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Abstract
Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-
guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a
rapidly expanding field of computational and mathematical analysis and modelling of complex biological
systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and
help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in
the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence
on the role of systems biology approaches – human and mycobacterial genomics and transcriptomics,
proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes –
in the management of tuberculosis including prediction of risk for disease progression, severity of
mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and
treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and
Evaluation (GRADE) approach demonstrated that at present most of the studies provide “very low”
certainty of evidence for answering clinically relevant questions. Further studies in large prospective
cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the
findings in tuberculosis prevention and more efficient clinical management of patients.

Introduction
Tuberculosis, the infectious disease caused by Mycobacterium tuberculosis, remains a leading cause of
morbidity and mortality worldwide. The World Health Organization (WHO) estimates that 10 million
people developed tuberculosis and approximately 1.4 million people died from this disease in 2019 [1].
Currently, the management of patients with tuberculosis is based on clinical and laboratory assessments
that have a number of limitations; importantly, the standardised approach does not consider the individual
variability in host immunity or the pathogenicity of M. tuberculosis.
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Systems biology is a rapidly growing field of computational and mathematical analysis that integrates
various technologies, including genomics, transcriptomics, proteomics, metabolomics, lipidomics and
microbiome profiling. These technologies leverage very large datasets from entire genomes or global sets
of proteins/metabolites. Analysis of these data involves artificial intelligence, a branch of engineering that
implements novel concepts and novel solutions to resolve complex challenges. In medicine, artificial
intelligence is applied in two branches: physical (robots, medical devices) and virtual, i.e. represented by
various machine learning algorithms [2, 3]. These approaches are extensively used in cancer research
providing insight into tumorigenesis and accelerating integration of precision cancer medicine into clinical
routine [4]. Recent examples of successful application of machine learning techniques include
identification of differentially expressed microRNAs that may be considered as diagnostic biomarkers for
hepatocellular carcinoma via a random forest algorithm [5] or applying various machine learning models
for intrinsic subtyping of breast cancer which may help in estimating the risk of relapse after surgery or
survival [6].

In recent years, systems biology approaches have been increasingly applied in tuberculosis research to
identify biomarkers that can indicate changes in pathogen viability or its susceptibility to antituberculosis
drugs, elucidate host signalling in response to the pathogen, and predict treatment response. Such
biomarkers could be used as treatment monitoring tools, for example, and could inform the development of
individualised rather than standardised approaches to future tuberculosis management that would be based
on the individual characteristics of host and pathogen. It is especially important for optimising the
treatment of patients infected with resistant forms of tuberculosis, including rifampicin-resistant and
multidrug-resistant (MDR) tuberculosis, that require longer therapy with more toxic drugs and have
generally higher risks of unfavourable treatment outcomes. Although the novel biomarkers are promising,
in many cases, their clinical relevance and certainty of evidence supporting their use in clinical practice
have still to be fully evaluated.

The aim of this review is to summarise the currently available key evidence and to illustrate how different
fields of systems biology may contribute to the improvement of the future management of patients with
tuberculosis. We have assessed the current state of use of novel biomarkers in clinical practice as well as
the quality of evidence for answering clinically relevant questions and forming recommendations for
implementation of these biomarkers in clinical practice.

Bacterial biomarkers derived from systems biology approaches
Mycobacterial genomics
Next generation sequencing (NGS) technology provides rapid and inexpensive sequencing of DNA that
can be used to identify drug-resistance-conferring mutations in the M. tuberculosis genome. It is currently
implemented in routine tuberculosis diagnostics, which renders added benefit to tuberculosis patient care [7].
In recent years, the key challenges of NGS-based drug-resistance predictions have been intensively
addressed: the ability to predict susceptibility, to provide results more rapidly than phenotypic
drug-susceptibility tests (pDST), and eventually standardisation with automated results interpretation [8].

Validation of resistance prediction to all first-line drugs using NGS was an important step to bring this
technology into clinical practice [7, 9]. Now, patients and clinicians can potentially receive faster and
cost-effective drug-resistance reports based on mutation profiles compared with routine reference laboratory
reports [8]. Results from pilot studies even propose sequencing and analysis within 1 day from direct
patient material; however, routine practice is currently limited by low bacterial loads and potential
contaminations in sputum specimens [10, 11]. Targeted NGS methods, as opposed to whole genome
sequencing (WGS), amplify defined DNA sequences implicated in drug resistance to overcome limitations
of specimens exhibiting minimal amounts of mycobacterial DNA and are able to detect heteroresistance,
i.e. presence of a resistant bacterial sub-population [12].

