists that tells
how a test should be specified. This will also standardize the test process in the
company or development group, and will eventually probably save time when the test
engineers get used to the template and the standard process. In addition to this, a
standard test specification will make it a lot easier to automate the test process.

 Another fact is that many test systems today offer one or just a few types of
tests within the same system. This means that if a test engineer wants to perform
different types of tests (e.g. conformance and performance) on the same system under

 1

1. Introduction

test, he or she must use different test systems, which probably have different ways of
specifying tests. It is not a desirable situation to use many different systems when you
might as well could use a single system. The difference in the specifications might
also lead to confusion. A test system that can handle many types of tests will ease the
test process.

When a system has been made and is ready for delivery, the software
developer has to convince its customer that the system works as it should. The
customer has to trust the developer to test the system properly. Often the customer
does not have the resources or knowledge to test the systems themselves to verify that
it works correctly. But if the test process is automated and simplified in such a way
that the customers easily can run some tests on the new system, the customer has a
kind of guarantee on the system. The customer can verify that the system works
properly and buy the product without being insecure of the quality of the system.

A common approach for test automation is to design a framework that offers

functionality to write and execute tests. This thesis describes FAT, a framework for
automated regression testing of protocol stacks.

1.2 Problem Definition
The goal of this project is to design and implement a framework for automated

regression testing of protocol stacks developed within the ObexCode network
protocol development framework (NPDF).

We divide our main goal into three sub-goals that must be addressed and
examined:

• The proposed test environment shall be implemented in a prototype which will
interface with the stack under test through a defined API, preferably possible
to execute on a different processing node than the stack itself.

• Computation and memory footprint of the testing framework on the stack
under test should be minimal, because stacks run on devices with little
memory and poor computation capabilities.

• The framework should allow for the testing of Bluetooth stacks developed
within NPDF.

1.3 Method and Approach
 Computer Science can be separated into three major paradigms that provide a
context for the definition of the discipline. The ACM Task Force [Denning et. al.,
1989] has given the following description of the three paradigms:

 The first paradigm is theory. It is rooted in the mathematical sciences. The
process is to define the objects of study, hypothesize possible relationships among
them, determine whether the relationships are true, and to interpret the results.
Mathematicians will say that science advances only on a foundation of sound
mathematics.

 The second paradigm is abstraction. It is rooted in the experimental scientific
method and is the bedrock of natural sciences. Scientists say that scientific progress is

 2

1. Introduction

achieved primarily by formulating hypotheses, and systematically constructing
models and design experiments, to verify and validate the hypotheses.

 The third paradigm is design. It is rooted in engineering and consists of a
process to construct a system to solve a given problem. Engineers say that progress is
achieved primarily of posing problems and systematically following the design
process to construct systems that solve them. The design process consists of stating
requirements, stating specifications, designing and implementing the system before
testing the system.

 The design paradigm will be used in this thesis. The reason is that the main
task of the thesis is to construct an actual system that can perform automatic
regression testing of protocol stacks. The design approach is also a natural choice
since it is used by the company that has defined the thesis.

1.4 Limitations
 The Bluetooth stack that the framework shall evaluate is currently in the
process of being implemented. This implies that it will not be possible for the
framework to evaluate a full stack. The parts that are implemented are however
enough to verify the functionality of FAT. But the lack of a full stack will limit the
possible experiments that may be done to evaluate the performance of the framework.

1.5 Outline of the Thesis
 The thesis is organized as follows:

• Chapter 2: Gives an overview of the theory that works as background material
for the thesis, including a description of related work.

• Chapter 3: Gives a short introduction to the architecture, covering the most
central parts of the framework.

• Chapter 4: Describes the design and implementation of FAT.
• Chapter 5: Presents the experiments and results that are performed on the

system.
• Chapter 6: Summarizes, discusses and concludes the work presented in the

thesis.

 3

2. Background and Related Work

Chapter 2

Background and Related Work

There exists a large number of testing methodologies and frameworks. In this
chapter we present a few selected methodologies and frameworks that we consider
prominent and relevant to our work. In our presentation we focus on the main aspects
of each approach, and examine in particular regression testing, conformance testing
and test automation. We also examine existing frameworks, which are similar to our
framework.

2.1 Bluetooth
 This section explains important concepts of the Bluetooth technology
including a brief description of the Bluetooth protocol stack. Furthermore, it describes
the Bluetooth qualification process and the Bluetooth test specifications.

2.1.1 Bluetooth – An Introduction
 Bluetooth is a low-power, short-range wireless technology that provides links
between mobile computers, mobile phones and other portable handheld devices.
Bluetooth was originally developed for replacing cables when connecting devices like
mobile phones, headsets and computers. Bluetooth has since evolved into a wireless
standard for connecting electronic devices to form personal area networks (PANs) as
well as ad hoc networks [Dideles, 2003].

Bluetooth operates on the unlicensed Industrial Scientific Medical (ISM) band
at 2.4 GHz, which ensures worldwide communication compatibility. However, since
the ISM band is open, several unpredictable sources of interference must be dealt
with. To minimize the risk of such interference, Bluetooth uses a Frequency Hopping
Spread Spectrum (FHSS) technology. Using FHSS, Bluetooth devices multiplex the
sending of packets over multiple frequencies.

The link bandwidth offered by Bluetooth is 1 Mbps, but with overhead, and
due to asynchronous channels, the maximum link bandwidth in one direction is 721
kbps, while 57.6 kbps in the opposite direction. The alternative is a 432.6 kbps
symmetric link. The typical communication range for Bluetooth is 10m, but up to
100m is possible depending on the power class of the device [Dideles, 2003].

 The Bluetooth technology was conceived at Telefonaktiebolaget LM Ericsson
in Sweden in 1994. At this time they started a project to study the feasibility of a low-
power and low-cost radio interface to eliminate cables between mobile phones and
their accessories. The inventors understood that the technology was more likely to be
widely accepted and thus more powerful if it was adopted and refined by an industry
group that could make an open specification. The Bluetooth Special Interest Group
(SIG) was therefore formed in 1998. The founding companies of the SIG are
Ericsson, Intel, IBM, Nokia and Toshiba. Later other companies have joined the SIG
[Miller and Bisdikian, 2001].

 4

2. Background and Related Work

 The Bluetooth technology is named after the Danish king Harald Blåtand.
During his reign he tried to unite Denmark and Norway. For a technology with its
origin in Scandinavia, and with the purpose of unify multinational companies, it
seemed appropriate to name it after a king who united countries. Blåtand translates
loosely to “Blue Tooth” [Miller and Bisdikian, 2001].

2.1.2 The Bluetooth protocol stack
 The Bluetooth protocols define procedures for connections and data exchange
between Bluetooth devices.

Figure 1 - The Bluetooth Protocol Stack

 The elements of the stack are logically partitioned into three groups:

• The transport protocol group
• The middleware protocol group
• The application group

The transport protocol group contains the protocols that enable Bluetooth

devices to locate each other, and that are responsible for the creation, configuration
and management of physical and logical links. The protocols in this group are the
radio, the baseband/link controller, the link manager, the logical link and adaptation
and the host controller interface.

The middleware protocol group contains additional transport protocols needed

to enable existing and new applications to operate over Bluetooth links. The group
contains both third-party and industrial standard protocols, as well as protocols
developed by the SIG specifically for Bluetooth wireless communication. The former

 5

2. Background and Related Work

group includes internet-related protocols (TCP, IP, PPP), WAP and OBEX, which is
adopted from IrDA. The latter group contains RFCOMM, TCS and SDP.

The application group consists of the applications that make use of Bluetooth
links. These applications could either be unaware of Bluetooth transports, such as a
web browsing client, or be are aware of Bluetooth wireless communication, such as
applications that use the telephony control protocol for controlling telephony
equipment.

In the remainder of the section we present a brief description of each of the
protocols and layers in the Bluetooth stack.

The Radio Layer
 The Bluetooth radio layer is designed to make it optimal for use with the
Bluetooth protocol stack. The radio part of the specification contains mostly design
specifications for Bluetooth transceivers. The transceiver design is motivated by the
requirement to allow development of high-quality, low-cost transceivers that comply
with the various 2.4 GHz ISM band regulations around the world. Different
regulations in different countries imply that the Bluetooth radio can operate over 79 or
23 channels, each one of which is 1 MHz wide.

The Baseband/Link Controller Layer
 The Baseband Layer (BL) determines and instantiates the Bluetooth air-
interface. It defines how devices search for other devices, and how they connect to
them. In particular, BL defines the master and slave roles for devices: the device that
initiates a connection becomes the master of the link and the other becomes slave. The
layer also defines rules for sharing of the air-interface, so that several devices can use
the technology simultaneously. It defines how the frequency-hopping sequences used
by communicating devices are formed. It also defines various packet types supported
for synchronous and asynchronous traffic and packet processing procedures such as
encryption, error detection and correction, packet transmission and retransmissions.

The Link Manager Layer
 The Link Manager Protocol (LMP) is used to negotiate the properties of the
Bluetooth air-interface between devices. This negotiation includes authentication
where the communicating devices uses a challenge-response approach. If
authentication fails, the link managers may sever the link between the devices and
thus denying any communication between them. The Link Manager also negotiates
bandwidth allocation to support a desired grade of service for data traffic and periodic
bandwidth reservation to support audio traffic. Finally it supports power control by
negotiating low activity Baseband modes of operation.

Host Controller Interface Layer
 The Host Controller Interface (HCI) has been developed to ensure
interoperability between different host devices and Bluetooth modules. A host device
is a device that is enabled with Bluetooth communication, and contains the upper
layers of the stack (from L2CAP and upwards). A Bluetooth module is a package
consisting of the lower layers, Radio, Baseband and Link Manager. Both the host
devices and the Bluetooth modules may come from different vendors. To provide
interoperability between different devices and modules, the HCI layer provides a

 6

2. Background and Related Work

common interface for accessing the lower layers of the stack regardless of the
physical interface that connects the host to the module. The HCI layer is not a
required part of the specification. For tightly integrated embedded systems the HCI
layer may not be required.

The Logical Link Control and Adaptation Layer
 The Logical Link Control and Adaptation Protocol (L2CAP) layer shields
higher layer protocols and applications from the details of the lower-layer protocols.
L2CAP supports protocol multiplexing, in order to support sharing of the air-interface
between different protocols and applications. The L2CAP layer also supports
segmentation/reassembly of large packets used by higher layers into smaller packets
for the lower layers. Finally, it also negotiates a level of service between two devices.
The regulation of service is done by exercising admission control for incoming traffic,
and coordination with lower layers to maintain the desired level of service.

 The RFCOMM Layer
 The serial port is a common communication interface used by communicating
devices today. To ease the integration with legacy software, the RFCOMM layer
implements a serial port abstraction. An application can use RFCOMM very much
like a standard wired serial port to accomplish scenarios such as synchronization, dial-
up networking and others without significant changes to the application.

The SDP Layer
 The Service Discovery Protocol (SDP) is the protocol that enables Bluetooth
devices to discover and learn about the services offered by other devices. It also
defines a way for devices to describe the services that they provide to other devices.
This protocol is motivated by the fact that ad-hoc networks, like a network of
Bluetooth devices, do not have a static configuration of services like traditional
networks. A dynamic discovery protocol is therefore required.

IrDA Interoperability Protocol Layers
 The Infrared Data Association (IrDA) has defined protocols for exchange and
synchronization of data in infrared networks. Some of these protocols are adopted by
the SIG because of the similarities between the Bluetooth and IrDA protocols,
applications, and usage scenarios. The Object Exchange (OBEX) protocol is such a
protocol. OBEX is a session protocol for peer-to-peer communication. OBEX defines
the syntax and semantics of data that is sent between devices. The protocol is used for
exchange of well-defined objects such as electronic business cards (vCard format), e-
mail or other messages (vMessage format), calendar entries (vCal format) and others.
Another IrDA-defined protocol, Infrared Mobile Communications (IrMC) enables
synchronization of these same objects.

Networking Layers
 Bluetooth uses a peer-to-peer network topology rather than a LAN style
topology. But the technology allows Bluetooth devices to connect to other networks
through a dial-up connection or via a network access point. If a dial-up connection is
established to an IP-network, standard Internet protocols such as TCP, UDP, HTTP
can be used to interact with the external network. The device may also connect to an
IP-network through an access point using the Internet Point-To-Point (PPP) protocol.
When this connection is established, the regular Internet protocols can be used to

 7

2. Background and Related Work

interact with the network. The Wireless Application Protocol (WAP) can also be used
to interact with the network.

TCS Layer
 One of the properties of Bluetooth technology is the ability to transfer voice
traffic as well as data traffic. The Telephony Control Specification (TCS) layer is
designed to support telephony functions. The TCS protocol includes call control
functions, group management functions and a method for devices to exchange call
signalling information without actually placing a call or having a call connection
established.

Applications
 The application group refers to software that is placed above the protocol stack
as it is defined by the SIG. This software may be developed by device manufacturers
or independent software vendors. The SIG does not define application protocols or
APIs. Instead there are Bluetooth profiles, which define how to build interoperable
applications that address various usage cases. The look and feel of these applications
are however not defined in the specification, so in this area the application software
developers have the ability to differentiate their products from others, and add extra
features without violating the interoperability guidelines described by the profiles.

2.1.3 The Bluetooth product qualification process
 Manufacturers who wish to develop products using the Bluetooth technology,
the Bluetooth logo and trademark has to go through a qualification program. The
Bluetooth SIG has delegated the responsibility for the qualification program to the
Bluetooth Qualification Review Board (BQRB).

 The qualification process is an expensive and time-consuming process. A
company that develops Bluetooth products has to pay a significant amount of money
to the BQRB to go through the process. In addition it may take a while before the
BQRB has finished the job. Because of this, a company has an incentive to be as
certain as possible that their product will be approved on the first attempt at the
BQRB. If it fails, they have wasted a lot of money and their product may be delayed,
which will also lead to loss of money. That is why companies should try to develop
good testing routines themselves so that the qualification will be just a verification of
their own testing. Automated conformance testing of the Bluetooth test specification
may be one approach to develop better testing routines.

To emphasise and further motivate the need for our system, the remainder of
this section is devoted to a detailed description of the Bluetooth qualification process.

The Bluetooth Qualification Review Board (BQRB) is responsible for the
qualification process, and the Bluetooth Qualification Administrator (BQA)
administers the process. Figure 2 shows the structure of authority delegation of the
Bluetooth qualification process.

 8

2. Background and Related Work

Figure 2 - Authority delegation for the Bluetooth qualification process (figure taken from [PRD,

2002])

 The qualification program is designed to protect the Bluetooth brand by
promoting interoperability, declaring product capabilities, and defining a level of
performance. To initiate the process the manufacturer has to become a Bluetooth
member. There are two member types, Associate Member and Adoptive Member.
One becomes a member by executing the applicable Bluetooth Agreement, which can
be accessed from the Bluetooth web site. After becoming a Member, the manufacturer
can select a BQB (Bluetooth Qualification Body). This is a person that will assist the
manufacturer through the rest of the qualification process. The Member has to prepare
a compliance folder, which contains test reports, test plans, technical product
descriptions, user manuals, Protocol Implementation Conformance Statement (ICS)
and Declaration of Compliance (DoC). This compliance folder will be used by the
BQB as an objective evidence of compliance to the Bluetooth specification. Testing
may also be performed at a Bluetooth Qualification Test Facility (BQTF).

The BQTF then provides the test report to the BQB for review. If the product
is approved, the product will be ready for listing. The product will then be listed on
the Bluetooth Qualification Product web site, along with relevant
information/documents such as pre-tested components information, compliant portion
declaration, etc [Fischer and Chin, 2003]. The Bluetooth Technical Advisory Board
(BTAB) is a forum consisting of all BQBs and BQTFs. This forum is responsible for
advising the BQRB on technical matters concerning test requirements, test cases, test
specifications and test equipment. Figures 3 and 4 give an overview of the entire
qualification process and especially which responsibilities the member, the BQB and
the BQTF have in the different stages of the process. The flowchart shows the roles of
the member, the BQB, the BQTF and the BQA during the process.

 9

2. Background and Related Work

Figure 3 - Process for Bluetooth Product Specification (figure taken from [PRD, 2002])

Figure 4 - Bluetooth Qualification Process Flowchart (figure taken from [PRD, 2002])

2.1.4 The Bluetooth test specifications
 The Bluetooth test specifications describe test cases for each protocol layer of
the Bluetooth stack and each defined profile. A Bluetooth profile represents a usage
model that the device under test is likely to use. The Bluetooth SIG has defined a
series of such profiles to ensure interoperability. The test cases in the specification
form the basis for conformance and interoperability testing of Bluetooth
implementations. The conformance test cases are found in all protocol and in some

 10

2. Background and Related Work

profile specifications. These test cases are also called the Bluetooth Conformance
Statements.

2.2 Testing
 In the following sections we first present a brief motivation for the need for
software testing. We then present several testing methodologies, including the
important aspects of test automation.

2.2.1 Motivation
In practically any kind of engineering activity, testing is used to verify the

correctness of the built product. Therefore one can say that testing is one of the oldest
forms of verification. Testing is also an important part of the software development
process. Different testing techniques are used to improve the quality of systems and to
make sure that the system acts the way it is supposed to. An ideal test is a test that
succeeds only when a program contains no errors [Goodenough and Gerhart, 1975].
The ultimate goal of software testing is to help developers construct systems with
high quality [Harrold, 2000].

As software systems mature, there is a tendency that the cost of maintaining

them increases. The normal experience from development processes is that the cost of
software maintenance will eventually become the major part of the total development
cost. Up to two thirds of the overall cost can be traced back to software maintenance
[Rothermel and Harrold, 1996]. A large percentage of the maintenance is due to
testing [Wolverton, 1974] [Ramamoorthy and Ho, 1975]. Figure 5 shows the cost of
the different phases of general software development [Boehm, 1987]. As the figure
shows, testing takes up a significant amount of the total time.

Figure 5 - Cost of Software development (figure taken from [Boehm, 1987])

In the future the testing process will take up even more of the maintenance
costs, as the software becomes more pervasive, and is used to perform even more
critical tasks. This new complex software will require even higher quality, which
again requires more testing. With such high costs connected to testing, it is clear that
efficient testing methods are needed to save time and money.

 11

2. Background and Related Work

2.2.2 Positive and negative testing
 Positive and negative testing are two complementary views on how to improve
the quality of a software system. Positive testing tries to verify that a system conforms
to its stated requirements. The requirements are a possible source to the design of the
test cases. The positive testing process must be performed to determine if the system
has the functionality that is required. A system that passes such a test will often be
shipped to a customer because the positive testing process is likely to be an indication
of the quality of the product [Engels et al., 1997].

 Negative testing is to test that a system does not do what it is not supposed to
do. This often means to test that a system works properly even if an unexpected event
should occur. Negative testing is often used to test aspects of the system that are not
well documented, and outside the scope of the requirements specification [Watkins,
2001]. While the test cases for positive testing is limited to the requirements of the
system, negative testing has no such limitations. The possible amount of test cases for
negative testing can grow without limits. If one wishes to use negative testing, it is
important to choose the most relevant test cases and not use much time and effort on
finding all or most of them. This is a problem pointed out by Dijkstra as he states:
“Program testing can be used to show the presence of bugs, but never to show their
absence.” [Dijkstra et al., 1972] In other words: You can never prove that your system
can handle all types of failures, but if you can prove that some of the most important
of these failures is resolved, it is good enough for most customers/users.

2.2.3 Black box testing
There are two general methods of testing programs: black box and white box

testing. Black box testing can be done without any knowledge of the internals of the
system under test. The main goal is to check which output the system provides to a
certain input. The focus often lies on requirements, i.e. the system’s functionality.
One can in this way verify that the system does what it is supposed to, without saying
anything about how the requirements are resolved inside the system. The test cases for
black box testing must be designed based on the external behaviour of the system
[Myers, 1979].

Figure 6 - Black box testing

2.2.4 White box testing
 White box testing is often called glass box testing, because the test cases are
designed with the knowledge of how the system under test is constructed. Compared
to black box testing it means that you now are able to open the black box and test the
mechanisms it is made of. When white box testing a system, you test each part of the
implementation, that is, you try to execute each line of code given a set of inputs.

 12

2. Background and Related Work

Testing in this way will find out if the logic of the code lines is implemented correctly
[Myers, 1979].

2.2.5 Regression testing
 The main goal of regression testing is to determine whether new errors have
been introduced to a modified program. During software development, the code is
constantly modified and tested. When new code is added or existing code is modified,
the previously tested code should still work correctly. Regression testing is an
expensive activity. It can in fact account for up to half of the cost of software
maintenance [Rothermel and Harrold, 1997].

 During regression testing there often exists a test suite with tests that can be
rerun after a modification. Exactly which tests to run is a question that has lead to two
different strategies of regression testing; the straightforward retest-all strategy and the
more sophisticated selective strategy. The retest-all strategy re-runs all the tests in the
suite. As such, for each modification of the code, all the tests in the suite are run. This
approach will however most likely lead to many unnecessary tests, especially if a
modification is minor. The retest-all strategy may therefore waste both time and
resources. The selective strategy takes advantage of the fact that a modification often
has an impact only on a few parts of the code. If there are no dependencies between
the modified code and other parts of the code, these other parts need not be retested.
Selective re-runs can as such save significant time and resources. Here we can see an
analogy between retesting and recompilation. The make [Make, 2002] tool recompiles
only source files that have changed and those files that depend on the changed files.
Retesting is however a harder task than recompiling. This is because the dependencies
between a test unit and the program entities it covers are harder to identify than
dependencies between a program and its source files, which is specified in build
scripts or makefiles [Chen et al. 1994]. The selective approach leads to two main
problems: the problem of selecting tests from an existing test suite, and the problem
of determining where additional tests may be required [Rothermel and Harrold, 1997].

