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1.  INTRODUCTION 

The great majority of species exist in several popu-
lations or subpopulations spread out in space. Spa-
tially separated populations often show differences in 
phenotypes, life history traits, vital rates and temporal 
variation in population size. The study of spatial 
structure in population dynamics has a long history 
(Elton 1924, MacArthur 1972, Levin 1992). One theo-
retical framework that has been used to unravel the 
causes and consequences of spatial population struc-
ture is the theory of population synchrony (Moran 

1953, Koenig 2002), defined as spatial correlation in 
the fluctuations of size or density of different popula-
tions (Bjørnstad et al. 1999, Liebhold et al. 2004). The 
theory of population synchrony differs from the well-
known metapopulation theory (Levin 1974, Hanski 
1999) in its main focus and approach. In metapopula-
tion theory, the emphasis is on how intrinsic features 
of subpopulations, such as their size and rates of emi-
gration and immigration, affect local and regional 
population dynamics (Hanski 1999), whereas spatial 
population synchrony theory typically emphasises the 
role of extrinsic factors and the environment (Moran 
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1953, Royama 1992). Later extensions of these 2 ap-
proaches (e.g. Lande et al. 1999, Keymer et al. 2000, 
Sæther et al. 2007) have brought them closer, but they 
still represent different angles to understand the causes 
and consequences of spatially structured populations. 

The term environment can have a variety of mean-
ings in ecological research but often refers to abiotic 
factors such as temperature, humidity, salinity or pH 
(Begon et al. 2006). Environmental variation is among 
the most important drivers of dynamics in population 
size, vital rates and life history traits (Stenseth et al. 
2002). The environment itself has a strong spatial 
structure, measured as spatial autocorrelation in more 
persistent characteristics such as habitat or climate, 
or as temporal variation in, for example, weather 
(Koenig 2002, Herfindal et al. 2022 in this Special). 
As a result, we often observe analogous spatial scaling 
of biological processes and the environment (Wiens 
1989, Kareiva et al. 1990, Levin 1992, Myers et al. 
1997, Koenig 1999), and environmental autocorrela-
tion is a major driver of population synchrony (Lieb-
hold et al. 2004). For instance, the Moran theorem 
(Moran 1953, Royama 1992) predicts that the correla-
tion in the dynamics of 2 populations subject to a log-
linear form of density regulation should be equal to 
the environmental correlation be tween the correspon-
ding locations. This link be tween the spatial struc-
ture of environmental variation and spatial population 
synchrony makes the theory of population synchrony 
a promising concept to gain better insight into pro-
cesses affecting spatial population dynamics in a world 
experiencing rapid environmental changes (Koenig 
2002, Liebhold et al. 2004, Hansen et al. 2020). 

Synchrony in population dynamics is often weaker 
and has a shorter spatial scale than synchrony in 
the environment (Benton et al. 2001, Koenig 2001, 
Hansen et al. 2020). This can occur be cause central 
assumptions in the Moran theorem, such as the as -
sumption that log-linear density de pendence is simi-
lar among populations (Royama 1992), rarely are met 
in natural systems. Such deviations from the Moran 
theorem can have great impact on the observed pop-
ulation synchrony (Engen & Sæther 2005). In addi-
tion, heterogeneity in demographic rates, such as 
survival and recruitment, among populations of a 
species is affected by factors such as interspecific 
interactions, climate, or habitat and resource avail-
ability (Ranta et al. 1999, Paradis et al. 2000b, Engen 
& Sæther 2005, Lande et al. 2014, Gamelon et al. 
2020). This can lead to the same environmental con-
dition having a contrasting effect on the growth of 
different populations of the same species. Environ-
mental variables also differ in their spatial structure 

(Koenig 2002), which may vary over the year (Cheva-
lier et al. 2015, Herfindal et al. 2022), which can 
further contribute to increased heterogeneity in 
dynamics among populations. When comparing spa-
tial population structure among species, heterogene-
ity in population processes can become even more 
important, as this may vary considerably even among 
closely related species inhabiting the same area 
(Bjørkvoll et al. 2012). 

