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Introduction

The literature on financial markets is vast and it is probably safe to say

that all tools in the economists’ tool case have been applied to this field.

In this dissertation I will present three papers that are very diverse in their

approach to the subject of finance, but have an important common theme;

asymmetric information and efficiency in financial markets.

A. The noisy rational equilibrium debate

In the first paper, "Are Noise Traders Really Necessary? A General Ap-

proach" I construct a general model which facilitates a better understanding

of the relationship between two important models on how information is in-

tegrated into prices. First we look at the seminal paper of Grossman and

Stiglitz (1980). They showed that information must be worthless in an effi-

cient market for an equilibrium to obtain. A market is defined to be efficient

if any private information is reflected in the market price. Grossman and

Stiglitz chose to attribute the inefficiency in prices to "noise traders". These

traders are "stupid" traders in the sense that they persistently place losing

bets in the market. Since investors cannot distinguish between such trades

and those that are motivated by private information, noise traders ensure

information is valuable.

The problem for an investor with private information when no noise

traders are present, is that prices will adjust as soon as she acts on it and

starts to trade, and the information is revealed to everyone. Therefore, there
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is no incentive for anyone to trade on private information. If that is the

case however, prices cannot reflect any information. This important result is

called the Grossman-Stiglitz Paradox, and leads to their conclusion: Infor-

mationaly efficient markets are impossible.

The paper started an extensive debate since asset markets are generally

regarded as very efficient. As always in economics the question was which

important assumptions were questionable? A couple of candidates quickly

emerged.

One reason that the Grossman-Stiglitz result may not hold is if there are

other motives to trade than information. The point is best illustrated with

a simple example. Assume there are two identical agents, A and B, who

possess one asset each. Agent A has, however, better information on what

return the asset will give than B. It is quite obvious in this example that B

would not be willing to sell the asset at any price to A, since any price would

imply that A would profit from the transaction at B’s expense. Hence A’s

information is both worthless and will not be reflected in any "market price".

Let us now change the asset holdings, so that A has one asset and B

has three. Being identical in all respects, B will now realize that A has

legitimate reasons to demand one asset from him. After all, with the same

information they should have the same number of assets. The question now

is only at which price the transaction should clear. However A has more

information than B, and knows exactly the price needed for her to break

even. The problem for B is then to infer what information A has from the

bid she offers B. A difficult task indeed. With no further information about

which type of bidding procedure and game rules they have agreed upon it

is in fact impossible for us to say anything about what the "market price"

reflects, what the information is worth or what the utilities will be.

Introducing auxiliary incentives for trades therefore pretty much "solves"

the paradox. In addition as we saw from the above example, any such model

must have a quite detailed specification, such as the market institution, the
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rules of the game and the number of the different players, and so they cannot

be very general. There are a large number of these papers, since the different

ways to specify such a market is infinite.

This "solution" is however not satisfactory. My interpretation of the

Grossman and Stiglitz paper, although I am not sure it even corresponds

with the authors’ original intent, is to question what kind of model is best

suited to explain how financial markets operate and work. It is then found

that a model with no noise is not a very productive starting point, since the

price then really reflects nothing. Adding additional incentives to trade may

of course be interesting to analyze in itself, but theoretically it is no different

than adding noise traders. Whether the incentive to trade is white noise

or given by the modeler is only a matter of specification. In fact, since the

noise traders are an unbiased error term it actually has some very desirable

properties relative to many alternative specifications.

Let me be perfectly clear, there are a lot of eminent papers in this litera-

ture. They are, however, good for other reasons than "disproving" Grossman

and Stiglitz, and for the most part that is not intended either.

Alongside this debate a different assumption was questioned. The Grossman-

Stiglitz model is static. Would the results change if we looked at trading over

time? The uninformed traders in the original model look at the price and

immediately react to it to form new demands in zero time. That is surely

not a very realistic assumption. In fact it is outright impossible in any real

financial market. One could of course argue that the traders’ post continuous

functions of the price to the market, but trading costs make this a purely

theoretical construction. As if that is not enough, this problem also ensures

that the equilibrium obtained by Grossman and Stiglitz is not consistent with

a Nash Equilibrium (Dubey, Geanakoplos, and Shubik (1987)).

A solution to these problems was clearly required, and a couple of years

after the original paper, Hellwig (1982) proposed the reasonable assumption

that current prices cannot be observed. Hellwig showed that information
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would be valuable in this case, even when the time between trading ap-

proached zero.

A major problem with Hellwig’s paper is however that it assumes a de-

mand function that cannot be derived from an expected utility function. The

uninformed in Hellwig’s model treat the current price as a cost, even though

it is not observed. This means they persistently make losing bets, in addition

to having exactly the same deficiency as the Grossman-Stiglitz model in that

it requires the uninformed to post bids and asks in terms of a function of the

price.

Dubey, Geanakoplos, and Shubik (1987) noted something along these lines

in a footnote, and showed as mentioned that such models in general do not

even have a Nash Equilibrium. Thus for any such model to be consistent, the

price to condition demand on must be realized before the demand is posted.

An alternative was therefore proposed based on the model of Shapley and

Shubik (1977). In the Shapley-Shubik model there are no noise traders, but

since current prices cannot be observed, prices do not reflect all available

information. The implications of this model have been derived further by

Jackson and Peck (1999). A disadvantage is however that it is difficult to

compare with that of Grossman and Stiglitz.

In the first paper I attempt to remedy this problem by setting up a

quite general model, that allows the agents to condition on any past price.

In addition I assume a general supply function that can work for both the

Shapley-Shubik model as well as for the Grossman and Stiglitz model. Setting

these models side by side, reveals that the Shapley-Shubik model requires

that the uninformed are forced to make state dependent demands that are

negatively correlated with expected profits. Such demands need to be forced

by the market institution since uninformed investors would strictly prefer to

demand fixed quantities.

It is further found that the original Grossman-Stiglitz model can easily

be altered to overcome the problems of the static model by disallowing obser-
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vations of current prices. The model will yield the exact same results, since

the ability to observe current prices is not a vital assumption in the original

model. However, in a dynamic setting, a model that allows observation of

current prices has unwanted properties such as weak form inefficient prices

and intractable equilibrium solutions.

In my view therefore, it seems the real insight of the Grossman-Stiglitz

model has not been appreciated sufficiently by later researchers. If we for

some reason were to regard noise traders as inappropriate for financial mod-

els, the last two papers in this dissertation would in fact be invalid. In my

mind it seems a better idea for a researcher to construct models that work

well with the data observed, as opposed to artificially assuming that every

thing in a financial market can be explained with certainty.

There seem to be some inherent unwillingness to accept that our mod-

els will never explain every aspects of the asset market. Randomness that

conceals information can be added to models in many ways however. It

might not be in demand, but in unobservable income shocks to a subset of

investors or shocks to beliefs. The specification that requires the smallest set

of assumptions is however randomness in supply.

It is therefore my opinion that the Grossman-Stiglitz model is still the

most valid general equilibrium model for asset pricing under asymmetric

information. It tells us that by making models that do not allow for un-

explained unbiased trading, for which ever reason may be creating and not

solving problems.

B. How to protect yourself from private information

In the first paper that is presented, and commented on above, I conclude

that financial models should not try to explain every trader’s behavior. In

"Optimal Order Submission" I follow a long line of microstructure literature,

and build the model around the assumption that there are traders seeking

liquidity who trade randomly for whichever reason. The uninformed traders
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can then make consistent profits from these noise traders. Much of the mi-

crostructure theory is built around the idea that a market maker determines

the market spread, and profits from this by buying low and selling high to

noise traders. The spread is often set to the level where the market maker

makes no expected profit, and so if there are only noise traders in the market,

the spread would be zero.

There are however two other factors the market maker needs to take into

account. First there might be informed traders in the market who will trade

only if the market maker makes a corresponding loss. Second, it is expensive

to be a market maker because inventories tend to build up in the short term.

This exposes the market maker to a lot of idiosyncratic risk. The spread

therefore needs to be set so wide that it covers these two costs, in addition

to the direct costs such as trading fees and operating costs.

My initial intention when starting on this paper was to model such market

maker behavior. There is quite an extensive microstructure literature on

how spreads are set, and which of the three costs are most important for

determining the spread. In addition quite a lot of literature evolves around

the informativeness of volume observations in the market. However, what

has not received as much attention is which order sizes should be set in order

to minimize exposure to informed traders.

The data that was available for me was from the Norwegian Stock Ex-

change (OSE). That is, however, not a good place to study market maker

behavior, as there are almost none there. Fortunately, the model that will be

presented is flexible enough to explain both market maker behavior as well

as optimal order submission by ordinary traders. The mechanisms are the

same, since any trader would make an effort to protect herself from informed

traders. Posting small orders at a time is one way to obtain such protection.

When uncertainty with respect to fundamentals is high, the probability of

trading with an informed increases, and the order size should be reduced.

The optimal order size function is therefore a decreasing convex function
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of volatility, where volatility is measured in number of standard deviations.

Thus, the more likely it is that the market price is far from the underlying

fundamentals, the smaller order size that should be submitted at a time. At

some point the volatility may be so large that submitting any order will be

unprofitable, and hence the optimal order size is zero.

The model is then developed further to find the optimal price adjustment

and an expression for the long term equilibrium volatility level.

As one will notice in the empirical part, the model is overspecified in the

sense that it is impossible to test all parameters simultaneously. What is

found is that the general shape of the optimal order size function fits well

with the data. It is also found that the model with all parameters displays

a lot of multicollinearity. For estimation this is a problem, but it also shows

that the ability of the model to describe the trading is not too sensitive to

different parameter values.

C. How to profit from private information

In the last paper of this dissertation, "Optimal Distribution of Information

by an Information Monopolist: A Generalization", I present a model directly

descending from that of Grossman and Stiglitz, with a noisy demand element

in a rational expectations model. The main issue of the model is as its title

says, how an information monopolist can maximize profits by selling the

information to investors.

Admati and Pfleiderer (1986) found that a seller should sell independent

signals with identical distributions to a fraction of the traders. In another

paper addressing this issue Admati and Pfleiderer (1990) found that it would

be even better to sell exactly the same information to everybody if it could

be done through a mutual fund. In any case, one general conclusion one can

draw from these papers is that all the buyers should be treated equally and

receive the same type of information. Given the symmetry of the problem

(all traders had the same risk aversion) the symmetry of the solution would
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be expected. The model with direct sale (Admati and Pfleiderer (1986)) is

however not fully symmetric when we take into account those who do not

get to buy the information, since only a fraction of the traders are informed

in the optimum.

It would however be of general interest first to examine whether this

symmetric result would really hold for any given distribution of signals. Sec-

ond, it would be of interest to know under which specific circumstances the

symmetric results of Admati and Pfleiderer would not hold.

I therefore approached the problem studied by Admati and Pfleiderer in

a very general way, in order to obtain a proof that is as general as possible.

The smallest set of conditions for the proof would then serve as cases where

non-symmetric solutions could be expected to be found.

I find that the information monopolist may select an asymmetric solu-

tion if either the cost of selling information depends directly on the number

that receive it or if they are heterogeneous (i.e. have different risk aversion

coefficients) and if the cost function can have local maxima. In the first

case it is important to note that the cost of selling too many investors is an

explicit cost. The dilution of information value that occurs through prices

when many are informed is part of the model specification. Such a direct

cost may for example be the possibility of an insider being caught when more

investors receive the same information.

In the second case, if investors are heterogeneous then an asymmetric

solution is expected. The general proof is based on control theory, so in the

case of heterogeneous agents if the model is rigorously enough specified an

explicit solution may be possible. A solution strategy is therefore suggested.

A nested information structure is then suggested to solve the problem for

the seller that buyer may pool their information in order to increase precision.
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D. How the models relate to each other

The models are different with respect to a number of characteristics. Only

one is for instance truly dynamic, and one of them is not related to the

theoretical Grossman-Stiglitz framework. All models are however attempts

to characterize the role of information in asset markets. None of them assume

full market efficiency per se, which as I conclude in the first paper may be

an inappropriate assumption. All the papers rely on a setting where some

traders receive signals that better enables them to estimate the true value of

the asset.

In general, the first paper discusses the issue of which types of models are

productive in financial modeling. This is then applied in the two remaining

papers. The second paper has an empirical part, and the model is constructed

carefully to be able to reflect some features of real market institutions. The

third paper is at the other end of the spectrum, where a proof is obtained

with the maximum amount of generalization.

References

Admati, Anat R., and Paul Pfleiderer, 1986, A Monopolistic Market for

Information, Journal of Economic Theory 39, 400—438.

Admati, Anat R., and Paul Pfleiderer, 1990, Direct and Indirect Sale of

Information, Econometrica 58, 901—928.

Dubey, Pradeep, John Geanakoplos, and Martin Shubik, 1987, The Revela-

tion of Information in Strategic Market Games: A Critique of Rational

Expectations Equilibrium, Journal of Mathematical Economics 16, 105—

137.

9



Grossman, S. J., and J. E. Stiglitz, 1980, On the Impossibility of Infor-

mationally Efficient Markets, The American Economic Review 70, No. 3,

393—408.

Hellwig, Martin F., 1982, Rational Expectations Equilibrium with Condi-

tioning on Past Prices: A Mean-Variance Example, Journal of Economic

Theory 26, 279—312.

Jackson, Matthew O., and James Peck, 1999, Asymmetric Information in

a Competitive Market Game: Reexamining the Implications of Rational

Expectations, Economic Theory 13, 603—28.

Shapley, Lloyd, and Martin Shubik, 1977, Trade Using One Commodity as a

Means of Payments, The Journal of Political Economy 85, 937—968.

10



Are Noise Traders Really Necessary? A

General Approach

Espen Sirnes

Abstract

In this paper it is shown that noise traders in dynamic equilib-

rium models with asymmetric information are necessary for informa-

tion to have value under fairly general assumptions, unless uninformed

investors are forced to make state dependent bids. The result is ob-

tained by setting up a general linear model where investors are allowed

to condition on any previous price in history and where the supply

function has a general form. This enables us to compare the very dif-

ferent models of Shapley and Shubik (SS) and Grossman and Stigtlitz

(GS) and allows a comprehensive study of the effect of past prices on

conditional expectations. It is found that; 1) if uninformed investors

cannot condition on current prices, they will not use past prices, 2)

this dynamic version of GS with unobservable current prices has a

Nash Equilibrium, 3) the SS model requires state dependent bids, e.g.

bids in terms of portfolio cost. 4) if current prices are observable then

investors may condition on the complete price history and as proved

by Dubey, Geanakoplos, and Shubik (1987) there is no NE.

Keywords: finance, asset pricing, information

JEL Classification: G12, G14

Are noise traders really necessary in order for information to have value?

A number of authors have investigated this issue. In this paper it is shown
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that under very general assumptions, they are indeed a necessary condition,

unless the uninformed investors are forced to make state dependent bids.

This general result is presented at the end of the paper, since we first

need a framework where we can compare very different models. We therefore

present a short term linear model where investors can condition on any price

in the entire price history. This allows us to study different regimes of price

observation. Furthermore, the supply is characterized as a general function

of the stochastic variables in the system. As we will see this enables us to

compare a couple of very different models, and thereby obtain fairly general

results.

The model presented here thus allows us to study a number of interest-

ing features of dynamic financial markets with asymmetric information. In

particular it is found that

1) In a noisy rational equilibrium model, if uninformed investors cannot

condition on current prices they will not use past prices.

3) This dynamic version of GS with unobservable current prices has a

Nash Equilibrium, in contrast to the original one, as proved by Dubey,

Geanakoplos, and Shubik (1987).

2) The SS model requires state dependent bids, e.g. bids in terms of

portfolio cost.

4) If current prices are observable then investors will condition on the

complete price history and as proved by Dubey, Dubey, Geanakoplos, and

Shubik (1987) there is no NE.

The paper is built around three examples of a simple dynamic Gross-

man and Stiglitz (1980) (GS) type Rational Expectation Equilibrium (REE)

model, assuming CARA utility functions, linear demand and price functions

and myopic agents. The original Grossman and Stiglitz (1980) model is

not consistent with a Nash Equilibrium, as noted by Dubey, Geanakoplos,

and Shubik (1987), which is generally acknowledged as a major problem.

In this paper a simple model is developed that incorporates three different

12



approaches to information asymmetry in a competitive financial market.

In Example 1 investors are unable to observe current prices. It is found

that their best response is then to hold fixed portfolios and not condition on

past prices either. This slight modification of GS is shown to have a NE and

the main results of GS are not affected. Although it is an obvious point, it

seems not to have been made before.

In Example 2 we allow the uninformed to condition on current prices, and

we obtain a model similar to those of Brown and Jennings (1989) and Grundy

and McNichols (1989). The results are consistent with that literature in that

prices are not weak form efficient in such a market. If investors can condition

on current prices, then uninformed investors will use past and current prices

to predict future returns. The resulting equilibrium is not a NE as noted

by Dubey et. al. though. It is therefore argued that this type of technical

analysis may only be possible in a model where the price setting mechanism

is not consistent with a NE.

In Example 3 we consider the Shapley-Shubik (SS) model that Dubey,

Geanakoplos, and Shubik (1987) proposed as an alternative to GS. The model

is adapted to the GS framework presented here in order to better compare

it with the two other examples. It is found that the SS model corresponds

to a market where investors are restricted to bid in terms of cost and not

units of the asset. The results of the modified model are identical to those

of Jackson and Peck (1999), who did a comprehensive comparison of SS and

the efficient REE model of GS.

As mentioned Dubey, Geanakoplos, and Shubik (1987) found that the GS

model as originally described was not consistent with a Nash Equilibrium

(NE). The problem is that demand both generate and determine equilibrium

prices at the same time. Dubey et. al. then considered the possibility of

submitting entire demand functions, and proved that the resulting rational

expectation equilibrium (REE) could not be implemented as a NE. In addi-

tion Dubey et. al. argued that submitting an entire demand function would
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be impractical and not consistent with how actual asset markets work. They

therefore concluded that for a market game to be consistent with NE one

need to model in more detail how information is put into prices. The prob-

lems with the original GS model noted by Dubey et. al. are now generally

acknowledged as major drawbacks of the REE approach.

Dubey et. al. then presented some examples in their paper, based on the

Shapely-Shubik model (Shapley and Shubik (1977)), which do have NE. The

competitive example they presented was then further developed by Jackson

and Peck (1999), who pointed out the major differences between the SS model

and the efficient rational expectation model of GS. Also Goenka (2003) have

applied the Shapely-Shubik model to financial markets.

This paper relies heavily on the results of Dubey et. al. Due to them we

know that a market where current prices are observable does not in general

have a NE. In order for such an equilibrium to exist the strategies of the

uninformed must be independent of the current price. It is however not

always necessary to forbid current price observations for this to be the case,

since as we will see the optimal strategy may be to not condition on any

price.

As mentioned, we will also see in this paper that if the uninformed cannot

observe current prices they will just demand a fixed number of assets. The

result of Hellwig (1982) is quite different. Hellwig’s paper is frequently cited

and applied on different areas (for example Boswijk, Hommes, and Manzan

(2003), Kirchler and Huber (2005), Chamley (2003) , Blume, Easley, and

O’Hara (1994)). However, it requires very special assumptions about the

demand functions of the uninformed. This makes Hellwig’s model incompa-

rable to those of GS and SS, and so we will not spend much time on it. The

proximity and popularity of this work does however require a few comments

on the main problem of the Hellwig model, and why these problems are not

present in Shapley-Shubik.

In Hellwig (1982) uninformed investors trade actively even though they
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cannot condition on current prices and noise traders are kept out of the

market place. As the time difference between price observations goes to

zero, Hellwig show that there are benefits to being informed, as the market

approaches full efficiency in the sense that current prices can be observed.

What drives these results are inconsistent demand functions not related

to a utility function. This has also been noted by Dubey, Geanakoplos, and

Shubik (1987). The demand is assumed to be proportional to the difference

between expected price and the unobserved current price. This has the effect

that the uninformed in Hellwig’s model reduce demand when "good news"

push up the current price and vice versa. Admitting to such a demand

function thus ensures that the uninformed always make losing bets, which is

clearly not rational. Mathematically the problem is that the current price can

not be present in the expected utility, and thereby in the demand function,

unless it is a known variable or a known variable depends on it.

In the Shapley—Shubik model one can argue that institutional constraints

determine how bids can be made. In particular investors are restricted to

bid in terms of costs and so their strategy (the amount of money they will

invest) is independent of the current price. Furthermore, even though the

uninformed do worse than the informed they do not persistently loose, but

rather earns a little less than the informed.

