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Abstract

Background

Norway has not implemented universal varicella vaccination, despite the considerable clini-

cal and economic burden of varicella disease.

Methods

An existing dynamic transmission model of varicella infection was calibrated to age-specific

seroprevalence rates in Norway. Six two-dose vaccination strategies were considered, con-

sisting of combinations of two formulations each of a monovalent varicella vaccine (Varivax®

or Varilrix®) and a quadrivalent vaccine against measles-mumps-rubella-varicella (Pro-

Quad® or PriorixTetra®), with the first dose given with a monovalent vaccine at age 15

months, and the second dose with either a monovalent or quadrivalent vaccine at either 18

months, 7 or 11 years. Costs were considered from the perspectives of both the health care

system and society. Quality-adjusted life-years saved and incremental cost-effectiveness

ratios relative to no vaccination were calculated. A one-way sensitivity analysis was con-

ducted to assess the impact of vaccine efficacy, price, the costs of a lost workday and of

inpatient and outpatient care, vaccination coverage, and discount rate.

Results

In the absence of varicella vaccination, the annual incidence of natural varicella is estimated

to be 1,359 per 100,000 population, and the cumulative numbers of varicella outpatient

cases, hospitalizations, and deaths over 50 years are projected to be 1.81 million, 10,161,

and 61, respectively. Universal varicella vaccination is projected to reduce the natural vari-

cella incidence rate to 48–59 per 100,000 population, depending on the vaccination strat-

egy, and to reduce varicella outpatient cases, hospitalizations, and deaths by 75–85%, 67–

79%, and 75–79%, respectively. All strategies were cost-saving, with the most cost-saving

as two doses of Varivax® at 15 months and 7 years (payer perspective) and two doses of

Varivax® at 15 months and 18 months (societal perspective).
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Conclusions

All modeled two-dose varicella vaccination strategies are projected to lead to substantial

reductions in varicella disease and to be cost saving compared to no vaccination in Norway.

Introduction

Varicella, or chickenpox, is caused by the varicella zoster virus and is one of the most common

infectious diseases in children. Varicella infections are characterized by a generalized pruritic

vesicular rash, which, while usually mild, can result in serious complications and, in rare cases,

death [1]. Almost all people in Norway eventually contract varicella, with a seroprevalence in

adults�45 years of 95% [2]. Herpes zoster, or shingles, a second clinical manifestation of the

varicella virus, may occur later in adulthood upon reactivation of latent virus in nerve gangli-

ons [1].

Varicella vaccines are well-tolerated and effective in preventing varicella. Where intro-

duced, universal childhood vaccination has led to significant declines in varicella disease [3–

7]. Globally, two-dose varicella vaccination programs have an average effectiveness of 92% [4].

For example, in Germany, where childhood vaccination against varicella was introduced as a

one-dose schedule in 2004 and a two-dose schedule in 2009, varicella incidence declined by

55% among all age groups between April 2005 and March 2009 and by 63% in the 0–4 year old

age group during that same period [8]. Furthermore, in the United States, where universal

childhood vaccination against varicella was introduced as a one-dose schedule in 1996 and a

two-dose schedule in 2006, varicella incidence declined by 90% between 1995 and 2008 [6].

Varicella vaccination is recommended only for selected risk groups in Norway [9] and is

not included in the childhood immunization program [10]. In the absence of universal vacci-

nation, varicella causes a substantial healthcare burden in Norway [11]. During 2008–2014 the

primary healthcare incidence of varicella was 221 per 100,000 population with most cases

occurring in children less than 5 years of age [11]. Concurrently, there was a varicella hospitali-

zation rate of 7.3 cases per 100,000 population and a varicella death rate of 0.6 per million pop-

ulation [11]. The estimated annual varicella-specific healthcare costs in 2017 were Norwegian

Kroner (NOK) 23 million [12].

To support national vaccination policy decisions, the study objective is to quantify the long

term clinical and economic impact of universal varicella vaccination in Norway under differ-

ent vaccination scenarios using a dynamic transmission model.

