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Abstract—This paper addresses estimation of the equiv-
alent number of looks (ENL), an important parameter in
statistical modelling of multilook synthetic aperture radar
(SAR) images. Two new ENL estimators are discovered by
looking at certain moments of the multilook polarimetric
covariance matrix, which is commonly used to represent
multilook polarimetric SAR data, and assuming that the
covariance matrix is complex Wishart distributed. Firstly,
a second-order trace moment provides a polarimetric
extension of the ENL definition, and also a matrix-variate
version of the conventional ENL estimator. The second
estimator is obtained from the log-determinant matrix
moment, and is also shown to be the maximum likelihood
estimator under the Wishart model. It proves to have
much lower variance than any other known ENL estimator,
whether applied to single polarisation or polarimetric
SAR data. Moreover, this estimator is less affected by
texture, and thus provides more accurate results than other
estimators, should the assumption of Gaussian statistics for
the complex scattering coefficients be violated. These are
the first known estimators to use the full covariance matrix
as input, rather than individual intensity channels, and
therefore to utilise all the statistical information available.
We finally demonstrate how an ENL estimate can be
computed automatically from the empirical density of
small sample estimates calculated over a whole scene. We
show that this method is more robust than procedures
where the estimate is calculated in a manually selected
region of interest.

Index Terms—Radar polarimetry, synthetic aperture
radar, parameter estimation, moment methods, unsuper-
vised learning

I. INTRODUCTION

THE equivalent (or effective) number of looks
(ENL) is a parameter of multilook synthetic

aperture radar (SAR) images, which describes the
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degree of averaging applied to the SAR measure-
ments during data formation and postprocessing.
Multilooking is performed in order to mitigate the
noiselike effect of interference, known as speckle,
which is characteristic of all coherent imaging sys-
tems. In this process, correlated measurements are
averaged, which complicates statistical modelling of
the resulting multilook data. The pragmatic solution
is to model the output as an average of independent
measurements, and to replace the actual number
of correlated samples by an equivalent number
of independent ones, that is, the ENL. The ENL
estimate is the parameter value that produces a best
match between empirical moments of the correlated
data and theoretical moments of the data model,
which assumes independency. The ENL is generally
a noninteger number.

The processing task normally referred to as mul-
tilooking is performed in the frequency domain. It
is part of the range/azimuth compression leading
up to a focused SAR image [1], [2]. Multiple
measurements are obtained by splitting the syn-
thetic aperture Doppler bandwidth into a number
of subbands, each giving rise to a separate image
referred to as a look. All looks are averaged in the
power domain to produce multilook data. However,
multilooking can also be done as postprocessing,
that is, after a well focused image is generated.
This method requires that the data are available
in single-look complex (SLC) format. Averaging is
then performed in the spatial domain. In addition to
reducing speckle, both approaches to multilooking
reduce image resolution, and hence the amount of
data, an effect which is sometimes desired to ease
the computational burden.

Being a distribution parameter, the ENL has
influence on the accuracy of the information ex-
tracted by methods based upon statistical modelling
of multilook SAR data. For instance, the ENL
is necessary input to important classification and
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change detection algorithms for PolSAR data. The
discriminant function of the popular Wishart clas-
sifier [3], [4] avoids dependency upon the ENL by
the restrictive assumption of equiprobable classes.
For nontrivial choices of prior probability, Bayesian
classifiers based on the Wishart distribution [5] or
more sophisticated data models [6], [7] require an
estimate of the ENL. So does the change detection
algorithm derived from the generalised likelihood
ratio of two unknown Wishart distributed matrices
[8].

The ENL is commonly estimated by identify-
ing homogeneous regions in an image, where the
speckle is fully developed and contribution of tex-
ture is negligible, meaning that the radar cross
section is assumed to be constant. These condi-
tions assure that the distribution of the scattering
coefficients can be assumed complex Gaussian [1].
Under this statistical model, the ENL can be esti-
mated from simple image statistics. A reliable ENL
estimate can be obtained for a given sensor and
fixed data processing scheme by manually selecting
appropriate calibration targets, and such a value is
sometimes provided as part of the image metadata.
However, a processing chain with selectable algo-
rithms and processing parametres will clearly bene-
fit from having a robust and automatic estimation
method, but such methods are difficult to design
due to the required identification of homogeneous
regions. Underestimation of the ENL occurs in the
presence of texture and other sources of inhomo-
geneity.

The ENL and the conventional ENL estimator
have been defined for the case of single polarisation
SAR, as described in [1], [2]. For PolSAR data,
the ENL has traditionally been estimated separately
for each polarimetric channel, and then averaged,
as in [6], [9]. In the following, we will develop
a general theory for fully polarimetric SAR data,
for which ENL estimation from single polarisation
images becomes a special case. The objective of
this work is twofold: We want to extend the theory
of ENL estimation to the polarimetric case, where
estimates are derived explicitly from matrix-variate
statistics. We next want to design a fully automatic
estimation procedure that requires no parameter
selection or manual intervention, such as selection
of homogeneous regions where image statistics are
to be calculated.

The paper is structured as follows: Sec. II intro-

duces SAR polarimetry, with different data formats
and their distribution models. Sec. III presents the
traditional definition of the ENL and reviews the
literature of known estimators. In Sec. IV we present
certain moment expressions for the Wishart distri-
bution, and use them to derive new ENL estimators
for PolSAR data. The contents of Sec. V are related
to performance evaluation. We derive a lower bound
to the variance of the ENL estimator, closely related
to the Cramér-Rao bound, and further present a
statistical model, which will be used to assess
robustness to texture. The discussion of robustness
is particularly relevant to unsupervised estimation,
which is the topic of Sec. VI. We here propose an
estimation procedure that is fully automatic. Sec.
VII presents results of experiments with synthetic
and real data. In Sec. VIII we give our conclusions.

Our convention for notation is that scalar val-
ues are denoted as lower or upper case standard
weight characters, vectors are lower case boldface
characters, and matrices are upper case boldface
characters. For simplicity, we have not distinguished
between random variables and instances of random
variables, as such can be ascertained through con-
text.

II. STATISTICAL MODELLING OF POLSAR DATA

The full-polarimetric SAR instrument separately
transmits orthogonally polarised microwaves pulses,
and measures orthogonal components of the re-
ceived signal. For each pixel, the measurements
result in a matrix of scattering coefficients. These
are complex-valued, dimensionless numbers that
describe the transformation of the transmitted (in-
coming) electromagnetic (EM) field to the received
(backscattered) EM field for all combinations of
transmit and receive polarisation.

The transformation can be expressed as[
Er
h

Er
v

]
=
ejkr

r

[
Shh Shv
Svh Svv

] [
Et
h

Et
v

]
(1)

where k denotes wavenumber and r is the distance
between radar and target. The subscript of the
EM field components Ej

i denotes horizontal (h) or
vertical (v) polarisation, which is the most common
set of orthogonal polarisations, while the superscript
indicates transmitted (t) or received (r) wave. The
scattering coefficients Sij are subscripted with the
associated receive and transmit polarisation, in that
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order. Together, they form the scattering matrix,
denoted S = [Sij].

The scattering matrix can be reduced to one of
the vectors

s =

 Shh
(Shv + Svh)/

√
2

Svv

 (2)

or

k =
1√
2

 Shh + Svv
Shh − Svv
Shv + Svh

 . (3)

The lexicographic scattering vector, denoted s, is the
vectorised version of S after the cross-polarisation
terms Shv and Svh have been averaged, assuming
reciprocity of the target. The scaling with a factor√

2 is done to preserve total power of the signal.
The Pauli basis scattering vector, denoted k, is a
linear transformation of s, which provides physical
interpretations of its elements in terms of basic
scattering mechanisms [4].

A. Gaussian Model

It is commonly assumed that the scattering vector
elements are jointly circular complex Gaussian. This
is strictly justified only for homogeneous regions of
the image, characterised by fully developed speckle
and no texture. The notion of texture describes
spatial variation in the backscatter that is due to
target variability, that is, fluctuations in the radar
cross section. The Gaussian model only encom-
passes variability due to speckle.

