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Abstract
The snow crab (Chionoecetes opilio, Majidae) has recently entered the Barents Sea, 
and a crab fishery is developing. Information on how the crab appeared and where it 
is moving is limited. We study how the characteristics of the fleet may affect the fur-
ther development of the fishery. A spatial model is constructed as a grid of cells given 
a carrying capacity for crab determined by environmental data, assumed to reflect 
crabs' preferences. The biological dynamics are modelled using cellular automata, de-
scribing the growth and movements of the crabs. The fleet dynamics is represented 
by scenarios of fleet behaviour and aptitude, using standard theories of harvest pro-
duction and economics. Pattern-oriented modelling is used to calibrate the model. 
The fishery started in the Loophole, but is anticipated to expand as the crabs popu-
late adjacent areas. We use simulations to explore a potential geographical expansion 
of the fishery. The fleet is assumed to continually expand the current fishing area 
by initiating fishing in adjacent areas, relying only on their own judgement to locate 
promising fishing grounds. We find an inability to successfully quantify the amount 
of crabs in the areas subject to exploration and the willingness to take risks to be 
two forces contributing to a long-term utilization of the stock. Both forces appear to 
make the fishers explore non-lucrative grounds, potentially leading them to lucrative 
grounds. However, information from other sources indicating the presence of crabs 
at various locations appears to be necessary to ensure a more complete exploration 
of the fishery.
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1  | INTRODUC TION

Recently, the snow crab (Chionoecetes opilio, Majidae) has invaded 
the Barents Sea, and a fishery has developed. The first observation 
of snow crabs in this area was in 1996, in the Goose Bank. The exist-
ence of this snow crab population, in terms of where it came from 
and how it got here, remains uncertain (Anon., 2017). There is exten-
sive uncertainty concerning the current and the potential size of the 
population (Anon., 2017), but the population is anticipated to spread 
throughout suitable parts of the Barents Sea area, depending on fac-
tors such as depth and temperature (Anon., 2019a).

In a well-established fishery, fishers tend to have extensive infor-
mation, learned through fishing activities, about which fishing areas 
are the most valuable. However, in a new fishery, such information 
simply does not exist. This raises some interesting questions regard-
ing how the behaviour of the fishers and their aptitudes shape the 
biological and economic dynamics of the fishery. Such information 
is needed in order to establish an adequate management plan for 
the fishery. To study these questions, a spatio-temporal model could 
be constructed, representing the biological, economic, and environ-
mental components of the crab fishery.

Marine biological systems are based on physical laws (e.g. 
oceanography) and biological processes (e.g. growth, mortality, 
predation) that often lead to extensive models expressed by com-
plicated systems of differential equations, where extrapolation 
may be difficult (Ermentrout & Edelstein-Keshet, 1993). A cellu-
lar automaton (CA) mimics a complex system by the use of simple 
rules. A CA may be used with a simple 1D model, where each cell 
could have one of two states (e.g. 0 or 1) (Wolfram, 1984). The 
state of each cell develops over time through discrete time steps 
by applying predefined rules.

Models using continuous cellular automata (CCA) have been 
developed. In these, the state of each cell is given by a continuous 
quantity, for example by introducing the fractional part of a real 
number as the state value of each period (Wolfram, 2002). A fea-
ture of CAs is their ability to incorporate cell-specific characteristics 
(Eide, 2012). For instance, this allows us to model how some fishing 
grounds are more successful than others at providing a habitat for 
the crab. Eide (2012) bioeconomic developed a 1D model where the 
population dynamics was expressed by CCA rules, combining this 
with a harvest function in order to estimate the possible effects of 
marine sanctuaries. Further use of CCA for fisheries includes a two-
dimensional CCA model inspired by the Northeast Arctic cod fishery 
(Eide, 2011) and a simulation study of the same fishery (Eide, 2014).

There is a need for models addressing the rational development 
of a new fishery (Branch et al., 2006). This has led us to focus on 
the economic and biological dimensions in a spatially diversified en-
vironment, something common to all fisheries. This is a necessary 
focus in the management of fisheries. Therefore, in this study, a pure 
open access fishery of the snow crab is assumed, without any other 
constraints on the harvesting other than those imposed by Nature. 
This corresponds to the initial phase of the snow crab fishery. The 
fishery started out as an open access fishery located in the high sea 

areas of the Barents Sea, referred to as the Loophole (Henriksen, 
2020). New fisheries generally have a development phase where 
regulations are minimized to motivate entrepreneurs to explore 
the fishery (Branch et al., 2006) or simply because the catch sizes 
are too low to have a significant effect on the sustainability of the 
fishery.

It is now well known from simple models following (Gordon, 
1954) that in pure open access fisheries, rent is dissipated. However, 
such models only consider states of biological and economic equi-
libria in a self-sustaining, uniformly distributed, fishing ground and 
do not include the possible effects of spatial diversity. Some argue 
that models that take into account spatial heterogeneity will be more 
successful than more aggregated and simplified models in studying 
economic activities (such as economically motivated fleet behaviour) 
(Sanchirico & Wilen, 1999).

The development of fishing effort over time can be seen as a 
function of the economic performance of the fleet (Smith, 1969). 
However, within a shorter time frame, when the level of effort is 
fixed, the fleet needs to decide how to use the fishing capacity, as 
well as when and where to carry out fishing activities (Hilborn, 1985). 
A fleet does not deploy an uniform distribution of effort: in order to 
maximize its benefits (Caddy, 1975), a fleet efficiently targets areas 
believed to contain larger biomasses. In multi-patch frameworks, ef-
fort has been modelled heterogeneously over the fishing ground as 
proportional to local catch per unit of effort (CPUE) (Caddy, 1975), 
sequential allocation of effort to the unit with the highest catch rate 
(Hilborn & Walters, 1987), and using a concentration parameter 
linked to catch rates, fishers' objectives, economic factors, and avail-
able information (Walters et al., 1993).

When modelling the spatial distribution of effort, the process of 
discovering fishing grounds is sometimes explicitly included. Allen 
and McGlade (1986) identify two types of fishers, differing in their 
appetite for risk. A Cartesian will only consider fishing at fishing 
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grounds known to be the valuable, while a stochast will take the risk 
of exploring new fishing grounds (Allen & McGlade, 1986). In a sce-
nario with only Cartesians, Allen and McGlade, (1986) find that the 
fleet will end up exploiting only a small fraction of the total area, 
resulting in a relatively small fleet and low catches, while the be-
haviour of a stochast in the long run will be beneficial for all. Hilborn 
and Walters (1987) allocate the lesser part of the fleet's annual fish-
ing effort to the exploration of unknown areas, in order to uncover 
the potential of different fishing grounds, using the new information 
when allocating the remaining effort to the most promising fishing 
grounds.

