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Abstract
Text classification is one of the widely used phenomena in different natural language processing tasks. State-of-the-art text

classifiers use the vector space model for extracting features. Recent progress in deep models, recurrent neural networks

those preserve the positional relationship among words achieve a higher accuracy. To push text classification accuracy

even higher, multi-dimensional document representation, such as vector sequences or matrices combined with document

sentiment, should be explored. In this paper, we show that documents can be represented as a sequence of vectors carrying

semantic meaning and classified using a recurrent neural network that recognizes long-range relationships. We show that in

this representation, additional sentiment vectors can be easily attached as a fully connected layer to the word vectors to

further improve classification accuracy. On the UCI sentiment labelled dataset, using the sequence of vectors alone

achieved an accuracy of 85.6%, which is better than 80.7% from ridge regression classifier—the best among the classical

technique we tested. Additional sentiment information further increases accuracy to 86.3%. On our suicide notes dataset,

the best classical technique—the Naı́ve Bayes Bernoulli classifier, achieves accuracy of 71.3%, while our classifier,

incorporating semantic and sentiment information, exceeds that at 75% accuracy.
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1 Introduction

Text classification is the task of organizing text documents

into pre-defined categories [1]. It is an important aspect of

data processing tomake data usable by humans and is used in

spam filtering [2], language identification [3], sentiment

analysis [4] andmany other areas. TheNaı́veBayes classifier

is a popular and effective algorithm for text classification

[5–7]. Other general classifiers can also be adapted for text

classification by using the vector space model [8]. Popular

general classifiers include support vector classifier [9] and

stochastic gradient descent classifier [10]. They work on the

basis of finding a hyperplane that best separates data points

from two classes. Their linear classifier variantworkswell on

text documents and often performs better than Naı́ve Bayes.

However, Naı́ve Bayes and vector space model discard the

position of words and cannot capture the relationship

between words. While n-words or n-grams can be used, they

cannot capture long-range relationships [11]. Latent

semantic indexing solves the problem through the applica-

tion of singular value decomposition [12].

A recent survey articles [13, 14] suggest deep neural net-

work is playing a vital role in recent language processing

tasks. The methods are successfully applied in many tasks

such as sentiment analysis, spamfiltering andmarketing. This

also leads us to use deep leaning in our method. Recently,

Jiang et al. [15] proposed a Focal Loss-based which is used in

sentiment analysis. Chatterjee et al. [16] extend similar task

into big data framework. Lu et al. use a bidirectional LSTM

[17]. A semantic-based feature selection model is proposed in

[2]. Associative rule-based systems are also achieved state-of-

the-art accuracy in sentiment classification [7]. It is noted that

new way of distance measurement can improve the classifi-

cation models [8].
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State-of-the-art techniques treat text as one-dimensional,

either as word–probability pairs in Naı́ve Bayes or as a

document vector (Fig. 1, existing method). To push text

classification accuracy even higher, two-dimensional doc-

ument representation, such as vector sequences or matrices,

should be explored (Fig. 1, proposed method). Many text

classification algorithms operate on document vectors. The

dimension of the vector needs to be kept low for better

generalization. Converting a document to fit a single low-

dimensional document vector necessitates discarding much

data. Positions, plurality and tenses of words are often

omitted.

We seek to overcome these limitations by representing a

document as a sequence of vectors instead. The state-of-

the-art recurrent neural network—long short-term memory

(LSTM) [18], will be used to build the classifier. Using a

sequence of vectors provides the flexibility to preserve as

much information from the original text as possible, and to

incorporate information from external databases to sup-

plement the text. We incorporate semantic information

from pre-trained GloVe vectors [19], and sentiment infor-

mation from SentiWordNet [20] to mirror the way human

comprehends text. A person goes through formal education

to learn the meaning of words. When he/she reads a doc-

ument, these learned meanings enable comprehension.

The overall aim is to reach a classification accuracy

beyond what the classic approaches are able to achieve.

Classic approaches include Naı́ve Bayes, support vector,

stochastic gradient descent, passive–aggressive, k-nearest

neighbour, Rocchio and ridge regression classifiers. We

experimentally proved that attachment of sentiment vector

(emotionally charged) and the accuracy of state-of-the-art

text classifiers perform better.

