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Abstract

The origin and heating of the solar wind is still a puzzle. We review in
this study the idea that the solar wind originates in coronal funnels. We
place emphasis on the fast solar wind. This study provides primarily a his-
toric overview over the development of the idea of funnel expansion. We
present examples of recent solar wind studies that investigate the funnel ge-
ometry. These studies include both static and time dependent reconnection
geometries. The time dependent reconnection geometry that we present and
evaluate in more detail is He et al. [2008]. They present their model in order
to explain why blue and red shift of the spectral lines Si ii, C iv and Ne
viii can be seen in the same flow tubes on the sun. We have found some
of the strengths and weaknesses with this model by comparing the models
results to observations and to contemporary papers that treat the same ions.
We have found that the model results fit relatively well to observed Doppler
shifts (velocities), but that the model ignores the physical mechanism below
5 × 106 m that transports the heavy ions to that height, and it does not
fully explain the choices of initial conditions, in particular why the mass in-
put occurs exactly at 5 × 106 m. These challenges with this model may be
important to take into account when developing future models of funnels.
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Chapter 1

Introduction: Overview of the
Sun and the Solar Wind

The aim of this work is to present an overview of the work done on funnels,
and how the knowledge that exists about funnels today has been achieved.
Throughout the last 20-30 years the understanding of the flow geometries
and physical conditions in the transition region and corona has improved
significantly. And new models have superseded old ones as new observational
evidences have been uncovered. Before presenting a description of the earliest
funnel models (chapter 2), a general introduction about the sun and the solar
wind will be given.

1.1 The Sun

The sun is the star at the centre of our solar system. It has a relatively small
or medium mass of MS = 1.98× 1030 kg, a radius of RS = 6.96× 108 m, and
an age of ≈ 4.6× 109 earth years which is approximately half of its expected
life time.

The energy from the sun that is incident upon the earth consists primarily
of radiation. The spectrum of the radiation from the sun fits rather well to
a black body spectrum with a temperature of T ≈ 5.7× 103 K (Christensen
[2002]), with the inclusion of some absorption lines. The energy in the pho-
tosphere ultimately originates in the core of the sun, where the temperature
is sufficient, ≈ 15× 106 K, for nuclear fusion to occur. In the core, hydrogen
nuclei (protons) have enough of thermal energy to combine into helium (in a
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three-stage process). Excess energy from the nuclear reactions is transported
outwards through the radiation zone, by photons. In this layer the temper-
ature is already too low for fusion processes. Further out in the interior the
temperature decreases to less than ≈ 1× 106 K, and some heavy nuclei start
to combine with electrons into ions as the electron thermal energy becomes
lower than the upper ionisation potential. These transformations make the
plasma more opaque. The energy transport by radiation becomes ineffec-
tive, and temperature gradients are built up and turbulent convection flows
are generated. This layer of the interior is called the convection zone. The
magnetic field of the sun is generated in this zone. And the characteristic
horizontal and vertical flows very much define the magnetic field at the sur-
face of the sun. The photosphere is considered to be the surface, because this
is where the photons that we see at earth escape from. The photosphere is
the layer in which the density has decreased so much that the plasma is no
longer opaque. The photosphere contains the temperature minimum of the
sun, ≈ 4 × 103 K (Vernazza et al. [1981]) located approximately 0.5 × 106

m above the photosphere in the chromosphere (see figure 2.1 in chapter 2).
Consequently, the gas at this ‘cool’ temperature layer consists of neutral
atoms (hydrogen and helium, mostly).

The convectional flows form distinct features or patterns on the surface,
known as supergranules (≈ 30× 106 m in size) and above the supergranules
a pattern of granules (≈ 1 × 106 m in size). These granules are the result
of the fact that the plasma flows upward and then flows to the sides when
it reaches the surface. It then flows downward between the granules in a
circular motion. The magnetic field, more or less, follows the flow, resulting
in vertical magnetic fields in the borders, and near horizontal field in the
centre of the granules and supergranules. The borders are called lanes. The
lanes on the sun constitute the network. The magnetic field in and around
lanes and network has a large impact on the magnetic field higher in the
solar atmosphere. Both red-shifts and blue-shifts (Doppler shifts) of emission
lines have been observed mostly from lanes. And the intensity of certain high
temperature lines is higher in lanes than above cells, which indicates that the
plasma in lanes is hotter than outside.

Above the photosphere we find the chromosphere, where the temperature
increases to approximately ≈ 20 × 103 K at the top. Here a substantial
fraction of helium atoms have been ionised (figure 2.1).

The corona is the outer layer of the solar atmosphere. It is a layer which
consists mostly of completely ionised elements – plasma, with mostly proton
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and electrons. A small fraction of partly ionised heavy elements still exists
(known from the emission from these ions). The proton temperature reaches
≈ 2.5 × 106 (Cranmer et al. [1999]) in the corona, while the electron tem-
perature is slightly lower, ≈ 1− 1.5× 106 (Wilhelm et al. [1998]). The large
difference in temperature between the corona and the chromosphere (at least
2 orders of magnitudes) indicates that a region must exist with a large tem-
perature gradient. This region is very thin. It is called the transition region.
The temperature rises from 2 × 104 K to 1 × 106 K in a layer that is only
100 km thick, and the chromosphere gas transforms into a complete ionised
plasma through this layer.

Due to the steep temperature gradient, energy is conducted downward
from the hot corona to the cool chromosphere. In the chromosphere this
energy is lost by radiation. This energy balance is called ‘back heating’, and
this is explained further in chapter 2.

1.2 The Solar Wind

Ionised gas is flowing away from the sun in all directions. This flux of plasma
is called the solar wind, and it achieves its velocity in the solar corona. There
are two main modes of the solar wind; the fast and the slow solar wind. The
fast solar wind originates in coronal holes, which are areas on the sun with
open magnetic field lines and low density. The speed of the fast wind is
u ≈ 700 − 800 × 103 ms−1 at 1 AU. The density, proton flux density and
proton temperature at earth are n ≈ 3× 106 m−3, φp ≈ 2× 1012 m−2s−1 and
Tp ≈ 2.3 × 105 K, (Lie-Svendsen [2007]). The slow solar wind originates in
the vicinity of closed magnetic loops in the so called streamer regions. By
the sides, and at the top of these loops, the magnetic field is weaker relative
to the magnetic field inside the loops, and the plasma is able to escape along
open field lines to the corona where it is further accelerated to the velocity of
the slow wind. The speed of the slow wind is on average u ≈ 350×103 ms−1.
The other plasma parameters are on average n ≈ 8× 106 m−3, φp ≈ 3× 1012

m−2s−1 and Tp ≈ 0.3 × 105 K. If we compare the proton flux density of the
fast and slow wind we see that they are approximately the same. The low
speed of the slow wind is compensated with high density to maintain the
flux density. Both the fast and the slow wind is composed of protons and
electrons, some helium ions (5%), and minor numbers of heavier ions such
as neon, magnesium and iron. However, the plasma parameters of the slow
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wind are very varying. And the helium abundance can reach as high as 20%.
During solar minimum, the holes are usually situated around the poles on

the sun (polar coronal holes), although they occasionally extend to lower lat-
itudes. The streamer regions are usually located around the equator. During
this period of the solar cycle the slow wind is mostly found to flow outwards
in the equator plane of the sun. At solar maximum, however, the situation
is more complex. Coronal holes and streamer regions are mixed with active
regions, which are constantly changing.

At solar maximum the coronal magnetic field on the sun is not so clearly
separated, the magnetic field is much more complex and varying. Both slow
and fast wind may appear from anywhere on the sun (Miralles et al. [2004]).

The issue of how the corona is heated to the high temperature that is
observed in the corona (Tp ≈ 2.5 × 106 K) is one that has not fully been
understood to this day. But it has been argued by Lie-Svendsen [2007] that
this temperature of the corona is a prerequisite for the solar wind; without
such an high temperature, there would not have been a solar wind. And
the solar wind is an important contribution in the energy loss of the corona.
One of the most accepted theories to the high coronal temperature is that
the corona is heated by low frequency Alfèn waves. These waves are assumed
to be generated low in the solar atmosphere. They propagate upwards, and
dissipate energy in protons and heavy ions in the corona.

It has been shown that the geometry of the flux tubes can have significant
impact on the solar wind solutions. In the following we investigate the role
of funnel geometries. These are flux tubes that expand more rapidly with
height than ordinary open coronal holes, and with a much smaller cross
section in the lower solar atmosphere. In the following we will present the
historic development of the idea of funnel geometries (chapter 2). We will
then present examples of static funnel geometry (chapter 3). We then explain
the idea of time dependent funnels (chapter 4), by giving two examples, and
with emphasis on He et al. [2008]. Finally we give a summary and discussion
(chapter 5).



Chapter 2

Development of the Idea of
Funnel Geometries

In this chapter a presentation of the history of flux tube geometries will
be given, with emphasis on the two main geometries, the one used in the
so called standard model and the funnel type introduced by Dowdy et al.
[1986]. Many modern static models have been based on this latter model.
But an introduction to the standard model is needed as some properties are
shared between them.