This paper presents several simulations inspired by the develop-
ing snow crab fishery. In the simulations, we enter at an early stage 
of the crab invasion and thereby also the fishery. The aim of the sim-
ulations is to examine how the fleet dynamics affect the biological 
and economic dynamics of the fishery. The method applied is pre-
sented in the next section along with the model including environ-
mental, biological and economic factors affecting the habitat of the 
snow crab, the development of its population and the dynamics of 
the fishing fleet.

2  | METHODS AND DATA

2.1 | Environmental carrying capacity for the snow 
crab

The environmental model employed in this study is constructed in 
order to map the suitable habitat for the snow crab population in the 
Barents Sea. A crucial element of the modelling process has been 
to take into account the fact that the Barents Sea seabed is not ho-
mogeneous, that is, recognizing that some areas are more suitable 
than others for the snow crab. The model is built upon an i × j lat-
tice where each cell represents a specific geographic area within the 
Barents Sea. Each cell may sustain a snow crab biomass up to a cell-
specific carrying capacity level.

The suitability of a habitat for the snow crab is a function of its 
preferred ocean depths and temperature range (Agnalt et al., 2011; 
Anon., 2017). We assume that the suitability of a habitat, that is an 
area providing a positive snow crab carrying capacity, is fully deter-
mined by these two variables. Thus, for a cell to provide a positive 
carrying capacity for the snow crab, it has to be within a certain 
range of both ocean depth and average temperature.

The bottom temperatures and ocean depths are provided by the 
SinMod model (Slagstad et al., 2015), which has a spatial resolution 
(grid) of 20 times 20 km in the Barents Sea. The average depth of the 
ocean in cell (i, j) will be denoted by Di,j, and its average temperature 
by Ti,j. The depth function depthi,j(Di,j) represents a binary number 
assumed to be a habitat switch factor for the possible presence of 
crab (1) and its absence (0), depending on the average depth (in me-
tres) of cell (i, j), as illustrated in Figure 1. The annual average bottom 
temperature Ti,j of cell (i, j) is calculated from the monthly averages 
of 2016 and measured in degrees Celsius. We consider a scale for 
the suitability of this habitat, from a minimum of 0 (not suitable) to a 
maximum of 3 (perfect), as illustrated in Figure 1.

The carrying capacity of cell (i, j) is defined as a function of the 
habitat factors depth and temperature. It is a normalized product of 
depthi,j and tempi,j. With m and n representing the maximum number 
of cells in each direction, it can be expressed as follows:

The normalization arranges that the sum of the carrying capac-
ities of all cells 

∑n

i=1

∑m

j=1
capi,j = 1. Cell (i, j) is defined as habitable 

when capi,j > 0, with a relative carrying capacity given by the value 
of capi,j. In Section 2.6, the normalized carrying capacities are scaled 
by a factor K (the environmental carrying capacity of the snow crab 
in the Barents Sea in terms of crab biomass) to reflect the carrying 
capacities in terms of the maximum crab biomass each cell can sus-
tain. Figure 2 displays how the distribution of cell carrying capacities 
within the geographical area is based on bathymetrics and the av-
erage bottom temperatures in 2016. The figure illustrates how the 
local carrying capacities are heterogeneously distributed over the 
area.

2.2 | Biological growth and spatial distribution

We assume the biological dynamics of the Barents Sea snow crab 
population to be described by a surplus production model that in-
cludes biomass diffusion, providing the spatial distribution of bio-
masses in the i × j lattice. A constant per period growth rate g is 
assumed, while natural mortality triggers a local collapse when the 
specific maximum biomass level of each cell is exceeded. The dis-
crete redistribution of biomasses assumes a Moore neighbourhood 

(1)capi,j(Ti,j ,Di,j) =
tempi,j(Ti,j) ⋅ depthi,j(Di,j)∑n

i=1

∑m

j=1
tempi,j(Ti,j) ⋅ depthi,j(Di,j)

F I G U R E  1   The values for depth (to the 
left) and temperature (to the right) that 
are assumed to be suitable to be a habitat 
for snow crab. For a cell to provide a 
positive carrying capacity for snow crab, it 
has to be within both ranges
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of range 1, as indicated in Figure 3. The redistribution of the biomass 
bi,j,t contained in cell (i, j) at time t is modelled by CCA rules. Each 
period includes a surplus growth of biomass before the new biomass 
is redistributed between the neighbouring cells and the cell itself, as 
indicated in the right-hand panel of Figure 3.

After the redistribution of cell biomass, the fractional part of the 
ratio bi,j,t∕capi,j is retained in the cell. Hence, when bi,j,t exceeds the 
capacity level capi,j, the biomass is reduced accordingly, reflecting 
how natural mortality is implemented in the CCA model. The com-
bined growth, recruitment, mortality and distribution determine the 
crab biomass of each cell at time t + 1. Hence, the biomass is given 
as a function of (1) the cell's biomass at time t, (2) the biomasses of 
the neighbouring cells, (3) the diffusion properties, (4) the growth 
rate and (5) the carrying capacities of each cell. This study assumes 
an absorbing boundary, meaning that the biomass dispersed from a 

habitable area into a non-habitable area will disappear, that is it will 
experience 100% mortality.

During the early benthic stages, the snow crab is presumed to be 
stenothermic, where early juvenile instars are found to prefer tem-
peratures in the range between 0°C and 1.5°C (Dionne et al., 2003). 
This sensitivity can affect the ability of the species to reproduce in 
an area. Therefore, growth is only implemented in cells with tem-
peratures between 0°C and 1.5°C.

The total crab biomass within all cells in period t, Bt, is given by 
summing

where bi,j is the biomass of cell (i, j).

(2)Bt =

n∑
i=1

m∑
j=1

bi,j,t

F I G U R E  2   Distribution of normalized 
carrying capacities of snow crab in the 
Barents Sea, according to Equation (1) on 
the basis of SinMod data from 2016. Dark 
brown indicates land areas. The legend 
to the right refers to the value of the 
normalized carrying capacity of one cell. 
Also shown is how each cell’s coordinate 
is defined by the value of (i, j). Note that 
some areas outside the Barents Sea that 
belong to the Kara Sea are also included 
and have positive carrying capacities 
given the assumption of the model

F I G U R E  3   With one biomass unit in 
the middle cell to the left (step 1), the 
biomass distribution to the neighbouring 
cells in the next time step (assuming a 
Moore distribution of range 1) follows 
a diffusion matrix, M, calibrated by the 
POM approach, as shown by the value of 
each cell to the right (step 2)
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2.3 | Spatial distribution of fishing activity

Fishers must continually decide how the fishing effort is to be spa-
tially distributed. In this developing crab fishery, we assume the 
fishing effort to be distributed both in areas where earlier fishing 
activities have taken place and in new fishing grounds. Hence, there 
are two distinctly different sets of lattice cells exposed to fishing 
effort: one where earlier fishing has occurred, and another set of 
previously unexplored cells.

