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Manual processing of a large volume of video data captured through CCTV is challenging due to various reasons. Firstly, manual
analysis is highly time-consuming. Moreover, as surveillance videos are recorded in dynamic conditions such as in the presence
of camera motion, varying illumination, or occlusion, conventional supervised learning may not work always. Thus, computer
vision-based automatic surveillance scene analysis is carried out in unsupervised ways. Topic modelling is one of the emerging
fields used in unsupervised information processing. Topic modelling is used in text analysis, computer vision applications, and other
areas involving spatio-temporal data. In this paper, we discuss the scope, variations, and applications of topic modelling, particularly
focusing on surveillance video analysis. We have provided a methodological survey on existing topic models, their features, underlying
representations, characterization, and applications in visual surveillance’s perspective. Important research papers related to topic
modelling in visual surveillance have been summarized and critically analyzed in this paper.

CCS Concepts: • Computing methodologies → Probabilistic reasoning; Scene understanding; Activity recognition and understanding;
Visual content-based indexing and retrieval; Scene anomaly detection; Motion capture.
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1 INTRODUCTION

CCTV camera setups record and store a huge volume of video data that are unexplored due to the absence of interesting
events and shortage of manpower. Interpreting and visualizing large volumes of videos can be challenging due
to various reasons such as unavailability of computational hardware, limitation of supervised learning methods,
complex nature of the scene, etc. Surveillance videos are summarized and processed with the help of object motion
patterns [16, 119, 147, 177]. Motion-guided video analysis systems first extract the motion information by tracking
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the moving objects [126]. Next, the motion tracks are analysed to identify the events of interest. In applications such
as traffic monitoring [27], video forensic [118], or crowd monitoring [133], recordings may contain varying motion
patterns. Unsupervised methods can be highly productive to deal with such a large volume of data.

“Topic” is defined by the semantic feature that can denotes the category. Topic model [9, 10, 151] is a popular
approach used to identify “Topic” automatically from a collection of features by analyzing the occurrences and
correlations [85, 135]. Topic models have also been successfully applied in mining textual information and natural
language processing [50, 142, 155, 163]. In recent years, similar concepts have been used in various computer vision
(CV) tasks [37, 65, 148].

Cameras attached to different sources such as CCTV, smartphones, or drones generate a large volume of unexplored
video data. Video is considered one of the most complicated and challenging sources of information for researchers due
to: (i) complex spatio-temporal relations and (ii) variations in visual representations. This makes the processing of
videos in a supervised learning framework hard. Hence unsupervised methods are preferred for indexing, searching, and
understanding of video contents. Unsupervised clustering approaches such as K-means [68] are popular in many data
understanding and grouping. Themain drawback of such clustering algorithms is the demand of suitable feature selection
and similarity measures. The choice of 𝐾 (number of clusters) is also important. Hierarchical cluster analysis [130]
bridges the gap of cluster selection and interpretation. However, it needs expert inputs for better interpretation.
Unsupervised deep neural networks primarily deal with the learning of visual features [72]. In this category, generative
approaches [99] can process data in an unsupervised way. Context-Based methods [105] utilize context similarity
such as patches or temporal structure to extract similarity among unlabelled data. These methods are highly domain
specific and unable to handle the complex nature of data. Other unsupervised methods such as semantic label-based
methods [23] use algorithms, simulations, game engines, etc. to generate synthetic labelled data for training. Cross
modal-based methods [62] use labelled data to generate labels for similar unlabelled data points. These methods have
limitations and cannot discover hidden patterns automatically. Topic-based analysis of large volume complex data such
as text and video has shown some potential in various data-driven applications. The topic models are suitable for large
volume complex data, where supervised learning is difficult. It is used in searching, recommendation, indexing, event
detection, and many more. Unlike unsupervised methods such as cluster analysis, topic-based analysis can discover
underlying patterns automatically and it is suitable for video analysis applications too.

1.1 Motivations and Contributions

The main motivation of this work is to summarize the applications of topic models for semi-supervised and unsupervised
clustering of actions and events in surveillance videos, classification of events, and learning of distinct events (topics).
None of the existing reviews summarized in Table 1 discusses topic models for video analysis. Therefore, a review
of topic models used for video surveillance can be a timely contribution to this field of research. We have made the
following research contributions in this paper:

• We have summarized topic models, methodologies, and how they have been used in video analysis applications.
• We have provided an overview of the publicly available video datasets applicable to video analysis.

The rest of the paper is organized as follows. In Section 2, we discuss the details of the topic models. The section
starts with the state-of-the-art topic models used in text-based analysis. Next, we discuss the possibility of extension
from text-based analysis to video-based analysis. This section includes details of the topic models. In Section 3, we
discuss the algorithmic comparison of different topic models including time complexity, advantages, and disadvantages.
Manuscript submitted to ACM
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Table 1. Recent surveys in topic modelling

Year Ref Broad Topics

2010 [87] An empirical comparison of four text mining methods
2012 [69] Topic models and advanced algorithms for profiling of knowledge in scientific papers
2013 [31] A Survey on Topic modelling
2015 [5] A survey of topic modelling in text mining
2016 [82] A Survey on Interactivity in Topic Models
2016 [110] LDA-based Topic Modelling in Text Sentiment Classification: An Empirical Analysis.
2017 [70] Latent Dirichlet Allocation (LDA) and Topic modelling: models, applications, a survey
2018 [41] A Study of Topic Modelling Methods
2019 [70] Latent Dirichlet Allocation (LDA) and Topic modelling: models, applications, a survey

In Section 4, we discuss the information representation in video analysis, different applications, and details of the
datasets, and evaluation methods. Finally, Section 5 concludes the article.

2 TOPIC-BASED ANALYSIS

Several pattern analysis tasks are solved using machine learning and statistics [5]. Finding patterns of different features
in collections of data using a hierarchical probabilistic model, is popular in literature. These models are called topic
models. Topic modelling is a kind of unsupervised classification, where a natural group of items, their occurrences, and
the distribution of the groups are used for learning and classification. The groups are called “topics”. The methods have
been primarily designed for text analysis. Fig. 1 shows a typical topic modelling setup used in various text and video
analysis setups. First, the unique words and the frequency of occurrences are extracted from the set of documents. Next,
the words are grouped semantically, known as “Topics”. Finally, a document is classified based on the topics and the
distribution of the topics in the document. The topic models are easily generalized to other kinds of data. The topic
models analyse different forms of data such as images, biological data, or videos. Here, we first discuss the possibility of
extension of the existing models from text to video data analysis. Next, we discuss different topic models that have
already been applied for video analysis.

Extension of Text Analysis Models to Video Analysis: Although the majority of the topic models developed
so far focus on text analysis, however, these models can be extended to video analysis. The main components in a
typical topic-based video analysis framework are (a) feature representation and extraction, (b) defining semantics, and
(c) designing suitable topic models. Text data usually contains hierarchical information, namely document, sentences,
and words. In a similar manner, a video is represented using a sequence of activities and interactions of objects. A topic
of a text data is represented by a “bag of words”. A “bag of features” can represent video. This similarity leads to an
easy extensibility of the existing topic models to video data. From the dimension of semantics, “topic” is represented by
objects, behaviors, activity, events, abnormal events, stories, etc. In the temporal dimension, the topic is denoted by
duration, correlated position, sequence of events, etc. However, there are a few challenges still remains. For example,
text data comes with additional features such as corpus and word-to-vector representation that help topic models to
measure similarity. This is not available with the video data. Table 2 compares the terminologies of topic models used
in text and video analysis.

Manuscript submitted to ACM
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Fig. 1. Generic presentation of topic modelling. The method combines word frequency, word cluster, and topic distribution over
documents for extracting the topics.

Table 2. Comparisons of the terminologies used in topic models on text and video data

TEXT Analysis VIDEO Analysis

A document A set of trajectories / video clip
A word An activity / action/event
A topic An unique activity / pattern

State-of-the-art Topic Models: Several variations of the topic models used for text analysis have been reused
for video analysis. The models are primarily categorized into two groups: (a) time-independent models and (b) time-
dependent models. Models such as probabilistic latent semantic analysis (PLSA), Latent Dirichlet allocation (LDA),
Co-related Topic Model (CTM), and other extensions of LDA [19, 103, 114] are popular amongst the first category.
Analyzing and modelling topics through observations on different trends over time is called “Topic Evolution Models”.
These types of models are grouped into continuous-time models and discrete-time models. Topic evolution modelling
such as Non-Markov Continuous Model and Dynamic Topic Model (DTM) [65], and Multi-scale Topic Model (MST)
usually consider a discrete distribution of the topics over time, whereas Topics over Time (TOT), dynamic mixture
model (DMM), and Hierarchical Dirichlet Process (HDP) perform parameterization with continuous distributions over
time associated with each topic. Fig. 2 depicts the categorization of topic models used in video analysis.