2.2.6 Conformance testing
 Conformance testing is the process of determining whether the
implementation of a system meets the standards or specifications it was designed to
meet. The motivation for conformance testing originates from the development of
different implementations of given standards. International standards exist for many
areas of computer systems. An example is communication protocols. These standards
are important since their purpose is to guarantee that different systems can work
together even if they are implemented in different ways. To make sure that an
implementation of a protocol meets all the protocol’s requirements, the
implementation must be tested against these requirements [Sarikaya et. al., 1986].
This testing process is called conformance testing. Since the specifications of a
protocol often are well defined, it is possible to write test cases that can be
standardized. By working with the testing methodology in parallel with the standards
itself, the quality of the testing methodology can be comparable with the quality of the
protocol standards itself [ETS, 1995]. With a well-defined testing methodology for
conformance testing, the testing will give an even better guarantee of the quality of
the product. An example of such a testing methodology is The Bluetooth
Conformance Statements, which is the specification for conformance testing of
implementations of the Bluetooth stack.

 13

2. Background and Related Work

 Conformance testing typically uses the black box testing technique because
the test cases originate from a specification, and it is therefore the functionality that is
tested. How the protocols are implemented doesn’t matter as long as the
implementation meets the specified requirements.

2.2.7 Interoperability testing
 Interoperability testing is the process of testing whether the device under test
can communicate successfully with other devices, preferably developed to the same
standard. A standard may be implemented in several ways, so even if a device passes
a conformance test, it does not necessarily interoperate with other devices because the
different implementations may lead to conflicts. And two devices that interoperate
may not have passed a conformance test. So the conformance test does not say
anything about the interoperability between different implementations of the same
standard. However, a passed conformance test will increase the possibility that two
devices interoperate, since they both have correctly implemented a standard, but there
is no guarantee that interoperability between the two systems are present. This is why
we need interoperability testing.

 Interoperability testing is a very important process, and it gets more important
when one implements a standard that already has a lot of other implementations. Your
product is probably worth less if it does not interoperate with the other products on
the market, even if it has the most elegant and efficient implementation of them all.
Interoperability testing may also be a time consuming process, since the tests has to
be performed between several systems. Ten systems will require ten conformance
tests, but the same ten systems require 90 interoperability tests [Kindrick et al., 1996].

2.2.8 Performance testing
 Performance testing is the process of testing the performance of a system with
respect to different criteria. The criteria can include user response times, system
response times, external interface response times, CPU utilization, memory
utilization, throughput etc. The most complete definition of performance would be to
rate the effectiveness of the total system including the users [Browne, 1976]

 Performance testing is often a problem area because system performance is
frequently poorly specified [Watkins, 2001]. This may lead to poor, or in the worst
case, no performance testing of an application under test. The focus is usually on the
functionality tests. It seems fair that software developers prioritize the functionality
tests, such as conformance testing and interoperability testing. A product that does not
meet its requirements has less value if not any value at all. But often it seems that the
primary problems that projects report after a release are not system crashes or
incorrect system responses, but rather system performance degradation or problems
handling required system throughput [Vokolos and Weyuker, 1998]. This is especially
true for fault tolerant systems since performance is often degraded in such systems at
the presence of faults [Huslende, 1981].

 It is therefore essential to have some kind of a performance model when
conducting performance testing. This model should define the test environment, the
requested performance requirements of the system, and how the system can be tested.
Based on this model a set of test cases can be made. The performance requirements

 14

2. Background and Related Work

should be provided in a concrete and verifiable manner, such as in a separate
requirements or specification document, and might be provided in terms of throughput
or response time. Since performance requirements must be included for average
system loads and peak loads, it is important to specify those as early as possible,
preferably in the requirements document [Vokolos and Weyuker, 1998].

 The use of benchmarks is a traditional way of performing performance testing.
A benchmark is a workload that can be used to obtain comparative performance
measurements of different systems [Hitti and Joslin, 1965]. To test the system, it is
simply run on these benchmarks. The challenge with benchmarks is to construct a
benchmark that can act as similar to the natural environment as possible. There are
two important aspects with this challenge: How will we know what a representative
workload really is, and should the workload reflect an average workload or a very
heavy or stress load. In both cases someone must have knowledge of the system and
the environment it is run in. This person must make decisions on how the system most
likely is used. Earlier versions of the system, historical usage data and similar systems
can be of significant help here. A well known problem with benchmarks is that
system manufacturers may design their systems such that they perform optimally
when compared to a widely accepted benchmark, while the performance in real life
may not be prioritized. It may result in systems with performance which is not as
good as the tests say.

2.2.9 Fault tolerance testing
 Fault tolerance testing is the process of testing how a system behaves under
faulty conditions. Fault recovery testing is the process of verifying that following an
error or exception, the system can be restored to a state where it can continue to
perform successfully.

 Fault injection techniques are a useful way of testing the adequacy of fault
tolerance mechanisms, examining coverage of error detection schemes and studying
system behaviour under faulty conditions [Gunneflo et. al., 1989]. Fault injection is
simply a technique where faults are inserted into the system on purpose. In this way
the system can be studied to see how it performs under faulty conditions.

 Experiments based on fault injection techniques can be employed to achieve
two separate objectives regarding the validation of fault tolerant computing systems:
Fault forecasting and fault removal. Fault forecasting is to perform experiments that
rate the effectiveness of various dependability mechanisms or to study system
behaviour under faulty conditions. Fault removal attempts to eliminate the presence of
faults [Arlat et al. 1991].

 Fault tolerance testing is typically performed as white box testing. This is
because it is much easier to insert faults to the system if you have access to the
internals of the system. Most systems are designed to not let a user insert faults during
ordinary usage. Faults often arise within the system and therefore it might be hard to
insert faults by doing black box testing.

2.2.10 Reliability testing
 Reliability testing is to test the robustness and reliability of a system under
typical usage. The goal is to test whether the system will remain reliable in its

 15

2. Background and Related Work

intended environment over a required period of time. In addition to test the stability of
the system, the data produced from reliability testing will form a basis for a statistical
product capability assessment. This can make it easier for customers, who have
specified stability requirements, to check if the system meets their requirements.

 There exist two types of reliability testing: integrity testing and structural
testing. Integrity testing is to verify the system’s robustness and compliance to
language, syntax and resource usage. An example is to execute a unit of a system
repeatedly to ensure that there are no memory leaks. Structural testing is to verify that
the system adheres to its design and formation. An example is to ensure that all links
are connected, appropriate content is displayed and there is no orphaned content in a
Web-enabled application [Watkins, 2001].

 An example of automated integrity testing is the concept of test monkeys
[Marsaglia and Zaman, 1993]. A test monkey is a kind of test which tries to discover
what a user might do to a program. The term test monkey comes from the idea that if
you have many monkeys typing a keyboard for while, some of them might hit a
combination that may have a serious impact to the program. In other words it is a
randomized way of getting different user inputs to a program. The test monkey may
then reveal bugs that appear from user inputs that the test designers may not have
thought of.

2.2.11 Test automation
 As stated earlier in the thesis, testing in general, and regression testing in
particular, is difficult and time-consuming. The process of testing is often done
manually. This manual work does not have to be necessary when we have computers
to help us. An approach often used in most industries, when trying to reduce costs and
ease the work, is to automate the costly and difficult process [Ramamoorthy and Ho,
1975].

 The main points one may achieve from test automation are:

• Speed
• Efficiency
• Accuracy and Precision
• Relentlessness

Speed is maybe the most obvious advantage. It takes some time to write the

test, but once this is done, you may run the test over and over again in very short time,
much faster than a manual test. Test automation can make the whole test process more
efficient since the time used for running test cases is reduced. The extra time earned
can be used to write more or better test cases. A tester is human and humans make
mistakes. The accuracy and precision of your testing might be slightly worse after
running many tests manually and you will probably make some mistakes. An
automated test tool will always perform the same tests with the same accuracy each
and every time. Finally, a test tool never gets tired, like a manual tester may do. It can
keep on running for as long as you like and it will never give up [Patton, 2001].

 16

2. Background and Related Work

 The challenges with automated testing is how to feed input to the
implementation under test (IUT), how to capture the IUT’s output and how to
evaluate this output.

 There are several ways to feed test data to an IUT. One approach is to load test
data from data files, which gives an opportunity to test the core functionality in detail,
but not the user interface. Batch files can be used to run the program’s commands and
give input to the program. Almost all aspects of the program can be tested with batch
files. Keyboard capture and replay is a technique that records all your keystrokes,
mouse positions and mouse clicks. If you want to run a test many times you just
record all your input actions the first time using a capture/replay program. Then you
can run the very same test over and over again.

 To evaluate the test you have to capture the IUT’s output in a useful format.
The capture may be done in several ways. A straightforward approach is to save to
file everything that the IUT can write to disk. For output that is not supposed to be
written to disk, like output intended for a printer, redirection of the output to a disk
file is recommended. Then you can capture output you normally would not see, like
the control characters sent to the printer. You may also send output to a remote
computer through a network interface. The remote computer may then save the data
on disk. Finally you may take a snapshot of the screen or active windows for later
evaluation.

 When you have captured the output it must be evaluated to check if it is the
desired output. One technique for output evaluation is to find a reference program that
already does what the IUT does. The output of the two programs may be compared to
verify correct behaviour of the IUT. A similar approach is to construct a program
similar to the IUT which works in parallel with the IUT, and is supposed to give the
same output as the IUT. The outputs of the two programs may be compared. You may
also build a library of correct outputs. When you create a new test case, you add the
correct output to the library. The output of the IUT will be compared to this library. A
final approach is to capture all outputs whether they are bad or good in separate files.
Then investigate the files and mark them failed or passed depending on the result of
the test. The next time the tests are run, the system flags the files where there are
results that differ from the last run. These files are the ones that should be
investigated. They will either show that previous correct tests now show failure or that
a previous failed test now runs correctly or that a new bug has been introduced [Kaner
et al., 1993].

 There are many interesting challenges in the area of test automation, and there
exists many systems today that offer automation of tests.

2.2.12 More testing techniques
 Many other testing techniques exist. Here is a brief summary of some of these
techniques as described in [Myers, 1979] and [Watkins, 2001].

 Configuration/Installation testing is used to ensure that a system is correctly
installed. This includes checking that appropriate files and connections have been
created or loaded, system defaults are correctly set and interfaces to other
systems/devices are working.

 17

2. Background and Related Work

 Documentation and help testing is to check the user documentation and help
system information for conformance to the requirements specification document. This
is often an overlooked aspect since it is thought to be outside the scope of the testing
process. But this may be vital for new or naive users, who need to trust the
documentation to be correct.

 Security testing is to ensure that the features implemented in a system provide
the required level of protection. The security requirements may specify the level of
confidentiality, availability and integrity of the software. Security testing is mainly
concerned with establishing the degree of traceability from the requirements through
to implementation, and in the validation of those requirements.

 Stress testing examines the system’s ability to perform correctly under
instantaneous peak loads with the aim of identifying defects that appear only under
such adverse conditions. Simulation is often used in stress testing since it can be hard
to test under the conditions required for stress testing, e.g. it can be difficult to get a
large number of users to log on to a system simultaneously.

 Usability testing is to test how well a system can be used. Software usability is
becoming increasingly important. Users are becoming increasingly sophisticated in
their expectations of what a user interface should do and how it should support their
activities. And there are of course the users who are unfamiliar with computer systems
but still are expected to be able to use a particular application with minimal or no
guidance or training. The techniques used in usability testing are among others
conformance checks, where the application is tested against agreed user interface
standards, user-based surveys, where psychometric testing techniques are used to
analyze user perceptions of the system, and usability testing, where users are asked to
perform a series of specified business tasks on the system to test the usability goals or
requirements of the system.

 Volume testing examines the system’s ability to perform correctly using large
volumes of data with the aim of identifying defects that appear only under such
conditions.

 18

2. Background and Related Work

2.3 Existing Systems
There has been other work in the area of test automation and test case

specification. The following sections will give an overview of some of this work.
Section 2.3.1 will give a detailed description of the Tree and Tabular Combined
Notation, which is an important framework for conformance testing of
communication systems. Section 2.3.2 gives a brief introduction to one of many
commercial test systems for Bluetooth implementations. Section 2.3.3 describes
JUnit, a Java framework for regression testing.

2.3.1 Tree and Tabular Combined Notation (TTCN)
 The ISO/IEC 9646 is a seven-part standard which defines a framework and
methodology for conformance testing of implementations of OSI and ITU protocols.
In [ISO/IEC 9646-3, 1998], the third part of the standard, the Tree and Tabular
Combined Notation (TTCN) is described. The TTCN is a standard defined by the ISO
for specification of tests for communication systems. TTCN has been chosen by the
Bluetooth SIG as a preferred standard for specifying protocol and profile tests of
Bluetooth implementations. A TTCN-specified test suite is a collection of various test
cases together with all of the declarations and components needed [IEC, 2003].

 The motivation for the ISO/IEC 9646 is conformance and interoperability
testing. But the framework itself does not focus much on interoperability testing.
Instead they see conformance testing as a road towards interoperability. With a huge
number of protocols and vendors, interoperability sure is an issue, but with such a
high number of implementations, the job of testing the interoperability between them
can be too much even for the most eager tester. If all vendors have to pass a standard
test suite, this can ease the interoperability testing. A passed conformance test does
not guarantee interoperability, but it increases confidence. This is why the framework
focuses on conformance testing. Issues like performance, reliability, fault tolerance,
efficiency, etc are not taken care of in this framework [Graney, 2000]. The standard is
divided into seven parts:

1. General Concepts
2. Abstract Test Suite Specification
3. Tree and Tabular Combined Notation (TTCN)
4. Test Realization
5. Conformance Assessment Process
6. Protocol Profile Test Specification
7. Implementation Conformance Statement

The focus in this chapter will be on part three, the Tree and Tabular Combined
Notation. The TTCN is described in [Telelogic, 2001] and [IEC, 2003].

 As mentioned earlier the framework described by the ISO/IEC 9646 is
developed with conformance testing in mind. This is why one of their basic premises
is that the implementation of the protocol, the implementation under test (IUT), is a
black box. The conclusions that can be drawn about conformance of an IUT will be
made by observing and controlling the events that occur at the lower and upper
service interfaces of the IUT. These interactions take place at points of control and
observation (PCO) and are expressed in terms of protocol data units (PDU) embedded

 19

2. Background and Related Work

in abstract service primitives (ASP). The test components which communicate with
the IUT via the PCOs at the lower interface are called the lower tester (LT). The test
components which communicate with the IUT via the PCOs at the upper interface are
called the upper tester (UT). The Master Test Component (MTC) is a test component
that always has to be present in the system. It is responsible for coordinating and
controlling the test and for setting the final verdict of the test. Communication
between test components both in the LT and the UT is achieved via coordination
points (CP). Communication between the LT and UT is achieved by test coordination
procedures (TCP). The LT is more complex than the UT. This is because it is
responsible for the control and observation of the PDUs embedded in the ASPs that it
sends and receives.

To test the IUT the sequences of interactions, or test events, need to be
specified. A sequence of such events that specify a complete test purpose is called a
test case. A set of test cases for a particular protocol is called a test suite. The TTCN
is a notation for specification of test cases that is abstracted away from the
architecture of any real test system that these test cases may be run on. These abstract
test cases contain the necessary information to fully specify the test purpose in terms
of the protocol that is to be implemented. This doesn’t mean that the notation itself is
abstract. The definition of TTCN has become very precise, with regard to both syntax
and operational semantics, and is now close to a programming language. The common
TTCN notation is a graphical notation (TTCN-GR) where all information is presented
using tables.

A TTCN test suite consists of four major parts:

1. Suite overview part
2. Declarations part
3. Constraints part
4. Dynamic part

The suite overview part is basically a documentation of the test suite. It

contains a table of contents and a description of the test suite. The purpose of the suite
overview is to document the test suite and increase readability and clarity.

The declarations part is used for declaring types, variables, timers, points of

control and observation (PCO) and test components. All the types that that are used in
the test suite are declared here. TTCN has been constructed to interface with the
Abstract Syntax Notation One [ISO/IEC 8824, 1990]. There is no clear boundary
between the TTCN an ASN.1 types. The distinction is there because there shall be
possible to build types that can be used in parts of the protocol specifications that
normally not use ASN.1. Hence the types are declared using either TTCN or ASN.1
type notation. Declaring of types in TTCN or ASN.1 is done in a graphical table
instead of in a file. TTCN supports several built-in types, like INTEGER and
BITSTRING. Most of these types are a subset of the ASN.1 built-in types and they
are compatible with their ASN.1 counterparts. TTCN also allows the user to construct
own types from the built-in types. There are specific tables for the definition of user-
defined types.

 20

2. Background and Related Work

Figure 7 - Example of an ASP type definition (figure taken from [IEC, 2003])

Figure 8 - Example of test case variable definition (figure taken from [IEC, 2003])

Figure 9 - Example of test suite operation definition (figure taken from [IEC, 2003])

The constraints part is used for describing the values sent or received. The

structured types, PDUs and ASPs defined in the declarations part, are used as models
to describe the messages sent on the PCOs. The instances used for sending must be
complete, but for receiving there is the possibility to define incomplete values using
wild cards, ranges and list. Constraints may be reused. They can be parameterized and
the actual value can be assigned dynamically to the specific component stated for the
argument.

 21

2. Background and Related Work

Figure 10 - Example of ASP Constraint Declaration (figure taken from [IEC, 2003])

The dynamic part contains descriptions of the tests. The test description is an

overview of the actual execution behaviour of the test suite. The dynamic part is
created in a hierarchical and nested manner. The building blocks are test groups, test
cases, test steps and test events. Three different types of tables exist for behaviour
descriptions, Test Case Dynamic Behaviour, Test Step Dynamic Behaviour and
Default Dynamic Behaviour.

To describe the test behaviour of the various test components TTCN uses a

behaviour tree. Protocol specifications often use state diagrams or state tables to
describe the behaviour of the protocol. Test cases are derived from these
specifications. But since conformance testing is concerned with observing and
controlling sequences of interactions at service interfaces it is more appropriate to use
a tree to specify the test system behaviour. This tree has branches for all the possible
sequences of interaction that may occur between any two given protocol states. This
tree is called a behaviour tree. The tree structure is represented by using increasing
levels of indentation to indicate progression into the tree with respect to time.

Figure 11 - The behaviour tree represented in TTCN using indentation (figure taken from

[Telelogic, 2001])

 22

2. Background and Related Work

A node in the behaviour tree is called a behaviour line. The behaviour lines are

specified in dynamic behaviour tables (as described earlier). A sequence of one or
more statements, together with the indentation information in a behaviour line is
called a statement line. In figure 12, the light shading indicates a behaviour line while
the dark shading represents a statement line.

Nr Label Behaviour Description Constraints

Ref
Verdict Comments

1
2
3
4
5
6
7
8
9
10

A
 C
 F
 G
 H
 D
 E
 I
 J
B

Figure 12 - The body of a dynamic behaviour table (figure taken from [Telelogic, 2001])

The behaviour of the test system is expressed using statements. Statements can

be split into three different types; events, actions and qualifiers. Some statements will
be successful, i.e. match, depending on the occurrence of certain events. There are
two types of events; input events and timer events. Some statements will always be
successful, i.e. execute. These statements are called actions. Statement lines may
include a qualifier statement, i.e. a Boolean expression. These statements are called
qualifiers.

A set of statement lines at the same level of indentation, and in the same

branch of the tree, are called a set of alternative statement lines or just alternatives.
Execution of the behaviour tree starts at the root of the tree. The first set of
alternatives is repeatedly looped. Each alternative is evaluated in the order of its
appearance in the set. This continues until a statement line is successfully executed or
matched. If a statement line is successful then the next set of alternatives is entered,
and the process is repeated. Execution stops when a leaf of the tree is reached. A final
verdict will also halt the execution.

The TTCN is a detailed and well defined notation for conformance test

specification. When comparing TTCN to FAT we find that our framework does not
have the intention to create a new test specification notation/language. FAT will try to
make use of an already existing general-purpose programming language, Java, to
investigate whether it is suitable for writing automated test cases. TTCN focuses on
conformance testing and does that by performing black box tests. FAT also uses a
black box testing technique similar to TTCN for conformance testing. But it tries to
do more than just conformance testing and uses a white box testing technique to
achieve e.g. fault tolerance testing.

 23

2. Background and Related Work

2.3.2 IVT BlueTester
 BlueTester [BlueTester] is a test tool for Bluetooth implementations. It is
based on the Bluetooth specification and its main goals are to offer conformance
testing through the module BlueTester for Conformance, and interoperability testing
through the module BlueTester for Interoperability.

 BlueTester offers a graphical user interface to the tester. The test cases are
represented using TTCN and implemented in C. The Conformance test case
procedures are viewed using a Message Sequence Chart (MSC). MSC shows the test
procedure graphically by viewing the message flow sequence. Test results are
compared against the expected results. These results are also logged for later use. The
logging may be done in a complete and detailed fashion such that it may be used in an
official Bluetooth qualification process. The test cases implemented by the program
are easy to upgrade against the official Bluetooth specification, which makes the
program always up to date with the latest standard.

 The Interoperability test cases are based on the Bluetooth Profile
Specification. The test case scripts execute these test cases and log the results in a way
that is similar to the Conformance test cases. That means that the test logs for the
interoperability tests may also be used as a basis for qualification of Bluetooth
products. Similar to the Conformance test cases, the test cases for the Interoperability
tests may easily be upgraded so that the test program always is up to date with the
latest specifications.

 Compared to FAT, this system has pre-defined tests for conformance and
interoperability, while FAT lets the tester write his, or her, own tests and not just only
for conformance and interoperability. BlueTester has a more detailed view of the
outcome of the test process including a more detailed logging of test results than our
system. BlueTester may only be used against Bluetooth implementations while FAT
may be used against other protocol stacks that have similar architectures as the
Bluetooth stack.

2.3.3 JUnit
 JUnit [JUnit] is a regression test framework written by Erich Gamma and Kent
Beck. It is used for writing unit tests in Java. JUnit is based on the Smalltalk testing
framework [Beck] which has formed a basis for many testing frameworks based on
programming languages like CUnit (C), CppUnit (C++), JUnit (Java), PhpUnit (PHP)
and PyUnit (Python). We have chosen to describe JUnit here since our framework
uses Java to specify tests.