Disentangling the role of such heterogeneity in the 
environment and among populations is central for 
understanding the mechanisms causing spatial struc-
turing of populations. The environment is changing, 
and this is likely to affect spatial population synchrony 
(Defriez et al. 2016, Black et al. 2018, Kahilainen et 
al. 2018). Climate change can affect population syn-
chrony by causing changes in the spatial structure of 
the environment, as well as by changing how local 
populations respond to environmental variation 
(Hansen et al. 2020). Hence, even if climate change is 
similar over large areas, population synchrony can 
change because some populations are more strongly 
impacted than others due to differences in local con-
ditions affecting, for example, carrying capacity or 
the strength of density dependence (Engen & Sæther 
2005). Understanding climate change effects on spa-
tial population synchrony thus requires knowledge 
about heterogeneity in local demographic processes. 

Knowledge about spatial population structure is 
crucial for sustainable management and conserva-
tion. For instance, the size of management units is 
often based on the area requirements of individuals 
(Linnell et al. 2001, Zannése et al. 2006), which is 
closely related to the abundance of a species within a 
given area (Fretwell & Lucas 1969). Local and re -
gional extinction risks are also affected by the spatial 
heterogeneity in environmental variation (Heino et 
al. 1997). This occurs because when environmental 
fluctuations are correlated over large distances, pop-
ulation fluctuations will tend to be synchronised over 
similar distances (Ranta et al. 1997, Pascual & Levin 
1999). This increases the likelihood of local popula-
tions across large areas being at low abundance 
simultaneously. In a more heterogeneous environ-
ment, different populations tend to experience un -
favourable conditions in different years, causing 
population dynamics to be less synchronous. Local 
populations are then more likely to be rescued from 
extirpation through immigration from nearby high-
density populations (Heino et al. 1997). Management 
of harvested species should acknowledge such 
mechanisms. For instance, if harvesting quotas are 
set similarly over large areas, local populations that 
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are experiencing low abundances compared to the 
overall mean will experience overharvest (Jonzen et 
al. 2001), which increases the risk of local extinction 
and loss of genetic variation. 

Despite recent theoretical advances and empirical 
evidence of spatial population synchrony in a wide 
range of species, we still have much to learn about 
the mechanisms and consequences of population 
synchrony in real systems (Hansen et al. 2020). 
Because of the numerous and complex factors in -
volved in determining how spatially structured envi-
ronments affect populations, studying this topic is 
challenging with respect to both statistical modelling 
and data requirements. Although spatially structured 
time series of both populations and their environ-
ments are increasingly becoming available through 
open-data facilities, they are often the result of differ-
ent sampling protocols where estimates of popula-
tion abundances can be difficult to compare. The 
main aim of the SUSTAIN research project was to 
determine how climate change, in combination with 
other anthropogenic stressors, affects harvested bo -
real and Arctic ecosystems experiencing different 
environmental variation. The second aim was to as -
sess how management strategies could be im proved 
to ensure sustainable exploitation and resilience. The 
project involved several ecological re search groups 
working with different ecosystems, which made it 
possible to compile data that allowed investigation of 
the complexity of population dynamics in spatially 
structured environments to address the ambitious 
aims of the project. Below, we synthesise the results 
from this compilation of empirical data from different 
study systems to address specific questions about 
population synchrony. 

2.  CASE STUDIES OF SPATIAL 
POPULATION SYNCHRONY 

2.1.  Influences on the relationship between 
 environmental variation and population synchrony 

Environmental effects on population dynamics and 
life history traits often differ among populations of 
the same species (Mysterud et al. 2002, Herfindal et 
al. 2006, Nielsen et al. 2012, Tveraa et al. 2013, Hen-
den et al. 2022 in this Special). This can weaken the 
synchronising effect of environmental variation even 
if the environment itself is synchronised over large 
distances. Analysing such mechanisms in harvested 
species is challenging because abundance data often 
come from harvest bags, which rarely are informa-

tive for population dynamics (Ranta et al. 2008). 
However, additional data on life history traits that are 
also often collected during harvest (Solberg et al. 
2006) can still provide insight into the environmental 
influence on population synchrony. 