1.1 Background

The Naı́ve Bayes classifiers use the Bayes rule in com-

puting the probability that a document belongs to a class.

They assume that occurrence of each word is independent

of other words. They compute the probability

PðCkjw1; . . .;wnÞ / PðCkÞ
Qn

i¼1 PðwijCkÞ for each class C,

where wi is the ith word in the dictionary. Since multipli-

cation is commutative, word positions do not matter. A

document can be seen as a set of words, thus one-dimen-

sional. Support vector, stochastic gradient descent (SGD)

and passive–aggressive classifiers find the best separating

hyperplanes. A document thus has to be represented as a

point in multi-dimensional space (i.e. a vector) using these

steps:

1. The first step is to tokenize the document. A document

can be seen in its entirety, or as its sections,

paragraphs, sentences, words or characters. Since

words are the smallest unit that have meaning, most

classification works on the word level. For English

documents, one can extract words by breaking the

document at every occurrence of space, comma, period

and other word boundaries. Some tokenizers use more

complex algorithms to preserve hyphenated words,

such as ‘‘ice-cream’’, abbreviations, such as ‘‘don’t’’

and ‘‘U.S.’’, and non-words, such as ‘‘1/2’’, ‘‘john@ex-

ample.com’’ and ‘‘http://example.com’’. Some tok-

enizers preserve punctuations as well. English

tokenizers include the StandardAnalyzer in the Lucene

library [21] and the PTBTokenizer in the Stanford

Natural Language Processing library [22].

2. Stemming is then performed to turn the words into

their root forms, so as to discard the plurality and tense.

Stemming helps reduce the dimension of the document

vector. Stemming may use heuristics, such as in Porter

Stemmer [23], or morphology, such as in the Morphy

class in Stanford Natural Language Processing library

[24].

3. A dictionary is constructed by listing the unique words

in all the documents. A document is then represented

by a vector of dimension equal to the size of the

Fig. 1 Demonstration of the

proposed solution. We use

sentiment vector addition to the

word vector
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dictionary. The nth element in the vector corresponds to

the nth word in the dictionary. In the bag-of-word

(BoW) model, each vector element stores term fre-

quency, which is the number of occurrence of the

corresponding word in the document. However, it

assigns large numbers for these frequent words, such as

‘‘a’’ and ‘‘the’’, that do not carry much information,

skewing distance calculation between vectors. The

problem can be solved by dividing the term frequency

by the document frequency, where the document

frequency is the number of documents containing the

word. This yields the term frequency—inverse docu-

ment frequency (tf�idf) statistic. Using these vector

space models (BoW and tf�idf) discards the position of

the words in the document.

The k-nearest neighbour classifier also uses the vector

space model. It classifies a given point as the most fre-

quently occurring class among k-closest neighbours [25].

Rocchio classifier is the nearest centroid classifier with

special vector to represent documents. For each class, the

centroids (mean) of the labelled data points are computed.

A data point is then classified as the class with the nearest

centroid to the point [26]. Ridge regression classifier uses

ridge regression as a classifier. In standard regression, the

error function is JnðwÞ ¼ 1
n

Pn
i¼1ðy� wTxiÞ2: Ridge

regressions add a regularization factor to penalize nonzero

weights proportional to a shrinkage coefficient k, giving

JnðwÞ ¼ 1
n

Pn
i¼1ðy� wTxiÞ2 þ k wk k2. The proposed clas-

sification is demonstrated in Fig. 1.

2 Proposed method

Here, we propose a text classifier that uses a dual modality

of information extraction and a long short-term memory

recurrent neural network (LSTM) for the classification.

Firstly, a word embedding feature is extracted from pre-

trained model. Next, the emotion of text is extracted from

sentiment network. Finally, the features are combined to

classify the text. An LSTM is a type of artificial neural

network with self-connection and nodes made up of gated

memory blocks. The proposed method is depicted in Fig. 2.

2.1 LSTM-based classifier with sentiment data

A long short-term memory neural network (LSTM) is an

RNN with memory cells and gates units [27]. The recurrent

network used in the proposed model is presented in Fig. 3.