Let Ht and Ut be two binary i × j matrices representing previous 
fishing activities in the i × j lattice at time t. If effort was distributed 
in cell (i, j) of matrix Ht earlier, the entry hi,j,t of Ht equals 1, but 0 if 
not. Similarly, with reference to Ut, ui,j,t equals 1 if this is the first time 
period, fishing takes place in the cell, but 0 if not.

The total number of cells where fishing takes place at time t is there-
fore given by the sum of the two matrices, (

∑n

i=1

∑m

j=1
(ui,j,t + hi,j,t)) .

We assume the fleet assigns a certain share, at, of its total fishing 
effort, Et, at time t to exploratory fishing. The remaining share of 
effort, (1-at), is allocated to already explored grounds. Fishing effort 
in previously explored cells is assumed to be distributed according to 
the first case of Equation (3):

The fishing effort placed in previously explored cells (defined by 
H) depends on (1) the density of biomass in each cell, (2) the value of 
the concentration parameter d, (3) the share of fishing effort placed 
in previously unexplored cells a and (4) the total fishing effort allo-
cated to the crab fishery E. If d = 0, the total fishing effort of these 
cells, (1 − a)E, is uniformly distributed in the cells defined by H. If 
d = 1, the distribution of effort is proportional to the distribution of 
biomass in the cells; and if d > 1, the concentration in cells with the 
highest biomass density increases by the value of d, in agreement 
with Caddy (1975) and Walters et al. (1993).

The second rule provided in Equation (3) expresses how fishing ef-
fort is distributed in previously unexplored cells. We assume that the 
expectation of obtaining a harvest in an unexplored area, defined by U
, is equal for all these cells. Hence, the total fishing effort allocated to 
exploratory fishing, a ⋅ E, is assumed to be uniformly distributed over 
those cells where fishing is taking place for the first time.

2.4 | Dynamics of exploring new fishing grounds

We assume that the crab fleet has the necessary basic knowledge 
about the crab's habitat preferences to exclude all cells without 
living conditions for crabs. We further assume that as long as the 
fishery is still developing, there will always exist unexplored areas. 

Hence, the fishers must choose which of these areas they want to 
explore at any time during the development.

Let Rt be a binary i × j matrix reflecting the remaining unexplored 
cells in the i × j lattice at time t. If the cell (i, j) remains unexplored at 
time t, ri,j,t equals 1, 0 if not. Rt therefore defines the cells remaining 
unexplored at time t. Initially, at time t = 0, all cells having positive crab 
carrying capacity remain unexplored, as expressed by Equation (4)

The fishers are assumed to expand the fishing ground by expand-
ing the already explored area at any time. Hence, we assume that 
only cells adjacent to already explored cells are considered for explo-
ration. The rationale behind this is the assumption that fishers con-
tinually perceive the potential of unexplored fishing grounds next 
to the area they already are exploiting. These cells define the binary 
i × j matrix R′

t
, where each cell with value 1 is a subject for exploration 

at time t. If the cell (i, j) at time t remains unexplored (defined by Rt ) 
and is located next to an already explored area (defined by Ht), r′i,j,t 
takes the value 1 and 0 otherwise.

The number of cells subject to exploration selected by the fishers 
will depend on the anticipated potential of each cell relatively to the 
assumed potential in the already explored areas, in addition to the 
aptitude of the fleet and its willingness to take risks. In order to op-
erationalize the exploration process, we introduce a measure of the 
assumed potential in the already explored area, referred to as the 
Threshold Level of Biomass (TLOB), defined by

where n is the total number of rows and m is the total number of col-
umns in the lattice. Equation (5) expresses TLOB as the sum of the bio-
mass bi,j,t in every cell within set H at time t raised to the d th power, 
corresponding to Equation (3), where increasing values of d increase 
the fleet's ability to identify cells of high biomass density in the already 
explored areas. By including the term hi,j,t, we specify that only ex-
plored cells are given positive weights, that is, have an effect on TLOB . 
Hence, TLOB represents the density of crabs the fleet expects to find 
when fishing in an explored area.

We define two types of exploration strategies, one rational and 
one irrational, reflecting different scenarios for the fleet's willing-
ness to take risks. In the rational strategy, a cell subject to explora-
tion will be explored if the anticipated size of the crab biomass in the 
cell exceeds TLOB. In the irrational strategy, the cell will be explored 
if the anticipated biomass level exceeds 50 per cent of TLOB. We 
also specify two branches of each strategy, assumed to reflect dif-
ferent scenarios of the fleet's aptitude.

(3)ei,j,t(hi,j,t , ui,j,t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

bd
i,j,t

⋅hi,j,t∑n

i=1

∑m

j=1
bd
i,j,t

⋅hi,j,t
⋅ (1−at) ⋅Etwhenhi,j,t =1

at ⋅Et∑n

i=1

∑m

j=1
ui,j,t

whenui,j,t =1

0otherwise

(4)ri,j,t=0(capi,j) =

⎛
⎜⎜⎝
1, whencapi,j >0

0, otherwise

(5)
TLOBt =

n�
i=1

m�
j=1

�
bi,j,t ⋅

bd
i,j,t

⋅hi,j,t∑n

i=1

∑m

j=1
bd
i,j,t

⋅hi,j,t

�

=

n�
i=1

m�
j=1

b1+d
i,j,t

⋅hi,j,t∑n

i=1

∑m

j=1
bd
i,j,t

⋅hi,j,t
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In the Rational FI and Irrational FI strategies, the fleet receives full 
information of the state of the crab stock in the adjacent unexplored 
cells: they are able to successfully determine the biomass level in 
an adjacent unexplored cell. The strategies where the fleet only has 
limited information are denoted by Rational LI and Irrational LI, where 
the fishers are, with equal probability, able to anticipate the biomass 
level in an adjacent unexplored cell to be in the interval of ±100 per 
cent of the actual biomass level.

These strategies enable us to specify under which circumstances 
exploration is allowed to take place, by linking the decision to the 
available biomass in the explored areas, taking into account the fact 
that it is not a forgone conclusion that the fleet will carry out any 
exploration. The aim is to add credibility to the fleet's reasoning in 
the exploration process by preventing clearly unrealistic behaviour.

Hence, for a given strategy, ui,j,t is given the value 0 or 1 in period 
t according to the following rules:

where X is a random number between 0 and 2.
If ui,j,t equals 1, then cell (i, j) in the lattice is chosen by the fish-

ers to be explored at time t. The term r′
i,j,t

 specifies that only cells 
subject to exploration at time t may be chosen. When the fleet has 
decided which areas to explore, it also needs to set aside a share of 
effort for the exploratory fishing. We assume that the proportion 
of effort used for exploratory fishing at time t is given by the ratio 
between the number of cells where exploratory fishing will be per-
formed and the total number of cells where all fishing activities will 
be performed. at is therefore defined by

where n is the total number of rows and m is the total number of col-
umns in the lattice. If no cells subject to exploration are found to meet 
the criterion for being explored (

∑n

i=1

∑m

j=1
ui,j,t = 0), the total fishing 

effort will be distributed over the already explored cells. This criterion 
may cause some cells to remain unexplored at the end of the simulation 
period.