In order to provide comparable results across different platforms and between different laboratories, it is
crucial to standardise computational algorithms and to develop a consensus on genetic markers that indicate
the exclusion of a respective drug from the antituberculosis regimen [13, 14]. Yet, even with the latest
automated interpretation tools, considering over 1000 molecular markers, we would not meet the WHO
target product profile (TPP) for sensitivity (90%) and specificity (95%) for all drugs used in MDR
tuberculosis therapy [15]. Thus, partially characterised mutations will still require focused pDST and ideally
determination of the minimum inhibitory concentrations (MIC) of drugs to provide patients an optimal
personalised therapy. International consortia such as the CRyPTIC project (www.crypticproject.org) further
aim to improve the accuracy of resistance predictions to MDR tuberculosis drugs by aligning thousands of
genotypic and phenotypic datasets and by determining MICs to multiple antituberculosis medicines.
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On a small scale, predicted MDR tuberculosis regimens based on NGS data, and jointly interpreted with
MIC data, already demonstrate a 93% overlap with guideline-driven regimens based on routine diagnostics
in a tuberculosis reference centre [16]. When it comes to “big data” analysis and making new inferences
about the phenotypic impact of noncanonical mutations, machine learning algorithm or genome-wide
association studies are often employed [17, 18]. However, especially for new and repurposed drugs for
which resistance is not yet widespread, e.g. bedaquiline, clofazimine or linezolid, mutant libraries and
phenotypic characterisation are the main instruments to complement the knowledge of relevant mutations [19].

In coming years, NGS technologies will likely become the first choice to generate rapid and
comprehensive tuberculosis drug-resistance profiles that initiate early treatment decisions. Moreover,
mycobacterial genomics might also be employed to predict the risk of relapse and treatment failure linked
to particular mutations in the bacterial genome, which enhances the likelihood of developing
unresponsiveness or resistance during therapy, and thus to expand the spectrum of diagnostics in
personalised tuberculosis medicine [20, 21]. Its full-scale implementation in clinical and public health
applications is still limited by a number of factors: lack of standardised end-to-end solutions and the
technical requirements of laboratories. The high costs associated with implementation and maintaining of
NGS technologies, internet infrastructure and cloud computing may limit its application in low- and
middle-income settings [14].

Mycobacterial transcriptional profile
To date, transcriptomics research has been largely focused on the human transcriptome response to
tuberculosis while the corresponding literature describing pathogen adaptation is relatively sparse.

In response to antibiotic treatment M. tuberculosis shows diverse transcriptomic responses. A study of 75
different antituberculosis agents that used a DNA array and patterns of responses clustered together by
mechanism of drug action identified this as a useful approach that since then has been used along with
RNA sequencing for the identification of responses to individual agents [22, 23]. For example,
M. tuberculosis responds to bedaquiline by induction of the dormancy survival regulon DosR and
activation of ATP-generating pathways, thereby maintaining bacterial viability during initial drug exposure.
This may contribute to the recognised slow response to this antibiotic and affect the evaluation of its
efficacy in early bactericidal activity studies [24].

Quantifying 16S ribosomal RNA has been employed to determine the number of viable M. tuberculosis
cells in a highly sensitive molecular bacterial load assay (MBLA) that detects as few as 10 CFU·mL−1

over many weeks of treatment [25]. As 16S rRNA is present in higher copy numbers than mRNA and is
more stable, it makes an excellent target to monitor treatment response [26]. It correlates closely with
culture and, as it is species specific, bacterial contamination does not result in loss of data from the sample
[26–28].

A promising new tool for dissection of the host–pathogen interplay during infection is dual RNA
sequencing allowing unbiased and simultaneous profiling of host and pathogen transcription that captures
the transcriptome in its entirety. It has been used for studying the metabolic regulation of host and
pathogen and the molecular dynamics during mycobacterial infection both in vitro and in vivo [29, 30].

Mycobacterium tuberculosis-specific proteomic signatures
Similar to transcriptomics, pathogen proteomic biomarkers have been less studied compared with host
proteomic signatures. However, different sets of M. tuberculosis peptides have been identified in sera from
patients with active tuberculosis [31] and latent M. tuberculosis infection (LTBI) [32] using multiplexed
multiple reaction monitoring mass spectrometry (MS); their applicability as biomarkers is yet to be
investigated.

Proteomic profiling of M. tuberculosis isolates has contributed to the understanding of drug-resistance
mechanisms and the virulence factors of the bacilli that can be used for classification of disease and as
promising targets for drug and vaccine development [33, 34].

Finally, through modulation of significant host proteins, MS-based proteomics has promoted the
advancement of host-directed therapies (HDTs). For example, induction of endogenous antimicrobial
peptides may be advantageous for effective targeting of drug-resistant tuberculosis due to lower bacterial
resistance to antimicrobial peptides compared with antibiotics. An important example here is vitamin D
supplementation in antituberculosis treatment that induces production of an antimicrobial peptide
cathelicidin [35] that has been shown, although inconclusively, to improve sputum and culture conversion
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rates in cohorts of patients with tuberculosis [35–37]. It is important to note that observational studies on
HDTs are associated with a high risk of bias and the clinical trials published to date often provide
evidence with only low certainty and a serious risk of bias [37].

Different gut microbiomes as tuberculosis signatures
The microbiome is defined as all microbes that colonise human epithelial surfaces [38]. In the context of
tuberculosis, some data suggest that changes in gut microbiota may be linked with lung immunity [39] and
may even influence the outcome of M. tuberculosis infection [40]; however, convincing evidence is
lacking. Comparative microbiome studies in patients with tuberculosis versus healthy controls have not
revealed specific changes characterising the tuberculosis microbiome. Small differences such as a
nonsignificant decrease in microbial alpha-diversity in patients with tuberculosis have been reported [41].
One study described increased numbers of short-chain fatty acid-producing bacteria associated with
regulatory immune functions in tuberculosis [42] while the opposite was found in another study [43]. First
attempts also used microbiota profiling as a marker for disease severity in rhesus macaques [44]. However,
further research of factors that might affect gut microbiota are needed before microbiome data can be
employed as a disease biomarker; for example, to complement conventional diagnostic methods in cases
where they are less feasible (e.g. in children).