A node in the hidden layer is in itself a network that

consists of input gate, output gate, forget gate, a memory

cell and a self-recurrent connection on the memory cell

(Fig. 4).

LSTM solves the exploding gradient problem by trun-

cating the gradient computation. It solves vanishing gra-

dient by having the memory cell to repeat its state across

time, and turning on and off the input and output gates to

allow or prevent modifications to the memory cell. Several

variants of LSTM exist; some has additional features such

as peephole connections, while other has less, such as

removal of output activation function. Klaus Greff et al.

found that removing peephole connection and full gate

recurrence simplifies computation without affecting per-

formance [28].

Overfitting in LSTM is usually overcome by using

dropout. Wojciech Zaremba et al. found that in RNN—

including LSTM—dropout works best when applied only

on non-recurrent connections [29].

The values in the node are computed as follows:

Block input : zt ¼ gðWzx
t þ Rzy

t�1 þ bzÞ
Input gate : it ¼ rðWix

t þ Riy
t�1 þ biÞ

Forget gate : f t ¼ rðWf x
t þ Rf y

t�1 þ bf Þ
Cell state : ct ¼ it � zt þ f t � ct�1

Output gate : ot ¼ rðWox
t þ Roy

t�1 þ boÞ
Block output : yt ¼ ot � hðctÞ

where W are rectangular input weight matrices, R are

square recurrent weight matrices, and b are bias vectors.

Functions r, g and h are pointwise nonlinear activation

function, and � is pointwise multiplication of two vectors.

The sigmoid function r is defined as rðtÞ ¼ 1
1þe�t. The

hyperbolic tangent (tanh) function is defined as

Fig. 2 Proposed LSTM-based classifier
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tanhðtÞ ¼ 1�e�2t

1þe�2t. The activation function is demonstrated in

Fig. 5.

Sequence and non-sequence data have to be processed

by different types of nodes. To process sequence data

consisting of GloVe vectors and/or SentiWordNet scores, 1

hidden layer of 120 LSTM nodes is used (Figs. 6 and 7).

The memory block is illustrated in Fig. 4. Gradients above

100 are clipped to prevent exploding gradient. To prevent

overfitting, input layer is first fed into a dropout layer that

has 50% probability of setting value to zero and rescales

input with output ¼ input
1�0:5. Dropout layer is turned off dur-

ing cross-validation by setting probability of dropout to

zero. To process non-sequence valence–arousal data, 1

hidden layer of 3 nodes with tanh activation is used. The

output from both the LSTM and tanh nodes is then con-

catenated via the concat layer, before connecting to the

output layer. Learning rate is initialized at 0.01, and

algorithm is set as AdaGrad. The Lasagne library is used to

create the architecture [30]. It abstracts the layers and

encapsulates the mathematical computations of the neural

network. We have used Lasagne, which is in turn built on

Fig. 3 a A fully connected RNN used as the foundation of the proposed method. b The proposed model uses RNN as an infinitely deep

feedforward neural network
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Fig. 4 The network inside a long short-term memory block

Fig. 5 Graphs of sigmoid (thick, blue) and hyperbolic tangent (thin,

red) functions
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Theano, which is a library that uses GPU or CPU to

accelerate computations [31].

Semantic information: Each document is tokenized

using the PTBTokenizer in the Stanford Natural Lan-

guage Processing library. The GloVe vectors and Sen-

tiWordNet scores are then retrieved for the tokens. To

compare the effect of having semantic and sentiment

information against not having them, we compare against

one-hot encoding of the tokens. GloVe performs unsuper-

vised learning on documents to obtain word–word co-oc-

currence statistics and represent it in a vector [19]. This

results in words similar in meaning represented with vec-

tors that are of small distance to each other. Co-occurrence

probabilities can be modelled in the general form using

equation (1).

Fðwi;wj; ~wkÞ ¼
Pik

Pjk
ð1Þ

where w 2 Rd are the word vectors,

~w 2 Rd are separate context word vectors, and

Pij ¼ PðijjÞ ¼ xij
xi
is the probability that word j appears in

the context of word i.