The matrix S and the vectors s and k are SLC
format representations of PolSAR data. Multilook
PolSAR data is commonly represented by

Cs =
1

L

L∑
i=1

sis
H
i or Ck =

1

L

L∑
i=1

kik
H
i (4)

known as the sample covariance matrix and co-
herency matrix, respectively. They are formed as
the mean Hermitian outer product of the single-look
scattering vectors {si}Li=1 and {ki}Li=1, respectively,
where L is the nominal number of looks. The
superscript H means complex conjugate transpose.
Assume that s (or k) is zero mean and circular com-
plex multivariate Gaussian, denoted s ∼ N �d (0,Σs),
where 0 is a column vector of zeros, d is the
dimension of s, and Σs = E{ssH} is the covariance

matrix of s. The probability density function (pdf)
of s is thus

ps(s; Σs) =
1

πd|Σs| exp(−sHΣ−1
s s) (5)

where | · | is the determinant operator. It follows
that if L ≥ d and the si (or ki) in (4) are indepen-
dent, then the scaled covariance matrix, defined as
Z = LCs (or Z = LCk), follows the nonsingular
complex Wishart distribution [10]:

pZ(Z;L,Σ) =
|Z|L−d
|Σ|LΓd(L)

exp
(− tr

(
Σ−1Z

))
(6)

where tr(·) is the trace operator and Σ =
E{Z}/L = E{Cs}. We write this as Z ∼
W�d (L,Σ). The normalisation constant Γd(L) is the
multivariate Gamma function, defined as

Γd(L) = πd(d−1)/2

d−1∏
i=0

Γ(L− i) (7)

where Γ(L) is the standard Euler gamma function.

B. Product Model

The randomness of a SAR measurement is mainly
attributed to two unrelated factors, namely speckle
and texture. The latter represents the natural spa-
tial variation of the radar cross section, which is
generally not perfectly homogeneous for pixels that
are thematically mapped as one class. Whereas the
Gaussian model only accounts for speckle, several
statistical models exist that also incorporate texture,
either by assuming statistics that imply a non-
Gaussian scattering vector, or explicitly modelling
texture as a separate random variable (rv). The latter
case leads to a doubly stochastic model with a
compounded distribution.

The well known product model, reviewed e.g. in
[1], [11], has been shown to be both mathematically
tractable and successful for modelling and predic-
tion purposes. In the polarimetric version [12], it
decomposes the scattering vector z (defined on a
lexicographic or Pauli basis) as a product of two
independent stochastic processes with individual
distributions:

z =
√
γw . (8)

The first process, w ∼ N �d (0,Σw), models speckle.
The second process generates texture, represented
by the scalar rv γ, under the assumption that the
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texture is independent of polarisation. The multi-
plicative property of the model is preserved as data
is transformed from single-look format to multilook
format, provided the fluctuations in the radar cross
section occur on a scale that is larger than or equal
to the multilook cell. In the multilook covariance
matrix domain the product model becomes

Z = γLW (9)

where we have defined W =
∑L

i=1 wiw
H
i ∼

W�d (L,Σw) and Z =
∑L

i=1 ziz
H
i . The pdf of Z

depends on the multilook texture rv γL, which is
related, but not identical to γ.

The multilook polarimetric product model leading
up to Eq. (9) is extensively reviewed in [13], where
the family of generalised inverse Gaussian distribu-
tions is proposed as a model for γ, and implicitly
also for γL. Selecting amongst several applicable
members of this family, we shall assume that γ is
gamma distributed, denoted γ ∼ γ(µ, α), with unit
mean (µ = E{γ} = 1) and shape parameter α =
µ2/Var{γ}=1/Var{γ}. The pdf of γ ∼ γ(1, α) is

pγ(γ;α) =
αα

Γ(α)
γα−1e−αγ . (10)

Based upon the product model with γ ∼ γ(1, α),
a family of distributions can be derived for the
complex scattering coefficient, multilook detected
amplitude, multilook intensity, and their polarimet-
ric counterparts, referred to in common as K-
distributions. The K-distribution for the polarimet-
ric scattering vector z was derived in [12]. A K-
distribution for the multilook polarimetric covari-
ance matrix Z was first presented in [9]:

pZ(Z;L,Σ, αL)

=
2|Z|L−d α

αL+Ld

2
L

Γd(L)|Σ|LΓ(αL)

(
tr(Σ−1Z)

)αL−Ld
2

×KαL−Ld

(
2

√
αL tr(Σ−1Z)

)
.

(11)

Here, Kν(·) is the modified Bessel function of
the second kind with order ν. Further, αL is a
distribution parameter of γL ∼ Γ(1, αL), which also
becomes a parameter of pZ(Z). It was shown in [7]
that

αL =
Ld+ 1

d+ 1
α (12)

assures consistency between the models of Eqs. (8)
and (9) with respect to certain moment relations.

For interpretation purposes, we note that γL→ 1
and the multilook polarimetric K-distribution in
Eq. (11) converges in distribution to the complex
Wishart distribution in Eq. (6) as αL → ∞. Thus,
high values of αL imply little texture, whereas
low values refer to significant texture and non-
Gaussianity.

In the following sections, we use the Wishart
distribution pZ(Z; Le,Σ) as the underlying model
when deriving ENL estimators. The multilook po-
larimetric K-distribution pZ(Z; Le,Σ, αL) is used to
investigate how deviation from the Wishart model,
in terms of texture, affects the performance of the
proposed estimators. It is possible to derive an
ENL estimator from the multilook polarimetric K-
distribution, but this introduces αL as an additional
nuisance parameter to be estimated. Therefore, we
will not pursue this approach.

C. Modelling Correlated Data
In the derivation of the distributions in Eqs. (6)

and (11) it was assumed that the single-look scatter-
ing vectors used to form the multilook polarimetric
covariance matrices are independent. This assump-
tion does not hold, as discussed in Sec. I. An exact
analytic expression for the pdf of Z that accounts for
correlation of the z samples has, to the best of our
knowledge, not been obtained, and the derivation is
regarded as intractable (see e.g. [14]). The practical
solution for distribution modelling of correlated data
has been to maintain the functional form of Eqs. (6)
and (11), but to replace the number of correlated
looks, L, with an equivalent number of uncorrelated
looks, Le, that makes certain moment relations (to
be defined in Eqs. (15) and (17)) of the theoretical
model consistent with empirical moments.

III. KNOWN ESTIMATORS

A. Coefficient of Variation Estimator
The traditional approach to ENL estimation for

single polarisation SAR data has been to manu-
ally select a homogeneous image region, where
the assumptions of fully developed speckle and
no texture assure that the scattering coefficient is
circular complex Gaussian. A single polarisation
multilook intensity I , which is found as a diagonal
entry of Z, will then be distributed as γ(σ, L):

pI(I;σ, L) =
1

Γ(L)

(
L

σ

)L
IL−1e−LI/σ (13)
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Fig. 1. Example of gamma distribution γ(σ, L) parametrised with
mean intensity σ = 0.0358 and number of looks L = {8, 10, 12}.

with the mean intensity σ and the number of looks
L as parameters of the gamma distribution. Fig. 1
illustrates how the intensity distribution is affected
by a varying number of looks.

The k-th order moment of I is given by [1]

E{Ik} =
Γ(L+ k)

Γ(L)

(σ
L

)k
(14)

assuming uncorrelated data. We specifically find
that E{I} = σ and Var{I} = σ2/L, thus
E{I}2/Var{I} = L. This does not hold for cor-
related data, but in this case L can then be replaced
by the ENL, defined as

Le =
E{I}2

Var{I} . (15)

The right hand side of Eq. (15) defines the entity
known as the coefficient of variation (CV). The
traditional ENL estimator, which arises as

L̂(CV )
e =

〈I〉2
〈I2〉 − 〈I〉2 (16)

is therefore named the CV estimator. Here, 〈·〉
denotes sample average. This estimator has a simple
form and is easy to apply, which may explain
the very limited interest in ENL estimation found
in the literature, both for single polarisation and
polarimetric SAR data. We have not discovered any
known methods that are tailored for PolSAR data,
in the sense that they process the full covariance
or coherency matrices in (4), thereby utilising all
available statistical information. Methods designed
for mono-polarised SAR are used to handle both
cases, as we describe below.