2.1 The Standard Model

Until the 1980s it was assumed that all magnetic field lines that emerge from
the photosphere were connected to the corona (open field lines), but that
the field lines were largely constricted to the network lanes (Gabriel [1976]).
The field lines were thought to expand rapidly with height from the network
lanes through the transition region and lower corona. The reason for such
an high magnetic flux concentration in the lanes was due to supergranular
convection; the convectional movement pushed the field lines together. The
transition region was just the thermal connection between the hot corona and
the cool chromosphere. The energy balance in the lower solar atmosphere
was composed of two components; heat conduction and radiation. Heat was
transferred to the chromosphere by downward heat conduction only (from the
hot corona), back heating, and the heat was radiated away in the transition
region and chromosphere. In addition to downward heat flux, the corona lost
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energy in the solar wind. A schematic illustration of this process is shown in
figure 2.1. In this figure, the thick line indicates the shape of the magnetic
field as it expands out from a network lane. On both sides of the ‘neck’
in the photosphere, supergranular cells (not marked) constrict the magnetic
field into the neck. The plasma parameters in this figure are from Vernazza
et al. [1981]. They calculate these parameters from a model of spectral line
intensities in close comparison to observations.
The view of the geometry of field lines, and energy balance, as described here
has been referred to as the standard model.

It was known from observations that the highest intensity transition re-
gion emission lines seemed to appear from network lanes. For hotter lines,
however, no remarkable difference between emission above network cells and
network lanes was seen. The downward heat flux was stronger above lanes
because conduction strictly followed magnetic field lines, and because the
magnetic field was vertical above the lanes. And a higher intensity was as-
sociated with this magnetic flux concentration. In fact, the emission as a
function of distance along the surface has been calculated by Gabriel [1976],
using three models (model A, model B and model C). Model C (two dimen-
sional network energy balance model) included effects due to supergranular
convection, whereas the other models did not. Model C was the only model
that predicted the observed increased emission above network lanes. Figure
2.2 shows the field line geometry of the standard model. In this figure, a more
thorough illustration of the field line configuration of the standard model is
presented. The uniform field lines in the corona all originate in the network
lanes, and all the field lines from the photosphere ultimately end up in the
corona.

Emission measure. When comparing different models of magnetic ge-
ometries with observations, emission measure is a useful concept: The abun-
dance of a specific element in a specific temperature interval (or height) in
the transition region is manifested by the intensities of the observed spectral
line.

The number of quanta produced from an ion species, per cm3 sec, depends
on the density of the ion, nion, and the collisional excitation rate, C, (Pottasch
[1963], Burton et al. [1971], Gabriel [1976]),∫

nionCdr

which has the dimension of [cm−2s−1]. In the above equation, r is the height
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Figure 2.1: Back heating: Illustration of back heating. Energy supplied by
heat conduction from the corona is lost by radiation in the chromosphere, and the
transition region is the thermal connection between the two. The numbers to the
left show height above the photosphere. The plasma parameters to the right show
temperature, hydrogen density and electron density for the temperature minimum
at height r = 0.5× 106 m and at the transition region, and they are from ‘model
F’ in Vernazza et al. [1981]

above the solar limb. The integral extends across the temperature region
where the ion exists. Multiplying the last expression with the energy of a
quanta, hν and 1/2 (while looking perpendicular on the solar surface, only
half of radiation is emitted towards the earth), yields the intensity emitted



12 Development of the Idea of Funnel Geometries

Figure 2.2: Standard model/model C: The magnetic field lines (upward ar-
rows) expanding from network lanes, contours of constant temperature (upper solid
lines), convective flow (lower solid lines) in the standard model. The transition
region is at the accumulative isotherms. As can be seen, the size of the magnetic
structures is the same for the super granules (network) — 30000 km. From figure
5 in Gabriel [1976] which is based on ‘model C’ in the same paper

from the sun ([ergscm−2s−1]),

I =
1

2
hν

∫
nionCdr

Deriving emission measure from observations. It is estimated that the
ratio of the density of neutral and ionised hydrogen to electron is nH ≈ 0.8ne.
The above equation can then be written,

I ≈ 0.8
1

2
hν
nel.
nH

∫
nion
nel.

neCdr (2.1)

where nel. is the elemental density. And it has been assumed that the ratio
nel./nH does not depend on the height in the transition region. The collisional
excitation rate, C, has been defined in the literature to be (Pottasch [1963]),

C = 1.7× 10−3neT
−1/2W−1f10−5040W/TP (W/kT )
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in [s−1], where W is the excitation energy [eV], P (W/kT ) is a factor that is
related to transition probabilities to one state from another (van Regemorter
[1962]), and f is oscillator strength (a dimensionless quantity that expresses
the strength of a transition, and is proportional to the absorption cross sec-
tion). If C is inserted into equation (2.1), and then simplifying, we get the
result,

I ≈ 1.1× 10−15Pf
nel.
nH

∫
g(T )n2

edr

with g(T ) = T−1/210−5040W/T (nion/nel.) being the emission function. For
a particular ion, this function has a narrow maximum, and this function
thereby reveals the temperature interval in which a particular ion exists.
g(T ) is normalised by 〈g(T )〉 = 0.7Max(g(T )). The emission at the distance
of earth is achieved by multiplying with (4/3)π(r3

AU/R
3
S),

I ≈ 7.6× 10−21Pf〈g(T )〉nel.
nH

∫
R

n2
edr (2.2)

The last expression in equation (2.2), (nel./nH)
∫
R
n2
edr, is called the emis-

sion measure [cm−5], and the integral runs only over the region where
g(T ) is non-zero, which is the temperature range where the particular ion is
formed.

The emission measure is found from observation by measuring the in-
tensity, I, for each line, and computing the function (temperature interval)
〈g(T )〉 for each line. Since the other variables are known, nel/nH

∫
R
n2
edr can

be found. For a large number of lines, a set of values on definite temperature
intervals are achieved, which are plotted as a function of temperature. An
example of observed emission measure is shown in figure (2.3).

The emission measure has been computed for the standard model by for
example Athay [1982]. A plot of the computed em along with observed em
is presented in figure 2.4. As can be seen from this figure, the standard
model, such as model C in Gabriel [1976], produces ems that agree well for
temperatures T > 105 K, but fails to account for the cooler segment T < 105

K. Although the standard model agrees with many observational features, it
is not a satisfactory model especially since it does not explain the emission
from the cooler part of the transition region.

During the 1980s as increased resolution improved the magnetograms, it
was evident that the photospheric magnetic field was not so uniform and
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Figure 2.3: Emission measure, computed for many lines. In this figure Pot-
tasch [1963] refer all the abundances to that of oxygen (therefore nO/nH
instead of nel/nH). The shape of the curve for nel/nH would anyway be
the same as for this curve. This curve is shifted by the relative abundance
between oxygen and the element in question. From Pottasch [1963]

streamlined as seen in figure 2.2. A pattern of fine-scale features were dis-
covered on magnetograms of the photosphere above supergranules and in
transition region above network lanes. These fine-scale features consisted of
patches of magnetic flux with different magnetic polarities, and they seemed
to be concentrated mostly in network lanes. The observations of different
polarities radically altered the view on how the magnetic field near the solar
surface were arranged. An example of such a magnetogram is presented in
figure 2.5 (and 2.7). In this recent magnetogram (of Bz flux) from Hinode
we notice that both upward and downward magnetic flux exist (as light and
dark patches). If one studies this magnetogram carefully, it is possible to
distinguish the network (the centre of supergranular cells has fewer of these
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Figure 2.4: Differential emission measure: The dashed line is derived from
observation. The dotted line is derived from the standard model. It is evident
from this figure that such a model does not account for the cooler part of the
transition region. From Dowdy et al. [1986] and based on model by Athay [1982]

patches). The standard model did not take into account any such fine scale
magnetic features.

Another observation that questioned the standard model was the inten-
sity maps of transition region lines. According to the standard model, the
transition region would be very thin because only open field lines were taken
into consideration. The emission pattern from the cool transition region
(104 < T < 105 K) was expected to be similar to the emission pattern from
the hot transition region (105 < T < 106 K). It turned out, however, that the
intensity maps of cool lines (of for instance C II) were different than those
for hotter lines (such as O VI). The cooler ones showed more bold emission
features, than expected, in lanes. And the intensity was very varying along
the lane, especially from cool lines.
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Figure 2.5: Magnetic polarities: Hinode SOT/SP magnetogram of a coronal
hole at low latitude, recorded November 11 2008. The dimensions are 200 × 115
[106 m]. Light areas are magnetic flux of positive polarity, and dark areas are
magnetic flux of negative polarity. The magnetic flux scale is from −500 G to 500
G. From Abramenko et al. [2009]

2.2 The Model By Dowdy et al. [1986]

Based on the observations from magnetograms and intensity maps, Dowdy
et al. [1986] suggested an explanation to the shortcoming of the standard
model. In the standard model it is automatically assumed that since all field
lines in the corona originate in the network lanes, the vice versa is also true
(that all field lines in the lanes reach the corona). They argue that this is not
necessarily so: Parts of the flux in the network lanes may be foot points of
closed loops. Thus it is suggested that the magnetic landscape consists of two
components: open funnels and closed loops. An illustration of this is shown
in figure 2.6. Here we see the magnetic picture along a network lane. We see
that the funnels (white areas) are intermingled with closed loops (dark areas),
and due to this intersection of cool plasma through regions of hot plasma, we
may get more emission from cool lines than what is expected in the standard
model, and which agree more to the observations. The reason for this two-
component magnetic field picture is again the continuous supergranulational
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Figure 2.6: Static model: A cartoon of the magnetic field according to Dowdy
et al. [1986]. Loops are intermingled with funnels and may share the magnetic
flux in their foot points with funnels in their neck. The hot branch of the emission
originates primarily in the funnel, while the cool branch origin in closed loops.
From Dowdy et al. [1986].

flow that is responsible for moving foot points of loops along the lane. The
existence of loops in the network lanes explains both why different magnetic
polarities are shown in magnetograms, and why emission from cool lines is
so bold and structured and why the intensity is so high in network lanes.