Computation of word vector is by minimizing the

weighted least squares regression model:

J ¼
XV

i;j¼1

f ðXijÞðwT
i ~wj þ bi þ ~bj � logXijÞ2 ð2Þ

where V is the size of the vocabulary, f is the weighting

function, b is the bias for w, and ~b is the bias for ~w. As a

neural network is used to solve this model, different ran-

dom initializations would yield different results. To

achieve consistent performance, separate context word

vectors ~w are trained on the same neural network but with

different random initializations.

To measure distance in text classification, cosine dis-

tance is often used. Cosine distance is unaffected by the

magnitude of the vector, unlike Euclidean distance. Con-

sider the case in the bag-of-word and tf�idf models, mag-

nitude can be doubled by appending a duplicate of a

document to itself (Fig. 8). The document with double the

magnitude has the exact same content, albeit duplicated, as

the original document, and thus should be regarded similar.

The cosine distance between two vectors u and v is

defined as

d ¼ 1� u � v
uk k2 vk k2

ð3Þ

To illustrate that words with similar meaning having closer

vectors, we compute the cosine distance between ‘‘water’’,

‘‘ice’’, ‘‘learn’’ and ‘‘educate’’ (Table 1). The distance

between ‘‘water’’ and ‘‘ice’’ and between ‘‘learn’’ and

‘‘educate’’ is lower than other permutation.

We used pre-trained 300-dimensional GloVe vectors

trained on Wikipedia 2014 and Gigaword 5 [32]. We also

tested the 50-dimensional vectors, but found them inef-

fective. This set of pre-trained vectors contains 6 billion

tokens, of which 400 thousand is vocabulary in lower case.

The rest of the tokens are punctuations, numbers, dates,

email addresses and others. It is 989 MiB uncompressed. A

dictionary is constructed by listing the unique words in all

the documents. A word is then represented by a vector of

dimension equal to the size of the dictionary. A word that is

at nth position in the dictionary is represented by a vector

with one at the nth element and zero at all other elements.

Sentiment information: We are interested in classify-

ing emotionally charged documents. Intuitively, additional

sentiment information should help classification. We used

SentiWordNet to provide positivity, negativity and objec-

tivity scores. For our smaller dataset, we also had 12

healthy participants rate the amount of valence and arousal

(approximating the circumplex model of affect) of the

documents. WordNet is a database that groups words into

sets of synonyms [33]. Similarity between words can be

inferred from its link to the synonym sets and the number

of linkages between the synonym sets. SentiWordNet is

built on top of WordNet and its similarity relationship [34].

It adds positivity, negativity and objective score to each

synonym set. Subjectivity of a word can thus be found by

identifying the synonym set it belongs to and looking up

Dropout layer

LSTM layer

tanh layer

Concat layer

Output layer

Input layer

ecneuqes ecneuqes-non

Fig. 6 LSTM architecture used in the experiment. As a simplification,

only two nodes per layer are illustrated
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the three scores. As an example, the synonym sets for

‘‘good’’ are:

good.n.01 good.n.02 good.n.03

commodity.n.01 good.a.01 full.s.06

good.a.03 estimable.s.02 beneficial.s.01

good.s.06 good.s.07 adept.s.01

good.s.09 dear.s.02 dependable.s.04

good.s.12 good.s.13 effective.s.04

good.s.15 good.s.16 good.s.17

good.s.18 good.s.19 good.s.20

good.s.21 well.r.01 thoroughly.r.02

The list contains several meanings, such as goodness and

product, and parts of speech, such as noun (n), adjective

(a), adjective satellite (s) and adverb (r). Of these synonym

sets, SentiWordNet labels a subset of them with sentiment

scores.

\good.n.01: PosScore ¼ 0:5NegScore ¼ 0:0[
\good.n.02: PosScore ¼ 0:875NegScore ¼ 0:0[
\good.n.03: PosScore ¼ 0:625NegScore ¼ 0:0[

\commodity.n.01: PosScore ¼ 0:0NegScore ¼ 0:0[
\good.a.01: PosScore ¼ 0:75NegScore ¼ 0:0[
\good.a.03: PosScore ¼ 1:0NegScore ¼ 0:0[
\well.r.01: PosScore ¼ 0:375NegScore ¼ 0:0[

\thoroughly.r.02: PosScore ¼ 0:0NegScore ¼ 0:0[

Objective score is computed from

1� PosScore� NegScore. We used SentiWordNet 3. It is

based on WordNet 3, which has 117 thousand synonym

sets. SentiWordNet 3 is build using 1105 synonym sets that

Unweighted connection, partially connected

Legend

Weighted connection, fully connected

. . .