The number of remaining unexplored cells (defined by R) dimin-
ishes over time by cell exploration according to

The percentage of the carrying capacity the fleet has revealed at 
time t is expressed as

where n is the total number of rows and m is the total number of col-
umns in the lattice.

One last scenario is added for the sake of comparison: The Fully 
Explored scenario assumes the fleet to have explored all cells in ad-
vance and therefore do not need to start exploration.

2.5 | Harvesting economics

The harvest, yi,j,t, captured in cell (i, j) at time t, when the density of 
biomass is bi,j,t and the fishing effort equals ei,j,t, is given by the Cobb–
Douglas equation

where q is the catchability coefficient while � is interpreted as the out-
put elasticity of biomass. Thus, a change of one per cent in the biomass 
b results in a corresponding � per cent change in the harvest. Eide et al. 
(2003) argue that active gears or gears attracting fish by bait will have a 
value of � below one, and found that the � of the Barents Sea cod trawl 
fishery was just above 0.4. In the snow crab fishery, pots are applied, 
designed to lure crabs with bait into the pots, suggesting a � below one.

The total harvest at time t is given by

where n is the total number of rows and m is the total number of col-
umns in the lattice. The abnormal profit �t in period t is given by

where the price p is the unit price of harvest (Yt), and the unit cost of 
effort Et, including opportunity cost, is c. Economic performance is 
measured in terms of abnormal profit, �, which determines the evo-
lution of effort. When 𝜋 > 0, more participants are encouraged to 
join the fishery and when 𝜋 < 0, fishers will start leaving the fishery. 
The evolution of effort over time (increasing, decreasing, or steady 
state) is modelled according to the principles used by Smith (1969), 
defined by

� being a constant stiffness parameter controlling the speed 
of changes in fishing effort due to changes in the abnormal profit. 

(6)ui,j,t

�
r�
i,j,t
, bi,j,t

�
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
1, when r�

i,j,t
⋅bi,j,t >TLOBt

0, otherwise
for RationalFI

⎛⎜⎜⎝
1, when r�

i,j,t
⋅bi,j,t >

TLOBt

2

0, otherwise

for IrrationalFI

⎛
⎜⎜⎝
1, when r�

i,j,t
⋅X ⋅bi,j,t >TLOBt

0, otherwise
for RationalLI

⎛
⎜⎜⎝
1, when r�

i,j,t
⋅X ⋅bi,j,t >

TLOBt

2

0, otherwise

for IrrationalLI

(7)at =

∑n

i=1

∑m

j=1
ui,j,t∑n

i=1

∑m

j=1
hi,j,t +

∑n

i=1

∑m

j=1
ui,j,t

(8)Rt = Rt−1 − Ut−1

(9)rev_capt =

(
n∑
i=1

m∑
j=1

capi,j,t ⋅ (hi,j,t + ui,j,t)

)
⋅ 100

(10)yi,j,t(ei,j,t , bi,j,t) =

⎧
⎪⎨⎪⎩

q ⋅ei,j,t ⋅b
𝛽

i,j,t
when bi,j,t ≥q ⋅ei,j,t ⋅b

𝛽

i,j,t

bi,j,t when bi,j,t <q ⋅ei,j,t ⋅b
𝛽

i,j,t

(11)Yt =

n∑
i=1

m∑
i=1

yi,j,t

(12)�t = p ⋅ Yt − c ⋅ Et

(13)ΔEt = � ⋅ �t−1,
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Equation (13) shows that the change in effort in period t is propor-
tional to the abnormal profit in period (t − 1).

2.6 | Model validation and parameter settings

In order to make a representative model of the developing snow 
crab fishery, the model and the model parametrization have to be in 
line with the observed characteristics of the fishery. Therefore, the 
model has been calibrated using a pattern-oriented modelling (POM) 
approach. In general, the main object of POM is to use the observed 
patterns (in the actual fishery) to guide the design of the model de-
scribing the system (Grimm et al., 2005). A pattern is a characteristic 
of the system and can be interpreted as an indicator of the underly-
ing structure and processes of the system (Grimm et al., 2005). In our 
study, two patterns have been used to calibrate the model.

The first pattern consists of the observed CPUEs revealed 
during the fishing activity in the Loophole from 2014 to 2016. The 
snow crab fishery started in the Loophole, and to a large extent, all 
fishing activities took place in this area during this period of time 
(Hogrenning & Henriksen, 2021). The observed CPUEs are calculated 
using the same data material and method as outlined in Hogrenning 
and Henriksen (2021). The data are based on the electronic report-
ing systems and are publicly available (Anon., 2019c), administrated 
by the Norwegian Directorate of Fisheries. In Hogrenning and 
Henriksen (2021), the CPUE is calculated as the ratio of the annual 
harvest with the number of pots used in the harvest operations. 
Hence, the number of applied pots is used as a measure of effort. 
The same method has been adopted here in calculating the CPUE, 
while the calculations are monthly instead of annual.

The data material only covers observations of harvest operations 
carried out by Norwegian vessels and therefore only represents a 
share of the total operations carried out by the vessels from all the 
nations involved. We therefore assume the calculated values of the 
CPUE for 2014–2016 to be valid for all vessels and the harvest and 

effort levels of the Norwegian vessels to be proportional to the total 
harvest and effort levels of each month. In the following, the coeffi-
cient of proportionality is denoted by pp.

Table 1 (Table A1) in Anon. (2019a, p. 6) shows the total annual 
harvest, grouped by the different nations involved in the fishery. For 
the years 2014–2016, we calculate the annual pp as the ratio be-
tween the annual Norwegian harvest and the annual total harvest, 
using the values in the table. We calculate the annual pp s in the 
absence of monthly observations of the total harvest levels. The ob-
served CPUEy,mo for month mo in year y is therefore given by

where the subscript N refers to the harvest and effort levels of 
Norwegian vessels only. The hat operator indicates that the value is an 
estimate of the actual value. The value of êffort in month mo in year y 
is given by

In the simulation, we instruct the fleet to execute the observed ef-
fort levels in an area designed to be a discrete spatial representation of 
the Loophole area. The simulated CPUE subsequently were compared 
to the observed CPUE. The Euclidean distance between the two was 
calculated based on the periodic differences of the two time series. A 
relatively low absolute value of the Euclidean distance suggests a good 
fit. Note that there were some fishing activities within the Loophole 
area before 2014, and some fishing activities outside of the Loophole 
in 2016, but only to a modest extent. This implies that the simulated 
level of effort executed in the Loophole does not fully reflect the actual 
fishing activities within the area during the given period. This is also 
visible in Figure 4, which shows the fishing activities by the Norwegian 
vessels during 2014–2016 and the geographical range of the Loophole.

