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Abstract

Genomic epidemiology is a tool for tracing transmission of pathogens based on whole-genome sequencing. We introduce the 
mGEMS pipeline for genomic epidemiology with plate sweeps representing mixed samples of a target pathogen, opening the 
possibility to sequence all colonies on selective plates with a single DNA extraction and sequencing step. The pipeline includes 
the novel mGEMS read binner for probabilistic assignments of sequencing reads, and the scalable pseudoaligner Themisto. We 
demonstrate the effectiveness of our approach using closely related samples in a nosocomial setting, obtaining results that are 
comparable to those based on single-colony picks. Our results lend firm support to more widespread consideration of genomic 
epidemiology with mixed infection samples.

DATA SUMMARY
Supplementary figures, tables, and a file describing the imple-
mentation details of Themisto have been submitted to the 
Microbial Genomics figshare account: https://​doi.​org/​106084/​
m9figshare15177591v1 [1]. Source code and precompiled 
binaries (generic Linux and macOS) for both mGEMS and 
Themisto are freely available in GitHub at https://​github.​com/​
PROBIC/​mGEMS (MIT license) and at https://​github.​com/​
algbio/​themisto (GPLv2.0 license). A tutorial describing how 
to reproduce the synthetic mixed samples, bin the mixed reads, 
and infer the phylogenies is available in the mGEMS GitHub 
repository. Accession numbers and other information about 
the synthetic mixed samples is available in Table S1 (available 
in the online version of this article). The reference data used is 
available from Zenodo (E. coli doi: 10.5281/zenodo.3724111, E. 
faecalis doi: 10.5281/zenodo.3724101, S. aureus doi: 10.5281/
zenodo.3724135), and the accession numbers are available in 
Table S2. Accession numbers for the data used in the in vitro 
mixture experiments is available in Table S3.

INTRODUCTION
Public health epidemiology for bacterial infections has been 
transformed by the use of high-throughput sequencing 
data to analyse and identify the source of an outbreak and 
to trace circulating pathogenic strains based on routine 
surveillance [2–6]. Standard genome-based epidemiological 
linking of cases requires accurate genome sequences for the 
pathogens derived from high coverage sequencing data for 
pure-colony isolates. The isolates are obtained by an enrich-
ment and separation step in the form of a plate culture and 
subsequent colony picks based e.g. on morphology and 
colour. Typical workflow of genomic epidemiology may 
thus necessitate multiple colony picks per sample with the 
corresponding DNA library preparation and sequencing 
steps done individually for each of them. DNA isolation, 
library prep and sequencing require a significant amount of 
laboratory effort and time per colony, and lead to increased 
costs since the price of library preparation is becoming 
comparable to the cost of sequencing itself [7]. This can act 
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as a barrier to more widespread genomic pathogen surveil-
lance even in well-resourced public health laboratories, and 
prevent application of genomic epidemiology altogether in 
poorer settings.

Whole-genome shotgun metagenomics has been proposed as 
a solution for getting rid of the culturing step entirely when 
storing the isolates for record keeping or later phenotyping 
is not necessary. In this approach, sequencing is performed 
directly on the DNA extracted from the original sample and 
the resulting reads computationally binned or assembled. 
While tools capable of pangenome-based analyses [8], 
metagenome assembly [9–12], or taxonomic binning [13–15] 
from metagenomic short-read sequencing data have been 
developed, these methods typically require that the samples 
do not contain many closely related organisms. In particular, 
the strain-variation within a species is assumed to be large 
enough not to be confused with sequencing errors or variation 
in the assembly graph [16]. When more complex strain-level 
diversity is present, benchmarking these tools shows reduced 
performance in both taxonomic binning and metagenomic 
assembly [17–20]. In practice, natural strain-level variation 
is harboured ubiquitously in epidemiologically relevant 
samples [21–30] and it is reflected by the transmission events 
occurring between individuals and their environment [31]. 
Although some sample types may be dominated by one or 
two strains [32], direct sequencing of clinical samples may 
result in an overabundance of host DNA [29, 33–35], or lack 
detection power for strains with low abundance in environ-
ments with high species diversity [19, 33, 36]. These chal-
lenges are overcome in genomic epidemiology by enriching 
the target species through the use of plate cultures. Since 
established protocols and growth media are available for 
most bacteria of clinical relevance [37], enrichment provides 
an effective means to deplete the host DNA and increase the 
sequencing depth for target organisms when working with 
well-characterized species.

In this article, we introduce the mGEMS pipeline for 
performing genomic epidemiology with mixed cultures from 
samples that may harbour multiple closely related bacte-
rial lineages. mGEMS requires only a single culturing and 
library preparation step per sample, which can significantly 
reduce the cost of performing genomic epidemiology in the 
standard public health setting and make the whole process 
more streamlined. We demonstrate the effectiveness of our 
approach in SNP calling and phylogenetic analyses by using 
in vitro mixed samples of Escherichia coli and Enterococcus 
faecalis strains, as well as DNA reads synthetically mixed 
from closely related samples obtained from previous genomic 
epidemiology studies [30, 38, 39] tracking E. faecalis, E. coli 
and Staphylococcus aureus in public health settings. Likewise, 
the E. coli and E. faecalis strains used in the in vitro samples 
were hospital isolates and selected as representatives of clini-
cally highly relevant sequence types. Our results illustrate that 
accurate transmission and case-linking analyses are possible 
at reduced cost levels by enabling sample de-mixing and 
subsequent variant calling.

Key parts of our pipeline presented in this paper are the 
mGEMS binner for short-read sequencing data, and the 
scalable pseudoaligner Themisto, which provides an exact 
version of the kallisto pseudoalignment algorithm [40] and 
significantly reduced RAM usage for large reference databases 
of single-clone sequenced bacterial pathogens. Together with 
recent advances in both probabilistic modelling of mixed 
bacterial samples [41] and genome assembly techniques [42], 
these methods form the mGEMS pipeline. A central step in 
mGEMS is an application of the recent mSWEEP method 
[41], which estimates the relative abundance of reference 
bacterial lineages in mixed samples using pseudoalignment 
and Bayesian mixture modelling. While Themisto enables 
upscaling of mSWEEP to significantly larger reference 
databases, the mGEMS binner is a novel sequencing read 
binning approach. Our binner is based on leveraging proba-
bilistic sequencing read classifications to reference lineages 
from mSWEEP, and notably allowing a single read to be 
assigned to multiple bins. Using mGEMS to bin the reads 
in the original mixed samples produces sets of reads closely 
resembling standard isolate sequencing data and additionally 
acts as a denoising step for removing possible contaminant 
DNA. These advances enable efficient application of the 
existing tools for genomic epidemiology to the analysis of 
mixed culture samples, paving the way to a more widespread 
consideration of genomic epidemiology for public health 
applications.