Materials and methods

Dynamic transmission model

The deterministic, compartmental model of varicella infection used for this analysis has been

described in detail elsewhere [13]. It is a mathematical description of the natural history and

treatment of varicella disease in a population stratified by age, and is an adaptation of models

employed by other investigators [14–17]. Calibrated to the demographic, behavioral, and epi-

demiological characteristics of the population of Norway, the model estimates the population-

level impact of varicella vaccination over a time horizon of up to 100 years (the base case is 50

years). The model computes the impact of varicella vaccination on varicella and herpes zoster

incidence rates, and on varicella-related mortality, healthcare use, and direct and indirect

costs. Model inputs are provided in S1 Appendix.
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Model components. The model has several components: demographic, epidemiologic,

vaccination, and economic. The demographic component of the model defines the age struc-

ture of the population simulated and describes how persons enter, age, and exit the model

[18]. Demographic input variables—total population, fertility rate, and all-cause mortality—by

5-year age groups were derived from the United Nations World Population Prospects database

files, 2019 revision [19]. The epidemiological component of the model simulates the dynamics

of varicella infection. Periods of passive immunity, latency, and infectiousness were as reported

elsewhere [13]. Briefly, the average passive immunity was 6 months, the average latent period

(natural and breakthrough [defined as varicella disease occurring >42 days after vaccination]

varicella) was 14 days, and the average infectious period for natural varicella was 7 days. Break-

through varicella was assumed to be 50% as infectious as natural varicella with a 20% mortality

rate [16, 20], and the average infectious period of breakthrough varicella was assumed to be 4.5

days.

Also, as in the previous work, we incorporated the effects of exogenous boosting on herpes

zoster incidence [21], and the calibration of herpes zoster reactivation rate included this

assumption. Our assumptions about exogenous boosting were based upon the temporary

immunity approach presented in Wolfson et al., 2019 [13]. Assumptions used for force of

boosting and duration of protection are consistent with prior studies [20, 22]. Our model

assumed that persons who have low immunity to HZ are boosted when they come into contact

with infectious persons at the same rate as susceptible persons become exposed with varicella,

which is a higher rate of boosting than that used in other models [20, 22, 23]. The duration of

protection against HZ was assumed to be 80 years in this model, which is comparable to the

duration of protection provided by two doses of varicella vaccine based upon performance

parameterization [20, 22]. This is also consistent with modeling studies that assumed lifelong

protection [23]. The model was not adjusted for age due to parsimony, an approach we share

with other models [24].

The model is calibrated to the population of Norway using population-specific initialization

parameters, including the age distribution of the population, age-specific fertility, varicella

seroprevalence (in the absence of vaccination), and herpes zoster incidence by age. Age-spe-

cific incidence rates of varicella were obtained by finding a best fit to the seroprevalence rates

[25]. The age-specific incidence of herpes zoster was simulated by fitting modeled rates to the

observed incidence rates [11]. The comparisons of the observed and model-simulated varicella

seroprevalence and herpes zoster incidence are presented in Fig 1.

The varicella vaccination component of the model implements a structure similar to that

described elsewhere [17]. Vaccine parameters were: ‘failure’, the proportion of vaccinations

that confer no varicella immunity; ‘take’, the initial seroconversion; ‘degree of protection’, the

proportion of individuals fully protected from breakthrough disease; and ‘duration of immu-

nity’, the rate at which individuals transition from full to partial protection against break-

through disease [26].

The economic component of the model calculates healthcare usage and costs associated

with varicella infection, with costs expressed in NOK (2020 value). The time horizon was 50

years [27]. Direct costs were computed as costs borne by the healthcare system. Indirect costs

—the costs of lost workdays due to varicella infection—were included in costs from the societal

perspective. The indirect cost calculations within the model also accommodate cost of work-

days lost as well as travel costs for vaccination, however the latter were assumed to be negligible

for Norway, and thus did not impact indirect costs. Vaccination cost included the list price of

the vaccine and the administration cost, estimated as the cost of 10 minutes at a nurse’s salary

of 436 NOK per hour [28]. Indirect costs were based on current infection control guidelines

for control of varicella outbreaks and the mean wage for Norway, as reported by Statistics
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Norway [29]. Costs were discounted by 3%. Rates of primary healthcare visits, hospitalizations,

and mortality associated with varicella infection, and unit costs, were as reported elsewhere

[11, 12]. Varicella morbidity and mortality outcomes were aggregated to estimate quality-

adjusted life years (QALYs), a generic measure of disease burden that indicates both the quality

and quantity of life years lived. Utility values used to calculate QALYs were as reported else-

where [13, 30]. Both costs and QALYs were discounted at a rate of 3% per year.