The aim of this paper is somewhat different than learning models such

as Blume and Easley (1984), Bray and Kreps (1987), Feldman (1987) and

Routledge (1999), and surveyed in Blume and Easley (1992). In such models

the objective is often to show how prices converge to the fundamentals over

time. Although the model lends itself to such analysis with some extra

assumptions about the fundamental process, that will not be an issue here.

In the models presented here it is assumed a continuum of competitive

investors. Different results will apply if that assumption is relaxed, such as

in Milgrom (1981), Jackson (1991) and Gottardi and Serrano (2006). Also

Dubey, Geanakoplos, and Shubik (1987) have an example where investors

15



are strategic.

The plan of the paper is as follows: First we give a motivation for the

model presented here, as it diverges from previous literature in some key

aspects. In the subsequent section, the model is presented. In section three,

the tree examples are presented and commented on. In the final section a

short summary is given and conclusions drawn.

I Important features of the model

The model presented here sets it apart from other previous work by some

special features commented on here

A. A short term model with no dividends

The model assumes a very short time span, because we are investigating the

notion that investor may not be able to observe current prices. The idea

that investors cannot observe current prices does not seem appropriate if

each period is, say, one year. It might happen that an "annual trader" does

not observe his transaction price, but when a year has gone by that really

does not matter much.

We therefore assume that no dividend payments occur within the time

span of the model.

It does however seem common in the literature to model the uncertainty

in dynamic models as a dividend process which uninformed investors then

try to predict (for example Hellwig (1982), Singleton (1987) and Routledge

(1999)). This may be mathematically convenient and it works fine in a long

term model, but it is not a very reasonable assumption in a short term model

where each period is, say, one day. It does not work as an abstraction either,

unless one could easily abandon explicit dividend payments without affecting

the main results. This is however usually not the case, so for a very short
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termmodel it seems more appropriate and safer to discard dividend payments

entirely.

B. Fundamentals

Since there are no dividend payments, uncertainty stems from an underlying

fundamental process running in a finite time span. At the terminal date the

asset pays an amount equal to the fundamental process. Different interpre-

tations can be made here. One is that a growing informational imbalance in

the market is initiated at time t = 1, for example right after a quarterly result

has been announced. Then at t = T a new quarterly result is presented an

all information is again public. This interpretation requires the conjuncture

that the market is efficient at time T in the sense that when the fundamental

process is public knowledge, then the price is equal to the fundamental value

with probability one.

The martingale property of asset prices means that the finite time span

is a valid simplification of the model. In addition it is also an exact repre-

sentation of many derivatives.

C. Conditioning on the full history of prices

The assumption of a finite time span of course implies that the history that

the investors can condition on is assumed to be finite. We do however allow

investors to condition on the full history of prices, and the number of periods

can be any positive integer. The results are therefore fairly general in this

respect.

II The model

The market consists of two types of risk averse investors, informed and un-

informed. We assume for simplicity a zero interest rate, although changing
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this would not affect the main results. The myopic investors have demand

functions that are proportional to the expected payoff:

zi,t = αi,t E [∆pt+1|Fi,t] (1)

Where ∆pt+1 = pt+1 − pt is the absolute price difference, the expected

excess capital gain and Fi,t the information available to investor i at time t.

(1) is a well established demand function in asset pricing literature (Grossman

and Stiglitz (1980)). Usually it is derived from the CARA utility function, so

that αi,t = 1/γi,t var [∆pt+1|Fi,t], where γi,t is the coefficient of risk aversion.

It is however mathematically much more convenient to not to explicitly let all

parameters determining the conditional variance enter the demand functions

and the equilibrium conditions. In the end, the equilibrium is determined by

the relative weights of the random variables in the demand functions involved.

Therefore explicitly solving for the variance parameters would require us to

solve for parameters that are inherently not important for the equilibrium

solutions.

This simplification means in effect that the solutions for the parameters

in the model are not explicit solutions. This is not necessary though since,

as we will see, any equilibrium can be determined by just assuming that αi,t

is some positive real number.

A. The fundamental process and price process

Define the fundamental value of the asset as

vt = µ+ θ0t1 (2)

where θt ∼ N (0, Iσ2θ) is a vector of independent random variables and 1

is a vector of ones of appropriate dimension, and µ is the terminal payoff

expected at time t = 1. Assume further that at some final date T the asset
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pays vT .

θt here is thus a vector of the independent increments in the assets value

up to the current period t. We assume linear demand functions, and so at any

time in the process up to t an equilibrium market price is established which is

linear in the information available to some or all of the market participants:

pt = at + θ
0
tmt,t + ε

0
tst,t (3)

εt ∼ N (0, Iσ2ε) are demands from noise traders up to time t and inde-

pendent of θt. mj,t and sj,t will be referred to as the "price vectors", with

prefix "fundamental" and "noise" respectively. We will see shortly that it

is an advantage to use the notation mj,t and sj,t with two subscripts, where

the first one denotes the length of the vector. Thus mj,t is a vector at time t

determining the impact of the first j fundamentals on the price. sj,t likewise

determine the impact of noise trading occurring in the first j periods, on the

price at time t.

We allow the price to depend on all stochastic variables that have been

observed by at least some investors, and we allow for the parameters to

change over time. Furthermore, the price is allowed to depend on all random

variables back to period t = 1. at is set endogenously, and takes account of

risk aversion.

The realized profit in trading period t+ 1 is then

∆pt+1 = ∆at+1 + θ
0
t∆mt,t+1 + ε

0
t∆st,t+1

+st+1,t+1εz,t+1,t+1 +mt+1,t+1θt+1 (4)

where ∆ is a difference operator yielding the difference between coefficients

in the current period t and the last period t − 1. For example ∆mt,t+1 =

mt,t+1 −mt,t is the change in the fundamental price vector.
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B. Informed investors

Informed traders know θt and total demand is observable. Knowing their

own demand and that of the less informed, they are able to figure out the

demand from noise traders εt, which is equivalent to knowing pt, but only

the sufficient information set {θt, εt} is used.
The total demand from informed traders, after integrating (1) over the set

I of such investors, is then zI,t = αI,t E [∆pt+1|θt, εt] where αI,t =
R
I
αi,tdµ (i).

The expected return for these traders is

E [∆pt+1|θt, εt] = ∆at+1 + θ
0
t∆mt,t+1 + ε

0
t∆st,t+1 (5)

since the last two terms in (4) have expectation zero. Although it is

assumed here that the informed observe the fundamentals θt at date t, it

does not matter much whether the actual realization of these fundamentals

occur before or after this date. That will affect the date of the final payment

vT relative to the last period of the market, but this would merely be a

mathematical technicality.

C. Uninformed investors

Uninformed investors know only the first t − τ prices. A fraction of the

market are uninformed investors. Integrating (1) over the set U of such

investors then gives the total demand of zU,t = αU,t E [∆pt|pt−τ ] where αU,t =R
U
αi,tdµ (i). τ = 0 if the uninformed can observe current prices, and τ > 0

otherwise. Furthermore pt is the vector of all previous prices up to t defined

as:

pt = at + θ
0
tMt + ε

0
tSt (6)
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where Mt = {m0,0,m1,1, ...,mt,t} and St = {s0,0, s1,1, ..., st,t} are matrices of
the price vectors with redundant elements set to zero, so that

Mt =

⎛⎜⎜⎜⎜⎝
m0,0 m0,1 · · · m0,t

0 m1,1 · · · m1,t

...
...

. . .
...

0 0 0 mt,t

⎞⎟⎟⎟⎟⎠ , St =

⎛⎜⎜⎜⎜⎝
s0,0 s0,1 · · · s0,t

0 s1,1 · · · s1,t
...

...
. . .

...

0 0 0 st,t

⎞⎟⎟⎟⎟⎠ (7)

and at = {a0, ..., at}. Mt and St will be denoted "price matrices". The

uninformed now assigns weights gt−τ to the prices that she observe through-

out history1. We will denote these weights as the "regression coefficients".

Thus

E [∆pt+1|pt−τ ] = bt + (pt−τ − at−τ)gt−τ (8)

where the constant terms at are removed from the prices for notational con-

venience. bt is a deterministic term allowing for risk aversion. Since we do

not solve for the variance, we assume of course that it is known by all mar-

ket participants at any time t, but we allow it to vary arbitrarily over time.

Hence bt may not be constant.

We see from (8) that the uninformed is assigning coefficients to the in-

formation available in the market at t − τ , with the restriction that the

relationship between θ0t−τ and ε
0
t−τ is given by the price matrices. It is math-

ematically easier to define these coefficients. We therefore define a vector

ht−τ that represents the impact of fundamentals on the expectation (8). A

vector ct−τ , which is a linear function of ht−τ , then represents the associated

impact from noise. We can now write the expected return (8) as

E [∆pt+1|pt−τ ] = bt +
¡
θ0t−τht−τ + ε

0
t−τct−τ

¢
(9)

1One can argue that the uninformed should condition on the price changes. However,
allowing the investors to freely choose a weight gt,k on each price is less restrictive. gt
could anyway be set so that it implied differences in prices if this was optimal.
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where ht−τ will be referred to as the "direct regression coefficients". If we

substitute (6) into (8) and compare that to the equivalent expectation (9),

we see that ht−τ =Mt−τgt−τ and ct−τ = St−τgt−τ . This2 in turn implies

gt−τ = M−1
t−τht−τ (10)

ct−τ = St−τM
−1
t−τht−τ (11)

assuming Mt−τ is not singular. We can now restate price expectation of

the uninformed as

E [∆pt+1|pt−τ ] = bt +
¡
θ0t−τ + ε

0
t−τSt−τM

−1
t−τ
¢
ht−τ (12)

D. Efficient profit estimate

The uninformed set the coefficients bt and ht−τ by minimizing the expected

squared difference between the expected and realized price, e.g. obtaining

the least squares coefficients:

min
bt,0,ht−τ

L = E(E [∆pt+1|pt−τ ]−∆pt+1)
2 (13)

It can be found that the optimal parameters that minimizes this are

b∗t = ∆at (14)

h∗t−τ = Mt−τ
¡
M0

t−τMt−τσ
2
θ
+ S0t−τSt−τσ

2
ε

¢−1
·
¡
M0

t−τ∆mt−τ,t+1σ
2
θ
+ S0t−τ∆st−τ,t+1σ

2
ε

¢
(15)

The expected profit and hence demand from the uninformed is now found

by substituting (14) and (15) into (12). A proof is found in the Appendix.

2There are no restrictions on bt since the constant term was removed from the price in
(8)
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E. Equilibrium condition

Define the total demand as

Dt−τ,t = αU,t E [∆pt+1|pt−τ ] + αI,t E [∆pt+1|θt, εt] (16)

The total supply is a linear function of θt and εz,t, Zt (θt, εz,t), and will be

defined explicitly in each example. In GS it typically depends only on the

current noisy demand εz,t. In equilibrium, supply equals demand, so

Dt−τ,t = Zt (θt, εt) (17)

The general specification of the supply side makes our model very general.

By specifying different assumptions about the supply side of the market

Zt (θt, εz,t) and the price observation lag τ we can identify exactly the reason

for different results in a range of models. In this paper we will compare two

alternative specifications of Zt (θt, εz,t), and models with positive and zero τ .

Since the supply side of the market is a model choice, it is assumed to

only depend on current noise traders εt here. A model where it also depends

on previous noise trading can easily be incorporated if that would be of any

interest though.

The equilibrium condition must hold for any realization of the random

variables. A necessary condition, for (17) to hold for any realization of θ0t
and εt is that it holds for any marginal change in the random variables. The

equilibrium condition therefore implies:

∂Dt−τ,t/∂ {θ0t, εt} = Zt (θt, εt) /∂ {θ0t, εt} (18)

There will in general be an equilibrium as long as there are at least 2t+1

parameters, less the number of cases where both sides are zero, since one can

always define some price function that satisfies any equilibrium given that

it can span all relevant variables. It is however more convenient to prove
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existence in each example below, when the function Zt (θt, εt) is defined.

F. The value of information

Since

1. Profits are normally distributed and hence completely described by the

first two central moments of ∆pt+1 given some information set Fi,t known to

investor of type i ∈ {U, I} at time t.
2. Before observation of the information Fi,t, the first moment is the same

for the informed and uninformed due to the law of iterated expectations,

E [E [∆pt+1|FI,t] |FU,t] = E [∆pt+1|FU,t], where in this case FI,t = {θt, εt} and
FU,t = pt−τ .

3. By standard assumptions all higher central moments, e.g. the condi-

tional variances, are public knowledge, and more information cannot decrease

precision, so E [var [∆pt+1|FI,t] |FI,t] = var [∆pt+1|FI,t] ≤ var [∆pt+1|FU,t].

It follows that the difference in expected utilities prior to observing the

information FI,t, are completely determined by the second central moments

var [∆pt+1|Fi,t]. Since investors are risk averse we need only to consider

cI,t = var (∆pt+1|FU,t)− var (∆pt+1|FI,t) (19)

as a measure of information cost. Note that this does not require identical

risk aversion, since the cost of information is what the same individual would

be willing to pay to become informed. This measure is simple, sufficient for

our purposes, and equivalent to the accurate cost (as derived in GS) for

ordering.

III The examples

We now have the basic model in place, so that the three examples can be

presented.
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A. Example 1 - Grossman-Stiglitz with unobservable current

prices

In this example we assume that investors cannot condition on current prices.

It will be shown that this modification has no impact on the results originally

found by GS, and that prices carry no payoff relevant information. In this

example there is a fixed number of assets in supply z, in addition to some

demand from noise traders εt, so that Zt (θt, εz,t) = z + εt.

Using the equilibrium condition (18) we can now calculate the first t− τ

derivatives after inserting the expectations (5) and (12) into (16) and sub-

stituting the solution for h∗t−τ from (15). We then get that the equilibrium

condition requires that for the first t − τ periods, provided τ ≥ 1, we must
have

∆mt−τ,t+1 = −
αU,t

αI,t
h∗t−τ (20)

∆st−τ,t+1 = St−τM
−1
t−τ

µ
−αU,t

αI,t
h∗t−τ

¶
(21)

We can now state the following proposition:

Proposition 1 If investors are unable to observe current prices, τ ≥ 1 , no
uninformed investor will condition on past prices

Proof: Since (20) and (21) have common terms, we can write ∆st−τ,t+1
in terms of ∆mt−τ,t+1 as

∆st−τ,t+1 = St−τM
−1
t−τ∆mt−τ,t+1 (22)

Substituting this expression for ∆mt−τ,t+1 into the expression for h∗t−τ (15)

yields h∗t−τ = ∆mt−τ,t+1. Using (21) we find that in equilibrium∆mt−τ,t+1 =

−∆mt−τ,t+1 (αU,t/αI,t). This can only hold if ∆mt−τ,t+1 = 0, since αU,t > 0

and αI,t > 0. By (22) it follows that ∆st−τ,t+1 = 0 as well¥
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1 General solution

From the equilibrium condition (18) and Proposition 1 it follows that we can

rewrite the entire price vectors at any date t up to t− 1 as

∆mt−1,t = 0 (23)

∆st−1,t =
1

αI,t
e (24)

where e0= {0, 0, · · ·, 0, 1}.
Since at the terminal date pT = vT = µ+ θ0T1, it must be the case that

sT,T = 0 and mT,T = 1. By backwards induction using (23) and (24) it

follows that the price matrixMT is a matrix with the upper right triangular

filled with ones. That is

mt,t = 1∀t ≤ T (25)

The important point here is that except for the impact of noise trading,

current prices will always reflect current fundamentals perfectly. The funda-

mental price vector is always mt,t = 1, which is the same as the associated

vector in the fundamental process vt.

Furthermore ST must be a diagonal matrix with −1/αI,t along the diag-

onal, except sT,T = 0. The elements in the diagonal are found by rewriting

the last element of (21) as st,t = 1/αI,t + st,t+1. For it to be the case that

sT,T = 0, backwards induction therefore again implies that

sT,T = 0, st,t = −
1

αI,t
e∀t < T (26)

The intuition behind this is that as soon as the informed gets to know θt,

prices map this perfectly due to competition among the informed. Therefore,

the next period profit, ∆pt+1, will be completely independent of current

private information θt and perfectly incorporate the unknown next period

innovation in the fundamental θt+1. Thus, even though the past prices do
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depend on the first t − τ elements of θt and so a fairly good estimate of θt
can be made, that does not help the uninformed a bit since it is not related

to next period profits.

The next period profits are however affected by the noise trading by a

factor of −1/αI,t, as noise trading push up current prices. That will how-

ever only affect the unobserved current price, and so the uninformed traders

cannot participate in the exploitation of noise traders.

Interestingly this is not the case in the original GS, where the uninformed

observe current prices and therefore can participate in noise trader exploita-

tion.

2 Nash equilibrium

We will here show that a model with a GS type supply does not suffer from

the game theoretical problems described in Dubey, Geanakoplos, and Shubik

(1987). These problems occur in the demand of the uninformed, when there

are all ready some fraction of informed and uninformed traders in the market.

The problems are not directly related to the decision to buy information.

We will therefore consider the game where the strategies available for the

uninformed are the determination of the regression coefficients gt−τ . For the

informed the strategy is to select fundamental and noise parameters. The

payoff is the next period per share price increment.

As shown, the optimal strategy is for the informed to choose ∆mt,t+1 and

∆st,t+1, and for the uninformed to choose g∗t−τ = 0 and so the demand by

the uninformed will be some fixed, state independent amount b∗t =
αI,t
αU,t

∆at+1

each period. Since the demand of the uninformed is independent of the price,

this is a fixed point determining a given price by the informed demand for

the realization of (θt, εz,t), which no individual investor can improve upon

(by the previous proof and derivation), and hence the equilibrium is a pure

strategy Nash equilibrium. Further more it follows from the proof that this

is a unique Nash equilibrium.
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3 The value of information

The informed return estimate E [∆pt+1|θt, εt] in (5) and the realized price (4)
differ only by the last two terms, for which coefficients are known by (25)

and (26). Thus the conditional variance of the informed is var [∆pt+1|θt, εt] =
σ2
z
/α2I,t+ σ2

θ
. The uninformed demands a constant quantity b∗t = ∆at+1, and

hence using (4) it can be found that var [∆pt+1|pt−τ ] = 2σ2
z
/α2I,t + σ2

θ
. It

follows that using our measure (19) the cost of information is

cI,t = σ2
z
/α2I,t (27)

Thus, as long as we have noise traders and σ2
z
> 0, there is an advantage

in being informed. If however the market is efficient in the sense that σ2
z
= 0,

then the Grossman-Stiglitz paradox arises. We can now restate the findings

of the current and the last section as

Proposition 2 If investors cannot condition on current prices, they will
submit fixed demands ∆at+1 and the REE is consistent with a pure strategy

NE. In absence of noise traders, σ2
z
= 0, the Grossman-Stiglitz paradox still

arises.

The proof follows from the previous discussion and so is omitted.

B. Example 2 - Grossman-Stiglitz with observable current prices

This example corresponds to a dynamic version of the original GS model.

Similar models were introduced by Brown and Jennings (1989) and Grundy

and McNichols (1989). They found that past prices do in fact carry informa-

tion in a noisy REE model. The reason is that the fundamental price vector

will now change over time, so that the price maps the fundamentals differ-

ently in each period. Each price observation therefore improves the estimate

of the fundamental value vt. If the total number of independent fundamental
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increments and noise terms are less than t, then past prices reveal all private

information.

Importantly, the equilibrium obtained will not generally be a NE. Com-

paring the result of this example with Example 1 therefore suggests that the

results of Brown and Jennings (1989) and Grundy and McNichols (1989) may

be incompatible with a NE.

If uninformed can observe current prices, then τ = 0. As in Example 1

supply depends solely on noise trading, Zt (θt, εz,t) = z+εz,t. The equilibrium

conditions (18) then requires

∆mt,t+1 = −
αU,t

αI,t
h∗t (28)

∆st,t+1 −
1

αI,t
e = StM

−1
t

µ
−αU,t

αI,t
h∗t

¶
(29)

We note the similarity between the equilibrium conditions where only past

prices are observed (20) and (21) with the conditions (28) and (29) above.

The main difference is that in the last period t the disturbance term εz,t

enters so that we get an additional term on the left side of the last equation

in (29) of 1/αI,t.