METHODS
mGEMS workflow
Our pipeline for performing genomic epidemiology with 
short-read sequencing data from mixed samples, mGEMS, 
requires as input the sequencing reads and a reference 
database representing the clonal variation in the organisms 

Impact Statement

The reduced cost of high-throughput sequencing has 
enabled genomic epidemiology to be adopted widely 
for public health applications worldwide. In this paper 
we propose the mGEMS pipeline that promises to make 
genomic epidemiology even more affordable by replacing 
separate analysis of colony picks with a single analysis 
per plate sweep, which significantly reduces the costs 
of the DNA isolation, library preparation and sequencing 
steps, facilitating scaling up genomic epidemiology 
studies. Our mGEMS pipeline provides a tool to perform 
typical genomic epidemiological analyses directly from 
plate sweeps of all colonies on a single plate with a single 
DNA extraction, library preparation and sequencing step. 
We expect mGEMS to facilitate more widespread applica-
tion of genomic epidemiology in public health laborato-
ries and enable the development of entirely novel types 
of analyses and pipelines.
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likely contained in these reads. The reference database must 
additionally be grouped accordingly into clonal groups 
representing lineages within the species. We used either the 
multilocus sequence types (E. faecalis experiments) or sublin-
eages within the sequence types (E. coli and S. aureus experi-
ments) as the clonal grouping. With these pre-processing 
steps performed, the first step in the mGEMS pipeline is to 
pseudoalign [40] the sequencing reads against the reference 
database using our scalable implementation of (exact) pseu-
doalignment with the Themisto software (in this article we 
used v0.1.1 with the optional setting to also align the reverse 
complement of the reads enabled). The pseudoalignments 
and the clonal grouping are then supplied as input to the 
mSWEEP software (v1.3.2; doi: 10.5281/zenodo.3631062 
[41], with default settings) which estimates the relative 
sequence abundances of the clonal groups in the mixed 
sample. Consequently, mSWEEP produces a probabilistic 
assignment of the sequencing reads to the different reference 
clonal groups. This tentative assignment is subsequently 
processed by the mGEMS binner (v0.1.1, default settings), 
which assigns the sequencing reads to bins that correspond 
to a single reference clonal group — with a possibility for a 
sequencing read to belong to multiple bins. As the last step, 
the bins are (optionally) assembled with the Shovill (v0.9.0, 
with default settings [42]) assembly pipeline. mGEMS and 
Themisto are freely available on GitHub (https://​github.​com/​
PROBIC/​mGEMS and https://​github.​com/​algbio/​themisto).

Reference data for mSWEEP and mGEMS
We used assemblies of three different sets of sequencing 
data as the reference for the three different experiments 
presented. The three different reference datasets represent a 
local (S. aureus experiment, [30]), a national (E. coli, [43]) 
and a global collection (E. faecalis downloaded from the 
NCBI) of strains from these species. Accession numbers and 
multilocus sequence types for the reference data are available 
in Supplementary Table 2 accompanied with rudimentary 
assembly statistics from both the isolate sequencing data and 
the assemblies from the mGEMS pipeline. In each experi-
ment, we only aligned against the reference sequences from 
the relevant species.

In the E. coli experiments, our collection of 218 E. coli ST131 
isolates originated from the British Society for Antimicro-
bial Chemotherapy’s bacteraemia resistance surveillance 
programme and were originally isolated from 11 hospitals 
across England [43]. These isolates were assigned to six 
ST131 sublineages (A, B0, B, C0, C1, or C2) as described in 
a previous study [43]. As the reference sequence for calling 
the SNPs in building the phylogeny, we used the ST131 strain 
NCTC13441 (European Nucleotide Archive [ENA] sequence 
set UFZF01000000).

For the E. coli experiment where the six sublineages were 
further split, the split was generated by clustering the 
sequences with PopPUNK (v2.3.0, [44]) with the BGM model 
using four components and then performing the subsequent 
refinement step. The resulting PopPUNK clustering was 

combined with the sublineage numbering by concatenating 
the two together. This clustering is included in Supplementary 
Table 2.

The global collection of E. faecalis reference data was obtained 
by downloading all available E. faecalis assemblies (1484 as 
of 2 February 2020) from the NCBI, which were assigned 
to STs with the BIGSdb [45, 46] mlst software at ​pubmlst.​
org and assigned to the assemblies with the mlst software 
(v2.18.1) [47]. Sequence type could not be determined for 
177 assemblies. These were discarded, leaving a total of 1307 
assemblies assigned to 203 distinct sequence types. We used 
the ST6 strain V583 [48] as the reference for SNP calling 
(NCBI RefSeq sequences NC_004668.1-NC_004671.1).

The S. aureus reference data were obtained from the same 
study as the experiment data [30]. We used Shovill (v0.9.0 
[42], with default settings) to assemble the isolate sequencing 
reads from the first sampling of the staff members at the veter-
inary hospital, and assigned the assembled sequences to the 
ST22 sublineages according to the information provided in 
original study [30]. The reference sequence used in calling the 
SNPs was the ST22 strain HO 5096 0412 ([49], ENA sequence 
HE681097.1)

If the reference sequence in any of the experiments consisted 
of multiple contigs, we concatenated the contigs together by 
adding a 100-base gap between them. The final reference file 
that was used as input for Themisto indexing was produced 
by concatenating all reference sequences processed in this 
way together.

In vitro mixture experiment setup
We first generated reference genomes for the three E. coli and 
three E. faecalis strains used in the in vitro benchmarking of 
mGEMS. In order to obtain as accurate reference genomes as 
possible, we combined short-read Illumina sequencing data 
(Table S3) with long-read Oxford Nanopore sequencing data.

In the first mixture experiment, single colonies of each strain 
were grown up overnight in liquid medium (LB broth [Sigma-
Aldrich] for E. coli and brain heart infusion broth [Fluka 
Analytical] for E. faecalis), and DNA extracted for short-read 
sequencing. The DNA concentration was quantified using the 
Qubit system (Invitrogen) and purified DNA, diluted to 30 
ng µl−1, from the three strains of E. coli and the three strains 
of E. faecalis were used to prepare three different mixtures 
with varying ratios (1:1:1, 1.4:1.4:0.2, and 2.2:0.4:0.4; Table 1). 
These mixtures were then prepared for Illumina sequencing, 
and analysed as described earlier in the manuscript. All 
sequencing data generated for these mixture experiments is 
available under BioProject PRJNA720284.

For the second experimental setup, the six reference strains 
were again grown in single-clone cultures overnight as 
described above, and 1 : 1 : 1 mixtures of the liquid cultures 
from the three strains per species were made, centrifuged, and 
used as sample for DNA extraction for short-read sequencing. 
Unlike in the first experimental setup, in this setup the 
concentrations of the different strains were not measured 
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with Qubit and thus are not available beyond the initial 1 : 1 
: 1 mixture of the liquid cultures.

DNA extraction
DNA was extracted using the MagAttract HMW kit (Qiagen) 
for Oxford Nanopore sequencing, and the DNeasy Blood and 
Tissue kit (Qiagen) for short-read sequencing.

Sequencing
DNA libraries for long-read sequencing were prepared using 
the Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore) 
in combination with the native barcoding kits EXP-NBD104 
and EXP-NBD114 (both Oxford Nanopore) according to the 
manufacturer’s instruction. DNA was sequenced using an 
Oxford Nanopore GridION on a R9.4.1 flow cell with an input 
of 337.5 ng. For short-read sequencing, DNA libraries were 
prepared using the Nextera XT DNA library kit (Illumina) 
and sequenced on an Illumina NextSeq550 using a mid-
output flow cell, 300 cycles and 2×150 bp paired-end set-up.

