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Abstract. Local-first software aims at both the ability to work offline on local
data and the ability to collaborate across multiple devices. CRDTs (conflict-free
replicated data types) are abstractions for offline and collaborative work that guar-
antees strong eventual consistency. RDB (relational database) is a mature and suc-
cessful computer industry for management of data, and SQLite is an ideal RDB
candidate for offline work on locally stored data. CRRs (conflict-free replicated
relations) apply CRDTs to RDB data. This paper presents our work in progress
that augments SQLite databases with CRR for local-first software. No modifi-
cation or extra software is needed for existing SQLite applications to continue
working with the augmented databases.
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1 Introduction

Local-first software suggests a set of principles for software that enables both collabo-
ration and ownership for users. Local-first ideals include the ability to work offline and
collaborate across multiple devices [7].

RDB (relational database) is a mature and successful computer industry for man-
agement of data, and SQLite is an open source RDB engine that is an ideal candidate for
local-first software, because its operation does not rely on network connectivity. Citing
its homepage1: “SQLite is the most used database engine in the world. SQLite is built
into all mobile phones and most computers and comes bundled inside countless other
applications that people use every day.”

One of the main challenges of supporting local-first software is the general limi-
tation of a networked system, as stated in the CAP theorem [3, 5]: it is impossible to
simultaneously ensure all three desirable properties, namely consistency equivalent to
a single up-to-date copy of data, availability of the data for update and tolerance to
network partition.

CRDTs (conflict-free replicated data types) [10] emerged to address the CAP chal-
lenges. With CRDT, a site updates its local replica without coordination with other sites.
The states of replicas converge when they have applied the same set of updates (referred
to as strong eventual consistency in [10]).

1 https://sqlite.org
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Fig. 1. A scenario of asynchronous database updates

CRRs (conflict-free replicated relations) apply CRDTs to RDBs [12]. In [12], we
reported a CRR prototype that was built on top of an ORM (object-relation mapping)
called Ecto2. Applications are therefore limited to those using the particular ORM. Un-
fortunately, Ecto does not support SQLite in the latest versions.

In this paper, we report our work-in-progress implementation that augments SQLite
databases with CRR support. With a single command, we augment an existing SQLite
database instance with CRR. All applications using the database, including the sqlite3
shell3, continue to work without any modification. Later, we can clone the augmented
database to different sites. We can query and update the database instances at different
sites independently. We can synchronize the instances when the sites are connected.
We are not locked in, though. We can easily drop the CRR-augmentation on any of the
database instances without losing any of the original database features.

Fig. 1 shows a scenario of using our software. Initially we have a SQLite database
instance r0 at site A. We run init(r0) to augment r0 to r0

A with CRR support. We then
apply some updates that lead to instance r1

A. Now at site B we run clone(r1
A) to get a

clone of the database instance. Independently, we make updates on the local instances
at sites A and B. Later, we make yet another clone from site B to site C. From now
on, we make local updates at all three sites and occasionally push our local updates to
remote sites and pull remote updates to local instances.

2 Requirements

A primary requirement for local-first software is that a site should be able to indepen-
dently perform queries and updates on the local database instances.

2 https://github.com/elixir-ecto/ecto
3 https://sqlite.org/cli.html



When two sites are connected, one site should be able to merge the updates per-
formed at the other site without coordination. In particular, the site should be able to
resolve conflicts without collecting votes from other sites.

The instances at different sites should be eventually consistent, or convergent [11].
That is, when they have applied the same set of updates, they should have the same
state.

Database integrity constraints should be enforced. In particular, a merge of con-
current updates may cause the violation of an integrity constraint, though none of the
updates violated any constraint locally at the sites. When this happens, one of the of-
fending updates should be undone. It is important that the sites independently undo the
same offending update.

Finally, existing applications should continue to work without any modification. In
particular, performing queries and updates on local instances should not depend on the
augmentation or any additional third-party software.

3 Technical background

In this section, we review the necessary background information about CRDT and CRR.

3.1 CRDT

A CRDT is a data abstraction specifically designed for data replicated at different sites.
A site queries and updates its local replica without coordination with other sites. The
data is always available for update, but the data states at different sites may diverge.
From time to time, the sites send their updates asynchronously to other sites with an
anti-entropy protocol. To apply the updates made at the other sites, a site merges the
received updates with its local replica. A CRDT has the property that when all sites
have applied the same set of updates, the replicas converge.

There are two families of CRDT approaches, namely operation-based and state-
based [10]. Our work is based on state-based CRDTs, where a message for updates
consists of the data state of a replica in its entirety. A site applies the updates by merging
its local state with the state in the received message. The possible states of a state-based
CRDT must form a join-semilattice [4], which implies convergence. Briefly, the states
form a join-semilattice if they are partially ordered withv and a join t of any two states
(that gives the least upper bound of the two states) always exists. State updates must be
inflationary. That is, the new state supersedes the old one in v. The merge of two states
is the result of a join.