 JUnit is Open Source Software, released under IBM's Common Public License
Version 0.5 and hosted on SourceForge [SourceForge]. JUnit defines how to structure
test cases and provides the tools to run them. It offers functionality for evaluating the
results of the tests so that the tester does not have to do this job manually. It also
offers functionality to run more than one test at a time.

 Creating a test is quite simple:

1. Implement a subclass of TestCase.
2. Create a constructor which accepts a String as a parameter.

 24

2. Background and Related Work

3. Write a method that sets expected values from the test, and runs the method(s)
that is to be tested.

4. If you want to check a test value, call assertTrue() with the boolean that is true
if the test succeeds.

An example showing such a test method is shown here. This method tests if

the sum of two Money objects with the same currency contains a value which is the
sum of the values of the two Money objects. All examples in this section are taken
from [Beck and Gamma].

public void testSimpleAdd() {
 Money m12CHF= new Money(12, "CHF");
 Money m14CHF= new Money(14, "CHF");
 Money expected= new Money(26, "CHF");
 Money result= m12CHF.add(m14CHF);
 assertTrue(expected.equals(result));
}

 There are some constructs that are useful when writing several tests. One such
is a Fixture. A Fixture is used when writing tests that use the same set objects. These
set of objects is the Fixture. A Fixture is instantiated using the setUp() method and the
tearDown() to release the resources allocated in setUp(). An example Fixture is shown
here:

public class MoneyTest extends TestCase {
 private Money f12CHF;
 private Money f14CHF;
 private Money f28USD;

 protected void setUp() {
 f12CHF= new Money(12, "CHF");
 f14CHF= new Money(14, "CHF");
 f28USD= new Money(28, "USD");
 }
}

 To write and run test cases against a Fixture one has to write a public test case
method in the Fixture class and then create an instance of the same class with the
method name as a parameter. Here is an example:

public void testMoneyMoneyBag() {
 // [12 CHF] + [14 CHF] + [28 USD] == {[26 CHF][28 USD]}
 Money bag[]= { f26CHF, f28USD };
 MoneyBag expected= new MoneyBag(bag);
 assertEquals(expected, f12CHF.add(f28USD.add(f14CHF)));
}

 An instance of MoneyTest is created like this:

new MoneyTest("testMoneyMoneyBag")

 When the test is run, the name of the test is used to look up the method to run.
If there are several tests they should be organized into a suite. A suite is used to run
several test cases together. To run a single test case, execute:

 25

2. Background and Related Work

TestResult result= (new MoneyTest("testMoneyMoneyBag")).run();

 To create a suite of two test cases which can be run together, execute:

TestSuite suite= new TestSuite();
suite.addTest(new MoneyTest("testMoneyEquals"));
suite.addTest(new MoneyTest("testSimpleAdd"));
TestResult result= suite.run();

 To run tests and collect the results, one has to make the test suite available to a
TestRunner tool with a static method suite() that returns a test suite, like this:

public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new MoneyTest("testMoneyEquals"));
 suite.addTest(new MoneyTest("testSimpleAdd"));
 return suite;
}

 There is both a graphical and textual version of the TestRunner tool. The
graphical version is shown in figure 13.

Figure 13 - JUnit graphical TestRunner tool.

 From figure 13 we can see that JUnit distinguishes between failures and
errors. Failures are anticipated and checked for with assertions in the code. Errors are
unanticipated problems.

 26

2. Background and Related Work

 Compared to FAT, JUnit also uses Java to specify tests. Our framework does
not have quite as sophisticated functionality with Fixtures and suites, but has
simplified assertion functionality like JUnit. Our framework offers the ability to test
other systems through XML-RPC and not only systems residing on the same node as
the framework itself. This is an advantage when performing tests of stacks that are to
be executed on devices which have limited capacity to run other applications, like a
test system.

 27

3. Architecture

Chapter 3

Architecture

 The purpose of this chapter is to give an introduction to the architecture of
FAT. The most important concepts of the design of the framework are included.

3.1 Overview
FAT provides a framework for automated regression testing of Bluetooth

stacks. Both black box and white box testing are supported. To achieve white box
testing, e.g. for fault tolerance testing, there must be some way for the tester to inspect
the messages passing through the stack. If the stack layers are bound together with
pointers to their upper and lower layers, it is possible to insert a layer between the
original layers that can inspect messages passing through the layer. Such a layer will
make it possible to insert, modify, copy and delete messages. With the help of these
four operations it is possible to write and execute many different tests, both black box
and white box tests.

Figure 14 shows the overall picture of the architecture of FAT.

Figure 14 – FAT architecture

 FAT consists of two main components:

• Test System Client (TSC)

 28

3. Architecture

• Test Layer Component

The TSC is the client side of the framework. Here is where the tests are
written and executed. The Test Layer Component is the component that makes it
possible to inspect messages passing through the stack. The Test Layer Component
consists of one of more test layers and an XML-RPC module, which provides an
interface towards the TSC. The communication mechanism between the TSC and the
test layer is XML-RPC, which makes it possible to have the two main components
residing on different nodes.

The components are further explained in the following sections.

3.2 The Test Layer Component
 The Test Layer Component consists of the test layer(s) and the XML-RPC
module.

3.2.1 The Test Layer
 The test layer provides an API towards the TSC to insert, modify, copy and
delete messages. The four methods offered by the API are:

• Put
• Get
• Copy
• Delete

Put inserts a message into the stack. The message is constructed by the TSC

and inserted into one of the layers in the stack, including the test layer. Get takes a
message out of the stack and sends it to the TSC. This method is used to modify a
message. By using Put on the received message, the TSC can return the message to
the stack after modification. Copy copies a message by both sending the message to
the TSC and forwarding it up or down the stack. Delete removes a message from the
stack by refraining from forwarding it. To know when to do any of these operations,
the test layer has four modes, which decide which action to take with incoming
messages.

The test layer is bound together with the rest of the stack using the binding

mechanisms of the ObexCode stack development framework. The test layer is treated
just like a regular stack layer, which means it has the same internal structure as other
layers with pointers to the upper and lower layer, and methods for sending and
receiving messages.

3.2.2 The XML-RPC Module
 The XML-RPC module exports the methods that the TSC uses to cooperate
with the test layer. There is one method for each of the methods of the test layer’s API
described in section 3.2.1. In addition there is one method that registers XML-RPC
clients and returns a handle that must be used as first parameter with all calls to the
module.

 29

3. Architecture

3.3 The Test System Client
 The Test System Client (TSC) lets the tester write tests and execute them on a
Bluetooth stack modified to include FAT test layers. The TSC provides the tester with
a GUI where implemented tests may be chosen for execution. All test results are
logged and written to file.

 The test procedures are specified as ordinary Java methods. The test methods
are organized by their category in different classes. Each test is represented in the
system as an object of their corresponding class. The test classes share some
functionality. This shared functionality is placed in a class which acts as a superclass
for the test classes. The class hierarchy is shown in figure 15:

Figure 15 - The class hierarchy of the test classes

 The TSC communicates with the test layer through XML-RPC. It contains
therefore an XML-RPC module which acts as an XML-RPC client. XML-RPC is
chosen as the communication mechanism because of the ability to let modules
implemented in different languages easily communicate with each other. By choosing
XML-RPC the design choices of the TSC could be made more independently from
the implementation it is supposed to test.

3.4 Summary
 This chapter has described the architecture of FAT. The framework consists of
two main components: The Test System Client (TSC) and the Test Layer Component.
The main idea of the architecture is to insert test layers between the original stack
layers of the stack that is to be tested. These test layers may be used to insert, modify,
copy and delete messages passing through the stack.

 30

4. Design and Implementation

Chapter 4

Design and Implementation

4.1 Introduction
 This section presents an overview of the components of FAT. The section also
describes the design rationale behind FAT.

4.1.1 Overview
Figure 16 shows an overview of FAT’s components. The grey boxes represent

the FAT components.

Figure 16 - System overview

• The Test System Client (TSC) is the client part of the framework. A tester will

use this component to write tests and to execute them on a stack.
• The XML-RPC Module is the component that exports the methods that the

TSC uses to interface with the stack.
• The Test Layer is a layer inserted between two layers in a stack. It provides

functionality to the TSC to insert, modify, copy and delete messages passing
through the test layer.

• The communication mechanism between the TSC and the stack is XML-RPC,
which makes it possible to let the TSC run on a different node than the stack.

 31

4. Design and Implementation

4.1.2 Approach
 The different testing techniques discussed in previous chapters are often
performed as either black box or white box testing. Conformance and interoperability
testing are typically black box tests, while reliability and fault tolerance testing
typically are carried out as white box tests. Black box testing a system is often
straightforward, because one typically feeds the IUT with input data, collects the
output data and finally checks if these data are accepted. The chief advantage of black
box testing is that it does not require knowledge of the internals of the system, and
that it can be easily automated. For our system the latter advantage is of importance.
To black box test a protocol stack for conformance it is sufficient to call the methods
that the stack is supposed to export and check the output.

To be able to perform white box testing of the protocol stack, which is the
preferred method when performing fault tolerance and reliability testing, there must
be some way for the tester to modify the internals of the stack. One such approach is
to insert or modify the messages flowing through the IUT. One way of doing such a
modification is to modify the stack-code itself. The test engineer has to go through the
stack-code and insert code which changes the messages sent internally in the stack.
This way the test engineer can observe the behaviour of a modified system and check
if this behaviour is as expected. This is probably the most straightforward way of
achieving message changes.

However, code modification is not an easy task. First of all, as a tester you

must have good knowledge of the code in order to know where to insert your own test
code. If you don’t know the code, test modification could be a time consuming task.
This approach is also messy and it may be hard to keep control of what you have and
what you have not tested. The original program code could easily ‘disappear’ among
all the test code that is injected. The risk of modifying existing code, which you are
not supposed to modify, is also present. Another fact is that this approach can not
easily be automated. The automation of the test process is a main goal for this system.
A final fact is that program code that is changed, e.g. by inserting test code, is not the
same code as it was before. Just a simple thing like adding a single print-statement to
the program code, can make the program behave in a totally different way, e.g. due to
changed memory references.

If the test system shall perform white box testing it must be done in a different

way than the code-modification approach. The approach that eventually will be
chosen must primarily lend itself easily to automation. If we are satisfied with
modifying the messages when they are in transition between the layers, there is an
easy and efficient way of inspecting, creating, modifying or deleting messages. To
achieve this, the stack layers have to have an interface for sending and receiving
messages between them which can be used by a dedicated test layer. This test layer
can be a generic layer, which receives messages sent from one layer, takes some or no
action on the message, and sends the message to the next layer. The first layer will
have no idea that its message is being hijacked, because it just sends the message
without further control. The next layer just receives a message, regardless of who sent
the message. What we get here is a layer that we can place in-between the original
layers of the stack, a layer that has the same send and receive interface as the stack

 32

4. Design and Implementation

layers. This layer can then provide the functionality we requested, like inspecting,
creating, modifying and deleting messages.

An interesting consequence of using layers like this is that the conformance

tests we described earlier in the section, where the stack’s exported methods are used
to test functionality, can be done using these layers instead. Most of the methods that
will be tested in such a test are actually just messages of some form that are sent
through the stack. Since the layers will offer the possibility to insert messages, the
messages that correspond to the stack’s exported methods can be made and inserted to
the stack instead of calling the methods directly.

The system is therefore designed in such a way that all tests use these generic

test layers. This is done to provide one view of the entire test system, so all tests can
be specified in a similar manner. One of the main points of our system is to construct
a framework for testing where different types of tests can be specified using the same
methodology. The design with generic test layers which can create, copy, modify and
delete messages internal to a protocol stack, will provide such a commonality to all
types of tests.

4.2 The Generic Test Layer
This section describes the test layer which provides functionality for testing of

protocol stacks. The section starts by describing the particular stack FAT is designed
for. We then continue with a description of the design and implementation of the test
layer.

4.2.1 ObexCode Protocol Stack Development Framework
 FAT is designed to test protocol stacks developed within the ObexCode
network protocol development framework (NPDF). Although we are addressing the
ObexCode Bluetooth stack in this thesis, FAT should be applicable as a testing
framework for any protocol stack developed within NPDF. In the remainder of this
section we summarize parts of NPDF particularly relevant for FAT.

 Each layer in a NPDF stack has two pointers, one that points to the layer
above itself, the up pointer, and another that points to the layer below, the down
pointer. To stitch layers together, the binding functions oc_bind_up and
oc_bind_down are used. These functions rearrange the up and down pointers of the
layers involved in the call. Both functions take two parameters. oc_bind_up takes a
pointer to itself and a pointer to the layer above it. It sets its own up pointer to point to
the layer above it. The above layer’s down pointer is set to the initiating layer. The
oc_bind_down does exactly the same, except it sets its own down pointer and the
other layer’s up pointer. The binding is done at start-up time, when the stack is
configured. A layer is created using the function oc_<layer_name>_new. It returns a
handle to itself. The binding of layers is shown in figure 17.

 33

4. Design and Implementation

Figure 17 - Binding of layer to ObexCode stack

 The format of the messages sent through the stack is simple. A message
contains an event code which identifies the particular type of message.. A message
also contains a handle to the source layer, and to the destination layer. The event code,
together with the source handle, is used by the receiving layer to decide how to
process the message. The message also contains a pointer to a data buffer. This data
buffer contains the actual message data.

 The messages that are sent between layers are sent using the function
oc_call_msg. The function takes four parameters: The layer the message is sent from,
the destination layer, an event code and the message data. Usually, when a message is
sent down the stack, the destination layer is set to the layer pointed to by the down
pointer. And for messages going up the stack the destination layer is set to be the
layer pointed to by the up pointer.

 When oc_call_msg is called, a message is constructed from the parameters,
and sent to the destination layer. The function oc_msg_proc is the function that is
called in the receiving layer when a message is received. It basically checks the event
code and source layer of the message and takes the appropriate action based on these
two parameters. The message flow is shown in figure 18.

Figure 18 - Message flow through ObexCode stack

The stack that FAT has been tested against contains only the HCI layer from
the Bluetooth specification. Below the HCI layer in this stack is a layer called

 34

4. Design and Implementation

AsyncIO, which will act as a Bluetooth module. Although simplistic, these two layers
are sufficient to verify the basic functionality of FAT.

4.2.2 The Test Layer
 The purpose of the test layer is to enable the Test System Client (TSC) to
insert, modify, copy and delete messages sent through an ObexCode NPDF stack
layer. A graphical representation of the API is shown in figure 19.

Figure 19 - Test Layer API

• Put provides the functionality to insert messages into the stack.
• Get lets the TSC modify messages. Get takes a message out of the stack and

sends it to the TSC. The TSC must do a Put call to insert the modified
message back to the stack.

• Copy sends an incoming message both to the TSC and further down, or up the
stack, depending on where it originally came from.

• Delete removes messages by refraining from sending incoming messages to
the next layer in the stack. It sends a confirmation message to the TSC when
the operation is done.

 The test layer has to know when to do any of these operations or do nothing at
all. For the test layer it is not enough to just look at the event code when deciding the
appropriate action to take with the message. It needs to know which messages to
copy, modify or delete. To help the test layer with this decision the layer defines four
modes:

• Get mode
• Copy mode
• Delete mode
• Normal mode

These four modes correspond to the four possible outcomes of a message
arrival. The Get mode is for the modify situation, where a message is taken out of the
stack and returned to the TSC for modification. There is one mode for copy, where an
incoming message is copied and sent to the TSC, and also sent further down or up the

 35

4. Design and Implementation

stack depending on where it originated. When a message is taken out of the stack or
copied, the event code and the actual data that the message carries is taken out and
sent to the TSC. The third mode is when a message is deleted, which means that an
incoming message is simply not forwarded at all. The fourth mode is when we have a
‘normal’ situation. In this mode incoming messages are just forwarded to the next
layer. This mode is for messages that are not modified in any way by the test layer,
and for messages that are inserted to the test layer from the TSC.

 The layer is initialized with the Normal mode. To change mode, the TSC has
to make a call to the test layer. The XML-RPC module which belongs to the test
layer, exports four methods, Put, Get, Copy and Delete, which correspond to the API
defined by the test layer. These are the methods that are used by the TSC to
communicate with the test layer. Basically, Get, Copy and Delete sends a message to
the test layer telling the layer to change mode to Get mode, Copy mode and Delete
mode, respectively. Hence after a Get call the test layer is in Get mode and knows that
the next incoming message shall be sent to the TSC and not forwarded to the next
layer, as it would in the Normal mode. The test layer remains in this new mode until it
has done the appropriate action with the first message that arrived after the mode
change. The mode is then set to Normal. The test layer is implemented such that when
it is in a mode other than Normal it takes the next incoming message and does the
appropriate action, before resetting the mode to Normal.

The functionality described in this section could easily be improved by
looking at the event code and the content of the incoming message and then decide to
take some action or just forward it. This approach could be useful if you are sending a
lot of messages through the stack but you are interested in one particular type for e.g.
copying. Another improvement is that the test layer could return to Normal mode after
a certain number of messages have passed and not just after one message, such as in
the current implementation. This approach is useful when one wishes to copy all or
some number of messages flowing through the stack. Both of these approaches
require extra parameters to be added to the Get, Copy and Delete methods, that is one
parameter for the event code(s) to look for and one parameter for the number of
messages to examine. These improvements are currently not implemented in the test
layer, but they are implemented by the exported methods of the XML-RPC module.
These methods include an event code parameter and a number of messages parameter
that can be used by the test layer if it implements the required functionality. Another
improvement to the test layer could be to have multiple modes, which means that the
layer could be in both delete and copy mode simultaneously.

 The way the test layer works now, the Get, Copy and Delete methods just
change the test layer mode and then returns to the TSC with no value. It is when a
message is inserted to the stack that the result of these methods is actually returned.
Another approach could be to use blocking calls that waits for messages to arrive,
wakes up and does the appropriate action, and then returns to the TSC with the result.
This approach requires the ability to make asynchronous calls from the TSC. A
problem with this approach is that it might have to return more than once to the TSC,
e.g. if several messages are to be copied. This could be solved by saving the copied
messages in the layer and returning them to the TSC when all copying is done. In the
current implementation however, this problem would not occur since only one
message at a time is copied.

 36

4. Design and Implementation

An interesting approach, which could make the test layer handle almost any

situation required, is if the test layer could offer an API to the TSC to dynamically
download code. Dynamically downloading of code is a well known technique for
making a system more flexible and to increase its performance. Examples of down-
loadable systems are SPIN [Bershad et. al., 1995] and U-Net/SLE [Oppenheimer and
Welsh, 1997] [Welsh et. al. 1998]. By downloading code dynamically, a tester could
control the behaviour of the test layer in greater detail than before. It may also reduce
the traffic between the TSC and the test layer when e.g. modifying messages since the
messages now may be evaluated at the test layer.

A light-weight alternative to a code down-load approach is using packet

filtering technologies such as the Berkeley Packet Filter (BPF) [McCanne and
Jacobson, 1993]. BPF defines filters at kernel level which can filter incoming packets.
This approach is an alternative to a common approach for network monitoring where
a user level network monitor gets copies of all incoming packets. Often a network
monitor is interested in just a subset of the packets, so if incoming packets are
investigated first at kernel level, and only the interesting packets are forwarded to the
network monitor, it will improve performance. By introducing some kind of filtering
mechanism in the test layer, we could increase the functionality and improve the
performance of FAT.

 The test layer contains some state. It is in the current implementation reduced
to a variable telling which mode the layer is in. But the improvements mentioned
earlier in the section requires more state to be present, like the number of messages to
be treated by the layer and which event codes to be treated. Practically any statistics
of messages passing by the layer may also be saved in the layer. Such statistics may
be the number of messages passed, types of messages passed, timestamps of the
messages passed, etc. To get this information from the test layer, new methods for the
TSC are required. Such methods will have to send a message to the test layer
requesting some information and will receive this information in return. Figure 20
shows an example of a method, GetStats(), which returns the message statistics of
the test layer to the TSC.

Figure 20 - Get message statistics from test layer

 The test layer in its present form is very thin. It hardly contains any state, and
the functionality implemented is small and simple. The reason for this is that
Bluetooth is a technology designed for devices which often have few resources, such
as memory and processing power, than ordinary computers. Adding layers to the stack
should preferably introduce as little extra load on the system as possible. Therefore
the test layer is designed such that it should be possible to do as much as possible for
the TSC by adding as little as possible to the stack. Because of the desire to have a
thin layer, the improvements described in this section may not be desirable features.

 37

4. Design and Implementation

Saving messages and statistics about them will require too much memory. Instead all
messages have to be sent to the TSC right away, like it is done in the current
implementation. Message statistics could also be sent straight to the TSC without
saving, if statistics is to be implemented later. The same problem applies to
downloading of code. There might not be enough memory to store the downloaded
code. The low processing power might also be an issue when introducing more
functionality to the stack by downloading code.

4.2.3 The XML-RPC Module
 The FAT architecture describes the Test System Client, an external client
where tests are written end executed. To let this client execute tests on a stack, a
communication mechanism between the client and the test layers is required. Since
the client and the test layers may be running on different platforms, the
communication mechanism must handle conversion of data types, e.g. between little
and/or big-endian. We have therefore based our communication mechanism on XML-
RPC [XML-RPC, 1999].

 XML-RPC is a remote procedure call protocol. It uses HTTP as the transport
protocol and XML as message encoding. An XML-RPC message is a HTTP-POST
request. The body of the request is in XML. The server executes the procedure called
from the request and the return value(s) are also returned as XML. XML is chosen as
message encoding because it is a standard that is widely accepted and supported by
many platforms which makes it possible to make procedure calls between a wide
range of platforms. Figure 21 gives an overview of the process of making an XML-
RPC call.