Reference genome assembly for the in vitro mixed 
experiments
We performed hybrid assembly from the long and short reads 
by first assembling only the long-reads and then using the 
short-reads for error correction. The initial long-read only 
assembly was created from the raw long-read sequencing data 
with Flye (v2.8.2, [50]) and polished with quality controlled 
long reads (QC'd with filtlong v0.2.0; https://​github.​com/​
rrwick/​Filtlong) using medaka (v1.2.1, https://​github.​com/​
nanoporetech/​medaka/). The short reads were used for 
error correction by first quality controlling them with fastp 
(v0.21.0, [51]) and then using pilon (v1.23, [52]) to perform 
the error correction on the long-read assembly. This proce-
dure resulted in closed chromosome and plasmid sequences 

for all six reference strains. The short reads, long reads, and 
the produced genomes have been submitted and made avail-
able in standard repositories (Table S3).

Synthetic mixture generation
We produced our three synthetic mixture sets by synthetically 
mixing together the isolate sequencing data from distinct 
lineages in each of the three studies [30, 38, 39]. In the E. coli 
experiments, we produced ten mixed samples with one strain 
from each of the three main ST131 lineages (A, B, or C) in 
each sample. In the E. faecalis experiments, we mixed together 
seven strains from seven different sequence types to produce a 
total of 12 mixed samples. The strains included in each sample 
were chosen at random without replacement in the E. coli and 
E. faecalis experiments. The S. aureus mixed samples were 
produced by randomly mixing together one strain from each 
of the three sublineages with replacement while ensuring 
that each strain appears at least once. The sequencing data 
that were used in the reference dataset were not included in 
any of the experiments. In all three experiment sets, we used 
all available sequencing data in the mixed samples, resulting 
in 8–15 million reads in the experiments. Table S1 contains 
the accession numbers and lineage assignments of the isolate 
sequencing data in each sample, as well as the assembly statis-
tics from both isolate sequencing and the synthetic mixed 
samples processed with mGEMS.

Pseudoalignment
We used Themisto (v0.1.1) with the default settings. Themisto 
is a k-mer-based pseudoalignment tool which encodes sets 
of k-mers as a succinct coloured de Bruijn graph. A read is 
considered to pseudoalign against a reference sequence if at 
least one k-mer of the read is found in the reference, and 
each k-mer of the read is either found in the reference or 

Table 1. Mixture concentration ratios in the six in vitro experiment samples. The column labels contain the sample identifiers and lineages for the 
strains that were mixed in each of the six experiments, represented by the rows of the table. The values are the proportions of each strain in the sample 
out of the total concentration of 30 µl.

NORM7910041
E. coli ST131-C2-4

NORM7911464
E. coli ST131-C2-6

NORM7908673
E. coli ST131-A-14

Exp. 1 E. coli
(1 : 1 : 1)

0.33 0.33 0.33

Exp. 2 E. coli
(1.4 : 1.4 : 0.2)

0.47 0.47 0.07

Exp. 3 E. coli
(2.2 : 0.4 : 0.4)

0.73 0.13 0.13

 �  51 271 926
E. faecalis ST6

51 271 052
E. faecalis ST40

51 271 223
E. faecalis ST28

Exp. 4 E. faecalis
(1 : 1 : 1)

0.33 0.33 0.33

Exp. 5 E. faecalis
(1.4 : 1.4 : 0.2)

0.47 0.47 0.07

Exp. 6 E. faecalis
(2.2 : 0.4 : 0.4)

0.73 0.13 0.13

https://github.com/rrwick/Filtlong
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not found at all in the database of all references. This can 
be seen as an exact version of the pseudoalignment algo-
rithm implemented by the tool kallisto [40]. Unlike kallisto, 
Themisto constructs the alignment index utilizing external 
memory, leading to massively reduced RAM consumption 
during index construction. Additionally, the index structure 
in Themisto is implemented using advanced compact data 
structures [53] to minimize the amount of memory required 
to store the index. Themisto is also able to exploit redundancy 
in the colour sets of the nodes to compress the index further.

In all of our experiments, the index was constructed using 
31-mers. Themisto does not distinguish between paired-end 
reads and single reads, so we decided to consider a paired-end 
read as pseudoaligned only when both fragments pseudoa-
ligned. We have included this functionality for supporting 
paired-end reads in both the mSWEEP and mGEMS software 
implementations.

Abundance estimation and probabilistic read 
assignment
We used the mSWEEP [41] software (v1.3.2; doi: 10.5281/
zenodo.363106210.5281/zenodo.3631062) with default 
settings. The programme was altered to support pseudoalign-
ments from Themisto, and to output the read-level probabil-
istic assignments to the reference lineages. We also improved 
the scalability of mSWEEP by parallelizing the abundance 
estimation part and reducing memory consumption. These 
alterations have been included in versions v1.3.2 (Themisto 
and mGEMS support) and v1.4.0 (parallelization and memory 
usage improvements) of the software.

Read binning
In order to collect all reads in a mixed sample that likely 
originate from the same target lineage, we consider a binning 
strategy that allows associating the same read with multiple 
reference lineages. We assume that each reference lineage is 
represented by, at most, only one target sequence in the mixed 
sample, and that the sets of reference sequences capture the 
variation in the reference lineages sufficiently to use them as a 
substitute for the target sequence which may not be included 
in the reference sequences. In our formal treatment of the 
task of binning a set of sequencing reads, we define the task 
in terms of finding ﻿‍K ‍ subsets (bins), one for each reference 
lineage ‍k = 1, ...,K ‍, of the full sets of reads ‍R =

{
r1, ..., rN

}
‍ 

denoted by ‍Gk ⊂ R‍ that contain reads likely originating from 
the target sequence belonging to the reference lineage ‍k‍. The 
reads assigned to each subset ‍Gk‍ are determined based on 
read-level probabilities ‍γn, k,

∑K
k = 1 γn, k = 1, n = 1, ...,N ‍ to 

assign the read ‍rn‍ into the reference lineage ‍k‍ by defining the 
subsets ‍Gk‍ such that

Equation 1:

	﻿‍ Gk =
{
rn : γn, k ≥ qk

}
‍�

holds for some threshold ‍qk ∈
[
0, 1

]
‍ which may vary between 

the lineages ‍k‍. The formulation in Equation (1) has the benefit 
of allowing the read ‍rn‍ to possibly belong to several subsets 

‍Gk‍, which is an important property for dealing with multiple 
closely related lineages in the same mixed sample.