Vaccination strategies

Six two-dose vaccination strategies were modeled, labelled A through F, with the first dose at

15 months and the second dose at 18 months, 7 years, or 11 years (Table 1). The ages for vac-

cine administration were chosen to match the existing childhood vaccination program in Nor-

way, which includes immunization against measles-mumps-rubella (MMR) at 15 months,

immunization against diphtheria, tetanus, pertussis, and poliomyelitis (DTP-IPV) at about 7

years, and a second immunization against MMR at age 11–12 years [10]. Although no vaccines

are currently administered at 18 months of age, there is a group consultation at this age, which

may be converted to an immunization visit. The first dose was assumed to be administered as

a monovalent varicella vaccine. The second dose was assumed to be administered either as a

monovalent vaccine, or as a quadrivalent measles-mumps-rubella-varicella (MMRV) vaccine.

All currently available varicella-containing vaccines—the monovalent vaccines Varivax1

(Merck & Co., Inc., Kenilworth, NJ, USA, V-MSD) and Varilrix1 (GlaxoSmithKline,

V-GSK), and the quadrivalent vaccines, ProQuad1 (Merck & Co., Inc., Kenilworth, NJ, USA,

Fig 1. Model fit to (A) varicella seroprevalence and (B) herpes zoster incidence rates in Norway.

https://doi.org/10.1371/journal.pone.0254080.g001
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MMRV-MSD) and Priorix-Tetra1 (GlaxoSmithKline, MMRV-GSK)—were included. Vac-

cine parameters for V-MSD and MMRV-MSD were as reported elsewhere [17, 31]. Vaccine

parameters for V-GSK and MMRV-GSK were based on clinical trial data [32], as described in

modelling studies [33–35]. The monovalent and quadrivalent vaccines from the same manu-

facturer contain the same varicella strain and are considered to be immunologically equivalent

[36].

Sensitivity analyses

A one-way sensitivity analysis was conducted from the societal perspective, in which variations

in economic parameters and in parameters related to vaccine properties were analyzed. In the

one-way sensitivity analysis, vaccine price and the costs of a lost workday, and of outpatient

and inpatient care, were varied by ± 20%. Vaccination coverage for doses 1 and 2 were varied

by ± 5% (vaccination coverage of 2-year-olds in Norway is 95% to 97%; coverage with measles,

poliomyelitis, and diphtheria-tetanus-whooping cough vaccines in 16-year-olds is 94% to 95%

[37]). Vaccine efficacy for Varivax1 was varied by 20% (bounded at the top by 100%) [31],

and for Varilrix1 by ± 5% [38]. Time horizons of 25 and 100 years and 4% discounting were

also considered. Additional scenario analysis was conducted to assess the impact of including

the direct and indirect cost of herpes zoster (details are provided in Tables 2 and 3 in S2

Appendix) on QALYs and the cost-effectiveness of interventions. Probabilistic sensitivity anal-

ysis was conducted as described elsewhere [13]. Five hundred sets of parameter value varia-

tions were computed using Latin Hypercube Sampling for each vaccination strategy.

Results

Varicella incidence by vaccination strategy

In the absence of varicella vaccination, the projected annual incidences of natural varicella and

wild-type herpes zoster in Norway are 1,359.4 per 100,000 population and 303.8 per 100,000

population, respectively.

With universal vaccination, depending on the vaccination strategy, the natural varicella

incidence rate at 50 years is projected to vary from 48.4 to 58.9 cases per 100,000 population

(Fig 2) and the breakthrough varicella incidence rate from 37.8 to 75.9 per 100,000 population.