Standard treatment with rifampicin, isoniazid, pyrazinamide and ethambutol in drug-susceptible
tuberculosis has been demonstrated to provoke a small decline in microbial alpha-diversity and a change in
the community structure [41]. Changes in gut microbiota persisted for more than 1 year after the treatment
has been stopped [45]. MDR tuberculosis treatment consisting of different broad-spectrum antibiotics given
over a long period of time has the potential to provoke serious and long-lasting dysbiosis in patients with
tuberculosis. A 16% decrease in microbial richness linked with altered lipid metabolism has been seen in
patients 3–8 years after recovery from MDR tuberculosis (p=0.018) [46]. Future studies need to
differentiate the effects of individual second-line drugs on gut microbiota composition to evaluate the
relevance of microbiome data for the choice of second-line antituberculosis drugs and the putative
influences of changes in microbiota on tuberculosis disease severity, risk of developing adverse events,
treatment outcome as well as the general effects of tuberculosis disease and treatment on a patient’s health.

Human biomarkers derived from the systems biology approaches
Human genetics and epigenomics in the management of patients with tuberculosis
The contribution of human genetic factors to the risk of tuberculosis, clinical presentation and management
of the disease has long been the subject of intense investigation. A summary of human genetic
susceptibility factors for tuberculosis has recently been published [47]. Many of these factors were
identified using genome-wide linkage studies and genome-wide association studies – two systematic,
powerful and unbiased approaches for identifying disease-associated variants in population samples.

Although genetic studies of human susceptibility to tuberculosis have contributed to a better understanding
of the pathogenesis of tuberculosis, to date only three genetic factors are known that in the future may
directly impact the management of patients with tuberculosis. First, very rare mutations leading to
impairment of either response or production of IFN-γ, such as in case of the Mendelian susceptibility to
mycobacterial disease, can underlie severe childhood tuberculosis cases that can be treated with IFN-γ [48, 49].
Second, a common amino acid variant of TYK2, P1104, is a strong risk factor for tuberculosis (relative
risk 8–16) that selectively impairs IL23-dependent IFN-γ production [50]. Approximately 1 in 550
Europeans carry the high-risk homozygous genotype; it was estimated that throughout history,
approximately 10 million deaths attributed to tuberculosis in Europe occurred due to this mutation [51].
Inclusion of TYK2 genotyping in contact investigations of tuberculosis can therefore be clinically relevant
in European populations.

Finally, the LTA4H C/T promoter polymorphism can have an impact on the management of tuberculous
meningitis (TBM) and is potentially the most clinically important out of the three. LTA4H encodes for the
leukotriene A4 hydrolase responsible for synthesis of the pro-inflammatory and pro-resolving lipid
mediators, LTB4 and LXA4, which both, despite their counterregulatory functions, promote mycobacterial
growth. Lipidome-based detection of LTB4 and LXA4 has been indicated as a severity marker for TBM [52].
The genotype of the LTA4H promoter polymorphism correlated with pre-treatment cerebrospinal fluid
leukocyte counts and survival from TBM, and the beneficial effects of adjunctive dexamethasone therapy
were most pronounced for carriers of the hyperinflammatory TT genotype [53]. Two large follow-up
studies provided inconsistent results about the role of LTA4H polymorphism in TBM [54]; its impact on
clinical management of TBM is currently being further investigated in a randomised trial [55].
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A major focus of epigenetics is the description of chromatin structure, DNA modifications by methylation
and modifications of histones, and the link of these changes with gene expression [56–58]. In the context
of human tuberculosis patients, most studies have been concerned with gene expression changes in blood
cells due to M. tuberculosis without additional characterisation of underlying DNA or chromatin changes.
However, the potential importance of epigenetics for tuberculosis management is highlighted by the
persistent dampening of key antimycobacterial immune response pathways even after successful therapy [57].
Also, recent studies revealed epigenetic alterations upon Bacillus Calmette–Guérin (BCG) vaccination,
which can educate myeloid cell-mediated innate immune responses thereby contributing to nonspecific
vaccine efficacy [59, 60]. Future studies are needed to differentiate between trained immunity as induced
by attenuated versus virulent M. tuberculosis as predictors for better immune control.