In order to find a suitable value for the threshold ‍qk‍, and to 
determine the corresponding assignment rule, we consider 
two binary events: (1) ‍In, k‍: the reference lineage ‍k‍ generated 
the read ‍rn‍, and (2) ‍Jn, k‍: the true nucleotide sequence repre-
sented by the read ‍rn‍ is part of the target sequence belonging 
to the reference lineage ‍k‍. Knowing the probability of the 
event ‍Jn, k‍ would directly enable us to assess the plausibility 
of assigning the read ‍rn‍ to the reference lineage ‍k‍ but its value 
is difficult to estimate directly. However, we can determine 
and write down the values of the conditional probabilities 
‍P
[
In, k = 1 | Jn, k = 0

]
‍ and ‍P

[
In, k = 1 | Jn, k = 1

]
‍ as

Equation 2:

	﻿‍ P
[
In, k = 1 | Jn, k = 0

]
= 0, and‍�

	﻿‍
P
[
In, k = 1 | Jn, k = 1

]
= θk∑

c : Jn,c = 1 θc ‍�
where ‍θk‍ is the proportion of reads from the reference lineage ‍k
‍, and ‍

∑
c : Jn,c = 1 θc‍ is the proportion of reads from any reference 

lineages ‍
{
c : Jn,c = 1

}
‍ which contain the sequence represented 

by the read ‍rn‍. The conditional probabilities in Equation (2) 
allow us to write the unconditional probability ‍P

[
In, k = 1

]
‍ as

Equation 3:

	﻿‍

P
[
In, k = 1

]
= P

[
In, k = 1 | Jn, k = 0

]
P
[
Jn, k = 0

]
+

P
[
In, k = 1 | Jn, k = 1

]
P
[
Jn, k = 1

]

⇔ P
[
In, k = 1

]
= θk∑

c : Jn,c = 1 θc
P
[
Jn, k = 1

]
.

‍�

Using the formulation in Equation (3) and the fact that we 
can approximate

‍
θk∑

c : Jn,c = 1 θc
≈ θk‍

if we assume that the mixed sample is mostly 
composed of closely related organisms (the denominator 

‍
∑

c : Jn,c = 1 θc‍ approaches 1), we can rewrite Equation (3) as

Equation 4:

	﻿‍ P
[
In, k = 1

]
≈ θkP

[
Jn, k = 1

]
‍�

Equations (4) and (3) together imply that if the value of the 
probability ‍P

[
In, k = 1

]
‍ that the read ‍rn‍ was generated from the 

lineage ‍k‍ exceeds the relative abundance ‍θk‍ of that lineage in 
whole sample (‍P

[
In, k = 1

]
≥ θk‍), then the value of the prob-

ability ‍P
[
Jn, k = 1

]
‍ that the nucleotide sequence represented 

by the read ‍rn‍ is contained in the target sequence from the 
reference lineage ‍k‍ must be ‘large’ (‍P

[
Jn, k = 1

]
→ 1‍). This 

statement about the magnitude of ‍P
[
Jn, k = 1

]
‍ derives from 

our assumption that the denominator in Equation (3) is close 
to 1.

Since we have an estimate of the probabilities ‍P
[
In, k = 1

]
‍ 

available in the form of the read-level probabilistic assign-
ments ‍γn, k ≈ P

[
In, k = 1

]
‍, we can plug these values in Equa-

tion (4) and use the result to derive the assignment rule

Equation 5:

	﻿‍ if γn,k ≥ θk, assign the read rn to Gk‍�

https://doi.org/10.5281/zenodo.3631062
https://doi.org/10.5281/zenodo.3631062
https://doi.org/10.5281/zenodo.3631062
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The assignment rule in Equation (5) gives us a way to assess 
the validity of the statement contained in the probability 
‍P
[
Jn, k = 1

]
‍ which we could not estimate directly.

Because of computational accuracy, we cannot obtain mean-
ingful relative abundance estimates ‍θk‍ for lineages with a 
relative abundance less than ‍

1
N ‍ (less than one read from the 

lineage ‍k‍ in the sample). Since there are ﻿‍K ‍ lineages in total, 
in the worst-case scenario ‍K

1
N ‍ units of the relative abundance 

fall into this meaningless range. Therefore, only a fraction 
of the total relative abundance of ﻿‍1‍ can be considered to be 
accurately determined when using computed values of ‍θk‍, 
and this fraction ‍d‍ is determined in the worst-case scenario 
through the formula

Equation 6:

	﻿‍ d = 1 − K 1
N ‍�

Equation (6) means that when evaluating the validity of the 
assignment rule presented in Equation (5) with computed 
values, we have to replace ‍θk‍ with the value ‍dθk‍ which depends 
on the value of ‍d‍ in Equation (6). Merging the result from 
(Equations 5; 6) leads us to the final assignment rule of if

Equation 7:

	﻿‍ if γn,k > dθk, assign the read rn to Gk‍�

In practice, reads which pseudoalign to exactly the same 
reference sequences have identical values ‍γn, k ‍. The reads 
can thus be assigned to equivalence classes defined by their 
pseudoalignments, which enables a speedup in the imple-
mentation of the binning algorithm by considering each 
equivalence class as a single read. Due to this speedup and 
the computational simplicity of evaluating the assignment 
rule in Equation (7), the memory footprint of the mGEMS 
binner is determined by the number of equivalence classes 
and reference lineages in the input pseudoalignment and 
the runtime limited by disc I/O performance.

Genome assembly from mGEMS bins
After binning the sequencing reads in our experiments 
with the aforementioned assignment rule, we assembled 
the sequencing reads assigned to the bins using the Shovill 
(v0.9.0 [42], with default settings) assembly optimizer for 
the SPAdes assembler [54, 55]. This step concludes what we 
in this article call the mGEMS pipeline.

SNP calling and phylogeny reconstruction
We used snippy (v4.4.5, [56]) to produce a core SNP multiple-
sequence alignment from the assembled contigs. Since the E. 
coli and S. aureus strains used were from the same sequence 
type, the core alignment for these two species contained 
almost the whole genome. After running snippy, we used 
snp-sites (v2.5.1, [57]) to remove sites with ambiguous bases 
or gaps from the alignment (E. coli experiments only) and 
then ran RAxML-NG (v0.8.1, [58]) to infer the maximum-
likelihood phylogeny under the GTR+G4 model. Since some 
of the S. aureus strains from the same clade were identical, 

we changed the default value of the minimum branch length 
parameter in RAxML-NG to 10−10 in the S. aureus experiments 
and printed the branch length with eight decimal precision to 
identify branches of length zero. In all experiments, we ran 
RAxML-NG with 100 random and 100 maximum parsimony 
starting trees, and performed 1000 bootstrapping iterations 
to infer bootstrap support values for the branches. We used 
the phytools R package (v0.6–99, [59]) to perform midpoint 
rooting for the tree, and the ape R package (v5.3, [60]) to 
create the visualisations.

RESULTS
Read binning and genome assembly from mixed 
samples with mGEMS
Our mGEMS read binning algorithm, part of the mGEMS 
pipeline (Fig.  1), requires probabilistic assignments of 
sequencing reads to reference taxonomic units (lineages 
or sequences) and an estimate of the relative sequence 
abundance of these same references in the full set of reads. 
mGEMS then bins the reads by assigning a read to a bin 
(corresponding to a target sequence from a given reference 
lineage) if the read-level assignment probability of the 
lineage is greater than or equal to the sequence abundance 
of that particular lineage in the full set of reads. Notably, this 
algorithm allows a single sequencing read to be assigned 
to multiple bins which is a crucial feature for considering 
strain-level variation. As shown in the Methods section, 
this algorithm assigns reads to reference lineages only if the 
sequence represented by a read is likely contained in a target 
sequence that belongs to the reference lineage.