The funnels according to Dowdy et al. [1986] are open field lines with
much the same geometry as in the standard model, but with even narrower
neck. Dowdy et al. [1986] argue that some of the patches of strong flux
that we see in figure 2.5 contain the neck of funnels, but the foot point of
loops also shares a smaller part of this flux, which is the principal difference
between the standard model and Dowdy et al. [1986]’s model. The field
strength in these patches can reach up to 500 Gauss. So the cooler transition
region is populated with many closed loops that are intermingled with the
open funnels. This may also explain why em of standard models does not
fit observational em for T < 105 K: Most of the cooler transition region is
contained in the loops, and is therefore not energetically connected to the
corona. The back heating process is not applicable to the plasma in the loops,
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because they are heated internally. The hotter transition region, however, is
mostly found in funnels, and the energy is supplied by heat conduction from
the corona – back heating, as in the standard model.

Figure 2.7: Magnetic polarities: MDI/SOHO magnetogram recorded on March
7 1997. The area encircled by a white line is a coronal hole. Outside is an quiet
sun area. The scale on the top defines the magnetic field strength (light areas are
magnetic flux of positive polarity, and dark areas are magnetic flux of negative
polarity). From Aiouaz [2008]



Chapter 3

Examples of Static Funnel
Models

Based on the ideas by Dowdy et al. [1986] the following expression has been
used to describe the geometry of funnels (Janse et al. [2007] and Kopp and
Holzer [1976]),

A(r) = A0

(
r

RS

)2

F1 · F2 (3.1)

where A(r) is area as a function of heliocentric distance r, and where,

F1 =
fm1e

(r−rg1)/σg1 + fg1
e(r−rg1)/σg1 + 1

F2 =
fm2e

(r−rg2)/σg2 + fg2
e(r−rg2)/σg2 + 1

The function A(r) describes the degree of expansion relative to radial expan-
sion. The expansion is represented by the functions F1 and F2 which deter-
mine the inner and outer super-radial expansion, respectively. In the above
equations, A0 is the area of the flux tube at the lower boundary, and RS is
the solar radius. The function fg1 is defined as fg1 = 1−(fm1−1)e(Rs−rg1)/σg1

(the function fg2 is defined similarly). fm1 and fm2 specify how many more
times the flux tube opens than a radial tube. rg1 indicates where the funnel
expansion takes place, and rg2 where the coronal hole super-radial expan-
sion occurs. And σg1 and σg2 specify over what distance the expansions take
place, in the two regions. For an ordinary coronal hole, fm1 is in the order
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of 5 to 7 and F2 = 1. For a radially expanding solar wind, the functions F1

and F2 are F1 = F2 = 1.
An example with fm2 = 5 is shown in figure 3.1. The dashed line is for

a coronal hole type geometry, and the solid line for a funnel. Each of these
geometries in this example has their unique set of expansion parameters. It is
clear that the funnel surface area is much smaller than the coronal hole, and
that the funnel expands more rapidly than the coronal hole. At a distance of
∼ 1.03RS the two geometries become similar, because they share the same
expansion parameters for the outer segment.

Figure 3.1: Example of flux tube expansions: Comparison of two flux tube
expansion A(r)/r2 as a function of distance. The dashed line is for a coronal hole,
and the solid line is for a funnel (from Janse et al. [2007]).

In the following we will summarise three solar wind model studies that
make use of the funnel type expansion. In the examples presented below
the solar wind equations for mass, momentum and energy conservation are
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solved. The resulting solar wind parameters are in good agreement with
observations.

3.1 Esser et al. [2005]

Esser et al. [2005] use a model to show that a large expansion factor of the
magnetic field produces results that agree to observations of Ly-α emission in
the transition region. The expansion factor can be varied in the model, and
it is adjusted to fit the Ly-α observations in the best way. Two set of results
are calculated, one with a small expansion factor (traditional coronal hole),
and one with a large expansion factor (funnel). The expansion parameters
that are used for the funnel are fm1 = 62 and fm2 = 7. It is demonstrated
that a small expansion factor is unable to account for the Ly-α emission;
the emission is only 1/10 of what it should be according to observations. A
larger expansion factor agrees much better to observations, both of the Ly-α
emission and electron temperature. There are three main reasons for this:
Firstly, at a given temperature, downward heat flux density in the corona is
smaller in a funnel than in a flow tube that expands less. So the electron
temperature can be increased without increasing the mass flux. Secondly,
although the heat flux density increases further down in the funnel most of
the energy is not converted to radiation but is used to heat the upwelling
plasma. And since the particle flux density must be large in the funnel, to
sustain the observed mass flux, a large energy flux density is needed. Thirdly,
since the hydrogen is brought out of ionisation equilibrium, in this fast flow
tube of the funnel, the Ly-α loss take place at a higher temperature where
the excitation rate is much higher. A higher excitation rate means that a
lower density is needed in order to maintain the same degree of cooling. So in
a funnel, the Lyα is much higher than in a geometry with smaller expansion.

As shown in figure 3.2 the energy flux density is plotted as a function of
electron temperature for both funnel and hole geometry. In the hole geome-
try where the hydrogen is close to ionisation equilibrium the Ly-α radiation
is small. In the funnel geometry the hydrogen is way out of ionisation equi-
librium due to the high outflow velocity. Outflow velocity is higher in the flux
tube with a large expansion factor (funnel) because of flux conservation. The
flux below the corona (indexed by ‘1’) is the same as in the corona (indexed
‘2’) so that A′1n1u1 = A′2n2u2. In a funnel, the cross section A′1 is smaller
than in a coronal hole. And flux conservation is achieved by an increase in
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Figure 3.2: Ly-α: Radiation loss in the unit of energy flux density, as a function
of temperature for a hole geometry (red lines) and a funnel geometry (black lines).
Enthalpy flux is higher for the funnel because the outflow velocity is higher. In-
creased outflow in the funnel carry the Hydrogen atoms further out of ionisation
equilibrium to hotter regions where Ly-α loss rate is higher due to much more
efficient electron excitation there. From Esser et al. [2005]

the velocity u1. And because the outflow velocity is much higher the hydro-
gen is far from ionisation equilibrium. Therefore the Ly-α loss takes place at
a higher temperature. As can be seen in the same figure, the enthalpy flux
is higher for the funnel than for the coronal hole; in the funnel geometry the
downward heat flow from the corona is used primarily to heat the plasma
flowing upwards, as opposed to the hole geometry where most of the heat is
converted into radiation.

3.2 Byhring et al. [2008]

In Byhring et al. [2008] three geometries have been chosen; two funnel ge-
ometries and one coronal hole geometry. One funnel has a very small σg1
(F1), while the other funnel has parameters similar to the funnel in figure
3.1. Observations have revealed that the C and O ions have very low or no
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blue shift, and that Ne viii has blue shifts in the interval 7 − 20 km s−1.
Applying the coronal hole geometry in the model provides too low blueshift
for Ne viii (only 3.5 km s−1). The F2 geometry, on the other hand, pro-
vides C and O ions with too large blue shifts. The F1 geometry proves to
be the most suitable choice; the blue shifts for all the lines are within the
observational values, except for the O v line which is slightly overestimated
by the model. The best fit is found for a funnel with an expansion factor
of fm2 ∼ 4. The location of the expansion is also found to be important:
A sudden expansion should occur above the source region of Neviii. And
lower in the transition region, at the forming temperature of C and O, the
expansion should be moderate or low.

The lines, the corresponding transitions and the calculated flow velocity
from Doppler shifts are reproduced from Byhring et al. [2008] in table 3.1.
The Doppler shifts have been calculated by the standard Doppler shift equa-
tion ud = c(λ0 − λmax)/λ0 [103 ms−1], where c is the light speed, λ0 is the
natural wavelength of the ion and λmax is the Doppler-shifted wavelength.