Human transcriptional signatures
Studies dealing with host transcriptomic data have yielded different RNA signatures that may be able to predict
future onset of disease and have the potential to be developed into diagnostic and therapy monitoring tools for
active tuberculosis [61–63]. Many of these signatures include genes involved in IFN-γ driven signalling that
are important for the host response to M. tuberculosis [61, 64]. A recent systematic review demonstrated eight
RNA signatures that predicted the onset of active tuberculosis 0–3 months to disease with sensitivities ranging
between 47.1% and 81.0% and specificities over 90% meeting or approximating the WHO TPP criteria;
however, the accuracy of the signatures decreased with increasing time-periods before the onset of disease [62].
A 11-gene version of a previously validated 16-gene correlate of risk (COR) mRNA signature [65] has been
shown to have a specificity of 84% and sensitivity of 71% for predicting tuberculosis up to 1 year before the
onset of disease in a cohort of adolescents [66]; its prognostic performance in unselected populations in a
high-burden setting is being currently evaluated in the CORTIS study (ClinicalTrials.gov NCT02735590) [67].
In a prospective observational study, four transcriptional signatures were able to discriminate individuals with
tuberculosis from those without with sensitivities of 83.3–90.7%. These signatures either met or approximated
to the minimum WHO TPP for a tuberculosis triage test (90% sensitivity, 70% specificity) but not the
optimum criteria or the minimum criteria for a confirmatory test [68]. A three-gene signature is proposed to
not only predict the conversion from latent to active disease, but also has been proven useful to monitor
progress of treatment and correlate with lung pathology indicating patients at high risk of treatment failure [69,
70]. In a systematic review with meta-analysis, it was the only signature that met the minimum TPP criteria for
both positive predictive value ⩾5.8% and 75% sensitivity and 75% specificity for a 6-month period prior to
TB diagnosis [71]. An alternative five-gene signature strongly correlated with positron emission
tomography-computed tomography (PET-CT) defined lung inflammation and with high accuracy (area under
curve (AUC) 0.72, p=0.04) only 1 week after treatment initiation identified patients who eventually failed
treatment [72]. Another transcriptomic signature, RISK6, is suggested to be used for identifying individuals at
risk of incipient disease (AUC 0.87 within 0–12 months and AUC 0.74 within 12–24 months before the
diagnosis of tuberculosis), as a screening test for subclinical versus clinical tuberculosis and for monitoring
tuberculosis treatment [63]. Transcriptomic models allowing the individualisation of the duration of
antituberculosis therapy necessary for achieving cure are yet to be published.

Recently published RNA signatures from whole blood are short nucleotide sequences and therefore easily
translatable to point-of-care tests, which may dramatically change tuberculosis disease management in the
future. Despite the promising results, none of the transcriptomics signatures have been implemented into
clinical practice so far. Future studies assessing applicability of these signatures in management of patients
with tuberculosis are required, including those on prospective cohorts of patients.

Human proteomic signatures for tuberculosis and antituberculosis treatment responses
Entire proteomes in patient samples are usually analysed by liquid chromatography tandem mass
spectrometry (LC-MS/MS). Plasma CC and CXC chemokines differentiated between active tuberculosis
and LTBI allowed treatment responses to be monitored and were indicative for pulmonary cavitation [73]
(table 1). Other studies revealed a serum six-protein signature (sensitivity 90%, specificity 80%) [80], an
eight-protein signature in stimulated whole blood culture able to distinguish between tuberculosis and
nontuberculosis, including healthy controls, LTBI and nontuberculosis pneumonia (sensitivity 75%,
specificity 84%) [81] as well as sputum signatures discriminating tuberculosis from other respiratory
diseases using a set of inflammatory cytokines (sensitivity 85%, specificity 96%) [82]. In a cohort of
children with symptoms compatible with tuberculosis, a three-protein signature distinguished between
tuberculosis, irrespective of microbiological confirmation, and other respiratory diseases with a sensitivity
of 72.2% and a specificity of 75% [83]. Sputum proteomics identified a five-protein signature
differentiating between tuberculosis and nontuberculosis patients (sensitivity 70%, specificity 79%) [84].
Differential regulation of pro-inflammatory, lipid and iron transport proteins were revealed between patients
with active tuberculosis and LTBI patients [74]. A serum three-protein signature distinguished MDR from
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drug-susceptible tuberculosis (sensitivity 81.2%, specificity 90%) and healthy controls (sensitivity 94.7%,
specificity 80%) [85]. Proteomics also defined two prognostic signatures comprising five (TRM5) or three
proteins (3PR) that predict disease progression to active tuberculosis; however, their performance did not
achieve the WHO TPP for an incipient tuberculosis test [86] as well as a serum signature predicting
8-week culture status with 95% sensitivity and 90% specificity [76]. Increased levels of matrix
metalloproteinases in serum were also shown to be associated with disease severity (p<0.05) [77].
Proteome analysis of bronchoalveolar lavage fluid identified distinct proteomic signatures stratifying active
and clinically cured patients with TB into distinct groups; moreover, this study indicates the potential of
identifying patients prone to relapse using proteomic analysis at the site of disease [87].

Lipidomic profiling to identify tuberculosis biomarkers
The role of host lipid metabolism as a biomarker of disease severity and progression has recently been
emphasised [88]. Entire lipidomes are commonly analysed by LC-MS/MS. Yet, few patient studies are
available to date. Small lipid mediators such as leukotrienes (LT), prostaglandins (PG), lipoxins (LX),
resolvins, and protectins have been found to be associated with clinical features of tuberculosis by
lipidomics [52, 88–90]. The pro-inflammatory LTB4 is abundantly found in sputum and pleural effusions
of patients with tuberculosis where it is likely to be involved in neutrophil recruitment and
immunopathology [90]. Recently, MS analyses of plasma from tuberculosis patients with and without
diabetes revealed significantly increased concentrations of the pro-resolving LXA4 and the
pro-inflammatory PGE2; reduced amounts of LTB4 were associated with enhanced lung pathology and
bacterial burden [88]. In contrast, MS-based analysis of cerebral fluid from patients with TBM showed a
clear correlation of disease severity with decreased levels of LXA4 and PGE2 [52]. These potent immune
regulators and their downstream signalling pathways represent interesting targets for HDT and, as
biomarkers thereof, can be employed to stratify patients for HDT [91]. Further studies on clinical samples
are needed to validate these and identify other host lipids that can be used as single biomarkers or included
into global biosignatures of tuberculosis and treatment response.