Figure 21 - Overview of XML-RPC

 From figure 21 we can see that a program that wishes to make an XML-RPC
call has to encode the procedure call into an XML document. This document is passed
as a HTTP-POST request over some communication channel, like a serial cable or a
network connection. The receiver has to decode the XML document and execute the
call locally. The return messages are encoded into an XML-RPC message which is
sent back to the caller as the return value for the original request. The caller decodes
the XML response and can receive the return value.

A key advantage with XML-RPC is that applications implemented in different
languages can easily communicate with each other. The motivation for using XML-
RPC as communication mechanism is rooted in this property. Using XML-RPC, the
TSC may be implemented in any programming language supporting XML-RPC and it
will make the framework more generic. But XML-RPC is expensive because it

 38

4. Design and Implementation

consumes much memory. This disadvantage is however evaluated against the
advantage of XML-RPC and found to be tolerable. Another advantage of choosing
XML-RPC is that the ObexCode NPDF relies on XML-RPC as its external
communication mechanism. The fact that the stack already uses XML-RPC is a good
reason for choosing it as communication mechanism between the test system and the
test layer.

 The XML-RPC module exports four methods: Put, Get, Copy and Delete,
which corresponds to inserting, modifying, copying and deleting messages. With the
help of these four methods, the test system may perform the four actions desired. An
example of an XML-RPC request to Copy is shown below:

POST /RPC_TEST HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: cs.uit.no
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>Copy</methodName>
 <params>
 <param>
 <value><int>13934442</int></value>
 </param>
 <param>
 <value><int>41</int></value>
 </param>
 <param>
 <value><int>1</int></value>
 </param>
 </params>
</methodCall>

 The body of the message shows the method name and three parameters. This
information is all the XML-RPC module needs to know to execute the Copy function.
Further explanation of the Copy method and its parameters is presented later in the
section. The module exports another method, New. This method has nothing to do with
the test layer. It is a method that registers XML-RPC clients, and it must be called by
all clients before making a call to the other exported functions. New returns a handle
that must be used as first parameter to all the other exported methods.

 The XML-RPC module communicates with the test layer and the other layers
in the stack using the same mechanisms as the test layer, i.e. oc_call_msg for
sending messages and oc_msg_proc for receiving messages. The only difference is
that the module is not bound together with the stack layers like the test layer. That is
why we call it a module rather than a layer since it is not part of the stack. The module
needs to contain pointers to the layers that it will send messages to, since it does not
have the up and down pointers of the stack layers. Most of the messages will be sent to
the test layer(s), but the Put method may insert messages in any layer of the stack, so
pointers to all relevant layers need to be initialized when the module is instantiated.
Received messages mostly come from the test layer(s) but if a message has been
inserted to another layer, this layer may return a message to the XML-RPC module.

 39

4. Design and Implementation

The oc_msg_proc unpacks the data from these messages and return the data to the
TSC. Following is a description of the four exported methods.

 The Put method inserts a message to a layer in the stack. The message to be
inserted is partly constructed by the TSC and partly by the Put method. The client
constructs the data part of the message which is one of the parameters to Put. The
other parameters are the handle returned from New, the event code the message shall
use and an ID telling which layer to insert the message. Put unpacks the parameters
and uses the message data and the event code as parameters to oc_call_msg, together
with a pointer to the module and the destination layer which is decided from the layer
ID. A message is now constructed and sent to the destination layer.

 The Get method sets the mode of the test layer to modify mode. The
parameters of the method are the handle returned from New, the event code of the
message to be modified and the number of messages to be modified. The last two
parameters are packed as the message data of the message to be sent to the test layer.
The functionality of selecting which and how many messages to get is, as described in
section 4.2.2, not implemented in the test layer, but later implementations can make
use of data load following the message from Get. The module has defined three event
codes, one for each of the calls Get, Copy and Delete. The event code for Get is used
as the event code in the call to oc_call_msg, so that the test layer can recognize this
as a Get message.

 Copy and Delete are almost similar to Get. They take the same parameters
and send the same data to the test layer. The only difference is the event code of the
message sent to the test layer.

4.2.4 Summary
 This section has described the test layer that act as an interface towards the
stack that is to be tested. To perform white box testing in a way that can be easily
automated, one can insert test layers in-between the original stack layers and insert,
modify, copy and delete messages that pass through the test layer. The test layer
opens also for black box testing of the system. An XML-RPC module is the
communication interface towards the TSC. The XML-RPC layer exports four
methods: Put, Get, Copy and Delete. With the help of these four methods it should
be possible for the TSC to execute a significant number of relevant tests.

 40

4. Design and Implementation

4.3 The Test System Client
 This section describes the Test System Client (TSC). The chapter reveals the
design and implementation of the different modules of the test system. It starts with a
short introduction and continues with an analysis of the system as a whole. The
following sections describe each of the modules in more detail.

4.3.1 Introduction
 The TSC implements the client component of the FAT framework. Users
interact with the TSC to specify and execute specific tests. The responsibility of the
TSC can be summarized like this:

• Specify a test
• Execute the test
• Log and view the test result

The design and implementation will reveal how these requirements are

realized in the TSC. The TSC has been divided into four modules:

• Test module
• GUI module
• Control module
• XML-RPC module

 The Test module is the part where the tests are specified. The GUI module
represents the system’s graphical user interface towards the user. The Control module
is responsible for the TSC’s internal interaction between the GUI module and the Test
module and for logging of test results. The XML-RPC module represents the
communication interface towards the IUT.

The TSC is implemented in Java using JavaTM 2 SDK, Standard Edition
Version 1.4.1 [Java]. Java is an object-oriented, high-level language. Java programs
are running on top of the Java Virtual Machine (JVM). Because of the JVM, Java
programs may run on almost any platform, which makes the language highly portable.

The TSC is implemented in Java because of the language’s high level of

portability, which makes it easy to run the system on almost any kind of processing
node in any environment. Another reason for choosing Java is that it seems to be a
good language for defining tests. The tests that are to be executed must be represented
in some way. There exist several description languages with the purpose of defining
tests. Instead of using a test specification language or developing a new specification
language, we wanted to investigate the properties of a high-level language like Java,
to check if it is suited for specifying tests. The reason for this is that Java is a
relatively easy, yet powerful programming language. There should be enough
properties to the language to define tests. Another reason is that the TSC itself is
written in Java. A test written in Java will easily interoperate with a system also
written in Java.

 41

4. Design and Implementation

The TSC may be run on the same node as the IUT but it should also be
possible to run it on a different node. This is done in order to make it possible to
evaluate the IUT on the target device. This will not have any practical influence on
the system since the XML-RPC is used anyway.

The rest of the chapter will describe the design and implementation details of

the TSC. The Unified Modelling Language (UML) [UML, 2003] has been used to
describe the different parts of the system. UML is chosen because it is a standardized
and well known graphical language for visualizing, specifying, constructing and
documenting artifacts of object oriented systems.

4.3.2 Analysis
The design of the TSC also contains a brief analysis of the system. The

analysis is supposed to give an overview of the system without too many details.

 In the analysis of the TSC, two actors and four classes are defined. The actors
are the Test Engineer and the Implementation Under Test.

Figure 22 – Actors of the test system

• Test Engineer – The person that will use the TSC to test an implementation.
• Implementation Under Test – The implementation that is to be tested. This

actor will correspond to the test layers and the protocol stack described in
section 4.2.

There are two boundary classes, one entity class and one control class in this

model. The relationship between the classes is shown in figure 23.

Figure 23 - Analysis classes of the test system and their relations

• TestUI – The interface towards the Test engineer. The Test engineer
communicates with the TSC through this class.

 42

4. Design and Implementation

• System – Controls and coordinates the information sent and received between
the Test Engineer and the rest of the system.

• Tests – Contains the actual tests that are to be executed on the Implementation
under test.

• TestCommunication – The interface towards the Implementation under test.
Responsible for the sending of tests and receiving of test results between the
TSC and the Implementation under test.

There is practically only one overall workflow for this system. This workflow

is where the Test engineer chooses a test to be carried out, and then the system
executes this test and then logs and views the results to the Test engineer. This
workflow is shown in figure 24.

Figure 24 - Collaboration diagram for standard workflow

The Test engineer chooses which test to execute through the TestUI class (1).
The TestUI class informs the System class that a test is chosen (2) and the System
class loads the chosen test from the Tests class (3) The Tests class then prepares the
test to be executed (4) before it asks the TestCommunication class to execute the test
on the Implementation Under Test (5). The TestCommunication class sends the test to
the IUT for execution (5) and receives the results from the IUT (6) when the test is
finished. The test results are handed to the Tests class (7) for evaluation (8). The
System class logs the results (9) for later use, and lets the TestUI view the results to
the Test engineer (10).

4.3.3 Test Module
 This section describes the fundamentals of the design and implementation of
the Test Module.

4.3.3.1 Introduction
 The Test Module corresponds to the Tests analysis class. The module’s task is
to represent the actual tests the TSC provides. The main challenge of the TSC is how
the actual test shall be designed and implemented.

 43

4. Design and Implementation

 As described in section 2.2.11, there are three important challenges of
software automation: How to feed the IUT with test data, how to capture the IUT’s
output and how to evaluate the output. The system has to solve all three challenges.

 In section 2.2.11 three techniques for feeding test data are described, data files,
batch files and keyboard capture and return. The last technique have not been found to
be suitable for this system because it would need a separate capture/replay program
and we think it is better to define the tests beforehand instead of recording a manual
test first. The two other techniques have formed a basis for our approach, although
none of them have been used in their pure form. For data input there are no separate
data files. Instead the input data is defined in the test procedure itself together with the
functionality that will execute the test. This approach may look similar to the batch
file approach, but it is not quite the same as our test procedure not will run the IUT’s
own commands but the set of commands for test message treatment offered by the test
layer.

 Because of the XML-RPC communication mechanism between the TSC and
the IUT, the capture of test results will be a simple method call return. The results
have to be saved for further investigation and the most straightforward way to achieve
this is to save all return values to file which is the same approach as described in
section 2.2.11. But what may differ from the approach described in section 2.2.11 is
that the TSC evaluates the output immediately when the remote call returns, and not
after the output has been saved. To be able to do this the potential outputs must be
known beforehand and set in the test procedure. There are generally three potential
outcomes of a test: The test passed, the test failed or the test result is inconclusive,
which means that something makes it impossible to determine the outcome of the test.
By setting pass, fail and inconclusive verdicts in the test procedure, the test output can
be evaluated right away by comparing the output against the predefined verdicts. This
approach corresponds to the approach of building a library of correct outputs and
doing a comparison against the actual output, as described in section 2.2.11. When the
test results are written to file, the result of the evaluation will also be included. The
log file is then just used as a log, and not for evaluation, since this is already done. Of
course the results may be evaluated manually too, but that is outside the scope of the
test system.

 The approaches described here opens for a very compact solution for writing a
test. Since both the test data and the evaluation verdicts must be set in the test
procedure, test specifications does not have to be spread between separate data files,
evaluation libraries and test procedures, which makes the task of writing a test more
surveyable. That in turn will hopefully make the writing task easier, which is a main
concern for FAT.

 The next sections will describe the class design and implementation details of
the TSC.

4.3.3.2 Class Design

The design classes realizing the Tests analysis class are constructed as a
hierarchy. There is a lot of overlapping functionality between the tests. Thus a
hierarchy of classes is created where the lower classes share the functionality of the

 44

4. Design and Implementation

higher classes. This will make TSC smaller and more perspicuous, and it will
probably be easier to design and implement new tests.

 There are five main test groups. These five groups correspond to the five main
testing techniques this system is supposed to provide, namely Conformance, Fault
Tolerance, Reliability, Performance and Interoperability testing.

Figure 25 - Design class realization of the Tests analysis class

 Figure 25 shows the hierarchy of the design classes realized from the Tests
analysis class. Common properties for the test classes are:

• A test ID.
• A test procedure.
• A pass verdict, a fail verdict and an inconclusive verdict.
• A brief test description (optional)

A test is represented as an object of its corresponding class. All the properties

of the test are encapsulated in the object. The test procedures will be implemented in
the five subclasses.

The Test classes use the functionality from the MyXmlRpcClient class to

communicate with the IUT. In addition to this the class offers functionality to and
cooperates with the Control class.

4.3.3.3 Implementation Details

Because of Java’s object oriented nature and class organization, the design
classes have acted as a blueprint for the implementation classes for the TSC.

The test classes are implemented with the same hierarchical structure as
described in the Design section. The challenge of this system is how a test should be
represented in the code. Since Java is the chosen language, it is natural to make use of
the object oriented nature of the language. Hence the tests will be represented as
objects. Each test is supposed to be represented as a single object of the class it
naturally belongs to, e.g. a conformance test will be instantiated as an object of the
Conformance class. As stated in section 4.3.3.1, the design of the test specification
opens for a compact solution for writing the test procedure. This property has lead to a

 45

4. Design and Implementation

compact implementation solution. Each test procedure is represented in a single
method. The advantage with such an approach is that a tester does not have to modify
any other code than what he or she writes in the test method. The return value from
the test method is a string containing the test result including the evaluation of the
test. The method name shall be identical to the ID of the test. This is because the tests
that are implemented are dynamically instantiated as objects at start up time. To
achieve this, the system instantiates one object for each method it finds in the test
classes. During the instantiation the object’s test ID is set to the method name.

Each test class implements a Vector which contains all the instantiated test

objects of the class. It is populated at start up time when the objects are instantiated.
Since the Vector is static, it can be accessed by all the other classes. Placing the test
objects in lists is done because it provides easy access to the objects for classes that
need access to them, e.g. the GUI module, which needs to know the test ID and
description for each test.

To show how the TSC may be used to write and execute tests, a few tests have

been implemented. The implementation of these tests can be found in the appendix
under the file “Test.java”. Each test uses some of the functionality offered by the test
layer. Together, the tests verify all of the test layer’s functionality and hence act as a
proof-of-concept to the framework. Some of the tests are evaluated (passed, failed or
inconclusive) to show that evaluation is possible in tests such as these.

Five conformance tests, two fault tolerance tests and one performance test are

implemented. We have chosen to focus on those three categories of tests and not on
reliability tests and interoperability tests. The reason for this focus is that we feel it is
most important to verify that the methods of the test layer works as they should, and
not to implement many different categories of tests. Those three categories are also
the test types that were most wanted by ObexCode in the first place. Thus we have
used conformance, fault tolerance and performance tests to verify the test layer’s
functionality.

The three conformance tests, TP_HCI_BV_10_C, TP_HCI_BV_14_C and

TP_HCI_BV_15_C test the New method, the Put method and the Copy method,
respectively. TP_HCI_BV_10_C calls the test layer’s New method and gets a handle
in return. TP_HCI_BV_14_C inserts a HCI Connect message to the HCI layer using
Put. TP_HCI_BV_15_C copies a message, using Copy, which has been inserted to the
stack using Put. The two fault tolerance tests TP_HCI_BV_02_FT and
TP_HCI_BV_04_FT test the Get and Delete methods of the test layer.
TP_HCI_BV_02_FT uses Get to take a message out of the stack when it passes the
test layer and then uses Put to insert the same message back to the test layer for
further processing. TP_HCI_BV_04_FT uses Delete to remove a message from the
stack. The five tests described verify the API of the test layer. In addition to these
tests there is a simple performance test, TP_HCI_BV_06_P, which measures the time
to do a HCI Connect using Put. Finally, to show that the TSC can be used to interface
with the exported methods of the stack directly and not just through the test layer, two
conformance tests TP_HCI_BV_22_C and TP_HCI_BV_23_C are implemented.
These tests make calls to InquiryReq and ConnectReq which is exported methods of
the HCI layer.

 46

4. Design and Implementation

The superclass implements the functionality that is shared among all the
subclasses. In addition to this, it is responsible for the instantiation of the test objects.
Each of the subclasses may also implement functionality that is special for this class,
e.g. the Performance class may implement timing methods that are used to measure
the performance of the system. Such helper methods have to be marked in some way,
e.g. with a prefix, so that they can be identified as helper methods and not test
methods when the system instantiates the test objects.

 The only information a tester needs to have of the TSC is the format/API of
the test objects and the helper methods available. If the tester has this knowledge he or
she can start writing tests.

4.3.3.4 Summary
 This section has described the Test Module which is a realization of the Tests
analysis class. The module is responsible for containing the actual tests that the TSC
shall execute. Because of the compact test procedure design, a test procedure is
implemented as a single method. This is done to provide simplicity when writing
tests.

4.3.4 GUI Module
 This section describes the fundamentals of the design and implementation of
the GUI Module.

4.3.4.1 Introduction
 The GUI Module corresponds to the TestUI analysis class. The GUI Module is
responsible for giving the tester an interface towards the TSC. This corresponds to the
requirements of giving the tester the opportunity to execute a test and to view the test
results, as discussed in section 4.3.1.

 The interface towards the user is a graphical user interface. The alternative
was a textual or command line interface. The graphical interface was chosen because
it will provide better usability for the tester. The window that will appear when the
test program is started will look something like figure 26.

 47

4. Design and Implementation

Figure 26 - Example screenshot of the GUI of the test system

 The window contains buttons for execution of tests and for exiting the
program. It also contains a button for viewing information about chosen tests. There
are also two text areas, one for viewing test information and one for viewing the test
progress and results. A choice list of available test types is presented together with a
list of actual tests. The list shows the implemented tests of the test type chosen in the
choice list. It is also possible to select more than one test for execution from the test
list. This is a useful feature, since a tester this way can execute many tests without
having to start each test manually.

4.3.4.2 Class Design
 The analysis class TestUI is realized through the design classes MainGUI and
Listener. Figure 27 shows this realization and the relationship between the classes.

Figure 27 - Design class realization of the TestUI analysis class

 The TestUI class is the interface towards the Test Engineer and it provides the
communication between the engineer and the system. The MainGUI class shall
provide the graphical user interface that the Test Engineer uses to communicate to the

 48

4. Design and Implementation

system. The MainGUI class must offer the possibility to display the tests that may be
executed and offer functions to execute the tests. In addition the test results shall be
displayed.

 The Listener class is the class that listens to and reacts to events from the
MainGUI class. An event is a button click or a change in a list of a graphical user
interface. An event is supposed to trigger some action to the system. The actions that
the Listener class has responsibility to trigger are:

• execute a test
• view available tests
• view test information
• view test progress
• to close the program

Except for the closing of the program, these events will have to make the class

contact other parts of the system, since this functionality lies within other classes.
Thus the Listener class communicates with the rest of the system, which in this case is
the Control class, and the MainGUI class communicates only with the Listener class.

4.3.4.3 Implementation Details
 The GUI is implemented in one class, MainGUI. The class is implemented
using the built-in java.awt toolkit. The listener class is implemented in the class
Listener. The class takes care of all events in the GUI, both the action events and the
item events using the built-in interfaces ActionListener and ItemListener. The Listener
class communicates with the Control class for execution of the chosen tests. The
Listener class uses the test Vectors described in section 4.3.3 to access the test
objects. This is necessary for populating the GUI’s test list and for viewing the test
information.

4.3.4.4 Summary
 This section has described the design and implementation of the GUI module.
The module provides the tester with a graphical user interface where it is possible to
choose tests for execution. The ability to choose more than one test at a time for
execution is important since it means that a tester can execute many tests after another
without having to start each test manually.

4.3.5 Control Module
This section describes the fundamentals of the design and implementation of

the Control Module.

4.3.5.1 Introduction
 The Control Module corresponds to the System analysis class. The main task
for the Control module is to identify which tests have been chosen for execution and
to start executing these tests. Additionally the module is responsible for the logging of
test results.

As discussed in section 4.3.3.1 the test results must be captured somewhere.
The solution in TSC is to write the test results to file. This opens for some interesting
design choices. One subject is how the test result should be presented. As described in

 49

4. Design and Implementation

section 4.3.3.3 the test methods return a string with the result of the test, including the
evaluation of the result. This is basically everything we need to know about the test.
Hence the string that is returned from the test method is captured in the Control
Module and written to file together with the ID of the test. The ID is included of the
obvious reason that we shall be able to know which test gave these results. The time
the test finished is also included in the file just for convenience.

Here is an example of a test result file:

TP_HCI_BV_16_C
Mon Dec 01 13:34:43 CET 2003

Result:
0
The test is passed.

Another issue is to determine if several test results should be written to the

same file, or if each test is assigned a separate file. The solution for the TSC is one
file per test. The reason for this approach is that it might be more surveyable than
having all the test results in one file. One could consider a few test results per file but
this might not be any more surveyable than the other approaches. The implementation
section says more about the file naming of the log files.

The following sections deal with the class design and implementation of the

Control Module.

4.3.5.2 Class Design
 The Control class is the design class realization of the System analysis class.
The realization is shown in Figure 28.

Figure 28 - Design class realization of the System analysis class

 The responsibility of the Control class is to be the link between the GUI part
and the Test part of the system. In more detail, the following are the responsibilities of
the class:

• create a log file where test results can be logged
• identify which test object is chosen
• tell the Test class to execute the chosen test
• write test results to file and send the results to the GUI

The Control class offers functionality to and cooperates with the Test classes

and the Listener class.

 50

4. Design and Implementation

4.3.5.3 Implementation Details
 The class Control implements methods that coordinate the events from the
GUI Module and the Test Module.

 The logging is implemented in this class. As discussed in section 4.3.5.1 each
test result is logged in a separate file. To separate the log files from each other, each
file is named with the test ID of the test the results in the file originates from, which
might cause a problem when there is more than one execution per test. To solve the
problem, a timestamp value is added to the filename. The format of the filename is as
follows:

 results_<testID>_<timestamp>.txt

4.3.5.4 Summary
 This section has described the design and implementation of the Control
Module. The responsibility of the module is to be the link between the GUI Module
and the Test Module. In addition it is responsible for the logging of test results. These
results are written to file where each test is written into a separate file.

4.3.6 XML-RPC Module
 This section describes the fundamentals of the design and implementation of
the XML-RPC Module.

4.3.6.1 Introduction
 In section 4.2.3 the test layer’s XML-RPC module is described. This module
is the module that receives the requests, or remote calls from the test system. The TSC
XML-RPC Module is the client side of the communication mechanism.