B. Fractional Moment-Based Estimator

Though Eq. (15) is commonly referred to as the
definition of the ENL [1], [2], there are other ways
to solve for L from statistics of the given model, that
may also be used to determine Le. An alternative
estimator was suggested in [6], based upon the same
distribution model, but using a fractional moment
(FM) of the multilook intensity.

From (14) we have

E{I1/2} =
Γ(L+ 1

2
)

Γ(L)

√
σ

L
. (17)

Replacing E{I1/2} and σ with the estimates 〈I1/2〉
and 〈I〉, we obtain the equation

f
(
L̂(FM)
e

)
=

Γ
(
L̂

(FM)
e + 1

2

)
Γ
(
L̂

(FM)
e

)√
L̂

(FM)
e

√
〈I〉 − 〈

√
I〉 = 0

(18)

which must be solved numerically for the fractional
moment estimate, denoted L̂

(FM)
e . The existance of

a root of f
(
L̂

(FM)
e

)
is proved in Appendix A.

Frery et al. [6] used this method on polarimetric
SAR data, estimating the ENL separately for each
polarisation, and then averaging the results. We note
that Eq. (18) differs from the definition found in [6],
which contains some errors.

C. Other Approaches

The earliest publications we have found that are
dedicated to ENL estimation, are two papers by
Lee et al. that propose to estimate the pair E{I}2

and σ2
I = Var{I} in small windows over the whole

image. One may then infer Le from the scatter plot
of paired (E{I}, σI) estimates, using the Hough
transform [15] or an angular sweep method [16] to
determine the best fitted line, whose inverse slope
squared is the Le estimate. A refined method is
proposed by Foucher et al. [17], which is based
on nonparametric estimation of the distribution of
σI/E{I} values using orthogonal Laguerre func-
tions, and estimation of Le from the mode of the
distribution. The focus of all these papers are on
unsupervised estimation omitting selection of a re-
gion of interest.

Further approches include the papers of Gierull et
al. [14] and Joughin et al. [18], where the authors
derive ENL estimators for mono-polarised SAR data
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from the distribution of interferometric phase. This
is a more specialised application, which requires
multiple baseline data, and is therefore outside our
scope. Moreover, a general estimator can be applied
also to interferometric data. We finally mention the
ENL estimators proposed by El Zaart et al. [19].
They are derived from the gamma distribution using
maximum likelihood theory, in a manner similar
to how we will subsequently derive matrix-variate
methods for polarimetric data from the Wishart
distribution. A shortened version of this paper was
presented in [20].

IV. NEW ESTIMATORS

So far, we have not been able to find any ENL
estimators in the literature that use the full sample
covariance or coherency matrix, or any other matrix-
variate statistic, as input. We have therefore tried
to derive moment based estimators founded on the
Wishart distribution.

A. Trace Moment-Based Estimator
Assume that the random matrix Z is positive

semidefinite and complex Wishart distributed with L
degrees of freedom and scale matrix Σ = E{Z}/L.
The degrees of freedom are equivalent to the number
of looks, and the Wishart law is denoted Z ∼
WC(L,Σ). The following moments of Z are derived
in [21]:

E{tr(ZZ)} = L2 tr(ΣΣ) + L tr(Σ)2 . (19)

E{tr(Z)2} = L2 tr(Σ)2 + L tr(ΣΣ) . (20)

These expressions lead to respective estimators for
Le:

L̂(1)
e =

tr(Σ)2

〈tr(CC)〉 − tr(ΣΣ)
(21)

L̂(2)
e =

tr(ΣΣ)

〈tr(C)2〉 − tr(Σ)2
(22)

now expressed in terms of C = Z/L, which is
the supplied PolSAR data format. Out of these two
estimators, we prefer the former, i.e., the estimator
that originates from the second-order trace moment
in (19). This is because it uses all the elements
of C and thus all polarimetric information through
tr(CC), whereas the latter uses tr(C), which only
contains the intensities on the diagonal. The vari-
ance of L̂(1)

e is also observed experimentally to be

superior to that of L̂(2)
e (22). We further note that

in the single polarisation case, both Eqs. (21) and
(22) reduce to Eq. (16). We have thus found two
matrix-variate extensions of the conventional ENL
estimator, and denote the preferred estimator in Eq.
(21) by L̂(TM)

e , where TM is short for trace moment.

B. Log-Determinant Moment-Based Estimator

We next turn to some other moment relations
involving the determinant of a complex Wishart ma-
trix, and the logarithm thereof. For the normalised
determinant of a complex Wishart matrix, we have
[22]

|Z|
|Σ| ∼

d−1∏
i=0

1

2
χ2

2(L−i) (23)

where d is the dimension of Z (or, equivalently, the
number of polarimetric channels). That is, |Z|/|Σ|
is distributed like a product of chi-square distributed
variables, scaled by the factor 1/2, and with differ-
ent degrees of freedom, as denoted by the subscript
of χ2

i . The moments of |Z|/|Σ| were found in [23]
for real Wishart matrices. In the complex case, we
follow the same procedure to obtain

E

{( |Z|
|Σ|
)r}

=
d−1∏
i=0

Γ(L− i+ r)

Γ(L− i) . (24)

To find the moments of ln(|Z|/|Σ|), we note that
the moment generating function of ln(|Z|/|Σ|) is
defined as

M
ln( |Z||Σ|)

(r) = E

{
exp

(
r ln

( |Z|
|Σ|
))}

(25)

which is identical to the left hand side of the
expression in Eq. (24). It follows that

E

{[
ln

( |Z|
|Σ|
)]k}

=

[
dk

drk

d−1∏
i=0

Γ(L− i+ r)

Γ(L− i)

]∣∣∣∣∣
r=0

.

(26)

The first-order moment becomes

E

{
ln

( |Z|
|Σ|
)}

=
d−1∑
i=0

Ψ(0)(L− i) (27)
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where Ψ(0)(L) = Γ′(L)/Γ(L) is known as
the digamma function, which is one of Euler’s
polygamma functions, defined as

Ψ(m)(z) =
dm+1

dLm+1
ln Γ(L)

= (−1)m
∫ ∞

0

tme−zt

1− e−t dt .
(28)

The derivation of Eq. (27) is shown in Appendix B.
Since data is supplied as covariance matrices in the
format C = Z/L, we use ln |Z| = ln |C|+d lnL to
write

E {ln |C|} = ln |Σ|+
d−1∑
i=0

Ψ(0)(L−i)−d lnL . (29)

This equation defines our new estimator. The esti-
mate, denoted L̂

(ML)
e for reasons explained below,

is the root of

g
(
L̂(ML)
e

)
= 〈ln |C|〉 − ln |〈C〉|

−
d−1∑
i=0

Ψ(0)
(
L̂(ML)
e − i)+ d ln L̂(ML)

e = 0
(30)

where the mathematical expectation E{ln |C|} has
been replaced by the empirical mean 〈ln |C|〉 and
Σ by 〈C〉. Eq. (30) must be solved numerically in
the same fashion as the estimator defined by (18).
The existance of a unique root of g(L) is proved in
Appendix A.

From the complex Wishart distribution in Eq. (6),
it is easy to verify that

∂

∂L
ln pZ(Z;L,Σ)

= ln |Z| − ln |Σ| − ∂

∂L
ln Γd(L)

= ln

( |Z|
|Σ|
)
−

d−1∑
i=0

Ψ(0)(L− i) .

(31)

By comparison of Eq. (31) with Eq. (27), it is re-
vealed that the solution of Eq. (30) is the maximum
likelihood (ML) estimate of Le. It is thus asympot-
ically unbiased, efficient, and Gaussian [24].

We finally remark that efficient implementation
of the sum of polygamma functions is aided by the
recurrence relation:

Ψ(m)(z + 1) = Ψ(m)(z) + (−1)mm! z−(m+1) . (32)

V. PERFORMANCE EVALUATION

The obvious way of evaluating estimator per-
formance is by looking at statistical proper-
ties such as bias and (co)variance. Let θ =
[Le,Σ11,Σ21, . . . ,Σdd]

T = [Le, vec(Σ)T ]T be the
complex-valued parameter vector of the Wishart
model, with the vectorisation (column stacking)
operator denoted as vec(·), and let θ̂ be an estimator
of θ. The length of θ is k = d2 + 1.