Human metabolic biomarkers of tuberculosis
In recent years, metabolic studies employing chromatography-MS or nuclear magnetic resonance have
revealed novel host and pathogen biomarkers for monitoring the course of diseases, their stages and
mechanisms [92]. However, only a few studies so far have presented metabolites as biomarkers for

TABLE 1 Proteins and metabolites defining progression from LTBI to active TB disease, response to antituberculosis treatment and treatment
outcome

Clinical question Proteins Metabolites Material

LTBI to active
TB transition

Chemokines CCL1, CCL3, CXCL1, CXCL2, CXCL9,
CXCL10 [73], kallikrein 1B, C-reactive protein,
haptoglobin, alpha-1-acid glycoprotein 1
haptoglobin, complement component C9,
apolipoprotein A1, serotransferrin [74]

Cortisol, mannose, gamma-glutamylglutamine,
cysteine, glycocholenate sulfate, phenylalanine,
histidine, citrulline, glutamine, tryptophan [75]

Blood

Treatment
response

Chemokines CCL1, CCL3, CXCL1, CXCL9 [73],
nectin-life protein 2, Ephrin type-A receptor 1,
gp130, beta-Ala-His dipeptidase, transforming
growth factor-beta receptor III, mannose receptor
C type 2, disintegrin and metalloproteinase
domain-containing protein 9, cell adhesion
molecule-related/downregulated by
oncogenes [76]

Blood

Matrix metalloproteinases MMP-2, MMP-3, MMP-8,
MMP-9, tissue inhibitors of metalloproteinases
TIMP-1 and TIMP-2 [77]

Sputum

Seryl-leucine core 1 O-glycosylated peptide [78] Urine
Treatment

outcome
Chemokines CCL1, CCL2, CXCL2, CXCL9, CXCL10,

CXCL11 [73]
Blood

Matrix metalloproteinases MMP-1, MMP-3, MMP-8,
tissue inhibitor of metalloproteinases TIMP-2 [77]

Sputum

Tryptophan [79] CSF (TB
meningitis)

LTBI: latent tuberculosis infection; TB: tuberculosis; CSF: cerebrospinal fluid.
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tuberculosis progression, treatment response and outcome when detected in blood, urine, or cerebrospinal
fluid (CSF) of patients [78, 79, 93, 94] (table 1).

Metabolite fingerprinting in blood can predict active tuberculosis months before the onset of clinical
manifestations: a metabolic biosignature of tuberculosis comprising 10 metabolites demonstrated a
performance of 69% sensitivity and 75% specificity within 5 months of diagnosis in cohorts of household
contacts who either progressed to tuberculosis or remained healthy [94].

In urine, the level of seryl-leucine core 1 O-glycosylated peptide (SLC1G) was higher in patients with
active tuberculosis compared with healthy controls (p<0.0001). During treatment, SLC1G level decreased
in patients with tuberculosis who were eventually cured but did not change significantly in patients with
treatment failure. A significant difference in SLC1G was observed at Week 24 in patients who were cured
compared with patients for whom treatment had failed (p=0.038) making SLC1G a potential point-of-care
biomarker of treatment response [78].

Low tryptophan concentration in CSF has been demonstrated to be a predictive biomarker for positive
outcome (survival) in TBM, the most severe manifestation of tuberculosis resulting in 30% deaths or
neurological disability. In cohorts of patients with definite and probable TBM, CSF tryptophan level in
survivors was 9-times lower than in nonsurvivors and 31-times lower than in healthy controls (p<0.001) [79].

Further studies on clinical samples are needed to identify applicability of metabolomic biomarkers in
clinical practice.

Immunophenotyping for the management of patients with tuberculosis
Immune phenotype is the outward interaction between immune cells and their environment. Systems
biology is contributing to immune phenotyping in a number of ways: identifying simple signals within the
complexity of multidimensional data, elucidating immune cell interactions, and integrating
immunophenotyping with epidemiology and other datasets derived from the systems biology studies.

Instead of measuring a single analyte at a time, flow cytometry easily allows simultaneous measurement of
30 and more parameters. Using advanced tools, these multiplex data can be analysed for characterisation of
multiple functions from a single cell or multiple cell types. Important examples of application of these tools
in studies of tuberculosis include using SPICE (Simplified Presentation of Incredibly Complex Evaluations)
to demonstrate the tuberculosis-induced immunosuppression when CD4+ T-cells from patients with
tuberculosis produce less IL-2 and IFN-γ compared with individuals with LTBI; an assay based on single
tumour necrosis factor (TNF)-α discriminated active tuberculosis from individuals with LTBI with sensitivity
67% and specificity 92% [95]. CITRUS (Clustering Identification, Characterisation and Regression) tool was
used to identify that healthy controls who did not progress to tuberculosis had more robust cytotoxic
functioning (production of granzyme, perforin and IFN-γ) from CD8+ T-cells, NK cells and γδ T-cells [75].
Excess granzyme production by these cells of nonprogressors, i.e. M. tuberculosis-exposed individuals who
remained asymptomatic, was demonstrated using t-distributed stochastic neighbour embedding (t-SNE).
While cytotoxic and cell-mediated immunity is a critical component of the host immune response against
M. tuberculosis, integrating SPICE with quantitative PET-CT and pulmonary function testing demonstrated
that exuberant immunity was associated with decreased lung function 12 months after completion of
antituberculosis therapy [96]. These findings have a potential to become the basis for more precise
predictions of progression to disease, its severity and response to treatment in the future. Also, applying
systems biology approaches to immune phenotyping should identify the immune function of individuals
suitable for short-course therapies or those at increased risk of relapse [97].