 The responsibility of the XML-RPC module is to provide the Test Module
with functionality to contact the IUT. The next sections describe the details of the
design and implementation of the Module.

4.3.6.2 Class Design
 The MyXmlRpcClient class is the design class realization of the
TestCommunication analysis class. The realization is shown in Figure 29.

Figure 29 - Design class realization of the TestCommunication analysis class

 The responsibility of this class is to offer functionality to make XML-RPC
calls to an XML-RPC server. An object of this class shall represent an XML-RPC
client.

 The functionality offered by the MyXmlRpcClient class is used by the Test
classes. This is for communication with the IUT.

 51

4. Design and Implementation

4.3.6.3 Implementation Details
 The XML-RPC client that communicates with the IUT is implemented here.
To implement this client, an implementation of XML-RPC from Web Services Project
@ Apache [Apache] is used. The package org.apache.xmlrpc provides the
functionality needed to implement a Java XML-RPC client. An object of the
MyXmlRpcClient class is instantiated with the URL of the XML-RPC server as
parameter. The class contains one method, which executes the remote call. The
parameters for this method are the remote function name represented as a string and
the remote function’s parameters represented as a Vector. The return value is a string
with the actual return value of the remote call unless an exception has been thrown. In
the latter case the return value is a string representation of the exception.

4.3.6.4 Summary
 This section has described the design and implementation of the XML-RPC
module. The responsibility of the module is to provide the communication mechanism
to the IUT for the TSC.

4.3.7 Miscellaneous
 There is one more class in the TSC. This class is called Start. The only task of
the Start class is to start the TSC by running the main method. In this method the Test
objects are initialized and the GUI is started. When the Test objects are initialized,
and the GUI is started, the program is ready for use.

4.3.8 Summary
 This section has described the test system client (TSC). The main task of the
TSC is to specify a test, execute a test, and log and view the test result. The TSC is
divided into four modules where the Test module is the part where the tests are
written. A test is written in Java. The communication mechanism towards the IUT is
XML-RPC. An XML-RPC client is therefore implemented as part of the TSC.

 52

5. Experiments

Chapter 5

Experiments

This chapter describes experiments that we have performed in order to

evaluate FAT.

5.1 Introduction
The test layer introduces an additional layer to the stack. An interesting metric

is how much latency the extra layer introduces, and what impact the TSC has on the
performance of the stack. This might be important for time-critical applications that
will use the stack. The results of these experiments may help a tester decide whether it
is possible to use FAT when testing the stack with certain time-critical applications.

There are in particular two interesting scenarios we want to examine. These
two scenarios are further described in section 5.3. Before we explain the experiments
we describe the hardware and system characteristics of the platform that is used for
the experiments in section 5.2.

5.2 Test Platform Characteristics
 When performing the experiments, two computers were used. One was used to
run the Bluetooth stack with an inserted test layer and the other was used to run the
TSC. The following are the characteristics of the computer running the stack:

• Processor: AMD Athlon XP 2500 +, 1.8 GHz
• Memory: 1 GB RAM
• Operating System: Linux, version 2.4.20-8

The following are the characteristics of the computer running the TSC:

• Processor: Mobile AMD Athlon XP 2400 +, 1.8 GHz
• Memory: 512 MB RAM
• Operating System: Windows XP Home Edition, version 2002

The two computers were connected to the same 100 Mbit LAN switch.

The experiments also include a Bluetooth device, in this case a mobile

telephone. This phone is used to establish a connection to.

5.3 Experiments
 Two experiments were performed. The first experiment examined the delay
introduced by the test layer when forwarding a message. The other experiment
examined the delay introduced when a message is sent to the TSC for modification.

 53

5. Experiments

5.3.1 Delay introduced when forwarding a message
In a situation where the test layer receives a message which it is not supposed

to do anything with, i.e. it is in Normal mode, the layer forwards the message to the
next layer. We would like to know the extra time the message uses when the test layer
just forwards the message to the next layer in the stack.

The experiment was performed by measuring the time it takes from the

message is sent from the upper layer and until it is being sent from the test layer. The
situation is shown in figure 30.

Figure 30 – Measuring delay introduced when forwarding a message

 To measure the time, the C-function gettimeofday() was used. This
function returns the number of seconds and microseconds since the Epoch. The
message sent through the stack was a HCI-Connect message. It was inserted into the
HCI layer using FAT’s Put method. The upper layer of figure 30 is as such the HCI
layer. The experiment was performed 30 times to get a reliable average value.

5.3.2 Delay introduced when modifying a message
 The second experiment measures the delay introduced by both the test layer
and the TSC when a message is taken out of the stack and sent to the TSC for
modification, before inserting it back to the test layer. The message data is not
actually modified in the TSC, it is just bounced back to the test layer.

 The experiment is performed in a similar fashion as the above experiment. It is
performed by measuring the time it takes from the message is sent from the upper
layer to when it is being sent from the test layer. This experiment is shown in figure
31.

 54

5. Experiments

Figure 31 - Measuring delay introduced when modifying a message

 The experiment is performed using the same methodology as described in
section 5.3.1.

5.4 Results
 For comparison, we measured the time a HCI-Connect message uses through
the HCI layer. These experiments were performed using the same methodology as the
other experiments. The result of the tests is presented in figure 32. All measurements
are in microseconds. The figure shows the average values of the experiments together
with the standard deviation of the results.

 Average Stand. dev.
Forwarding 68.8 0.5
Modifying 113 140 20 524
Through HCI 277 6.3

Figure 32 - Experiments results

We can conclude that for forwarding, the test layer introduces overhead in the
order of 25% of the time the HCI layer uses to process a Connect request. This delay
is acceptable if we assume that the HCI layer is representative for all layers in the
stack. If that is the case, we may insert test layers between all layers in the stack and
get a total overhead that is in the order of 25 % of the time it takes to send one
message through the stack. Most of the delay is probably due to the extra call to
oc_call_msg(). Such a call takes about the same time as the measured time for
forwarding. Thus the delay is really just an extra function call, which implies that the
test layer therefore should not have any significant impact on the performance of the
stack. The implemented HCI layer is also a thin layer, i.e. it does not do much. When
other layers are implemented, they will probably do more than this HCI layer, which
will make the order of the delay of the test layer less.

 Compared to forwarding, the overhead introduced when modifying messages
is significantly higher. It takes about 400 times longer to send the message to the TSC

 55

5. Experiments

for modification and back to the test layer, than the HCI layer uses to process it. A
higher delay is however expected, since the experiment involves network traffic, and
not just internal processing. The high delay might not however reduce the bandwidth
of the stack. The stack, including the sending to and from the TSC, will act as a
pipeline that may have the same capacity as the stack alone. This will, however
depend on the amount of processing overhead when sending and receiving messages
to the TSC, and the amount of data sent from the Bluetooth Application. An
experiment to verify this statement can only be done on a stack that is fully
implemented, hence it is not evaluated further in this thesis.

An interesting curiosity is that it was a significant difference between
measurements made when we measured the delay of the first message sent after start
up of the stack, and when we already had sent a message through the stack. This extra
delay was however removed when we let the process sleep for five seconds before we
started measuring the time. The results were now the same as the results when
messages already had been sent through the stack. The delay introduced could be due
to preemption interrupts. By letting the process sleep just before starting the
experiment, a full timeslot is available when starting the execution of code involved in
the experiment.

5.5 Summary
 The experiments performed on FAT investigate the delay the test layer and the
TSC introduce to the stack. Two experiments were performed. The first experiment
measures the delay introduced when forwarding a message through the test layer. The
second experiment measures the delay introduced when sending a message to the TSC
for modification, before it is returned to the stack. The results show that the delay
introduced when forwarding a message is about 25 % of the time the HCI layer uses
to process a message. The delay introduced when modifying a message is about 400
times the time the HCI layer uses to process a message.

 56

6. Discussion and Conclusion

Chapter 6

Discussion and Conclusion

 This chapter summarizes FAT. It also evaluates the work done, shows aspects
of future work and concludes the thesis.

6.1 Summary of the Thesis
 This thesis has described FAT, a framework for automated regression testing
of protocol stacks.

 FAT is designed to be used to test protocol stacks developed within the
ObexCode network protocol development framework (NPDF). A Bluetooth stack,
which is under development, is used as the basis for the development of the
framework.

 FAT makes use of the ability to stitch test layers between the NPDF layers.
Such a test layer can insert messages to the stack, or modify, copy or delete the
messages passing through it. The test layer offers an API with these four functions.
The API is used by a client called the Test System Client (TSC). In the TSC the tests
are written. A test procedure is written as a single Java method. The TSC offers a GUI
to the tester. This GUI makes it possible to choose among the implemented tests and
to execute them on the stack. The communication mechanism between the test layers
and the TSC is XML-RPC. That is why an XML-RPC module is connected to a test
layer. The module realizes the API offered by the test layer with four methods that are
exported, for use by the TSC. These methods are Put, Get, Copy and Delete,
corresponding to inserting, modifying, copying and deleting messages.

 The test layer does not provide much functionality because it is desirable to
keep it as thin as possible. The reason for this approach is that a Bluetooth stack is
often executed on devices with a small amount of resources, such as memory and
processing power. In other words: We want to put as little extra load on the stack as
possible. The functionality offered by the test layer should however be enough to
write many useful tests.

 Five conformance tests, two fault tolerance tests and one performance test are
implemented. These tests are implemented to show that the functionality of the test
layer can be used to write tests. Together the tests verify the correctness of the test
layer’s API.

 The experiments show that the test layer introduces low overhead when
forwarding messages. When a message is modified however, the delay is significant.
But this delay might not have much to say for the bandwidth of the stack, as it
probably will act as a pipeline when several messages pass through it.

 57

6. Discussion and Conclusion

6.2 Evaluation
 The problem definition in chapter 1 state that the purpose of this project is to
construct a framework for automatic regression testing of protocol stacks developed
within the ObexCode network protocol development framework (NPDF). In this
section we evaluate the goals of the project.

 In chapter 2 we first described the Bluetooth technology. Then we motivated
the need for testing, before we described some of the important testing methodologies,
including test automation. Existing systems and frameworks for test automation
concluded the chapter. This background laid the foundation for our own work.

 Chapter 3 described the architecture of the framework. The architecture
realized the goals described in section 1.2. It laid the foundation for the design and
implementation of the framework

 Chapter 4 described the design and implementation of the framework. One
goal from the problem definition was that the test environment shall be implemented
in a prototype, which will interface with the stack under test through a defined API.
This API was implemented as four methods in a test layer. The test layer is a layer
that may be stitched in-between the layers in a NPDF stack. The test layer provides
methods for inserting, modifying, copying and deleting messages. The same goal also
proposes that the prototype shall be able to execute on a different processing node
than the stack itself. Because of this goal we designed and implemented a Test System
Client (TSC) where the actual tests are specified. The TSC communicates with the
test layer through XML-RPC, which makes it possible to run it on another node than
the stack.

Another goal from the problem definition was that the computation and
memory footprint of the framework on the stack under test should be kept at a
minimum. This goal was realized by adding just the absolute necessary functionality
to the test layer. The four methods of the test layer are simple, but provide the tester
with powerful tools for testing a stack.

The last goal, which stated that the framework shall be constructed to interface

to an NPDF Bluetooth stack, was realized using a Bluetooth stack that is under
development by ObexCode. Both the test layer and the TSC worked as expected
together with this stack.

All the goals described in section 1.2 are fulfilled. In addition to the realization

of the goals, we believe that FAT may be used to test other stacks developed within
the NPDF. The test layer is very simple and general, and does not depend much on the
particular stack it has been designed for. FAT is, due to time limits, not tested against
other stacks, but we believe only minor changes to the test layer are necessary to use
it.

6.3 Discussion and Future Work
Although FAT fulfils all the goals of the project, there are still aspects of the

framework that can be improved.

 58

6. Discussion and Conclusion

In section 4.2.2 several possible additions to the test layer’s functionality were
discussed. These additions include evaluation of messages based on content and event
codes, multiple modes, code downloads and packet filters. They were all rejected due
to our goal of placing as little extra load on the stack as possible. But if we allow a
“thicker” test layer, many of these approaches are very interesting. For further details
on these approaches, see section 4.2.2.

Our framework makes it possible to do simple performance testing. This is

limited to time measurements from the TSC. If we insert more functionality to the test
layer, we could improve the possible performance tests. This functionality includes
timestamps of messages passing the test layer, or different statistics used for
throughput testing, like message counters etc. How to deal with statistics in the test
layer is further discussed in section 4.2.2.

On the client side there is also room for improvement. Parts of the code used

to write tests are common for many of the tests. This code should be placed in a
library of helper methods, which will make the test writing task both faster and easier.
In the current implementation only a few such methods exists. The lack of helper
methods is partly due to the fact that only a few tests have been implemented, and
therefore the need for many such methods have not been discovered yet. As more
tests are implemented, more possible helper methods are discovered and needed.

FAT is currently designed and implemented for stacks developed within the

NPDF. This approach makes it difficult to use FAT to test stacks that do not use
NPDF, without modifications. An alternative to FAT would be a framework that is
completely generic. Such a framework would above all need to specify a packet
format that can be used to investigate packets in the stack. The fact that different
stacks operate with different packet formats is one of the major challenges of such a
framework. An own programming language could be developed for writing of tests.
This language should have special features designed specially for writing tests. The
ideal case would be if one could define an abstract specification of the correct
behaviour of a stack. This specification could be loaded by the framework which
could check the stack’s behaviour towards the specification. Such an approach is
described in [Rodrigues et. al., 2001]. The complexity of such an approach is
discouraging, but the paper provides a proof of concept for a realization.

6.4 Conclusion
 We have designed and implemented FAT, a framework for automated
regression testing of protocol stacks developed within the ObexCode network
protocol development framework (NPDF). The framework enables a tester to write
tests that can be executed on a Bluetooth stack. The test results are evaluated and
logged on the framework’s client. Example test implementations show that it is
possible to perform conformance, fault tolerance and performance testing using FAT.
The framework has been evaluated against a Bluetooth stack, but it should be possible
to use the framework on other stacks developed within the NPDF.

 59

7. References

Chapter 7

References

[Apache]
Web Services @ Apache homepage – http://ws.apache.org.

[Arlat et. al., 1991]
Arlat, J., Crouzet, Y. and Laprie J-C. Fault Injection for the Experimental Validation
of Fault Tolerance. In Proceedings of the Annual Esprit Conference (Esprit’91),
Brussels, 1991, pp. 791-805.

[Beck]
Beck, K. Simple Smalltalk Testing: With Patterns. First Class Software, Inc.

[Beck and Gamma]
Beck, K and Gamma, E. JUnit Cookbook.
http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

[Bershad et. al., 1995]
Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker, D.,
Chambers, C. and Eggers S. Extensibility, Safety and Performance in the SPIN
Operating System. In Proceedings of the 15th ACM Symposium on Operating System
Principles. 1995.

[BlueTester]
IVT BlueTester. International Validation & Testing Corporation.
http://www.ivtcorporation.com/products/tester/newtester.htm

[Bluetooth SIG, 1999]
Bluetooth Special Interest Group, Specification of the Bluetooth System, version 1.0B,
volumes 1 and 2. December 1999.

[Boehm, 1987]
Boehm, B. W. Improving Software Productivity, IEEE Computer, Vol. 20, No. 9,
Sep. 1987, pp. 43-57.

[Browne, 1976]
Browne, J. C. A Critical Overview of Computer Performance Evaluation. In
Proceedings of the 2nd International Conference on Software Engineering. October
1976.

[Chen et al., 1994]
Chen, Y. F., Rosenblum, D. S. and Vo, K. P. TestTube: A system for Selective
Regression Testing. In Proceedings of the 16th International Conference on Software
Engineering, May 1994, pp. 211-222.

 60

7. References

[Denning et al., 1989]
Denning P. J. (Chairman). Computing as a Dicipline. Communications of the ACM,
vol. 32, no 1, January 1989, pp. 9-23.

[Dideles, 2003]
Dideles, M. Bluetooth: A Technical Overview. Crossroads – The ACM student
magazine, Networking, Issue 9.4, Summer 2003, pp. 11-17.

[Dijkstra et al., 1972]
Dijkstra, E. W., Dahl, O. J. and Hoare, C. A. R. Structured Programming. Academic
Press, London and New York, 1972.

[Engels et al., 1997]
Engels, A., Feijs, L. and Mauw, S. Test Generation for Intelligent Networks Using
Model Checking. In Proceedings of the third international workshop on tools and
algorithms for the construction and analysis of systems (TACAS’ 97), Springer-
Verlag, April 1997, vol. 1217 of Lecture Notes in Computer Science, pp. 384-398.

[ETS, 1995]
ETS (European Telecommunication Standard). Methods for Testing and Specification
(MTS); Protocol and profile conformance testing specifications; Standardization
methodology. European Telecommunication Standards Institute, April 1995.

[Fischer and Chin, 2003]
Fischer, K and Chin, J. Bluetooth Conformance and Interoperability Testing.
Conformity. February 2003, pp. 28-33.

[Goodenough and Gerhart, 1975]
Goodenough, J. B and Gerhart, S. L. Toward a Theory of Test Data Selection. In
Proceedings of the International Conference on Reliable Software, 1975, pp. 493-510.

[Graney, 2000]
Graney, M. TTCN, Protocol Testing on Steroids! IEEE P802.15 Working Group for
Wireless Personal Area Networks (WPANs), doc.: IEEE 802.15-00/063r0. March
2000.

[Gunneflo et. al., 1989]
Gunneflo, U., Karlsson, J. and Torin J. Evaluation of Error Detection Schemes Using
Fault Injection by Heavy-Ion Radiation. Proceedings of the 19th International
Symposium on Fault-Tolerant Computing (FTCS-19), Chicago, 1989, pp. 340-347.

[Harrold, 2000]
Harrold, M. J. Testing – A Roadmap. In Future of Software Engineering. 22nd
International Conference on Software Engineering. June 2000.

[Hitti and Joslin, 1965]
Hitti, R. F. and Joslin, E. O. Application Benchmarks: The Key to Meaningful
Computer Evaluations. In Proceedings of the 1965 20 National Conferenceth . August
1965.

 61

7. References

[Huslende, 1981]
Huslende, R. A Combined Evaluation of Performance and Reliability for Degradable
Systems. In Proceedings of the 1981 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems. September, 1981.

[IEC, 2003]
IEC: Tree and Tabular Combined Notation. International Engineering Consortium,
2003.

[ISO/IEC 8824, 1990]
ISO/IEC 8824. Abstract Syntax Notation One (ASN.1), 1990.

[ISO/IEC 9646-3, 1998]
ISO/IEC 9646-3. Information technology – Open Systems Interconnection –
Conformance testing methodology and framework – Part 3: The Tree and Tabular
Combined Notation (TTCN), 1998.

[Java]
Java homepage -http://www.java.sun.com.

[JUnit]
JUnit homepage - http://www.junit.org.

[Kaner et al., 1993]
Kaner, C., Falk, J. and Nguyen, H. Q. Testing Computer Software, Second Edition.
Van Nostrand Reinhold, 1993.

[Kindrick et al. 1996]
Kindrick, J. D., Sauter, J. A. and Matthews, R. S. Improving Conformance and
Interoperability Testing. StandardView. Vol. 4, No 1, March 1996, pp. 61-68. ACM
Press.

[Make, 2002]
GNU Make Documentation, make version 3.80, July 2002.

[Marsaglia and Zaman, 1993]
Marsaglia, G. and Zaman, A. Monkey Tests for Random Number Generators.
Computers and Mathematics with Applications, 1993, 26(9), pp. 1-10.

[McCanne and Jacobson, 1993]
McCanne, S. and Jacobson, V. The BSD Packet Filter: A New Architecture for User-
level Packet Capture. In Proceedings of the 1993 Winter USENIX Technical
Conference, San Diego, California, January 1993,

[Miller and Bisdikian, 2001]
Miller, B. A and Bisdikian, C. Bluetooth Revealed, Prentice Hall, 2001.

[Myers, 1979]
Myers, G. J. The Art of Software Testing. Wiley-Interscience, 1979.

 62

7. References

[Oppenheimer and Welsh, 1997]
Oppenheimer, D. and Welsh M. User Customization of Virtual Network Interfaces
with U-Net/SLE. Technical Report CSD-98-995, University of California, Berkeley,
1997.

[Patton, 2001]
Patton, R. Software Testing. Sams Publishing, 2001.

[PRD, 2002]
Bluetooth Qualification Program Reference Document v. 1.0, document no.
8.B.124/1.0. February 2002.

[Ramamoorthy and Ho, 1975]
Ramamoorthy, C. V. and Ho, S. F. Testing Large Software With Automated Software
Evaluation Systems. In Proceedings of the International Conference on Reliable
Software. 1975.

[Rodrigues et. al., 2001]
Rodrigues, R., Castro, M. and Liskov, B. BASE: Using Abstraction to Improve Fault
Tolerance. In Proceedings of the 18th ACM Symposium on Operating System
Principles, October 2001, pp. 15-28.

[Rothermel and Harrold, 1996]
Rothermel, G. and Harrold, M. J. Analyzing Regression Test Selection Techniques.
IEEE Transactions on Software Engineering, v 22, n 8, August 1996, pp. 146-156.

[Rothermel and Harrold, 1997]
Rothermel, G. and Harrold, M. J. A Safe, Efficient Regression Test Selection
Technique. ACM Transactions on Software Engineering and Methodology, Vol. 6,
No. 2, April 1997, pp. 173-210.

[Sarikaya et. al., 1986]
Sarikaya, B., Bochmann, G., Maksud, M. and Serre, J. Formal Specification Based
Conformance Testing. In Proceedings of the ACM SIGCOMM Conference on
Communications Architectures & Protocols, 1986, pp. 236-240.