Output layer

Concat layer

Input layer

Dropout layer

Input layer

tanh layer

. . .

. . .

non-sequence

LSTM layer

Dropout layer

Input layer

LSTM layer

Dropout layer

Input layer

LSTM layer

t=0 t=1 t=last ordinal position

Fig. 7 LSTM architecture used

in the experiment, illustrated

with the recurrent connections

unrolled into an indefinitely

deep feedforward network
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are carefully chosen and then scored manually. A random

walk algorithm that visits the links between synonym sets

propagates these scores to other synonym sets. We

encountered an issue obtaining the SentiWordNet scores. A

word can have many meanings and thus belong to multiple

synonym sets in WordNet. Disambiguating among the

different synonym sets is hard, even by hand. As a shortcut,

we obtained positivity, negativity and objectivity scores by

taking the average score in all synonym sets of a word.

Circumplex model of affect: The circumplex model of

affect proposes that all affective states emerge from cog-

nitive interpretations of neural sensations from two inde-

pendent neurophysiological systems [35]. One system

causes valence, while the other causes activation. It places

emotions in a two-dimensional circular space, with one

dimension indicating the level of valence and another the

level of arousal (Fig. 9). Neutral point is at the centre of the

circular space.

To simplify survey design, we collected valence and

arousal ratings separately, with each scale ranging from -5

to 5. This approximation avoids having to design a custom

input that presents the circular scale of the model.

3 UCI sentiment labelled sentences

The University of California, Irvine Sentiment Labelled

Sentences consist of positive and negative labelled sen-

tences taken from three websites: imdb.com, amazon.com

and yelp.com [36]. For each website, there are 500 positive

sentences (labelled as 1) and 500 negative sentences (la-

belled as 0).

Parameters: Documents were tokenized into words

using the PTBTokenizer. To obtain document vectors,

the tokens were stemmed using Porter stemmer, and then,

the tf�idf statistic was computed. To obtain one-hot vectors,

the tokens were similarly stemmed. The parameters used

for the classifiers were

K-nearest neighbour: 10 nearest neighbour

Passive aggressive: trained for 50 iterations

SGD: trained for 50 iterations

LSTM: trained for 6 iterations

Spell correction for pre-trained GloVe and Sen-

tiWordNet: This dataset has not been pre-processed and

contains several misspellings and missing spacing around

punctuations. Missing spacing results in PTBTokenizer

not splitting some text into separate tokens. This incorrect

tokenization and misspelling causes failure to find the pre-

trained GloVe vectors and the SentiWordNet scores. We

used the Aspell 0.60.6.1 in bad-spellers mode and

Algorithm 1 to correct the problems.

B A B

B A B A

B

A

B A

Fig. 8 Euclidean distance would consider the document containing

the words B A B A as closer to the document B A B than B A.

However, intuitively, appending a document to itself does not

fundamentally change it, and thus, B A B A should be more similar to

B A than B A B. Cosine distance (the angular difference between the

vectors) conforms to this intuition

Table 1 Cosine distance between GloVe vectors of water, ice, learn

and educate

Water Ice Learn Educate

Water 0 0.597 0.844 0.907

Ice 0.597 0 0.905 1.054

Learn 0.844 0.905 0 0.493

Educate 0.907 1.054 0.493 0

Activation

Deactivation

PleasantUnpleasant

nervous

tense

stressed

upset

sad

depressed

bored calm

relaxed

serene

contented

happy

elated

excited

alert

Fig. 9 Various emotions placed on the circumplex model of affect
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A similar procedure is repeated to retrieve Sen-

tiWordNet scores. The lookup in pre-trained GloVe is

substituted with a lookup in SentiWordNet.

3.1 Results

Fourfold cross-validation is used to measure the accuracy.

To reduce the effects of random initialization on accuracy,

each algorithm is run twice, and the average accuracy is

reported in Table 2. The sentences were classified into two

classes.