In the pseudoalignment part of the pipeline (Fig. 1), we 
use our own more efficient and accurate implementation 
of the pseudoalignment algorithm in kallisto [40], called 
Themisto, to pseudoalign the sequencing reads against the 
reference sequences. Themisto is based on using coloured 
de Bruijn graphs to represent the reference sequences, and 
utilizes disc storage during indexing to control the amount 
of RAM required to construct the pseudoalignment index. 
These choices lead to Themisto aligning a similar number 
of reads per hour as kallisto, while being 70 times faster to 
load in an example pseudoalignment index consisting of 
3682 E. coli sequences (28 min for kallisto and 0.55 min 
for Themisto; Supplementary Methods). Implementation of 
the method is described in more detail in Supplementary 
Methods.

The pseudoalignments from Themisto are used as input 
to the mSWEEP method [41] to estimate the probabilistic 
read assignments and whole-sample relative sequence 
abundances. These values provide the necessary input to 
the mGEMS binner which assigns the sequencing reads to 
the bins. Finally, we use the Shovill [42] assembly optimizer 
for the SPAdes assembler [54, 55] to assemble the bins. On 
an example synthetic mixed sample (the E. coli sample 
with the most reads), the full mGEMS pipeline took 112 
min to run (Themisto 26 min, mSWEEP 4 min, mGEMS 
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binner 16 min, and Shovill 66 min) using two threads on a 
laptop computer with two processor cores and 16 gigabytes 
of memory. C++ implementations of both the mGEMS 
binner and the Themisto pseudoaligner are freely available 
on GitHub (https://​github.​com/​PROBIC/​mGEMS, MIT 
license, and https://​github.​com/​algbio/​themisto, GPLv2 
license).

Overview of the experiments used in benchmarking 
mGEMS
We assessed the accuracy and effectiveness of mGEMS 
by considering data from three genomic epidemiological 
studies [30, 38, 39] and by generating a benchmarking 
dataset of in vitro mixed samples with measured DNA 
concentrations. The in vitro dataset was generated by 
first growing three strains of E. coli and three strains of 
E. faecalis separately, resulting in six overnight cultures in 
liquid medium. Next, the amount of DNA extracted from 
the overnight cultures was measured and six mixtures, each 
consisting of three strains of either E. coli or E. faecalis, 
with known concentrations of DNA for each isolate, were 
created. This resulted in a benchmark dataset where the 
relative abundances of the different strains in each mixture 
are known. We also generated two additional mixtures 
where the E. coli or E. faecalis strains were mixed in 1 : 1 
: 1 proportions from the liquid culture without measuring 
the amount of DNA, and the DNA extraction was then 
performed on these already-mixed bacterial samples. To 
our knowledge, these benchmarking samples constitute the 

first published dataset where DNA from three strains of 
the same species has been mixed with known concentra-
tions, providing an important resource for development of 
methods aimed at untangling strain-level variation.

In the synthetic mixture experiments, we used sequencing 
reads from previously published genomic epidemiological 
studies [30, 38, 39] as the basis for creating synthetic 
mixture data. The synthetic mixtures were processed 
with the mGEMS pipeline, and the output was compared 
against the benchmark of having non-mixed data avail-
able by running the same epidemiological analyses on 
both the mGEMS output and the non-mixed data. The 
synthetic experiments presented are: (1) mixing reads from 
three clones of E. coli sequence type (ST) 131 sublineages 
obtained from a study of multidrug-resistant E. coli ST131 
strains circulating in a long-term care facility in the UK 
[38], (2) mixing reads from seven E. faecalis STs identified 
in a study of the population structure of hospital-acquired 
vancomycin-resistant E. faecalis lineages in the UK and 
Ireland [39], and (3) mixing reads from three S. aureus 
ST22 sublineages from a study of the transmission network 
of methicillin-resistant S. aureus (MRSA) among staff and 
patients at an UK veterinary hospital [30]. We also provide 
three different approaches to constructing the reference 
datasets for the pseudoalignment step: (1) a national 
(UK) collection of E. coli ST131 isolates associated with 
bacteremia [43], (2) a global collection of all available E. 
faecalis genome assemblies from the NCBI as of 2 February 
2020, and (3) a local collection of S. aureus sequencing 

Fig. 1. Flowchart describing a genomic epidemiology workflow with the mGEMS pipeline. The figure shows the various steps of the 
pipeline. Steps with programme names in brackets constitute the parts of the mGEMS pipeline. Presented values from mSWEEP and 
mGEMS binner are the actual results of running the pipeline with the described input.

https://github.com/PROBIC/mGEMS
https://github.com/algbio/themisto
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data from the staff members at the veterinary hospital at 
the earliest possible time point in the same study [30]. A 
detailed description of the generated experiments and the 
accession numbers of the isolate sequencing and reference 
data used is presented in the Methods section.

Evaluation of mGEMS and mSWEEP on the in vitro 
benchmark data
We first evaluated the accuracy of mGEMS and mSWEEP on 
the six in vitro experimental samples, where the true relative 
abundances of the three strains in each sample are known. 
In the E. faecalis samples each of the three strains origi-
nated from a different multilocus sequence type (MLST) 
and the measurements were accordingly performed on the 
level of the MLST grouping [45]. In the E. coli samples, the 
strains originated from sublineages within ST131 as defined 
in a previous study [43], with one strain from sublineage 
ST131-A and two from sublineage ST131-C2. In order to 
distinguish between the two strains from ST131-C2, we 
further split the strains based on their accessory genomes 
using PopPUNK [44], which provided us with a grouping 
where all three strains were split into three separate groups 
(A-14, C2-4, and C2-6), enabling us to differentiate between 
them with mSWEEP and mGEMS.

We assessed the accuracy of mGEMS by comparing the 
results of SNP calling from a hybrid long  +short read 
assembly obtained from a single-colony derived sample 
of the strains used in the in vitro mixed experiments with 
calling the SNPs from an assembly obtained by processing 
the mixed experiment samples with the mGEMS pipeline. 
The results of the SNP calling are highly similar in both 
datasets (Fig. 2a, b) with the exception of the E. coli ST131-
C2-6 strain from the experiment labelled ‘Exp 2 E. coli’. In 
this experiment, the sample consisted of equal amounts of 
DNA from the ST131 C2-4 and C2-6 strains and a small 
amount of ST131-A-14, causing some confusion between 
the reads originating from the closely related C2-4 and C2-6 
strains which resulted in a difference between the observed 
and expected SNP counts.

Similarly, the mSWEEP relative abundance estimates for 
both the E. coli and E. faecalis samples correspond well 
with the true values when measured by both absolute and 
relative error (Fig.  2c, d, respectively). Slightly higher 
errors were observed in the estimates for the E. coli ST131 
C2-4 and C2-6 strains when compared to the estimates for 
the E. coli ST131 A-14 strain and all three E. faecalis strains. 
Akin to the results of SNP calling with mGEMS, these 
differences in the relative abundance estimates are likely 
a result of using the highly detailed E. coli within-ST clus-
tering, which is significantly harder to differentiate than 
the between-ST clustering used for E. faecalis. Regardless, 
in all cases, there are no false positive or false negative 
detections of lineages reported in the mSWEEP relative 
abundance estimates.