As in the previous case we can now substitute (28) into (29) by the

common term, to get

∆st,t+1 =
1

αI,t
e+ StM

−1
t ∆mt,t+1 (30)

Substituting this into the expression for h∗t in (15) using (28) yields

h∗t = ∆mt,t+1 +Mt

¡
M0

tMtσ
2
θ
+ S0tStσ

2
ε

¢−1
S0te

1

αI,t
σ2ε (31)

If we now pre-multiply (28) withM−1
t we can use thatM−1

t h
∗
t = gt from
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(10) to find that

M−1
t ∆mt,t+1 = −

αU,t

αI,t
gt (32)

Therefore in equilibrium, after pre-multiplying (31) withM−1
t and rearrang-

ing, the regression coefficients in period t can be found to be

gt =
1

αI,t + αU,t

¡
M0

tMtσ
2
θ
+ S0tStσ

2
ε

¢−1
S0teσ

2
ε (33)

¡
m2

t,tσ
2
θ
+ s2t,tσ

2
ε

¢
g2t =

1

αI,t + αU,t
gtst,tσ

2
ε (34)

where we have substitutedM−1
t ∆mt,t+1 for −αU,t

αI,t
gt by using (28).

We see that (33) does not immediately seem to be a vector proportional

to e. That is, the uninformed do not seem to condition only on the current

price. This is not the case either, and so we have the following proposition

Proposition 3 If uninformed investors can observe current prices, they will
also condition on past prices in equilibrium and past prices have informational

value. That is gt 6= ek for any k.

The reader is referred to the Appendix for the proof. See Brown and

Jennings (1989) or Grundy and McNichols (1989) for proofs of the three

period case.

Interestingly it is not the fundamentals that initially makes the current

price useful for the uninformed in equilibrium, but the noise trading. Say

that the uninformed did not condition on any price, as in Example 1 so that

∆mt,t+1 = 0. In that case the informed investors would in effect establish

a price that depends solely on the noise trading. Thus the advantage of the

informed in Example 1 is not the ability to predict next period prices, but

to exploit the noise traders. In that case any noise trading is revealed by the

price.

Therefore, trying to reveal the noise trading is in effect an incentive for

the uninformed to mess up the nice constant price vector process we saw
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in Example 1. If mt,t is not constant, i.e. mt−1,t 6= mt−1,t−1, it has two

important effects. First it means that current price innovations are no longer

independent of past and current fundamentals, and so predicting θt becomes

useful. Second if the price vectors at different dates become independent, it

also enables such prediction.

1 The value of information

As in the previous example, due to the common parameters in (5) and (4) it

is the case that var [∆pt+1|θt, εt] = st+1,t+1σ
2
z
+mt+1,t+1σ

2
θ
. It can be found

that the additional variance that the uninformed face is

cI,t =
σε
α2I,t

¯̄¡
M0

tMtσ
2
θ
+ S0tStσ

2
ε

¢
− σ2εS

0
tee

0St
¯̄¯̄

M0
tMtσ2θ + S

0
tStσ

2
ε

¯̄ > 0 (35)

As we can see, the information has value as long as there are noise traders,

σε > 0. An interesting point here is however that if σε = 0, it is not

only the value of information that becomes zero. So too do the regression

coefficients gt, by (33) and so uninformed investors will demand the fixed

quantity b∗t = ∆at+1. Thus, if the market is fully efficient, it is actually

consistent with a NE.

The reason is that there is no need for the investors in an efficient market

to even consider the current price. Optimal bids by the informed ensure that

the price always incorporates all available information. Uninformed investors

just calculate a fixed number of assets and buy these, using a market order,

at any price. This is of course possible to see from the original Grossman-

Stiglitz model, although they did not explicitly state it since it was not an

issue then.

The fact that investors in this model should condition on past prices in

the presence of noise traders, has the further implication that holding fixed

index portfolios is not optimal for the uninformed unless the market is fully

efficient. How exactly these portfolios should be formed is however not easy
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to say, even when the distribution of the stochastic variables are known.

The reason is that a general solution to the system involves T (T − 1)
equations of fourth degree polynomials. There might therefore very well

exist multiple equilibria here as Grundy and McNichols (1989) found in the

simpler three period case. In the general case these equilibria may possibly

be indistinguishable for the market participants. To sort out how the market

actually works in general is therefore a difficult task, even in the simple world

considered here. What this model tells us is therefore that the uninformed

should condition their demand on past prices, but not how to do it. For

practical advice it may therefore be better to rely on the model from Example

1 and hold the market portfolio, unless you are informed.

C. Example 3 - The Shapley—Shubik model adapted to the Grossman-

Stiglitz framework

In the original paper Shapley—Shubik was used to characterize an economy

where payments of one good are done in terms of other goods. The model is

however somewhat difficult to interpret when applied to financial markets,

since it was not specifically designed to resemble such market institutions.

The fact that results are so different from a market with delayed price in-

formation, such as Example 1 in this paper, does however suggests that the

Shapley—Shubik model assumes a very different kind of bidding procedure.

It will be argued here that a reasonable interpretation of the model is

that investors are restricted to bid in terms of total cost of the assets, and

not units. This interpretation rests on three arguments. First, this is consis-

tent with a simplified Shapley—Shubik model. Second, this interpretation is

also relatively easy to incorporate in the dynamic GS model presented here.

Third, the main results of the Shapley—Shubik model, such as the relation-

ship with REE models found in Jackson and Peck (1999), are preserved. It

should be noted that in contrast to this paper, there is a countable number of

traders who are risk neutral in Jackson and Peck (1999). Their main results
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are however not sensitive to this difference in specification.

In order to see that the interpretation made is consistent with the original

Shapley—Shubik market, we will take a look at a very simplified version of it.

Notation in the next section will be made similar to that used by Shapley

and Shubik (1977), and therefore deviates from the rest of the paper.

1 A simplified Shapley—Shubik for financial markets

The Shapley-Shubik model can be used to find both strategic and competitive

equilibria. Here agents are assumed to be price takers, so the asset price P

is independent of their actions. The results from the Shapley-Shubik model

that conflict with the REE as noted by Dubey, Geanakoplos, and Shubik

(1987) relates to the competitive case, so only price taking behavior is of

interest here.

There are only two goods, and consumption occurs only next period.

The first good is cash, indicated by subscript c, the other is a financial asset,

indicated by subscript θ. The cash pays no return, while the financial asset

pays the random amount V2 = Θ1Θ2e
µ of cash next period, where and

lnΘi ≡ θi ∼ N
¡
0, σ2θ

¢
, i ∈ {1, 2} (36)

independently and v2 = θ1+ θ2+µ. Next period returns Θ2 is not known by

anyone, but some informed traders know Θ1 and therefore also the current

price (since this is determined by the information in the market). The current

price is not known to the uninformed.

"Cash" plays the role of the numeraire commodity. It can be stored

for next period and used for consumption, but pays no return. The initial

endowments of cash are zero, ac,i = 0, since we do not restrict credit and the

initial endowment of the numeraire commodity therefore does not matter.

Initially all endowments of assets, aθ,i, are put out for sale in the market.

The total supply of assets is therefore
PN

i=1 aθ,i = āθ. Investors then bid
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in terms of cash for these assets, each placing a bid of bθ,i. The total bids

amount to
PN

i=1 bθ,i = b̄θ cash. Since credit is not restricted, the total bids do

not (necessarily) sum to zero3. As is standard in the Shapley-Shubik model

the price P is the number of cash needed to buy one asset. This price will

depend on the realization of Θ1 through demand b̄θ and is hence a random

variable.

After trade, the uninformed receives xθ,i = bθ,i/P units of the asset.

Investors also receive aθ,iP cash for their initial asset endowments, and pays

bθ,i cash for the assets, so the number of cash held after trading is xc,i =

aθ,iP − bθ,i.

Next period wealth in terms of cash is therefore the payment from the

xθ,i = bθ,i/P units of the asset, each paying Θ1Θ2e
µ. In addition the agents

have xc,i of cash, so next period wealth is

ωi = bθ,i

µ
Θ1Θ2e

µ

P
− 1
¶
+ aθ,iP (37)

As a sum of a constant and log normal variables, neither the distribution

of ωi nor Θ1Θ2e
µeµ/P − 1 have closed forms. This precludes a closed form

solution without simplifying approximations. In fact deriving closed form

solutions to the equilibrium in the Shapley-Shubik with continuous distribu-

tions is always a problem due to the inverted price in (37). This is usually

overcome by assuming risk neutrality or discrete distributions.

The problem is handled here by assuming as in the previous sections that

investors are mean-variance maximizers and hence the demand functions in

terms of cash b∗θ,i is proportional to the expected return on the investment,

which is the conditional expectation of Θ1Θ2e
µ/P − 1. For the informed the

demand is then

b∗θ,i∈I = αI,i

µ
exp

µ
E (v2 − p|θ1)−

1

2
σ2θ1

¶
− 1
¶

(38)

3We do not consider the case with a zero price and no trade here.
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where αI,i is determined by attitude to risk and var (Θ1Θ2e
µ/P − 1|θ1 + θ2)

which has no closed form expression. For the uninformed the demand is

b∗θ,i∈U = αU,i

¡
exp

¡
E (v2 − p)− σ2θ1

¢
− 1
¢

(39)

In equilibrium the sum of assets purchased by each agent, x∗θ,i = b∗θ,i/P ,

has to equal the total of endowments, which is āθ. Thus, we have the following

equilibrium condition in number of assets is:

R
I

¡
b∗θ,i/P

¢
dµ (i) = āθ (40)

The usual solution for the price in a Shapley-Shubik model is then as we

see the ratio of demand in cash b̄θ relative to the total endowments, āθ, so

that P = b̄θ/āθ.

It is however an advantage to solve the for the price function that satisfies

(40) for any realization of the private information θ1. The easiest way to do

this is to multiply the equilibrium in terms of assets (40) by the price P .

Integrating over investors as shown in sections II.C and D this gives us the

following equilibrium condition in terms of cash:

αIeE
(v2|θ1)−p + αUe

E(v2−p)− 1
2
σ2θ1 = (āθP + αI + αU) e

1
2
σ2θ1 (41)

By the equilibrium condition (18) it follows that the equilibrium price func-

tion is given by the solvable differential equation4

αIe
µ+(θ1−p) (1− p0 (θ1)) = e

1
2
σ2θ1 āθe

pp0 (θ1) (42)

Assume now that āθ = 0. The conjecture that P = b̄θ/āθ will of course

not be valid in that case, but there will exist a price. It can be found

that the unique real solution to the differential equation (18) in this case is

4With the unique real solution p (θ1) = −12σ2θ1 + ln
C+

q
e
1
2
σ2
θ1

+θ1+µαI+C2

2āθ
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p (θ1) = θ1 + C.

Proposition 4 In the competitive Shapley-Shubik model with zero net supply
of the asset and unobservable prices, the value of information is zero.

Proof is omitted, as it is clear from the preceding that if the expected

return is always constant, p (θ1)− θ1 = C, then the information θ1 is redun-

dant.

The result does not depend on the exact formulation of the Shapley-

Shubik model here, except for the assumption of competitiveness. The reason

one gets different results in the competitive Shapley-Shubik compared with

REE models is that demands are stated in the numeraire commodity (e.g.

dollars) rather than in units of the asset. When net supply is zero, the effect

of this model feature disappears. Thus any model where demand is stated in

terms of total value and not units will produce similar results, which we will

see when we now extend this notion to the REE framework.

2 The Shapley-Shubik model adapted to the REE framework

Requiring demand to be stated in terms of total value in an REE model

of the type presented here, is equivalent to defining the total supply to be

proportional to the price. Hence we define the supply function to be

Zt (θt, εt) = ztpt = zt (∆at + θ
0
tmt,t) (43)

where we now assume no noise traders as in the Shapley-Shubik model.

This specification will from here on be referred to as the Shapley-Shubik

model.

Except for the noise trader terms, the optimal portfolios will be formed in

the same way as before. It can be shown that it is optimal for the uninformed

to set the optimal direct regression coefficients h∗t−τ to ∆mt−τ,t+1 (set σ2ε = 0

in (15)) and the constant term to b∗t = ∆at+1, since observing the price at
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any date t is now equivalent to observing θt. Thus expectations of the return

can be formulated for both the informed and the uninformed as

E [∆pt+1|pt−τ ] = ∆at+1 + θ
0
t−τ∆mt−τ,t+1 (44)

where τ > 0 for the uninformed and τ = 0 for the informed. Applying

the equilibrium condition in (18) with respect to the observable prices τ

periods ago, as we did in Example 1, we obtain the following solution for the

fundamental coefficients:

mt−τ,t+1 =mt−τ,t
zt + αt,U + αt,I

αt,I + αt,U
(45)

Define m̄t−τ,t as the last τ elements of mt,t. Then total differentiation of

(17) with respect to fundamentals only observable to the informed, implies

that in this case

m̄t−τ,t = m̄t−τ,t+1
αt,I

zt + αt,I
(46)

Two important results now emerge

Proposition 5 With the Shapley-Shubik model with positive net supply, zt >
0, and a positive fraction of informed traders, αt,I > 0, it is the case that

a) the price vector at date t < T is strictly positive, but less than the unit

vector, 0¿mt,t ¿ 1

b) its elements do not all have the same values, mt,t 6= 1k for some scalar
k > 0.

Proof: The proposition follows directly from the fact that at the terminal

date vT is paid, so mT,T = 1. At the preceding dates the price coefficients

decrease from one, as we move backwards in time, as described by (45)

and (46), but remain positive. Thus, a) in Proposition 5 must hold. The
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coefficients do however change at a different pace depending on whether the

associated fundamental value is publicly known or not. This ensures that b)

in Proposition 5 holds¥
As in Jackson and Peck (1999) we will now take a look at the differences

between the SS and GS.

3 Price efficiency

Jackson and Peck (1999) found that while prices, always perfectly reflect

fundamentals in the noiseless REE of GS, this is not the case in the SS

model. This is the case in the version of SS presented here too.

Prices can be said to perfectly reflect the fundamentals if the correlation

between these is 100%. The equilibrium price in SS is pt = at + θ0tmt,t and

fundamentals are vt = µt + θ
0
t1. It can be found then that the correlation is

ρp,θ,t =
10mt,tp
tm0

t,tmt,t

(47)

It can further be found that the only real solution to (10mt,t)
2 /m0

t,tmt,t =

t, is mt,t = k1 for some positive scalar k. For prices to reflect fundamentals

perfectly, it therefore needs to be the case that mt,t = k1. This is however

not true due to Proposition 5 b). Thus, in contrast to Example 1 and 2 when

there is no noise trading, prices in the Shapley-Shubik model do not reflect

fundamentals perfectly.

The reason for this is that when uninformed investors are forced to post

their bids in terms of total cost, they will consistently increase demand when

the current fundamental θt is low and vice versa. This smoothes the total

demand. The informed would otherwise have bid up the price to a level where

next period profits was a predictable constant. With the counter effect from

the total cost bidding of the uninformed that will not happen, and not all

private information is incorporated into prices.

38



4 The value of information

For the informed in the SS model it can be found that the conditional variance

is mt+1,t+1σ
2
θ, while for the uninformed it can be found to also include the

term

cI,t = ∆m̄0
t−τ,t∆m̄t−τ,tσ

2
θ > 0 (48)

This implies that there is in deed an advantage in becoming informed.

Since investors are willing to pay for information, there also exists an equi-

librium in the market for information. In GS and the first two examples that

is not the case when σ2ε = 0.

5 Volatility of equilibrium prices and the fundamentals

Jackson and Peck (1999) also make the point that in SS it is possible for

equilibrium prices to be more volatile than dividends. The same point can

be made here, although we will look at the volatility of the underlying fun-

damentals θt, and not the dividends since such are not paid in this model

until the terminal period.

The unconditional volatility of the price process is

var [∆pt+1] =
¡
∆m0

t,t∆mt,t +mt+1,t+1

¢
σ2θ (49)

while the underlying fundamentals change with θt each period, so var [∆vt] =

σ2θ. We know from Proposition 5 however that 0 ¿ ∆mt,t+1 ¿ 1 and

mt+1,t+1 < 1. Therefore var [∆pt+1] > var [∆vt] is possible, although it de-

pends on the relationship between mt+1,t+1 and ∆m0
t,t∆mt,t.

In the GS model without noise traders in Example 1 and 2 it can be found

that var [∆pt+1] = var [∆vt].
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6 Conflicting results in the Shapley-Shubik and Grossman-Stiglitz
models

In absence of noise traders the GS and SS models with unobservable current

prices yield conflicting results. In both models the uninformed agents bid

amounts that are independent of the current fundamentals. In SS however

a good signal pushes up prices so that the uninformed receives fewer units

for the cash they bid. In the end they lose relative to the informed, since

they receive less of an asset that is expected to pay a higher return, and vice

versa.

This mechanism then ensures that there is an incentive in SS to acquire

information and hence to become informed, even without noise traders. Fur-

thermore, since holding some of the risky asset does provide the uninformed

with a higher expected return in exchange for some risk taking, they never-

theless prefer to participate in the market.

If the uninformed were able to fix the number of units bought though,

they would clearly do that. This would in effect reduce SS to an efficient GS

model where uninformed are just as well off as the informed.

D. Generalizing the results

Although some of the results found so far relies on the specification of the

model, the most important results holds under very general assumptions.

Assume now only that:

1) All higher central moments of the price process are public knowledge5

2) demand functions are known6

3) demand is strictly increasing in expected returns

This implies that given all public information, demand by informed traders

5If these are normally distributed it is of course sufficient that variance is public knowl-
edge.

6This does of course not rule out individual random differences in demand as long as
they are independent between traders and the distribution is common knowledge.
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is uniquely determined by expected returns and vice versa. Total demand

must equal total supply. The payoff relevant information in total supply

Zt and in θt is therefore identical in equilibrium. This is the case for any

equilibrium model given assumptions 1)-3), including Shapley-Shubik.

In GS total supply depends only on εz,t so that Zt (θt, εz,t) = εz,t. If εz,t is

known by the uninformed, information cannot have value because Zt always

reveals θt as mentioned.

On the other hand, if neither εz,t nor any variable depending on εz,t is

observed, e.g. current prices are unobservable, the uninformed will always

strictly prefer to a post state independent demand (Proposition 1). This is so

because demand from informed traders can only decrease if returns increase,

by 3). Thus any state dependent demand from the uninformed will have to

be negatively correlated with returns. This contradicts 3).

If now the uninformed are forced to make state dependent demands, we

may denominate supply in the currency of their orders as in Shapley-Shubik.

In that case total supply depends on the private information, Zt (θt, εz,t) =

Zt (θt), and uninformed will be unable to observe this total supply. As shown

initially, if Zt is not observed, then neither is the private information. Thus

with state dependent demands, information has value and the results from

the Shapley-Shubik model follow.

IV Summary and conclusion

In Example 1 we have seen that a dynamic REE model can be specified

so that it has a NE by restricting traders to observe only past prices. The

results are pretty much the same as those observed by Grossman and Stiglitz,

except that the uninformed hold fixed amounts of the asset in equilibrium.

In Example 2 a model similar to Brown and Jennings (1989) and Grundy

and McNichols (1989) was presented where investors could observe current

prices. In that case, prices map the fundamentals differently each period,
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which means that the price history contains information. However, as found

by Dubey, Geanakoplos, and Shubik (1987), a market where current demand

depends on current prices does not have a NE. Thus, if investors can condition

on current prices, the market is neither weak form efficient nor does it have

a Nash Equilibrium.

In the last example we have modified the Shapley-Shubik model so that we

better can compare it with the Grossman-Stiglitz model with unobservable

current prices in Example 1. It is suggested that to understand the results

in Dubey, Geanakoplos, and Shubik (1987) and Jackson and Peck (1999) we

need to specify exactly which kind of market mechanism this model entails.

Using the two-good examples of these authors, it is found that a bidding

mechanism where bids are made in terms of costs and not units of the assets

correspond well to the original model and produce the same results.

In order for cost bidding to be an appropriate assumption, it would either

need to be optimal for the agents, or it would have to be imposed as a

restriction by the market institution. Neither of these options seems to be

an accurate description of reality. It is not common in most asset markets to

restrict bidding in this way. Furthermore, uninformed investors themselves

would clearly prefer to buy a fixed number of assets in an efficient market

since it would guaranty them the same expected utility as the informed.

Based on this argument, I will argue that the noisy rational equilibrium

model with delayed price information is the best way to explain the existence

of positive information value. The well acknowledged drawback is of course

the presence of "stupid" noise traders.

Whether these noise traders exist or not is subject to some debate. There

are very good theoretical reasons for dismissing them as unsustainable. As

noted by Fama (1965) and Friedman (1953) the loss-making noise traders

should disappear by them selves after some time. The problem is however

that we observe that investors do persistently hold different portfolios, and

that inside information is profitable (Fama (1991)). This is not consistent
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with the absence of noise traders in the GS model.