The wild-type herpes zoster incidence rate is projected to vary from 207.8 to 212.6 per 100,000

population (Fig 3). For each of these incidence rates, strategies E and D yielded the lowest and

highest values, respectively. The projected decline in natural varicella incidence after the intro-

duction of universal varicella vaccination is rapid, with a >50% reduction occurring within

two years after the program start. Conversely, the projected decline in herpes zoster incidence

Table 1. Vaccination strategies A.

Strategy Formulation Age at Vaccination

1st Dose 2nd Dose 1st Dose 2nd Dose

A Varivax1 Varivax1 15 months 7 years

B Varilrix1 Varilrix1 15 months 7 years

C Varivax1 ProQuad1 15 months 11 years

D Varilrix1 Priorix-Tetra1 15 months 11 years

E Varivax1 Varivax1 15 months 18 months

F Varilrix1 Varilrix1 15 months 18 months

A The base case is a time horizon of 50 years.

https://doi.org/10.1371/journal.pone.0254080.t001
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is slow, with a 50% reduction occurring 62.5 to 65 years after the introduction of varicella

vaccination.

Outpatient cases, hospitalizations, and deaths

In the absence of vaccination, the cumulative numbers of varicella outpatient cases, hospitali-

zations, and deaths over 50 years are projected to be 1.81 million, 10,161, and 61, respectively.

At 50 years, universal vaccination is projected to have reduced outpatient cases by 75%-85%,

hospitalizations by 67%-79%, and deaths by 75%-79%. Strategies D and E result, respectively,

in the lowest and highest percent reductions in outpatient cases, hospitalizations, and deaths

(Fig 4).

Fig 2. Projected incidence of total varicella, by varicella vaccination strategy.

https://doi.org/10.1371/journal.pone.0254080.g002

Fig 3. Projected impact of varicella vaccination on herpes zoster incidence.

https://doi.org/10.1371/journal.pone.0254080.g003
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Cost-effectiveness

The cost-effectiveness of the six varicella vaccination strategies compared with no vaccination

is graphed in Fig 5. All cost-effectiveness points, from the perspectives of both the healthcare

system and society, lie in the southeast quadrant of the cost-effectiveness plane, indicating

dominance over no vaccination. From the perspective of the healthcare system, strategies A

and E have the greatest reductions in costs over a 50-year time horizon: 120.41 and 113.67

NOK, respectively (Table 2). From the societal perspective, strategies E and A have the greatest

cost reductions over a 50-year time horizon: 1,779 and 1,758 NOK, respectively (Table 3).

Strategies E and A also had the greatest number of QALYs gained (0.00128 and 0.00127,

respectively).

Fig 4. Projected impact of universal varicella vaccination on varicella primary care cases, hospitalizations, and

deaths.

https://doi.org/10.1371/journal.pone.0254080.g004

Fig 5. Cost-effectiveness of varicella vaccination from the health care system- and societal perspectives. Cost-

effectiveness analysis from the perspectives of society (closed circles) and the health care system (open circles). Closed

black circle represents no vaccine scenario.

https://doi.org/10.1371/journal.pone.0254080.g005
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Sensitivity analyses

In the one-way sensitivity analysis of strategy A (Fig 6), the cost of a lost workday was the most

important variable, changing the incremental cost-effectiveness ratio (ICER) by ± 69,100 NOK

but demonstrating that the vaccine program would remain cost saving. The ICER is used to

summarize the cost-effectiveness of a health care intervention. The ICER was also sensitive to

vaccine take, vaccine price and coverage of the first vaccine dose. The one-way sensitivity anal-

ysis of strategy E produced similar results (Fig 7). The ICER was most sensitive to the cost of a

lost workday, which changed the ICER by ± 64,200 NOK per QALY gained (still cost saving).

Varying vaccine efficacy for first dose vaccination by -20% resulted in a +2.6% change in the

ICER for strategy A from the societal perspective ICERs at the time horizon of 25 years were

<3.0% lower than ICERs at 50 years, while ICERs at 100 years were less than 2% higher

(Table 1 in S2 Appendix). Relative to the base case discount rate of 3%, applying 4% discount-

ing changed the ICER by less than ± 0.4% at 25 years, less than + 0.5% at 50 years, and less

than + 1% at 100 years (Table 1 in S2 Appendix). When the costs of of medically attended her-

pes zosterwere included in the cost-effectiveness analyses, the results were consistent with base

case: all strategies were still cost-saving compared to no vaccination from both the health care

system (Table 2 in S2 Appendix) and societal perspective (Table 3 in S2 Appendix).