SNPs from synthetic mixtures match SNPs called 
from isolate data
In the first synthetic mixture benchmark, we compared the 
accuracy of SNP calling with the snippy software (v4.4.5) 
[56] from the bins obtained by processing the abundance 
estimation results from the mixed samples with the mGEMS 
binner with the results of the same analyses from the isolate 
sequencing data (Fig.  3). In the E. coli and E. faecalis 
experiments (Fig. 3a, b, respectively), the SNPs were called 
from assembled contigs while in the S. aureus experiment 
(Fig. 3c), we called the SNPs directly from the sequencing 
reads because calling the SNPs from the contigs resulted 
in poorer performance (Fig. S1). In all experiments, the 
SNPs called from the mixed samples closely resemble the 
results of isolate sequencing data in both the samples that 
are similar and dissimilar to the reference sample. Although 
in the E. coli experiment mGEMS produced slightly more 
SNPs on average, the results were consistently higher for 
all samples and did not affect the results of the analyses 
presented further in this article.

We suspected that the observed differences in the SNP 
counts may have been caused by issues in the sequence 
assembly due to mGEMS allowing a read to belong to 
multiple bins, which results in variable coverage between 
the regions with and without the clade-specific SNPs. We 
tested this assumption by replacing the Shovill assembler in 
the mGEMS pipeline with metagenomic assemblers, which 
naturally handle variable coverage. Using the metagenomic 
assemblers marginally improved the results in some of the 
experiments (Figs  3d and S2) with MEGAHIT [10, 11] 
in particular outperforming Shovill when the coverage is 
markedly varied like in the S. aureus experiment. However 
the improvements were not drastic enough to decisively 
confirm our suspicions about the accuracy of the SNP 
calling being limited by the choice of assembler. We did 
observe that when measured by reference-independent 
assembly statistics (sum of all contig lengths, total number 
of contigs, sequence length of the shortest contig at 50% 
genome length N50, and the smallest number of contigs 
whose sum is at least 50% of the genome length L50), the 
statistics obtained from the standard configuration of 
mGEMS with the Shovill assembler resemble those from 
isolate sequencing data.

We further assessed the accuracy of the called SNPs by 
fitting a Bayesian linear regression model to the same SNP 
data with the isolate results as the sole explanatory variable 
and the results from the bins or the metagenomic assem-
blers as the response variable (Figs 3 and S2) using the brms 
R package [61–63]. In both the E. coli ST131 sublineage 
and the E. faecalis experiments, the 95% posterior cred-
ible interval for the slope from mGEMS with all assembler 
choices except metaSPAdes contains the correct value of 
1.0. The S. aureus experiments produce worse 95% cred-
ible intervals for the slope compared to the E. coli and E. 
faecalis experiments with none of the intervals containing 
the correct value. However, the regression model is not well 
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Fig. 2. Evaluating mGEMS and mSWEEP on the in vitro benchmark data. Panels (a) E. coli and (b) E. faecalis compare the results of SNP 
calling from the isolate sequencing data (horizontal axis) against the results of SNP calling from the mixed samples with the mGEMS 
pipeline (vertical axis). The subplot in panel (b) contains a zoomed-in view of the points around the origin. Panels (c) and (d) compare 
the abundance estimates from mSWEEP to the ground truth relative abundances. Panel (c) shows the absolute difference between the 
estimates from mSWEEP and the true abundance. The values shown are split into E. coli and E. faecalis lineages truly present in the 
samples, and lineages truly absent. Panel (d) shows the relative error in the truly present lineages.
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suited to analysing the S. aureus samples since the number 
of SNPs between the strains is minimal (0–10 SNP differ-
ences within the lineages) and there are only three lineages, 
which translates poorly to finding a linear relationship.

Split-k-mer comparison between isolate reads and 
mGEMS bins in synthetic mixtures
We also examined the accuracy of the mGEMS binner without 
assembling by using the split k-mer analysis provided by the 
SKA software (v1.0, [64]). In a split-k-mer analysis, each 
nucleotide in the read is flanked by two k-mers. The nucleo-
tide in the middle position plus the flanking k-mers constitute 
a single split-k-mer. If the split-k-mers are calculated for all 
nucleotides in two samples, they can be used to compare the 

samples on the basis of matching or mismatching split-k-mers 
or to call SNPs by comparing two split-k-mers where the 
flanking k-mers match but the nucleotide in between does 
not.

We first used SKA to call split-15-mer-SNPs in the three refer-
ence sequences from the binned sequencing reads, and calcu-
lated the difference in the count of SNPs called in the reference 
sequence between the isolate and the binned reads (Fig. S4). 
Since the results in Fig. 3 for S. aureus were obtained without 
assembly, there is no notable difference when compared to the 
SKA results. However, the SKA results for E. coli and E. faecalis 
contain fewer SNPs called from the binned reads, implying that 
binning with mGEMS acts as filtering for the sequencing data, 
since the results from the assemblies display no stark differences.

Fig. 3. Comparing mGEMS and synthetic mixtures with isolate sequencing data. Panels a–c compare the results of SNP calling from 
mixed samples with the mGEMS pipeline against the results from isolate sequencing data. Panel d compares reference-free assembly 
statistics from mGEMS pipeline with different assemblers against the results from assembling the isolate sequencing data with Shovill. 
The results in panel a are for the E. coli ST131 isolates, panel b the E. faecalis isolates, and panel c the S. aureus ST22 isolates. In panels 
a and b, SNPs were called from contigs after assembling the reads. In panel c, the SNPs were called directly from the reads. Points are 
colored according to the lineage within the species (the full legend is available in Fig. S3). The dashed gray line represents a hypothetical 
perfect match between the binned and isolate reads. The blue line is the posterior mean while the shaded area contains the 95% 
posterior credible region calculated from 10000 posterior samples from a Bayesian regression model with the SNPs from the binned 
reads as the response and the SNPs from the isolate sequencing data as the sole explanatory variable. In panel d, the boxes are colored 
according to the type of assembly. The presented statistics are the summed lengths of all contigs (total length), the number of contigs, 
the sequence length of the shortest contig at 50% genome length (N50), and the smallest number of contigs whose sum of lengths is at 
least 50% of the genome length (L50).
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In our next assessment, we performed pairwise comparisons 
within the separate sets of (1) all isolate reads, and (2) the 
binned reads. First we called the split-15-mer SNPs pairwise 
between all samples containing the isolate reads, and pairwise 
between all samples containing the binned reads. We then 
calculated the differences in the pairwise SNP counts obtained 
from the isolate reads and the binned reads. Secondly, we 
performed the same pairwise analysis but instead of the 
split-15-mer SNP counts we looked at the numbers of split-
15-mers that either were the same (matching) or different 
(mismatching) between each pair of samples. The results from 
these two comparisons (Fig. S5) show more discrepancy than 
the earlier results considering only SNPs called in the refer-
ence genome (Fig. 3), but the pairwise SNP counts are still 
relatively well preserved in all three species.

Phylogenetic analysis of E. coli ST131 sublineages 
in a long-term care facility with synthetic mixtures
We used a set of 30 multidrug-resistant E. coli ST131 strains 
sequenced from the residents of a long-term care facility in 
the UK [38] to produce a total of ten synthetic mixed samples. 
Each sample was the result of mixing isolate sequencing data 
from three E. coli ST131 sublineages (one from each of the 
main lineages A, B, or C) together. We attempted to preserve 
the potential sequencing errors and biases by using all avail-
able reads from each of the isolate samples.