These generative models have been used in semi-supervised and unsupervised ways to perform automatic video
analysis and video information retrieval. Next, we discuss the state-of-the-art topic models used in video-based
applications. The important notations commonly used in research articles are mentioned in Table 3.

The topic is a probability distribution over features and the data can be modelled by the probabilistic behaviour
of the features. Generally, topic models are formulated using (i) observed variables, (ii) latent variables (hidden), (iii)
sampling methods, and (iv) conditional dependency among variables. The process of finding hidden topics (latents)
from the observed features, is referred to as topic modelling. This can be achieved by finding the probability distribution
of features over the data. It is a method for constructing a topic (shared feature) 𝑧 for a given data 𝑑 considering the
Manuscript submitted to ACM
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Fig. 2. Categories that can be considered in the field of topic modelling applicable to video analysis.

Table 3. Descriptions of commonly used variables

Variable Description

T Number of targets in a video clip
N Total number of activities in a video clip
X Observed activity
Z An atomic activity/topic assigned to X
𝜃 Probability of topic in a given activity
𝜙 Probability of activity in a given topic

probability distribution of features in a given set of features 𝐹 . A topic model is interpreted using plate notation. We
have also used such notations to demonstrate the topic models used in video analysis. The symbolic representations of
different components are shown in Fig. 3.

Fig. 3. Symbols used in graph plate notations.

There are mainly two types of statistical topic models available in the literature, namely probabilistic latent semantic
analysis (PLSA) [55] and Latent Dirichlet Allocation (LDA) [14]. PLSA provides a co-occurrence perspective to extract
topics or themes and LDA is based on Bayesian approach. The methods use different frameworks for modelling topics
such as maximum likelihood estimation (MLE) through the Expectation Maximization (EM) algorithm [54, 55], Bayes

Manuscript submitted to ACM
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inference [14, 53, 107, 138], Gibbs sampling [45, 117, 138], correlation based [67], and maximum a posteriori probability
(MAP) estimation [13].

• PLSA: Probabilistic Latent Semantic Analysis [54] is a statistical learning method used to find a mapping between
high-dimensional count vectors to a low-dimension space that describes semantic relationships within co-occurrence
data. First, a video is represented by the collection of trajectories 𝑇 = {𝑡1, ..., 𝑡𝑛}. Trajectories can be extracted by
tracking the objects present in the video clip. A set of micro-activities 𝑋 = {𝑥1, ..., 𝑥𝑚} of targets is defined by ignoring
the order. The video is summarized as a co-occurrence matrix with the terms 𝑐 (𝑥𝑚, 𝑡𝑛) that denote how much time the
activity 𝑥𝑚 has appeared in the clip (𝑡𝑛). The latent variable 𝑧 ∈ 𝑍 = {𝑧1, ..., 𝑧𝑘 } in PLSA is called as an aspect model
and in a video, it represents topics. The joint probability model over video clips and activities can be defined using (1),
where 𝑃 (𝑡) is the probability of an event.

𝑃 (𝑡, 𝑥) = 𝑃 (𝑡)
∑
𝑧∈𝑍

𝑃 (𝑥 | 𝑧)𝑃 (𝑥 | 𝑡) (1)

The conditional probability 𝑃 (𝑥 | 𝑡) is the probability of observing an activity 𝑥 given the topic 𝑧. 𝑃 (𝑧 | 𝑡) is video-
specific conditional multinomial probability. The parameters of PLSA are estimated using the maximum likelihood
principle. For example, given a training video containing a trajectory set (𝑇 ), 𝜃 defines the log-likelihood of the model
parameters. PLSA is defined in (2), where the probability model is derived from (1) and 𝑛(𝑡, 𝑥) represents the number of
occurrences of activity 𝑥 in the video.

𝐿(𝜃 | 𝑇 ) =
∑
𝑡 ∈𝑇

∑
𝑥

𝑛(𝑡, 𝑥) log 𝑃 (𝑥 | 𝑡) (2)

EM algorithm is used for optimizing the classification accuracy described in (2). The graphical presentation of PLSA
is presented in Fig. 4. The video clips are then represented in the latent topic space using models like PLSA and used in
the traffic flow direction, movement pattern, human action, etc.

Fig. 4. Graphical representation of PLSA applicable to video analysis. Here, a trajectory/video clip is used for feature extraction and
represented by a sequence of atomic activities (𝑍 ) . The main target is to estimate the high level characteristics of the video/object
such as actions, behavior, etc. The document specific topic distribution (𝜃 ) and the topic𝜓 are known or estimated in some cases.

• LDA: The main drawback of PLSA [14] is, it is not a well-defined model suitable for fully generative probabilistic
models as it cannot assign a probability to unknown observations. Latent Dirichlet Allocation (LDA) [14] improves
Manuscript submitted to ACM
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upon PLSA by introducing a Dirichlet prior on 𝜃 and𝜓 . 𝛼 is the Dirichlet prior with multinomial distribution and 𝛽
represents the Dirichlet prior parameters that tell how latent topics are mixed in a given video. The joint distribution of
a topic mixture 𝜃 , a set of activities 𝑥 observed in the video of length 𝑁 , and their corresponding topic 𝑧 are expressed
using (3).

𝑃 (𝜃, 𝑧, 𝑥 | 𝛼, 𝛽) = 𝑃 (𝜃 | 𝛼)Π𝑁𝑛=1𝑃 (𝑧𝑛 | 𝜃 )𝑃 (𝑥𝑛 | 𝑧𝑛, 𝛽) (3)

The method can be used further to compute the marginal distribution of patterns by integrating over 𝜃 using equation
(4). Fig. 5 depicts the graphical representation of the LDA model.

𝑃 (𝑥 | 𝛼, 𝛽) =
∫

𝑃 (𝜃 | 𝛼)Π𝑁𝑛=1Σ𝑧𝑛𝑃 (𝑧𝑛 | 𝜃 )𝑃 (𝑥𝑛 | 𝑧𝑛, 𝛽)𝑑𝜃 (4)

Fig. 5. Graphical representation of LDA in video analysis. This is fully generative as compared to PLSA. Here, a trajectory / video
clip is used for feature extraction and represented by a sequence of atomic activities (𝑍 ) . The newly added parameters 𝛼 and 𝛽 are
Dirichlet prior with multinomial distribution and the Dirichlet prior with parameters that tell the distribution of topics in the dataset.
𝜑 is the activity distribution in the video.

• CTM: Correlated Topic model (CTM) [12] is an extension of LDA that uses a logistic normal prior to explicitly
model correlation patterns with a Gaussian covariance matrix. CTM is capable to model dependencies between different
behaviours in an unsupervised framework [120]. Belief-based CTM has been used to learn discriminative middle
level features (topics) for trajectory analysis and clustering [186]. Fig. 6 depicts the graphical representation of CTM,
where 𝜂 is assumed to follow a joint Gaussian distribution ℵ(𝜇, Σ) and 𝑧 is a latent variable being assumed to follow a
parameterized multinomial distribution 𝑓 (𝜂).

Topic Evolution Methods: Topic evolution methods [18, 29, 175] are generative methods that have been used to
analyse the evolution of unobserved topics from the video over time for surveillance applications. Evaluation methods

Manuscript submitted to ACM
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Fig. 6. Graphical representation of correlation topic model applicable to video analysis. Here, the activity (𝑍 ) depends on joint
Gaussian distribution of 𝜇 and 𝜎 , where 𝜇, 𝜎 represent activity-level topics’ mean and covariance.

may be used in various time-dependent models and their research applications to model the associativity between topics
and extracted activities provide an efficient tool for monitoring and visualizing the strength of the topic depending
on time. In general, topic evolution can be categorized as modelling topic evolution by continuous-time models and
discrete-time models.

Continuous models are obtained when observations are collected continuously over a defined period. Neo et al. [106]
have introduced a topic evolution method for browsing events based on users’ choice and proposed question answering
on top of the topic hierarchy to manipulate different functional video search queries. In the topic over time method [154],
a topic is considered as being related to a continuous multinomial distribution over time and sampled through a Dirichlet.
Fig. 7 depicts the graphical representation, where the 𝛽 distribution of each topic generates a time stamp and used
in topic discovery. Another approach uses Gibbs sampling [52] to discover the topics shown in Fig. 8. In various
applications [144], non-parametric hierarchical Bayesian time modelling is used to provide correctness in anomaly
detection with a sampling strategy for posterior estimation in activity analysis.