Immune phenotyping has contributed to the development of the concept of tuberculosis endotypes, i.e.
distinct molecular pathways through which an individual can develop tuberculosis. The best described
tuberculosis endotypes are deficiencies in IL-12-IFN-γ or TNF signalling pathways [98, 99].
Understanding of endotypes may help in developing endotype-specific HDTs targeting specific host
immune pathways, which may eventually support antibiotic efficacy, improve disease outcomes and avoid
long-term sequelae. However, before implementing HDTs in clinical practice, tuberculosis endotypes
should first be defined at the cellular level and here immune phenotyping with transcriptomic, proteomic,
metabolic, lipidomic, epigenomic studies and clinical data will play an important role.

Systems pharmacology for tuberculosis management
In pharmacology, quantitative approaches are commonly used to predict treatment efficacy. There are two
main branches: pharmacokinetics is the study of drug distribution within the body, while
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pharmacodynamics is the study of the effects and modes of drug action. Progress in these fields is difficult
due to the lack of universal determination of the levels of drugs in routine practice in many settings and
the gaps in our understanding of both drug levels and activity in the target tissue [100]. The latter, in
particular, is a major problem for understanding and predicting the efficacy of tuberculosis treatments.

Systems biology methods coupled to pharmacokinetic and pharmacodynamics have the potential to address
these issues [101, 102]. The recently emerged multiscale approaches of systems pharmacology have been
gaining traction to better understand how and why single drugs or drug regimens work. Physiologically
based pharmacokinetic (PBPK) approaches combine mechanistic and small-scale understanding of tissue
properties to capture the movement of drugs in the body. In tuberculosis, the most prominent PBPK model
used data from patients undergoing lung resection surgery to estimate distribution patterns to different
lesion types in the lungs for many of the first- and second-line drugs [100].

Systems pharmacology-based pharmacodynamic models use our knowledge of the mode of action of
antibiotics to predict the effects of antibiotics on bacteria; for instance, by modelling drug-target
interactions [103]. Those models can capture why some antibiotics work better when given infrequently at
high doses while others work better at low but constant dosing. Currently, our understanding of antibiotic
action is expanding rapidly [104], therefore novel pharmacodynamic models may allow us to better predict
how bacteria are affected by antibiotics within the human body at different sites of infection and at
different dosing regimens.

Drug–drug interactions (DDIs) affect both pharmacokinetics and pharmacodynamics. Predicting
pharmacokinetic DDIs has been successful in other diseases and can be targeted for tuberculosis as well
[105, 106]. Predicting and modelling DDIs in pharmacodynamics can be complex even for pairs of two
drugs [107, 108]. However, machine learning-based and other statistical methods can potentially predict
higher order interactions [109–111].

Being a relatively novel, although a promising, field for improving the clinical management of patients
with tuberculosis, systems pharmacology requires extensive further research and development of the
models allowing the analysis of complex multidimensional data derived from pharmacokinetic/
pharmacodynamic and DDI studies.

Outstanding questions and future directions
Systems biology approaches have the potential to contribute to various aspects of the management of
patients with tuberculosis (figure 1). The diagnostic and analytic developments in the fields of systems
biology will allow physicians and scientists to address clinically relevant questions more accurately in the
future (table 2). This progress will include a wide range of clinically relevant areas with the prospect of
personalising decisions for preventive therapies and the choices of antituberculosis medicines and HDTs
administered to individual patients, and enabling outcome prognosis for treatment episodes. These
developments will also lead to an earlier diagnosis of tuberculosis, especially in those groups where the
diagnosis is more challenging, e.g. patients with extrapulmonary tuberculosis and children. The translation
of systems biology findings into clinical practice promises to eventually implement precision medicine and
drive cost-savings as patients will receive the correct treatment earlier, benefit from shorter treatment
regimens associated with fewer adverse events, and experience lower rates of disease relapse and
emergence of bacillary drug resistance.

Although every -omics approach described in this review has identified biomarkers associated with
tuberculosis, only few of these biomarkers have been assessed in clinical cohorts of patients and
implemented in clinical practice (table 2). Some of these biomarkers will be implemented eventually but,
before that, their applicability in clinical practice needs careful evaluation. We applied the Grading of
Recommendations, Assessment, Development and Evaluation (GRADE) approach [112] for rating the
certainty of evidence that the studies included in the review provide for answering clinically relevant
questions and forming recommendations of implementation of the biomarkers in clinical practice (table 2).
Bacterial and human genomics, as well as bacterial transcriptomic studies, present either “high” or
“moderate” evidence in addressing questions on vulnerability to tuberculosis, presence of bacteria, and its
resistance to first-line antituberculosis drugs. In all other cases, the grading resulted in a “very low”
certainty due to the observational nature of the studies, indirectness in addressing patient-important
outcome questions, and other factors downgrading the quality of evidence. As evident from the GRADE
criteria, to demonstrate the applicability of the findings in tuberculosis prevention and more efficient
clinical management of patients, further studies in large prospective cohorts of patients with matching
control groups, including randomised clinical trials, are urgently needed.
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Integrating data obtained in different areas of systems biology by artificial intelligence and machine
learning techniques will help to refine and focus molecular signatures. By implementing network analysis,
this multiomics approach will help in identifying previously unappreciated pathways to determine modules
of metabolites, genes, lipids, proteins and the microbiome in the treatment of responsive versus
nonresponsive patients. The transformative potential of such an approach will open up novel therapeutic
vulnerabilities with combination therapies against these interacting multi-omic molecular pathways.