When a pair of theoretical arguments are mutually incompatible with

the empirical evidence, either one or both must be false. We do not, how-

ever, at present have a generally accepted alternative that can explain this

inconsistency, although a number of theories have been proposed.

One particularly intriguing idea is that the unpredictable shocks observed

in the market, which we call noise trading, is in fact the effect of people chang-

ing their positions in risky assets due to income and consumption shocks

outside the model. This may happen at different dates for different traders,

and so it need not be the case that the same noise traders place losing bets

over and over again. Rather it may be the case that when the financial sit-

uation of some uninformed traders requires it, they willingly pay a premium

or accepts a discount in order to shift between more and less liquid assets. If

the portfolio is not rebalanced too often, the cost may be quite acceptable.

This idea is supported by the fact that at least theoretically, asset prices

are ultimately determined by aggregate consumption and income (Breeden

(1979) and Loewenstein and Willard (2006)).

The main theoretical argument against this idea is that such shocks would

be predictable since it is the effect of a large number of individual agents

holding market portfolios on average. Therefore investors should over time

learn how these shocks affect each asset and form optimal portfolios based

on this. In equilibrium therefore, the market index would reveal any such

noise. In addition, if the market index is not sufficient to predict the shocks,

investors can choose between a large number of economic factors in order to

predict them, using multi-factor models (Merton (1973), Ross (1976), Fama

and French (1989)), consumption betas (Breeden (1979)) or both.

The main problem with the above argument is its initial assumption, that

such shocks must be predictable. Econometric models with zero residual vari-

ance do not exist. Nevertheless we expect market participants to be able to

explain with 100% accuracy the shocks that come from agents that unex-
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pectedly rebalance their portfolios due to consumption and income shocks.

That seems to be a bit too optimistic with respect to the abilities of these

agents. In fact, since different groups of investors may have consumption

and income paths that depend very differently on the factors in the market,

these shocks need not even be fully predictable at the individual stock level.

We might accept that changes in liquidity needs are predictable in the

long run, though. However, for sufficiently short time periods which may be

when private information is most important, the number of trades may be

too small to be perfectly offset against each other. Thus even if such effects

net to zero for the entire market over time, it may be unlikely that such

demand and supply offset each other exactly in a single period for a single

asset. That is, in the very short run it seems reasonable that individual

differences in rationally motivated transactions actually matters.

In addition there is a serious problem in the assumption that either the

market index or other factors can be used to predict such noisy demand. Even

the use of the frequently published market index would be problematic, since

filtering such trades out using the index would lead us right into the same

problems that Dubey, Geanakoplos, and Shubik (1987) found to be incon-

sistent with a NE. It is just not possible for investors to calculate demand

by conditioning on an index that is constructed from that same demand.

In addition other important economic factors such as gross consumption are

perhaps published only a few times a year.

In the end, there are a number of reasons why investors may behave

differently but rationally. Even an assumption of different priors (different

opinions) does not per se imply irrationality, it just poses severe game the-

oretical problems Harsanyi (1968). Our models are therefore not even close

to explaining all that goes on in an asset market. Since assigning arbitrary

demand schedules to different investors is not a very scientific approach, one

usually deals with such problems by adding a noise term to the equation.

The idea is then to improve the model in order to explain this random term
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the best we can. For some reason that approach seems to be a problem in

financial models.

The major problem with the original noisy REE model of Grossman and

Stiglitz is that it did not have a Nash Equilibrium. What has been shown

in this paper is that by altering the model slightly by assuming unobserv-

able current prices, the original results remain the same. Furthermore, the

alternative SS model where there is no noise seems to assume a price setting

mechanism not found in most financial markets. After three decades one

might therefore argue that the noisy REE model of Grossman and Stiglitz

explains the value of information in financial markets best. Perhaps with the

inconsequential modification that current prices are not observable.
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V Appendix

A. Optimal ht−τ and bt

The problem is to

min
bt,0,ct−τ

L = E(E (∆pt+1|∆pt−τ)−∆pt+1)
2 (50)

Expanding (50) and taking expectations provides us with the expression

L = b2t,0 + h
0
t−τ
¡
Iσ2

θ
+M−10

t−τS
0
t−τSt−τM

−1
t−τσ

2
ε

¢
ht−τ (51)

−2∆at,0bt,0 (52)

−2h0t−τ
¡
∆mt−τ,t+1σ

2
θ
+M−10

t−τS
0
t−τ∆st−τ,t+1σ

2
ε

¢
(53)
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L is globally convex in ht−τ and bt. The derivatives are

∂L

∂h0t−τ
= 2

¡
Iσ2

θ
+M−10

t−τS
0
t−τSt−τM

−1
t−τσ

2
ε

¢
ht−τ (54)

−2
¡
∆mt−τ,t+1σ

2
θ
+M−10

t−τS
0
t−τ∆st−τ,t+1σ

2
ε

¢
(55)

∂L

∂bt,0
= 2bt,0 − 2∆at,0 (56)

and (15) and (14) follows from this.

B. Proof of Proposition 3

Assume gt = ekt. From (28) we know that h∗t = −
αI,t
αU,t

∆mt,t+1, and from

(10) ekt = gt =M−1
t ht. Therefore equilibrium requires

M−1
t ∆mt,t+1= −ekt

αU,t

αI,t
(57)

Inserting this into (29) premultiplying the result with St and rearranging

gives us

1

αI,t
S−1t e = S

−1
t ∆st,t+1+kt

αU,t

αI,t
e (58)

Consider now period T − 1 where sT−1,T = 0. Since sT−1,T−1 is the last
column of ST−1, we know that S−1T−1sT−1,T−1 = e. Using this, it can be found

that the last column of S−1T−1 (S
−1
T−1e) is

S−1T−1e =(kT−1αU,T−1 − αI,T−1) e (59)

hence, the first T − 2 equations of (59) says that the corresponding el-
ements of S−1T−1e must be zero. Since ST−1 is some upper right triangu-

lar matrix, it is easiest to first solve for element T − 2 of S−1T−1e, which is
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sT−2,T−1/ (sT−1,T−1sT−2,T−2), which implies sT−1,T−2 = 0. Since this simpli-

fies the T − 3 equation to sT−3,T−1/ (sT−1,T−1sT−4,T−4) and so on, we can

continue this way and subsequently solve for each element in S−1T−1e. By

induction then, sT−2,T−1 = 0.

Considering one period ahead (T − 2) the above procedure can be used
to find sT−3,T−2 as well since we now know that sT−1,T = 0. Therefore

sT−3,T−2 = 0, and so on. Thus, by induction, it can be found that St must

be a diagonal matrix.

Now pre-multiplying (57) with Mt and using the fact that M−1
t e = mt,t

we can rewrite (57) as

mt,t =
αI,t

αI,t−ktαU,t
mt,t+1 (60)

Since in the terminal period mT−1,T = 1 it follows that all mt,t are mul-

tiples of 1, and so we can write

mt,t = mt1, where mt =
T−1Q
j=t

αI,j/ (αI,j−kjαU,j) (61)

Now consider the equilibrium equation for gt in (33). Since St is a diagonal

matrix and the vectors ofMt are mj1 for j ≤ t, we can rewrite it

¡
M0

t1mtσ
2
θ
+ es2t,tσ

2
ε

¢
kt =

st,tσ
2
ε

αI,t + αU,t
e (62)

In the first t − 1 equations, the right hand side is zero, so we can write
these as jσ2

θ
mjmt = 0. This implies that either in period t = T −1 or period

t = T − 2, we would have St = 0 and Mt = 0. That would however violate

the equilibrium condition (29), since it would in the end imply that informed

traders do not take into account their private information. If this was the

case then there would be no way for the market to absorb the noise trading,

and the market would not be in equilibrium. It can therefore not be the case

that gt = ek¥
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Optimal Order Submission

Espen Sirnes

Abstract

In this paper a model for optimal order submission is derived.

Previous literature has focused on the spread set by market makers

in order to cover inventory and adverse selection costs. In this pa-

per the spread is assumed constant. However, uninformed investors

choose an optimal amount of limit orders to post in the market. If

all these orders are absorbed, that is a signal of an informed trader

in the market, and expectations are adjusted accordingly. The model

predicts a specific decreasing convex relationship between transaction

volume and market variance, which is tested on data from Oslo Stock

Exchange. The data supports this prediction. The optimal order sub-

mission scheme is valid for both market makers as well as uninformed

traders who need to rebalance their portfolio. In the latter case the

incentive for trade is assumed to be negative inventory costs.

Keywords: Asset pricing, market microstructure

JEL Classification:

The contribution of this paper is to derive a model where price adjust-

ments are made in a discontinuous fashion as a function of the transaction

volume in the market. Transaction volume above a specific level, set to maxi-

mize profits, becomes a signal of informed trading which causes a subsequent

price adjustment in order to limit losses. Transactions at lower volumes are

however assumed by the market maker to be caused by uninformed noise

traders, which are strictly profitable to trade with. The model is tested on
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data from Oslo Stock Exchange. The data from Oslo Stock Exchange con-

firms that price changes can in deed be described by such a discontinuous

process as mentioned.

Oslo Stock Exchange (OSE), as an increasing number of international

stock exchanges, is an order-driven electronic market with a lot of the smaller

trades being done through electronic brokers. There are no dealers and in

general no official market makers at OSE1, such as at NYSE and NASDAQ.

The market system at OSE is however quite similar to the current NASDAQ

system, as NASDAQ has moved towards a more integrated European style

market with a central order book, the last few years.

The decentralized structure and low transaction costs of such trading

systems often lead to substantial limit order competition on the bid and ask

prices, which narrows the spread. According to a professional in liquidity

provision at one of the largest member firms of OSE, the spread today is too

small for any profitable market making, even for the biggest players, when

one takes into account the inventory risk.

Market making at the Oslo Stock Exchange is therefore limited to a few

illiquid stocks where the company enters into an agreement with a member

of the exchange which provides quotes at some maximum spread with a

minimum amount of volume. Except for such agreements, the only advantage

a potential market maker in Oslo has over ordinary traders is the lower

transaction cost faced by members of the exchange.

The reason that market makers are not driven out of the market in NAS-

DAQ may be the pricing system. At NASDAQ, order submission fees are set

to the advantage of the market makers. For instance2, you pay $0.003 per

share to accept a limit order, but you get a rebate of $0.002 if you add liq-

uidity to the market by posting a limit order. You will however only obtain

this credit if you have costs exceeding it. Since each executed limit order

1Except for a very few illiquid companies, which may enter into a contract with a
financial institution, who will supply a minimum amount of liquidity.

2http://www.nasdaqtrader.com/trader/tradingservices/productservices/pricesheet/pricing.stm

52



must necessarily be matched by an equal number of market orders in total3,

ordinary clients cannot on average profit from this as the rebate will always

be smaller than the costs.

A market maker however, trade at his own account as well as matching

quotes for customers. This means that the market maker can incur costs

that he does not pay by executing market orders from customers and pass

these on. Thus, the special role of a market maker makes it possible to turn

the rebate into a profit. The system at NASDAQ may therefore work as a

subsidy of market making that might otherwise not be profitable4.

There does not seem to be any other recent international comparisons of

spreads and trading costs than Ian Domowitz and Madhavan (2001). Such

a study would be of great interest due to the substantial changes that has

occurred in internet based trading and the dramatic reduction in fees that has

followed this. There is however some evidence indicating that order driven

markets in general have lower spreads (Didier Davydoff and Grillet-Aubert

(2002)), although if we look at total trading costs the picture is not that

clear. One might however argue that easier access to the order book and

order submission we have seen in recent years may have been of particular

benefit to the order-driven trading systems in terms of transaction costs.

Combined with low trading fees by the electronic brokers it is therefore

very easy for any small trader in Oslo to marginally undercut a potential

market maker in order to obtain time priority. If the order book is not fully

visible and you are not allowed to enter the orders directly into the trading

system, then there is a risk in entering a limit order with too low time priority.

The ease at which you can enter limit orders in Oslo therefore reduces the

spread and eliminates the need for market makers in most cases.

Most of the associated literature assume that spreads and limit order size

3Limit orders outside the spread are counted as market orders.
4There is a sort of market maker subsidy in the OSE market as well, since non-members

must go through a member to trade, and hence pay a commission. Limit orders and market
orders are charged the same though.
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is set by market makers. The model presented here will however describe

optimal behavior of both market makers as well as other traders who need

to rebalance their portfolios for some reason.

In the empirical testing it will be assumed that the spread is constant for

each asset, possibly set competitively to a zero profit level as described in for

example by competition among market makers as in Glosten and Milgrom

(1985) and Easley and O’Hara (1992). Implementing both endogenous order

size and spread was found to make the model too complicated.

The model by Easley and O’Hara (1992) and applied empirically in Easley,

Kiefer, O’Hara, and Paperman (1996) is similar to the one presented here in

that trading is taken as a signal of private information, although their focus

was on the frequency of trading. In their model as here the spread is set to

a zero profit level for a market maker. More frequent trading then signals

that new information has arrived, and so affects the spread positively. The

spread is then compared across different assets.

Checking the impact of volume on prices is of course not new. Easley

and O’Hara (1987) (EO) did a theoretical analysis of the effect of trade

volume on prices. Since there is an adverse selection problem with respect

to volume as informed traders typically wish to trade large quantities, large

trades would typically be made at less favorable prices. The model presented

here differ from Easley and O’Hara (1987) in three important aspects. First

there is a single spread in the market, and so the price discrimination scheme

central in the EO paper is not considered. Second in this paper the trade

size is optimally chosen by the uninformed. Furthermore the probability of

an informed trader is not determined by the frequency of large trades as in

EO, as the probability of an informed trader is assumed constant. Where

the model coincides is the idea that high volumes are a signal of informed

trading. In this paper it will be argued that the signal is perceived when the

volume reaches some threshold value.

Also in Kyle (1985) the market price depends on past volumes. In Kyle
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the expectations of the uninformed market makers is conditioned on the

observed quantity traded. This is the case in this paper as well, but in this

model a maximum quantity is set by the market makers as limit orders.

Further in Kyle the informed and noise traders initiate the trading, but

in the model presented here the market is initiated by limit orders by the

uninformed.

Also in Blume, Easley, and O’Hara (1994) it is argued that the informa-

tion from observed volume may be used to predict price changes. In contrast

to this paper and Easley and O’Hara (1987), the market structure in Blume,

Easley, and O’Hara (1994) is not defined in great detail, as is the case in

microstructure models. Furthermore the volume is not dependent on the

probability of informed traders in the market.

Related empirical research have in particular been devoted to the bid-ask

spread. Glosten and Harris (1988) for instance, use the average transaction

volume to obtain an estimate of the adverse selection component of the bid-

ask spread. Huang and Stoll (1997) suggest an improved decomposition of

the spread, and finds that volume has significant impact on the components

of the bid-ask spread. Although the data collected for this paper certainly

can be used for such testing, the bid-ask spread is not the issue in this paper.

The model presented here is inherently short run, and so in order to test

its predictions it was important to use detailed high frequency data. This

sets the paper apart from some other papers where daily volumes and returns

are sufficient (for example Simon Gervais and Mingelgrin (2001), AR Gallant

and Tauchen (1992), Stickel and Verrecchia (1994)).

A main feature of this paper is the threshold volume set by the market

maker. Allowing the market makers to determine the trade size optimally

has previously been suggested by Easley and O’Hara (1987) and Dennert

(1993). There are also other works where the quantity plays a role, but often

this quantity is determined by the demand functions of the noise traders or

liquidity traders. In this paper the main focus is on the total amount of
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volume absorbed by the uninformed traders. To which extent this quantity

is actually absorbed by the market then depends on the volatility of noise

trading.

The model of Dennert (1993) is similar to the one presented here in some

aspects. In Dennerts model the spread and size are set simultaneously by

all market makers. Due to this simultaneous move feature there is no pure

strategy equilibrium. The mixed strategy equilibrium where each market

maker sets a spread according to a common distribution implies that most

market makers will trade only with the informed trader since their bids are

not competitive with respect to noise traders. Dennert therefore finds that

more market makers increase the mean spread. Evidence from the NASDAQ

does however point in the opposite direction (Klock (1999), Ellis, Michaely,

and O’Hara (2002)). The most critical assumption of Dennert is the simul-

taneous move assumption. In many markets bid and ask schedules are set

according to time priority, so that the bid/ask by any given market maker

depends on the bid/asks already placed. Thus a simultaneous bidding pro-

cedure may not be as realistic as a sequential one unless the order book is

not publicly available.

This model together with others such as Glosten and Milgrom (1985) and

Easley and O’Hara (1992) may be used by market makers themselves in order

to design optimal algorithms for liquidity provision. The contribution of this

paper is then to suggest how optimal limit volumes may be set by a market

maker.

The literature of microstructure has been growing and become more im-

portant in recent years as noted by O’Hara (2003). Much of it relates to the

spreads and tick-sizes in financial markets. O’Hara (1997) is recommended

for a more comprehensive review of the area.

The plan of the paper is to present the model in the next section. In

the following section the data is presented and the model operationalized.

Results are then presented. Conclusions are then drawn in the last section.
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I The model

There are three main types of participants in the market; uninformed traders,

noise traders and informed traders.

Uninformed traders may require or be willing to pay a premium on each

transaction to compensate for inventory risk, which enters as a component

of the transaction cost. For simplicity we assume that investors maximize

expected profits rather than utilities, after trade specific costs have been

deducted. The risk premium is thus treated as an exogenous cost of unknown

magnitude, which we will allow to vary across traders. This simplification

is consistent with the literature on the components of the bid-ask spread

though (Huang and Stoll (1997)), where risk aversion is often taken into

account explicitly as inventory costs.

The market is assumed to be symmetric so that the optimal strategies for

sellers and buyers are in effect the same. It is therefore often not necessary

to distinguish between selling and buying, and so for clarity we will mostly

consider the case where the uninformed buys assets by posting bid orders.

Prices and fundamentals are expressed in logs.

Market liquidity is used in various ways in economic literature. In this

model it is specifically defined as follows

Definition 1 Market liquidity is the amount of outstanding limit orders at
the highest bid price and at the lowest ask price.

A. The market

The market works as a double auction where market participants can place

either limit orders or market orders. A limit order is an offer to buy or sell

a certain quantity at a specific price. A market order is an acceptance of the

best limit order available.

Each period starts when uninformed place limit orders. These are then

absorbed by informed traders, who may place both limit and market orders,
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and noise traders who place market orders only.

The market consists of one risky asset. This pays ũT in some final period,

for example the end of the trading day. The process up to ũT is given by

ũt = ũt−1 + ε̃t (1)

where ε̃t ∼ N (0, σ2ε). Tilde will throughout the paper indicate random vari-

ables. ũt will be referred to as the fundamentals and is known only by the

informed. Public information is left out from the model. Since the unin-

formed and informed traders are risk neutral here, there is no need for risk

compensation. So in order to simplify, the expected payoff from the asset is

zero.

The market expectation pt is the expected terminal value5 of the asset,

given the information available to the uninformed ht−1. Given that ut is a

random walk, this means

pt = E [ut|ht−1] (2)

where ht−1 is the payoff relevant information available to the uninformed

before trade in period t. We will be more specific about the values that ht−1
may take later in the paper.

The market clears in two stages. Let s represent the spread. First un-

informed investors post bids at some price lower than the current market

expectation, pt− 1
2
s, and asks at some price higher than this, pt+ 1

2
s. In this

way the uninformed profits unless the counterpart is better informed than

them. Since we are only considering the side of the market where limit orders

are bought, the transaction price we look at is the bid price

p∗t = pt −
1

2
s (3)

5One can view pt as the expectation of the assets’ present value, or the expectation
under a risk neutral measure.
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In the next stage, noise traders and possibly informed traders arrive and

choose whether to accept this price. If the amount of demand or supply is

higher than some critical value, discussed later in the paper, this provides

the uninformed with a signal that the trading activity is possibly not just

due to noise traders.

As implied above it is assumed that current market price pt is always the

middle value of the upper and lower prices. This is not a realistic assumption,

but a vastly simplifying one.

B. Trading costs

As mentioned we know that one of the largest member firms at Oslo Stock

Exchange do not participate in market making6 due to the low spread relative

to their own transaction costs, which we can assume are among the lowest

in the market. It therefore seems unlikely that there is widespread market

making activity in this market place. We do however observe limit orders at

quite narrow spread in the market. As will be described in more detail, will

attribute the posting of these limit orders to investors driven by the need for

temporary portfolio rebalancing.

In the literature trading costs are typically decomposed into three com-

ponents; Order processing costs, inventory costs and adverse selection costs.