A dynamic topic model is a generative model that implements topic changes over time in sequentially arranged
text documents and shows a word-topic distribution that helps to view the topic trends. It is an extension of LDA
proposed by Blei et al. [11]. In this model, the data is divided into time slices and it models the documents of each slice
with a k-component topic model where topics related to slice 𝑡 evolve from topics related to slice 𝑡 − 1. 𝑖𝑡ℎ component
of the natural parameter 𝛽𝑖 = 𝑙𝑜𝑔(𝜋𝑖 |𝜋𝑉 ), where EM-MCTM [66] is used for abnormality detection. It shows more
effectiveness rather than using Gibbs sampling-based inference when experimenting on both real and synthetic datasets.

• HDP: Hierarchical Dirichlet Processes (HDP) [153] is a Bayesian non-parametric topic model. Unlike the LDA,
HDP does not require the number of topics as a parameter. The number of topics is automatically estimated from the
data, hence the method is a popular choice in video analysis [7, 139, 166]. The method initially clusters similar patterns
(features) and co-occurring patterns together as topics. In video processing, a global list of activities is represented by
(𝐺0), and its distribution is a Dirichlet Processes. The activities are represented by the concentration parameter 𝛼 and
Dirichlet prior 𝐻 . For each video segment (𝑡 ), 𝐺𝑡 is randomly chosen from 𝐺0 and concentration parameter 𝛽 . For any
𝑖𝑡ℎ activity in 𝑡 , a topic is chosen as 𝜃𝑡𝑖 and the activity (𝑋𝑡𝑖 ) is a multinomial distribution of 𝐺𝑡 . Although the number
of topics is determined automatically in HDP, rare and low frequent activities are treated as noise or abnormal events in
Manuscript submitted to ACM
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Fig. 7. Topic Over Time (TOT) in video analysis: graphical representation. Here, the parameters 𝛼 and 𝛽 are multinomial distribution
of activity and topics in the video. 𝜑 denotes temporal distribution of activity.

the video. This property is useful in video analysis and abnormality detection. Fig. 9 depicts a graphical representation
of HDP.

• Random-Field Topic Model: Random-field topic model [180] approaches use Markov Random Field that has
been used to identify tracklets (fragments of trajectories). Such methods are useful to discover coherent events like
follow, together, cross, interaction, etc. Fig. 10 depicts a graphical representation of such a system, where a point on
the tracklet is represented by four variables (𝑥, ℎ, 𝑧,𝑚) such that 𝑥 is the fully observed visual word. ℎ and𝑚 are the
labels of sources and sinks related to past observations. The parameter 𝐴 denotes the MRF connection between two
neighbouring tracklets. 𝜃𝑖 is the distribution of document 𝑖 over topics. Φ𝑘 is the spatial distribution over topics, where
the sources and sinks are denoted by Ψ𝑘 and 𝜔𝑘 .

A space-time MRF model [81] reveals that robustly localized automatic abnormalities in a crowded video clip can
simultaneously capture global-level activities via irregular interactions between local activities. Moreover, in the case of
moving object tracking, a compress-domain method can use a spatio-temporal Markov Model [80] in H.264/AVC for fast
and accurate performance. The model is defined in (5), where 𝜋 is the mean parameter of V-dimensional multinomial.
To model the sequence of compositions of random variables of each topic 𝛽𝑡,𝑘 by chaining Gaussian distributions, an
extension of the logistic normal distribution [3] to time-series simplex [158], has been introduced.

𝛽𝑡,𝑘 | 𝛽𝑡−1.𝑘 ∼ 𝜒 (𝛽𝑡−1,𝑘 , 𝜎2𝐼 ) (5)
Manuscript submitted to ACM
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Fig. 8. Topic Over Time (TOT) in video analysis: graphical representation of Gibbs sampling. The main difference with TOT is that the
activity distribution (𝜑) is sampled in a bounded time (𝑡 ) .

The sequential structure between the models is again captured by a logical normal with mean 𝛼 and uncertainty
over proportions. The modified model is defined in (6).

𝛼𝑡 | 𝛼𝑡−1 ∼ 𝜒 (𝛼𝑡−1, 𝜎2𝐼 ) (6)

The palate diagram for this generative process is shown in Fig. 11, where 𝜋 maps the multinomial natural parameters
to mean parameters.

𝜋 (𝛽𝑘,𝑡 )𝑤 = 𝑒𝑥𝑝 (𝛽𝑘,𝑡,𝑤) | Σ𝑤𝑒𝑥𝑝 (𝛽𝑘,𝑡,𝑤) (7)

• MSTM: Another variation of the dynamic topic model, named as Markov Clustering Topic Model (MCTM) [57], is
more sensitive, robust, and efficient in handling computational challenges. Markov Chain Monte Carlo (MCMC)-based
Gibbs sampling or variational Bayesian inference is another method of such category that can be used for activity
discovery in surveillance applications [7, 101, 173]. Another variation of MCTM, namely Latent Dirichlet Markov
Clustering (LDMC) [184], has been proposed for modelling human action categorization and correlates them over time.
The method has been successfully applied to sensor data [22] and videos for automatic action categorization. Fig. 12
depicts the graphical representation of such systems.

• MST: One main feature of the topic model is its ability to discover meaningful key motion patterns in a happening
scenario by observing a video clip for an extended period. For the problem of pattern recognition, there is a nice
probabilistic explanation [169] that uses diffusion maps following low-level feature quantization to identify dominant
motion patterns that occur simultaneously at different scales. Processing information in different scales is known as
Multi Scale Topic model (MST).
Manuscript submitted to ACM
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Fig. 9. Hierarchical Dirichlet Processes (HDP) applicable to video analysis. It contains two Dirichlet Processes (DP), namely 𝛼 and 𝛽 .
The first DP is used to extract a global level activities (𝐺0) and the second one is a subset of activities from the global set for a clip
(𝐺𝑡 ) . Finally, visual bag-of-words are drawn from activities.

3 ALGORITHMIC COMPARISONS

A model which generates an output considering the prior distribution of some objects, is known as a generative model.
Here, we discuss the comparative analysis of the generative models of different algorithms, advantages and drawbacks,
and their complexities. PLSA models each feature in a video as a sample from a mixture model, where the components
of the mixture model are multinomial random variables. Each video is considered as a variety of mixture models (topic).
On the other hand, LDA uses a generative process to infer the topics. The generative process is assumed that the
videos (a collection of activities) are represented as random mixtures over latent topics. The generative processes of
PLSA and LDA are demonstrated in Algorithms 1 and 2. The CTM uses a logistic normal distribution replacing the
state-of-the-art Dirichlet process. This produces more flexibility to the model. CTM incorporates a covariance structure
among the different components. This gives a more realistic model of the latent topic structure, where the presence of
one latent topic may be correlated with the presence of another. The algorithm is presented in Algorithm 3. The TOT is
an updated method of LDA that includes the time information of the LDA. It uses Gibbs sampling procedure as shown
in Algorithm 4. HDP is a non-parametric Bayesian approach. It is a hierarchical version of Dirichlet process (DP). The
generative process is presented in Algorithm 5, where 𝐻 is the base distribution and 𝛼 and 𝛽 are hyper-parameters.
Unlike the standard LDA, MCTM uses a three-layered latent structure. The behaviour is assumed to vary systematically
over time. The generative model is shown in Algorithm 6.
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Fig. 10. Random-field topic model used in video analysis. The distribution of video 𝑖 is defined by 𝜃𝑖 . (Φ,𝜓,𝜔) are the parameters of
the specific topic. 𝛽,𝜂,𝜅 are the hyper-parameters of a Dirichlet distribution. 𝑥,ℎ,𝑚 are discrete variables sampled from a discrete
distribution from the MRF.