3.2 Discussion

The best traditional classifier for this dataset is the ridge

regression classifier, giving an accuracy of 80.7%. Using

one-hot vectors matched that accuracy at 80.6%, showing

that LSTM managed to find patterns in the very sparse

sequence of vectors.UsingLSTMwith SentiWordNet scores

achieved 69.4% accuracy, better than pure chance of 50%,

showing that SentiWordNet scores do contain information.

Using LSTMwith GloVe vectors resulted in better accuracy,

at 85.3%, than the best traditional classifier. Comparing with

one-hot vectors, we conclude that the semantic information

that GloVe vectors contain helped classification. The addi-

tion of SentiWordNet scores further improved accuracy to

85.8%. We can thus imply that semantic and sentiment

information improved our classifier.

4 Notes dataset

Four classes of 20 notes each are used in the experiment,

totally 80 notes. The 20 suicide notes and 20 hoax notes are

obtained from Cincinnati Hospital Medical Centre. The

Table 2 Classification accuracy on UCI sentiment labelled sentences

Classifier Accuracy/%

Naı́ve Bayes Multinomial 77.5

Naı́ve Bayes Bernoulli 78.2

Linear SVC with L1-based feature selection 79.5

Linear SVC with L1 penalty 79.8

Linear SVC with L2 penalty 80.2

K-nearest neighbour 72.4

Rocchio 75.9

Ridge regression 80.7

Passive aggressive 75.7

Perceptron (Linear SGD without penalty) 74.6

Linear SGD with L1 penalty 78.9

Linear SGD with L2 penalty 79.4

Linear SGD with elastic net penalty 79.3

LSTM using one-hot vectors 80.6

LSTM using SentiWordNet scores 69.4

LSTM using GloVe vectors 85.3

LSTM using GloVe vectors_SentiWordNet scores 85.8

Algorithm 1 Procedure to retrieve GloVe vectors
list = tokenize(document)
while list is not empty do

pop a token from list
if token found in pre-trained GloVe then

get GloVe vector
else

if token contains alpha-numeric characters then
if token contains non-alpha-numeric characters then

token = remove non-alpha-numeric characters
if token found in pre-trained GloVe then

get GloVe vector
else

parts = split token at word boundary
push parts into list

end if
else

if token spelled incorrectly then
suggestions = spellcorrect(token)
if suggestions is not empty then

push tokenize(first(suggestions)) into list
end if

end if
end if

end if
end if

end while
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hospital has de-identified the notes to protect the identity of

the patients and the deceased before allowing us access to

them. We consider suicide notes to be written by people

who died in their suicide attempt, and hoax notes to be

written by people who did not. The 20 positive and neutral

notes are chosen based on rating by 12 undergraduates in a

pre-study. This dataset is pre-processed to correct spelling,

punctuation and spacing inconsistencies.

In addition to the notes, we collected valence–arousal

(VA) rating for each note. Twelve healthy participants are

tasked to rate a subset of 20 notes each on the valence and

arousal scale. The notes are arranged in random order.

Each scale ranges from –5 to 5 to simplify data input,

yielding an approximation of the Circumplex model. The

selection of the subset of notes is such that each note would

have 3 ratings.

4.1 Parameters

Documents were tokenized into words using the PTBTok-

enizer. To obtain document vectors, the tokens were

stemmed using Porter stemmer, and then, the tf�idf statistic

was computed. To obtain one-hot vectors, the tokens were

similarly stemmed. The parameters used for the classifiers

were

K-nearest neighbour: 10 nearest neighbour

Passive aggressive: trained for 50 iterations

SGD: trained for 50 iterations

LSTM: trained for 28 iterations

4.2 Results

Given the small dataset, accuracy fluctuated a lot with k-

fold validation. Thus, we used leave-one-out cross-valida-

tion to measure the accuracy of the classifiers. To reduce

the effects of random initialization, each algorithm is run 3

times and the average accuracy is reported in Tables 3

and 4. The notes were classified into four classes.