Fig. 2 (left) shows GSet, a state-based CRDT for grow-only sets [10], where E is a
set of possible elements, vdef

=⊆, t def
= ∪, insert is a mutator (update operation) and in

is a query. Obviously, an update through insert(s,e) is an inflation, because s⊆ {e}∪ s.
Fig. 2 (right) shows the Hasse diagram of the states in a GSet. A Hasse diagram shows
only the “direct links” between states.

Using state-based CRDTs, as originally presented [10], is costly in practice, be-
cause states in their entirety are sent as messages. Delta-state CRDTs address this issue
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Fig. 2. GSet CRDT and Hasse diagram of states

by only sending join-irreducible states [1, 2]. Basically, join-irreducible states are ele-
mentary states: every state in the join-semilattice can be represented as a join of some
join-irreducible state(s). In Fig. 2, insertδ is a delta-mutator that returns join-irreducible
states which are singleton sets (boxed in the Hasse diagram).

Since a relation instance is a set of tuples, the basic building block of CRR is a
general-purpose set CRDT (“general-purpose” in the sense that it allows both insertion
and deletion of elements), or more specifically, a delta-state set CRDT.

We use CLSet (causal-length set, [12, 13]), a general-purpose set CRDT, where
each element is associated with a causal length. Intuitively, insertion and deletion are
inverse operations of one another. They always occur in turn. When an element is first
inserted into a set, its causal length is 1. When the element is deleted, its causal length
becomes 2. Thereby the causal length of an element increments on each update that
reverses the effect of a previous one.
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Fig. 3. CLSet CRDT [12]



As shown in Fig. 3, the states of a CLSet are a partial function s : E ↪→ N, meaning
that when e is not in the domain of s, s(e) = 0 (0 is the bottom element of N, i.e.
⊥N = 0). Using partial function conveniently simplifies the specification of insert,t and
in. Without explicit initialization, the causal length of any unknown element is 0. In the
figure, insertδ and deleteδ are the delta-counterparts of insert and delete respectively.

An element e is regarded to be in the set when its causal length is an odd number. A
local insertion has effect only when the element is not in the set. Similarly, a local dele-
tion has effect only when the element is actually in the set. A local effective insertion or
deletion simply increments the causal length of the element by one. For every element
e in s and/or s′, the new causal length of e after merging s and s′ is the maximum of the
causal lengths of e in s and s′.

3.2 CRR

The RDB supporting CRR consists of two layers: an Application Relation (AR) layer
and a Conflict-free Replicated Relation (CRR) layer (see Fig. 4). The AR layer presents
the same RDB schema and API as a conventional RDB system. Application programs
interact with the database at the AR layer. The CRR layer supports conflict-free repli-
cation of relations.

r̃A

rAq(rA)
query

u(rA)
refreshupdate
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Fig. 4. A two-layer relational database system [12]

An AR-layer database schema R has an augmented CRR schema R̃. In Fig. 4, site A
maintains both an instance rA of R and an instance r̃A of R̃. A query q is performed on
rA without the involvement of r̃A. An update u on rA triggers an additional update ũ on
r̃A. The update ũ is later propagated to remote sites through an anti-entropy protocol.
Merge with an incoming remote update ũ′(r̃B) results in an update ũ′ on r̃A as well as
an update u′ on rA.

CRR has the property that when both sites A and B have applied the same set of
updates, the relation instances at the two sites are equivalent, i.e. rA = rB and r̃A = r̃B.

The two-layered system also maintains the integrity constraints defined at the AR
layer. Any violation of integrity constraint is caught at the AR layer. A failed merge
would cause some compensation updates.

We adopt several CRDTs for CRRs. Since a relation instance is a set of tuples or
rows, we use the CLSet CRDT (Fig. 3) for relation instances. We use the LWW (last-
write wins) register CRDT [6, 9] for individual attributes in tuples.



4 Work-in-progress implementation

We implement all functionality required for local updates completely inside the SQLite
database, so no modification to existing applications or extra software is required for
the applications to be able to continue working with the database. We implement the
command-line features in Python (that in turn calls SQL statements).

4.1 Command-line operations

For command-line operations, we adopt git4 operation names.

– init augments an existing SQLite database instance with CRR support.
– clone copies a remote augmented database instance to a local location.
– pull merges remotely applied updates to the local instance.
– push merges locally applied updates to a remote instance.
– remote queries and configures the settings of remote instances.

4.2 CRR-augmented database

For an AR-layer relation schema R(A1,A2, . . .), we generate a new CRR-layer schema
R̃(K,L,T1,T2, . . . ,A1,A2, . . .), ignoring all integrity constraints in R. K is the primary
key of R̃. K values are globally unique. L is the causal-lengths (Fig. 3) of the tuples in
R̃. Ti is the timestamp of the last update on attribute Ai. In other words, the (K,L) part
represents the CLSet CRDT of tuples and the (Ai,Ti) parts represent the LWW register
CRDT of the attributes.