We applied the mGEMS pipeline to the ten synthetic mixed 
samples with a national (from the UK) collection of E. coli 
ST131 strains as the reference data [43], and used RAxML-NG 
(v0.8.1) [58] to infer a phylogenetic tree from both assemblies 
obtained from the isolate sequencing data (ground truth) and 
the assemblies from the mGEMS pipeline. Comparisons of 
these two trees (Fig. 4), show that the overall structure of 
the trees is highly similar, with the deep branches within the 
tree well reconstructed and differences in the tree topology 
appearing only at the very recent short branches.

Population structure of nosocomial E. faecalis 
infections in the UK from synthetic mixtures
Our next experiment was performed on sequencing data 
from bloodstream-infection-associated E. faecalis strains 
with a high prevalence of vancomycin resistance circulating 
in hospitals in the UK [39]. In this experiment, we mixed 
isolate sequencing data from seven distinct E. faecalis STs 
[45], producing a total of 12 synthetic mixed samples with 
seven lineages present in each. Each synthetic mixed sample 
included all sequencing reads from the mixed isolate 
sequencing data similarly to the E. coli experiment. We 
used a global collection of E. faecalis strains (all E. faecalis 
genome assemblies submitted to the NCBI as of 2 February 
2020) as the reference data for the mGEMS pipeline, and 
again inferred the phylogenies for assemblies from both 
the isolate sequencing data and the results of the mGEMS 
pipeline. The more complex structure of these phylogenies 
was compared by plotting the two phylogenies against each 
other in a tanglegram (Fig. 5). Apart from a few structural 

mismatches in branches with poor bootstrap support values 
in both phylogenies (indicating uncertainty in the structure 
to begin with), the tree structure is strikingly well-recovered 
from the binned reads.

In fact, the tree inferred with the mGEMS pipeline has 
better bootstrap support values in the lower parts of the tree, 
suggesting that using mGEMS provides a better supported 
phylogeny than using the isolate sequencing data alone. We 
suspect this improvement in the bootstrap support values 
was caused by contamination in the isolate sequencing data 
for BSAC ec750, which produces an assembly 5.8 Mb long 
— nearly twice the length of the reference E. faecalis strain 
V583 (3.2 Mb). Similar changes in the bootstrap support 
values and additional structural changes occur in the parts 
of the tree containing the isolates BSAC ec294 and BSAC 
ec655 which both produce abnormally long assemblies (4.8 
and 4.4 Mb, respectively). The assembly lengths for both the 
isolate and mGEMS-binned sequencing reads are provided 
in Table S1.

Methicillin-resistant S. aureus transmission 
patterns among staff and patients at a veterinary 
hospital from synthetic mixtures
In our last experiment, we used a dataset containing three S. 
aureus ST22 sublineages (called clade 1, clade 2, and clade 
3) circulating among the staff and patients at a veterinary 
hospital in the UK [30] and separated by less than 150 SNPs. 
Because of the minimal differences between the clades, and 
a lack of isolates from these specific clades in published 
sources, we decided to use the isolates from the temporally 
first sample from the staff members as the reference data 
(representing a local reference collection). We separated 
the reference isolates from our experiment cases, which 
consist of all samples sequenced after the reference isolates, 
and proceeded to mix the remaining isolate sequencing 
data together. We generated a total of 312 synthetic mixed 
samples, each containing the sequencing data from three 
isolate samples from each of the three clades. Because the 
numbers of samples in each clade were not equal, the data 
from some of the isolate samples were included in multiple 
mixed samples. Since we wanted to represent each isolate 
with only a single instance in the phylogeny, we randomly 
chose one corresponding bin from mGEMS as the repre-
sentative for an isolate that was included in multiple mixed 
samples.

The phylogenies in Figs. 6 and 7 were inferred with RAxML-
NG (v0.8.1, [58]) from the results of the mGEMS pipeline. 
We plotted the subtrees of the overall phylogeny separately 
for the clade 1 isolates (Fig. 6) and clade 2 and 3 isolates 
(Fig. 7) without changing the underlying tree structure. 
Phylogenies inferred from the isolate sequencing data using 
the same pipeline are available in Figs S6 and S7. In the 
original study [30], staff member A was inferred as having 
introduced the MRSA strain from clade 1 into the veteri-
nary hospital. In our phylogeny (Fig. 6), the initial samples 
from staff member A (timepoints labels 1 and 2) are indeed 
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contained at the root of the tree inferred from the mGEMS 
pipeline, although the placement of the strains further up 
the tree vary when compared to the results presented in the 
original study. The original study performed manual quality 
control of the SNP data by removing transposable elements 
which was not replicated in our experiment, possibly 
explaining some of the observed differences between the 

tree structures. The phylogenies for clades 2 and 3 (Fig. 7) 
follow the results of the original study more closely with 
most subclades found in both the isolate and the mixed 
sample phylogenies. Importantly, in all three clades no 
assembly from the mGEMS pipeline was assigned to the 
wrong clade in the phylogeny despite the minimal distances 
between the clades.

Fig. 4. Midpoint-rooted maximum likelihood trees from core SNP alignment of E. coli ST131 strains. The phylogeny in panel a was 
constructed from isolate sequencing data from 30 E. coli ST131 strains, and the phylogeny in panel b with the mGEMS pipeline from ten 
synthetic plate sweep samples, each mixing three isolate samples from the three main ST131 lineages (a–c; one strain from each per 
sample). Both phylogenies were inferred with RAxML-NG. Numbers below the edges are the branch support values from RAxML-NG for 
the next branch. Leaves are coloured according to the E. coli ST131 sublineage (a, b, B0, C1, or C2), and branch lengths in the tree scale 
with the mean number of nucleotide substitutions per site on the respective branch (GTR+G4 model). Leaves are labelled with the ENA 
accession number and the leaf labelled NCTC13411 corresponds to the reference strain used in calling the core SNPs.
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DISCUSSION
Adopting a plate-sweep approach, where DNA from the indi-
vidual bacteria growing on the same plate is prepared and 
sequenced as a single library, shows clear promise in reducing 
the amount of manual and costly laboratory work that has 
been identified as an emerging bottleneck for epidemiological 

analyses at many public health laboratories [7]. We see two 
main applications for this. On the one hand, diagnostics 
where usually a single clone is picked can now capture the 
whole diversity at much lower additional costs. Whilst single-
clone culturing might be required depending on the applica-
tion (e.g. if more detailed speciation is required, or if further 

Fig. 5. Tanglegram of two midpoint-rooted maximum likelihood trees from core SNP alignment of E. faecalis strains. The phylogeny 
labelled Isolate samples (left side of the tree) was inferred with RAXML-NG from assembling the isolate sequencing data from 84 E. 
faecalis strains. The phylogeny labelled Mixed samples (right side of the tree) was inferred from 12 synthetic mixed samples, each 
containing sequencing data from seven different E. faecalis STs randomly chosen from the isolate sequencing data. Numbers below the 
edges indicate bootstrap support values from RAxML-NG for the next branch towards the leaves of the tree. Only support values less 
than 90 are shown. Branches are coloured according to the E. faecalis STs, and branch lengths in the tree scale with the mean number 
of nucleotide substitutions per site on the respective branch (GTR+G4 model). Leaves are labelled with the strain name from NCBI and 
the leaf labelled V583 corresponds to the reference strain for calling the core SNPs.
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phenotyping experiments are planned), a major cost- and 
time-factor - the DNA isolation, library prep and sequencing 
- are covered with a single experiment for the whole diversity, 
saving time and costs. On the other hand, this method might 
greatly support work on samples where the high diversity has 
so far proved as a major challenge, like longitudinal transmis-
sion or carriage studies especially in complex samples such 
as human faeces, where it is appreciated that only a fraction 

of the diversity can be covered with single-colony sequencing 
approaches.