Table 3.1: The list of ions, and their wavelength, electronic transitions, for-
mation temperature and the flow velocity. The flow velocity is calculated
from observations of Doppler shifts. The velocity values are in [103 ms−1].
Although not used in the model by Byhring et al. [2008], the Si ii-line has
been added for later reference. From Byhring et al. [2008], Tu et al. [2005]
and Mazzotta et al. [1998]

Ion λ0 [nm] Transition T form. [K] ud [103 ms−1]
Si ii 153.3 3s23p,2PO

3/2 − 3s24s,2S1/2 2.0× 104 −2.0± 1.3

C iv 154.8189 1s22s,2S1/2 − 1s22p,2PO
3/2 1.0× 105 +0.3± 3.3

O iv 79.0112 2s22p,2PO
3/2 − 2s2p2,2D3/2 1.58× 105 0-3

O iv 79.0199 2s22p,2PO
3/2 − 2s2p2,2D5/2

O v 62.9732 1s22s2,1S − 1s22p,1PO
1 2.51× 105 0-3

O vi 103.7613 1s22s,2S1/2 − 1s22p,2PO
1/2 3.16× 105 0-10

Ne viii 77.0409 1s22s,2S1/2 − 1s22p,2PO
3/2 6.3× 105 +9.6± 2.0
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3.3 Janse et al. [2007]

Janse et al. [2007] make use of the same computer code as the previous two
examples, except that they include helium in their calculations. The inclusion
of helium leads to an interesting result. They find that for a large range of
heating parameters, the funnel has two co-existing solutions, a slow and a
fast solar wind solution that result from the same heating parameters, and
depending on the initial state from which the model was started. Although
the fast and the slow solar wind can co-exist, it is difficult to change from
the fast to the slow solar wind (or vice versa), without a significant change
in the heating parameters. And the existence of helium is a requirement
for having two co-existing solutions. The scale height of neutral helium in
the chromosphere is increased by frictional forces from neutral hydrogen due
to the high flow speed in the throat of the funnel. The scale height of the
relative heavy helium becomes comparable to that of hydrogen. So the funnel
geometry that is chosen in this model is very important for the abundance
of helium.



Chapter 4

Examples of Time Dependent
Models

In this chapter, two examples of time dependent models will be presented.
In time dependent models, the magnetic geometry is no longer considered to
be a fixed entity, as in the models of last chapter, but can vary over time.

From a time series of observation with the Michaelson Doppler Imager
instrument it has been revealed that small scale regions with opposite po-
larities not only exist in the photosphere, but move along the internetwork
lanes, in the supergranular cells, towards the network lanes by supergranular
convection. In the following article by Fisk [2003], these observations are the
argument for the model that are presented.

4.1 Fisk [2003]

Fisk [2003] (but also Fisk et al. [1999] and Fisk [2005]) has elaborated on the
origin of reconnection in the lower transition region, which may give rise to
waves. Fisk [2003] investigates whether the process of displacement of open
field lines (of the funnel) can provide the energy and mass needed to form
the solar wind. The displacement is due to a coalescence process, in which
many small loops are united into larger loops. At some point, these large
loops reconnect with open field lines, and the open field lines are displaced
to another network lane, or another part of the network lane (figure 4.1). In
the A) panel, we see a small loop in development whose foot points move
towards the network lane. On both sides of the supergranule, two funnels
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expand up from the network lane. The polarity of the left leg of the small loop
is opposite of the polarity of the left funnel. B) Given the right conditions,
the foot points of the small loop may migrate out toward the network lanes
by supergranular convection, and towards a funnel area. If the magnetic
field is similar in strength with the funnel magnetic field, the two magnetic
structures cancel each other at some point along the left leg of the loop.

Figure 4.1: Emerging loops:
A) A new loop emerges, B)
Convectional flow carries the
loop towards the network lane,
where the open field lines are
footed, C) reconnection occur,
allowing mass to flow into the
funnel, and a open field line
is displaced (red arrow) to the
other side of the network. Illus-
tration from Fisk et al. [1999]

C) Reconnection occurs, and the field line of
the loop opens together with the funnels. At
the right side of the loop, the funnel field lines
are strengthened because the loop had the
same polarity as the funnel. At the left side,
the funnel has been weakened by the same
amount. Effectively, a certain amount of flux
(equal to the loop flux) from the left funnel
has been moved to the right funnel, at the ex-
pense of the loop. This displacement of open
magnetic field lines from one place to another
along the surface is occurring all the way up
through the corona because the field lines are
considered to be stiff.

This reconnection process limits the size of
loops, and it deposits energy into the corona
as well as mass from the loops. It is sug-
gested that the displacement of open field
lines in the lower transition region also leads
to displacement in the corona. If magnetic
flux increases in the ‘neck’ of one funnel, for
example that one to the right in B) in fig-
ure 4.1, magnetic flux also increases in the
field lines in the corona that are connected to
this ‘neck’ because magnetic flux is conserved
along the flux tube (BA′ = const. where B is
magnetic field strength, A′ is cross section of
flux tube). If magnetic flux increases in the
corona, the energy density and magnetic pres-
sure increase; the volume with a given flux ex-
pands, and executes work on the surrounding
plasma. Waves may be generated from this
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process. The damping of these waves thereby dissipates energy to protons
and heavy ions.

In the following, a more detailed presentation will be given on how energy
and mass is added by reconnection, in this model by Fisk [2003], and how it
influences the speed of the solar wind. An estimate of energy- and mass rate
will be given.

Energy: The displacement of open magnetic flux by reconnection of closed
field lines with open field lines increases the magnetic flux in the region to
which the open field line has been displaced. If one imagines that a surface
element ds contains a foot point of an open field line Bopen (e.g. the right
funnel in figure 4.1) and the foot point of a closed loop with the same polarity
(right foot of the loop in the same figure), reconnection with another open
field line outside the surface element (the other field lines being field lines in
the left funnel in figure 4.1) doubles the field strength through the surface
element to 2Bopen.

In this process, the new field line first oscillates around an equilibrium
position. The time it takes for equilibrium to occur after a field line has been
displaced is considered to be much shorter than the average period between
the displacements of field lines. If we denoted the displacement period δt
(typically ∼ 10− 40 hours), the displacement frequency is 1/δt.

The added magnetic field energy to the corona, (1/2µ0)(BopenSi)
∫

Bopen ·
dh (in SI-units), is doing work by expanding the surrounding volume, and
the energy is converted into other energy forms which heat the corona. In
this equation, Si is the surface element where the field lines pass through as
pictured in figure 4.1, h is the radial vector and µ0 is the permeability of
free space. The above equation is obtained by integrating the energy density
of the magnetic field, (1/2µ0)B

2, along h and multiplying with a surface
element Si.
The energy rate due to displacement of field lines can then be expressed as,

dE

dT
=

1

2µ0

1

δt
(BopenSi)

∫
Bopen · dh (4.1)

where δt is the displacement period as introduced earlier.
Mass: The loops are modelled to be cylinders with cross section Sloop and to
have a shape like a semi-circle, with radius hloop (height of loops). The base
of the loop is defined as the height in which reconnection occurs (the ’floor’
in the semi-circle). And z is the height above the base. The mass density
in the loop is modelled to decrease with height exponentially from the base
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(the base is at the level of the surface element Si in figure 4.1).

ρloop = ρloop,i exp[−z(GM0mp/2r
2
0kT )] (4.2)

where ρloop,i, G, M0, mp, r0, k and T is the mass density at the base, grav-
itational constant, mass of the sun, mass of the proton, radius of the sun,
Boltzmann’s constant and the temperature of the loop, respectively. Equa-
tion (4.2) has been derived from the assumption of hydrostatic equilibrium,
i.e. that the force of gravity equals the pressure force from below at any
height in the loop.

The total mass M of the loop is obtained by integrating equation 4.2 from
the base to hloop and multiplying with Sloop,

Mloop = ρloop,iSloop

(
2r0kT

GMSmp

)
[1− exp (−1.75hloopGMSmp/2r

2
0kT )]

Sloop, the cross sectional area of the loop that undergo reconnection, can
be defined as Sloop = Si(Bopen,i/Bloop,i), where Bloop is the magnetic field
strength in loops. The mass rate dM/dt can now be achieved by multiplying
M with 1/δt, and substituting for Sloop,

dM

dt
=

(
ρloop,i
Bloop,i

)(
Bopen,iSi

δt

)(
2r0kT

GMSmp

)
[1− exp (−1.75hloopGMSmp/2r

2
0kT )]

(4.3)

Fisk [2003] argues that dM/dt must be constant, because the mass flux ρu
at 1 AU is approximately constant. The mass rate in equation(4.3) has the
unit of [kg s−1]. This can also be written as [(kg m−3)(ms−1)(m2)] which is
mass flux multiplied with an area. The mass flux ρiui can the be obtained
by multiplying (4.3) with 1/Si,

ρiui =

(
ρloop,i
Bloop,i

)(
Bopen,i

δt

)(
2r0kT

GMSmp

)
[1− exp (−1.75hloopGMSmp/2r

2
0kT )]

(4.4)

The mass flux of the solar wind is, with equation (4.4), related to the tem-
perature of the loop T, the height of the loop, the relative field strength and
the mass density of the loop.