[SourceForge]
SourceForge homepage: http://sourceforge.net/

[Telelogic, 2001]
Telelogic Tau 4.2 TTCN Suite Methodology Guidelines, chapter 1, Telelogic AB,
March 2001.

[UML, 2003]
UML – Unified Modelling Language Specification v. 1.5 (formal/03-03-01). Jan.
2003.

[Vokolos and Weyuker, 1998]

 63

7. References

Vokolos, F. I. and Weyuker, E. J. Performance Testing of Sofware Systems. In
Proceedings of the First International Workshop on Software and Performance, 1998,
pp. 80-87.

[Watkins, 2001]
Watkins, J. Testing IT – An Off-the-Shelf Software Testing Process, Cambridge
University Press, 2001.

[Welsh et. al. 1998]
Welsh, M., Oppenheimer, D. and Culler, D. E. U-Net/SLE: A Java-Based User-
Customizable Virtual Network Interface. In Proceedings of Java for High-
Performance Network Computing Workshop at EuroPer’98, Southampton, UK,
September 1998.

[Wolverton, 1974]
Wolverton, R. W. The Cost of Developing Large-Scale Software. IEEE Trans.
Computers, June 1974, pp 615-636.

[XML-RPC, 1999]
XML-RPC specification. UserLand Software. June 1999.

 64

Appendix

Appendix

The appendix lists the source code of FAT.

The following source code files are listed with page numbers.

oc_test.h 66 (The header file for the test layer)
oc_test.c 69 (The test layer)
oc_test_xmlrpc.h 73 (The header file for the XML-RPC module)
oc_test_xmlrpc.c 74 (The XML-RPC module)
blue.c 83 (Binds the layers and starts the stack)

Start.java 87 (Starts the client)
MainGUI.java 88 (The MainGUI and Listener class)
Control.java 94 (The Control class)
MyXmlRpcClient.java 97 (The MyXmlRpcClient class)
Test.java 98 (The Test class, including its subclasses)

 65

Appendix

/**
 * \file oc_test.h
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

#ifndef OC_TEST_H
#define OC_TEST_H

#include <test/oc_test.h>
#include <core/oc_core.h>

/** Test message events */
enum {
 EV_TEST_SEND_PUT_REQ = 0x030,
 EV_TEST_RECV_PUT_COMPLETE = 0x031,
 EV_TEST_SEND_GET_REQ = 0x032,
 EV_TEST_RECV_GET_COMPLETE = 0x033,
 EV_TEST_SEND_COPY_REQ = 0x034,
 EV_TEST_RECV_COPY_COMPLETE = 0x035,
 EV_TEST_SEND_DELETE_REQ = 0x036,
 EV_TEST_RECV_DELETE_COMPLETE = 0x037,
};

/** Test layer modes*/
enum {
 NORMAL_MODE = 0x00,
 GET_MODE = 0x01,
 COPY_MODE = 0x02,
 DELETE_MODE = 0x03,
};

/** Test layer struct*/
struct oc_test {
 OC_Layer layer;

 OC_Handle up; /**< Handle to upper layer */
 OC_Handle down; /**< Handle to lower layer */
 OC_Handle test; /**< Handle to xml-rpc module */
};
typedef struct oc_test OC_Test;

/**
 * struct OC_TestPutReq
 */
struct oc_test_put_req {
 OC_Handle up; /**< Handle to client layer */
 char * message; /* The message that is to be inserted to the
stack.*/
};
typedef struct oc_test_put_req OC_TestPutReq;

/**
 * struct OC_TestGetReq
 */
struct oc_test_get_req {
 OC_Handle up; /**< Handle to client layer */
 uint8 event; /**< Event code for message to be fetched.*/
 int num_msg; /**< Number of messages to be fetched.*/

 66

Appendix

};
typedef struct oc_test_get_req OC_TestGetReq;

/**
 * struct OC_TestGetReqComplete
 */
struct oc_test_get_req_complete {
 OC_Handle up; /**< Handle to client layer */
 uint8 event; /**< Event code of the message */
 uint16 start; /**< Start index of data buffer */
 uint16 len; /**< Length of data in data buffer */
 uint8 buf[1]; /**< The data buffer */

};
typedef struct oc_test_get_req_complete OC_TestGetReqComplete;

/**
 * struct OC_TestCopyReq
 */
struct oc_test_copy_req {
 OC_Handle up; /**< Handle to client layer */
 uint8 event; /**< Event code for message to be copied.*/
 int num_msg; /**< Number of messages to be copied.*/
};
typedef struct oc_test_copy_req OC_TestCopyReq;

/**
 * struct OC_TestCopyReqComplete
 */
struct oc_test_copy_req_complete {
 OC_Handle up; /**< Handle to client layer */
 uint8 event; /**< Event code of the message */
 uint16 start; /**< Start index of data buffer */
 uint16 len; /**< Length of data in data buffer */
 uint8 buf[1]; /**< The data buffer */
};
typedef struct oc_test_copy_req_complete OC_TestCopyReqComplete;

/**
 * struct OC_TestDeleteReq
 */
struct oc_test_delete_req {
 OC_Handle up; /**< Handle to client layer */
 uint8 event; /**< Event code for message to be deleted.*/
 int num_msg; /**< Number of messages to be deleted.*/
};
typedef struct oc_test_delete_req OC_TestDeleteReq;

/**
 * struct OC_TestDeleteReqComplete
 */
struct oc_test_delete_req_complete {
 OC_Handle up; /**< Handle to client layer */
 int del_status; /**< The status of the delete operation */
};
typedef struct oc_test_delete_req_complete OC_TestDeleteReqComplete;

#define OC_TEST(ptr) ((OC_Test *) ptr)

#define oc_test_bind_up(self, above) \

 67

Appendix

 OC_TEST(self)->up = (above)
#define oc_test_bind_down(self, below) \
 OC_TEST(self)->down = (below)

/* Exported function */
OC_Handle oc_test_new(void);

#endif /* OC_TEST_H */

 68

Appendix

/**
 * \file oc_test.c
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

#define OC_DEBUG_LEVEL 4
#include "oc_config.h"

#include <core/oc_core.h>
#include <blue/oc_hci.h>

#include "oc_test.h"
#include "oc_test_xmlrpc.h"

/* Internal prototypes */
static void oc_test_msgproc(OC_Handle handle, OC_Msg *msg);

/* The test layer has four modes, depending on the operation to do
with the next message*/
static int mode;

/* Initializes test layer */
OC_Handle oc_test_new(void)
{
 OC_Test *self;

 self = malloc(sizeof(OC_Test));
 if (!self)
 {
 OC_ERROR(("Could not initialize test layer!"));
 }

 self->up = NULL;
 self->down = NULL;

 /* Mode initially set to NORMAL.*/
 mode = NORMAL_MODE;

 oc_layer_init(self, oc_test_msgproc);
 OC_DEBUG_SET_NAME(self, "OC Test Layer");

 return self;
}

/* Handles incomming messages */
static void oc_test_msgproc(OC_Handle handle, OC_Msg *msg)
{
 OC_Test *self;
 OC_TestGetReqComplete get;
 OC_TestCopyReqComplete copy;
 OC_TestDeleteReqComplete delete;
 OC_Msg sms;
 int del_status;
 MsgBuf *buf;

 OC_DEBUG_ENTER(0, "oc_test_msgproc");

 69

Appendix

 self = (OC_Test *) handle;

 if(mode == NORMAL_MODE)
 {
 switch (msg->event) {

 case EV_SEND_DATA_REQ:
 /* Receive messages from upper layer */
 /* Send this message to lower layer */
 oc_call_msg(self, self->down, EV_SEND_DATA_REQ, msg);

 break;

 case EV_RECV_DATA_IND:
 /* Receive messages from lower layer */
 /* Send this message to upper layer */
 oc_call_msg(self, self->up, EV_RECV_DATA_IND, msg);

 break;

 case EV_TEST_SEND_GET_REQ:
 /* Prepare the layer for get mode */
 mode = GET_MODE;

 break;

 case EV_TEST_SEND_COPY_REQ:
 /* Prepare the layer for copy mode */
 mode = COPY_MODE;

 break;

 case EV_TEST_SEND_DELETE_REQ:
 /* Prepare the layer for delete mode */
 mode = DELETE_MODE;

 break;

 default:

 break;
 }
 }

 /* Wait for incoming message and get it */
 else if(mode == GET_MODE)
 {
 OC_INIT_AUTO_MSG(sms);

 /* Get MsgBuf from msg.*/
 buf = oc_msg_get_data_buf(msg);

 /* Get vital data.*/
 get.event = msg->event;
 get.start = buf->start;
 get.len = buf->len;
 memcpy(get.buf, oc_msg_get_start(msg), oc_msg_get_len(msg));

 70

Appendix

 get.up = self;

 /* Pack response message into sms*/
 oc_msg_set_data_buf(&sms, (MsgBuf *) &get);

 /* Send responses to test-xmlrpc layer*/
 oc_call_msg(self, self->test, EV_TEST_RECV_GET_COMPLETE, &sms);

 /* Reset mode*/
 mode = NORMAL_MODE;
 }

 /* Wait for incoming message and copy it */
 else if(mode == COPY_MODE)
 {
 OC_INIT_AUTO_MSG(sms);

 /* Get MsgBuf from msg.*/
 buf = oc_msg_get_data_buf(msg);

 /* Get vital data.*/
 copy.event = msg->event;
 copy.start = buf->start;
 copy.len = buf->len;
 memcpy(copy.buf, oc_msg_get_start(msg), oc_msg_get_len(msg));

 copy.up = self;

 /* Pack response message into sms*/
 oc_msg_set_data_buf(&sms, (MsgBuf *) ©);

 /* Send original message further down the stack */
 if(msg->event == EV_SEND_DATA_REQ)
 {
 oc_call_msg(self, self->down, EV_SEND_DATA_REQ, msg);
 }

 /* Send original message up the stack */
 else if(msg->event == EV_RECV_DATA_IND)
 {
 oc_call_msg(self, self->up, EV_RECV_DATA_IND, msg);
 }

 else
 {
 /* Do nothing */
 }

 /* Send responses to test-xmlrpc layer*/
 oc_call_msg(self, self->test, EV_TEST_RECV_COPY_COMPLETE,
&sms);

 /* Reset mode*/
 mode = NORMAL_MODE;
 }

 /* Wait for incoming message and delete it */
 else if(mode == DELETE_MODE)
 {

 71

Appendix

 OC_INIT_AUTO_MSG(sms);

 /* Response is an integer telling the status of the delete
operation.*/
 delete.del_status = 0;
 delete.up = self;

 oc_msg_set_data_buf(&sms, (MsgBuf *) &delete);

 /* Send responses to test-xmlrpc layer*/
 oc_call_msg(self, self->test, EV_TEST_RECV_DELETE_COMPLETE,
&sms);

 /* Reset mode*/
 mode = NORMAL_MODE;
 }

 /* This should not happen...*/
 else
 {
 OC_ERROR(("'else' in oc_test.c is triggered...."));
 }

 OC_DEBUG_EXIT();
}

 72

Appendix

/**
 * \file oc_test_xmlrpc.h
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

#ifndef OC_TEST_XMLRPC_H
#define OC_TEST_XMLRPC_H

#include <core/oc_core.h>

#include <xmlrpc/oc_xmlrpc.h>

/* Exported methods. */
static int New(OC_Handle handle, OC_Msg *msg);
static int Put(OC_Handle handle, OC_Msg *msg);
static int Get(OC_Handle handle, OC_Msg *msg);
static int Copy(OC_Handle handle, OC_Msg *msg);
static int Delete(OC_Handle handle, OC_Msg *msg);

/* Constants representing layers. Used to send messages from Put() */
#define LAYER_HCI 0x00
#define LAYER_TEST 0X01

/* XML-RPC module struct*/
struct oc_test_xmlrpc{
 OC_Handle test;
 OC_List services;
 OC_Handle hci; /* Handle to HCI layer*/
};
typedef struct oc_test_xmlrpc OC_TestXmlRpc;

struct oc_test_xmlrpc_service {
 OC_XmlRpcService service; /* Superclass, must be first */
};
typedef struct oc_test_xmlrpc_service OC_TestXmlRpcService;

void oc_test_xmlrpc_init(OC_Handle xmlrpc, OC_Handle test, OC_Handle
hci);

#endif /* OC_TEST_XMLRPC_H */

 73

Appendix

/**
 * \file oc_test_xmlrpc.c
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

#define OC_DEBUG_LEVEL 4
#include "oc_config.h"

#include <core/oc_core.h>
#include <xmlrpc/oc_xmlrpc.h>

#include <blue/oc_hci.h>

#include "oc_test.h"
#include "oc_test_xmlrpc.h"

static OC_Hci *hci_xmlrpc;
static OC_Test *test_xmlrpc;

/* Handles incoming messages */
static void oc_test_xmlrpc_msgproc(OC_Handle handle, OC_Msg *msg)
{
 OC_XmlRpcService *service = (OC_XmlRpcService *) handle;
 OC_HciConnectionComplete *con;
 OC_TestGetReqComplete *get;
 OC_TestCopyReqComplete *copy;
 OC_TestDeleteReqComplete *delete;
 OC_Msg *ret_msg;
 int *del_status;

 int len;

 OC_DEBUG_ENTER(0, "oc_test_xmlrpc_msgproc");

 switch (msg->event) {
 case EV_HCI_RECV_CONNECT_COMPLETE:
 /* The result of a hci connect request*/
 con = (OC_HciConnectionComplete *) oc_msg_get_data_buf(msg);

 oc_xmlrpc_pack_integer(service->params, con->status);
 oc_xmlrpc_pack_integer(service->params, con->con_handle);
 oc_queue_msg(service, service->session, EV_XMLRPC_SEND_RESPONSE,
service->params);

 break;

 case EV_TEST_RECV_GET_COMPLETE:
 /* Return the message that is requested.*/
 get = (OC_TestGetReqComplete *) oc_msg_get_data_buf(msg);

 oc_xmlrpc_pack_integer(service->params, get->event);
 oc_xmlrpc_pack_integer(service->params, get->start);
 oc_xmlrpc_pack_integer(service->params, get->len);
 oc_xmlrpc_pack_base64(service->params, (uint8 *)get->buf, get-
>len);

 oc_queue_msg(service, service->session, EV_XMLRPC_SEND_RESPONSE,
service->params);

 74

Appendix

 break;

 case EV_TEST_RECV_COPY_COMPLETE:
 /* Return a copy of the message that is requested.*/
 copy = (OC_TestCopyReqComplete *) oc_msg_get_data_buf(msg);

 oc_xmlrpc_pack_integer(service->params, copy->event);
 oc_xmlrpc_pack_integer(service->params, copy->start);
 oc_xmlrpc_pack_integer(service->params, copy->len);
 oc_xmlrpc_pack_base64(service->params, (uint8 *)copy->buf, copy-
>len);

 oc_queue_msg(service, service->session, EV_XMLRPC_SEND_RESPONSE,
service->params);

 break;

 case EV_TEST_RECV_DELETE_COMPLETE:
 /* Return an identifier for how the operation went.*/
 delete = (OC_TestDeleteReqComplete *) oc_msg_get_data_buf(msg);

 oc_xmlrpc_pack_integer(service->params, delete->del_status);

 oc_queue_msg(service, service->session, EV_XMLRPC_SEND_RESPONSE,
service->params);

 break;

 default:

 break;
 }

 OC_DEBUG_EXIT();
}

/**
 * Initializes the Test XML-RPC module, and exports all methods.
 *
 * @param xmlrpc OC_Handle to OC_XmlRpc instance.
 * @param test OC_Handle to OC_Test driver.
 * @param hci OC_Handle to OC_Hci driver.
 *
 * @return OC_Handle to new OC_HciXmlRpc instance.
 */
void oc_test_xmlrpc_init(OC_Handle xmlrpc, OC_Handle test, OC_Handle
hci)
{
 OC_DEBUG_ENTER(0, "oc_test_xmlrpc_init");

 test_xmlrpc = test;
 hci_xmlrpc = hci;

 /* Export all required functions */
 oc_xmlrpc_export(xmlrpc, "/test", "New", &New);
 oc_xmlrpc_export(xmlrpc, "/test", "Put", &Put);
 oc_xmlrpc_export(xmlrpc, "/test", "Get", &Get);

 75

Appendix

 oc_xmlrpc_export(xmlrpc, "/test", "Copy", &Copy);
 oc_xmlrpc_export(xmlrpc, "/test", "Delete", &Delete);

 OC_DEBUG_EXIT();
}

/**
 * Get handle.
 *
 * @param handle
 * @param msg
 *
 * @return Handle to client
 */
static int New(OC_Handle handle, OC_Msg *msg)
{
 OC_TestXmlRpcService *self;
 int ret = TRUE;
 OC_UNUSED_AVOID_WARNING(handle);

 OC_DEBUG_ENTER(0, "oc_test_xmlrpc_new");

 self = malloc(sizeof(OC_TestXmlRpcService));
 if (!self) {
 ret = -ENOMEM;
 goto out;
 }
 oc_layer_init(&self->service.layer, &oc_test_xmlrpc_msgproc);
 OC_DEBUG_SET_NAME(self, "Test XML-RPC Service");

 oc_xmlrpc_service_add(handle, self);
#if 0
 oc_timer_msg_init(&self->lease_timer, self,
EV_HCI_XMLRPC_LEASE_TIMEOUT);
 oc_timer_add(&self->lease_timer,
OC_MSECS_TO_TICKS(HCI_XMLRPC_LEASE_TIMEOUT));
#endif

 /* Pack return parameters */
 oc_msg_reset(msg);
 oc_xmlrpc_pack_integer(msg, (int) self);
 out:
 OC_DEBUG_EXIT();
 return ret;
}

/**
 * Inject a message to a stack layer.
 *
 * @param handle Handle to Test driver instance
 * @param msg Message containing parameters for the call.
 *
 * @return
 */
static int Put(OC_Handle handle, OC_Msg *msg)
{
 OC_TestXmlRpcService *self;
 OC_XmlRpcService *service;
 OC_HciConnectReq req;
 OC_Msg sms;

 76

Appendix

 int event;
 int layer_id;
 int ret = 0;
 uint16 len;
 char message_p[64];

 uint16 buf_len;
 uint16 buf_start;
 MsgBuf msg_buf;
 uint8 *buf;

 OC_DEBUG_ENTER(0, "Put");

 OC_INIT_AUTO_MSG(sms);

 /* Checks if this handle is a legal handle*/
 service = oc_xmlrpc_service_find(handle, msg);
 if (!service) {
 OC_ERROR(("Handle does not exist!"));
 ret = -EINVAL;
 goto out;
 }
 self = (OC_TestXmlRpcService *) service;

 /* Set test layer's pointer to the xml-rpc layer */
 test_xmlrpc->test = self;

 /* Unpack layer identifier*/
 ret = oc_xmlrpc_unpack_integer(msg, &layer_id);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Unpack the event code for this message*/
 ret = oc_xmlrpc_unpack_integer(msg, &event);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 switch(layer_id)
 {
 case LAYER_HCI:

 /* Unpack the test message */
 len = 64;
 ret = oc_xmlrpc_unpack_base64(msg, (uint8 *) &req.bd_addr,
&len);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 oc_xmlrpc_service_prepare_async(handle, service, msg);

 req.up = self;
 oc_msg_set_data_buf(&sms, (MsgBuf *) &req);

 77

Appendix

 /* Send message to HCI layer*/
 ret = oc_call_msg(self, hci_xmlrpc, event, &sms);

 break;

 case LAYER_TEST:

 /* Unpack the length of the data of this message*/
 ret = oc_xmlrpc_unpack_integer(msg, &buf_len);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Unpack the start index for the data in the data buffer*/
 ret = oc_xmlrpc_unpack_integer(msg, &buf_start);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Unpack the data */
 len = 64;
 buf = malloc(buf_len);
 ret = oc_xmlrpc_unpack_base64(msg, (uint8 *) buf, &len);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Set the values for the MsgBuf*/
 msg_buf.start = buf_start;
 msg_buf.len = buf_len;
 memcpy(&msg_buf.buf[buf_start], buf, len);

 oc_xmlrpc_service_prepare_async(handle, service, msg);

 /* Set the the message's message buffer*/
 sms.buf = &msg_buf;

 /* Send message to Test layer*/
 ret = oc_call_msg(self, test_xmlrpc, event, &sms);

 break;

 default:

 break;
 }

#ifdef OC_CONFIG_DEBUG
 if (ret) {
 OC_DEBUG(0, ("Test is busy!"));
 }
#endif /* OC_CONFIG_DEBUG */

 78

Appendix

 /* No errors have occured by now, then we know the operation is in
 * progress */
 if (ret == 0) {
 ret = -EINPROGRESS;
 }
 out:
 OC_DEBUG_EXIT();
 return ret;

}

/**
 * Get a message from a stack layer and delete the message.
 *
 * @param handle Handle to Test driver instance
 * @param msg Message containing parameters for the call.
 *
 * @return
 */
static int Get(OC_Handle handle, OC_Msg *msg)
{
 OC_TestXmlRpcService *self;
 OC_XmlRpcService *service;
 OC_TestGetReq req;
 OC_Msg sms;
 int ret = 0;

 OC_DEBUG_ENTER(0, "Get");

 OC_INIT_AUTO_MSG(sms);

 service = oc_xmlrpc_service_find(handle, msg);
 if (!service) {
 OC_ERROR(("Handle does not exist!"));
 ret = -EINVAL;
 goto out;
 }
 self = (OC_TestXmlRpcService *) service;

 /* Set test layer's pointer to the xml-rpc layer */
 test_xmlrpc->test = self;

 /* Unpack the event code*/
 ret = oc_xmlrpc_unpack_integer(msg, &req.event);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Unpack the number of messages to get */
 ret = oc_xmlrpc_unpack_integer(msg, &req.num_msg);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 oc_xmlrpc_service_prepare_async(handle, service, msg);

 79

Appendix

 req.up = self;
 oc_msg_set_data_buf(&sms, (MsgBuf *) &req);