Juvenile body mass is closely related to environ-
mental conditions in the year of birth (Eberhardt 2002, 
Mysterud 2006) and has lifetime consequences for 
survival and reproduction (Lindström 1999, Markus -
 sen et al. 2018, 2019, Pigeon et al. 2019). Herfindal et 
al. (2020) explored how environmental variation af-
fects population synchrony by using ex tensive spatio-
temporal data on juvenile body mass from moose and 
reindeer across Norway. May and June temperature 
had the strongest synchronising effect on juvenile 
body mass for reindeer and moose, respectively, be-
cause of a consistent effect on juvenile body mass in 
all populations. In addition, temperature showed high 
spatial synchrony compared to precipitation, which 
highlights the low synchronising potential of precipi-
tation even if precipitation in parts of the year was a 
good predictor for body mass variation. When there 
was high heterogeneity among populations in how ju-
venile body mass was affected by a weather variable, 
it had a weak synchronising effect. The results show 
that the spatial structure of the environment, the 
strength of the relationship between environmental 
variation and population dynamics, and the extent of 
heterogeneity in population responses to environ-
mental variation must be assessed to understand how 
weather synchronises population dynamics. In many 
species, survival and reproduction are affected by 
conditions ex perienced at different times of the year 
(Israelsen et al. 2020, Layton-Matthews et al. 2020). 
Detecting the critical period for variation in key life 
history traits (e.g. van de Pol & Cockburn 2011) is thus 
required to understand the mechanisms that create 
spatial structure in population dynamics. 

2.2.  Intra- and interspecific variation in 
the spatial scale of population synchrony within 

an environment 

A logical consequence of the Moran effect would 
be that species living in the same environment, and 
thus experiencing the same environmental variation, 
should show similar spatial scales of population syn-
chrony. However, a recent long-term study of fish 
species in the Barents Sea demonstrated that this is 
not necessarily the case (Marquez et al. 2019). Esti-
mated spatial scaling parameters for both population 
abundance and population growth rate varied more 
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than 2-fold among the 8 species studied. Several fac-
tors can cause such differences in spatial structure 
among species, including different levels of dispersal 
(Lande et al. 1999), interspecific competition (Jarillo 
et al. 2018, Lee et al. 2020), trophic interactions (Kent 
et al. 2007, Jarillo et al. 2020), habitat preference 
(Pandit et al. 2016, Paradis et al. 2000a), foraging 
behaviours (Robertson et al. 2015) and sensitivity to 
different environmental variables (Lahoz-Monfort et 
al. 2011, Herfindal et al. 2020). 

In the Barents Sea, the observed interspecific vari-
ation in the scale of spatial synchrony in abundance 
was related to the species’ life history traits (Marquez 
et al. 2019). Species with short generation times and 
high population growth and mortality rates, qualities 
characteristic of fast-lived species, were associated 
with shorter synchrony scales, while species with 
long generation times and lower growth and mortal-
ity rates showed synchrony over greater distances. 
This relationship between life history and scaling of 
synchrony was suggested to be driven by density-
regulated processes. Species with fast life histories 
tend to show stronger density regulation than species 
with slow life histories (Herrando-Pérez et al. 2012). 
Strong density regulation causes population abun-
dances to return more quickly to equilibrium after a 
disturbance. Thus, fluctuations in abundance caused 
by localised environmental fluctuations are damp-
ened quickly, providing less opportunity for them to 
ripple far through the system via dispersal, resulting 
in a weak synchrony among distant locations. This is 
in accordance with theoretical results (Lande et al. 
1999, Engen 2017). In contrast, dispersal in a weakly 
density regulated population would be less hindered 
by local density, and this is expected to increase the 
extent of spatial synchrony beyond the spatial scal-
ing of environmental synchrony (Engen 2017). 