(14)̂CPUEy,mo =
̂harvesty,mo

̂efforty,mo

=
ppy ⋅ harvestN,y,mo

ppy ⋅ effortN,y,mo

(15)̂efforty,mo = effortN,y,mo ⋅ ppy

Parameter Value Description Section POM

g 0.05 Growth rate 2.2, 2.6 Yes

d 1 Concentration parameters 2.3 No

K 950,000 The total capacity (tonnes) 2.6 Yes

M (Figure 
3)

Diffusion matrix 2.2, 2.6 Yes

q 0.0001 Catchability coefficient 2.5, 2.6 Yes

β 0.9 Output elasticity of biomass 2.5 Yes

p 50 Unit price of harvest (NOK) 2.5 No

c 193 Unit cost of effort (NOK) 2.5 No

γ 0.00015 Stiffness parameter 2.5 No

pwh 758 Number of periods conducted before the harvest started 2.6 Yes

T 2,000 The total number of periods conducted 2.6 Yes

Note: The POM column specifies if the parameter value is an outcome from the POM procedure 
(Yes) or obtained from another source (No). The column section gives a reference to the section(s) 
in the paper where the parameter is described.

TA B L E  1   Parameter values for the 
selected simulation providing the best fit
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The second pattern used in carrying out the POM is a map rep-
resenting the spatial distribution of crabs at a specific point in time. 
The map is based on an ecosystem survey performed in 2013, il-
lustrated in figure 3.4.2 (Figure A.1) in Anon. (2016, p. 74). This fig-
ure was visually compared with the simulated spatial distribution of 
crabs for the same time period. The simulated spatial distribution of 
crabs is depicted in the panel t = 758 in Figure 5. The visual evalua-
tion was performed by searching for the simulation that had the best 
fit to the observed pattern.

The POM approach was operationalized to calibrate the model:

1.	 A random sample from a distribution of reasonable values was 
drawn for each of the following ranges of parameter values:
	-	 Growth rate: 0.01 < g < 0.2. The net growth is determined by 

the spatial diversity in the growth, diffusion, local collapses, 
and an absorbing boundary. Hence, the lump-based growth 
rate represented by g is not easily identified, and therefore, a 
relatively wide range was used. The lower limit is the lowest 
growth rate found to facilitate a sustainable level of biomass 
in the absence of fishing mortality.

	-	 Catchability coefficient: 0.0001 < q < 0.01. q can be interpreted 
as the probability of any crab in a given cell being caught by 
one pot during one time step. There are no good indications 
for the possible values of this parameter, and therefore, a rel-
atively wide range has been investigated.

	-	 The total capacity of the system: 700, 000 tonnes < K < 1, 680, 000 
tonnes. Estimated probability densities for the snow crab capac-
ity in tonnes/km2 based on the Canadian snow crab stock are 
presented in Figure 5 (Figure A2) in Anon. (2019a). The figure 
depicts values in the interval of 0.5–1.2 tonnes/km2 as the most 
likely values. The values within this range are scaled according 
to the size of the Barents Sea (about 1, 400, 000 km2) and used 
as the range of possible values of the total carrying capacity.

	-	 The diffusion matrix M defines the redistribution of biomasses 
at the cell level. Observations of movements of the snow crabs 
are used as the basis for creating the diffusion matrix. Nichol et 
al. (2017) have estimated the rates of movement for a sample 
of snow crabs in the Bering Sea using data storage tags. The 
values in the column labelled ‘Mean distance per day’ (km) in 
Table 1 (Table A2) in the referred study is used. We further ag-
gregate these values into monthly values. For each simulation, 
we randomly drew a subset of 50 per cent of these values. The 
sample was divided into two parts. The share of values below 
20 km represents the share of crabs remaining in the cell, while 
the rest are equally divided between the neighbouring cells.

	-	 The output elasticity of biomass: 0.1 ≤ � ≤ 1. From the argu-
ments given above, � is expected to be a positive value below 
one and all realistic values are covered by the assumed range.

	-	 Number of periods without a harvest: 240 < pwh < 960, from 
the start of the invasion until the observed effort levels were 

F I G U R E  4   The observed distribution 
of fishing effort from the Norwegian 
vessels up to 2017. The Loophole is the 
area represented by light grey. Black 
colour indicates land areas. We observe 
that fishing is taking place both inside and 
outside of the Loophole. The Norwegian 
vessels only amount to a minority of the 
total fishing activities
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implemented. The unit of time is the month, which is the unit 
used for the variable t throughout the present paper.

2.	 At time t = 1, one unit of biomass (1 kg) is released into the area of 
the Goose Bank, representing the start of the snow crab invasion, 
and a simulation is run based on a random sample of parameter 
values.

3.	 The number of simulated time periods without a harvest is de-
fined by the value of pwh, after which the observed effort is im-
plemented in the discrete spatial representation of the Loophole 
for the following 36 periods.

4.	 The Euclidean distance is calculated based on the periodic differ-
ences between the simulated and the observed CPUE.

5.	 Steps 1-4 were repeated 10,000 times and the 10 simulations pro-
viding the shortest Euclidean distance were selected for further 
inspection.

6.	 A subjective expert evaluation was conducted on the basis of the 
10 selected simulations in order to identify the one with the best 
fit to the second pattern. The chosen simulation was selected as 
the base simulation for further studies of the development of the 
snow crab fishery.

The economic parameters are not included in the POM approach 
but obtained from other sources. The unit price of harvest and explicit 
unit cost of effort have been estimated to be 50 NOK/kg and 193 NOK 

F I G U R E  5   Snapshots of the distribution of snow crabs in the Barents Sea at different stages during the simulated invasion. Dark brown 
indicates land areas while white represents sea areas not occupied by the crabs. The remaining colours indicate the density of crab: more 
intense colours indicate higher densities. The representation of the Loophole is the polygon sketched by black lines. The lower panel shows 
the simulated and observed values of CPUE
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per pot (Hogrenning & Henriksen, 2021), and we use these values for 
p and c. In the simulations, the stiffness parameter (see Equation 13) 
has been set to � = 0.00015, determining the speed of fleet dynamics.

The parameter values of the selected simulation providing the 
best fit to the observed data are listed in Table 1. Figure 5 provides a 
visual representation of the chosen simulation in selected periods. We 
see that the fishing has affected the density of the crabs in the area 
where the fishing took place. The lower panel in Figure 5 shows the 
simulated and observed values of CPUE during the period of fishing.