Algorithm 1 PLSA
1: PLSA (video):
2: Select an activity with probability 𝑃 (𝜃 )
3: for Every feature in the activity 𝜃,𝑍 do
4: Select topic 𝑍𝑖 from conditional distribution with probability
𝑃 (𝑍 |𝜃 )

5: Select a feature with probability 𝑃 (𝑋 |𝑍 ) ⊲ Joint probability
discussed in equations 1, 2

6: end for

Algorithm 2 LDA
1: generativeProcessLDA (video)
2: 𝜃𝑖 ∼ 𝐷𝑖𝑟 (𝛼) (Where 𝑖 = 1, ..., 𝑁 ;𝜃𝑖 ∈ Δ𝐾 ) ⊲

𝜃𝑖,𝑘 is the probability that a video 𝑖 ∈ {1, ..., 𝑀 } belongs to topic
𝑘 ∈ {1, ..., 𝐾 }

3: 𝜓𝑘 ∼ 𝐷𝑖𝑟 (𝛽) (Where 𝑘 = 1, ..., 𝐾 ;𝜙𝑘 ∈ Δ𝑉 ) ⊲𝜓𝑘,𝑣 is the
probability that a activity 𝑣 ∈ {1, ...,𝑉 } in topic 𝑘 ∈ {1, ..., 𝐾 }

4: Choose 𝑍𝑖,𝑗 ∼ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝜃𝑖 ) (Where 𝑍𝑖,𝑗 ∈ {1, ..., 𝐾 })
5: Choose 𝑋𝑖,𝑗 ∼ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝜓𝑖 ) (Where 𝑋𝑖,𝑗 ∈ {1, ...,𝑉 })
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Fig. 11. MCTMmodel in video analysis. A particular activity is represented by 𝑧𝑡 and it is varying systematically over time and assumed
to some unknown multinomial distribution 𝑝 (𝑧𝑡 |𝑧𝑡+1,𝜓 ) . Each observed event is chosen based on the multinomial parameters
(𝜙,𝜓, 𝜃 ) that are unknown Dirichlet priors.

Algorithm 3 CTM
1: generativeProcessCTM (video):
2: for Every feature in the activity ∀𝑡 ∈ 𝑇 do
3: Draw 𝜂𝑑 | {𝜇,

∑} ∼ 𝑀 (𝜇,∑)
4: for Every activity in the video ∀𝑛 ∈ 𝑁 do
5: Select topic assignment 𝑍𝑛,𝑑 |𝜂𝑑 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑓 (𝜂𝑑 ))
6: Select visual words 𝑋𝑑,𝑛 | {𝑍𝑑,𝑛, 𝛽1:𝐾 }

∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝛽𝑍𝑛)
7: end for
8: end for

Algorithm 4 TOT
1: inferenceTOT (video)
2: Assigns a random topic for all activity
3: 𝜃𝑖 ∼ 𝐷𝑖𝑟 (𝛼) (Where 𝑖 = 1, ..., 𝑁 ;𝜃𝑖 ∈ Δ𝐾 ) ⊲

𝜃𝑖,𝑘 is the probability that a video 𝑖 ∈ {1, ..., 𝑀 } belongs to topic
𝑘 ∈ {1, ..., 𝐾 }

4: 𝜓𝑘 ∼ 𝐷𝑖𝑟 (𝛽) (Where 𝑘 = 1, ..., 𝐾 ;𝜙𝑘 ∈ Δ𝑉 ) ⊲𝜓𝑘,𝑣 is the
probability that a activity 𝑣 ∈ {1, ...,𝑉 } in topic 𝑘 ∈ {1, ..., 𝐾 }

5: Choose 𝑍𝑖,𝑗 ∼ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝜃𝑖 ) (Where 𝑍𝑖,𝑗 ∈ {1, ..., 𝐾 })
6: Choose 𝑋𝑖,𝑗 ∼ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 (𝜓𝑖 ) (Where 𝑋𝑖,𝑗 ∈ {1, ...,𝑉 })

Algorithm 5 HDP
1: generativeProcessHDP (video):
2: Select𝐺0 |𝛼,𝐻 ∼ 𝐷𝑃 (𝛼,𝐻 )
3: Select𝐺𝑡 |𝛽,𝐺0 ∼ 𝐷𝑃 (𝐺𝑡 , )
4: 𝜃𝑡 |𝐺𝑡 ∼ 𝐺𝑡
5: 𝑋𝑡 |𝜃𝑡 ∼ 𝐹 (𝜃𝑡 ) ⊲ 𝐹 = 𝑀𝑢𝑙𝑡 (𝜃 )

Algorithm 6 MCTM
1: generativeProcessMCTM (video):
2: 𝑝 (𝜓𝑧 |𝛾 ) = 𝐷𝑖𝑟 (𝜓𝑧 , 𝛾 )
3: 𝑝 (𝜃𝑧 |𝛼) = 𝐷𝑖𝑟 (𝜃𝑧 , 𝛼)
4: 𝑝 (𝜙𝑦 |𝛽) = 𝐷𝑖𝑟 (𝜙𝑦 , 𝛽)
5: 𝑝 (𝑧𝑡+1 |𝑧𝑡 ,𝜓 ) = 𝑀𝑢𝑙𝑡𝑖 (𝑧𝑡 ,𝜓𝑧𝑡 )
6: 𝑝 (𝑦𝑖,𝑡 |𝑧𝑡 , 𝜃 ) = 𝑀𝑢𝑙𝑡𝑖 (𝑦𝑖,𝑡 , 𝜃𝑧𝑡 )
7: 𝑝 (𝑥𝑖,𝑡 |𝑦𝑖,𝑡 , 𝜙) = 𝑀𝑢𝑙𝑡𝑖 (𝑥𝑖,𝑡 , 𝜙𝑦𝑖,𝑡 )Manuscript submitted to ACM
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Fig. 12. Graphical overview of LDMC model applicable to video analysis. A particular activity is represented by 𝑧𝑡 and it is varying
over time. Each observed event is chosen based on the multinomial parameter𝜓 that is a Dirichlet priors to 𝛽 .

Advantages and Limitations: Each variation of the topic model is designed for some specific task. For example,
statistical models such as LDA or PLSA are suitable for spatial features, whereas the topic evolution is suitable for
spatio-temporal features. The addition of temporal features also increases the computational cost in many cases. In
Table 4, we have summarized the characteristics and limitations of the different topic models.

TimeComplexity: The state-of-the-art PLSA algorithm uses ExpectationMaximization (EM) algorithm. Themethod
is a two-stage method involving expectation and maximization. In the expectation step, the posterior probability of a
topic is calculated and in the maximization step, the log-likelihood is computed. The computational cost is defined as:

𝐶𝑡𝑖𝑚𝑒 (𝑃𝐿𝑆𝐴) = 𝑂 (𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝐸𝑠𝑡𝑒𝑝 +𝐶𝑀𝑠𝑡𝑒𝑝 )) (8)

TLDA is an iterative process. In each iteration, it counts short-duration activities and assigns a topic distribution.
The complexity per iteration is linear in the size of the data and linear in the number of topics. The number of iterations
necessary to get convergence will depend on the video. For a fixed number of iterations, LDA is highly efficient. A major
part of the complexity of the task goes into estimating the appropriate number of topics and figuring out the stopping
times. HDP is a non-parametric implementation of LDA. Hence it shares similar complexity like LDA. The advantage
of HDP is that the number of topics is determined by the data. TCTM is highly effective in several applications, but
limited due to the high computational cost. The method uses a pairwise correlation and the non-conjugacy of logistic
normal inference. Hence the complexity is 𝑂 (𝐾3), where 𝐾 is the number of latent topics. TMCTM adopts both the
Manuscript submitted to ACM
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Table 4. Characteristics and Limitations of Topic Model Methods.

Method Necessity in video analysis Advantages Weakness

PLSA

PLSA can filter unimportant information
from the data. Hence it is useful
in many video applications such as
activity recognition and abnormality detection.
It is also used in semantic modelling.

(i) PLSA considers local and global activity
co-occurrences together. It uses a mixture of conditionally
independent multinomial distributions.
(ii) Unlike clustering, it uses a mixture model.
(iii) It is much interpretable in terms of probability.
(iv) It allows multiple combinations of different models.

(i) Computation cost is higher.
(ii) Sometimes leads to a local maximua
due to the expectation maximization (EM).
(iii) May overfit.
(iv) Not fully generative.

LDA Due to the nature of generalizability,
it is useful to model different action.

i) Fully generative.
ii) Easy to implement.

i) Does not consider correlation among topic.
ii) Evolution of topics over time is not considered.

CTM Due to the use of temporal correlation,
CTM is used to model trajectory in video.

(i) Consider the correlation among topics.
(ii) Ability to model heterogeneity in
number of topics by normal logistic prior.

(i) Inability to construct medium-level
features among
different clusters.

HDP Due to the nature of non-parametric,
it is useful for unsupervised event modelling.

(i) Non-parametric and
number of topics
can be estimated.