Within a population, different age groups can dis-
perse and respond to environmental variability dif-
ferently. For example, adult individuals tend to be 
more resistant against adverse environmental condi-
tions and predation pressure than juveniles (Kuo et 
al. 2016). Thus, different age groups of the same pop-
ulations could show different patterns of spatial auto-
correlation (Engen et al. 2018b). Indeed, analyses of 
the Barents Sea fish community confirm this, with 
different patterns found in different species. Spatial 
autocorrelation increased with age in cod, decreased 
with age in beaked redfish and remained constant 
through life in haddock (Marquez et al. 2021). This 
has implications for harvesting practices that change 
population age structure, since harvesting could alter 
the spatial structure and synchrony of ecologically 

and economically important species, making some 
populations more prone to overharvest and extinc-
tion (Kuo et al. 2016). 

2.3.  Spatial heterogeneity in climate effects 
 desynchronises plant growth 

The importance of dispersal on population syn-
chrony in animals is often difficult to disentangle 
from environmental factors (Hopson & Fox 2019). 
However, in sedentary species such as perennial 
plants, this problem is eliminated by studying time 
series of performance measures such as growth from 
the same individuals. Accordingly, Le Moullec et al. 
(2020) studied the synchrony in ring growth of the 
dwarf shrub Salix polaris in 8 sites across Svalbard. 
Ring growth in this species reflects the annual com-
munity-level biomass production of vascular plants 
and can thus serve as a good indicator of temporal 
fluctuations in the spatial structure of primary pro-
ductivity in general (Le Moullec et al. 2019a). Since 
weather and spatial variation in climate often affect 
animal populations indirectly by influencing their 
foraging resources, spatial synchrony in the ring 
growth of indicator species, such as S. polaris in high 
Arctic ecosystems, can provide a better understand-
ing of the underlying mechanisms driving differ-
ences in the spatial synchrony of the environment 
and harvested herbivores. 

Summer temperature is a well-known driver of 
Arctic plant growth, and its rapid warming trend has 
led to an overall greening of the Arctic (van der Wal 
& Stien 2014, Myers-Smith et al. 2015). Concurrently, 
increased winter temperature has resulted in more 
frequent occurrences of rain-on-snow events during 
winter particularly in coastal areas, which causes the 
formation of basal ice layers that often encapsulate 
the vegetation in the field layer (AMAP 2017, Peeters 
et al. 2019). Le Moullec et al. (2020) found that sum-
mer temperature was the main driver of vegetative 
growth and explained part of the shrub growth syn-
chrony across the archipelago. More surprisingly, 
winter precipitation had a negative effect on ring 
growth in some coastal sites where winter precipita-
tion frequently comes as rain. This caused increased 
spatial heterogeneity in the system (Le Moullec et al. 
2020). Similar spatial variation in the effects of winter 
weather was found in Svalbard reindeer (see Section 
2.4), which suggests that spatial heterogeneity in 
environmental variables under rapid change can re -
duce population synchrony across trophic levels. Al -
though rain-on-snow events are more prevalent in 
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coastal than inland regions, they are strongly syn-
chronised across the landscape (Peeters et al. 2019). 
The increased frequency of rain-on-snow events 
across the Arctic (Putkonen & Roe 2003, Bintanja & 
Andry 2017) could therefore change the relative 
importance of seasons in shaping the spatio-temporal 
dynamics of species communities in the near future. 

2.4.  Spatial variation in climate change effects 
decouple local population dynamics 

Climate change can affect population synchrony, 
for instance by affecting the spatial autocorrelation in 
weather (Dallas et al. 2020, Allen & Lockwood 2021). 
Because environmental effects on population dyna -
mics are often density dependent, changes in spatial 
heterogeneity in such processes can decouple pop -
ulation dynamics in space (Engen & Sæther 2005, 
Anders & Post 2006). Hansen et al. (2019) investigated 
the role of the Moran effect on the population syn-
chrony of 10 populations of wild Svalbard reindeer 
Rangifer tarandus platyrhynchus in the high Arc tic and 
how this has changed due to recent  climate change. 