When estimating Le, the entries of the covari-
ance matrix, denoted Σij, i, j ∈ {1, . . . , d}, become
nuisance parameters whose uncertainty degrade the
estimate of Le. The estimators defined by Eqs. (18),
(21), and (30) are too complicated to find analytic
expressions for neither the distribution, the bias
vector, nor the covariance matrix of θ̂. The bias
vector and the covariance matrix are defined as

b(θ̂) = E{θ̂} − θ (33)

and

Cov{θ̂} = E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})H} (34)

respectively. However, we can evaluate both bias
and covariance empirically, for instance using boot-
strap methods. We are also able to establish a lower
bound on the variance of Le.

A. A Bound on the Variance of ENL Estimators
Assume that we have a set Z = {Z1, . . . ,ZN}

of N independent and complex Wishart distributed
sample covariance matrices. The log-likelihood
function of Z is

L(Z ; Le,Σ) = ln
N∏
i=1

pZ(Zi; Le,Σ)

=
N∑
i=1

ln pZ(Zi; Le,Σ)

(35)

with pZ(Z;L,Σ) given by Eq. (6). The Cramér-
Rao bound (CRB) establishes a lower bound on
the covariance of the stochastic θ̂. For the complex
parameter vector θ, the CRB is defined as [25]

Cov{θ̂}

� ∂

∂θT
(
θ + b(θ̂)

)
J−1

(
∂

∂θT
(
θ + b(θ̂)

))H
=
∂ E{θ̂}
∂θT

J−1

(
∂ E{θ̂}
∂θT

)H

(36)
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where the matrix expression A � B denotes that
A − B is positive semidefinite. Further, J denotes
the Fisher information matrix (FIM), given by

J = E

{(
∂L(Z )

∂θT

)H
∂L(Z )

∂θT

}

= −E

{
∂

∂θ∗

(
∂

∂θ
L(Z )

)T} (37)

for the complex case, where superscript ∗ denotes
complex conjugation. The parameters of L(Z ) are
suppressed for brevity. The first equality of Eq. (37)
is proven in [25], and the proof of the second is
straight-forward by analogy with the real case [24].

If the estimator θ̂ is unbiased, then Eq. (36)
becomes the familiar Cov{θ̂} � J−1. However,
the estimators that we study are biased, and since
we are not able to evaluate the term ∂ E{θ̂}/∂θT
in Eq. (36), the true CRB cannot be determined
analytically. Still, by noting that

∂ E{θ̂}
∂θT

=
∂
(
θ + b(θ̂)

)
∂θT

= Ik +
∂b(θ̂)

∂θT
(38)

where Ik is the k × k identity matrix, Eq. (36) is
rewritten as

Cov{θ̂}

� J−1 +
∂b(θ̂)

∂θT
J−1 + J−1

(
∂b(θ̂)

∂θT

)H

+
∂b(θ̂)

∂θT
J−1

(
∂b(θ̂)

∂θT

)H

= J−1 + (K + KH) + KJKH .

(39)

We have here defined K = (∂b(θ̂)/∂θT )J−1. It is
easily shown that the term KJKH on the right hand
side is positive semidefinite, and thus contributes to
a tighter bound on Cov{θ̂}. However, this cannot be
proven for (K + KH), and the relationship between
the inverse FIM, J−1, and the true CRB remains
undefined. Still, J−1 is the best indication we can
obtain of a performance bound, and we shall refer
to it as the unbiased CRB (UCRB).

The inverse FIM is given by

J−1 =

1

N


d−1∑
i=0

Ψ(1)(Le−i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ
−1 ⊗Σ−1)


−1

(40)

where ⊗ denotes the Kronecker product. The deriva-
tion is shown in Appendix C. The bound on the
variance of the ENL estimator thus becomes

Var{L̂e} ≥ J−1
11 (41)

where J−1
ij denotes element (i, j) of J−1. Eq. (41)

must be evaluated numerically, but we see that the
variance bound depends on the true Le and Σ, and
that the rate of convergence is 1/N .

B. Robustness to Texture

The concept of texture in SAR images was dis-
cussed in Sec. II-B. The product model was also
introduced as a scheme to develop statistical mod-
els that accommodate texture, and thereby provide
more flexible and accurate descriptions of PolSAR
data than the Wishart distribution, which has been
assumed in the derivation of all estimators so far.
The multilook polarimetric K-distribution in (11)
was presented as a concrete candidate for modelling
of texture modulated covariance matrix data.

Models that include and quantify texture become
relevant when we want to investigate the influence
of texture on the ENL estimation performance. The
textural variability of the target will add to the
randomness inflicted by the measurement process
through speckle. Consider multilook intensity data
for simplicity: It is evident that the presence of
texture will increase Var{I}, when compared to the
variance produced by speckle alone. This leads to
underestimation of Le, as seen from (15).

To assess the effect of texture on different ENL
estimators, we would ideally evaluate the mean and
bias of the candidate estimators under a distribution
that includes texture. Due to the complexity of both
the estimators and the aspiring distributions, this is
not possible. We must therefore resort to generating
textured data, and use them to evaluate statistics of
the estimators experimentally. The multilook polari-
metric K-distribution is used for this purpose.

We note that, assuming the texture in all polari-
metric channels can be modelled by a scalar random
variable, the phase difference, amplitude ratio, and
intensity ratio are all insensitive to texture. This was
pointed out by Lee et al. [9], who used the fact to
estimate the ENL, without explicitly stating how.
The invariance of the amplitude ratio and also the
phase to texture can be used to design robust ENL
estimators. This approach has not been examined,
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due to the complicated distribution of the phase
difference, amplitude ratio, and intensity ratio [26],
[27].

VI. UNSUPERVISED ESTIMATION

Some attempts have already been made to design
a fully automatic estimation algorithm that avoids
manual selection of a region of interest [15]– [17],
as reviewed in Sec. III. Since all these methods are
related to the traditional CV estimator in Eq. (16),
and use only one polarisation at the time, we here
propose a new unsupervised estimator based upon
the polarimetric ML estimator defined by Eq. (30).

For an arbitrary SAR scene, there is no guarantee
that we can find an image subset with fully devel-
oped speckle and no texture. If such a region exists,
it may not contain enough samples to ensure that
empirical moments can be calculated with sufficient
accuracy. This motivates a different approach, where
moments are calculated and the estimator evaluated
in small windows over the whole image. The ENL is
then inferred from the distribution of small sample
estimates. However, this method has a number of
inherent problems that need to be considered. Some
of the windows will contain a mixture of pixels from
different classes, and some will contain texture.
Both of these conditions lead to underestimation
of the ENL. We may also encounter areas where
the contribution of coherent scatterers makes the
zero mean assumption on the scattering coefficients
invalid. The nonzero mean will increase the average
intensity, and thus leads to overestimation of the
ENL. Finally, when small sample sizes are used,
the bias of all the estimators studied is significant.
This is demonstrated in the experiments.

The method used in [15], [16] is to produce a
scatter plot of Ê{I} versus σ̂I values estimated over
a whole scene. The idea is that values computed
under no texture and fully developed speckle will
dominate the population of estimates. Hence, they
will stand out as a linear feature, such that the
ENL can be inferred from the slope. Instead of
performing line extraction in a two-dimensional
space of empirical moments, we follow the approach
of [17] and compute a single statistic, namely the
ENL itself, hence producing a one-dimensional dis-
tribution of small sample ENL estimates. We use
the same reasoning, hoping that a large enough
proportion of the estimation windows satisfy the

statistical assumptions. In this case, the overall
distribution of estimates should be dominated by
estimates computed from truly Wishart distributed
samples, and the mode value can be used as an
estimate of the ENL.

A. Nonparametric Estimation
The distribution of the ENL estimates will depend

strongly upon the properties of the given image,
that is, the homogeneity of the scene, the extent
of the homogeneous regions, the amount of texture
within the classes, and the presence of homogeneous
regions that exhibit coherent scattering. Due to the
unpredictable shape and possible multimodality of
the distribution, we must resort to nonparametric
estimation, and propose to use a kernel density es-
timator (KDE) implemented with the Epanechnikov
kernel function [28], [29].