3  | RESULTS

Figure 6 displays the simulated development of effort devoted to ex-
ploratory fishing (a) and the number of explored cells for a fleet conduct-
ing a Rational FI and Irrational FI exploration strategy. Starting at time 
t = 759 and continuing for 36 time periods, fishing is allowed to occur 
in the model's discrete representation of the Loophole. The number of 

explored cells is shifted upwards by the number of habitable cells in this 
area. This event represents the historic fishing activities taking place in 
the Loophole from 2014 until the end of 2016. After this phase is fin-
ished, we allow the fleet to start exploring areas outside the Loophole. 
From time t = 795 and onward the different strategies are mapped by 
different scenarios, differing both in terms of the share of effort devoted 
to exploratory fishing and the development of explored cells.

In the Irrational FI scenario, we observe that a relatively large share 
of the fishing effort is placed into exploratory fishing during some stages 
of the development. Hence, a large number of new cells are being ex-
plored. The development in the number of explored cells is characterized 
by periods of intensive exploration, interrupted by periods of almost no 
exploration. The first occurs as exploration is allowed to be carried out; 
additionally, there are three phases of exploration occurring around times 
900, 1,150 and 1,500, before exploration of new areas comes to an end.

In the Rational FI scenario, a relatively low number of cells are 
explored compared to the Irrational FI strategy. However, in the 
Rational FI scenario there are no further phases of exploration after 

F I G U R E  6   The top figure shows 
the cumulative number of explored 
cells 

∑n

i=1

∑m

j=1
(ui,j,t + hi,j,t) and the 

bottom figure shows the exploration 
rate (at) at time t. The figure shows the 
development from time period t = 759 
and onwards. The grey background colour 
indicates the phase of the historic fishing 
activities taking place in the Loophole 
from 2014 until the end of 2016. The 
white background colour indicates the 
simulated further development of the 
fishery depending on the fleet’s strategy. 
The dark colour indicates the Irrational FI 
scenario, and the grey colour represents 
the Rational FI scenario

F I G U R E  7   The solid lines represent the levels of biomass, fishing effort, harvest, abnormal profit and threshold level of biomass (TLOB) 
in the two scenarios. In the Irrational FI scenario, the figure representing TLOB also includes a dotted line. This line represents the biomass 
level required in an unexplored cell in order for it to be explored. In the Rational FI scenario, this level coincides with the level of TLOB and 
the line is therefore not visible
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the second phase. In order to verify that exploration did not restart 
after 2,000 time periods, we ran both simulations for another 3,000 
time periods without obtaining any new areas being explored.

Figure 7 shows that both systems appear to approach a bioeco-
nomic equilibrium as the simulations move towards the final period. 
The Irrational FI strategy appears to be stabilizing at a higher level of 
harvest and effort and at a lower level of snow crab biomass than the 
Rational FI strategy does. It also shows what appears to be a correlation 
between the aggregate levels of biomass and the TLOB , which is de-
termined by the biomasses of the explored cells and consequently is a 
function of the combined biological and economic dynamics reflected 
in fluctuations over time. A correlation is therefore to be expected. A 
reduction in TLOB may change the status of an unexplored cell from 
not being qualified for exploration to being qualified, and vice versa, 
according to (6). The figure shows that the biomass level required in an 
unexplored cell in order for it to be explored is on average substantially 
lower in the Irrational FI scenario than in the Rational FI scenario.

The plots of harvest, abnormal profit and TLOB in Figure 7, show 
what appear to be irregular positive shifts in the Irrational FI scenario. 
These shifts coincide with periods of large scale exploratory fishing 
and are visible around times 1,150 and 1,500 and occur at low levels 
of TLOB. This indicates that exploratory fishing starts when the har-
vest potential in the explored areas is relatively low, and that newly 
explored areas contribute to increased harvest and profit.

We now include the Fully Explored scenario, where we assume the 
fleet to have explored all cells in advance and there is nothing more 
to explore. This unlikely scenario is added for the sake of comparison. 
Table 2 includes figures displaying the spatial distribution of the snow 
crab fishery in the Barents Sea area in the cases of the three scenarios. A 
much higher share of the habitat is explored by conducting an Irrational 
FI strategy (56.7%) than by a Rational FI strategy (31.2%) (Table 2). 
However, the Irrational FI strategy also leaves a large share of the cells 
unexplored. It should be noted that the Fully Explored strategy also leaves 

some habitable cells unexplored (0.8%). This is due to the fact that some 
habitable cells are disconnected from the main area and consequently 
could not be occupied by snow crab, given the assumptions in our model.

These differences in the explored shares of the habitat have conse-
quences for the levels of the harvest and effort. The values do not differ 
substantially between the Irrational FI and the Fully Explored scenarios. 
The Fully Explored scenario achieves an annual harvest around 89,000 
tonnes of biomass by employing around 16,500 thousand pots, while 
the Irrational FI scenario achieves an annual harvest around 79,000 
tonnes of biomass by employing around 14,300 thousand pots. In the 
Rational FI scenario, the levels of effort and harvest are substantially 
lower. The annual harvest is around 51,500 tonnes obtained by applying 
around 9,700 thousand pots. The results from the simulations show that 
a fleet employing an Irrational FI strategy will explore a larger number of 
cells and exploit a higher share of the habitat than a fleet employing a 
Rational FI strategy. Hence, the results suggest that a larger share of the 
habitat will be explored when the fleet is willing to take risks.

Table 3 presents the descriptive statistics for both branches (FI 
and LI) of the Rational and the Irrational strategies. The table shows 
that the LI scenario covers a higher percentage of snow crab popu-
lated cells than the corresponding coverage of the FI scenario. The 
maximum values in Table 3 reveal that the Rational LI scenario is 
capable of obtaining a distribution corresponding to the values ob-
tained in the Irrational LI scenarios. The results suggest that when 
the fleet is not able to fully determine the biomass level in adjacent 
unexplored cells, a larger share of the habitat will be explored.

4  | DISCUSSION

The model has been calibrated to represent the Barents Sea snow 
crab fishery by the use of a pattern-oriented approach. Although the 
model does not necessarily reflect all factors involved in the growth 

TA B L E  2   Final states of explored cells for the Rational FI, Irrational FI and Fully Explored scenarios

Rational FI Irrational FI Fully explored

Exploration rate: 31.2% Exploration rate: 56.7% Exploration rate: 99.2%

Effort = 9,703.6 Effort = 14,308.7 Effort = 16,422.1

Harvest = 51,524.1 Harvest = 79,128.6 Harvest = 89,414.2

Note: White indicates non-habitable cells. Light grey indicates habitable cells left unexplored in the scenario. Dark grey indicates explored habitable cells 
in the scenario. Black indicates land areas. The exploration rate refers to explored habitable cells as a percentage of all habitable cells in each scenario, 
calculated according to Equation 9. Effort (measured in thousands of pots per year) and harvest (measured in tonnes per year) are approximations of the 
equilibrium annual fishing effort and harvest. The two latter are averages over the last 500 time periods—in situations close to equilibrium.
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and distribution of the snow crab, it seems to reproduce the ob-
served patterns quite well. However, this is not a guarantee that the 
model will reflect future distribution patterns.