In this article, we have introduced the mGEMS pipeline, which 
includes novel pseudoalignment and read binning methods, 
for genomic epidemiological analyses of plate sweeps. Our 
pipeline provides means to accurately recover the genomes, 
or corresponding sequencing reads, from mixed samples with 

Fig. 6. Midpoint-rooted maximum likelihood tree from core SNP alignment of S. aureus ST22 showing strains from a single lineage 
within the sequence type. The phylogeny was inferred from a combined set of assemblies from 60 isolate sequencing samples (leaves 
labelled Staff A-G 1 A-T, corresponding to the temporally first samples from each staff member) and 312 assemblies obtained from the 
mGEMS pipeline applied to synthetic mixed samples of sequencing data from each of the three different S. aureus ST22 clades (1, 2, and 
3). Only strains from clade 1 are displayed in the tree, with the branch labelled Outgroup leading to the collapsed clades 2 and 3. The 
mixed samples were produced from the isolate sequencing data collected from the patients, or from the staff members after the first 
sampling time. Branch labels are coloured according to the plate the isolate sequencing data was picked from. Branch lengths in the 
phylogeny scale with the mean number of SNPs obtained by multiplying the mean nucleotide substitutions per site on the respective 
branch (GTR+G4 model) with the total number of alignment sites. Leaves are labelled with the format: staff or patient, a letter indicating 
the donor, plate number (ascending in time), and a letter indicating the colony pick id.
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extremely closely related strains separated by less than a few 
dozen SNPs. In these settings, where the differences between 
the strains are at or under the sequence type level, isolate 
sequencing is traditionally required to draw epidemiological 
conclusions.

Using both samples based on synthetically mixed reads, 
as well as experimentally generated benchmark samples 
mixing bacterial DNA and strains, we have shown that 
with mGEMS we can robustly infer the same conclusions 
from plate sweeps that can be inferred from single-isolate 
sequencing data. Additionally, since mGEMS relies on 
modelling counts of pseudoalignments against grouped 
reference sequences, the inclusion of the alignment step 
causes the pipeline to also acts as quality control for 
sequencing reads from samples that inadvertently contain 
multiple lineages or contamination, which can disrupt 
downstream analyses like SNP calling [65]. In analysing 
sequencing data from closely related mixed samples, our 
pipeline reaches accuracy levels likely constrained by 
technical variation in the sequencing data and limitations 
in assembling sequencing data with variable coverage. 
Although existing tools like StrainPhlAn [32, 66] are 
capable of determining and analysing the dominant strains 
in complex mixed samples, to our knowledge mGEMS is 
the first tool capable of reliable recovery of the full strain 
variety when samples may contain multiple strains from 
the same species.

mGEMS demonstrates the power of plate sweep sequencing 
in genomic epidemiology and enables a change in the 
currently dominant framework that confers multiple 
benefits over both whole-genome shotgun metagenomics 
and isolate sequencing. Studies of the population struc-
tures of opportunistic pathogens have revealed extensive 
strain-level within-host variation [21, 23, 27, 67, 68] with 
adverse implications for transmission analyses relying 
solely on isolate sequencing [31, 69] and colony pick based 
longitudinal studies reporting the absence or re-emergence 
of strains in a host [30, 38, 70] or antimicrobial profiles 
[28, 71]. While whole-genome shotgun metagenomics 
solves these issues to some extent [35, 72], the culture-free 
nature suffers from issues with both bacterial and host 
DNA contamination particularly affecting the sensitivity 
for detecting strains in low abundance [29, 33, 34, 73, 74]. 
Using mGEMS in conjunction with plate sweep sequencing 
data avoids these issues altogether, paving way for more 
representative studies of pathogen population structure and 
providing higher-resolution data for more complex models 
of transmission dynamics incorporating within-host varia-
tion and evolution [75–79].

mGEMS is designed for high-throughput short read 
sequencing data and requires a representative reference 
collection of the lineages present in the processed samples. 
When the reference data or the lineages are not sufficiently 
well-defined — like in the E. coli in vitro benchmark, 
where the unstable E. coli accessory genome was required 

Fig. 7. Midpoint-rooted maximum likelihood trees from core SNP alignment of S. aureus ST22 showing clade 2 and clade 3 strains. The 
underlying phylogeny is the same as in Fig. 6. The phylogeny in panel a contains the clade 2 strains, and panel b the clade 3 strains. 
Branches leading to clade 1 and clade 3 (panel a), or clade 1 and clade 2 (panel b), labelled Outgroup in both panels, were collapsed. 
Branch labels are coloured according to the plate the isolate sequencing data was originally picked from with darker shades indicating 
later sampling times. Branch lengths in the phylogeny scale with the mean number of SNPs obtained by multiplying the mean nucleotide 
substitutions per site on the respective branch (GTR+G4 model) with the total number of alignment sites. Leaves are labelled with the 
format: staff or patient, a letter indicating the donor, plate number (ascending in time), and a letter indicating the colony pick id.
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to separate the two C2 strains into distinct lineages — the 
binning can be unreliable, leading to less accurate results. 
Mobile elements and plasmids that are not tied to a specific 
lineage may also pose a problem for mGEMS but we expect 
that their handling could be improved by including them as 
separate entities in the reference collection.

Since our method relies on available single-clone genomic 
reference data and plate cultures of the bacteria to sequence 
them at a sufficient depth for assembly, it obviously cannot 
be applied to the study of uncharacterized or unculturable 
species. However, culture media do exist for most human 
pathogens of public health relevance [37] or can be developed 
for some of the until recently unculturable bacteria [78–80]. 
Moreover, the availability of single-clone bacterial genome 
sequences is still increasing at a high rate, such that for many 
species or lineages plenty of sufficiently representative refer-
ence sequences would be available [81, 82]. In these cases, the 
drastic reduction in the costs of library preparation, and the 
better capture of the underlying genomic variation between 
closely related bacteria in a set of mixed samples provided 
by mGEMS is extremely valuable. We hope that by enabling 
significant streamlining of the process of producing data for 
public health genomic epidemiology, our approach inspires 
both applications and further method development within 
this exciting research area.

CONCLUSIONS
We have developed the mGEMS pipeline for performing 
genomic epidemiological analyses from mixed samples 
containing multiple closely related bacterial strains. The two 
crucial novel enabling aspects introduced in this paper are the 
mGEMS read binner and the Themisto pseudoaligner. The 
mGEMS binner is a binning method based on turning proba-
bilistic assignment of sequencing reads to reference lineages, 
while the Themisto pseudoaligner is a high-throughput exact 
pseudoaligner for short-read sequencing data that features 
external memory construction for compressed coloured de 
Bruijn graphs for scalability, providing significant runtime 
savings over conventional pseudoalignment. mGEMS 
addresses several major issues related to the cost, applicability, 
and sensitivity of the current approach in genomic epidemi-
ology and enables entirely new types of analyses using mixed 
samples without sacrificing accuracy.
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