The KDE yields the following distribution esti-
mate:

p̂(L̂e) =
1

nh

n∑
i=1

Kh(L̂e − ˆ̀
e(i)) (42)

where L̂e is the stochastic small sample ENL esti-
mator, {ˆ̀e(i)}ni=1 is a set of n instances produced
by this estimator in separate windows, Kh(·) is the
kernel function, and h is the kernel bandwidth that
determines the degree of smoothing. The Epanech-
nikov kernel is defined as

Kh(x) =
3

4

(
1−

(x
h

)2
)
1{| xh |<1} (43)

where the indicator function 1{Ω} denotes 1 when
condition Ω holds, and 0 when it does not. The KDE
is chosen because it is simple and has a convergence
rate of n−4/5, as compared to n−1, which is common
for parametric estimators.

The kernel bandwidth has a strong impact on
the magnitude of the estimated distribution, but not
so much on the sample mode. Since the aim is
to extract the mode value and use it as an ENL
estimate, determination of a near optimal bandwidth
is not critical. We have therefore assumed that
simple bandwidth selection rules from the literature
(see e.g. [28], [29]) are sufficient. The Epanechnikov
kernel is optimal with respect to the asympotic
mean integrated squared error (AMISE) of the KDE.
Equally important, it provides a fast implementation
due to its finite support.
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Let the final estimate extracted as the mode of
the kernel density estimate be denoted L̂e.

B. Bias Correction
It will be shown in Sec. VII that one notable side

effect of using small sample estimates of the ENL, is
that they contain significant bias. This bias transfers
directly to the value inferred from the distribution
of estimates. An illustration is given in the result
section. It is possible to estimate the bias by means
of jackknife resampling, and the bias estimate can
be used to obtain a corrected ENL estimate.

Jackknifing [30], [31] is a resampling technique
that can be used to estimate the bias and variance
in an estimator. If the original sample contains m
observations, the jackknife procedure consists of
recomputing the estimator m times, leaving out one
observation from the full sample at a time. This
produces m jackknife replications, {ˆ̀e(i, j)}mj=1, for
a given small sample estimate, ˆ̀

e(i). The bias esti-
mate based on sample window i is computed as

b̂
(
L̂e, i

)
= (m− 1)

(
ˆ̀
e(i, ·)− ˆ̀

e(i)
)

(44)

where ˆ̀
e(i, ·) is the mean of the m jackknife repli-

cations, defined as

ˆ̀
e(i, ·) =

1

m

m∑
j=1

ˆ̀
e(i, j) . (45)

Bias estimation introduces considerable overhead
to the algorithm, if we choose to compute a jack-
knife estimate b̂

(
L̂e, i

)
for each of the n small sam-

ple windows in the image. We propose to process
only a user specified number (or a percentage of
the total number) of samples, selecting those that
correspond to the estimates ˆ̀

e(i) that are closest
to the mode value, as these are most likely to
comply with the statistical assumptions. This yields
a collection of small sample bias estimates. The final
estimate, b̂(L̂e), could have been obtained in the
same manner as L̂e, i.e., by nonparametric density
estimation and extraction of the mode. Instead, we
suggest for simplicity to use the median value,
which has proven experimentally to be consistently
close to the mode value. The bias corrected ENL
estimate thus becomes

L̂′e = L̂e − b̂(L̂e)
= arg max

L̂e

{p̂(L̂e)} −med{b̂(L̂e, i
)} (46)

where med{·} is the median operator.
One problem with the bias correction procedure

is that the bias estimator itself has a bias. If the
number of observations, m, becomes too small, then
the correction is inaccurate. This must be taken into
consideration when selecting the sample size m. The
result section will indicate for which values of m
a bias correction is needed and for which values a
reliable correction can be obtained.

VII. RESULTS

In the experiments we used synthetic and real data
to compare the following algorithms:

1) Coefficient of varation (CV) estimator [(16)]
2) Fractional moment (FM) estimator [(18)]
3) Trace moment (TM) estimator [(21)]
4) Maximum likelihood (ML) estimator [(30)]

The CV is the conventional estimator, while the
FM estimator [6] is a lesser known alternative from
the literature. The TM estimator is our polarimetric
generalisation of the CV estimator. The ML esti-
mator is the proposed estimator based on first log-
determinant moment of the multilook polarimetric
covariance (or coherency) matrix.

A. Synthetic Data
We first tested the estimators on random gener-

ated data from a single class. The synthetic data
set consisted of N = 1,000,000 coherency matrix
samples drawn from a complex, circular, and zero
mean Wishart distribution. The distribution was
parametrised by a scale matrix Σ that had been com-
puted by averaging a homogeneous region in the
NASA/JPL AIRSAR L-band image of Flevoland,
the Netherlands, and thus represented a realistic
model of natural vegetation. The number of looks
was set to L = 10.

1) Statistical Properties: From the population
of N = 1, 000, 000 Wishart samples, we drew
Mb=10, 000 bootstrap samples of variable size Nb,
and then used the bootstrap estimator [30], [31],
[32] to estimate the bias and variance of the ENL
estimators. The upper panel of Fig. 2 displays the
estimated bias versus sample size Nb, and ranks
the ML estimator as the best, followed by the TM
estimator, and then the FM estimator, which is
slightly better than the CV estimator. The order of
performance is the same for variance versus sample
size Nb, as shown in the middle panel.
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Fig. 2. Estimator bias (top) and variance (middle) as a function of
sample size Nb, and the distribution of ENL estimates for Nb = 512
(bottom). Results shown for the CV, FM, TM, and ML estimator. The
variance plot includes the unbiased Cramér-Rao Bound (UCRB). True
L = 10 shown as dotted line.

The lower panel shows the distribution of ENL
estimates for a fixed sample size of Nb = 512. The
distribution was computed with a KDE estimator
with Epanechnikov kernel and kernel bandwidth
h=0.1. We see that all estimators produce distribu-
tions that are centered approximately around the true
number of looks, L= 10, as the random generated
data had no correlation. We note that a considerable
improvement in terms of reduced variance is visible
for the ML estimator. Its variance is well above
the UCRB (see the middle panel), but we have
observed experimentally that much of the gap can
be attributed to the nuisance parameters in Σ.

2) Robustness to Texture: The experiments were
repeated for multilook polarimetric K-distributed
data with different degrees of texture, which in-
creases with decreasing values of the distribution
parameter α, as discussed in Sec. II-B. Data were
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Fig. 3. Distribution estimates for the CV, FM, TM, and ML estima-
tor, calculated from single class multilook polarimetric K-distributed
data random generated with a fixed Σ and α = {2, 4, 8, 16,∞}.

generated with parameter values ranging from α=2,
which corresponds to a strongly heterogeneous en-
vironment such as an urban area, to α= 16, which
may characterise vegetation such as forest or certain
crops. The limiting case, α=∞, which is equivalent
to no texture and Wishart distributed data, was also
included.

Fig. 3 shows the distribution of the ENL estima-
tors for different values of α with L = 10 (dotted
line). The figure illustrates that the mode and mean
of the distributions depend strongly on α, and that
the estimate is severely distorted by texture. The
ML estimator is least affected, followed by the TM
estimator, with the FM estimator, and then the CV
estimator as the inferior.

B. Real Data
1) Unsupervised Estimation: After having estab-

lished the statistical properties of the ENL esti-
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Fig. 4. Distribution estimates for the CV, FM, TM, and ML estimator
calculated from the AIRSAR image of Flevoland. No speckle filter
applied. ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

mators with synthetic data, we turned to real data
for a realistic assessment of their applicability to
unsupervised estimation. We chose to use two data
sets acquired by the airborne NASA/JPL AIRSAR
L-band instrument: one image of an agricultural area
in Flevoland, The Netherlands, from 1989, and one
image of the San Fransisco Bay area in California,
USA, from 1988. Both data sets contain four-looked
coherency matrices, with a pixel resolution of about
10 m× 10 m.