The solar wind speed. In the model by Fisk [2003] the solar wind is
assumed to be a single mhd fluid with mass density ρ and velocity u. Below
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energy flux balance equations will be presented. Two cylindrical surfaces
perpendicular to the magnetic field through which energy flux flows is con-
sidered: The outer surface, So, situated where the solar wind has achieved
its full speed (∼ 10 RS), and an inner surface, Si, through which mass flows,
and waves propagate (figure 4.2). Both of these surfaces are small enough
for the plasma parameter to be uniform in the time averaged sense. Si must
however be large enough to cover the region where displacement of field lines
occurs.

The energy flux can be expressed as,〈
ρu
u2

2

〉
· S0 = 〈P〉 · Si −

GM0

r0
〈ρu〉 · Si (4.5)

In equation (4.5), 〈P〉 is the time averaged Poynting vector which describes
the energy flux per. unit area of a wave, [W/m2]. The expression

Figure 4.2: Mass and energy
flow: Illustration of the surfaces
through which energy and mass
flow

on the left side is the time averaged kinetic
energy flux (‘energy per second’) of the
solar wind, [(kg m−3)(ms−1)(m2s−2)(m2)
which equals kg m2s−2s−1=‘energi per sec-
ond’]. The first term on the right hand
side is the Poynting vector, ie. the wave-
energy flux, [W] (‘energy per second’),
of the upward propagating Alfvén waves,
that are assumed to be the mechanism
that dissipate energy in the corona. The
second term is the energy flux that ac-
counts for the loss of energy with distance
due to gravitation, [kg m2s−2s−1] (‘energy
per second’).

Equation (4.5) states that the energy
that ultimately leaves the corona in the
solar wind, per second, is the same as the
energy that is supplied to the corona, per
second. It is important to have in mind
that the reason why heat conduction is
not included in (4.5) is because the de-
scribed process takes place far above the
surface Si. In other words, it is the net
energy flux that is considered. Heat conduction does not reach down to the
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surface Si. However, in (4.5), the kinetic energy of the mass flow in the
funnel has been neglected. Although small, it is a contribution to the energy
budget. Secondly, it is assumed that the Poynting vector is strictly parallel
to the magnetic field lines. As a third point, the model assumed that all
the net energy input is specified in the Poynting vector only, an assumption
that may perhaps be too simple. And the model also assumes that all energy
from the corona consists only of flow energy of the solar wind.

Another condition that is applied is the conservation of mass flux,

〈ρu〉 · So = 〈ρu〉 · Si (4.6)

If the indexes o and i are applied to the 〈ρu〉 terms in equation (4.6) and
(4.5), substitute So and Si in (4.5) with the respective relations in equation
(4.6), comparing and cancelling re-occurring factors, the following expression
will result,

u2
o

2
=

Pi
ρiui
− GM0

r0
(4.7)

As can be seen from equation (4.7), the square of the solar wind velocity de-
pends inversely upon the mass flux at the base, ρiui and the Poynting vector.
The Poynting vector can be related to the energy rate due to displacement
of magnetic field. If equations (4.1) and (4.4) is inserted into (4.7),

u2
o

2
=

(
Bloop,i

ρloop,i

)(∫
Bopen · dh
2µ0r0

)(
GM0mp

2r0kT

)
β(hloop, T )− GMO

r0
(4.8)

where β(hloop, T ) = {1− exp [−(1.75hloopGM0mp)/(2r
2
0kT )]}−1.

From equation (4.8) it can be read that u2 ∝ 1/T . The factor Bloop,i/ρloop,i
is considered to be constant, because large loops with strong fields also have
a higher density at the base. The integral in the second factor is also constant
along the field line. From observations it is known that the height of loop
hloop is proportional to the temperature in the loops. The function β(hloop, T )
is then thought to be weakly a function of T only. So the final speed of the
solar wind depends primarily on the temperature in loops, and u2 varies as
1/T .

4.2 He et al. [2008]

He et al. [2008] develop a model based on observations (from e.g. Tu et al.
[2005]) that mass and energy seems to be supplied at a height of 5× 106 m.
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He et al. [2008] assume that loops reconnect with the funnel at this height. In
this process, mass from the loop is deposited into the corona, and the energy
input is determined from the energy flux associated with the reconnection.

One of the arguments by He et al. [2008] is that their type of geometry
can explain inflow and outflow, as manifested by the observed red and blue
shifts. These Doppler shifts for Si ii, C iv and Ne viii from Tu et al. [2005]
are included in table 3.1. The height of the maximum emission from these
three lines was found by Tu et al. [2005], by correlation between emission
maps and Doppler maps, to be 4× 106 m, 5× 106 m and 24× 106 m for Si
ii, C iv and Ne viii, respectively. The downward flow velocity is calculated
mainly from red shifts of Si ii. The upward flow is calculated similarly from
observation of blue shifts of Ne viii.

The observations of no significant Doppler shift at 5 × 106 m can be
interpreted, according to He et al. [2008], as a scenario in which mass is
supplied at this height by reconnection with the neighbouring network loops.
A cartoon of this process is re-produced in figure 4.3. This figure illustrates
how the lower corona/transition region in the funnel is supplied with mass
by reconnection with loops. In this figure, the reconnection will occur at the
point where the field lines of the loop and the funnel are closest (at z ≈ 5×106

m). The region below this reconnection point is called region 1 by He et al.
[2008]. The region above this point is region 2. The reconnection itself has
been explained earlier, in figure 4.1. This figure is presented to emphasise
where the mass and energy is deposited, the process that transport loops
towards the network lanes and the direction of the flow. Details geometry,
the loops, mass input rate, etc, will be given below

The degree of expansion of the geometry is very important for the outflow.
An increase in expansion results in increased outflow (due to flux conserva-
tion, A′nu = const.). At the same time, the mass flux must satisfy other
conditions, such as the boundary conditions at 1 AU. The model by He et al.
[2008] suggests a geometry that is thought to fit best to the observation of
upflow.

The vertical field strength as a function of height (Bz(z)) consists of two
components,

Bz(z) = Bfunnel(z) +Bglobal(z) (4.9)

The funnel component dominates Bz(z) in the lower region from the photo-
sphere to ≈ 20× 106 m, while the global component dominates in the upper
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Figure 4.3: Mass outflow: Mass outflow as described by He et al. [2008]. The
black lines above the photosphere are magnetic field lines, while the lines below
the photosphere are the convectional flow direction. The black arrows indicate
direction of field lines/flow. Big arrows are flow direction of plasma in the funnel.
Supergranular convection transports loops towards the network lanes. As the field
lines of the loop and the funnel have opposite polarity at the reconnection point,
and given that the magnetic flux is the same, the loops reconnect with the funnel
at height z = 5 × 106 m. Mass from the loops is released into the funnel. A
small part of the mass flux is directed downward, while the largest part is directed
upward. The flow velocities in this figure is from He et al. [2008], but based on
results from Tu et al. [2005]

region from ≈ 20× 106 m. The two components are explicitly given as,

Bfunnel(z) = b0 exp (b1z) (4.10)

Bglobal(r) = M

[
2

r3
+

3Q

r5
+

K

a1(r + a1)2

]
(4.11)
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In equation (4.10) the parameters b0 = 56.5 G and b1 = −0.28× 106 m−1 are
parameters that are used to fit the field strength values to observed ones at
the boundaries. In equation (4.11) r is normalized distance (r = (z/RS)+1).
The first term describes the contribution from the dipolar magnetic field of
the sun. The second term describes quadrupolar distribution, and the third
– current-sheet distribution. The parameters are defined as M = 1.789 G,
Q = 0.26, K = 1.0 and a1 = 1.538, and they are used to adjust the different
distributions to observed values.

The governing fluid equations in the model are as follows,

∂

∂z
(ρuA) = 0 (4.12)

ρu
∂

∂z
u = − ∂

∂z
(P + PA)− ρg (4.13)

u · 2nk
γ − 1

∂

∂z
T +

2nkT

A

∂

∂z
(Au) = −Lr +H − 1

A

∂q

∂z
(4.14)

These equations (4.12-4.14) describe the conservation of mass, momentum
and energy. These set of equations may have different parameters for region
1 and region 2. The parameters in the equations, A, q, P , L, H and PA are
the cross sectional area of the flux tube, thermal conduction flux, thermal
pressure, the radiation loss, the heating function and Alfvénic wave pressure,
respectively. The radiation loss [ergs cm−3 s−1] is defined in the same way as
in Rosner et al. [1978].

The heating function H(z) is proportional to the upper threshold fre-
quency of the waves. Examples of heating functions are shown in figure 4.4.
The upper threshold frequency of the waves depends on the gas pressure.
Since the gas pressure approximately decreases exponentially with height, so
does the heating function as is seen in the near-linear shape of the curve in
the logarithmic scale of figure 4.4.