Order processing costs are assumed constant across traders, while inventory

costs are allowed to vary across traders. The total of these costs per trade

for trader i will be denoted ki. Adverse selection costs are endogenous in

this model, and will therefore equal the spread less the smallest trading costs

over the uninformed investors, kmin, that is 12s− kmin.

The informed does not face inventory costs. Furthermore, trading fees

for limit orders placed by the uninformed and the market orders needed to

accept the limit orders may not be the same.

6Except for special liquidity provision contracts with specific low liquidity companies.
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We will define trading cost of the informed as a fixed quantity kI . If there

is a subsidy scheme such as at NASDAQ, then kI may actually be quite large

relative to ki.

1 Inventory costs

Inventory costs may differ across investors due to portfolio heterogeneity,

which is a rationale for posting limit orders7. If the portfolio is not well

balanced (that is, it is not optimal), then inventory costs will typically turn

into inventory benefits for trade in the direction that improves the portfolio.

We will refer to such benefits as negative costs for generality.

We will distinguish between the inventory cost and order processing costs

for trader i by denoting the risk premium of inventory cost kR,i, which may

be negative, and the order processing cost kC , so that ki = kC + kR,i. This

inventory cost is then the negative (positive) amount kR,i the trader is willing

to pay (requires) in order to avoid (take) risk by improving (worsen) their

portfolios.

In the literature inventory costs are often just regarded as some general

cost of holding an asset short or long for a period of time. There have been

theoretical attempts to quantify them though, such as Ho and Stoll (1981)

and O’Hara and Oldfield (1986). For this model it will suffice with a much

simpler specification of these costs. It will be defined as follows

Definition 2 Inventory cost kR,i equals the certainty equivalent compensa-
tion needed to offset a change in the current portfolio.

Inventory costs, thus vary across investors depending on the effect of a

trade on the portfolio risk and return. With a CARA utility function with

unit risk aversion we know that for small changes this approximately amount

to the present value of the derivative of the mean-variance difference with

respect to the portfolio weight of this asset. That is, assuming a zero interest

7a similar argument was proposed by among others Bhushan (1991)
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rate the inventory cost (the current wealth compensation dw0) per share for

a small trade of daj,i in asset j given a portfolio ai with covariances σj,l is

for a buyer approximately

kR,i = Ii
dw0
daj,i

= Ii

Ã
µj − γ

NX
l=1

al,iσj,l

!
(4)

where Ii = 1 if trader i is a seller and Ii = −1 for a buyer, and γ is the

risk aversion coefficient. The return µj will of course depend on the current

market price and transaction price.

If the portfolio is optimal, inventory costs are effectively zero, since (4)

is the first order condition of the portfolio optimization problem for asset j.

Furthermore, if the investor has too little of the asset relative to the optimal

level, kR,i is negative for a buyer and positive for a seller. If the spread is too

narrow for market making, then bid orders are typically placed by investors

with too little of the asset in their portfolios. Those with positive inventory

costs with respect to a purchase would have negative costs with respect to

selling, and would therefore place ask orders.

On average the portfolio of the investors will be optimal, but only a tiny

fraction of outstanding assets are usually traded within, say, any given hour.

Those with the smallest transaction costs in any short time interval may

therefore be considered extreme observations and may have portfolios that

deviate quite substantially from the optimal one. Thus, since we are looking

at very short time periods here, there might be a substantial amount of

trading even if most investors hold well balanced portfolios.

The heterogeneity of portfolios may stem from a variety of different

sources. There is some resemblance between the specification here and the

approach taken by Glosten (1994), who attributed the motive for trading to

unspecified shocks to investor characteristics. It might be due to differences

in opinion. This explanation, different priors, has some game theoretical

problems associated with it (Harsanyi (1968)). It does not necessarily breach
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the assumption of rationality though. A more consistent explanation would

be that individual differences in consumption and income generate heteroge-

neous portfolios, and shocks throws portfolios out of balance. In any case,

different portfolios are an empirical fact, which implies that any shock to the

economy will impact the individual asset holders differently.

A major advantage with the approach taken here is that the model can be

used to predict optimal behavior by both market makers as well as investors

seeking to rebalance their portfolios. If the investor has high risk bearing

capacity and low order processing costs so that kR,i ≈ 0, then it might be an
advantage to act as a market maker.

The definition of the inventory cost kR,i in (4) in this paper is for illus-

trative purposes. All we need to know is that investors may hold different

portfolios, some better balanced than others. The ones with the smallest

costs on each side of the market then post limit orders, and the sign of the

inventory cost kR,i then determines whether it is a seller or a buyer. Those

with the smallest inventory costs will determine the maximum amount of

liquidity offered in the market, as we will see.

C. The noise traders

There are also noise traders in the market who at time t ∈ {1, ..., T} have
a net demand of qtσq where qt is a standard normally distributed random

variable

q̃t ∼ N (0, 1) (5)

qtσq is sold from the noise traders at the lowest ask price p̃t,L when there

is a net supply in the market and bought at the highest bid price pt,H when

there is a net demand.

Trading with the noise traders constitutes the incentive for the unin-

formed to post limit orders. Without them, positing a limit order would

imply a sure loss. The noise traders are thus investors who need to sell and
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buy at unfavorable prices for some reason. As described in the previous

section, investors may for some reasons need to rebalance their portfolios.

Some traders do however value immediacy more than others, which is why

market orders are placed. One might therefore view these noise traders as

"impatient" uninformed traders, such as in Foucault, Kadan, and Kandel

(2005).

Since s is the cost of shifting from less liquid to more liquid assets, the

level of noise trading qt is typically regarded to be negatively related to the

spread. In this paper we will not spend much time on this side of the market,

but it is worth noting that we could model this by letting the volatility of

noise trading σq, which determines volume in absolute terms, be a decreasing

function of the spread s.

In any case, the only reason that limit orders are placed in the market

is the existence of noise traders without superior information. Unless these

are present, any limit order would incur losses. Therefore, it does not really

matter why the noise traders are in the market. For a meaningful discussion

of the strategies of limit order submission the existence of noise traders is a

fundamental assumption.

D. The informed

At any time there is some given probability λ that some traders are informed

of the underlying fundamentals ut and so λ is the arrival rate of these traders.

The informed traders act non strategic in the sense that if there are

possibilities for profitable trades in the market, the informed will trade until

no such possibilities are available. Problems associated with this assumption

are discussed in O’Hara (1997) p. 74. The easiest way to justify such lack

of strategy is to make the following assumption, which is common in related

literature:

Assumption 1 The informed investors in the market act competitively
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If all the informed investors act competitively by buying or selling all

available quantities on the market, then this is also a Nash equilibrium in

this model, even with only two informed investors. The reason for this is that

there is a finite amount of limit orders posted in the market, as we will see.

If this volume is absorbed the uninformed concludes that there are informed

traders in the market and the informed are revealed. Thus, if at least one

informed investor in the market has a competitive strategy of accepting all

available limit orders, then this will be the optimal strategy for all other

investors since revelation occurs with probability one in any case. Therefore

by Assumption 1 the informed will not strategically ration their demand, but

rather absorb all limit orders and their presence is subsequently revealed in

the same period.

As we will also see, this causes the uninformed market makers to change

their expectations about the fundamentals pt. At the new price level however,

the probability of an informed trader remains the same, λ.

Given that the informed investors act competitively then, they will buy

or sell the maximum amount available. Let ctσq be the total amount that the

uninformed post at p∗t . ctσq is thus the total liquidity of the market as defined

in Definition 1. How ct it is set will be explained in the next section. The

informed traders absorb the entire volume when they trades, so the amount

bought by them is ctσq − q̃tσq.

If ũt < pt+
1
2
s+kI then the information of the informed cannot be used to

exploit uninformed investors by buying limit orders. This will occur with a

certain probability 1−γt. It will further be assumed for simplicity that if the
informed is able to exploit the sellers, that is if ũt > pt− 1

2
s−kI , then she will

absorb any noise trading that would otherwise go to the buyers, and so the

uninformed buyer does not trade in this case either. The total probability

that the uninformed gets to trade with noise traders even when there is an

informed trader in the market is then 1 − 2γt. Two times γt is subtracted
since the probability that the informed will trade is twice the probability
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that she will either buy or sell.

E. The uninformed traders

Each uninformed trader posts limit orders of ct,iσq at either the bid or ask

price in the market. ct,i is normalized by the volatility of noise trading σq,

which we will see is convenient.

Let the normalized supply of limit orders by the first i traders be

Ct,i =
jP

j=1

ct,j (6)

There is now a given probability that all available limit orders up to trader

i, Ct,iσq, are absorbed by accident by noise traders in the market. This

probability is

α [Ct,i] = (1− Φ [Ct,i]) (7)

where Φ is the normal CDF. This is the probability of observing q̃t ≥ Ct,i.

Thus αt = α [Ct,i] is the significance level of a one sided test performed by

the uninformed on the presence of informed traders.

F. The expected profit function

In calculating the expected profit, the volatility of the current market expec-

tation as an estimate on the fundamentals ut matters. We define the market

variance of pt as the variance of the difference between the known market

price pt and the random fundamentals ũt, that is

v2t = E
£
(ũt − pt)

2 |ht−1
¤

(8)

As in (2) ht−1 is the information available to the uninformed before trades

in period t. To be specific, ht−1 ∈ {0, 1}, where ht−1 = 0 if total demand
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(supply) did not exceed Ct−1,N in period t − 1 and ht−1 = 1 otherwise. In

the latter case the market will change its expectation so that pt 6= pt−1.

This represents the uncertainty of the current market estimate pt with

respect to the underlying fundamentals ũt. It turns out to be an advantage

to express this market variance in terms of the spread faced by the informed

when she takes into account trading costs, s+2kI . If her valuation lies within

this spread, she cannot use her information. Thus we define the normalized

market variance as

σm,t = vt/ (s+ 2kI) (9)

Define the probability that the private information is actually useful with

respect to a limit buy order as γt = P (ũt < p∗t − kI). It can be found that

this probability is

γt [σm,t] = 1− Φ
h

1
2σm,t

i
(10)

Noise traders sell or buy the quantity qt. If there are no informed traders

in the market the realized profit for trader i from trading with the noise

traders is the volume that falls to him times the profit per share. If he is a

buyer then this profit from trading with noise traders only will be

πt,N = σqmax (q̃t − Ct,i−1, 0) (ũt − p∗t − ki) (11)

If there are informed investors in the market, they will accept all limit

orders, including ct,iσq for the price p∗t while the true value of the asset is

ũt. The negative profit for trader i when buying from an informed trader is

therefore

πt,I = σqct,i (ũt − p∗t − ki) (12)

Since q̃t and ũt are independent, we can calculate the expectation in the
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two terms of (11) separately. Define the expected noise trading going to

trader i as

q̄t,i = σq Emax (q̃t − Ct,i−1, 0) (13)

= σq (ct,iα [Ct,i] + Ct,i−1 (α [Ct,i]− α [Ct,i−1])) (14)

+σq (φ [Ct,i−1]− φ [Ct,i]) (15)

which follows from the formula of the expectation of a truncated normal

random variable, where by definition ct,i = Ct,i − Ct,i−1.

The expected profit per share when trading with noise traders is half the

spread, less trading costs, 1
2
s− ki. As mentioned, this happens when either

there is no informed trader in the market, or the informed trader does not

trade. The probability of this is 1− 2λγt, assuming the noise trader orders
are absorbed by the informed both when she buys and sells, which occurs

with probability 2γt when she is in the market.

The (negative) expected profit per share given that the uninformed trades8

with an informed trader is

E
£
ũt − p∗t − ki|ũt<p∗t−kI

¤
=
1

2
s− ki −

2φ
h

1
2σm,t

i
σm,t

γt [σm,t]

µ
1

2
s+ kI

¶
(16)

The expected total profit is then obtained by multiplying the expected profits

per share with the associated expected volume (ct,i if the informed trades

and q̄t,i otherwise) and the associated probabilities. This gives us the total

expected profit

Eπt = λγtσqct,i E
£
ũt − p∗t − ki|ũt<p∗t−kI

¤
(17)

+(1− 2λγt) q̄t,i
µ
1

2
s− ki

¶
(18)

8the problem is symmetric, so the formula apply for both bid and ask orders.
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G. Optimal order submission

It can be found that ∂q̄t,i/∂ct,i = σqα [Ct,i]. Therefore the first order condition

for maximization of the profit function is

∂ Eπt
∂ct,i

= λγtσq E
£
ũt − p∗t − ki|ũt<p∗t−kI

¤
+(1− 2λγt)σqα [Ct,i]

µ
1

2
s− ki

¶
= 0 (19)

The expected profit is globally concave in ct,i, so the optimal order sub-

mitted is uniquely determined by this first order condition. Let C∗t,i be the

optimal total order submission after trader i has submitted his optimal order

size c∗t,i. Then the total optimal amount of orders solves

α
£
C∗t,i
¤
= −

λγt E
£
ũt − p∗t − ki|ũt<p∗t−kI

¤
(1− 2λγt)

¡
1
2
s− ki

¢ (20)

The right hand side is also the probability that the uninformed will mis-

takenly take high noise trading to be the activity of an informed trader.

There are two important conclusions we can draw from this optimal strat-

egy. First, as we see from the solution (20) the optimal order submission for

a single investors gives a unique solution for the total order submission C∗t,i.

That is if trading costs are constant across investors, then trader 1 would

submit the total order size, c∗t,1 = C∗t,1 and no further orders are submitted.

Furthermore we see from (19) that

∂2 Eπt
∂ct,i∂ki

= − (1− 2λγt)σqα [Ct,i] < 0 (21)

Since the profit function is globally concave in ct,i, (21) means that if the

FOC (19) initially holds then an increase in ki makes it negative, and so ct,i
must be reduced. The optimal amount submitted is therefore decreasing in
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trading costs ki. For a trader j with the smallest trading cost kj, it will

therefore always be optimal to top up the total order size to C∗t,j, and no

other investor will be willing to submit any additional volume.

Thus the following proposition holds

Proposition 1 The optimal total order submission C∗t,i is independent of the
number of uninformed investors and is determined by the investor with the

smallest trading cost kmin.

The proof follows from the above discussion.

What is important with Proposition 1 is that it states that the optimal

order submission is the same for any given minimum trading cost kmin.

The inventory cost (4) will however decrease as an investor balances his

portfolio with increasing order submission, because the portfolio will become

closer to optimum. Fortunately this is not a problem as long as there are

sufficiently many uninformed investors in the market. In that case we only

need to consider the transaction cost of the last marginal order, which by

Proposition 1 must be the smallest of all ki. We will from now on assume

that this transaction cost is constant equal to kmin and that the total order

size submitted by the last trader is c∗t . Calculating the right hand side of

(20) we can now restate that the total amount of orders optimally submitted

satisfies9

α [c∗t ] =
1

2
−
1− 4λφ

h
1

2σm,t

i
σm,tK

2 (1− 2λγt)
(22)

where φ is the standard normal density function and

K =
1
2
s+ kI

1
2
s− kmin

(23)

is the relative advantage for the uninformed relative to the informed with

respect to trading costs. If the right hand side of (22) is less than 1
2
then the

9Which also can be written Φ (c∗t ) =
1

1−λγt+λ2φ
h
1
2σt

i
σt

s+2kI
s−2k
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Figure 1: Optimal order submission with K = 1 and λ = 0.1. We see that
σmax ≈ 6.286.

normalized volatility σm,t is simply too large for it to be worth submitting

any orders. The point at which zero liquidity is provided is

σmax [Kλ] =
1

2
LambertW

£
2 (Kλ)2 /π

¤−1
2 (24)

where LambertW (x) solves WeW = x. The optimal liquidity function

c∗t [σm,t] that solves (22) with respect to c∗t can now be written

c∗t [σm,t] ≡ Φ−1

⎡⎣1
2
+
1− 4λφ

h
1

2σm,t

i
σm,tK

2 (1− 2λγt)

⎤⎦ (25)

where c∗t [σm,t] = 0 if σm,t > σmax [Kλ]. Φ−1 is the inverse of the standard

cumulative normal distribution function.

A graph of optimal liquidity provided is depicted in Figure 1.
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1 Market makers

As mentioned the above argument will determine optimal order submission

by a market maker too, due to Proposition 1. The market maker submits

simultaneous bid and ask orders. Since the events that the market absorbs

the bids or absorbs the asks are mutually exclusive by construction, the

expected profit of a market maker will simply be twice the expected profit of

an uninformed investor who is buying (or selling). Optimal order submission

for the market maker is therefore exactly the same as above.

In this paper we will take a closer look at a stock market where the trading

fees are the same for limit orders and market orders. In that case a market

maker can however only submit simultaneous orders if his inventory costs

are not too high. This requires that any market maker have very low order

processing costs and high risk bearing capacity so that the inventory cost

kR,i ≈ 0 for both selling and buying even as inventory builds up. Even then,
the market maker may become outcompeted by any trader at each side of the

market with sufficiently negative inventory costs. At Oslo Stock Exchange

there does not seem to be much market making, which is possibly due to the

inability of any potential market maker to compete with the trader who has

the most misaligned portfolio in the market. These traders have negative

inventory costs as opposed to the market maker, and so competition may

drive the spread to a level where only such investors can place limit orders.

At NASDAQ market makers have an advantage with respect to trading

costs. In the model, this would imply considerably smaller trading costs ki for

such traders. In addition the market makers have better information about

the full order book than the rest of the market, and hence the adverse selec-

tion cost may be smaller. That might be enough to have the smallest trading

cost of all traders, and thus explain why market makers are widespread at

NASDAQ but not at Oslo Stock Exchange.
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H. Expectation updating

Assuming the order book is open, significant trading volumes absorbing all

that is posted c∗t , will be observed by market participants. As previously

stated, the informed will absorb any standing orders in the market, and so

c∗t will work as a "critical transaction volume". If all outstanding orders c
∗
t

are absorbed, then this is a signal to the uninformed that there might be

an informed trader in the market, with a significance level of α [c∗t ]. Since

observing trading c∗t always occur if there is an active informed trader in

the market, the uninformed will optimally change their expectations, pt,

in the face of this event. We will now take a look at the magnitude of

this adjustment in expectations, which will be called zt (s+ 2kI). zt is thus

normalized by the spread of the informed as σm,t is.

zt is now chosen so that the next period market variance σ2m,t+1 is min-

imized. As mentioned earlier expectations pt and volatility σm,t are based

on the information ht−1 ∈ {0, 1} which is the realization of the random vari-
able h̃t, where h̃t = 1 if total demand or supply exceeded c∗t and the market

adjusts, and h̃t = 0 if it did not. The probability of adjustment given the

current market volatility is then

δ [σm,t] = P
³
h̃t = 1

´
= 2λγt + (1− 2λγt) 2α∗t (26)

= 4λφ
h

1
2σm,t

i
σm,tK (27)

where the last equality follows from the expression of the optimal signif-

icance level α∗t = α [c∗t ] in (22).

The realization ht depends on the realization of two random variables; the

amount of noise trading q̃t and whether an informed trader is in the market

or not. The variance after observing trades is then the random variable

σ2m,t|h̃t = E
h
(ut − pt)

2 |h̃t
i
/ (s+ 2kI)

2

= σ2m,t − h̃twt [σm,t] (28)
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where wt [σm,t] is to be determined, and represents the change in variance

if adjustment to expectations are made. Since we know the probability of

an adjustment from (26), we know that the expected market variance after

trade is

E
£
σ2m,t|h̃t

¤
= σ2m,t − δ [σm,t]wt [σm,t] (29)

Observing significant demand or supply does however not necessarily im-

ply an informed trader. Define the events in case of adjustments accordingly

as

1. Event It: It is correctly determined that there is an informed investor

in the market who trades (in any direction10). This happens with probability

P (It) = 2λγt (30)

2. Event INt: There is an informed investor in the market, but she does

not trade. Excess demand/supply from noise traders however generates a

signal (in any direction). This happens with probability

P (INt) = λ (1− 2γt) 2α∗t (31)

3. Event Nt: There is no informed trader in the market but excess de-

mand/supply from noise traders generates a signal. This happens with prob-

ability

P (Nt) = (1− λ) 2α∗t (32)

As one can confirm, the probabilities above sums up to δ [σm,t]. We

multiply α∗t by 2 in event INt and Nt, since the noise traders may generate

both a sell and a buy signal. We can now derive variance in the current

period, σ2m,t, given an adjustment has been made. The variances conditional

on each of the three events 1.-3. defined above can be found to be
10Since the trade can go in any direction, the total probability is twice the one sided

probability.
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σ2m,t|It = σ2m,t + z2t − 1
2
σm,t (4zt − 1) φ[1/2σm,t]

γt
(33)

σ2m,t|INt = σ2m,t + z2t − 1
2
σm,t

φ[1/2σm,t]
1−γt

(34)

σ2m,t|Nt = σ2m,t + z2t (35)

Total variance is then found by multiplying the variances under these

mutually exclusive events by their respective probabilities (30)-(32), divided

by the total probability of adjustment δ [σm,t]. Using the expression for α [c∗t ]

giving the optimal order submission in (22), it can be found that the variance

in case of adjustment in period t is

σ2m,t|h̃t=1 = σ2m,t + z2t −
(4zt − 1 + 2α [c∗t ])

4K
(36)

We now assume that the uninformed based on this result set an appro-

priate adjustment zt that minimizes this distance from the fundamentals11.