4.3 Discussion

The best performing traditional classifier on our dataset is

the Naı́ve Bayes Bernoulli classifier, with accuracy of

Table 3 Classification accuracy

on notes dataset
Classifier Accuracy/%

Naı́ve Bayes Multinomial 56.2

Naı́ve Bayes Bernoulli 71.3

Linear SVC with L1-based feature selection 58.8

Linear SVC with L1 penalty 67.5

Linear SVC with L2 penalty 66.2

K-nearest neighbour 43.8

Rocchio 70.0

Ridge regression 62.1

Passive aggressive 59.6

Perceptron (Linear SGD without penalty) 58.8

Linear SGD with L1 penalty 59.2

Linear SGD with L2 penalty 64.2

Linear SGD with elastic net penalty 65.0

LSTM using one-hot vectors 55.8

LSTM using SentiWordNet scores 38.3

LSTM using GloVe vectors 70.4

LSTM using GloVe vectors and VA 73.8

LSTM using GloVe vectors_SentiWordNet scores 72.1

LSTM using GloVe vectors_SentiWordNet scores and VA 72.1

Table 4 Prepending/appending

VA to sequence data
Classifier Accuracy/%

LSTM with GloVe vectors, then VA 67.5

LSTM with GloVe vectors_SentiWordNet scores, then VA 68.8

LSTM with VA, then GloVe vectors 74.2

LSTM with VA, then GloVe vectors_SentiWordNet scores 75.0
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71.3%. Using LSTM with GloVe vectors only performed

almost as good at 70.4%. Comparing LSTM using one-hot

vectors and LSTM using GloVe vectors, we can see that

the pre-trained GloVe vectors brought in additional

semantic relationship information that helped in classifi-

cation, bringing accuracy 14.6% higher. Most recent deep

learning-based methods using only word vector achieve

71.3% on UCI and 68.3% on notes dataset. The results are

presented in Table 5.

In LSTM using SentiWordNet scores, it can be seen that

emotional scores alone, without any word vectors, does

carry enough information to classify with 38.3% accuracy,

better than pure chance of 25%. The addition of Sen-

tiWordNet scores to LSTM using GloVe vectors increases

accuracy to 72.1%. Further addition of valence–arousal

ratings did not improve accuracy, showing that both Sen-

tiWordNet and valence–arousal provided similar informa-

tion. Interestingly, using just valence–arousal ratings with

GloVe vectors yields a better result of 73.8%. A simpler

network might have enabled the neural network to learn to

leverage the information from the ratings better. Presenting

the valence–arousal ratings first and appending Sen-

tiWordNet scores both increased accuracy with the formal

being more effective. The accuracy of 74.2% and 72.1%

both outperformed the best traditional classifier.

However, presenting the valence–arousal ratings last

reduced accuracy instead (reduced 70.4% to 67.5%;

reduced 72.1% to 68.8%). Looking at value produced by

the loss function as the training progresses, we observed

that the loss decreases slower and hits a plateau at a higher

loss than presenting the valence–arousal first. We suspect it

is due to have the 300-dimension GloVe vectors being 3

time steps further away from the output, and the LSTM had

to assign several nodes to the role of shutting of the input

gates of other nodes to preserve the values in the memory

cells. This left less nodes for the role of learning the pattern

between the input and the output.

Presenting the valence–arousal ratings first and appending

SentiWordNet scores at the same time achieved the best

accuracy, yielding 75%. Intuition would be that our docu-

ments are emotionally charged, and thus, attaching emotional

scores would bring documents from different classes further

from each other, making classification easier.

5 Conclusion

This research aims to improve classification beyond what

classic text classification algorithms offer. It achieved the

goal through breaking the tradition of treating document as

a vector. Instead, each document was represented as a

sequence of vectors. The main novelty of or work is to use

word-based and sentiment-based encoding for deep learn-

ing-based text classification. Doing so preserved the posi-

tion of words in the document, while giving the flexibility

of incorporating semantic information from GloVe vectors,

valence–arousal ratings and sentiment information from

SentiWordNet. Solving the problem might involve using

non-homogeneous nodes in a layer, using skip-layers, or

changing the LSTM memory block. We would also like to

investigate what other kinds of data can be incorporated

into our model.

The main drawback of the proposed system is the sparse

representation of the words. Sometimes, this comes with

information loss and performs poorly. Our method can be

improved by utilizing more powerful sentiment vectoriza-

tion method and use of advance classifiers.
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