 /* Send message to Test layer*/
 ret = oc_call_msg(self, test_xmlrpc, EV_TEST_SEND_GET_REQ, &sms);

#ifdef OC_CONFIG_DEBUG
 if (ret) {
 OC_DEBUG(0, ("Test is busy!"));
 }
#endif /* OC_CONFIG_DEBUG */

 /* No errors have occured by now, then we know the operation is in
 * progress */
 if (ret == 0) {
 ret = -EINPROGRESS;
 }
 out:
 OC_DEBUG_EXIT();
 return ret;
}

/**
 * Get a copy of a message from a stack layer.
 *
 * @param handle Handle to Test driver instance
 * @param msg Message containing parameters for the call.
 *
 * @return
 */
static int Copy(OC_Handle handle, OC_Msg *msg)
{
 OC_TestXmlRpcService *self;
 OC_XmlRpcService *service;
 OC_TestCopyReq req;
 OC_Msg sms;
 int ret = 0;

 OC_DEBUG_ENTER(0, "Copy");

 OC_INIT_AUTO_MSG(sms);

 service = oc_xmlrpc_service_find(handle, msg);
 if (!service) {
 OC_ERROR(("Handle does not exist!"));
 ret = -EINVAL;
 goto out;
 }
 self = (OC_TestXmlRpcService *) service;

 /* Set test layer's pointer to the xml-rpc layer */
 test_xmlrpc->test = self;

 /* Unpack the event code */
 ret = oc_xmlrpc_unpack_integer(msg, &req.event);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;

 80

Appendix

 }

 /* Unpack the number of messages to copy */
 ret = oc_xmlrpc_unpack_integer(msg, &req.num_msg);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 oc_xmlrpc_service_prepare_async(handle, service, msg);

 req.up = self;
 oc_msg_set_data_buf(&sms, (MsgBuf *) &req);

 /* Send message to Test layer*/
 ret = oc_call_msg(self, test_xmlrpc, EV_TEST_SEND_COPY_REQ, &sms);

#ifdef OC_CONFIG_DEBUG
 if (ret) {
 OC_DEBUG(0, ("Test is busy!"));
 }
#endif /* OC_CONFIG_DEBUG */

 /* No errors have occured by now, then we know the operation is in
 * progress */
 if (ret == 0) {
 ret = -EINPROGRESS;
 }
 out:
 OC_DEBUG_EXIT();
 return ret;
}

/**
 * Delete a message.
 *
 * @param handle Handle to Test driver instance
 * @param msg Message containing parameters for the call.
 *
 * @return
 */
static int Delete(OC_Handle handle, OC_Msg *msg)
{
 OC_TestXmlRpcService *self;
 OC_XmlRpcService *service;
 OC_TestDeleteReq req;
 OC_Msg sms;
 int ret = 0;

 OC_DEBUG_ENTER(0, "Delete");

 OC_INIT_AUTO_MSG(sms);

 service = oc_xmlrpc_service_find(handle, msg);
 if (!service) {
 OC_ERROR(("Handle does not exist!"));
 ret = -EINVAL;
 goto out;

 81

Appendix

 }
 self = (OC_TestXmlRpcService *) service;

 /* Set test layer's pointer to the xml-rpc layer */
 test_xmlrpc->test = self;

 /* Unpack the event code */
 ret = oc_xmlrpc_unpack_integer(msg, &req.event);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 /* Unpack the number of messages to delete */
 ret = oc_xmlrpc_unpack_integer(msg, &req.num_msg);

 if (ret) {
 OC_ERROR(("Invalid arguments!"));
 goto out;
 }

 oc_xmlrpc_service_prepare_async(handle, service, msg);

 req.up = self;
 oc_msg_set_data_buf(&sms, (MsgBuf *) &req);

 /* Send message to Test layer*/
 ret = oc_call_msg(self, test_xmlrpc, EV_TEST_SEND_DELETE_REQ,
&sms);

#ifdef OC_CONFIG_DEBUG
 if (ret) {
 OC_DEBUG(0, ("Test is busy!"));
 }
#endif /* OC_CONFIG_DEBUG */

 /* No errors have occured by now, then we know the operation is in
 * progress */
 if (ret == 0) {
 ret = -EINPROGRESS;
 }
 out:
 OC_DEBUG_EXIT();
 return ret;
}

 82

Appendix

/**
 * \file blue.c
 * \author Dag Brattli <dag@obexcode.com>
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

#define OC_DEBUG_LEVEL 4
/* Core includes */
#include <core/oc_core.h>
#include <util/oc_util.h>

/* System includes */
#include <stdio.h>
#include <stdarg.h>

#include <blue/oc_hci_bluez.h>

#include <test/oc_test.h>
#include <linux/oc_async_io.h>

#ifdef OC_CONFIG_DEBUG
define MAX_FUNCTION_COUNT 500
static char *funcs[MAX_FUNCTION_COUNT];
static uint32 func_counts[MAX_FUNCTION_COUNT];
int8 indentlevel = 0;
static uint32 call_counter = 0;
#endif /* OC_CONFIG_DEBUG */

static DebugInfo debug_info;

static volatile int running;
static OC_Timer timer;

/**
 * Function debug_print:
 * @type: Type of message to print.
 * @fmt: Format string
 * @args: Argument list
 *
 * Debug print function. This function simply just prints to standard
 * error. But it could do more or less anything. Imagination is the
 * limit. :)
 */
void debug_print(int type, const char CODE *fmt, va_list args)
{
 struct timeval time;
 char *hilite = "";
 char *str = NULL;
 uint32 s;
 uint8 log = FALSE;
 FILE *fp;
#ifdef OC_CONFIG_DEBUG
 int i;
#endif /* OC_CONFIG_DEBUG */

 fp = stderr;

 oc_gettimeofday(&time, NULL);

 83

Appendix

 switch (type) {
 case OC_TYPE_DEBUG:
 str = "DBG";
 log = FALSE;
 break;
 case OC_TYPE_WARNING:
 hilite = "\e[31m";
 str = "WRN";
 break;
 case OC_TYPE_ERROR:
 hilite = "\e[30;41m";
 str = "ERR";
 break;
 case OC_TYPE_INFO:
 hilite = "\e[33m";
 str = "INF";
 break;
 }

 s = (time.tv_sec) % 86400;
 fprintf(fp, "%s%02d:%02d:%02d.%06u ", hilite,
 s / 3600, (s % 3600) / 60,
 s % 60, (uint32) time.tv_usec);

 if (str)
 fprintf(fp, "%s ", str);

#ifdef OC_CONFIG_DEBUG
 if (indentlevel > 0) {
 for (i=0; i<indentlevel-1; i++) {
 fprintf(fp, "| ");
 }
 fprintf(fp, "[%d] ", indentlevel);
 }
#endif /* OC_CONFIG_DEBUG */
 if (args)
 vfprintf(fp, fmt, args);
 else
 fprintf(fp, "%s", fmt);

 fprintf(fp, "\e[37;0m\n");
 fflush(fp);
}

#ifdef OC_CONFIG_DEBUG
/**
 * Function debug_enter:
 * @name: Name of this block (usually the function name)
 * @print: TRUE if print is enabled.
 *
 * Enter debug block. Print the name of this block and increase
 * indentlevel by 1.
 */
void debug_enter(const char CODE *name, int8 print)
{
 indentlevel++;

 if (print) {
 debug_print((int) OC_TYPE_DEBUG, name, NULL);
 }

 84

Appendix

}

/**
 * Function ocd_dbg_exit:
 *
 * Exit debug block. Decrease indentlevel by 1.
 */
void debug_exit(void)
{
 if (indentlevel > 0)
 indentlevel--;
}
#endif /* OC_CONFIG_DEBUG */

/**
 * Function main:
 *
 * Main function that starts the server.
 */
int main(int argc, char **argv)
{
 OC_Handle hci;
 OC_Handle test;
 OC_Handle xmlrpc;

 OC_Test *self;
 OC_Hci *hci_l;
 OC_AsyncIo *async_io;

#ifdef OC_CONFIG_DEBUG
 int i;

 debug_info.enter_callback = &debug_enter;
 debug_info.exit_callback = &debug_exit;

 for (i = 0; i < MAX_FUNCTION_COUNT; i++) {
 funcs[i] = NULL;
 func_counts[i] = 0;
 }
#else
 debug_info.enter_callback = NULL;
 debug_info.exit_callback = NULL;
#endif /* OC_CONFIG_DEBUG */
 /* The last part of the debugging system is always enabled now. */
 debug_info.print_callback = &debug_print;
 OC_DEBUG_INIT(&debug_info);

 /* Initialize the system */
 oc_mainloop_init();
 oc_timer_init(&timer, NULL);

 /* Initialize hci layer */
 hci = oc_hci_new(NULL);

 /* Initialize test layer*/
 test = oc_test_new();

 self = (OC_Test *)test;
 hci_l = (OC_Hci *)hci;
 async_io = hci_l->down;

 85

Appendix

 /* Insert test layer into stack*/
 oc_test_bind_up(self, hci_l);
 oc_test_bind_down(self, async_io);

 /* Initialize XML-RPC layer */
 xmlrpc = oc_xmlrpc_new(7888);
 oc_test_xmlrpc_init(xmlrpc, test, hci);

 /* Start the Select Loop */
 running = 1;

 oc_mainloop_run(&running);

 return 0;
}

 86

Appendix

/**
 * \file Start.java
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

/**
 * This class starts the show.
 *
 * Initializes the test objects and starts the GUI.
 */

class Start
{
 public static void main(String []args)
 {
 MainGUI m = new MainGUI();

 Test.initTests();
 m.initMain();
 }
}

 87

Appendix

/**
 * \file MainGUI.java
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

/**
 * The GUI and Listener classes of the test system.
 *
 * The GUI class represents the GUI of the program.
 * The Listener class contains methods which react to events in the
GUI.
 */

import java.awt.*;
import java.awt.event.*;
import java.util.Vector;

class MainGUI extends Frame
{
 Choice testTypeList = new Choice();
 List chooseTestList = new List(16, true);
 TextArea infoTA = new TextArea(null, 5, 20,
TextArea.SCROLLBARS_VERTICAL_ONLY);
 TextArea progressTA = new TextArea(null, 5, 20,
TextArea.SCROLLBARS_VERTICAL_ONLY);

 /* Initialize main window.*/
 void initMain()
 {
 Label testType = new Label("Test type");
 Label chooseTest = new Label("Choose test");
 Label testInfo = new Label("Test information");
 Label progress = new Label("Test progress");
 Button about = new Button("About");
 Button viewInfo = new Button("View info");
 Button execute = new Button("Execute");
 Button exit = new Button("Exit");

 /* Populate choice lists */
 testTypeList.insert("Choose test type", 0);
 testTypeList.insert("Conformance", 1);
 testTypeList.insert("Reliability", 2);
 testTypeList.insert("Fault tolerance", 3);
 testTypeList.insert("Performance", 4);
 testTypeList.insert("Interoperability", 5);

 /* Create listeners for the GUI components*/
 Listener aboutListener = new Listener(this, Listener.ABOUT);
 Listener viewInfoListener = new Listener(this,
Listener.VIEW_INFO);
 Listener executeListener = new Listener(this,
Listener.EXECUTE);
 Listener exitListener = new Listener(this, Listener.EXIT);
 Listener testTypeListListener = new Listener(this,
Listener.TEST_TYPE_LIST);
 Listener chooseTestListListener = new Listener(this,
Listener.CHOOSE_TEST_LIST);

 88

Appendix

 about.addActionListener(aboutListener);
 viewInfo.addActionListener(viewInfoListener);
 execute.addActionListener(executeListener);
 exit.addActionListener(exitListener);
 testTypeList.addItemListener(testTypeListListener);
 chooseTestList.addActionListener(chooseTestListListener);

 /* Using a GridBagLayout to place the GUI components*/
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.insets = new Insets(2,2,2,2);
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.weightx = 1.0;

 infoTA.setEditable(false);
 progressTA.setEditable(false);

 /* Adding GUI components*/
 this.setSize(900, 500);
 this.setTitle("Test System Client - v. 1.0");
 this.setBackground(Color.LIGHT_GRAY);
 this.setLayout(gbl);
 this.addComponent(this, gbl, gbc, 0, 0, 1, 1, testType);
 this.addComponent(this, gbl, gbc, 1, 0, 1, 1, chooseTest);
 this.addComponent(this, gbl, gbc, 2, 0, 1, 1, testInfo);
 this.addComponent(this, gbl, gbc, 0, 1, 1, 1, testTypeList);
 this.addComponent(this, gbl, gbc, 1, 1, 1, 3, chooseTestList);
 this.addComponent(this, gbl, gbc, 2, 1, 1, 1, infoTA);
 this.addComponent(this, gbl, gbc, 2, 2, 1, 1, progress);
 this.addComponent(this, gbl, gbc, 2, 3, 1, 1, progressTA);
 this.addComponent(this, gbl, gbc, 0, 5, 1, 1, about);
 this.addComponent(this, gbl, gbc, 2, 4, 1, 1, viewInfo);
 this.addComponent(this, gbl, gbc, 2, 5, 1, 1, execute);
 this.addComponent(this, gbl, gbc, 2, 6, 1, 1, exit);
 this.addWindowListener(new WindowAdapter(){public void
windowClosing(WindowEvent e){System.exit(0);}});

 this.setVisible(true);
 }

 /* Function to add components in a grid bag layout.*/
 void addComponent(Container cont, GridBagLayout gbl,
GridBagConstraints gbc, int x, int y, int xx, int yy, Component comp)
{
 gbc.gridx = x;
 gbc.gridy = y;
 gbc.gridwidth = xx;
 gbc.gridheight = yy;
 gbl.setConstraints(comp, gbc);
 cont.add(comp);
 }

}

class Listener implements ActionListener, ItemListener
{
 /* Identifiers for the GUI components which requires a Listener*/
 static final int ABOUT = 0;
 static final int VIEW_INFO = 1;
 static final int EXECUTE = 2;
 static final int EXIT = 3;

 89

Appendix

 static final int TEST_TYPE_LIST = 4;
 static final int CHOOSE_TEST_LIST = 5;

 MainGUI main;
 int choice;

 /* Current choice in choice list.*/
 static String strChoice = null;

 /* Listener objects are instantiated with a GUI component ID*/
 public Listener(MainGUI m, int c)
 {
 main = m;
 choice = c;
 }

 /* Reacts to action events in the GUI*/
 public void actionPerformed(ActionEvent e)
 {
 switch(choice)
 {
 case ABOUT:
 System.out.println("About");
 break;

 case VIEW_INFO:
 updateInfoField();
 break;

 case EXECUTE:
 executeTests();
 break;

 case EXIT:
 System.out.println("Exiting Test System Client");
 System.exit(0);
 break;

 case TEST_TYPE_LIST:

 break;

 case CHOOSE_TEST_LIST:
 updateInfoField();
 break;

 default:
 System.err.println("This should not happen! An event that
doesn't exist occured...");
 System.out.println(choice);
 System.exit(0);
 break;
 }
 }

 /* Reacts to the events on the choice list.*/
 public void itemStateChanged(ItemEvent e)
 {
 strChoice = (String)e.getItem();

 90

Appendix

 if(strChoice.compareTo("Conformance") == 0)
 {
 updateTestList(Conformance.testList);
 }
 else if(strChoice.compareTo("Reliability") == 0)
 {
 updateTestList(Reliability.testList);
 }
 else if(strChoice.compareTo("Fault tolerance") == 0)
 {
 updateTestList(FaultTolerance.testList);
 }
 else if(strChoice.compareTo("Performance") == 0)
 {
 updateTestList(Performance.testList);
 }
 else if(strChoice.compareTo("Interoperability") == 0)
 {
 updateTestList(Interoperability.testList);
 }
 else if(strChoice.compareTo("Choose test type") == 0)
 {
 /* Do nothing - (This is just an information field, not a
test type*/
 }
 else
 {
 System.err.println("This should not happen! An event that
doesn't exist occured...");
 System.out.println(choice);
 System.exit(0);
 }
 }

 /* Updates list of available tests.*/
 void updateTestList(Vector v)
 {
 /* Removes old elements in list before inserting new
elements.*/
 main.chooseTestList.removeAll();
 for(int i=0; i<v.size(); i++)
 {
 Test tmp = (Test)v.get(i);
 /* Puts the avalable tests into the list of tests.*/
 main.chooseTestList.add(tmp.testID, i);
 }
 }

 /* Updates the test info field.*/
 void updateInfoField()
 {
 String choice = new String();

 /* Clearing text area.*/
 main.infoTA.setText("");

 if(strChoice.compareTo("Conformance") == 0)
 {
 findInfo(Conformance.testList);
 }

 91

Appendix

 else if(strChoice.compareTo("Reliability") == 0)
 {
 findInfo(Reliability.testList);
 }
 else if(strChoice.compareTo("Fault tolerance") == 0)
 {
 findInfo(FaultTolerance.testList);
 }
 else if(strChoice.compareTo("Performance") == 0)
 {
 findInfo(Performance.testList);
 }
 else if(strChoice.compareTo("Interoperability") == 0)
 {
 findInfo(Interoperability.testList);
 }
 else
 {
 /* Do nothing*/
 System.out.println("Nothing is chosen.");
 }
 }

 /* Fetches the correct information from the chosen tests.*/
 void findInfo(Vector v)
 {
 String []selected = main.chooseTestList.getSelectedItems();

 for(int i=0; i<selected.length; i++)
 {
 for(int j=0; j<v.size(); j++)
 {
 Test tmp = (Test)v.get(j);
 if(tmp.testID.compareTo(selected[i]) == 0)
 {
 main.infoTA.append(tmp.testID + "\n");
 main.infoTA.append(tmp.description + "\n\n");
 }
 }
 }
 }

 /* Executes the chosen tests and displays the progress and
results.*/
 void executeTests()
 {
 /* Get selected tests*/
 String []selected = main.chooseTestList.getSelectedItems();
 String results;

 if(selected.length == 0)
 {
 main.progressTA.append("No tests chosen.\n---------------
---------\n");
 }
 else
 {
 for(int i=0; i<selected.length; i++)
 {
 main.progressTA.append("Executing test: " +
selected[i] + "\n");

 92

Appendix

 results = Control.executeTest(strChoice,
selected[i]);
 main.progressTA.append("Receiving results from " +
selected[i] + "\n");
 main.progressTA.append(results + "\n");
 main.progressTA.append("------------------------
\n");
 }
 }
 }
}

 93

Appendix

/**
 * \file Control.java
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

/**
 * The Control class is coordinating the events of the system.
 *
 */

import java.util.*;
import java.io.*;

class Control
{
 /* Create log file.*/
 static FileWriter createLogFile(String testID)
 {
 FileWriter logFile = null;

 try
 {
 /* Include test ID and current time (in ms) in log file
name.*/
 Date currTime = new Date();
 long currTimeMillis = currTime.getTime();
 String fileName = "results_" + testID + "_" +
currTimeMillis + ".txt";
 File file = new File(fileName);

 /* Checks if log file has been created. If not, try again
in 100 ms. Retry max 10 times.*/
 int i = 0;
 while((file.createNewFile()) == false && i < 10)
 {
 System.err.println("Failed creating log file.");
 Thread.sleep(100);
 i++;

 currTime = new Date();
 currTimeMillis = currTime.getTime();
 fileName = "results" + currTimeMillis + ".txt";
 file = new File(fileName);
 }
 /* If unable to create log file after ten attempts,
quit.*/
 if(i >= 10)
 {
 System.err.println("\nCould not create log file.");
 System.exit(0);
 }

 logFile = new FileWriter(fileName, true);
 }
 catch(IOException e)
 {
 System.err.println(e);
 System.exit(0);

 94

Appendix

 }
 catch(InterruptedException e)
 {
 System.err.println(e);
 System.exit(0);
 }

 return logFile;
 }

 /* Executes a test.
 *
 * This method is called from the Listener class when a test is
 * chosen to be executed.
 *
 * testType - The test type
 * testID - The id of the test to be executed.
 */
 static String executeTest(String testType, String testID)
 {
 Test test = null;
 String ret = null;

 FileWriter logFile;

 /* Find the test object that is called.*/
 if(testType.compareTo("Conformance") == 0)
 {
 test = (Conformance)findTest(Conformance.testList,
testID);
 }
 else if(testType.compareTo("Reliability") == 0)
 {
 test = (Reliability)findTest(Reliability.testList,
testID);
 }
 else if(testType.compareTo("Fault tolerance") == 0)
 {
 test = (FaultTolerance)findTest(FaultTolerance.testList,
testID);
 }
 else if(testType.compareTo("Performance") == 0)
 {
 test = (Performance)findTest(Performance.testList,
testID);
 }
 else if(testType.compareTo("Interoperability") == 0)
 {
 test =
(Interoperability)findTest(Interoperability.testList, testID);
 }
 else
 {
 /* The test selected does not exist.*/
 System.err.println("Control.executeTest - Can not execute
0 tests.");

 System.exit(0);
 }

 /* Run the test object's test method*/

 95

Appendix

 ret = test.runTest(testType, testID);

 /* Write result of the test to log file together with the ID of
the test
 * and the time it was executed.
 */
 try
 {
 Date d = new Date();
 logFile = createLogFile(testID);
 logFile.write(testID + "\n");
 logFile.write(d.toString()+ "\n\n");
 logFile.write("Result:" + "\n");
 logFile.write(ret + "\n");
 logFile.close();
 }
 catch(IOException e)
 {
 System.err.println(e);
 }

 /* Returns the string that is to be displayed to the user in
the GUI.*/
 return ret;
 }

 /* Finds the correct test object based on the testID.*/
 static Test findTest(Vector v, String testID)
 {
 Test test = null;
 for(int i=0; i<v.size(); i++)
 {
 Test tmp = (Test)v.get(i);
 if(tmp.testID.compareTo(testID) == 0)
 {
 test = (Test)v.elementAt(i);
 }
 }
 return test;
 }
}

 96

Appendix

/**
 * \file MyXmlRpcClient.java
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