σ2m,t|h̃t=1 is convex in zt. Using the definition of K in (23), the corresponding

FOC therefore implies that the optimal adjustment is

z∗ =
1

2K
(37)

which in turn implies (29) that the market variance σ2m,t is reduced by a

factor of

w [σm,t] =
1
4K

¡
1
K
− 1 + 2α [c∗t ]

¢
(38)

when expectations are updated. w [σm,t] may be negative if α [c∗t ] is small.

Define the normalized price variance as12 σ2p,t = E [∆p2t ] / (s+ 2kI)
2. The

price remain constant if no adjustment is made, and changes by z∗ otherwise.

Since the probability of an adjustment is δ [σm,t], the price variance can be

11Of course other norms could have been used, but variance minimization is computa-
tionally convenient and conventional.
12∆pt = pt+1 − pt
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expressed as

σ2p,t =
4λ

K
φ
h

1
2σm,t

i
σm,t (39)

after substituting for z∗ and dividing the right hand side by (s+ 2kI)
2.

This relationship between the price variance and the underlying market

volatility σm,t will be important when estimating the model.

I. Variance process

In the next period the normalized variance σ2m,t will increase by the normal-

ized innovation σ2ε/ (s+ 2kI)
2 regardless of adjustment or not. This is due

to the fundamental process (1) and the definition of σm,t in (9). Thus the

expected next period variance is

E
£
σ̃2m,t+1|σm,t,

σε
s

¤
= E

£
σ2m,t|h̃t

¤
+
¡
σ2ε/ (s+ 2kI)

2¢ (40)

or

E
£
σ̃2m,t+1|σm,t,

σε
s

¤
= σ2m,t − δ [σm,t]w [σm,t] +

σ2ε

( 12s−kmin)
2 (41)

(41) describes the conditional next period expectation of a random dy-

namic variance process.

The stochastic process σ̃2m,t is then given by

σ̃2m,t+1 = σ̃2m,t − h̃tw [σ̃m,t] +
σ2ε

( 12 s−kmin)
2 (42)

The path of this process is determined by the realized frequency at which

updating occur, which again is determined by the realization of q̃t and the

presence of informed traders at rate λ.

(42) is a stochastic variance process much like conditional heteroscedastic-

ity models such as GARCH. The expected change in variance is not a linear

function of current volatility though. The expected next period variance
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is then obtained by substituting the random variable h̃t for its expectation

δ [σm,t]. Doing this, we can find the "equilibrium variance", which we may

define as the variance required for E σ̃2m,t+1 = σ2m,t to hold. Thus, the equi-

librium variance σ2m solves

δ [σm]w [σm] =
σ2ε

( 12 s−kmin)
2 (43)

which has no explicit solution.

An important implication of the variance process is that though w [σm,t]

may be negative so that the variance increases even when an optimal adjust-

ment is made, this cannot continue forever. As the variance σ2m,t increases,

c∗t will approach zero and α [c∗t ] will approach
1
2
. If α [c∗t ] =

1
2
we see from

(38) that w [σm,t] > 0 always, and hence abnormal trading and the following

adjustment will always reduce variance. Thus at some point variance will

cease to increase.

As we will assume that the market volatility is constant, we are implicitly

assuming that it varies around some equilibrium level σm. We will use (39)

to infer the underlying equilibrium volatility σm from the price variance σ2p,t.

II Testing the model

A. The data

In order to test some predictions of the model, detailed market data was

extracted from the web-site of a Norwegian on-line business newspaper13.

Both order and transaction data were obtained from the 71 most liquid stocks

(measured in daily traded volume) at the Oslo Stock exchange in the period

November 9th through December 3rd 2007. Due to low trading activity in

some stocks and some technical problems associated with the data extraction

13Data was extracted automatically from "http://www.dn.no/finans/" by the use of a
custom made computer algorithm.
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only 66 of these stocks were used in estimations. For the same reason the

data used in the estimations do not include all the trading days (the number

of trading days is reported in the Appendix).

The data is organized in two databases for orders and trades. The order

database consisted of some 5 million observations of minute-by-minute best

ask and bid quotes, number of best ask and bid quotes, total number of ask

and bid quotes, time and ticker (name). The data usually contained more

than one recorded order depth during any given minute, but the seconds were

not registered in the data base. The quotes that gave the narrowest spread

were therefore used.

The trades data base consisted of 1.1 million trade observations with

exact time (second), price, volume, buyer (broker) and ticker.

These two databases were then combined into one by assigning recorded

trades to either the bid or ask side depending on whether the transaction

price was below or above the mid quote in the order data base at the same

time. On inspection it was found that there seemed to be a variable time

lag between the order and trade data. For that reason all orders and trades

within each five minute trading period during the day where aggregated. This

increased the probability that removal of any given order was attributed to

the trading volume in the same time period. Thus the data used has a

maximum frequency of 12 trades per hour when there is successive trading

in the stock and a trading period in the model is defined to be five minutes.

Preliminary estimations suggested that this improved the reliability of the

data too, which might suggest that a five minute trading interval is a suitable

definition of "one period". Characteristics of the companies used in the

sample are given in the Appendix.

Prices are measured in first differences, excluding the innovation from

one day to another. The number of initial observations equal to the number

of lags was further deleted for each day, so that the return one day did not

depend on variables the previous day.
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The member transaction fee at OSE is 0.011% for a $10 000 transaction.

This is comparable to similar stock markets such as NASDAQ.

B. Tests

We will pursue two main objectives when estimating the model. First we

will test the main prediction of the model, the general shape of the optimal

liquidity function c∗ [σm,t], and see if it fits with the data. Second we will

estimate the parameters, given that the model is true. This approach is taken

since we do not have detailed enough data to test all its predictions against

the null that the model is false. There are two main obstacles for a more

rigorous testing.

First we assume constant parameters across time and individual stocks

in this study due to a limited number of liquid stocks at OSE. In particular

we will assume that the market variance σ2m is constant as mentioned and

that the optimal liquidity function c∗ [σm] is the same for all assets. If we

had more companies in the sample, say a few thousand, this could possibly

be solved by dividing the assets into several classes by some criterion and

vary parameters across time as well. More trading in each stock than in the

OSE sample would also possibly improve estimates14.

Second there is an identification problem which essentially can only be

solved by specifying some parameters exogenously. The reason we neverthe-

less have presented such a rich model is to reduce the number of assumptions

needed in the derivation of the model.

C. Estimation of liquidity supply c∗ [σm,t] and market volatility

σm,t for each stock

The model presented was operationalized by estimating the following model

for a single asset (dropping individual subscripts for simplicity):

14observations for each company in the sample are given in the Appendix
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1 The regression

First wee needed to estimate the liquidity supply Ĉ, for each asset, which

will be normalized by an estimate of the noise trading volatility, σ̂q. As

mentioned we have classified volume traded in each period as either bids or

ask orders depending on the transaction price relative to the mean price in

the period. Let VB,t be the bid volume and VA,t be the ask volume. In order

to estimate the liquidity supply Ĉ we now define the dummies

hi,t =

(
1 if Ĉ < Vi,t

0 if Ĉ ≥ Vi,t
(44)

for i = {B,A}. These dummies indicates if trading exceeds some critical
volume Ĉ. Their coefficients will determine the effect of the observed vol-

ume as a signal to revise expectations, and hence be useful to estimate the

adjustment zt. We will estimate Ĉ by choosing the level for each stock that

maximizes the likelihood function.

We do however need to control for the direct effect that volume has on the

price. That is, we do not want to find a threshold value Ĉ unless it adds to

the explanatory power of the regression. In order to allow for the possibility

that the market just does not regard large volumes as a signal according to

our model, we add the volume Vi,t to our regression. Multicollinearity with

hi,t is then avoided by only using Vi,t in the regression when hi,t = 0, and so

we defined the truncated volume.

V i,t

(
0 if Vi,t > Ĉ

Vi,t if Vi,t ≤ Ĉ
(45)

we will of course allow for the possibility that hi,t = 0 always and V i,t =

Vi,t. The volume often tend to take extreme values, which we take into ac-

count by using the transformation vB,t = ln
¡
V B,t + 1

¢
and vA,t = ln

¡
V A,t + 1

¢
,

the natural logs of the total number of asset traded at bid and ask prices sub-
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sequently, with 1 added to ensure finite values.

Since the time it takes before an observation has effect on the market

price is not known, we allow for up to L = 5 lags for the variables defined

above. The regression we will estimate then becomes

∆pt =
L−1X
j=0

¡
BV,jvB,t−j +Bh,jhB,t−j +AV,jvA,t−j +Ah,jhA,t−j

¢
+ x0tβS + ζt

(46)

x0t are the structural variables, which in this case are just dummy variables

for each day, mapping the return on the asset at each date. A measure of

the stock index was also initially added15. This did however not contribute

much in terms of explanation, possibly due to the high frequency of the time

series, and was therefore discarded due to reduced adjusted R2. It is possible

that the reason for this was that the daily trends captured essentially the

same market trend as the market index.

(46) was estimated by GLS in order to take account of order one auto-

correlation in the error terms, which was apparent in most of the time series.

A grid search procedure was used to find the coefficient that minimized the

residual sum of squares.

2 Estimating the liquidity supply c∗ [σm,t]

Assuming a constant level of market volatility for each asset σm,t, the unnor-

malized liquidity supply c∗ [σm,t]σq was estimated by picking the thresh-

old level for transaction volume Ĉ that maximized the log-likelihood of

the regression. This was done conditional on that that there was not se-

vere multicollinearity problems (condition index with multiple correlated

variables<500). If such problems were apparent, the number of lags was

15High frequency data on the index was not available. Therefore an index for each
individual stock was constructed as an average weighted by market capitalization from all
the other stocks in the sample. Thus for stock i, the index included all other stocks than
i.
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reduced until the problematic condition index was reduced to an acceptable

level.

For each stock the main assumption of Ĉ as a threshold variables was

tested, as mentioned, by estimating a simpler regression with the restriction

Bh,j = Ah,j = 0. If the adjusted R2 was higher for that simpler model, then it

was determined that Ĉ = 0 and that all trades were perceived by the market

to be potential informed trading.

In order to obtain an estimate of the normalized liquidity supply, ĉ =

Ĉ/σ̂q, an estimate of the noise trading volatility σq was needed. For this the

square root of the sum of squared differences between ask and bid volumes

for each five minute interval was used as a proxy. Specifically, the proxy for

noise trading volatility was estimated as

σ̂2q =
1

T

TX
j=1

(VB,t − VA,t)
2 (47)

where T is the total number of five minute intervals in the sample. There

is an implicit assumption here that the expectation of the difference is zero.

We then estimate the normalized liquidity supply as ĉ = Ĉ/σ̂q. Since σ̂q

is only a proxy however, we will not restrict the relationship between the

estimated and fitted liquidity to be one. We will see later what this means.

3 Estimate of the normalized market volatility σm

The normalized market volatility is also unobservable. However we can use

(39) to infer it from the observed price volatility. Let σ̂2p be the estimated

price variance normalized by the mean spread ŝ, over all five minute intervals

in the sample. The function φ
h

1
2σm

i
σm in (39) can be approximated fairly

good by a linear function16. We therefore estimate σm as a linear function of

162.3% standard deviation and 7.2% max deviation in the range 0.07-10 of the inverse
function.
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σ̂2p. That is

σ̂m = g0 + g1σ̂
2
p (48)

As seen from (39) we can in principle calculate the coefficients of (48). How-

ever, the estimate of the price volatility will typically contain additional noise

not captured by the model. For this reason, g0 and g1 are assumed to be free

coefficients in the estimation.

By normalizing the price variance with the average spread of the sample,

ŝ, we implicitly assume that the transaction costs of the informed equals the

spread, kI = 1
2
ŝ. In other words we assume that the only reason for the

informed to trade is the informational advantage. ŝ is measured as the mean

percentage spread, since the price difference ∆pt is in logs.

4 Estimate of price adjustment z

z is the adjustment to expectations given that a significant amount of trading,

c∗ [σm,t], has occurred. We can calculate this effect of transaction volume as

a signal by taking the sum of the difference between ask and bid of associated

coefficients Bh,j and Ah,j, in the regression (46). The estimate for adjustment

per percentage spread in asset j is then

ẑj =
1

2L

L−1X
j=0

(Ah,j −Bh,j) /ŝj (49)

where we have normalized by the average spread as we do with σ̂m above,

and L = 5 as in (46). Since this includes up to five lags, the immediate

temporary effect that volume has on prices should be canceled out by a price

reversal. ẑj is therefore the "permanent" effect of significant volume, to the

extent that 25 minutes can be called permanent.

If the market is inefficient in the sense that price reversals happen slowly,

we might not detect it with only five lags. Furthermore autocorrelation in

transaction volumes may lead to a high adjustment factor even when we sum

82



over all the lags. The estimation was however done allowing for first order

autocorrelation. If ∆pt− ρ̂∆pt−1 is stationary, the autocorrelation coefficient

ρ̂ should take care of this problem. A Durbin Watson test on ∆pt − ρ̂∆pt−1

indicates stationary, and hence it seems that autocorrelation in volumes may

not be a problem here.

Assuming a common normalized adjustment factor, we can now estimate

this as the average adjustment relative to the spread, ẑ, for all assets in the

sample. We take into account heteroscedasticity by weighting each observa-

tion ẑj by the associated inverse of the estimated standard deviation of the

parameter estimates of (49) from the regression (46).

D. Fitted regression model

We will now find the parameters that make the optimal liquidity function fit

the data as close as possible. The intention is to give the reader an idea of

which parameter values are reasonable in the model. A more general test of

the models main prediction is done by a less restrictive linear regression in

the next section.

We will now use the estimated critical volume ĉj and market volatility

σ̂m,j = g0 + g1σ̂
2
p,j for stock j to estimate the parameters in the model. We

will from here on use subscripts j to indicate stock j.

From a plot of ĉj and σ̂2p (Figure 2) we see that there is substantial

heteroscedasticity in these data, with variance declining in σ̂2p. For this reason

we assume a heteroscedasticity function for the residual term ηj, which is

specified17 as σ2η,j = a0e
a1σ̂

2
p,j . This adds an additional pair of variables, a0

and a1, to the model.

17an example of this specification is found in for instance in Greene (2000), p. 515
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1 The regression

Writing the optimal liquidity function c∗ from (25) with all its arguments,

we estimate the parameters of the following regression

ĉj = bc∗
£
g0 + g1σ̂

2
p,j, λ,K

¤
+ ηj (50)

where ηj is the disturbance term. Estimates of the parameters a0, a0,

g0, g1, K and b are obtained by maximizing the likelihood with respect to

these variables. It is assumed that λ = 1 due to a multicollinearity problem

with K, which we will come back to. Since the estimate of ĉj relies on the

estimate of the unobserved noise trading volatility σ̂q,j, there may not be a

one to one relationship between ĉj and c∗. Hence we allow for the coefficient

b 6= 1.
The hessian matrix with respect to all variables was analytically computed

from the likelihood function, in order to calculate the covariance matrix and

maximize the log-likelihood function.

The calculated hessian matrix was also used to detect multicollinearity

in the model. It was found that this was specifically a problem when jointly

estimating λ and K. This seems reasonable when we look at the optimal

liquidity function in (25). The problem is of course that since we do not

observe the underlying market volatility, our data does not permit estimation

of all these variables from (50).

The model is in other words too complex. We could of course have intro-

duced assumptions about the parameters in the beginning of the theoretical

part of the paper, but this would also have concealed the effect of these as-

sumptions. We will however deal with this problem by assuming λ = 1. Thus

we assume that there are always informed traders in the market, but they do

not trade with probability 1− 2γ [σ̂m,j] because their information lies within

the spread.
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2 Results from the fitted regression

The following parameters estimates were obtained from the regression (50):

Table 1: Estimated parameters fitted regression
Param. est. 95% confidence interval Standard deviation

â0 2.275 0.908 3.64 0.594

â1 -1.84 -2.16 -1.52 0.140

λ 1§ - - -

K̂ 1.12 0.00150 2.24 0.487

ĝ0 0.0612 0.00199 0.120 0.0257

ĝ1 0.139 0.0333 0.246 0.0460

b̂ 0.242 0.144 0.342 0.0431
§Assumed

Predicted values from the fitted regression is given in Figure 2, as the

black thin line. This is essentially the same function as the one depicted in

Figure 1 in the theoretical part of the paper.

The adjusted R2 was 0.611. As wee see from Table 1, the confidence

intervals are quite large though. With a level of 95% confidence all we can say

about the relative trading cost parameter K is that it is a positive number

not much lager than 2. This is because we have too many parameters to

estimate. A high condition index for a couple of variables (179.7) suggests

that confidence intervals would be considerably narrower if we had assumed

specific values for more variables. This does however only emphasize the

main problem: As we will see, the general shape of c∗j can be estimated with

a higher level of precision when we come to the linear regression. Which part

the different parameters play here is however less clear.

The estimate of K has as mentioned a wide range. In order to get an

idea of what this number means, assume that the informed cannot profit

from market making18, kI = 1
2
s, and that the smallest trading costs of the

18That is, when simultaneous selling at the ask price and buying at the bid price yields
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uninformed is zero kmin = 0. In that case K = 2, near the upper bound

of the confidence interval. This would also mean that kmin is negative for

K > 2.

K is determined by lowest transaction costs kmin, and hence by the need

for uninformed investors to rebalance their portfolios as described in (4). If

inventory costs are negative, the total trading costs may be zero or even

negative. For sufficiently negative trading costs (kmin approaching −12s) K
will approach infinity. The results in Table 1 does therefore tell us that the

minimum trading costs are most likely not very negative. There is however

a different way of obtaining and estimate for K.

In the previous section the procedure for estimating ẑ was described.

Doing this, it can be found that ẑ = 0.681, with a 95% confidence interval

of z ∈ [0.55, 0.82]. Assuming that the uninformed investors adjust their

expectations optimally, we can use (37) to find K̂ = 1.47, with the confidence

interval K ∈ [1.22, 1.83]. Under the assumption kI =
1
2
s, this estimate

suggests that the minimum transaction costs are not negative.

Using the estimate of ẑ then seems to indicate that negative inventory

costs are not sufficient to offset the overall trading costs. The adjustments

to volume exceeding the threshold value ĉj thus seems to suggest that trade

is generated by only moderate differences in inventory costs.

3 Linear regression model

We will now proceeded to test whether liquidity is a decreasing convex func-

tion of the market volatility σ̂m,j = g0+ g1σ̂
2
p,j. We do this by estimating the

following truncated linear regression model.

ĉj = max

µ
b0 + b1

1

σ̂m,j
+ b2σ̂m,j, 0

¶
+ ηj (51)

We will assume the same heteroscedasticity structure as before, σ2η,j =

a sure loss.
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a0e
a1σ̂

2
p,j . Due to this and that negative ĉj are not allowed, (51) is estimated

with maximum likelihood, as in the previous section.

We call this a linear regression model, even though it is truncated and

depends on a functional form of σ̂m,j, in order to emphasize that it is a linear

regression for positive values in two different functions of σ̂m,j. The model

thus allows us to separate the convexity and linearity of ĉj with respect to

σ̂m,j.

In order to reduce the number of parameters in the model, it is assumed

that g0 and g1 are known and equal to the estimates in the fitted model. This

is not a critical assumption however. What is important is that the second

term in (51) is decreasing and convex in the observed price volatility σ̂2p,j.

We use the previous estimates of the market volatility, σm,j, since this would

be our best guess of it, and g0 and g1 are therefore treated as constants since

we are not interested in which values they take. Similar results would be

obtained by the parameterization g0 = 0 and g1 = 1.

Maximizing the likelihood function then produced the following parame-

ter estimates:

Table 2: Estimated parameters simple regression
Param. est. 95% conf. interv. St. dev. t-stat sign.