Sometimes infinite number of topics
is not suitable and applications demand finite topics.

MCTM Several surveillance applications demands real time
processing. MCTM is useful in such cases.

(i) Generative model by adding Gibbs sampling theory.
(ii) Can be used in online manner.

(i) While an online inference is fast, the
procedure is slow enough to
provide a barrier to learning
on truly large and complex datasets.

RFTM
As it uses Markov random field,
it can model the spatial and temporal coherence,
hence useful in various scene and motion analysis.

(i) It is an extension of LDA by integrating
space-time Markov random Field.

(i) Lower completeness accuracy as
it does not able to modify the neighboring
topics information during learning.

Multi-scale Based on low-level features hence,
able to model pixels and optical flow.

(i) Based on low-level features.
(ii) Can model different scale. (i) High computation cost.

concept of LDA and HMM. The time complexity of MCTM is hard to quantify because of the data-specific convergence
time consumption. In general, the method demands 𝑂 (𝐹𝑖𝑇 ) training time, where 𝐹𝑖 is the number of input features and
𝑇 is the number of topics. During testing, the time cost is𝑂 (𝑆2) +𝑂 (𝐹𝑖𝑇𝑆), where 𝑆 number of states are present in the
HMM. Due to the convergence criteria, RFTM also shares similar computational complexity with MCTM. Multi-scale
topic models are the most expensive models due to the use of low-level features in multiple scales.

Deep Learning and Topic Models: The topic models primarily deal under a probabilistic framework and these
models are used in various data modelling and understanding tasks. On the other hand, in the last few years, we have
been witnessing a rapid progress in deep neural networks and machine learning applications. The majority of such deep
learning methods use supervised learning strategies that demand labelled data, whereas unsupervised learning methods
primarily use clustering techniques. The main advantage of topic model is, it can automatically discover interpretable
patterns from the data. It does not require labelled data. Only a few research works have been reported that combine
deep learning and topic models together. In text processing, Cao et al. [17] have proposed a neural topic model and
an extension using a supervised approach. The method has been used to classify texts into different classes. Dieng
et al. [30] have presented a topic-based recurrent neural network (RNN) for sentiment analysis. Lv et al. [98] have
used LDA and deep learning to describe videos using language. Recently, Dong et al. [32] have used LDA-based topic
discovery and learning to produce interpretable deep learning for video description. Yu et al. [171] have used topic
discovery combined with CNN for image caption generation. Chen et al. [21] have used a Latent topic for discovery
and video narration generation.

4 REPRESENTATION, APPLICATIONS, AND DATASETS

Here, we discuss (i) different features and information embedding methods used in topic discovery and analysis, (ii)
different video-based applications, and (iii) benchmark datasets and evaluation methods.
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4.1 Topic Representation and Feature Embedding:

State-of-the-art topic models are designed for language models. Hence the conventional features used in computer
vision may not be suitable for topic models. Various topic modelling methods have been applied to discover activity
patterns in video clips or motion trajectories. The models use a similar concept that is adopted in text mining, named
“bag-of-words (BoW)” in the form of a bag of features (BoF) in video analysis. Statistical topic models use spatial features
such as patches, pixels, shapes, etc. as the baseline. Time-dependent models use trajectories, optical flow, motion, etc.
for extracting the topics. Table 5 summarizes the features used in various video-based analysis. In typical modelling
frameworks, the whole video sequence is divided into non-overlapping short clips as documents, where the clips are
random mixtures over latent topics (activity categories) extracted from the features. Next, we discuss the embedding
methods used in different topic models.

Table 5. Comparison of terminologies of topic models in text and video analysis

Feature Types & Representation References

Object trajectory

(Position, geometrical shapes, sizes, centroid, velocities, etc.) [49, 57, 94, 128, 186]
[78, 125, 136, 139, 145, 147, 180, 182, 187]

Spatio-temporal features (including patches and saliency) [36, 80, 108, 113, 141, 160, 162, 183, 185]
Visual words such as direction and motion [65]
Histograms of Motion, direction, color, texture, pixel change, etc. [95, 153]
Inter-frame color distribution [149]
Optical flow (pixel motion) [42]

Embedded Topic Model (ETM) is focused on the word embedding mechanism. Topic models relay on the smallest
unit of information such as words in NLP or visual words in video analysis. Hence the representation and information
embedding play a vital role in the success of the models. The word embeddings begin with the natural language
model [14]. In that method, the words are represented using a “one hot” encoding method. The main drawback of
such a system is, similar words are represented using different encoded values. Later, the problem is solved using a
lower-dimensional vector representation, where similar words are in close in space [123]. Text-based topic models
have used various word embedding methods in different ways [86, 102]. Information embedding in video analysis is
different because of the unavailability of common representations such as language. Bag-of-words based representation
is popular in many video analysis applications [61, 121]. The bag-of-words is constructed using low-level features
such as pixels [43] or motion tracks [152]. The problem of representing similar concepts using similar bag-of-words
is solved using the contextual relevance representation [59, 98]. The method uses language embedded with visual
words for finding the similar concepts and applied in video analysis. Joint embedding of visual information and textual
information is popular in many topic-based video analysis [100, 111]. A graph-based embedding method is used in [172].
The method uses a graph to model the appearance of a human used to classify actions in video. Habibian et al. [48] have
proposed to use the description of videos for information embedding and it has been used in video story generation. A
velocity pattern-based embedding [71] is used to identify abnormal traffic activity. Jing et al. [73] have proposed to use
a multimodal information embedding to classify micro videos. The method uses visual, acoustic, social, and textual
modalities. Visual state binary embedding method [170] is used for event classification, where a small activity is known
as a state.
Manuscript submitted to ACM
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4.2 Applications

The primary application of topic modelling is to use the observed patterns of the targets in a video sequence to infer
hidden topic structures or patterns. Fig. 13 depicts the general structure of topic modelling applicable to motion-based
video analysis. Here, the input is a set of moving object trajectories extracted from the video recordings of QMUL [57]
dataset. Based on various topic models and parameters, the algorithm can infer hidden topic structures, i.e., the patterns
of movements. Furthermore, we can predict the events/actions from a set of known topics. In this way, topic modelling
can provide an automatic solution for surveillance scene analysis, event detection, or action recognition. The process
begins with feature extraction, embedding, and ends with classifying or clustering different patterns (topics). Fig. 14
depicts such a representation of topics applied on publicly available surveillance videos. Next, we discuss specific
applications in detail.

Fig. 13. A typical framework of topic-based video analysis application. (1) Collect the motion information by feature tracking [8]
or multi-object tracking [51]. (2) Setup topic model parameters such as topic domination, classification, etc. (3) Infer the posterior
based on the model. (4) Discover distinct topics and classify them. (5) Predict the future movements. (6) Explore events, patterns, and
actions (topics).

Behavior and Event Analysis: Probabilistic topic model-based action / pattern identification has been used to
discover and learn real-world events and event relations [160]. MCTM [65] has been used in transportation systems,
security, and surveillance for activity behavior analysis. A dynamic casual topic model [36] has been proposed to mine
activities in crowded and complex scenes, where all temporal relationships are updated at every time step using noisy
OR distribution. Dynamic Bayesian model [57] is proposed for mining and screening irregular spatio-temporal patterns
by clustering visual events into actions and discovering behaviors. Xue et al. [164] have used HDP-based methods for
sequential event detection. Saleemi et al. [125] have proposed such a probabilistic model based on MCTM framework
that is used to improve foreground detection and object tracking. Fig. 16(c) depicts one event ⟨cleaning table⟩ from a set
of events (topics). Recently, Al et al. [4] have proposed graph-based extensions of LDA and CTM, referred to as GLDA
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Fig. 14. Various topics and representation of topics in public video dataset. (a)-(g) taken from QMUL [57] junction video, (h) Taken
from KTH dataset. (a) Vertical traffic [57], (b) Pedestrian activity [147], (c) A sample target (car), the movement pattern has 15%
weight (i.e 15% targets follow the pattern), (d) Another target (red car) with 10% weight, (e) A discovered topic [147] (left to right
movement), (f) Right turn [147], (g) Automatically discovered patterns using topic modelling [147], each colour represents different
pattern/topic and (h) Bag of Features (BoF) representation of a running event [174].

and GCTM, to learn and analyze motion patterns by trajectory clustering. Xue et al. [165] have proposed a supervised
sequential symmetric based HDP model for multi-class video classification. Speech word topic embedding based lecture
video classification combined with deep neural network has been reported in [76]. Long short-term memory (LSTM)
combined with a topic model [156] has been used to segment interesting segments in videos.