Warmer and longer summers have in general in -
creased the carrying capacity and abundance of rein-
deer populations (Le Moullec et al. 2019b), while fluc-
tuations in annual population size are largely driven 
by the density-dependent effects of rain-on-snow 
events (Han sen et al. 2019). Rain on snow causes the 
formation of ice on the ground, limiting food avail-
ability during winter and reducing survival and 
reproduction (Han sen et al. 2011, Stien et al. 2012, 
Albon et al. 2017) and, thereby, population growth 
(Forchhammer & Boert mann 1993, Hansen et al. 2011, 
2019). Accordingly, spatially autocorrelated fluctua-
tions in rain-on-snow events synchronised reindeer 
dynamics across large parts of Svalbard, while spa-
tial variation in the increase in frequency of these 
weather events contributed to the divergence of local 
population trends. This was evident from the com-
parison of 2 well-monitored reindeer populations, 
where the coastal population was subject to a stronger 
temporal increase in the frequency of rain on snow 
and a stronger density-dependent effect of such con-
ditions on population growth rates than the inland 
population. On the other hand, the coastal population 
experienced weaker summer warming and showed 
the weakest positive response to summer tempera-
tures. In sum, only the in land population showed a 
positive abundance trend. These results im ply that 
the environmentally induced Moran effect can be 
buffered by spatial heterogeneity in the same environ-

mental drivers, potentially averaging out the impacts 
of global warming at larger spatial scales (Hansen et 
al. 2019). 

2.5.  Impacts of climate change and overexploitation 
on spatial population structure 

To understand the combined effects of past over -
exploitation and ongoing climate change on spatial 
population dynamics, Peeters et al. (2020) adopted a 
landscape genetics approach on the island-dwelling 
Svalbard reindeer. In contrast to the migratory be -
haviour in most reindeer and caribou subspecies, 
Svalbard reindeer are non-migratory and have small 
home ranges (Tyler 1987), which was evident from 
the strong genetic differentiation between some pop-
ulations that were only tens of kilometres apart (see 
also Côté et al. 2002). Across the archipelago, the 
strong population genetic structure was partly attrib-
uted to historical overexploitation. Unregulated har-
vest was banned in 1925 but had already led to extir-
pations of reindeer across large parts of Svalbard. 
The few remaining and critically small populations 
gradually recolonised the former distribution range, 
partly mediated by reintroductions (Le Moullec et al. 
2019b). Landscape genetics analyses further indicated 
that the spatial population structure was determined 
by restricted dispersal across steep mountains, gla-
ciers, fjords and open sea between islands (Peeters et 
al. 2020). Furthermore, the seasonal occurrence of 
sea ice facilitated dispersal and was a key driver of 
gene flow and source−sink dynamics among popula-
tions. Due to global warming and the strong oceano-
graphic gradient in sea surface temperatures around 
Svalbard, the increased rarity of sea ice has already 
limited the genetic mixture between neighbouring 
reindeer populations along the west coast. 

Climate change is of particular concern for the 
population connectivity of high Arctic terrestrial spe-
cies that depend on dispersal across sea ice (Post et 
al. 2013). The lack of sea ice as a dispersal corridor 
will likely decrease recolonisation probabilities and 
increase the risk of inbreeding and loss of genetic 
diversity, particularly in small and isolated popula-
tions (Saccheri et al. 1998). Peeters et al. (2020) de -
monstrated how population genetic structure and 
connectivity can be influenced by interactions of past 
(overexploitation) and ongoing (climate change) 
anthropogenic drivers. Climate change and harvest-
ing can thus strongly influence the evolutionary 
potential and persistence of species through effects 
on population connectivity and spatial genetic struc-
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ture. Moreover, the loss of connectivity will reduce 
immigration rates from nearby high-density popula-
tions and increase the extirpation risk of small popu-
lations (Heino et al. 1997). Populations with strong 
spatial synchrony in their environmental drivers are 
therefore expected to be at particularly high risk. 