Conclusions
We are at the doorstep of a new era of an individualised, precision medicine-guided approach to treatment
where innovations of systems biology approaches will have an impact on the diagnosis, management and
treatment outcomes of patients with tuberculosis, especially rifampicin-resistant and MDR tuberculosis,
and provide valuable information that will aid clinicians in making medical decisions. Before some of
these innovations can be implemented in clinical practice, further studies on large cohorts of patients with
tuberculosis, household contacts, and control groups are needed to assess the applicability of these
biomarkers and biosignatures in tuberculosis prevention and clinical management of patients. There will
also be a significant challenge in translating the exciting results into large-scale clinical interventions. Only
those innovations making a difference on the burden of tuberculosis in high-incidence countries will make
significant contributions on the way to eliminating tuberculosis in the future.

Susceptibility to disease

Human genetics

Clinical management

Human genetics

Choice of anti-TB drugs

Bacterial genomics

Drug dosing

Systems pharmacology

Choice of HDT

Human transcriptomics

Immunophenotyping

Lipidomics

Treatment monitoring

Human transcriptomics

Bacterial transcriptomics

Proteomics

Metabolomics

Systems pharmacology

Lipidomics

Diagnosis of disease

Human transcriptomics

Bacterial transcriptomics

Proteomics

Immunophenotyping

Risk of progression to active disease

Human transcriptomics

Proteomics

Metabolomics

Immunophenotyping

Human transcriptomics

Metabolomics

Systems pharmacology 

Immunophenotyping

Microbiome analysis

Prognosis

FIGURE 1 Role of systems biology fields in the management of patients with tuberculosis (TB). A patient with active TB disease disseminates
droplets with Mycobacterium tuberculosis that can be inhaled by healthy contacts who, depending on their genetic susceptibility to TB, may further
develop an active disease. However, only approximately one out of 10 latently infected individuals will develop an active disease; risk of
progression to active disease can be predicted by human transcriptomics, proteomics, metabolomics and immunophenotyping. Active TB
manifests in various clinical forms and can be detected using methods of human and bacterial transcriptomics, proteomics and
immunophenotyping. Systems biology methods have the potential to contribute to clinical management of patients with TB. Choice of
antituberculosis drugs and host-directed treatment (HDT) can be determined and adjusted according to data obtained using bacterial genomics,
human transcriptomics, immunophenotyping and lipidomics. Drug dosing can be adjusted and monitored by systems pharmacology. For
monitoring of patient responses to treatment, human and bacterial transcriptomics, proteomics, metabolomics, systems pharmacology and
lipidomics may be employed. Human transcriptomics, metabolomics, systems pharmacology, immunophenotyping, and microbiome analysis may
play a role in prognosis of adverse drug events, treatment outcomes and TB relapse after treatment end.
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TABLE 2 Impact of advances in systems biology fields on the management of patients with tuberculosis (TB)

Clinical question Field of systems
biology

Clinical relevance of the method Method in
clinical
practice
Yes/no

Quality of evidence
(GRADE) [112]

Study Body of
evidence

Who is susceptible to TB? Human genetics The clinical utility of LTA4H polymorphism for TB
management is in phase 3 randomised clinical
trial [55]

No Moderate Moderate

Patients with certain genetic aetiologies of MSMD
and paediatric TB are treated with adjuvant
IFN-γ therapy [49]

Yes Moderate

Who will develop TB when
latently infected?

Human
transcriptional
profile

RISK6 signature predictive of progression to active
TB within 1 (AUC 87.6%, 95% CI 82.8–92.4) and
2 years (AUC 74.0%, 95% CI 66.0–82.0) [63]

No Very low Very low

11-gene version of 16-gene COR signature predicts
TB 1 year before the onset of disease (sensitivity
71%, specificity 84%) [66]

No Very low

Proteomics TRM5 and 3PR plasma protein signatures predict
disease progression to active TB within 1 year
(sensitivity 46–49%, specificity 75%) [86]

No Very low

Metabolomics Metabolic TB biosignature predictive of progression
to active TB (sensitivity 69%, specificity 75%
within 5 months of diagnosis) [94]

No Very low

Immunophenotyping Different immune profiles between healthy controls,
individuals with LTBI and with active TB [75]

No Very low

Identification of TB-specific endotype for
application of host-directed therapy [98, 99]

No Very low

Who has active TB? Human
transcriptional
profile

RISK6 signature detected active TB (sensitivity 90%,
specificity 93.4% in HIV-uninfected and 72.5% in
HIV-infected persons) [63]