â0 2.29 0.902 3.68 0.603 2.49 0.0157

â1 -1.82 -2.16 -1.49 0.144 -12.7 0.0000

ĝ0 0.0612§ - - - - -

ĝ1 0.139§ - - - - -

b̂0 0.448 -0.0169 0.913 0.202 2.22 0.0304

b̂1 0.0907 0.0210 0.160 0.0303 2.99 0.0040

b̂2 -0.797 -1.37 -0.225 0.249 -3.21 0.0021
§Assumed constant from the fitted regression (Table 1).

What is important her is to note that both b̂1 > 0 and b̂2 < 0, and

significantly different from zero. This shows that the estimated critical vol-
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umes c∗j are in deed best described by a convex decreasing function in market

volatility σ̂m,j.

The adjusted R2 was 0.605. Predicted values for the linear model are

plotted in Figure 2 as a black thin line. We see that the predictions of the

simpler linear regression are quite close to the predicted values of the fitted

regression.

III Conclusion

The model presented has two main implications. First it shows how an

uninformed market participant should optimally place orders and how he

should subsequently adjust expectations if all standing orders are absorbed.

The model works for both investors who need to balance their portfolios for

some reason, and therefore have a negative inventory cost, as well as for

market makers.

In the Norwegian stock market, there seems to be little market making.

Therefore it would be very interesting to perform the tests described above on

markets where market making is more apparent, such as NASDAQ. Whether

market makers actually use models like the one described here is uncertain,

but a market participant who posts on both sides of the market may benefit

by optimally setting the size of his orders and change expectations accord-

ingly when the orders are absorbed.

Second the model provides us with a theoretical explanation for how

transaction volume relates to the adverse selection problem of uninformed

traders. The empirical investigation shows that there is a significant negative

convex relationship between critical order volumes, normalized by average

order volumes, and price variance per squared percentage spread unit as a

measure of market volatility.

What seems to be the case then, is that when there is not much scope for

an informed trader to exploit the uninformed (low market volatility relative
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to the spread), the volume traded needs to be several time the average volume

for the market to perceive it as a signal of informed trading. If on the other

hand there is substantial fundamental uncertainty, then only quite small

transactions may trigger significant price adjustment. If the normalized price

volatility is bigger than about two times the average spread (σ̂2p,j > 4), then

c∗ = 0 and expectations will be adjusted for any transaction volume. In the

estimation, these were the cases where continuous specification of the volume

effect worked best, that is where c∗ = 0.

It should be noted that the fact that volume affect prices per se is not a

surprising result. If large orders arrive at the market, they will necessarily

move prices. We have taken account of this effect by allowing for a continuous

effect of volume on prices.

The main point in this paper is however that in addition there exist some

threshold level c∗. Transaction volumes above this level work as a signal

to market participants to change their expectations by z. The empirical

evidence here supports this idea.
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Table A1(a): Regression results and characteristics for the companies in the sample

Ticker
ŝ: av spread, % 
of price

Ĉ: est. 
critical vol. SD vol

ĉ: 
est. normalized 
critical vol.

σm,j: est. 
normalized 
mkt.vol

z/s:  est. total effect of vol> Ĉ 
per average spread
0.5Sum(Ah,j-Bh,j)/s SD. z

σp,j: intraday SD 
of price

δ: frequency of 
significant trades

ACTA 0.52 % 302 345     180 025       1.68                    0.099 1.61 0.20   0.27 % 0.4 %
ACY 0.19 % 9 357         76 211         0.12                    0.422 1.22 0.10   0.30 % 52.6 %
AGR 0.70 % 1 365         9 293           0.15                    0.080 0.19 0.02   0.25 % 18.8 %
AKER 0.22 % 3 358         5 493           0.61                    0.152 0.78 0.06   0.17 % 7.4 %
AKVER 0.17 % 5 840         44 856         0.13                    0.374 1.83 0.11   0.26 % 46.4 %
AKY 0.37 % 6 421         33 018         0.19                    0.099 0.60 0.03   0.19 % 14.0 %
ASC 0.76 % 51 695       18 639         2.77                    0.082 0.96 0.13   0.29 % 1.2 %
AWO 0.28 % 11 593       32 896         0.35                    0.141 0.73 0.04   0.21 % 17.6 %
BEL 1.85 % 8 402         3 210           2.62                    0.072 0.55 0.12   0.51 % 1.0 %
BLO 0.90 % 5 786         3 427           1.69                    0.094 1.21 0.09   0.43 % 2.4 %
CECO 1.64 % 2 688         1 708           1.57                    0.080 0.90 0.07   0.59 % 2.8 %
CEQ 0.50 % 6 792         14 747         0.46                    0.129 0.72 0.04   0.35 % 9.7 %
CMI 1.14 % 22 645       23 562         0.96                    0.094 0.59 0.05   0.55 % 5.1 %
CRU 0.35 % 108 079     115 911       0.93                    0.211 2.48 0.08   0.37 % 6.4 %
DESSC 0.50 % 96 041       21 024         4.57                    0.091 -1.36 0.21   0.23 % 0.3 %
DNBNOR 0.12 % 12 926       73 865         0.17                    0.447 0.95 0.09   0.19 % 62.3 %
DNO 0.18 % 49 731       200 545       0.25                    0.485 2.14 0.10   0.31 % 35.4 %
DOCK 1.84 % 21 852       36 329         0.60                    0.073 0.25 0.04   0.53 % 2.8 %
ECHEM 0.93 % 62 633       58 330         1.07                    0.071 0.11 0.14   0.25 % 0.5 %
EKO 0.61 % 34 936       29 812         1.17                    0.089 0.68 0.19   0.27 % 0.3 %
EME 0.38 % 7 512         25 502         0.29                    0.168 0.95 0.04   0.33 % 29.2 %
EMGS 0.83 % 5 077         10 723         0.47                    0.104 0.63 0.04   0.46 % 8.8 %
FAST 0.61 % 23 829       73 450         0.32                    0.096 0.55 0.03   0.30 % 14.8 %
FOE 0.26 % 2 248         4 043           0.56                    0.118 0.80 0.03   0.16 % 18.2 %
FRO 0.18 % 13 689       22 690         0.60                    0.496 2.79 0.09   0.32 % 14.9 %
GAS 0.53 % 5 941         8 775           0.68                    0.087 0.67 0.05   0.23 % 5.0 %
GGS 0.79 % 257 290     170 754       1.51                    0.086 0.69 0.05   0.34 % 2.5 %
GOGL 0.12 % 14 499       213 569       -                      1.019 1.56 0.27   0.32 % 78.2 %
GOL 0.86 % 12 780       6 542           1.95                    0.095 1.91 0.12   0.42 % 1.3 %
IGE 0.95 % 259 631     117 989       2.20                    0.092 2.57 0.10   0.45 % 1.6 %
INM 1.55 % 18 272       11 527         1.59                    0.076 0.93 0.05   0.51 % 3.2 %
JIN 0.50 % 6 446         10 740         0.60                    0.130 0.97 0.04   0.35 % 13.9 %
MHG 0.22 % 78 617       1 658 336    -                      0.850 1.62 0.21   0.52 % 74.8 %
NAUR 1.21 % 10 779       18 438         0.58                    0.081 0.71 0.04   0.45 % 8.0 %
NEC 0.44 % 66 698       77 645         0.86                    0.098 0.64 0.04   0.23 % 7.3 %
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Table A1(b): Regression results and characteristics for the companies in the sample

Ticker
ŝ: av spread, % 
of price

Ĉ: est. 
critical vol. SD vol

ĉ: 
est. normalized 
critical vol.

σm,j: est. 
normalized 
mkt.vol

z/s:  est. total effect of vol> Ĉ 
per average spread
0.5Sum(Ah,j-Bh,j)/s SD. z

σp,j: intraday SD 
of price

δ: frequency of 
significant trades

NHY 0.11 % 10 022       116 964       -                      0.707 1.32 0.24   0.24 % 81.9 %
NPRO 0.73 % 83 584       23 125         3.61                    0.099 1.68 0.16   0.38 % 0.7 %
NSG 0.14 % 6 381         126 466       -                      1.387 1.88 0.43   0.44 % 83.4 %
OCR 0.30 % 22 093       41 347         0.53                    0.149 0.85 0.04   0.24 % 9.9 %
ODIM 0.64 % 26 278       7 568           3.47                    0.119 2.22 0.21   0.42 % 0.6 %
ORK 0.13 % 7 372         102 288       0.07                    0.327 0.66 0.15   0.17 % 76.8 %
PAR 0.35 % 20 767       25 245         0.82                    0.157 1.39 0.05   0.29 % 10.2 %
PDR 0.53 % 586 243     1 329 491    0.44                    0.102 -0.21 0.22   0.29 % 0.3 %
PGS 0.17 % 6 878         34 826         0.20                    0.338 1.44 0.10   0.24 % 50.8 %
PRON 1.15 % 132 630     88 095         1.51                    0.078 0.02 0.20   0.39 % 0.5 %
PRS 0.19 % 12 646       36 934         0.34                    0.265 1.52 0.08   0.23 % 10.2 %
QEC 2.04 % 13 961       15 443         0.90                    0.070 0.34 0.03   0.51 % 6.3 %
RCL 0.40 % 3 406         3 654           0.93                    0.098 0.90 0.05   0.20 % 5.1 %
REC 0.12 % 2 758         55 229         -                      0.787 1.08 0.40   0.28 % 90.0 %
SBX 1.34 % 51 766       12 043         4.30                    0.076 1.43 0.15   0.44 % 0.4 %
SCH 0.37 % 1 701         13 023         0.13                    0.140 0.67 0.04   0.28 % 22.5 %
SCORE 0.58 % 16 325       7 427           2.20                    0.088 0.54 0.07   0.25 % 1.6 %
SDRL 0.19 % 17 670       55 728         0.32                    0.251 0.93 0.05   0.23 % 38.7 %
SEVAN 0.40 % 99 349       50 594         1.96                    0.124 -0.31 0.18   0.27 % 0.6 %
SNI 0.47 % 20 009       8 241           2.43                    0.111 2.96 0.19   0.28 % 0.7 %
SONG 0.50 % 4 793         39 932         0.12                    0.085 0.28 0.02   0.21 % 13.4 %
STB 0.20 % 19 405       46 260         0.42                    0.406 1.69 0.09   0.31 % 29.2 %
STL 0.04 % 16 710       230 900       -                      1.609 4.15 0.89   0.14 % 88.7 %
SUB 0.27 % 5 553         15 363         0.36                    0.194 0.79 0.05   0.26 % 24.6 %
TEL 0.18 % 18 489       88 611         0.21                    0.255 0.82 0.06   0.21 % 49.9 %
TGS 0.20 % 9 159         27 502         0.33                    0.456 0.96 0.08   0.34 % 25.9 %
TOM 0.24 % 13 728       19 078         0.72                    0.234 1.73 0.06   0.27 % 15.0 %
TAA 0.21 % 10 248       55 314         0.19                    0.257 0.90 0.08   0.25 % 45.1 %
VEI 0.70 % 11 741       6 626           1.77                    0.079 0.05 0.06   0.25 % 2.2 %
WAVE 1.40 % 68 818       21 804         3.16                    0.087 0.21 0.11   0.61 % 0.6 %
YAR 0.11 % 13 168       71 674         0.18                    0.575 1.94 0.13   0.22 % 53.7 %
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Table A2(a): Regression results and characteristics for the companies in the sample

Ticker Company name Sector
Average 
price

Av daily turnover m 
NOK

# of days 
sampled

# of obs. in 
the sample

Condition 
Index Adjusted R2

Auto-
correlation ρ

ACTA Acta Holding Financial Services 20.99       69.31                          13 1083 457             0.15                0.15
ACY Acergy S.A Energy 128.77     432.92                        15 1269 463             0.13                0.16
AGR Ability Group Energy 49.16       11.10                          10 623 -             0.11                0.17
AKER Aker Energy 351.00     79.22                          14 1176 154             0.09                0.16
AKVER Aker Kværner Energy 170.20     343.21                        14 1180 492             0.16                0.23
AKY Aker Yards Industry 84.33       80.28                          15 1243 127             0.12                0.25
ASC ABG Sundal Collier Financial Services 13.16       5.90                            7 366 -             0.15                0.19
AWO Awilco Offshore Energy 59.70       72.48                          10 845 160             0.21                0.13
BEL Belships Co. Industry 24.49       1.47                            9 439 123             0.26                0.09
BLO Blom Industry 67.62       7.89                            10 764 -             0.15                0.14
CECO Camillo Eitzen & Co Industry 72.09       2.43                            7 316 -             0.08                -0.27
CEQ Cermaq Food 69.38       31.92                          12 995 149             0.15                0.11
CMI Intex Resources Materials 8.95         6.42                            12 845 -             0.17                0.22
CRU Crew Gold Corporation Materials 8.39         39.91                          14 1162 202             0.23                0.25
DESSC Deep Sea Supply Plc Energy 24.25       19.03                          12 982 395             0.12                0.18
DNBNOR DnB NOR Financial Services 84.67       459.59                        17 1445 491             0.17                0.10
DNO DNO Energy 9.24         91.56                          15 1263 491             0.17                0.19
DOCK DOCKWISE LTD. #N/A 21.97       14.73                          9 407 -             0.10                0.02
ECHEM Eitzen Chemical Industry 25.61       8.26                            12 577 176             0.08                0.08
EKO Ekornes Consumer products 89.19       20.11                          10 672 127             0.06                0.12
EME Ementor Information Technology 37.36       46.16                          11 922 124             0.17                0.12
EMGS ElectroMagnetic GeoServices Energy 73.83       22.27                          12 854 -             0.15                0.17
FAST Fast Search & Transfer Information Technology 10.92       26.88                          15 1132 -             0.14                0.14
FOE Fred. Olsen Energy Energy 273.06     60.42                          14 1175 133             0.19                0.09
FRO Frontline Energy 234.74     296.69                        15 1271 494             0.23                0.22
GAS BW Gas Energy 67.94       12.90                          12 802 -             0.08                0.17
GGS Global Geo Services Energy 1.50         8.58                            12 952 126             0.16                0.05
GOGL Golden Ocean Group Limited Industry 35.57       422.66                        15 1264 491             0.11                0.16
GOL Golar LNG Energy 116.85     19.70                          9 667 187             0.22                0.09
IGE Int. Gold Exploration Materials 1.88         10.12                          10 825 256             0.23                0.04
INM Inmeta Information Technology 5.78         1.61                            8 516 -             0.19                0.12
JIN Jinhui Shipping Industry 65.04       33.78                          14 1168 139             0.19                0.20
MHG Marine Harvest Food 3.75         353.99                        15 1274 493             0.06                0.19
NAUR Northland Resources Materials 17.42       9.83                            9 667 -             0.15                0.13
NEC Norse Energy Corp. Energy 3.94         11.88                          10 793 -             0.20                0.10
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Table A2(b): Regression results and characteristics for the companies in the sample

Ticker Company name Sector
Average 
price

Av daily turnover m 
NOK

# of days 
sampled

# of obs. in 
the sample

Condition 
Index Adjusted R2

Auto-
correlation ρ

NHY Norsk Hydro Materials 74.50       669.11                        17 1445 494             0.11                0.17
NPRO Norwegian Property Financial Services 65.42       38.66                          9 682 210             0.21                0.05
NSG Norske Skogindustrier Materials 37.05       270.57                        15 1265 492             0.11                0.14
OCR Ocean Rig Energy 41.16       62.49                          15 1248 235             0.17                0.06
ODIM Odim Industry 79.62       23.10                          10 810 233             0.17                0.20
ORK Orkla Industry 98.17       678.29                        16 1358 498             0.11                0.18
PAR PA Resources Energy 49.08       53.97                          12 1009 137             0.19                0.22
PDR Petrolia Drilling Energy 2.59         34.75                          11 876 360             0.16                0.14
PGS Petroleum Geo-Services Energy 150.76     292.19                        12 1011 459             0.20                0.18
PRON Pronova BioPharma ASA #N/A 22.88       14.40                          13 658 234             0.02                0.14
PRS ProSafe Energy 94.56       94.23                          13 1092 353             0.18                0.24
QEC Questerre Energy Corporation Energy 3.89         1.18                            11 605 -             0.11                0.00
RCL Royal Caribbean Cruises Consumer products 211.80     22.24                          11 798 -             0.14                0.12
REC Renewable Energy Corporation Industry 261.69     1 036.44                     17 1438 476             0.03                0.15
SBX SeaBird Exploration Energy 20.49       5.21                            8 506 155             0.16                0.12
SCH Schibsted Consumer products 253.09     67.37                          11 914 114             0.24                0.15
SCORE Scorpion Offshore Energy 72.56       20.48                          12 835 -             0.07                0.15
SDRL SeaDrill Ltd Energy 117.75     403.90                        17 1443 499             0.18                0.13
SEVAN Sevan Marine Energy 72.89       84.91                          14 1168 347             0.12                0.16
SNI Stolt-Nielsen Industry 140.24     35.00                          12 984 246             0.17                0.25
SONG Songa Offshore Energy 62.84       41.50                          14 1095 -             0.11                0.12
STB Storebrand Financial Services 62.34       180.41                        14 1180 432             0.18                0.25
STL StatoilHydro Energy 173.93     3 014.77                     16 1392 491             0.08                0.20
SUB Subsea 7 Energy 133.43     101.50                        10 840 165             0.15                0.19
TEL Telenor Telecommunications 127.13     699.16                        17 1444 486             0.13                0.13
TGS TGS-NOPEC Geophysical Co Energy 77.66       105.80                        15 1257 350             0.11                0.11
TOM Tomra Systems Industry 35.44       46.40                          13 1093 290             0.19                0.03
TAA Tandberg Information Technology 119.62     334.28                        15 1266 491             0.17                0.14
VEI Veidekke Industry 46.22       13.34                          12 895 -             0.07                0.14
WAVE Wavefield Inseis Energy 42.31       32.07                          10 774 208             0.06                0.06
YAR Yara International Materials 196.27     800.51                        15 1275 497             0.17                0.14
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Optimal distribution of information by an

information monopolist: A generalization

Espen Sirnes

Abstract

In this paper the results of Admati and Pfleiderer (1986) and Ad-

mati and Pfleiderer (1990) are generalized, and the cases where their

main results do not hold are revealed. Admati and Pfleiderer show

that an information monopolist should sell information with the same

precision to buyers. This is proven in a very general model, and it is

shown that the cases where this is not true are when agents are hetero-

geneous and when supplying the same information to many investors

have a cost.

Keywords: Distribution of information, finance, asset pricing.

JEL Classification: G12, G14

The main contribution of this paper will be to pinpoint two conditions

that must be met in order for a seller of information in a financial market to

sell different precisions to different investors. The problem of a seller is that

the information sold will be used in the market and hence be reflected in the

price. This dilutes its value, and so it is important for the seller to control

the information in one way or the other.

Admati and Pfleiderer (1986) shows that an information monopolist who

sells information directly should add independent personalized noise to the

signals he sells to each investor. This reduces the impact of the information

in the market and thereby enables the seller to control its use. The optimal
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distribution of information is however symmetric in the sense that all buyers

receive the same type of signal, i.e. the same precision, Although they get

different realizations. This notion of symmetry will be used throughout the

paper.

Admati and Pfleiderer (1990) finds that if the information is sold through

a mutual fund, then the seller can control the use of the information more

effectively by pricing the fund appropriately. In that case it is therefore not

necessary to add noise to the signals or to sell independent signals. Thus with

indirect sale of information through a fund, the investors receive identical

information, i.e. a single fund is sold. Furthermore, there is not added noise

to the signal, so the buyers receive signals with the same precision as that

observed by the seller.

In this paper a general proof of the symmetric solution is provided. The

proof is of course useful in generalizing the results of Admati and Pfleiderer.

Its main contribution does however lie in the two main conditions required

for such a solution.

It is found, not surprisingly, that a symmetric equilibrium does require

identical agents. A solution strategy is then suggested in the case of hetero-

geneous agents.

It is however also found that if there are costs associated with issuing

the same information to many agents, then it may also be optimal with

an asymmetric solution. Thus, the information monopolist may prefer to

sell different precisions and/or different signals even though investors are

identical.

An explanation for such costs could be a cost incurred by an insider, who

increases his chances of being exposed when he sells the same information to

many traders. Supplying different information to different individuals may

therefore be safer.

If it is optimal for the seller to seller different types of information to

different traders, then he faces the problem that the buyers may collude by
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pooling the information. It is suggested that this can be encountered by

selling nested information.

How an information monopolist can exploit information is a recurring

issue in financial literature. Ozerturk (2004) shows that when precision is

unobservable, an information seller can verify his precision by a non-linear

contract. In this paper precision is known by both the seller and the buyer.