The landscape of the Flevoland image consists
mainly of homogeneous fields, and also some forest
areas, straight roads, and farm houses. The San
Francisco Bay image contains mostly sea and urban
areas, in addition to some parks and hills covered
by vegetation. There are few homogeneous areas
of considerable size, except for the ocean. One
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Fig. 5. Distribution estimates for the CV, FM, TM, and ML estimator
calculated from the AIRSAR image of San Francisco. No speckle fil-
ter applied. ENL estimated for window sizes of k = {3, 5, 7, 11, 15}.

would therefore expect that it is relatively simpler
to estimate the ENL from the Flevoland image.

Each image was processed by computing the
estimators in a sliding window of size k× k pixels,
covering the whole image. The window size was
varied from k= 3 to k= 15. No speckle filter was
applied initially. The distribution of each estimator
was estimated from the collection of local estimates.
We used a KDE with Epanechnikov kernel function
and a kernel bandwidth of h = 0.1. The results
are shown in Fig. 4 for the Flevoland image and
Fig. 5 for the San Francisco image. A modified
Lee filter [33] with window size ` = 7 was then
applied to the images to reduce the level of speckle.
The results were similar, and are therefore only
presented for the Flevoland image. The estimate
distributions, shown in Fig. 6, were obtained with
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Fig. 6. Distribution estimates for the CV, TM, TM, and ML estimator
calculated from the AIRSAR image of Flevoland. Modified Lee filter
with window size 7× 7 applied. ENL estimated for window sizes of
k = {3, 5, 7, 11, 15}.

kernel bandwidth h = 0.5. None of the estimates
were bias corrected at this stage.

2) Effect of window size: From the panels of
Figs. 4 and 5, we can study the evolution of the
distribution of ENL estimates as the window size
increases. Denote by H0 the hypothesis that the
estimation sample is drawn from a homogeneous
area with fully developed speckle and no texture,
i.e., the statistical conditions assumed for ideal
ENL estimation. Let H1 be the complementary
hypothesis, which indicates presence of multiple
classes, texture, or coherent scattering. The overall
distribution can then be modelled as a mixture:

f(L̂e) = α0f0(L̂e) + α1f1(L̂e) . (47)

The first mixture component, f0(L̂e), consists of
estimates calculated under H0, which occurs with

relative frequency α0. It is the desired compo-
nent, and should ideally be sufficiently dominant
to produce an identifiable mode close to the true
ENL. The other component results from estimates
produced under H1. This component modifies the
shape of the overall distribution and, depending on
the magnitude of its relative frequency, α1 = 1−α0,
it may even give rise to additional modes.

Two expected effects can be seen as the number
of samples within the estimation window increases:
Firstly, the variance becomes lower and the modes
narrower. This is most clearly observed for the ML
estimator, which has a well-defined mode for all
window sizes. Secondly, the probability of having
mixed classes within the estimation window in-
creases, and consequently, so does the proportion
of underestimated values. This is seen as a growing
negative skewness, and the tendency towards a bi-
modal distribution for all estimators. It also partially
explains the shift of the mode value towards a lower
ENL with increasing k, even though the bias of
the ENL estimator also contributes to the observed
effect.

Fig. 7 is a map of the locally estimated ENL
values, obtained with the ML estimator and k = 7
for the Flevoland data set. It confirms that the mode
in Fig. 4, centered around 3.2, corresponds to values
that are estimated within homogeneous crop fields,
while the mode emerging with increasing k around
2.7 relates to values estimated at class boundaries.
In the same manner, Fig. 8 demonstrates for the San
Francisco image that the main mode of the ML es-
timator with k=7, located around 3.0, corresponds
to values estimated over land. The second mode at
higher values is discussed in the sequel. The fact
that the mode value is more sensitive to k for the
San Francisco data set, indicates that this image
has less homogeneous regions on the scale of the
estimation window.

From the investigations with synthetic data, it is
obvious that the presence of texture will add to the
underestimation, but this effect is not affected by
the window size k. Following the discussion above,
it seems reasonable to use the smallest window size
possible to suppress the mixed class effect, while at
the same time maintaining low enough variance and
bias to obtain the required accuracy and precision
in determination of the mode value.

3) Effect of Coherent Scatterers: Fig. 5 displays
the influence of the window size, as discussed
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Fig. 7. Local ENL estimates obtained with the ML estimator and
window size k=7 for the AIRSAR image of Flevoland. No speckle
filter applied.

Fig. 8. Local ENL estimates obtained with the ML estimator and
window size k = 7 for the AIRSAR image of San Francisco. No
speckle filter applied.

above, but also reveals another source of disturbance
that only seems to affect the ML estimator. For
increasing k we see the emergence of a second
mode, which is located between 4 and 5, i.e., at
values higher than the true number of looks (L=4).
In Fig. 8, this cluster of estimates is observed to be
spatially located over ocean, and the highest ENL
estimates are obtained in the top right corner of
the image, where the incidence angle reduces to
five degrees. We believe that overestimation occurs
because specular reflection from the water surface
contributes a strong coherent component, which is
consistent within local neighbourhoods. This makes

Fig. 9. Local ENL estimates obtained with the ML estimator and
window size k = 7 for the AIRSAR image of Flevoland. Modified
Lee filter with window size `=7 applied.
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Fig. 10. ENL estimates obtained with the ML estimator as a function
of window size k for the AIRSAR images of Flevoland and San
Francisco, with and without bias correction. No speckle filter applied.

the zero mean assumption on the scattering coeffi-
cients invalid.

The given explanation is mathematically consis-
tent, although we have no firm evidence. The same
phenomenon is observed for the Flevoland data set;
Fig. 7 shows that the highest ENL estimates are
found over water, i.e., in the triangular area in the
top right corner. However, this image contains too
little water surface for the overestimation effect to
be clearly visible in the distribution of estimates
(Fig. 4). Other regions, such as the large urban areas
in the San Francisco image, are also expected to
contain significant coherent scattering, but these are
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too heterogeneous to produce overestimated ENL
values.

4) Effect of Speckle Filtering: The unsupervised
estimation procedure was also tested on speckle
filtered data. The simplest speckle filter, a boxcar
filter, smooths all pixels equally by averaging over
a fixed size window, and thus acts like a spatial
domain multilook operator. Hence, the effect on
the ENL estimate is a simple scaling. More so-
phisticated filters perform adaptive smoothing. They
take local variability in the image into account, in
order to preserve details like edges and points. As a
consequence, the ENL will no longer be a constant
value, but a spatially varying number.

We applied a modified Lee filter [33], because
of its widespread use. It is also simple enough that
it allows us to quantify the amount of averaging
it performs. The modified Lee filter is basically
a linear minimum mean squared error (LMMSE)
filter, whose output is a weighted sum of the centre
pixel data value on the one hand and the average
of a fixed size smoothing region selected from the
filter window on the other. The weight is determined
from the homogeneity of the smoothing region.
Hence, the maximum smoothing factor is equal
to the number of pixel of the smoothing region,
denoted Nw, and the minimum is none. From the
specification of the modified Lee filter, we have
Nw = `(` + 1)/2 when the full window size is
`× `, and the dynamic ENL after adaptive speckle
filtering will lie in the range between Le, the original
ENL value, and Nw · Le. We see that a common
window size of ` = 7 yields Nw = 28, which
illustrates that speckle filtering transforms a single-
valued ENL into a wide range of values.

Fig. 6 shows the estimation results obtained on
the Flevoland image processed with a modified Lee
filter with ` = 7. A mode becomes visible with
increasing window size, but it occurs at very low
ENL values. Fig. 9 is a map of the local estimates
produced with the ML estimator. It illustrates that
the mode emerging at 5 < L̂e < 10 corresponds
to estimates obtained over class boundaries. It can
therefore not be related to the true ENL. The desired
mode that appeared in Fig. 4 has vanished, as the
distribution has been stretched due to the variable
degree of smoothing. The areas that produced ENL
estimates around the mode value of Fig. 4, now
produce estimates in an interval ranging from 40
to 100. The same observations were made for the

San Francisco image.
We acknowledge that other adaptive speckle fil-

ters will lead to different distributions of the ENL.
Nevertheless, our observations strongly suggests
that unsupervised ENL estimation is impossible for
dynamically filtered data. This does not imply that
our method has failed, but rather that the Wishart
model, and in particular the parametrisation with a
single-valued ENL, is inappropriate. The implica-
tions for statistical modelling should be addressed
by future research.