No Very low Very low

3-gene signature discriminates active TB from
healthy controls (AUC 0.90, 95% CI 0.85–0.95),
latent TB (AUC 0.88, 95% CI 0.84–0.92), and other
diseases (0.84, 95% CI 0.80–0.95) [69]

No Very low

Bacterial
transcriptomics

Highly sensitive 16S rRNA MBLA accurately
quantifies M. tuberculosis viable bacillary load to
as low as 10 CFU per mL [25]

No Moderate

Proteomics Plasma CC and CXC chemokines as markers of
disease severity, predicting increased bacterial
burden and delayed culture conversion [73]

No Very low

Serum 6-protein signature discriminates TB from
other respiratory diseases (sensitivity 90%,
specificity 80%) [80]

No Very low

A set of three inflammatory cytokines discriminates
TB from other respiratory diseases (sensitivity
85%, specificity 96%) [82]

No Very low

8-protein signature in stimulated whole blood
culture discriminates between TB and nonTB,
including healthy controls, LTBI and nonTB
pneumonia (sensitivity 75%, specificity 84%) [81]

No Very low

3-protein signature distinguishes between TB and
other respiratory diseases (sensitivity 72.2%,
specificity 75%) in cohort of children [83]

No Very low

Immunophenotyping Single-positive TNF-α M. tuberculosis-specific CD4+

T-cell response assay discriminates between LTBI
and active disease (sensitivity 67%, specificity
92%) [95]

No Very low

Is the specific strain of
M. tuberculosis
susceptible to anti-TB
drugs?

Bacterial genomics Genotypic prediction of phenotypic drug
susceptibility by NGS technologies using
validated mutation catalogues [8]

Yes High High

Continued
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Search strategy and selection criteria
Data for this review were identified by searches in MEDLINE, Web of Science, PubMed, and references
from relevant articles using the search terms “system biology”, “omics”, “genomics”, “transcriptomics”,
“proteomics”, “lipidomics”, “metabolomics”, “immunophenotyping”, “systems pharmacology”,
“microbiota” and “tuberculosis”. Only articles published in English between 2000 and 2020 were included.

TABLE 2 Continued

Clinical question Field of systems
biology

Clinical relevance of the method Method in
clinical
practice
Yes/no

Quality of evidence
(GRADE) [112]

Study Body of
evidence

How severe is TB disease? Human
transcriptional
profile

RESPONSE5 signature correlates with pulmonary
inflammation predicting Week 24 PET-CT status
at baseline, Week 1 and Week 4 (AUC 0.72–0.74,
p<0.02) [72]

No Very low Very low

Lipidomics Elevated plasma eicosanoid LXA4 and 15-epiLXA4
levels are associated with disease severity
defined by extended lung pathology and
bacterial burden [88]

No Very low

How is the patient
responding to anti-TB
treatment?

Bacterial
transcriptomics

16S rRNA MBLA detects M. tuberculosis viable count
in real time that correlates with culture result
and can be used for treatment monitoring [25,
26, 28]

No Moderate Very low

Proteomics Serum proteomic signature predicts 8-week culture
status (sensitivity 95%, specificity 90%) [76]

No Very low

Metabolomics Changes in SLC1G level in urine correlate with
different treatment response outcomes [78]

No Very low

Systems
pharmacology

PK/PD models assess penetration of anti-TB drugs
in cavitary lesions [100]

No Very low

Drug–drug interaction models can help set dosing
for drugs by predicting the change in the efficacy
of a given dose when used together with other
drugs [109–111]

No Very low

What will be the outcome
of anti-TB treatment?

Human
transcriptional
profile

RISK6 signature predicts treatment failure before
the treatment initiation (AUC 77.1, 95% CI 52.9–
100) and at the end of treatment (AUC 95.2, 95%
CI 87.5–100) [63]

No Very low Very low

9-gene DISEASE signature predicts treatment failure
1 week (AUC 0.70, p=0.04) and 4 weeks (AUC
0.72, p=0.03) after treatment initiation [72]

No Very low

Metabolomics Cerebral tryptophan metabolism can predict the
outcome of TB meningitis being 9-times lower in
survivors than nonsurvivors (p<0.001) [79]

No Very low

Systems
pharmacology

PK/PD models identify patients at risk of treatment
failure due to suboptimal drug concentrations in
TB lesions [100]

No Very low

Why does a patient
develop unwanted drug
reactions?

Microbiome profiling The microbiota accounts for elevated levels of
low-density lipoprotein cholesterol and total
cholesterol that might be associated with
metabolic disorders [46]

No Very low Very low

Will the patient experience
TB relapse?

Immunophenotyping Serum biosignature combining 4 immunological
with 2 clinical parameters measured at diagnosis
predicts TB relapse (sensitivity 75% and
specificity 85% in the discovery cohort;
sensitivity 83% and specificity 61% in the
validation cohort) [97]

No Very low Very low

GRADE: Grading of Recommendations, Assessment, Development and Evaluation; MSMD: Mendelian susceptibility to mycobacterial disease;
IFN-γ: interferon-γ; AUC: area under curve; LTBI: latent tuberculosis infection; MBLA: molecular bacterial load assay; CFU: colony forming unit;
TNF: tumour necrosis factor; NGS: next generation sequencing; PET-CT: positron emission tomography-computed tomography; PK/PD:
pharmacokinetic/pharmacodynamic.
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