In what follows, we write t(K), t(Ai) etc. for the K and Ai values of tuple t.
We use randomblob(32) of SQLite to generate K values. The chance that two

tuples in the same relation have the same K value is extremely small.
For the AR-layer relations, we also generate triggers. We describe the triggers later

in Section 4.3.
In addition to the augmentation of the AR-layer relations, we generate three more

relations. A Clock relation implements a hybrid logical-physical clock [8] at a (virtual)
nanosecond scale (Section 4.6). A Site relation maintains the information about the
sites known at this instance. The information includes the hosts and paths of the remote
instances, the last time this instance applied a push and a pull to the sites, etc. A History
relation maintains a history of all the updates that have been applied.

4.3 Local updates

The init operation generates triggers on relation R. Every insertion, deletion and up-
date on an instance r of R triggers the corresponding update on the instance r̃ of R̃.

When inserting a new tuple t into r, we insert a new tuple t̃ into r̃, with the ini-
tial t̃(L) = 1. When deleting t from r, we increment t̃(L) with 1, so that the new t̃(L)
becomes an even number. When inserting the deleted t back to r, we increment t̃(L)

4 https://git-scm.com



with 1, so that the new t̃(L) turns back to an odd number. When updating t(Ai) in r, we
update t̃(Ai) and t̃(Ti) in r̃.

Since no integrity constraint is defined in R̃, a successful local update on r will
always lead to a successful update in r̃.

In addition to the triggers on R, the init operation also generates triggers on R̃. For
every update on an instance r̃ of R̃, a trigger inserts a tuple in the History relation.

4.4 Merges

The pull of the concurrent updates from a remote site consists of the following steps:
1) generating the concurrent updates at the remote site; 2) transferring the generated
updates to the local site (to be described in Section 4.5); 3) merging the received con-
current updates. A push is handled in a similar way.

As CRRs are based on delta-state CRDTs, the updates are join-irreducible states
in a join-semilattice (Section 3.1). In our case, the updates are in fact the tuples in r̃
(Section 3.2). Using the History relation and the information of the last push and pull
in relation Site, we can generate the updates since the last push or pull.

We generate the concurrent updates of the remote instance in a temporary database5

and transfer it to the pulling site. This way, we avoid encoding individual tuples into an
intermediate representation.

During the merge of received updates, we temporarily disable the generated triggers
on AR-layer relation instances by setting a flag on the triggers.

An update on an relation instance r̃′ at a remote site is actually a tuple t̃ ′. If a tuple
t̃ in the local instance r̃ exists such that t̃(K) = t̃ ′(K), we update t̃ with t̃ t t̃ ′ where the
merge t is the join operation of the join-semilattice (Section 3.1). Otherwise, we insert
t̃ ′ into r̃. The merge t̃ t t̃ ′ is defined as:

t̃ t t̃ ′ def
= t̃ ′′, where t̃ ′′(L) =max(t̃(L), t̃ ′(L)), and

t̃ ′′(Ai), t̃ ′′(Ti) =

{
t̃ ′(Ai), t̃ ′(Ti) if t̃ ′(Ti)> t̃(Ti)

t̃(Ai), t̃(Ti) otherwise

After the update of r̃, we update r as the following. If t̃(L) is an even number, we
delete t (where t(A1) = t̃(A1)∧ t(A2) = t̃(A2)∧ . . .) from r. Otherwise, we insert or
update r with πA1,A2,...(t̃).

If the update on r violates an integrity constraint, we first roll back the updates
on r and r̃ and then start an compensation update [12] (remaining to complete, see
Section 4.7).

4.5 Network connections

At present, we support access to remote database instances in two possible cases: 1) the
remote database instance is located on the same host as the local instance; or 2) the
remote instance is located on a host where we have ssh6 access.

5 https://sqlite.org/lang_attach.html
6 https://www.ssh.com/



When performing a clone, we specify a database instance stored on a remote host
as ssh://user@host#port:path/to/db.

Since a SQLite database instance is stored as a file, we may (accidentally) copy or
move the file to a different location. Every time we open an instance for push or pull, we
verify the location information of the local instance stored in the Site relation and make
modifications accordingly. We run the remote command-line operation to explicitly set
or modify the location information of remote instances.

4.6 Timestamp values

The Clock relation, which the init operation creates, addresses two issues. The first
issue is that the finest time resolution that SQLite provides is at a sub-millisecond level,
so consecutive updates may have the same timestamp value. Notice that a third-party
library with higher time resolution does not help, since our goal is to implement all
features related with local updates completely inside the SQLite database instance. The
second issue is that the physical clock (or “wall” clock) values are not sufficient to
represent the happen-before relationship between updates, so a concurrent update may
mistakenly win a competition when the physical clocks at different sites are skewed.