/**
 * The MyXmlRpcClient class represents an XML-RPC client.
 *
 * Used to contact the IUT.
 * Uses the XML-RPC implementation from Apache
 */

import java.util.*;
import org.apache.xmlrpc.*;
import java.io.*;

class MyXmlRpcClient
{
 String server;

 /* Objects are invoked with a server name.*/
 public MyXmlRpcClient(String s)
 {
 server = s;
 }

 /* Executes the XML-RPC call.
 *
 * funcName - The remote function
 * paramList - A vector containing the remote function's
parameter(s)
 */
 Object executeXmlRpc(String funcName, Vector paramList)
 {
 Object response;

 try
 {
 XmlRpcClient conn = new XmlRpcClient(server);

 response = conn.execute(funcName, paramList);
 }

 catch(XmlRpcException e)
 {
 System.err.println(e);
 response = new String(e.toString());
 }

 catch(IOException e)
 {
 System.err.println(e);
 response = new String(e.toString());
 }
 return response;
 }
}

 97

Appendix

/**
 * \file Test.java
 * \author Karl Magnus Nilsen <karlm@obexcode.com>
 * \date 07.12.2003
 *
 * Copyright (C) 2003, ObexCode AS, All Rights Reserved.
 */

/**
 * The Test class is the Superclass for the test classes, that is,
the classes that implement
 * the actual tests.
 *
 * The class hierarchy:
 * Test
 * |
 * |---Conformance
 * |---FaultTolerance
 * |---Reliability
 * |---Performance
 * |---Interoperability
 *
 * This class is responsible for the common properties of the test
classes.
 */

import java.util.Vector;
import java.util.Hashtable;
import java.lang.reflect.Method;
import java.lang.reflect.Constructor;
import java.lang.Thread;

class Test
{
 String testID; /* The test id, also the name of
method that implements the test.*/
 String description; /* A brief description of the test.*/
 Object passV; /* The test's Pass verdict.*/
 Object failV; /* The test's Fail verdict.*/
 Object inconclusiveV; /* The test's Inconclusive verdict.*/

 /* Hashtable with descriptions of the tests.*/
 static Hashtable descrList = new Hashtable();

 /* Test objects are initalized with the test ID and the test
description*/
 public Test(String id, String d)
 {
 testID = id;
 description = d;
 }

 /* Initializes test description list.
 *
 * This feature is optional. A test does not need a description.
 */
 static void initDescrList()
 {
 /* Set test descriptions here.
 *

 98

Appendix

 * The key is the test ID, i.e. the method name of the
implemented test.
 */
 Test.descrList.put("TP_HCI_BV_22_C", "Test the HCI InquiryReq()
function.");
 Test.descrList.put("TP_HCI_BV_23_C", "Test the HCI ConnectReq()
function.");
 Test.descrList.put("TP_HCI_BV_02_FT", "Put a message into the
stack and get it when it reaches the test layer.");
 Test.descrList.put("TP_HCI_BV_10_C", "Test the Test New()
function.");
 Test.descrList.put("TP_HCI_BV_14_C", "Try to make a connection
using Put().");
 Test.descrList.put("TP_HCI_BV_15_C", "Copy a message.");
 Test.descrList.put("TP_HCI_BV_04_FT", "Delete a message.");
 }

 /* Initializes the test objects.
 *
 * Uses the method name as test ID and puts the tests in the test
vectors for each class.
 */
 static void initTests()
 {
 Class c;
 Method []methods;
 Test tmp;
 String method;
 String descr;

 /* Initialize test description list.*/
 initDescrList();

 /* Initiates test objects and inserts them in the vector of
their corresponding class.*/
 try
 {
 c = Class.forName("Conformance");
 methods = c.getDeclaredMethods();
 for(int i=0; i<methods.length; i++)
 {
 method = methods[i].getName();
 descr = (String)Test.descrList.get(method);
 if(descr == null)
 {
 tmp = new Conformance(method, "This test does
not have a description.");
 }
 else
 {
 tmp = new Conformance(method, descr);
 }
 Conformance.testList.add(i, tmp);
 }

 c = Class.forName("Reliability");
 methods = c.getDeclaredMethods();
 for(int i=0; i<methods.length; i++)
 {

 method = methods[i].getName();

 99

Appendix

 descr = (String)Test.descrList.get(method);
 if(descr == null)
 {
 tmp = new Reliability(method, "This test does
not have a description.");
 }
 else
 {
 tmp = new Reliability(method, descr);
 }
 Reliability.testList.add(i, tmp);
 }

 c = Class.forName("FaultTolerance");
 methods = c.getDeclaredMethods();
 for(int i=0; i<methods.length; i++)
 {
 method = methods[i].getName();
 descr = (String)Test.descrList.get(method);
 if(descr == null)
 {
 tmp = new FaultTolerance(method, "This test
does not have a description.");
 }
 else
 {
 tmp = new FaultTolerance(method, descr);
 }
 FaultTolerance.testList.add(i, tmp);
 }

 c = Class.forName("Performance");
 methods = c.getDeclaredMethods();
 for(int i=0; i<methods.length; i++)
 {
 method = methods[i].getName();
 descr = (String)Test.descrList.get(method);
 if(descr == null)
 {
 tmp = new Performance(method, "This test does
not have a description.");
 }
 else
 {
 tmp = new Performance(method, descr);
 }
 Performance.testList.add(i, tmp);
 }

 c = Class.forName("Interoperability");
 methods = c.getDeclaredMethods();
 for(int i=0; i<methods.length; i++)
 {
 method = methods[i].getName();
 descr = (String)Test.descrList.get(method);
 if(descr == null)
 {
 tmp = new Interoperability(method, "This test
does not have a description.");
 }
 else

 100

Appendix

 {
 tmp = new Interoperability(method, descr);
 }
 Interoperability.testList.add(i, tmp);
 }

 }
 catch(Exception e)
 {
 System.err.println(e);
 }
 }

 /* Run the test method.
 *
 * type - The test type/class of the test.
 * id - The test ID.
 */
 String runTest(String type, String id)
 {
 String res = null;
 try
 {
 Class c = Class.forName(type);
 Method m = c.getMethod(id, null);
 res = (String)m.invoke(this, null);
 return res;
 }
 catch(Exception e)
 {
 System.err.println(e);
 }
 return res;
 }

 /* Get handle from test layer.
 *
 * All exported methods from the test layer needs a handle as
first parameter.
 *
 * client - The connection to the test layer's XML-RPC interface
 */
 Integer getHandle(MyXmlRpcClient client)
 {
 String funcName = "New";
 Vector paramList = new Vector();
 System.out.println("Starting XML-RPC call - New()");
 Integer handle = (Integer)client.executeXmlRpc(funcName,
paramList);
 System.out.println(handle);
 System.out.println("XML-RPC call returned - New()");

 return handle;
 }

 /* Set a test's Pass verdict.
 *
 * verdict - The Pass verdict, represented as a String.
 */
 void setPassVerdict(Object verdict)

 101

Appendix

 {
 this.passV = verdict;
 }

 /* Set a test's Fail verdict.
 *
 * verdict - The Fail verdict, represented as a String.
 */
 void setFailVerdict(Object verdict)
 {
 this.failV = verdict;
 }

 /* Set a test's Inconclusive verdict.
 *
 * verdict - The Inconclusive verdict, represented as a String.
 */
 void setInconclusiveVerdict(Object verdict)
 {
 this.inconclusiveV = verdict;
 }
}

/**
 * Contains the Conformance tests.
 */
class Conformance extends Test
{
 static Vector testList = new Vector();

 public Conformance(String id, String d)
 {
 super(id, d);
 }

 /* Test TP_HCI_BV_10_C
 *
 * Test the Test-xmlrpc-layer's New() function.
 * Function - New()
 */
 public String TP_HCI_BV_10_C()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Set pass, fail and inconclusive verdict.*/
 this.setPassVerdict(new Integer(0)); /* Will receive
zero.*/

 102

Appendix

 /* Get handle - Execute call to New() with empty parameter
list.*/
 funcName = "New";
 paramList = new Vector();
 System.out.println("Starting XML-RPC call - New()");
 handle = (Integer)client.executeXmlRpc(funcName, paramList);
 System.out.println(handle);
 System.out.println("XML-RPC call returned - New()");

 ret = handle.toString();

 return ret;
 }

 /* Test TP_HCI_BV_14_C
 *
 * Try to make a HCI-connection to a BT device using Put().
 */
 public String TP_HCI_BV_14_C()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Set pass verdict.*/

 this.setPassVerdict(new Integer(0)); /* Will receive
zero.*/

 /* Get handle - Execute call to New() with empty parameter
list.*/
 handle = getHandle(client);

 funcName = "Put";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x00)); /* Layer ID*/
 paramList.add(new Integer(0x05)); /* Event code
(EV_HCI_SEND_CONNECT_REQ = 0x05)*/
 /* Connect to address 4d:de:15:d9:0a:00 */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 System.out.println("Starting XML-RPC call - Put()");

 103

Appendix

 retVal = (Integer)client.executeXmlRpc(funcName, paramList);

 System.out.println("XML-RPC call returned - Put()");

 /* Evluating result*/
 if(retVal.getClass().toString().compareTo("class
java.lang.Integer") != 0)
 {
 /* Have received an unexpected class in return*/
 ret = retVal.toString() + "\nThe test is inconclusive.";
 }
 else if(retVal.equals(this.passV))
 {
 ret = retVal.toString() + "\nThe test is passed.";
 }
 else
 {
 ret = retVal.toString() + "\nThe test failed.";
 }

 ret = handle.toString();

 return ret;
 }

 /* Test TP_HCI_BV_15_C
 *
 * Put a message into the stack and copy it when it reaches the
test layer.
 * Like TP_HCI_BV_02_FT this method suffers from the lack of
support for sending
 * arrays in the XML-RPC server used. Check the comments on
TP_HCI_BV_02_FT in
 * class FaultTolerance for more information.
 * When a message is copied, only the data buffer is sent to the
client.
 */
 public String TP_HCI_BV_15_C()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Get handle */
 handle = this.getHandle(client);

 funcName = "Copy";
 paramList = new Vector();
 paramList.add(handle);

 104

Appendix

 paramList.add(new Integer(0x05)); /* Event code */
 paramList.add(new Integer(0x01)); /* Number of messages to
copy */
 System.out.println("Starting XML-RPC call - Copy()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - Copy()");

 funcName = "Put";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x00)); /* Layer ID*/
 paramList.add(new Integer(0x05)); /* Event code
(EV_HCI_SEND_CONNECT_REQ = 0x05)*/
 /* Connect to address 4d:de:15:d9:0a:00 */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 System.out.println("Starting XML-RPC call - Put()");
 byte [] retMsg = (byte [])client.executeXmlRpc(funcName,
paramList);
 System.out.println("XML-RPC call returned - Put()");

 ret = retMsg.toString();
 return ret;
 }

 /* Test TP_HCI_BV_22_C
 *
 * Test the request to run an inquiry about Bluetooth devices in
the vicinity.
 * This method does not use the test layer, but is used to show
that this program
 * can be used to test the functionality of the exported
functions of the HCI layer.
 * Function - InquiryReq()
 */
 public String TP_HCI_BV_22_C()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7899/hci");

 /* Get handle - Execute call to New() with empty parameter
list.*/

 105

Appendix

 handle = getHandle(client);

 /* Call InquiryReq(), handle as parameter.*/
 funcName = "InquiryReq";
 paramList = new Vector();
 paramList.add(handle);
 System.out.println("Starting XML-RPC call. - InquiryReq()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - InquiryReq()");

 ret = retVal.toString();
 return ret;
 }

 /* Test TP_HCI_BV_23_C
 *
 * Test the request to make a connection to a remote device.
 * This method does not use the test layer, but is used to show
that this program
 * can be used to test the functionality of the exported
functions of the HCI layer.
 * Function - ConnectReq()
 */
 public String TP_HCI_BV_23_C()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7899/hci");

 /* Get handle - Execute call to New() with empty parameter
list.*/
 handle = getHandle(client);

 /* Call ConnectReq() function with handle as first parameter.*/
 funcName = "ConnectReq";
 paramList = new Vector();
 paramList.add(handle);
 /* Connect to address */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 System.out.println("Starting XML-RPC call. - ConnectReq()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - ConnectReq()");

 106

Appendix

 ret = retVal.toString();
 return ret;
 }
}

/**
 * Contains the Fault Tolerance tests.
 */
class FaultTolerance extends Test
{
 static Vector testList = new Vector();

 public FaultTolerance(String id, String d)
 {
 super(id, d);
 }

 /* Test TP_HCI_BV_02_FT
 *
 * Insert message to the stack and take it out from the test
layer.
 * Then return the same message to the test layer where it will
be forwarded.
 *
 * This method suffers from the lack of support for sending
arrays from the XML-RPC server.
 * When a message is taken out of the stack, the message data,
the length of the data, the start
 * index of the data in the data buffer and the message's event
code is supposed to be returned to
 * the XML-RPC client. Right now it is only possible to send one
of these return values. We have chosen
 * to write code for the future situation where array-sending is
supported. This code is, however,
 * commented out, but shall be used when the functionality
required is present.
 * We have chosen to receive the actual message data, and hard
code the other parameters, just to
 * try to test the functionality of the test layer.
 */
 public String TP_HCI_BV_02_FT()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Get handle */
 handle = this.getHandle(client);

 funcName = "Get";

 107

Appendix

 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x05));
 paramList.add(new Integer(0x01));
 System.out.println("Starting XML-RPC call - Get()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - Get()");

 funcName = "Put";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x00)); /* Layer ID*/
 paramList.add(new Integer(0x05)); /* Event code
(EV_HCI_SEND_CONNECT_REQ = 0x05)*/
 /* Connect to address 4d:de:15:d9:0a:00 */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 /* This code is the correct code when the XML-RPC server
supports sending of arrays.*/
 /**
****/
// System.out.println("Starting XML-RPC call - Put()");
// Vector retMsg = (Vector)client.executeXmlRpc(funcName,
paramList);
// System.out.println("XML-RPC call returned - Put()");

// /* Unpack the return values */
// Integer eventCode = (Integer)retMsg.elementAt(0);
// Integer msgLen = (Integer)retMsg.elementAt(1);
// Integer msgStart = (Integer)retMsg.elementAt(2);
// byte [] msg = (byte [])retMsg.elementAt(3);
 /**
****/

 /* This code have to replace the code above, to verify the
functionality of the test layer.*/
 /**
****/
 System.out.println("Starting XML-RPC call - Put()");
 byte [] msg = (byte [])client.executeXmlRpc(funcName,
paramList);
 System.out.println("XML-RPC call returned - Put()");

 Integer eventCode = new Integer(0x41);
 Integer msgLen = new Integer(17);
 Integer msgStart = new Integer(4);
 /**
****/

 System.out.println("msg: " + msg.toString());

 /* Sending message back to test layer */
 paramList = new Vector();

 108

Appendix

 paramList.add(handle);
 paramList.add(new Integer(0x01)); /* Layer ID*/
 paramList.add(eventCode); /* Event code*/
 paramList.add(msgLen); /* Length of message
data*/
 paramList.add(msgStart); /* Start of data in
message buffer*/
 paramList.add(msg); /* The message data*/

 System.out.println("Starting XML-RPC call - Put()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - Put()");

 /* Debug info*/
 for(int i=0; i<msg.length; i++)
 System.out.println("Encoding: " + msg[i]);
 System.out.println("Message length: " + msg.length);

 ret = retVal.toString();

 return ret;
 }

 /* Test TP_HCI_BV_04_FT
 *
 * Delete a message.
 */
 public String TP_HCI_BV_04_FT()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Set pass, fail and inconclusive verdict.*/
 this.setPassVerdict(new Integer(0)); /* Will receive
zero.*/

 /* Get handle - Execute call to New() with empty parameter
list.*/
 handle = getHandle(client);

 funcName = "Delete";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x05));
 paramList.add(new Integer(0x01));
 System.out.println("Starting XML-RPC call - Delete()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - Delete()");

 109

Appendix

 funcName = "Put";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x00)); /* Layer ID*/
 paramList.add(new Integer(0x05)); /* Event code
(EV_HCI_SEND_CONNECT_REQ = 0x05)*/
 /* Connect to address 4d:de:15:d9:0a:00 */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 System.out.println("Starting XML-RPC call - Put()");
 retVal = client.executeXmlRpc(funcName, paramList);
 System.out.println("XML-RPC call returned - Put()");

 /* Evaluating result*/
 if(retVal.getClass().toString().compareTo("class
java.lang.Integer") != 0)
 {
 /* Have received an unexpected class in return*/
 ret = retVal.toString() + "\nThe test is inconclusive.";
 }
 else if(retVal.equals(this.passV))
 {
 ret = retVal.toString() + "\nThe test is passed.";
 }
 else
 {
 ret = retVal.toString() + "\nThe test failed.";
 }

 return ret;
 }

}

/**
 * Contains the Reliability tests.
 */
class Reliability extends Test
{
 static Vector testList = new Vector();

 public Reliability(String id, String d)
 {
 super(id, d);
 }

}

/**
 * Contains the Performance tests.
 */
class Performance extends Test
{

 110

Appendix

 static Vector testList = new Vector();

 public Performance(String id, String d)
 {
 super(id, d);
 }

 /* Test TP_RFC_BV_01_P
 *
 * Calculates the time needed to do a HCI connection using Put().
 */
 public String TP_RFC_BV_06_P()
 {
 /* The return value.*/
 String ret;
 /* The remote function name.*/
 String funcName;
 /* The parameter list for the remote call.*/
 Vector paramList;
 /* The handle for the remote call.*/
 Integer handle;
 /* The returned object from the call.*/
 Object retVal;

 MyXmlRpcClient client = new
MyXmlRpcClient("http://matrix.tromso.obexcode.vpn:7888/test");

 /* Get handle - Execute call to New() with empty parameter
list.*/
 handle = getHandle(client);

 funcName = "Put";
 paramList = new Vector();
 paramList.add(handle);
 paramList.add(new Integer(0x00)); /* Layer ID*/
 paramList.add(new Integer(0x05)); /* Event code
(EV_HCI_SEND_CONNECT_REQ = 0x05)*/
 /* Connect to address 4d:de:15:d9:0a:00 */
 byte [] message = new byte[6];
 message[0] = (byte)0x4d;
 message[1] = (byte)0xde;
 message[2] = (byte)0x15;
 message[3] = (byte)0xd9;
 message[4] = (byte)0x0a;
 message[5] = (byte)0x00;
 paramList.add(message);

 System.out.println("Starting XML-RPC call - Put()");
 /* Measures the time used on the call.*/
 long start = System.currentTimeMillis();
 retVal = client.executeXmlRpc(funcName, paramList);
 long time = System.currentTimeMillis() - start;
 System.out.println("XML-RPC call returned - Put()");

 ret = "Excecution time: " + time + "ms.";

 return ret;
 }
}

/**

 111

Appendix

 * Contains the Interoperability tests.
 */
class Interoperability extends Test
{
 static Vector testList = new Vector();

 public Interoperability(String id, String d)
 {
 super(id, d);
 }
}

 112

	UNIVERSITY OF TROMSØ
	Chapter 1
	Introduction
	1.1 Background
	1.2 Problem Definition
	1.3 Method and Approach
	1.4 Limitations
	1.5 Outline of the Thesis

	Chapter 2
	Background and Related Work
	2.1 Bluetooth
	2.1.1 Bluetooth – An Introduction
	2.1.2 The Bluetooth protocol stack
	2.1.3 The Bluetooth product qualification process
	2.1.4 The Bluetooth test specifications

	2.2 Testing
	2.2.1 Motivation
	2.2.2 Positive and negative testing
	2.2.3 Black box testing
	2.2.4 White box testing
	2.2.5 Regression testing
	2.2.6 Conformance testing
	2.2.7 Interoperability testing
	2.2.8 Performance testing
	2.2.9 Fault tolerance testing
	2.2.10 Reliability testing
	2.2.11 Test automation
	2.2.12 More testing techniques

	2.3 Existing Systems
	2.3.1 Tree and Tabular Combined Notation (TTCN)
	2.3.2 IVT BlueTester
	2.3.3 JUnit

	Chapter 3
	Architecture
	3.1 Overview
	3.2 The Test Layer Component
	3.2.1 The Test Layer
	3.2.2 The XML-RPC Module

	3.3 The Test System Client
	3.4 Summary

	Chapter 4
	Design and Implementation
	4.1 Introduction
	4.1.1 Overview
	4.1.2 Approach

	4.2 The Generic Test Layer
	4.2.1 ObexCode Protocol Stack Development Framework
	4.2.2 The Test Layer
	4.2.3 The XML-RPC Module
	4.2.4 Summary

	4.3 The Test System Client
	4.3.1 Introduction
	4.3.2 Analysis
	4.3.3 Test Module
	4.3.3.1 Introduction
	4.3.3.2 Class Design
	4.3.3.3 Implementation Details
	4.3.3.4 Summary

	4.3.4 GUI Module
	4.3.4.1 Introduction
	4.3.4.2 Class Design
	4.3.4.3 Implementation Details
	4.3.4.4 Summary

	4.3.5 Control Module
	4.3.5.1 Introduction
	4.3.5.2 Class Design
	4.3.5.3 Implementation Details
	4.3.5.4 Summary

	4.3.6 XML-RPC Module
	4.3.6.1 Introduction
	4.3.6.2 Class Design
	4.3.6.3 Implementation Details
	4.3.6.4 Summary

	4.3.7 Miscellaneous
	4.3.8 Summary

	Chapter 5
	Experiments
	5.1 Introduction
	5.2 Test Platform Characteristics
	5.3 Experiments
	5.3.1 Delay introduced when forwarding a message
	5.3.2 Delay introduced when modifying a message

	5.4 Results
	5.5 Summary

	Chapter 6
	Discussion and Conclusion
	6.1 Summary of the Thesis
	6.2 Evaluation
	6.3 Discussion and Future Work
	6.4 Conclusion

	Chapter 7
	References
	Appendix