Discussion

In this study, all modeled two-dose vaccination strategies are projected to reduce natural vari-

cella incidence by 95% to 96% relative to no vaccination in Norway. At the 50-year time

Table 2. Cost-effectiveness of varicella vaccination from the perspective of the health care system A.

Vaccination strategy Cost savings in NOK B QALYs gained ICER C

A (120.41) 0.00127 Dominant

B (90.61) 0.00123 Dominant

C (79.91) 0.00126 Dominant

D (40.94) 0.00121 Dominant

E (113.67) 0.00128 Dominant

F (96.36) 0.00125 Dominant

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life years
A The base case is a time horizon of 50 years.
B Costs in NOK 2020.
C All strategies result in cost savings and quality-adjusted life years gained over no vaccination.

https://doi.org/10.1371/journal.pone.0254080.t002

Table 3. Cost-effectiveness of varicella vaccination from the societal perspective.

Vaccination strategy Cost savings in NOK A QALYs gained ICER B

A (1,757.62) 0.00127 Dominant

B (1,595.62) 0.00123 Dominant

C (1,687.85) 0.00126 Dominant

D (1,467.24) 0.00121 Dominant

E (1,778.50) 0.00128 Dominant

F (1,670.31) 0.00125 Dominant

ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life years
A Costs in NOK 2020. The parentheses indicate negative values which represent cost savings.
B All strategies result in cost savings and quality-adjusted life years gained over no vaccination.

https://doi.org/10.1371/journal.pone.0254080.t003
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horizon, all strategies are projected to reduce outpatient cases and hospitalizations by 67% to

85%, and deaths by 75% to 79%. A varicella vaccination program in Norway under all mod-

elled strategies would be cost saving compared to no vaccination from the perspectives of

both the healthcare system and society. From the societal perspective, most of the projected

cost savings are due to reductions in lost workdays. Among the vaccination strategies, those

with two doses of V-MSD, with the second dose at 18 months or 7 years (strategies E and A,

Fig 6. One-way sensitivity analysis of varicella vaccination strategy A compared to no vaccine. Sensitivity analysis

from the societal perspective.

https://doi.org/10.1371/journal.pone.0254080.g006

Fig 7. One-way sensitivity analysis of varicella vaccination strategy E compared to no vaccine. Sensitivity analysis

from the societal perspective.

https://doi.org/10.1371/journal.pone.0254080.g007
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respectively), were the most cost saving from the perspectives of both the healthcare system

and society. The least impactful strategy in terms of cost-effectiveness and resource utilization

was strategy D (V-GSK at 15 months and MMRV-GSK at 11 years).

These results are consistent with applications of the same dynamic transmission model to

other countries [13, 27, 39]. Applied to Turkey, two-dose strategies of universal childhood var-

icella vaccination were projected to reduce varicella incidence by 99% after 25 years and to be

cost-effective [13]. Two-dose vaccination strategies in Italy were projected to reduce varicella

cases by 52% to 66% and to be cost saving from both payer and societal perspectives [27]. Fur-

ther, universal vaccination with a single vaccine dose in Mexico was projected to be cost saving

from the perspective of the national payer system [39].

The effect of universal childhood varicella vaccination in Norway was modeled in a previ-

ous analysis [40]. This model, in which the first dose was given at 15 months and a second

dose at 7 years, predicted a decline of 98.7% in varicella incidence within the first 5 years of

program introduction [40]. This compares with a 79.8% reduction in the natural varicella inci-

dence at 5 years with strategy A (V-MSD at 15 months and 7 years) in the present study. In the

previous analysis, the predicted long-term (200 years) varicella incidence was about 20 cases

per 100,000 person-years, reduced from 990 per 100,000 in the pre-vaccine era, representing a

97.8% reduction [40]. In the present study, universal varicella vaccination was projected to

reduce the annual natural varicella incidence rate by 96.4% from 1,359 per 100,000 population

to 49 per 100,000 under strategy A over 50 years.