2.6.  Implementing spatial structure in population 
dynamics into practical management 

It can be challenging to sustainably manage and 
harvest species with a strong spatial structure. If 
dynamics are not synchronised or are driven by dif-
ferent factors in different subpopulations, harvesting 
strategies must be locally adapted. In addition to the 
ecological challenges of disentangling the spatial 
heterogeneity of how different drivers affect popula-
tion dynamics, it also becomes challenging to com-
municate such strategies to end users. This is partic-
ularly true because management of natural resources 
often involves a top-down process where stakehold-
ers and end users have limited possibilities to con-
tribute to practical management actions (Redpath et 
al. 2013). This is unfortunate, as these groups often 
have local hands-on knowledge about biological pro-
cesses based on experience and perceptions from ex -
tensive use of the systems (Ims & Yoccoz 2017). 
Moreover, when the need for management-relevant 
knowledge is urgent, it can be efficient to involve 
stakeholders in the research process to foster collab-
orative understanding of management needs and to 
increase legitimacy and decision support. One ap -
proach to ensure stakeholder involvement is the 
strategic foresight protocol (SFP) (Cook et al. 2014, 
Hamel et al. 2022 in this Special). 

Developing management strategies that account 
for spatially structured environments warrants spa-
tially explicit data on the focal species and the envi-
ronment and other important drivers (Ims & Yoccoz 
2017). While such data are rare, the willow ptarmi-
gan Lagopus lagopus in the boreal and low Arctic 
ecosystem of Finnmark, northern Norway, repre-
sents a system where such food web data are avail-
able (Henden et al. 2020). The willow ptarmigan has 
historically displayed large periodic fluctuations in 
abundance. In recent decades, population trends 
have been negative in large parts of its worldwide 
distribution (Henden et al. 2011, Fuglei et al. 2020). 
As a result, hunting has become more regulated, re -
quiring better knowledge about mechanisms causing 
local and regional population fluctuations (Henden 
et al. 2017). 

To obtain a better knowledge foundation for the 
management of willow ptarmigan in Finnmark, stake-
holders were invited to participate in an SFP ap proach 
(Henden et al. 2020). Because of the recent red listing 
of ptarmigan in Norway (Henriksen & Hilmo 2015) 
and because many stakeholders are well acquainted 
with previous research on willow ptarmigan from 
Scan dinavia, many stakeholders revealed similar 
views on urgent research needs to better understand 
past dynamics and trends. Interestingly, several stake-
holders ex pressed a need for near-term fore casts of 
the population state to better prepare for and adapt 
harvest regulations, and thereby provide a useful tool 
for adaptive management of willow ptarmigan in this 
region (Henden et al. 2020). The main drivers high-
lighted through these discussions included changes 
in food web dynamics and predation pressure, local 
climate, changed seasonality and harvesting pressure 
(Henden et al. 2021). As expected, several of these 
factors varied spatially within the region (e.g. Ims et 
al. 2019, Vindstad et al. 2019); hence, a spatio-tempo-
ral model of ptarmigan dynamics was developed. 
This model revealed high spatial synchrony in the 
ptarmigan dynamics. However, spatial heterogeneity 
in the dynamics of important drivers such as moth 
outbreaks (causing defoliation of birch forest and im-
pacting ptarmigan food availability) and harvesting 
was important in explaining local dynamics of ptarmi-
gan populations. Importantly, the accuracy of the 
model in predicting the next year’s abundance of wil-
low ptarmigan therefore varied in space. This sug-
gests that caution should be taken when using aggre-
gated models that assume homogeneity of responses 
over larger areas. Doing so may result in imprecise 
management actions in areas where other mecha-
nisms may constitute key drivers or where the drivers 
of population dynamics are un correlated with the 
drivers from where the model is derived. By incorpo-
rating a spatially explicit model for willow ptarmigan 
dynamics, managers now have a tool for making spa-
tially structured management plans. 