The Alfvénic wave pressure is defined as,

PA =
〈δB2〉

8π

By the method of Hackenberg et al. [2000], the fluid equations (4.12-4.14)
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Figure 4.4: Heating functions: Example of heating function H(z) calculated
from different models of Tu and Marsch [1997]. The non-smooth shape of these
curves are model artefacts from the piecewise f(z)−1 dependence of the heating
function. The ‘Q’ on the y-scale is the same quantity as H(z). The x-scale starts
at 1RS and ends at 100RS . From Tu and Marsch [1997]

can be transformed into a closed set of ordinary differential equations,

dρ

dz
=

ρ

dz

Ṁ2A′ + A2ρ2(2k/mp)(q/κ)− A3ρ2g̃

A2ρPeff − Ṁ2
(4.15)

dT

dz
= − q

κA
(4.16)

dq

dz
= A(H − Lr) +

Ṁk

mp

(
2Tρ′

ρ
− 2T ′

γ − 1

)
(4.17)

In equations (4.15-4.17), Ṁ , A′, κ, g̃, Peff , ρ
′ and T ′ are the mass flux, ex-

pansion gradient dA/dz, the thermal conduction coefficient (∝ T 5/2), the ef-
fective gravitational acceleration, the total effective pressure (which depends
on the wave pressure PA), mass density gradient dρ/dz and temperature
gradient dT/dz, respectively.

The mass density and velocity at the boundary of region 2 is set at ρ0 =
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Figure 4.5: Model results He et al. [2008], lower region: Variation of the
plasma parameters n, u and T with height in region 1 and beginning of region
2. The solid lines are for the boundary wave pressure P 0

A,1, and the dotted lines
are for P 0

A,2 (defined in text). a) The number density n. b) The outflow velocity.
The three triangles are the Doppler velocity for the observed shifts from Si ii (red
shifts), C iv (near zero shifts) and Ne iii (blue shifts), respectively, and their
corresponding error bars. c) Temperature. The three triangles are the formation
temperature for the three ions. d) Thermal conduction flux. From He et al. [2008]

8.65 × 10−13 kg m−3, and u0 = 3.3 × 103 ms−1 so that it both satisfies the
mass rate input from the loops, and the boundary conditions at 1 AU. The
temperature at the boundary of region 2 is determined at T 0 = 1 × 105 K.
Since we know that C iv is formed at this height, the temperature at this
height is found from the formation temperature for this line in table 3.1. Two
set of results are calculated, for two examples of boundary conditions for the
wave pressure PA, P 0

A,1 = 0.52× 10−2 [104 dyn m−3] and P 0
A,2 = 0.45× 10−2
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Figure 4.6: Model results He et al. [2008], upper region: Same as in figure
4.5, but for the upper height region, and showing region 2 only. The asterisks in a)
are densities deduced from observations (Wilhelm et al. [1998]). The dashed line
in b) is the sound speed. And the asterisks in c) are also temperatures deduced
from observations (Wilhelm et al. [1998]). From He et al. [2008]

[104 dyn m−3].

Solving the equations (4.15-4.17) with these boundary conditions yields
the temperature, density and flow velocity, as shown in figures 4.5 and 4.6.

In these figures we see the result of the model by He et al. [2008]. Two set
of results for each plasma parameters, for the boundary values of the wave
pressure (P 0

A,1 and P 0
A,2), are plotted. We see that the plasma parameters

change considerable at the boundary between region 1 and 2, at 5× 106 m.
For example, the outflow velocity increases rapidly between 5 and 6× 106 m
and reach a maximum of 13× 103 ms−1 already at 8× 106 m. In the figures,
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observed values of the parameters are also plotted for comparison.

To test the model by He et al. [2008] we will use the parameters shown
in the figures 4.5 and 4.6 to calculate the Doppler-shift of the spectral lines
given in table 3.1.

4.3 Evaluation of the Velocity Constraints

In order to evaluate the velocity constraints we should calculate the ionisa-
tion balance of Si ii, C iv and Ne viii ions first. We assume that the ion
flow velocity will be the same as the proton flow velocity. This is a good as-
sumption in a funnel geometry below r ≈ 1.08RS (e.g. Byhring et al. [2008]
show that the proton outflow velocity is coupled to that of the O vi ion up
to r ≈ 1.08RS in figure 2 in their work).

4.3.1 Ionisation Balance and Spectral Line Source Re-
gion

The equation for density of the ions is (Esser and Edgar [2001]),

1

A

∂

∂r
(niuiA) = ne[ni−1Ci−1 − ni(Ci +Ri) + ni+1Ri+1] (4.18)

In equation (4.18) ni is the density of the ion in question, and ni−1 is the
density of the ion with one degree lower ionisation than the ion, and ni+1

is the density of the ion with one degree higher ionisation than the ion. Ci
[cm3 s−1] is the ionisation rate of the ion (rate of transitions i → i + 1 by
ionisation) and Ri [cm3 s−1] is the recombination rate of the ion (rate of
transitions i → i − 1 by recombination). We have used the Ci and Ri rates
from Mazzotta et al. [1998]. The geometry A is the same as B(z) which has
already been defined in equation (4.9).

Around the formation temperature Si ii and C iv in region 1 we already
know that downflow is negligible. The observed and modelled Doppler shift
velocities (Tu et al. [2005] and He et al. [2008]) are almost zero in this tem-
perature region. We may then assume ∂(niupA)/∂r → 0. The left side of
equation (4.18) can be neglected. If we denote n0 the density of a neutral
element (X i for the element X), and n1 the density of the ion X ii and so
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on, we can write out equation (4.18) for the neutral and first ionisation stage,

−n0C0 + n1R1 = 0 (4.19)

n0C0 − n1C1 − n1R1 + n2R2 = 0 (4.20)

For equations (4.19-4.20) we get the fractions,

n1

n0

=
C0

R1

(4.21)

n2

n1

=
C1

R2

(4.22)

where equation (4.22) has been obtained by substituting n1R1 in equation
(4.20) by n0C0 from (4.19). A fraction n2/n0 can easily be obtained from the
above equations. By continuing to write the equations for higher ionisation,
we get the general equations,

nm
nm−1

=
Cm−1

Rm

(4.23)

nm
n0

=
m∏
k=1

Ck−1

Rk

(4.24)

Here m is the degree of ionisation (m = 0, 1, 2, 3, 4...) where m = 0 is neutral.
For example n1 = nX ii of the element X. Other combinations of fractions can
be found be combining equations (4.23) and 4.24.

The energy flux per unit wavelength λ from an emission line is (Byhring
et al. [2008]),

I(λ) = a

∫ Rhigh

Rlow

P (r, λ)dr (4.25)

where Rlow and Rhigh is the lower and upper height of the model (in this
section, “r” denotes radial distance above the limb). The function P (r, λ)
(the spectral line source region) is defined as,

P (Te, λ) = nineCi
hc

λ0

1√
π∆λD

exp

{
−
[
λ− λ0 + (λ0ui/c)

∆λD

]2
}

(4.26)

where r has been converted to Te. This equation describes the power per
unit volume and wavelength [Wm−4] of a spectral line as a function of tem-
perature. In the above equation, λ is the wavelength of the emission line,
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λ0 the wavelength of the line in the rest frame (given in table 3.1) and
∆λ = (λ0/c)

√
(2kTe/mi).

While an ion fraction ni/n of an ion merely is a measure of the fraction of
the amount of ion particles to the total number of element particles, equation
(4.26) is a more complex quantity that give us information on where the line
has highest intensity, and it depends on variables such as the electron density
(which excites the ions) and λ.

For each temperature/height we will find the value of P (Te, λ) at which
P (Te, λ) has a maximum as a function of λ. These P -values are then divided
of the maximum of all of them, so that,

P (Te, λmax)

max(P (Te, λ))
(4.27)

defines the emission line source region. λmax is the value of λ at which
P (Te, λ) is maximum.

4.3.2 Results for Si ii

We are now in position to find the ionisation balance for the ii ion. With
ionisation balance we mean the fraction of the density of Si ii to the total
density of Si (all ions of Si), nSi ii/nSi. The total density of the element Si,
nSi, is,

nSi = nSi i + nSi ii + nSi iii + nSi iv (4.28)

where we have assumed that ions higher than Si iv can be neglected in this
temperature region 104 < T < 105 K. To get the ion fraction of Si ii we
can multiply equation (4.28) with (1/nSi ii) on both sides. The following
expression (4.29) then yields the ion fraction,

nSi ii

nSi

=

[(
nSi ii

nSi i

)−1

+ 1 +
nSi iii

nSi ii

+
nSi iv

nSi ii

]−1

nSi ii

nSi

=

[(
CSi i

RSi ii

)−1

+ 1 +

(
CSi ii

RSi iii

)
+

(
CSi iiCSi iii

RSi iiiRSi iv

)]−1

(4.29)

In equation 4.29 we have used the equations (4.23) and (4.24).
The ionisation fraction, as defined in equation (4.29), is plotted in figure