Of recent research Biais and Germain (2002) also looks at contracts between

an information seller and a client. What is studied is there is the optimal

contract for the buyer that makes the fund manager behaves in the interest

of the client.

The proof that will be provided is very general, but in order to not detach

ourselves completely from the original papers of Admati and Pfleiderer, we do

derive an equilibrium condition which the profit function depends on. The

poof does however hold for any type of profit function, and will therefore

hold even if contracts cannot be written to capture all consumer surplus.

For instance according to Brennan and Chordia (1993) it might be argued

that it is unclear how contracts can be written in this way.

Since the profit function is defined fairly general in the end, the model

does not necessarily assume that the seller can not trade on his own account.

This kind of setup with a trading information monopolist was suggested by

Admati and Pfleiderer (1988). This seem to be possible only when a market

maker sets prices such as in Kyle (1985) so that the monopolist can act

more strategic in the market and avoid the effect seen in Grossman and

Stiglitz (1980) as well as Admati and Pfleiderer (1986) and Admati and

Pfleiderer (1990). In such models, information sold is partially transferred

to uninformed investors immediately through prices, reducing its value.

The paper is organized as follows. In the first section we present the setup

along the lines of Admati and Pfleiderer, and state the profit maximization

problem. The setup will however be formulated more general in order for the

proof in section II to be so too.
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In Section II we start by proving that in general the solution is symmetric

with respect to the information type. We then continue to investigate the two

cases where the seller will distribute different precision to different traders.

A short concluding comment is then given in the final section.

I Continuous information distribution

Let there be a risk free asset which yields a zero rate of return and a risky

asset which returns W̃ in the next period. The risky return is stochastic, but

realized before the decision of investment. W̃ is normally distributed as

W̃ ∼ N
¡
µW , σ2W

¢
(1)

W̃ is however not directly observable. However, an information seller can

observe an estimate of the return, W̃ + θ̃, where

θ̃ ∼ N
¡
0, σ2θ

¢
(2)

Based on this estimate, the seller sells information signals in the form of the

vector

s̃t,α,n ∼ N
¡
µt,α,n,Γt,α,n

¢
(3)

to investors of type

(t, α, n) ∈ [0, 1]×R3 (4)

where t characterizes the information "type" (we will define this concept

later), α the investor type (e.g. risk aversion), and n a realization of the

signal. The intention by having the realizations enumerated is to allow for

independent realizations of s̃t,α,n among investors.

s̃t,α,n contains V signals, s̃t,α,n,v for v ∈ {1, ..., V }.
Denote the general set of distributions in the market as an "information

structure". The exact definition of this term will be given later.
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As the issuer of information, the seller can design any information struc-

ture. This in turn means that the seller has full discretion to set Γt as any

symmetric non-singular matrix1, with the restriction that the precision level

of this covariance matrix is not higher than the original estimate of the seller.

We can formulate this requirement formally by defining the precision level of

by Γt as

ψt = 1Γ
−1
t 1 (5)

This measure is equal to the highest precision that is possible to obtain

by combining the signals s̃t by any kernel. Since this level of precision cannot

be higher than that of the original estimate

Definition 1 Γt are admissible if ψt = 1Γ
−1
t 1 ≤ 1/ (σ2W + σ2θ)

The precision level of ψt and the value of information is obviously closely

related, but the value of the signals also depends on how they interact with

the price and so these concepts are not equivalent. How this works, is deter-

mined by the market equilibrium

A. Market equilibrium

The market equilibrium condition is that the total demand must equal supply

Z̃ Z 1

0

Z 1

0

fαft
³
x0t,αs̃t,α + k∗t,αP̃

´
dtdα, α, ndr = Z̃ (6)

Explanation of the parameters:

1) Z̃ is the random supply of the asset from noise traders Z̃˜N (0, σ2Z).

The constant term of demand will equal any constant supply, and so we can

ignore these constant terms without loss of generalization.

1A singular matrix would of course just imply redundant signals, and hence that the
seller should sell fewer signals.
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2) s̃t,α =
R 1
0
s̃t,α,ndn since individual realizations of the signals disappears

as we integrate over all investors.

3) xt,α is the vector of portfolio weights assigned to each signal in s̃t,α.

This may be determined by the optimality conditions of the buyer (Admati

and Pfleiderer (1986)), or by strategic considerations by the seller (Admati

and Pfleiderer (1990)).

4) k∗t,α is the portfolio weight that investors puts on prices, and is set

optimally by the buyer. If not, then k∗t,α = 0 by the seller, and the model

becomes trivial.

5) fα and ft are densities assigned by the seller for investor types and

information types. It is assumed that the assignment can be done indepen-

dently, and hence the joint distribution is separable. Denote the distribution

of information ζ = (fα, ft)∀ (α, t) ∈ R3 × [0, 1]

B. The profit function

The profit function can now be defined. Due to the equilibrium condition, any

profit function will depend on the covariance matrix Γt and the covariances

between the price and the signals, which will be denoted γP,t. If the seller can

manipulate the use of the signal for all agents, xt,α, this will also affect profit

from each of these buyers. Since each buyer is atomic, this will however only

happen through γP,t, so the profit for each buyer can be written as

ct,α
¡
Γt, γP,t

¢
(7)

We will refer to this as simply the profit function.

As found by Admati and Pfleiderer (1990) the seller can either sell in-

formation directly or indirectly through a fund. In either case, it is advan-

tageous for the seller limit the use xt,α of the information st,α. If the sale

is done directly to the investor, it is optimal to restrict xt,α by adding noise

to the signal, as found by Admati and Pfleiderer (1986). If information is
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sold through a fund, then xt,α is the actual amount of the fund bought by

investor (t, α). In that case the investor can charge a fee per share in the

fund and thereby induce which ever level of investment xt,α he wants. Since

indirect sale of information means direct control over its use, as opposed to

direct sale, selling the information through a fund is strictly more profitable

than selling noisy versions of it directly. For the same reason, there is no

point in adding noise to the signal if the seller has control over it use xt,α.

How information is sold therefore determines how the signal impact xt,α can

be set by the seller. If the seller does not have full control over xt,α, he might

choose to sell signals with less than full precision.

We may however assume that γP,t is determined by optimization of xt,α,

either by the buyer or the seller. The model that will be presented is therefore

not specifically related to neither direct nor indirect sale, and so the results

hold for both. Since we will not specify the functional form, we might as

well just drop the argument specification since for a given distribution of

information ζ, profits are given by (t, α).

Since ct,α may take almost any functional form, this model also covers the

cases where perhaps not all of the consumer surplus can be extracted by the

seller. In this continuous setting we do however need to make the following

assumptions about ct,α

Assumption 1 ct,α is continuous and c0 = 0.

We will also make the following convenient and generalizing assumption

Assumption 2 If ct,α = cr,α, then t = r

Assumption 2 implies that the information type t is defined by the profit

it generates. This sidesteps a considerable amount complexity, without being

either restrictive or unrealistic. To see this, note that if t is taken to be signal

precision, then both models of Admati and Pfleiderer satisfies Assumption 2

by their definition of information structure.

104



The problem for the information seller now is to

max
ft,fα

Π =

Z 1

0

Z 1

0

ftfαct,αdtdα (8)

Now, make the following definitions

Definition 2 The matrix of covariances of two information types t and

r, Γ(t,α),(r,α) = cov (s̃t,α, s̃r,α), are admissible if ψ(t,α),(r,α) = 1Γ−1(t,α),(r,α)1 ≤
1/ (σ2W + σ2θ)

Definition 2 ensures that the seller cannot sell signals that in sum are

better than the original information. Note that Γ(t,α),(t,α) and Γt,α are not

the same if traders receive independent personalized information. In that

case, the covariance of that signal between two different buyers would be

zero.

Further we define

Definition 3 An information structure is an admissible set of Γ(t,α),(k,α),
Γt,α∀ {(t, α) , (r, α)}.

Information structures may differ with respect to how easy it is for agents

to pool information. Two buyers may for example share their information.

For some information structures this will lead to increased precision. It is

therefore useful to define information structures that are robust for such

pooling. We define this as

Definition 4 An information structure is said to be nested if whenever ψt,α >

ψr,α, then ψt,α = ψ(t,α),(r,α), ∀ {(t, α) , (r, α)}

What Definition 4 says, is that if one buyer is better informed than the

other, then he will gain no precision by observing the signal of the less in-

formed.

105



A particularly simple nested information structure is obtained if those

with the best information gets to observe all the signals of those with inferior

information. Say each "information bit" is an independent draw from the

same normal distribution, that type t indicates t such draws, and that all

investors have the same sequence of draws. Then it follows that the best

precision is obtained2 by taking the average of all observations. If the number

of draws is a continuous variable, than the distribution resulting from such

an information structure is given by the process

U =
n
ũt : ũt = W̃ + 1

t
ε̃t
o
, t ∈ (0, 1] (9)

where the error increments are distributed independently according to a

Brownian motion

dεt ∼ N (0, σε) (10)

It can be found that var (ut) = σ2W+
1
t
σ2ε and cov (ut, us) = σ2W+

1
max(t,s)

σ2ε.

Using Definition 4 it can be found that (9) is a nested information structure.

In order to give some intuition behind the distribution (9), think of an

unpublished quarterly report. A non-nested information structure would

then correspond to selling different pages3 to different investors. This makes

it however possible for all buyers to come together and reconstruct the report,

and hence obtain full information for the average payment of a single page.

A nested information structure on the other hand, correspond to selling

a set of consecutive pages from the report up to a given page number. This

means that those with the most information has no incentive what so ever

to waste time comparing pages with the less informed. A nested information

structure is thus an efficient way to avoid pooling of information.

2regardless of whether Bayesian updating or sampling theory is used.
3of course assuming each page adds the same precision
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II Profit maximization

We will here prove that the distribution ζ the uninformed should optimally

select is one with symmetric information distribution among buyers. We will

then look at the conditions for the proof, and see when such a symmetric

equilibrium may not apply.

A. The general case

From the maximization problem (8), we see that the maximization problem

of the seller is really quite simple. Setting the densities ftfα as high as

possible wherever ct,α is at its maximum, maximizes profits. Since we have

defined all signals that generate the same income to the seller as belonging

to the same "type" of information, and α is a characteristic of the individual

buyer, there can be only one such maximum point.

Of course one have to take into account that the distribution ζ itself

affects ct,α, so which t and α we should select is not a trivial problem, as is

evident fromAdmati and Pfleiderer (1986) and Admati and Pfleiderer (1990).

What the maximization problem (8) reveals though, is that the problem of

selecting the optimal distribution simplifies to finding the point (t, α) where

all information sold is concentrated. (8) does however not determine the

total mass sold at this point. As in Admati and Pfleiderer (1986) it might

be a good idea not to sell information to everybody.

Thus, we can state the following proposition:

Proposition 1 For any admissible information structure
a. the densities ft and fαcan take any positive value

b. the profit function independent of ft and fα
c. the market is not fully efficient (σ2Z > 0) and the information is relevant

d. ct is continuous

it is always optimal to sell information to only one type of investors.
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Proof: (8) is a typical control theory problem. Control theory defines a

set of necessary (and sufficient) conditions for profit maximization that, if

satisfied, guaranties an optimal solution. The task is therefore to assume a

solution, and check if it satisfies the standard necessary conditions. Since the

distributions of t and α are independent, it holds to prove Proposition 1 for

ft, and drop the α subscript.

Our control variable is ft, which is assumed to be a density with a mass

function Ft =
R t
0
ftdt, where F1 = λ and 1− λ is any mass assigned to t = 0.

λ can for simplicity be taken as exogenous, and set to maximize the profits

after the control problem is solved since Proposition 1 will hold for any value

of λ. Ft is thus our state variable. The Hamilton function is the sum of the

integrand of (8) and some coefficient p times the change in the state variable:

Ht = ft (ct + p) (11)

The necessary conditions require that at optimum the change in the co-

efficient, ṗ and the effect of the state variable on H∗
t sums to zero, where

asterisk ∗ indicates evaluation for optimal f∗t . Now, since Ht is independent

of Ft, it follows that p is a constant.

The necessary conditions require that ft is bounded, so let ft ∈
£
0, 1

∆

¢
.

Define some interval where H∗
t > 0 as I∗ ∈ [t∗ −∆, t∗]. It follows from the

optimality condition, in addition to being quite reasonable, that in order to

maximize H∗
t it is optimal to set ft

∗ = 1
∆
in this interval.

For optimality a necessary condition is that p is set so that when the

total mass of investors Ft is exhausted, we stop. Denote this point t∗. This

control problem with a free stopping time and a single state variable has the

transversality condition that p = H∗
t∗.

From this, and that ct is continuous and has a single maximum by con-

struction, it follows that for some arbitrarily small ∆ there exist only one

interval I∗ where H∗
t > 0. Letting ∆→ 0 concludes the proof¥

Proposition 1 means that any problem (8) can be simplified by assuming
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a single type of information, and so the results of Admati and Pfleiderer is

more general than previously thought.

Further, Proposition 1 and its proof is powerful because it includes two

important sufficient conditions. This enables us to identify the under which

circumstance an asymmetric solution may obtain. Not all the conditions are

important in this respect though. Condition c. is trivial. Condition d. can

be made redundant by solving the discrete optimal control problem, which

would be very similar to the proof above, and is therefore not included in

this paper. The really interesting conditions are thus a. and b..

Thus a symmetric solution requires that the densities are unrestricted.

That is a fine assumption about ft, but fα would typically have a maximum

value equal to the total number of investors with characteristics α. Perhaps

the seller could meet with them and try to persuade them to change types,

but that would quite possibly be a expensive strategy considering the infinite

number of buyers. Thus fα should be set in an interval, and for simplicity

one might consider a uniform distribution.

Second, we see that a symmetric solution is unlikely if there are extra

costs associated with assigning large densities to the same types. We will

now take a closer look at the implications of breaching conditions a. and b.

of Proposition 1. We will however only suggest how one might approach the

problems, and not solve for optimal distributions.

B. Heterogeneous traders

Assume all traders have been assigned information of type t. and for illustra-

tive purposes we will drop the t subscript and assume that cα is globally con-

cave in α. Furthermore fα ∈
£
0, f̄

¤
. As shown by Verrecchia (1982), traders

with different risk aversion will optimally buy different information from the

seller. The problem now is however how the seller should assign information

to them, and so the buyers have no impact on which information they receive.

Their willingness to pay for the information does however vary across α. We
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Figure 1: How to set optimal densities when there are only a given number
of traders of each type

do of course here implicitly assume that the seller can discriminate perfectly

between the customers. If this was not the case, the distribution of α would

be endogenous, and the symmetric result in the Proposition 1 would hold.

Figure 1 should give the reader an idea of how the problem in principle

could be approached. The seller now sets f∗α = f̄ whenever H∗
t /f

∗
α > 0 and

f∗α = 0 whenever H
∗/f∗α < 0.

We see that as the seller changes p in the Hamilton function (11), the mass

that gets to buy information λ changes. However, so will the parameters of

the function ct,α,n. Thus, Figure 1 holds for only one specific distribution of

information. This is what makes an explicit solution quite complicated. The

Hamilton function with a uniform distribution is given by the area H. Figure

1 does however show the problem of the uninformed is to set some p that

maximizes the area H by selling different information to different traders.

The problem was simpler when the seller could set an infinite fα, because
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the graph cα − p then would be below 0 for any α except at the maximum

of the function, α∗.

As we see it is quite likely that with such a restriction on the density, the

seller will sell information with different precision to different investors.

C. Cost of assigning density

The results from Proposition 1 and the previous discussion does seem quite

obvious in a way. What was proven in Proposition 1 was that in a symmetric

setting we would have a symmetric solution. Accordingly we have shown

tentatively in the previous section that with an asymmetric setup the solution

is asymmetric. We will however here show that an asymmetric solution is

possible with identical agents, that is for a given α by breaching condition

b.. Thus we will not assume that the profit function is independent of ft.

Assume instead that there is some cost that increases with the density

assigned information type t. Note that this cost can not be attributed to

the negative effect density has on the value of information through prices.

This dilution of information value is all ready be taken into account by the

moments of the price function. Therefore an explicit cost of selling the same

type of information t to a high density of investor would have to be motivated

in other ways.

One explanation for such costs could be that an insider might increase

the risk of being exposed as he sells the same information to an increasing

number of agents. In any case, assume now for whatever reason that there

are such costs. For simplicity, we will just assume the cost is ft, and deduct

it from ct. Thus, we have a new version of (8) to maximize:

max
ft∀t∈[0,1]

Π =

Z 1

0

ft (ct − ft) dt (12)

This implies that the Hamilton function (11) now is quadratic in ft.

Therefore the optimal is no longer to set ft to its maximum whenever ct − p
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is positive. In stead for a given optimal distribution f∗t,α,n, the densities must

satisfy an internal solution f∗t =
1
2
ct. Finding the optimal distribution is

quite complicated, so we will not do that here. It is sufficient to note that it

will not in general be optimal to concentrate all information at one point t

by letting f∗t∗ →∞ as in Proposition 1. Thus in this case, it is likely that an

asymmetric distribution of information will be optimal.

D. Preventing collusion among the buyers

Assume now that different investors are assigned different information types

to different investors, either because condition a. or condition b. in Propo-

sition 1 is breached. Depending on the information structure it may then

be advantageous for investors to collude in order to increase their precisions

without paying the seller extra. In such a situation it is also clearly not ad-

vantageous to sell different realizations of the signal s̃t,α,n to different traders,

so we may assume at least that all buyers of a specific information type t

receives identical photocopied signals. The problem for the seller is however

to find an information structure that prevents too much collusion.

A nested information structure, as defined in Definition 4 will accomplish

that. It can be shown that by selling signals of the type presented in (9), the

precision (5) of a signal vector s̃t,α,n consisting of any set of nested information

signals, will always equal that of the most precise signal.

Note that when using the nested signal, investors will use the knowledge

of inferior signals to calculate the part of the price that is generated by known

information. This means that the price that is conditioned on will be that

generated by only the last part of the integrals in the equilibrium condition

(6). That is, such investors with information t will condition on a price based

on the integral in (6) from t and not 0.
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III Conclusion

A general proof is given for a symmetric solution with homogenous agents

and unlimited density. The result does require that the profit function ct is

continuous in t. However the control variable ft need not be continuous, so

a discontinuous set of types t can be selected.

Furthermore it has been shown that if either investors are heterogeneous

so that an information monopolist cannot sell information to any density of

investors, or if there are explicit costs associated with high densities, then

it might not be optimal to sell the same information structure to everyone.

Thus, it seems that one of these two conditions must be breached in order

for an asymmetric solution to emerge.

The critical conditions for a symmetric solution may be helpful for future

research on the area, since it gives a clear answer to which conditions must

at least be met for a asymmetric solution to obtain.
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IV Appendix

A. The precision measure

min
xt,α,n

x0t,α,nΓt,α,nxt,α,n, s.t. x0t,α,n1 = 1 (A.1)

dL

dx0t,α,n
= 2Γt,α,nxt,α,n − λ1 (A.2)

2x0t,α,nΓt,α,nxt,α,n = λ (A.3)

2Γt,α,nxt,α,n = 2x0t,α,nΓt,α,nxt,α,n1 (A.4)

⇒ x0t,α,nΓt,α,nxt,α,n = 1Γ
−1
t,α,n1 (A.5)
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Conclusion

I have presented three papers, where the first one, "Are Noise Traders

Really Necessary? A General Approach", is a general asymmetric informa-

tion model that enables comparison between very different financial models.

It is argued that assuming noise traders is a productive way of building

financial models, since it does not require special assumptions on how non-

informational trade is generated. Unless strong empirical evidence exists,

such assumptions may sometimes obscure the models. This notion is then

applied to the two other papers in two different directions.

The second paper, "Optimal Order Submission", is a relatively specific

model aiming to reveal features of a specific type of market institution. Using

this model, I test its predictions on data from Oslo Stock Exchange, and find

that the model does a fairly good job at predicting order size.

In the third paper, "Optimal Distribution of Information by an Informa-

tion Monopolist: A Generalization", noise traders are necessary to analyze

the problem, since if they do not exist no information would be sold at

a positive price. A general characterization of the conditions under which

asymmetric solutions are obtained is then found, which may be helpful for

future research in the area. This and the preceding paper are however very

different in the sense that one is very specific, the other very general.

I am not arguing that all models should be created in a specific manner

here though. If more deterministic models have theoretical advantages, then

that will of course be an appropriate approach. It does however seem to me

that allowing for traders to behave in ways not explained by the model may

sometimes be more realistic.
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