3.  DISCUSSION AND FUTURE PROSPECTS 

The link between the spatial structure of popula-
tions and their environment has been described in 
multiple taxa (Liebhold et al. 2004, Walter et al. 2017). 
The case studies from the SUSTAIN project presented 
here confirm such a general pattern but also show 
that spatial population synchrony is typically weaker 
than environmental synchrony. Heterogeneity in how 
local populations respond to environmental variation, 
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such as weather, seems to constitute a key mechanism 
for the discrepancy be tween the spatial structures of 
the environment and populations. However, the case 
studies did not investigate other synchronising mech-
anisms, such as tro phic interactions or dispersal. 
There are few empirical studies on such mechanisms 
on spatial population synchrony, but these do suggest 
that, for instance, a high level of dispersal or the pres-
ence of a nomadic predator tends to increase, rather 
than de crease, population synchrony (Ims & Andreas -
sen 2000, Benton et al. 2001, Abbott 2011, Anderson 
et al. 2018). Accordingly, it seems likely that spatial 
heterogeneity in population responses to environ-
mental variation is the main reason why we observe a 
weaker synchrony in population dynamics than in the 
environment. 

Many factors can cause heterogeneity in the rela-
tionship between population growth and weather or 
climate. Variation in the strength of density depend-
ence among populations will result in different dyna -
mics for populations experiencing similar environ-
mental variation (Engen & Sæther 2005, Sæther et al. 
2007). Spatial variation in habitat or climate conditions 
can affect how weather impacts, for instance, foraging 
conditions (Mysterud et al. 2001, 2002), which influ-
ences survival and recruitment (Hansen et al. 2011). 
In addition, even nearby populations often experience 
different levels of interspecific inter actions which also 
af fect population dyna mics (Gamelon et al. 2020). 
Theoretical results ob tained from other studies in the 
SUSTAIN project (Jarillo et al. 2018, 2020, Lee et al. 
2020) strongly indicate that climate change will ac-
centuate the necessity for implementing the effects of 
harvesting on spatial synchrony in the dynamics of in-
teracting species. Knowledge about such potential 
changes in the spatial distribution of abundances will 
probably be a prerequisite for sustainable ecosystem-
based management. 

The fact that there were strong differences in the 
spatial structure of marine species inhabiting the 
same habitat (Marquez et al. 2019), and thus experi-
encing similar spatial structure of the environment, 
supports the notion that spatial population synchrony 
is not only affected by the environment but also by 
internal species-specific mechanisms such as the 
strength of density dependence and life history 
strategies. Also, here, estimates of spatial population 
synchrony in marine fish (Marquez et al. 2019) were 
considerably lower than the estimates of spatial syn-
chrony in the environment that have been obtained 
for the same system (Herfindal et al. 2022). This sug-
gests that even in marine systems with few limita-
tions in the flow of individuals and nutrients, which 

would support highly synchronised population dyna -
mics over large spatial scales (Steele 1985, Steele & 
Henderson 1994, Carr et al. 2003), there is a strong 
spatial population structure (Myers et al. 1995, 1997, 
Marquez et al. 2019). 

How spatial structure in population dynamics af -
fects local and regional population processes can be 
hard to assess empirically. However, modern genetic 
tools combined with models for spatial connectivity 
provided insight into the genetic consequences of cli-
mate change and past overexploitation on the spatial 
structure of Svalbard reindeer (Peeters et al. 2020). 
The consequences of climate change on connectivity 
between populations can be particularly critical for 
small populations (Lande 1998). However, climate 
change can also affect spatial structure through other 
mecha nisms in addition to connectivity be tween pop-
ulations. The plant and reindeer studies from Sval -
bard showed that the spatial variation in how climate 
change affected local conditions in creased the hetero -
geneity in population responses to weather (Le Moul-
lec et al. 2020, Hansen et al. 2019). This occurs even if 
climate change, measured as an in crease in tempera-
ture or precipitation, is similar over large areas. The 
implications of weather or climate trends for important 
environmental conditions, such as snow accumulation 
and basal ice formation, show large spatial variation 
(Peeters et al. 2019). The result is an increased spatial 
heterogeneity in the environmental conditions expe-
rienced by populations in a given year, which de-
creases population synchrony (Engen & Sæther 2005, 
Sæther et al. 2007, Hansen et al. 2019). 