Abnormal-behavior Detection: MCTM [64] uses the temporal dynamics of behaviour for determining activity
distributions in each video. The authors have used the Expectation-Maximization (EM) algorithm for optimization and
threshold-based abnormality detection. Isupova et al. [65] have developed a maximum a posteriori (MAP) [24] estimation
using EM algorithm and variational Bayes inference [13] for anomaly detection. An unsupervised approach such as
Bi-Layer sparse topic model has been proposed to discover semantic motion patterns and to detect abnormalities in a
dynamic scene [147]. In [185], a new framework is proposed for spatio-temporal point clustering-based normal behavior
patterns identification and online abnormality detection. The work combines HMM [46] and LDA. Semi-supervised
sparse topic model guided abnormal event detection has been proposed in [148]. Probabilistic Latent Space Model based
video abnormality detection has been presented in [131]. Fig. 16(b) depicts an abnormal situation ⟨ illegal crossing ⟩
from a set of normal events (topics) in VIRAT dataset. The HDP-based method can identify noisy and low frequent
patterns and it can be used in various video abnormality detection such as abnormal traffic activity [94, 182], crowd
patterns [128], unusual human actions [139], etc.

Scene Analysis: Surveillance scene analysis such as traffic and crowd analysis [93] is challenging due to the nature
of complex movement patterns. In [95], topic modelling has been used for tracking targets. The main advantage of such
a system is its real-time processing capability. In [153], the authors have used LDA to discover and provide a summary
of typical atomic activities and interactions occurring in a scene. In [40], LDA has been used as a multimodal framework
to build connectivity between attributes and features of each modality that helps to make a difference for semantic and
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cross-modal gaps. The work proposed in [162] describes a new framework for surveillance scene understanding. Iyer
et al. [67] have proposed a correlation LDA-based method for indexing and retrieval of videos. Histogram of optical
flow (HOF) [34] has been used in various LDA models to classify actions and events considering the code length and
patterns. Non-parametric HDP is also used in various traffic scene analysis [1, 2, 128]. Fig. 15(b) depicts the different
topics (paths) that are present within a video sequence of QMUL [57] dataset.

Activity Recognition: One typical application of visual pattern analysis is human action recognition. The process
for identifying an action using PLSA and other probabilistic topic models have been discussed in [116]. Unsupervised
action categorization using local shape context features has been proposed in [174]. The method is based on structured
PLSA with a codebook action representation. In visual pattern discovery and video analysis [33, 146], topic models
have been used to build top-down approaches for diverse applications of temporal event detection. LDA-based ap-
plications [63] have been used to discover daily routines from a combination of activity patterns in an unsupervised
manner. Another variation of LDA is used to classify micro events in large volume video datasets [79]. LDA and
PLSA-based algorithms [108] have been used to automatically recognize and localize multiple actions in long and
complex video sequences. LDA is also used for dominant codewords selection [78], where BoW based on the dominant
dense trajectory [145] is used as input. Recently, an improved unsupervised object discovery and localization method,
named Dirichlet allocation with a mixture of Dirichlet trees (LDA-MDT) [109], has been proposed. In [35], LDA has been
used to guide an autonomous robot to collaborate on joint activities from long-term observations in crowded scenes.
It has also been applied to person identification and action recognition [28]. Unsupervised HDP model is also used
to identify distinct human actions [139]. Santhosh et al. [127] have proposed a non-parametric Gibbs sampling-based
method for clustering traffic patterns. In [83], authors have extended it and proposed a variation of HDP model called
modified Dirichlet Process Mixture Model (mDPMM), which is an unsupervised topic model. The method has been used
to cluster different patterns of movement in QMUL junction. LDA combined with other modalities such as convolutional
neural network (CNN) [38] is used to classify different indoor and outdoor scenes. LDA is also extended for different
group activity recognition [176]. A combination of high-level and low-level features is also used in activity recognition
in video [168]. For example, Fig. 15(a) depicts an action ⟨jack⟩ from a known set of actions (topics) such as a walk or
running in the KTH action dataset. Fig. 15(c) depicts an event ⟨cleaning table⟩ from a set of events (topics) in the KIT
Robo Kitchen [124] dataset.

Anomaly Detection: Anomaly or abnormality detection [104, 113, 115] is referred to as a process to identify the
anomalous events in surveillance videos. Sometimes, it has been modeled as a typical semantic scene segmentation
problem [89] to divide a scene into different regions as inputs for global behavior inference. Both PLSA and hierarchical
PLSA have been used in correlation behavior modelling and anomaly detection, where the hierarchical PLSA is superior
for anomaly detection due to its robustness to noise. Varadarajan et al. [141] have investigated situations where several
actions can occur in the same scene concurrently. Video-based human abnormal behavior detection using methods
including PLSA [42] has been discussed in [115]. The PLSA is also extended in unsupervised learning environments to
find unusual activities [25]. Anomaly detection in an automated surveillance system [132] uses a multi-class approach
known as multi-class delta LDA that generates new unseen topics regarded as abnormal behavior. Multi-class LDA is also
useful to find rare activities [91]. In one of the recent works [42], researchers have described an LDAmodel for streaming
video dataset and then used it to detect anomalous events by an underwater robot. LDAmodel has been used to recognize
events that are not ordinary or surprising [49]. Recently, Li et al. [88] have proposed an LDA-based method that acts as
an encoder for low-level features to locate high-level abstractions for video concept detection. Hospedales et al. [58]
have proposed a weakly supervised joint topic model for rare event detection in traffic videos. LDA has also been used in
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biological and geological research by implementing the concept of substrate mapping [75]. LDA is a mixture model over
documents and it has a latent variable for topic assignment for each word. The number of topics in a corpus (𝑘) needs
to be parameterized by the user to get promising results. To solve this sparsity problem, non-parametric hierarchical
Bayesian approaches [74, 137] have been introduced. Hierarchical Dirichlet Process (HDP) [15, 128, 143, 159, 182] is a
non-parametric Bayes framework that automatically finds the number of latent topics that can be used for trajectory
clustering. For example, Fig. 15(c) depicts an abnormal event by analysing multiple targets and interactions in QMUL
junction video. Fig. 16(a) depicts the semantic regions in GCS [181] crowd video.

Other Applications: Topic model is also used in other applications such as video description generation, video
indexing, object tracking, etc. Iyer et al. [67] have proposed a Correspondence LDA for a multimedia retrieval system.
The method has been applied in indexing multimedia video clips. Chen et al. [20] have proposed a topic-guided method
for video description generation. The model combines the language cue with the visual cue. A similar method is also
proposed in [100, 111]. Huang et al. [60] have used the topic method for object tracking. Object tracking using different
topic-based methods has been proposed in [97]. Chen et al. [21] have proposed a topic model guided deep neural
network for video description generation. Some key applications and publicly available datasets are summarized in
Table 6.

Fig. 15. (a) Action (jack) is identified in KTH action dataset using structural pLSA (SpLSA) [174], where codebook is generated
using shape and motion. (b) Identified similar activities based on the movement pattern in QMUL junction video [162]. The method
uses LDA to model different paths (shown by a different colour) by unsupervised topic modelling and uses to find similarities in
heterogeneous surveillance videos. (c) A two-stage hierarchical pLSA model [89] is used to model abnormality. The picture depicts
an abnormal situation in QMUL junction. Different classes of local behaviors in the clip that caused the anomaly are shown using
bounding boxes of different colours.