Our results confirm that different fleet strategies affect the fish-
ery both in short- and long-term perspectives. In both the Rational 
FI and the Irrational FI scenarios, the fleet explores areas east of the 
Loophole towards Novaya Zemlya and some areas northwest, to-
wards Svalbard, motivated by the potential harvest in these areas. 
The attractiveness of these areas is also apparent in Figure 2, re-
flecting the basic assumptions of habitat preferences. The majority 
of the cells with the largest capacities are located in an area of sev-
eral interconnected cells. This area includes the Loophole, where the 
fishery was located when the process of exploration started.

In the Rational FI scenario, the fleet does not discover clusters 
of high capacity areas located further away from the initial area. It 
appears that the unfavourable areas separating the areas of high bio-
mass carrying capacity might serve as barricades to exploration. This 
indicates that if the crabs are clustered together in areas separated 
by patches with lower amounts of crabs, the fleet might not iden-
tify these areas as long as the fleet behaves rationally. This will po-
tentially leave profitable areas unexplored and thereby leave dense 
areas of crab biomass unexploited.

When introducing a riskier exploration behaviour, the fleet also 
explores other areas of high capacity located further away from the 
initial area. The Irrational FI strategy is consistent with the definition 
Allen and McGlade (1986) give of a stochast, because the fleet risks 
deploying effort into unexplored cells with significantly lower bio-
masses than in the already explored area. This may lead the fleet to 
explore cells acting as gateways to more valuable fishing grounds, 
which would not be explored by a fleet employing a Rational FI strat-
egy. We also find that harvest and effort levels are closer to the lev-
els found in the Fully Explored scenario. This supports the findings 
of Allen and McGlade (1986), suggesting that a fishery will benefit 
in the long run from the behaviour of a stochast. Additionally, our 
results indicate that the long-run gains from the stochast's behaviour 
depend on the spatial heterogeneity in the distribution of the spe-
cies of target.

In the FI strategies, we give the fleet the ability to know whether 
or not an adjacent unexplored cell has a crab density surpassing what 

the fleet on average would locate by fishing in the explored area. 
This is a very strict and unrealistic assumption. However, the fleet 
is likely to formulate hypotheses about crab densities both in the 
areas where they are currently fishing and in unexplored neighbour-
ing areas, and explore accordingly. With the LI strategies, we allow 
the fleet to miscalculate the biomass level of unexplored adjacent 
cells by ±100 per cent. The LI scenarios, reflecting that these hy-
pothesis are correct to a varying degree, find a larger percentage of 
the habitat than their counterparts, the FI scenarios. Because of the 
limited information about the density of crabs in the unexplored area 
next to the known fishing grounds, the fleet unintentionally explores 
areas of lower density than anticipated, leading as pathways to more 
prosperous fishing grounds.

Limited information of the density of crabs in the unexplored 
grounds next to the explored grounds and an irrational behaviour 
contribute to identifying new fishing grounds to be exploited. 
Because both forces appear to contribute to exploration, it is dif-
ficult to attribute causation to a specific force when exploration is 
observed. This is in line with Branch et al. (2006), stating that it is 
difficult to identify risk-taking behaviour in a fishery. They claim that 
fishers may also have made a bad decision, had insufficient infor-
mation, or simply been unlucky. Of course, the two forces do not 
guarantee that all valuable fishing grounds will be explored, but our 
study suggests that both contribute to revealing larger parts of the 
dense area of snow crab. Different rules of irrational behaviour and 
fish-finding capabilities may change the magnitude of the effect of 
the particular force, without changing the implication of a combina-
tion of spatial heterogeneity and the two forces.

Our results emphasize the serious consequences of ignoring spa-
tial diversity when modelling fisheries. The distribution of carrying 
capacities is defined by the average depth and annual temperature 
within an area of 20 by 20 km. There may be a significant hetero-
geneity within each area. Models based on different spatial resolu-
tions may therefore find different distributions of the environmental 
carrying capacities for the snow crab. Modifications of the rules 
(Figure 1) defining the environmental carrying capacity will alter the 
distribution. The simulated development of the fishery could then 
change, but we still expect the interaction between the fleet dy-
namics and the spatial distribution of crabs to be important for its 
development.

In our model, we assume that once a fishing ground is ex-
plored the information describing the particular ground is com-
mon knowledge for the entire fleet the next period. Hence, we 
do assume that there are no competitive advantages for a partic-
ular vessel from discovering a fishing ground beyond the single 
period of the exploration. This is in conflict with Barney (1991), 
who argues that a firm can experience a sustainable competitive 
advantage by implementing a strategy that no other competitor 
is able to duplicate. However, the Norwegian statistics covering 
harvest operations (such as harvest rates and fishing locations) are 
with only few exceptions considered public information (Anon., 
2019b). Therefore, it is reasonable to assume that a strategy of 
fishing on a newly explored, particularly lucrative fishing ground, 

TA B L E  3   Descriptive statistics showing the exploration rates 
(percentage of the snow crab habitat explored by the fleet) in 
different scenarios

Scenario Mean SD Min Max N

Rational FI 31.2 31.2 31.2 1

Irrational FI 56.7 56.7 56.7 1

Rational LI 49.1 5.05 45.2 63.1 20

Irrational LI 63.0 0.20 62.6 63.3 20

Note: The statistics are obtained by running each scenario the number 
of times specified in column N. The exploration rates are presented in 
terms of average values of the runs (Mean), standard deviation (SD), and 
minimum (Min) and maximum (Max) values of all runs.



14  |     HOGRENNING and EIDE

can be followed by other vessels, and so it might be tempting for 
a vessel to refrain from exploratory activities and wait for others 
to explore an area. This observation may question to what extent 
we would expect to find vessels following the Irrational strategy. 
Therefore, we suggest that exploratory fishing is most prominent 
in times when the harvest rates in the explored areas are inade-
quate to facilitate profitability, leaving the vessels with no other 
options than exploring new areas if they want to earn profits (as-
suming the vessels to be reluctant to leave the fishery). If this is 
the case, the exploration of new areas will be a function of the 
profitability of the vessel. We have ignored differences in the cost 
of transportation to different fishing grounds, but we expect the 
fishers to explore fishing grounds minimizing the cost of trans-
portation all else equal. The model can be adjusted to incorporate 
the effect of transportation costs given the existence of such cost 
estimates. Another, potentially important, factor in the snow crab 
fishery is that we do not consider the potential unavailability of 
some fishing grounds due to environmental conditions, for exam-
ple, the presence of sea ice.