4.7 upper panel. The blue line in this panel is the ion fraction for Si ii
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Figure 4.7: Si ii: Upper panel: Ion fraction (blue) and emission line source region
(red) of Si ii. Calculation is done by using equation (4.23),(4.24), (4.29) and (4.27).
The ion fraction is based on Ci and Ri rates from Mazzotta et al. [1998] which are
provided for the temperature log10(T ) = 4.0, 4.1, 4.2.... The vertical black dashed
line is T form.Si ii . Lower panel: τ as a function of r. The vertical black dashed line is
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calculated from equation (4.29). The reason why the fraction only begin
from 104 K is because the temperature dependent Ci and Ri rates that have
been used (Mazzotta et al. [1998]) are not provided for lower temperatures.
The vertical dashed line marks the maximum of Si ii, which can be seen to
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occur at,

T form.Si ii ≈ 1.47× 104K
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which corresponds to a height of rform.Si ii ≈ 4.28 × 106 m. The T form.Si ii -value
differs a bit from the value in Tu et al. [2005] and He et al. [2008], a difference
that can arise from the usage of different Ci and Ri data sets. In addition,
these formation values are outside the temperature/height range in the model
by He et al. [2008] (figure 4.5), in which the lowest temperature and height
is 2× 104 K and ≈ 4.45× 106 m. But we may extrapolate the temperature
in region 1 in figure 4.5, down the temperature gradient. Doing this, we
find the height at which the temperature intersects with T form.Si ii . This is
shown in figure 4.8 upper panel. By extrapolating u we find that this height
corresponds to a velocity of ≈ 0 ms−1 (figure 4.8 lower panel). In other words,
the equilibrium formation temperature T formSi ii correspond to a height where
there is almost no flow. This is also almost in agreement with observations
(−2.0± 1.3× 103 ms−1 in table 3.1).

The red line in the upper panel of figure (4.7) is the emission line source
region, as defined in equation (4.27), for Si ii. The emission peaks at ≈ 3.5×
104 K, which is a bit hotter than T form.Si ii , but not much. In additional to the
normalised value of P (Te, λ), the shape of this function reveals information
about the impact of flow on the wavelength from the line. In figure 4.9 we
see that for low temperatures (low height), the shift ∆λ = λ0−λmax is small,
and for high temperature the shift is larger, which is in accordance with the
velocity parameter in panel b in figure 4.5. A negative ∆λ confirms that
there is downflow in region 1. We have also compared this shift ∆λ at the
temperature T form.Si ii with the shift λ0 − λmax = uλ0/c and found that they
approximately coincide.

To test whether it can really be justified to assume zero flow (d(niupA)/dr =
0), we can analyse the ionisation-, recombination- and expansion time scales
for the Si ion and to compare them. These are given by Esser and Edgar
[2001] and they are τ ion = 1/(Cine), τ

rec = 1/(Rine) and
τ exp = (ne/ui)(dne/dr)

−1, respectively. τ ion and τ rec reveal how long time, on
average, it takes to further ionise or recombine an ion at a given temperature
(or height). The expansion time scale τ exp shows how long time it takes for
a plasma element to relocate a scale-height by outflow.

Figure 4.7 lower panel shows these time scales as a function of height. τ exp

(solid black line) is the same for all ions because we have assumed ui = up.
τ ion (coloured solid lines) is plotted for the ions Si i (red) and Si ii (blue).
τ recSi ii (blue dashed line) is also shown. The ionisation times decrease with
altitude, as expected, and the ionisation time for Si ii is longer than for Si
i, at a given height/temperature, which is also expected since higher energy
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Figure 4.9: The emission from Si ii for a selection of Te: The emission
P (Te, λ) as a function of λ for some temperatures. The vertical black dashed line
is λ0 for Si ii.

(more of fast moving electrons) is required to further ionise the former ion
than the latter one. Since the production of Si iii ions are so infrequent
(the τ ionSi ii time scale is relatively long in this region), recombination from
Si iii to Si ii (τ recSi iii) has been considered unnecessary to include. In the
figure the formation temperature is converted to height (rform.Si ii ), indicated
with a dashed black line in the lower panel, but a temperature scale is left
for comparison. As before, the formation temperature(/height) is below the
lowest height found in the model of He et al. [2008], but an extrapolation
(red dashed line) has been plotted for τ ionSi i . τ

exp is not extrapolated, but it
can be seen that it carries on almost horizontally in negative height direction.
The most relevant information that can be obtained from the lower panel in
this figure is that, at rform., τ ionSi i is ≈ 103 s shorter than τ exp. In other words,
The time it takes to produce Si ii by ionisation is much faster than the time
it takes to relocate the plasma one scale height. The recombination from Si
ii (loss of Si ii) is quite slow compared to ionisation the time scale, but still
faster than the expansion time. The assumption of zero flow, on which the
ionisation fraction in panel 1 is based, can therefore be said to be justified.
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4.3.3 Results for C iv

From table 3.1 in chapter 3 it can be deduced that C iv forms at the border
between region 1 and 2 (at Te = 1× 105 K). The Doppler shift velocity that
Byhring et al. [2008] find for C iv (−2.7×103 ms−1 in model ‘F1’) very much
agrees to the outflow in the end of region 1 of the model by He et al. [2008]
(−3.0 × 103 ms−1 at r = 5 × 106 m or T = 1 × 105 K). The method that
is used by Byhring et al. [2008] involves integrating along the line-of-sight
(along different vertical layers). And the actual Doppler shift velocity at, say
at r = 5 × 106 m, may not be correctly estimated since different layers of
the atmosphere contributes in the calculation. The line-of-sight effect may be
strong especially when the ion fraction temperature-width is large, such as in
the case of C iv. However, since the output Doppler shift velocity parameters
agree so much between the two models, even for C iv, we may assume that
the line-of-sight effect is weak or negligible. This opens up the opportunity
to compare our results of ion fractions with the results from Byhring et al.
[2008].

The flow velocity at r = 5 × 106 m is uncertain, because of large error
margins in the observations (0.3±3.3×103 mss−1 in Tu et al. [2005]/table 3.1).
And whatever outcome our analysis yields, it will not be able to constrain
observations very much, since the formation region is in a region where the
model has a discontinuity. But if we assume that the flow is zero, we can
apply the equations already developed in this section to calculate the ion
fraction. In the same way as in equation (4.28) we write the density for each
ionisation stage of Carbon, except that we add more terms, including nC vi to
ensure that no ion density contributions are left out. Such a 6-term equation
is multiplied with (1/nC iv). The terms in the equation that results from this
is then replaced according to equations (4.23–4.24), in the same way with Si
ii.

The ion fraction for C iv is shown in figure 4.10 upper panel as a blue
line. As can be seen from this figure,

T form.C iv ≈ 1.00× 105K

In Tu et al. [2005] it was found that C iv forms at r ≈ 5.0 × 106 m. If we
convert T form.C iv to height according to the model by He et al. [2008], figure 4.5
panel c, we find an exact match: C iv does seem to have maximum abundance
at r ≈ 5× 106 m. Thus, from this comparison the model by He et al. [2008]
has proved to match observations, and our ion fraction calculation, in a good
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way.

In addition, Byhring et al. [2008] find a equilibrium formation tempera-
ture of C iv of 0.9× 105 K, very close to our result and He et al. [2008].

The line intensity is also shown in the upper panel of figure (4.10), as a
red line. The source region of the intensity can be seen to be at ≈ 1.5× 105

K.
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If there is outflow or downflow at rformC iv (there may be up to 3.6 × 103

ms−1 outflow, or −3.0× 103 ms−1 downflow according to observations), then
a test with time scales calculations should be performed, as was done with
Si ii. Time scale calculation is shown in figure 4.10 lower panel. Here we see
that, at the formation height, ionisation from C iii to C iv and recombination
from C iv to C iii is at the same level as the expansion time. Based on this,
it is likely that C iv is in ionisation equilibrium. The ion fraction shown in
the upper panel, to which the assumption of zero flow has been applied, is
at least a good approximation.

4.3.4 Results for Ne viii

In the formation height region of Ne viii there is certainly a considerable
outflow. So the simplified equations (4.23–4.24) may not be sufficient since
they rely on the cancelling of the flow term in equation (4.18).

But we will first calculate the ion fraction, as if there is no flow in the
formation region of Ne viii.

To obtain the ion fraction, the same procedure is followed as with the
other two ions. Ionisation states up to Ne ix is included; nNe i + nNe ii +
... + nNe ix = nNe. The blue line in figure (4.11) upper panel shows the ion
fraction of Ne viii. The formation temperature is,

T form.Ne viii ≈ 6.2× 105K

In the model by He et al. [2008] (figure 4.5 panel c) the formation temper-
atures for Ne viii seem to be a approximately 8.0 × 105 K. A similar result
has been found in the model ‘F1’ from Byhring et al. [2008] (8.6× 105 K). A
discrepancy between model values and T form.Ne viii, calculated here, is expected
because the outflow far from zero in this region. This may be interpreted as
if the Ne viii ions are carried out of ionisation equilibrium so that the max-
imum abundance of the ion is found at ≈ 8× 105 K and not at ≈ 6.2× 105

K. The red line in the upper panel show the line source region, which is
located exactly at equilibrium formation temperature, T form.Ne viii. Figure 4.11
lower panel shows time scales for Ne. Here we see that the ionisation time
up to Ne viii (solid red line), and recombination time from Ne viii (dashed
blue line) is actually shorter than the expansion time, a condition that sug-
gests that Ne viii is in ionisation equilibrium, which is unexpected. However,
since the ratio of the expansion time scale to the ionisation time scale is only
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≈ 100.2 ≈ 1.5 times, it is questionable whether ionisation equilibrium really
can be concluded only from this.