Table 6. Datasets references, and applications covered in various topic models guided research work

Base Method Dataset and Application References Applications

PLSA Crowded outdoor scenes[89, 141] Scene and abnormality analysis
PLSA Traffic, junction, highway [113] Anomaly detection
PLSA WEIZZMAN and MIT-CSAIL Datasets [174] Action categorization
PLSA Different traffic Datasets [140] Activity pattern recognition
LDA WEIZZMAN, KTH and figure skating Dataset [108] Action recognition
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LDA Street and Pedestrian Path surveillance [49] Anomaly detection
LDA Crowed scene (busy train station, shopping mall) [153] Atomic activity detection
LDA Daily activities (dinner, lunch, office work) [63] Activity pattern recognition
LDA human computer interactions and kits navigation [95] Object tracking, HCI, navigation
LDA INRIA, IXMAS, NTSEL, MPII activities [78] Action recognition
LDA Caltech4, LabelME, PASCAL07 [109] Action recognition
LDA Traffic surveillance [162] Scene analysis
LDA Underwater vehicle monitoring [42] Anomaly detection
LDA Trcevid2013 for semantic indexing development dataset [88] Anomaly detection
LDA Human activity monitoring by mobile robot [35] Activity recognition
LDA Microactivity classification [79] Action recognition
LDA Scene classification in UIUC dataset [38] Scene classification
LDA Video description in MSR-VTT dataset [20] Scene classification
LDA Group activity recognition in USAA dataset [176] Group activity classification
LDA Human activity recognition in KTH dataset [168] Human activity classification
LDA Human action recognition in KTH and UCF dataset [167] Human activity classification
LDA Traffic abnormality detection in QMUL dataset [? ] Traffic activity classification
LDA Weakly supervised traffic behaviour analysis [58] Traffic activity classification
HDP Traffic analysis [128] Activity recognition
HDP Event detection [94] Event recognition
HDP Behaviour analysis [182] Anomaly detection
HDP Action recognition [139] Anomaly detection
HDP Traffic activity analysis in QMUL [83] Activity analysis
CTM Crowd, PETS09, UCF Crowd [120] Behaviour analysis
CTM RGB-D activity video dataset using Kinect V2[186] Action and object detection
DTM QMUL Junction, Pedestrian crossing [160] Abnormal behavior detection
DTM QMUL Street interaction and Idiap Traffic Junction [147] Abnormal behavior detection
DTM QMUL Junction [65] Behavior Analysis

DTM
QMUL Street Interaction, Pedestrian Crossing,
Subway Platform, MIT Traffic [36]

Behavior analysis

DTM Video of human and traffic with occlusions [57] Object location tracking
DTM MED and TREC AP88 [125] Abnormal behavior detection

DTM
Special areas (station, airport, junctions, etc.),
MIT traffic datasets, Marathon Race video [24]

Abnormal behavior detection

DTM Road Junctions/UMN datasets [22] Abnormality detection
DTM Domestic activities monitoring hh120, hh122 datasets [66] Human action recognition
RFTM Subway station path surveillance [81] Abnormal activity detection
RFTM Surveillance video sequences [80] Object tracking
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MCTM Behaviour analysis in traffic [56] Behaviour analysis
PLSA Unusual activity analysis [25] Abnormality detection

4.3 Datasets, Evaluation Metrics, and Benchmark

Here, we discuss some application-specific datasets and evaluation methods used in various topic-based modelling.
WEIZMANN action recognition dataset [44] consists of 90 low-resolution (180 × 144, 50 fps) videos of different
activities such as “running”, “walking”, “jumping-jack”, “jumping-forward-on-two-legs”, “jumping-in-place-on-two-
legs”, “galloping-sideways”, “waving-two-hands”, “waving-one-hand”, “bending”, “skipping”, etc. MIT-CSAIL datasetis a
hand gesture-based activity recognition dataset. The dataset consists of “Expand Horizontally”, “Expand Vertically”,
“Point and Back”, “Double Back”, “Flip Back”, and “Shrink Vertically”. KTH dataset [129] consists of six different actions
such as “boxing”, “hand-clapping”, “hand-waving”, “jogging”, “running”, and “walking”. The dataset is a collection
of indoor and outdoor videos (160 × 120, 25 fps). INRIA surgery dataset [60] is an activity dataset centering surgical
tables. The dataset includes “cutting”, “hammering”, “repositioning”, and “sitting”. MPII Cooking activities datase [122]
contains 65 activities in kitchen. The common activities like “cutting”, “mixing”, “blending”, etc. are included. IXMAS
action dataset [157] is focused on actions recorded in different viewpoints and in the presence of partially occluding
actors. NTSEL traffic dataset [77] is a collection of different traffic activities such as “walking”, “crossing”, “turning”, and
“riding a bicycle”. The dataset reported in [35] is recorded by cameras mounted on an autonomous robot. The dataset
consists of different human activities such as “microwave food”, “open fridge”, “throw trash”, etc. QMUL dataset [57] is
a traffic junction video dataset and used in several applications such as object tracking, event detection, motion pattern
clustering, etc. The dataset consists of the activities of vehicles and pedestrians. Grand Central station dataset [181]
is also one of the popular crowd datasets used in motion clustering, scene understanding, and activity analysis tasks.
The dataset consists of videos of more than a thousand people moving and interacting. Junction and Roundabout [90]
dataset is a traffic dataset that contains high-quality surveillance videos of different traffic activities. The dataset is
used in various behaviour analysis and abnormal behaviour classification. Trecvid 2013 semantic indexing [88] is a
collection of web videos of diverse concepts such as object (aeroplanes, bus, computer, etc.); scenes (hills, oceans, fores,
etc.); activity (running, walking, skating, etc.); interaction; etc. Traffic dataset reported in [141] is a 45 minute video
of size 288 × 360 recorded in a busy traffic junction. The dataset is divided into small activities (125 frames each).
More than 2500 such activities are labeled in the dataset. Cooking activity dataset [122] involves 12 participants to
record 60 different cooking activities. The dataset is popular in indoor activity classification. UCF crowd dataset [6]
consists of a variety of different crowd activities collected from different sources. The dataset is used in various crowd
activity monitoring and abnormality detection. A large volume long duration video surveillance dataset is reported
in [125]. The dataset contains a recording of video for 3 days containing different activities and used in various activity
analysis and abnormality detection tasks. UMN dataset [22] is a large collection of different surveillance videos used
in different event detection, such as detection of abandoned objects, detection of unusual crowd activity, detection of
loitering individuals, etc.; activity analysis; and abnormality detection. UCF action dataset [134] is a large collection
of youtube action videos. The dataset consists of 101 different events in various conditions. UIUS dataset [92] is a
sports event dataset that contains different sports action videos such as “rowing”, “badminton”, “polo”, “bocce”, etc.
MSR-VTT dataset [161] is a large-scale video description generation dataset. The datset contains diverse video topic
such as “music”, “cooking”, “daily activity”, etc. USAA dataset [39] is collection of social interaction and activity dataset
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Fig. 16. (a) Depicts different crowd activities (different colour) in Grand central station (GCS) [181] videos. The method uses
Hierarchical Dirichlet Processes (HDP) to model semantic regions and patterns. (b) A situation in VIRAT dataset. The pedestrian is
identified and localized as abnormal when crossing the road. The method uses a Markov Random Field topic model [81] to find and
localize anomaly. (c) An activity representation using dynamic topic model (DTM) [160] to relate with object motion (skeleton) and
interaction. The action is ⟨ cleaning table ⟩ in Kitchen dataset [124]

.

such as “wedding Dance”, “birthday party”, “graduation ceremony”, etc. Table 7 summarizes popular datasets appeared
in various topic-based analysis.

Table 7. Popular video datasets used in various topic-based analysis

Samples Dataset Description Annotation Topic-based Analysis

HMDB51

HMDB51
A Large Video Database

for Human Motion Recognition
51 action class

Latent topic models [96],
pLSA [150]

UCF101
A Dataset of 101 Human Actions
Classes From Videos in The Wild

101 action class
Multi-view topic model [59],

HDP based model [139]

WEIZMANN Human Action Dataset
10 natural
actions class

Latent topic models [96]

MIT-CSAIL
A large-scale dataset for recognizing
and understanding action videos

399 activity class Probabilistic latent model[174]
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KTH
A dataset for recognition

of human actions
6 action class

Topic guided
unsupervised learning [108],

Probabilistic latent model [174]

INRIA A dataset recorded in surgical table 4 activity class LDA based model [78]

MPII Cooking Activity Dataset 78 classes LDA based model [78]

IXMAS
A large Dataset of Human Actions
Recorded From Different Angle

11 action class LDA based model [78]

NTSEL
Pedestrian Activity Dataset

on Road
9 activity class LDA based model [78]

QMUL
Video Recorded in a
Traffic Junction

12 different patterns
Modified DPMM [83]

Causal topic mode [160]

MSR-VTT
A Large Video Description Dataset
for Bridging Video and Language

257 popular query text Topic-guided model (TGM) [20]

GCS
A Large Field of View Video
Recorded in a Railway Station

Not labeled
Mixture model [181]

CTM [181]

Trecvid 2013 A large Dataset of Semantic Indexing 60 concepts Latent topic model [26]
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UMN A large Dataset of Human Activity 16 activity class EM-MCTM [64]

UIUC Sports Event Dataset 8 sports event
Supervised LDA [84]

LDA based model [179]

USAA
Unstructured Social Activity

Attribute Dataset
69 attributes

Relevance topic model (RTM) [176]
Latent semantic analysis [178]

Different applications use different evaluationmethods. Classification-related applications such as action classification,
event classification, abnormality detection, etc. use accuracy (AC), precision (PR), recall (RE), and sometimes F1 score.
These are defined as:

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐴𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(9)

In the above formulation, TP is “True Positive”, FP is “False Positive”, TN is “True negative”, and FN is “False Negative”.
Different clustering approaches are used in activity mining, motion analysis, cumulative behaviour analysis, etc. to
cluster similarity evaluation methods such as Rand index (RI), Jaccard index (JI), Dice Index (DI). These are defined in
(10).