In this study, we focus on a fleet targeting a species expand-
ing its presence in a new area. The habitat distribution is assumed 
fixed and therefore only needing to be explored once. However, 
habitats are likely to change over time, making the process of dis-
covering lucrative fishing grounds a continuous effort for the fish-
ers. Annual bottom trawl surveys on the eastern Bering Sea (EBS) 
shelf indicate that this may be the case in the Bering Sea snow 
crab fishery. In the EBS, a cold pool of bottom water is formed by 
the seasonal melting of ice (Stabeno et al., 2001). Recently, a re-
duction in the range of the distribution of the snow crab has been 
associated with a reduction of this pool (Fedewa et al., 2020). In 
the northern Bering Sea (NBS), observations of snow crabs have 
historically been of sizes outside the scope of commercial value; 
however, a substantial increase in large size crabs has recently 
been observed, indicating the potential for a future commercial 
fishery in the NBS (Fedewa et al., 2020). In general, any species 
having a shifting habitat distribution over time is likely to contin-
ually generate the exploration and exploitation dynamics we have 
examined in this study.

Decisions about the management of fisheries are often based on 
historical data and catch records (Hilborn, 2012). Our results sug-
gest that fishery managers should be aware that the distribution of 
fishing effort only represents the discovered resource distribution. 
One implication of this is that any unexplored area could act as a un-
intended no-take zone and in this way decrease the risk of biological 
overexploitation. It also signifies the role surveys may play for fish-
ers as a source of information. In the model specifications, we have 
considered areas available for exploration to be limited to neigh-
bouring areas to those already explored. In practice, a non-adjacent 
unexplored area may be pinpointed for exploration due to by-catch 
observations or information from research activities, as was the 
case with the first observation of the snow crab in the Barents Sea 
in 1996 (Anon., 1997). Our model does not take into account the 
contribution of such events in identifying attractive fishing grounds. 

Hence, surveys can provide fishers with information that leads to a 
more complete exploration of a new fishery. However, observations 
from the Bering Sea snow crab fishery indicate that this role is not 
limited to new fisheries (Fedewa et al., 2020).

Management constraints could have influenced the development 
of the crab fishery in a number of ways. A regulation may limit both 
the exploitation area and the Total Allowable Catch (TAC). However, 
independently of the management regime, a spatial exploration of 
potential fishing grounds needs to take place. Our results suggest 
that exploration is often initiated when the biomass level is reduced 
in the explored areas. The TAC may serve to prevent biological over-
exploitation and hinder the exploration process at the same time as 
preventing biomass suppression in the explored areas. This shows 
how fishery management could alter the dynamics of exploration. 
Further studies should investigate the effect of different manage-
ment regimes on spatial exploration and the long-term exploitation 
in the crab fishery.

The Fully Explored scenario provides the open access levels for the 
simulated crab fishery given that the whole area is explored. It sug-
gests that the open access harvest level of the fishery is around 89,000 
tonnes per year. This result depends heavily on the assumptions of the 
model. However, the estimated open access harvest level is within the 
range of future harvest rates estimated by the Norwegian Institute 
of Marine Research. Their estimate is within the range of 50,000 to 
170,000 tonnes, acknowledging that this estimate is associated with 
a high degree of uncertainty (Anon., 2015). While this is a study of the 
Barents Sea snow crab fishery, our model also includes parts of the 
Kara Sea as a suitable habitat for the snow crab. This is consistent with 
recent findings of snow crabs in the Kara Sea (Anon., 2019a).

There are uncertainties related to the structure of the biological, 
environmental, and economic model, as well as its parameter values 
and initial conditions. Snow crabs have a life cycle involving a pe-
lagic larval phase and may therefore also spread by larval drift due 
to ocean currents (Siikavuopio et al., 2019). If this kind of dispersion 
is an important factor in creating the patterns we observe, we might 
have omitted an important element describing the spread. Even if 
we had included important elements describing the system, a larger 
number of simulations would be necessary to explore the entire 
parameter space of the model. The pattern-oriented modelling ap-
proach seems to be promising, as it produces comparable estimates 
and allows the inclusion of more patterns in the calibration process 
as more knowledge is gained and more observations are obtained.

5  | CONCLUSION

By using a cellular automata approach, it has been possible to model 
spatial diversity on a rather detailed scale. The interaction between 
the fleet dynamics and spatial distribution of the snow crab appears 
to be of great importance. Our study suggests that the most lucrative 
fishing grounds for snow crab are heterogeneously distributed over 
the Barents Sea, separated by patches of lower densities. The fleet 
dynamics affects which fishing grounds are explored and exploited. 
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We consider the findings to also have implications for how to model 
other fisheries where the species are heterogeneously distributed. 
Further studies should aim at validating this finding by incorporat-
ing different scenarios of fleet dynamics. For instance, we suggest 
having the exploration dynamics depend on the profitability of the 
fishery, influenced by information from other sources and a spatially 
distributed cost structure. Further research should also look more 
closely at the development of a new fishery under various regula-
tory measures.

Although our model represents a new fishery, we anticipate the 
exploration and exploitation dynamics also to be present in mature 
fisheries where the species of interest reallocates itself over time. 
However, the fishers are likely to be in need of external information 
to ensure a more complete exploration of new fisheries and in order 
to stay updated on lucrative fishing grounds in existing fisheries. 
Information from surveys appears to be important.
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APPENDIX 1

F I G U R E  A 1   Map of snow crab 
distribution from the ecosystem survey 
reports for 2013 (Anon., 2016, p. 
74).

TA B L E  A 1   Norwegian quota recommendation, established quotas, and landings of snow crab (in tonnes) in the Barents Sea in the period 
2012 to 2020 divided by each nation. This table is the authors’ own translation of table 1 originally published in Norwegian in Anon. (2019a, 
p. 6)

Year
Recommended Norwegian 
Quotas (tons)

Quotas (tons) Landings (tons) Total 
landings 
(tons)Norway Russia Norway Russia EU countries

2012 - - 2 0 0 2

2013 - - 189 62 0 251

2014 - - 1800 4104 2300 8204

2015 - 1100 3482 8895 5763 18140

2016 - 1600 5290 7520 3690 16500

2017 3600–4500 4000 7840 3153 7780 2 10847

2018 4000–5500 4000 9840 2804 9728 - 12532

2019 3500–5000 4000 9840 3775* 9840 - 13615*

2020 <5500

*Data as of 19 November 2019.
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F I G U R E  A 2   Probability densities for carrying capacity (K) and maximum sustainable yield (MSY) in tons/km2 based on estimates for the 
snow crab population in Canada. This figure is the authors’ own translation of figure 5 originally published in Norwegian in Anon. (2019a, p. 
8).

TA B L E  A 2   Summary of the distances moved by morphometrically mature (Large-clawed) male snowcrab (Chionoecetes opilio) released 
with data storage tags in the eastern bering sea. Distances reflect across-shelf movements only, estimated for each crab as the daily change 
in bottom depth divided by the bottom slope (Nichol et al., 2017).