5) Effect of estimator bias: The effect of the
estimator bias is demonstrated in Fig. 10. The plot
shows the mode value extracted by means of the
KDE as a function of window size k. The respective
estimates, L̂e and L̂′e, obtained before and after
bias correction are shown for both the Flevoland
and the San Francisco data set. We observe for the
Flevoland data that the bias corrected estimate is
relatively constant from k = 3 and onwards. This
indicates that the window size has no influence
on the estimate after bias have been removed. The
low value of the bias corrected estimate for k = 2
suggests that the bias is overestimated for low values
of k. This naturally concerns both data sets. The
ENL estimated from the San Francisco data shows
a decreasing trend with k, also after bias correction.
We interpret this as an effect of mixed classes,
which increases with window size.

6) Estimation Results: The estimation results in
Fig. 10 suggest that the data sets have different
ENL values. This is not, however, supported by the
knowledge that both images are produced with the
same data processor, and that they have very similar
ground resolution. The difference could stem from
differences in acquisition parameters, but we believe
it is more likely due to a differing amount of texture
found in the respective images, and particularily in
the areas where the estimates contributing to the
main mode in the pdf estimates originate. The San
Francisco image has very little homogeneous areas,
and much of the estimates around the mode are
collected from urban area and hilly terrain. With
reference to the discussion of texture influence,
illustrated by Fig. 3, this could well explain the
lower ENL values extracted from the San Francisco
data set. It is possible that also the ENL level
estimated from the Flevoland data is lowered with
respect to the true value by the presence of texture,
but by a smaller amount.
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It seems clear that the ability of our method to
obtain an estimate that is close to the true ENL
depends entirely on how susceptible the data set
is to estimation. However, the alternative to our
unsupervised procedure is manual selection of a suf-
ficiently large region with approximately constant
radar cross section, which is not possible for the
San Francisco image. Such regions can be found
in the Flevoland image, but the resulting estimate
still varies, depending on the exact positioning of
the estimation window within seemingly homoge-
neous areas. Another discussion goes to whether one
should really aim at the true ENL value, or rather
a value that provides a better model for the data
by implicitly incorporating some of the texture not
accounted for by the Wishart model. The ENL is
not a physical entity, but a parameter of the less
than perfect statistical model, which could justify a
more pragmatic approach. If we choose to accept
an ENL estimate that assimilates texture, then our
unsupervised procedure that collects small sample
estimates from the whole scene is appropriate, since
the result is representative for the whole image.

Earlier studies of the ENL for four-look AIRSAR
data have concluded that the data have characteris-
tics close to that of three-look [34]. By matching
distributions of phase and amplitude ratio that are
assumed to be insensitive to texture, Lee et al.
estimated the ENL for an AIRSAR C-band image of
Howland Forest, USA to a value of 3.3 [9]. This is
compatible with the results displayed in Fig. 10, but
we still need to decide on a window size in order
to obtain a value to compare with. The discussion
on the window size effect related to mixed classes
prescribes the use of the smallest window size pos-
sible. On the other hand, consideration of estimator
bias forces us to increase the window size slightly.
We believe that k = 5 is a good compromise,
which should be applicable to various data sets. This
window size yields bias corrected ENL estimates of
3.21 and 2.97 for the Flevoland and San Francisco
data sets, respectively.

C. Computational Complexity

We finally present some results on the compu-
tational complexity of the tested algorithms. All
algorithms are implemented in C language and
optimised for speed. The performance measure is
central processing unit (CPU) time, as measured
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Fig. 11. Computational complexity of the CV, FM, TM, and ML
estimator measured in CPU time per estimate calculation as function
of sample size.

by the Matlab profile function, on a 2.0 GHz Intel
Pentium M processor. Fig. 11 displays mean CPU
time required per estimate calculation as a function
of sample size.

The figure shows that the CV estimator has the
lowest computational cost, followed by the TM
estimator. This is expected, since these are the
mathematically simplest functions, with analytical
solutions. The CV estimator is typically in the order
of five to fifteen times faster than the ML estima-
tor, depending on the sample size. The ranking of
the inferior FM and ML estimators also depends
on sample size, which can be explained. Both of
these estimators are solved numerically and must
be seeded with an initial value. For small sample
sizes, the estimate is more likely to lie far off
the seed value, which is typically chosen as the
nominal number of looks. When this happens, the
numerical scheme needs more time to converge.
The FM estimator has higher variance than the ML
estimator, as seen in Fig. 2, and is therefore more
affected. As the sample size size gets higher, the
variance becomes lower. Thus, the convergence time
becomes shorter and less important, and algorithm
speed depends more on the complexity of the math-
ematical functions. The digamma function in the
ML estimator makes it slightly slower than the FM
estimator, which can be implemented with the log-
of-gamma function.
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VIII. CONCLUSION

We have proposed two new estimators for the
equivalent number of looks (ENL) that are adapted
for polarimetric SAR (PolSAR) data. The expres-
sions are derived by examining moment expressions
of the multilook polarimetric covariance matrix (or,
equivalently, the coherency matrix). The first esti-
mator is found by rearranging the second order trace
moment of the covariance matrix, and is thus called
the trace moment (TM) estimator. The expression
also provides a matrix-variate generalisation of the
traditional definition of the ENL, established in
the theory of single polarisation SAR. The second
estimator is found from the log-determinant moment
of the covariance matrix, and is also observed to be
the maximum likelihood (ML) estimator based on
the Wishart model for multilook PolSAR data. It
is therefore coined the ML estimator. The proposed
estimators are, as far as we know, the first ones to
process the full multilook polarimetric covariance
matrix, thus utilising all the available statistical
information of PolSAR data. They readily reduce
to estimators for single polarisation SAR data as a
one-dimensional special case.

The new estimators have been compared with
two estimators from the literature. The first is the
traditional coefficient of variation (CV) estimator.
The second, which we have called the fractional
moment (FM) estimator, is the best method in the
sparse literature on ENL estimation for PolSAR
data. Both are based on moments of single po-
larisation intensities. Assessment of the statistical
properties of all estimators shows that the TM es-
timator represents improvement with respect to the
previously known methods, but the ML estimator is
by far the superior one. We therefore launch it as the
preferred estimator, not only for PolSAR data, but
for SAR data in general. We have compared the bias
and the variance of the estimators in experiments. A
bound on the variance of an ENL estimator has also
been derived, which is closely related to the Cramér-
Rao bound. In addition to achieving the lowest bias
and variance, the ML estimator is also shown to
be less affected by texture, when the assumption of
constant radar cross section does not hold for the
input data sample.

We have finally examined the applicability of
the ML estimator to unsupervised estimation, which
obsoletes the manual selection of a region charac-

terised by the appropriate statistics assumed in the
definition of the ENL. An unsupervised estimation
procedure is described. It is further shown through
experiments that the low variance property of the
ML estimator is the key feature that enables extrac-
tion of a reliable ENL estimate from the distribution
of small sample estimates that have been calculated
over the whole image without regards to the ap-
propriateness of local statistics. Possible sources of
error are discussed in detail, and practical solutions
to issues such as bias reduction and selection of pro-
cessing parameters have been proposed. The fully
automatic unsupervised procedure offers a robust
alternative to manual procedures, and represents a
potensial improvement to an operational processing
chain.

APPENDIX A:
PROOF OF ESTIMATOR CONVERGENCE

We here analyse the convergence properties of the
estimators that must be solved numerically because
they have no analytic solution.

The fractional moment (FM) estimator is defined
as the root of the polynomial f(L), as given in Eq.
(18). It can be shown that f(L) is a monotonically
increasing function of L. To prove that f(L) has a
root, we shall study the limiting values of f(L) as
L→∞ and L→ 0.

From [35], we have

Γ(L+ 1/2)

Γ(L)
√
L

= 1− 1

8L
+

1

128L2
+

5

1024L3
− . . . .

(48)

Thus,

lim
L→∞

f(L) = lim
L→∞

Γ(L+ 1/2)

Γ(L)
√
L

√
〈I〉 − 〈

√
I〉

=
√
〈I〉 − 〈

√
I〉 ≥ 0 .