If T form.Ne viii given above would really be the formation temperature of this
ion, then the formation height according to He et al. [2008] would be rform.Ne viii =
8.5 × 106 m, a large disagreement with Tu et al. [2005] who found rform.Ne viii =
20.6× 106 m.
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So the two models (He et al. [2008] vs. Byhring et al. [2008]) agree about
the formation temperature of Ne viii. But it should also be investigated
whether the model by He et al. [2008] is able to predict the velocity correctly
where Ne viii is formed. We assume for a while that the observations are
correct; Ne viii is formed at 24× 106 m (although Tu et al. [2005] on which
the model by He is based found 20.6 × 106 m). And the Doppler velocity
is, according to Tu et al. [2005], 9.6 ± 2 × 103 ms−1. Figure 4.5 panel b
show that the outflow velocity agree with observations: u ≈ 8× 103 ms−1 at
r = 24 × 106 m. In the model by Byhring et al. [2008], where the fraction
of Ne viii is also calculated, the equivalent velocity at r = 24 × 106 m is
u ≈ 16.7× 103 ms−1 for the ‘F1’ funnel model and u ≈ 10.0× 103 ms−1 for
the ‘F2’ funnel model.

This shows first of all that the two models do not agree about outflow
velocity in the formation region of Ne viii. He et al. [2008] generally predict
lower outflow velocity than any of the two funnel models of Byhring et al.
[2008]. Secondly, what model that predicts the outflow velocity in best way
really depends of what observational data to trust the most. Byhring et al.
[2008] have used several sources of observational data, e.g. Wilhelm et al.
[1998] and Dammasch et al. [1999] (and more) in addition to Tu et al. [2005],
and have therefore assumed a larger error margin for the outflow of Ne viii
(7 − 20 × 103 m−1 compared to ±2 × 103 ms−1). Thus both Byhring et al.
[2008] and He et al. [2008] have found their result to be within observational
constraints. Thirdly, different interpretation of observations may in some
cases lead to differences. For example, the already mentioned difference 20.6
and 24 × 106 ms−1 may come from the fact that He et al. [2008] have read
the formation height off to the right of maximum on the correlation plot, and
not just off the maximum as Tu et al. [2005] have done.

The above evaluation shows that the model reproduces the observed red
and blue shifts more or less correctly. In the following we will briefly discuss
the major points of the model that are not addressed in the paper by He
et al. [2008], but should be evaluated before this kind of model is accepted.
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4.3.5 Points Not Addressed in the He et al. [2008]
model

Even though the He et al. [2008] model fits the observed velocity constraints
relatively well, there are several important points that are not considered in
the paper but that can be expected to have a major impact on the model.

1. Generally it can not be assumed that heavy ions flow with the same
speed as the protons (e.g. Lie-Svendsen and Esser [2005]) and should
therefore be modelled in addition to the protons.

2. In the He et al. [2008] model the particles in the reconnecting loop
are well mixed containing just the right amount of heavy ions. It is
generally a problem to get heavy ions out of the chromosphere because
gravitational forces may be significant here (Killie and Lie-Svendsen
[2007]) This is a problem for both open and closed field regions. So
even if the reconnection models are able to explain the observed red
and blue shifts, the problem of getting the heavy ions into the loops
still remains.

3. Which physical mechanism that determines the reconnection height of
which the radial flow speed is exactly u = 0 is an issue that has not
been addressed sufficiently. Fisk [2003] points out that the height of the
loop is related to the temperature inside the loop, but the reconnection
height is a more difficult parameter to predict. In He et al. [2008] it is
also assumed that 1/2 of the mass flows down and the other 1/2 flows
up, but an explanation to why this is exactly so is not given





Chapter 5

Summary and Discussion

In this work we have given an overview over how the idea of coronal funnels
has developed. This idea originated from modelling and observations of the
lower solar atmosphere. There have not been many solar wind models that
have included such geometry. We have presented a few examples of such
models which all seem to indicate that the model results are in better agree-
ment with the observations compared to models that use more ‘traditional’
flow tube geometries (with smaller expansion). For example, Byhring et al.
[2008] find that the ideal value of the outer funnel expansion is fm2 = 4, while
Esser et al. [2005] arrive at fm2 = 7 as the most suitable expansion factor.
Janse et al. [2007] reveal that the inclusion of helium in the funnel expansion
leads to a new effect, namely two co-existing solutions; one slow and one fast
wind solution that result from the same heating parameters. All the models
mentioned here agree that the funnel geometry provides results that match
observations in the best way.

We have then presented and studied in more detail a funnel model which
is based on the ideas developed by Fisk [2003]. The only model of that kind
that we could find in the literature that actually calculated such a model is
the paper by He et al. [2008]. They have presented their model in order to
explain the measured blue and red shift, but they do not actually calculate
these lines or shifts. We have tried to evaluate the shifts in more detail to see
whether the claim is justified. We have found that the model approximately
predicts the measured Doppler shifts for all ions, including the large positive
shift for Ne viii and the slightly negative shift for Si ii.

This model is relatively new, and it omits several important physical
considerations, such as those mentioned in section 4.3.5: The ions should
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be modelled separately since the velocity of the heavy ions and the lighter
protons is generally not the same. And He et al. [2008] do not explain why
the mass input occur at exactly r = 5× 106 m, nor how the heavy ions can
possibly be well mixed with the lighter protons at this height.

But in general, the results of the model by He et al. [2008] agrees well
with observations, for all the plasma parameters. And the equilibrium ion
fractions and line source region calculated in this work are in agreement with
results in other papers such as Byhring et al. [2008] for the regions with near
zero velocity.
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Å. M. Janse, Ø. Lie-Svendsen, and E. Leer. Solar wind originating in funnels:
fast or slow? Astronomy and Astrophysics, 474:997–1013, November 2007.
doi: 10.1051/0004-6361:20066311.



BIBLIOGRAPHY 55

M. A. Killie and Ø. Lie-Svendsen. Modeling Minor Ion Abundances in Quies-
cent Coronal Loops. Astrophysical Journal, 666:501–515, September 2007.
doi: 10.1086/519437.

R.A. Kopp and T.E. Holzer. Dynamics of coronal hole regions, steady poly-
tropic flows with multiple critical points. Solar Physics, 49:43, 1976.

Ø. Lie-Svendsen. The solar wind. In S. S. Hasan and D. Banerjee, editors, Ko-
dai School on Solar Physics, volume 919 of American Institute of Physics
Conference Series, pages 245–274, July 2007. doi: 10.1063/1.2756789.

Ø. Lie-Svendsen and R. Esser. Modeling the Energy Budget of Solar Wind
Minor Ions: Implications for Temperatures and Abundances. The Astro-
physical Journal, 618:1057–1073, January 2005. doi: 10.1086/426073.

P. Mazzotta, G. Mazzitelli, S. Colafrancesco, and N. Vittorio. Ionization
balance for optically thin plasmas: Rate coefficients for all atoms and ions
of the elements H to NI. Astronomy and Astrophysics Supplement Series,
133:403–409, December 1998.

M. P. Miralles, S. R. Cranmer, and J. L. Kohl. Low-latitude coronal holes
during solar maximum. Advances in Space Research, 33:696–700, 2004.
doi: 10.1016/S0273-1177(03)00239-4.

S. R. Pottasch. The Lower Solar Corona: Interpretation of the Ultravio-
let Spectrum. The Astrophysical Journal, 137:945–+, April 1963. doi:
10.1086/147569.

R. Rosner, W. H. Tucker, and G. S. Vaiana. Dynamics of the quiescent
solar corona. The Astrophysical Journal, 220:643–645, March 1978. doi:
10.1086/155949.

C.-Y. Tu and E. Marsch. Two-Fluid Model for Heating of the Solar Corona
and Acceleration of the Solar Wind by High-Frequency Alfven Waves. Solar
Physics, 171:363–391, April 1997.

C-Y. Tu et al. Solar wind origin in coronal funnels. Science, 308:519, 2005.

H. van Regemorter. Rate of Collisional Excitation in Stellar Atmo-
spheres. The Astrophysical Journal, 136:906–+, November 1962. doi:
10.1086/147445.



56 BIBLIOGRAPHY

J. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromo-
sphere. III - Models of the EUV brightness components of the quiet-sun.
The Astrophysical Journals, 45:635–725, April 1981. doi: 10.1086/190731.

K. Wilhelm et al. The Solar Corona above Polar Coronal Holes as Seen by
SUMER on SOHO. The Astrophysical Journal, 500:1023–1038, June 1998.
doi: 10.1086/305756.


	FYS-3931
	Master’s Thesis in 
	space physics
	Review and Test of Funnel Shape Geometries in Solar Wind Acceleration
	Faculty of Science and Technology