The combined results from the Svalbard reindeer 
case studies (Hansen et al. 2019, Peeters et al. 2020) 
illustrate the importance of understanding and ac -
counting for spatial variation in the effects of envi-
ronmental changes on both local population dynam-
ics and connectivity between populations. This is 
highly relevant for the management of harvested 
populations where spatial variation in harvest inten-
sity can modify both the spatial scale of population 
synchrony (Engen et al. 2018a,b, Jarillo et al. 2018) 
and source−sink dynamics (Péron et al. 2012). Over-
all, climate change can affect population synchrony 
and spatial structure through many mechanisms 
(Defriez et al. 2016, Koenig & Liebhold 2016, Black et 
al. 2018, Kahilainen et al. 2018), and further research 
on climate change effects on spatio-temporal popula-
tion patterns across systems and taxa is needed to 
provide general guidelines for sustainable manage-
ment of populations and species. 

Sustainable management of species in spatially 
structured environments must acknowledge the driv-
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ers of local population dynamics and be able to act at 
the appropriate spatial scale if local abundances be -
come critically low. This requires in-depth knowledge 
about local and regional ecological processes affecting 
spatio-temporal patterns of population size (Henden 
et al. 2020, Mellard et al. 2022 in this Special). Knowl-
edge about the harvesting itself, how it varies in time 
and space and how it affects the spatial patterns of 
population dynamics is also required (Engen et al. 
2018a, Lee et al. 2022 in this Special). Such knowledge 
is not found in standard ecological data, and can only 
be achieved through a strong involvement of stake-
holders and end users in the development of harvest 
strategies (Henden et al. 2020, Hamel et al. 2022). 
This illustrates one of the major challenges for re-
search and management of species in spatially struc-
tured environments: the need for spatially explicit 
time series from harvesting practices or other man-
agement actions, environmental conditions and popu-
lations. Moreover, data from species other than those 
of focal management interest are also important (An-
derwald et al. 2015, Henden et al. 2021, Lee & Sæther 
2022 in this Special), because species do not live in 
isolation but co-exist and interact with other species 
(Gamelon et al. 2020, Mellard et al. 2022). 

Obtaining the data needed for sustainable manage-
ment of species and ecosystems under climate change 
is resource demanding (Henden et al. 2020). If we want 
to account for spatial processes, we need to reconsider 
how we design ecosystem monitoring programmes. In 
addition to assessing short- and long-term changes 
across environmental gradients (Ims et al. 2007, Ims & 
Yoccoz 2017, Halbritter et al. 2020, Negret et al. 2020), 
spatial replicates, e.g. within a habitat type or climatic 
condition, are needed. Knowing the spatial structure 
of biological processes can aid in both the planning 
and implementation of monitoring as well as the inter-
pretation and generalisation of results (Yoccoz et al. 
2001, Negret et al. 2020, Lee et al. 2022). Failing to ac-
count for the spatial structure of the environment and 
populations can have important consequences, for in-
stance by generating biased estimates of the effec-
tiveness of conservation actions (Negret et al. 2020). 
Although ecological data from different research or 
monitoring programmes are increasingly being com-
piled and made available (Culi na et al. 2018, 2021), 
systematic monitoring of key species at different 
trophic levels from the same system is more suitable 
for gaining an understanding of the complex spatio-
temporal dynamics caused by the environment, spe-
cies interactions and human impacts (Ims & Yoccoz 
2017). One important reason is that systematically 
sampled data over large areas make it easier to ad -

dress uncertainties due to observation errors (Buck-
land et al. 2007). Biased and imprecise estimates of 
demographic rates due to sampling error affect esti-
mates of the spatial structure of the species (Lillegård 
et al. 2005). Such spatial biases can greatly affect how 
efficient and precise management strategies are 
(Aanes et al. 2002). 
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