𝑅𝐼 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁

𝐽 𝐼 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝐷𝐼 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(10)

Text embedding with visual features is a popular choice in various topic models. This is used across different
applications such as image and video captioning; semantic activity detection; similarity detection; etc. Here, Bilingual
Evaluation Understudy (BELU) [112] is a popular choice for evaluation. BELU is used to measure the similarity between
the candidate text (𝑡𝑐 ) and reference text (𝑡𝑟 ). It is a modified form of precision (𝑃 ) and it is defined in (11).

𝑃 =
𝑚

𝑤𝑡
(11)
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where𝑚 is the number of candidate translation words occurring in reference 𝑡𝑟 and𝑤𝑡 is the number of words in 𝑡𝑐 .
The method is extended in BELU-1,2,3, and 4. based on the n-gram representation of the words.

Open Source Implementations: There exist a few open source libraries for using different topic-based modelling
methods. Majority of these methods are built for text-based analysis of different data. Though none of them is built for
video-based analysis, however, it can be easily adopted in video analysis. TOM (Topic modelling) [47] is a Python 3
library mainly focused on different variations of LDA. It includes methods of automatic number of topic identification.
A library for different topic models is also included in R software1. This library focuses on different variations of LDA.
Another popular open source library gensim2 can be easily integrated with Python. This is a robust library that provides
a suite of tools for implementing LSA, LDA, and other topic modelling algorithms.

Benchmark Results: Here, we summarize the performance of different topic-based methods used in different
applications and datsets. We have arranged them according to the year of publication (2015-2020). We note that different
model uses different dataset and metric depending on the underlying applications. First, we categorized the models
into six major applications, namely anomaly detection, trajectory clustering and activity modeling, action recognition,
video description, semantic recognition, and video classification. Next, we extend the analysis based on the methods,
datasets, metric, and performance. The report is summarized in Table 8.

Table 8. Benchmark results of different topic-based video analysis methods with varying datasets

Application Reference Method Metric Dataset Results Remarks

A
na
m
ol
y

D
et
ec
tio

n [2] Topic Related Sparse Topical Coding (TRSTC) Accuracy
QMUL Junction 0.86

Number of topic is 20
QMUL Roundabout 0.98

[113] pLSA based anomaly detection AUC AVSS Dataset 0.75

[148] Semi-supervised sparse topic model AUC
QMUL Junction 0.93
AVSS 0.95

Tr
aj
ec
to
ry

Cl
us
te
rin

g
an
d
A
ct
iv
ity

M
in
in
g [4] Graph-based Topic Model based on LDA

Correctness
completeness

CUHK
0.80
0.87

Topics varying from 2 to 20

[7]
Unsupervised Bayesian Clustering based on
Dirichlet Process Mixture (DPM)

Accuracy and
AMI

Highway dataset
Accuracy 0.97
AMI 0.76

Topic range 2 to 14

[36]
Dynamical causal topic model (DCTM)
based on LDA

log likelihood
convergence

QMUL Junction −3.6𝑥107 Topic is set to 22

[57]
Dynamic Topic Model based on
Markov Clustering Topic Model (MCTM)

TPR
FPR

QMUL Junction TPR: 52% FPR: 1%
Semi-supervised methodi-LIDS TPR: 53% FPR: 11%

MIT Traffic Dataset TPR: 27% FPR: 0.6%

[65] Dynamic Topic Modeling based on LDA
AUC
Accuracy

QMUL Junction
AUC: 0.32
Accuracy: 0.95

Number of topics and
behaviors are set to 8 and 4

[83] Modified Dirichlet Process Mixture Model Accuracy
QMUL Junction 0.78

Clustering-based approachVIRAT 0.99
MIT 0.99

[187]
Locally Consistent Latent Dirichlet
Allocation based on LDA

Accuracy
QMUL Junction 0.97 3D SHIFT feature is used

for clusteringGCS 0.94

A
ct
io
n
Re

co
gn

iti
on

[16] LDA based Type-2 Fuzzy Model Accuracy
KTH 0.90 Codewords varying from

500 to 2500UCF 0.86

[33] Spatio-temporal Interest Points and PLSA Accuracy CASIA 0.86
9-bin 3DHOG and
5-bin HOF are used

[78] Codewords based LDA Accuracy

INRIA surgery dataset 0.80

Use feature reduction method
IXMAS 0.95
NTSEL 0.91
MPII 0.62

[79] Supervised LDA Accuracy UCF101 0.70 Feature size varying from 1 to 300

[94] Gaussian Process based HDP Accuracy
QMUL Junction 0.98
MIT Traffic 0.96

[96] LDA based two-level beta HMM Accuracy

Weizmann 0.98

SVM based classifier is used
KTH 0.96
UCF Sports 0.93
HMDB51 0.66

[139] Multi-label hierarchical Dirichlet process Accuracy
KTH 0.96
UCF101 0.89

[168]
Multi-Feature Max-Margin
Hierarchical Bayesian Model

Accuracy
KTH 0.98

3D SHIFT feature is used
UCF Sports 0.94

1https://www.tidytextmining.com/topicmodelling.html
2https://radimrehurek.com/gensim/
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Video
Description

[20] LDA based topic-guided model (TGM) BELU-4 MSR-VTT 0.44 Topic settings 10, 20, and 30
[21] Latent topic-guided model (LTGM) BELU-4 MSR-VTT 0.49 Topic settings 10, 20, and 30

Semantic
Recognition

[38] Deep Feature LDA (DF-LDA) Accuracy UIUC Sports 0.90 Topic varying from 10 to 150
[88] LDA based clustering mAP Trecvid2013 0.33 Topic settings 100,150,200, and 300

Classification [59] LDA based multi-layer multi-view topic model Mean Accuracy Web videos 0.82 Topic varying from 10 to 150

5 CONCLUDING REMARKS

This review mainly focuses on recent uses of topic models in video surveillance applications. The following points have
been summarized from the study:

(1) Co-related topic models have been proposed to maintain interactions between topics. Several models have been
proposed to improving the state-of-the-art LDA.

(2) Dynamic topic models have been introduced in video analysis to discover how topics evolve over time.
(3) Objects can be tracked and represented by motion features. In such cases, video clips are treated as documents,

moving pixels are treated as words, and action classes are noted as topics.
(4) Deep learning-guided topic models are not fully explored in video analysis.

Quality and Time Management: For better visual pattern representation and to effectively model scene fragmen-
tation, quality measurement may be needed to maintain spatio-temporal co-occurrences and their graphical associations
to develop efficient implementations of visual patterns. Many of the dynamic topic model algorithms use Expectation-
Maximization algorithm within the spatio-temporal learning frameworks. However, these algorithms run slower when
the videos are large. This results in a slow convergence rate to the posterior distributions under consideration. Better
algorithms are needed to overcome such computational problems.

Information Embedding: Unlike the language models, video analysis does not have any predefined words. Hence a
global embedding method like word to vector is not suitable. This drawback leads to difficulties in semantic measurement.
Even though several languages and vision combined approaches have partially solved the problem, however, it is still
an open issue to design such information embedding methods applicable to topic-based video analysis.

Challenge of Large Camera Network: Topic models have been successfully experimented and applied to mine
activities over a small camera network (with less than ten cameras). However, some video surveillance applications,
such as monitoring activities and traffic flows in large cities or human behaviors in crowded places, require human
actions under large camera networks.

Fusion of Multiple Models: Though several variations of topic-based models have been used in surveillance video
analysis, however, only a few of them work by fusing multiple methods. In a complex environment, multi-model fusion
can be explored for unsupervised analysis.

Deep Topic Models: Though a few variations of topic-based deep neural networks have been used in various video
analysis, however, the potentials are not explored fully. It has been observed that the non-parametric topic model such
as HPD can be used in unsupervised learning. It has also been understood that topic models can be used to design
explainable AI models due to the inherent capability of expressing data by topics.
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