Most (73%) of the annual healthcare costs of varicella virus infection in Norway are associ-

ated with herpes zoster, primarily due to hospitalization costs [12]. Our model showed that the

incidence of herpes zoster is projected to decrease under all vaccination strategies, so that the

healthcare costs associated with herpes zoster would also be expected to decrease. Hence, the

costs associated with herpes zoster were not included in the base case of this model. However,

we conducted a scenario analysis to assess the impact of accounting costs of HZ and found the

costs of herpes zoster had a minimal impact (<10% change) on the cost-effectiveness of vac-

cine program.

As discussed above, the present model incorporated an exogenous boosting effect. Models

of universal varicella vaccination that include exogenous boosting generally predict a transient

increase in herpes zoster in adults [13, 16, 22, 30, 41–43]. The previous model of universal

childhood varicella vaccination in Norway also included exogenous boosting, which predicted

a substantial increase in herpes zoster incidence, with a peak approximately 50 years after vac-

cination that was 2.6 times higher than the pre-vaccine level [40]. However, the effects of uni-

versal varicella vaccination on herpes zoster incidence are strongly dependent on the

hypothesized boosting intensity: the smaller the intensity, the smaller the increase in herpes

zoster incidence. Similarly, other investigators have reported that the projected transient

increases in herpes zoster are sensitive to a number of parameters whose values are uncertain

[41].

In observational studies, the relationship between circulating varicella virus and herpes zos-

ter epidemiology is unclear. A review of studies of different types was equivocal, in that the

magnitude of any exogenous boosting effect was indeterminate [44]. More recently, the impact

of varicella vaccination on the incidence of herpes zoster was inferred from observation of her-

pes zoster incidence before and after the introduction of childhood varicella vaccination in the

United States [45]. Annual rates of change in herpes zoster incidence were determined in an

interrupted time series regression analysis, for the periods of 1991–1995, 1996–2006, and

2007–2016, corresponding to the pre-vaccination, one-dose vaccination, and two-dose vacci-

nation periods, respectively. The transient increase in herpes zoster incidence predicted by the

exogenous boosting hypothesis was not observed [45].
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From the perspectives of both society and the healthcare system, strategies with two doses

of V-MSD (strategies A and E) were the most effective in reducing costs and making gains in

quality of life. The cost of a caregiver’s lost work time had the greatest effect on costs from the

societal perspective, though varying this cost by ± 20% resulted in only a ± 5.0% change in the

ICER with strategy A. Varying vaccine price by ± 20% resulted in a ± 2.4% change in the ICER

for strategy A from the societal perspective.

This analysis is subject to several limitations. The modeled vaccine administrations at 15

months, 7, and 11 years match Norway’s existing childhood vaccination program (MMR at 15

months and 11 years, and DTP-IPV at 7 years). We modeled a strategy that included a vaccina-

tion at 18 months (strategies E and F). However, there is no existing immunization visit at 18

months, which was the modelled timepoint for the second vaccine dose in strategies E and F.

Any costs associated with this currently unscheduled visit were not included in the model,

thus, the actual costs may be higher than estimated in the present study. Due to a lack of coun-

try-specific data for caregiver costs, the model employs published estimates from other coun-

tries. This is a conservative estimate of ICERs as the analysis utilizes list price for vaccines and

not tender price. There are several other potential limitations to the modeling approach taken

[13]. The model employed a static population size and age distribution, whereas the population

of Norway is expected both to increase and to age over the coming decades. Other demo-

graphic changes were not captured by the model, including changes in fertility trends and

changes in social contact patterns.

Conclusions

In conclusion, universal childhood varicella vaccination with a two-dose schedule is projected

to lead to substantial reductions in varicella incidence and mortality in Norway, with associ-

ated reductions in healthcare use and in direct and indirect costs. All modeled two-dose vari-

cella vaccination strategies are cost saving, but the most cost-effective strategies are with

V-MSD at both the first and second doses, with the second dose administered at either 18

months or 7 years [11]. Policymakers should consider universal varicella vaccination to reduce

varicella disease and the caregiver and economic burdens in Norway.
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