To address the first issue, we use the Clock(Ms,Ns) relation, where Ms is the phys-
ical clock value in milliseconds and Ns is the offset within a millisecond at nanosecond
scale. The Clock relation has only one tuple (τms,τns), which is the last timestamp value
that has been generated or merged. The comparison of two timestamp values is defined
as (τ ′ms,τ

′
ns)> (τms,τns) iff τ ′ms > τms or τ ′ms = τms∧ τ ′ns > τns.

To generate a new timestamp value, we first generate a new physical clock value τ ′ms
(derived from the julianday function of SQLite) and a random number τ ′ns such that
0 ≤ τ ′ns < 106. If the generated value (τ ′ms,τ

′
ns) is greater than the old value (τms,τns),

the new timestamp value is (τ ′ms,τ
′
ns). Otherwise, we generate a new random number

τ ′′ns such that τns < τ ′′ns < 106 and the new timestamp value becomes (τms,τ
′′
ns).

To address the second issue, we implement a hybrid logical-physical clock [8],
which has the property that for two updates u1 and u2 with timestamp values τ1 and
τ2, τ1 < τ2 iff u1 happens before u2 or u1 and u2 are concurrent. In other words, u2 does
not happen before u1 when τ1 < τ2.

At a merge, if a timestamp value (τ ′ms,τ
′
ns) of the incoming tuple is greater than the

(τms,τns) tuple in the Clock instance, we update the instance with (τ ′ms,τ
′
ns).

4.7 Current implementation status

At the time of this writing, we have not finished all the features described in [12]. The
remaining features include: enforcement of integrity constraints that are violated at the
time of merge, and using a counter CRDT for lossless resolution of concurrent attribute
updates with additive update semantic. In addition to the merge in batch mode (push
and pull), we are going to implement a continuous synchronization mode, like in [12],
so that the sites can frequently exchange latest updates without explicit command-line
push and pull. We can use our earlier implementation on top of an ORM [12] as a
guideline to implement the features that we have not implemented so far, in particular
the features that do not need to be implemented fully in SQL.



We currently focus on making a working prototype and have not put much effort
on performance issues. We expect performance penalties for database updates, since
an update at the AR layer now involves multiple updates. The performance of queries
should not be affected, since they do not involve the CRR-augmented parts.

5 Related work

We limit the comparison to an alternative implementation reported in our earlier paper
[12] and refer the interested reader to [12] for discussions on the other research work
that are generally related to CRR.

Earlier, we implemented CRR on top of the Ecto ORM. One advantage of an imple-
mentation on top of an ORM is that it supports all RDBMSs (relational database man-
agement systems) that the ORM supports. It is even possible to synchronize between
the instances running with different RDBMSs. There are some drawbacks, though. Only
the applications using the ORM (and in the programming language of the ORM) can
benefit from the CRR support. The supported RDBMSs are limited to those supported
by the ORM. Unfortunately, the ORM of our choice, Ecto, does not support SQLite in
the latest versions, and SQLite is an ideal candidate for local-first software (Section 1).

Implementing direct CRR support for SQLite addresses the above-mentioned draw-
backs, at the cost of not benefiting from the advantages.

In [12], the implementation was mostly in the Elixir7 programming language. Now,
we try to keep the implementation as much in SQLite as possible. In particular, we
aim at implementing all features related to local updates inside SQLite, so that existing
applications continue to work without making any modification. We even restrict our
implementation to the SQLite distribution that does not include any extension.

Since Elixir facilitates actor-based programs, data communication is built in. Lit-
tle programming effort is needed for data communication. On the other hand, every
database update is encoded and decoded between RDBMS and Elixir representations.
This increases run-time overhead. Moreover, data security is not taken into account.
Since we now transfer data through ssh connections, we do not have to worry about
security and configuration issues.

There are some further differences in implementation details. In [12], a local update
is first made in the CRR layer and then refreshed to the AR layer. Now the update first
happens in the AR layer which then triggers updates in the CRR layer.

Currently, our implementation has not yet been as complete as the earlier imple-
mentation (Section 4.7).

6 Conclusion

We have presented a work-in-progress implementation of a software prototype that aug-
ments existing SQLite databases for local-first software. With a single command-line
operation, we augment an existing database instance with CRR support. Existing ap-
plications using the existing database instance, without any modification, continue to

7 https://elixir-lang.org/



work with the augmented instances. We can then maintain multiple instances of the
same database at different devices and independently query and update the different
instances. We can synchronize the updates at different instances when the devices are
connected. The instances are eventually consistent. That is, they will have the same
state when they have applied the same set of updates. The implementation is still in its
early stage and more features remain to be completed.
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