(49)

The limiting value is the difference between the root
mean square and the arithmetic mean of the detected
amplitude,

√
I , which is always nonnegative by the

known inequality for these entities.
Next step is to determine the limit of Eq. (48) as

L→ 0. A standard power series expansion of Γ(L)
shows that

Γ(L) ∝ 1/L− γEM +O(L) (50)
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where γEM is the Euler-Mascheroni constant and
O(·) is Landau notation to denote order. It follows
that

Γ(L)
√
L ∝ 1√

L
− γEM

√
L+O(L3/2) . (51)

Thus, the numerator Γ(L+1/2) → Γ(1/2) =
√
π

and the denominator Γ(L)
√
L→∞ as L→ 0. The

limit becomes

lim
L→0

Γ(L+1/2)

Γ(L)
√
L

= 0 (52)

which proves that

lim
L→0

f(L) = −〈
√
I〉 . (53)

The limit of f(L) is negative as L→ 0 and f(L)
is a monotonically increasing function. Hence, it can
be proved that there exists exactly one root of f(L)
in the interval 0 < L <∞ if and only if inequality
occurs in Eq. (49), i.e., the limit as L → ∞ must
be strictly positive.

For a sample size of N = 1, f(L) has no root,
since in this case,

√〈I〉=〈√I〉, and f(L)<0 with
probability equal to one for finite L. However, for
N ≥ 2, the limit is positive unless all samples have
the same value. Thus, as long as the samples are
nonidentical, a root exists and the estimator con-
verges, provided it is implemented with a reliable
root-finding algorithm. We have used the bisection
method.

The proof for the maximum likelihood (ML)
estimator follows the same path. The ML estimator
is defined as the root of g(L), as defined in Eq.
(30). It can be shown that g(L) is a monotonically
decreasing function of L in the interval d−1 < L <
∞. Next observe that the digamma function can be
expanded as

Ψ(L) ∝ ln(L)− 1

2L
− 1

12L2

(
1 +O

(
1

L2

))
(54)

which is used to show that

lim
L→∞

g(L) = lim
L→∞
〈ln |C|〉 − ln〈|C|〉

−
d−1∑
i=0

(
ln

(
L− i
L

)
− 1

2(L− i)

− 1

12(L− i)2

[
1 +O

(
1

(L− i)2

)])
= 〈ln |C|〉 − ln〈|C|〉 ≤ 0 .

(55)

The inequality on the bottom line is easily proved
by means of Jensen’s inequality on finite form. It is
also readily shown that

lim
L→d−1

g(L) =∞ . (56)

The limit as L→ d− 1 is positive and g(L) is a
monotonically decreasing function. Thus, the exis-
tance of a root of g(L) requires that the inequality
in Eq. (55) is strictly negative. Equality occurs in
Eq. (55) if and only if there is no variation in the
sample, with N=1 as a special case. Otherwise, for
N ≥ 2, a unique root of g(L) exists in the interval
d − 1 < L < ∞ and the estimator converges. We
note that the lower limit of this interval, introduced
by the discontinuity of g(L) at d − 1, restricts the
allowed range of the ML estimate. However, this is
not a conceptual problem, since estimates L̂e < d
are in conflict with the condition for the Wishart
distribution to be nonsingular.

APPENDIX B:
DERIVATION OF LOG-DETERMINANT MOMENTS

In this appendix we derive low-order moments
of ln(|Z|/|Σ|). By combining Eqs. (24) and (25),
the moment generating function of ln(|Z|/|Σ|) was
found to be

M
ln( |Z||Σ|)

(r) =
d−1∏
i=0

Γ(L− i+ r)

Γ(L− i) . (57)

The first-order moment thus becomes

E

{
ln

( |Z|
|Σ|
)}

=

[
d

dr

d−1∏
i=0

Γ(L− i+ r)

Γ(L− i)

]∣∣∣∣∣
r=0

=

d−1∑
i=0

Γ′(L− i+ r)
d−1∏
j=0

j 6=i

Γ(L− j + r)



∣∣∣∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L− j)

=

[
d−1∑
i=0

Ψ(0)(L− i+ r)
d−1∏
j=0

Γ(L− j + r)

]∣∣∣∣∣
r=0

d−1∏
j=0

Γ(L− j)

=
d−1∑
i=0

Ψ(0)(L− i) .
(58)
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To arrive at this result we have used the product
rule of differentiation repeatedly and utilised the
relation Γ′(L) = Γ(L)Ψ(0)(L), where Γ′(L) denotes
the derivative of Γ(L).

In the same manner, the second-order moment is
derived as

E

{
ln2

( |Z|
|Σ|
)}

=

d−1∑
i=0

Ψ(1)(L− i) +

(
d−1∑
i=0

Ψ(0)(L− i)
)2

.

(59)

By combining the first-order and second-order mo-
ment, it is discovered that

Var {ln |Z|} = Var

{
ln

( |Z|
|Σ|
)}

=
d−1∑
i=0

Ψ(1)(L− i) .
(60)

This expression can also be used to estimate L, but
the performance is inferior to the estimator derived
from (58), as the second-order moment is more
difficult to estimate than the first-order moment.

APPENDIX C:
DERIVATION OF FISHER INFORMATION MATRIX

In this appendix we derive the Fisher informa-
tion matrix (FIM) of the complex parameter vector
θ = [Le, vec(Σ)T ]T . The log-likelihood function
of a size N complex Wishart distributed sample
Z = {Z1, . . . ,ZN} was given in (35). It can be
expanded to

L(Z ; Le,Σ)

=
N∑
i=1

(
(n− p) ln |Zi| − n ln |Σ|

− ln Γd(Le)− tr(Σ−1Zi)
)
.

(61)

The partial derivatives of L(Z ) (with parameters
suppressed) with respect to Le follow readily as

∂L(Z )

∂ Le

=

N

(
〈ln |Z|〉 − ln |Σ| −

d−1∑
i=0

Ψ(0)(Le−i)
) (62)

and
∂2L(Z )

∂ Le
2 = −N

d−1∑
i=0

Ψ(1)(Le−i) . (63)

The first partial derivative with respect to Σ
is found from standard rules of complex matrix
calculus [36]:

∂L(Z )

∂Σ
= −N Le Σ−1 +NΣ−1〈Z〉Σ−1 . (64)

To obtain the second partial derivative, we need

∂Σ−1〈Z〉Σ−1

∂Σ
=
∂Σ−1

∂Σ

(
Id ⊗ 〈Z〉Σ−1

)
+
(
Id ⊗Σ−1

) ∂(〈Z〉Σ−1)

∂Σ
= (−Σ−1 ⊗Σ−1)(Id ⊗ 〈Z〉Σ−1)

+ (Id ⊗Σ−1)(−Σ−1 ⊗Σ−1)(Id ⊗ 〈Z〉)
= −(Σ−1 ⊗Σ−1〈Z〉Σ−1)

− (Σ−1 ⊗Σ−1Σ−1〈Z〉) .

(65)

This result occurs after repeated applications of the
chain rule and the product rule in Theorem 4.3 of
[37]. When differentiating with respect to Σ, it takes
the form

∂(AB)

∂Σ
=
∂A

∂Σ
(Id ⊗B) + (Id ⊗A)

∂B

∂Σ
(66)

for two arbitrary complex matrices A and B
with compatible dimensions. We have also used
∂Σ−1/∂Σ = −Σ−1 ⊗Σ−1 [36]. It follows that

∂2L(Z )

∂Σ2 = N Le Σ−1 ⊗Σ−1

−N(Σ−1⊗Σ−1〈Z〉Σ−1)−N(Σ−1⊗Σ−1Σ−1〈Z〉) .
(67)

From Eqs. (62) and (64) we finally obtain

∂

∂ Le

(
∂L(Z )

∂Σ

)
=

∂

∂Σ

(
∂L(Z )

∂ Le

)
= −NΣ−1

(68)

and are now equipped for the derivation of J, the
FIM of θ.

By elaborating on (37), J can be expressed as

J =

[
J11 J12

J21 J22

]
(69)

with quadrant submatrices defined as

J11 = −E

{
∂2

∂ Le
2 L(Z )

}
= N

d−1∑
i=0

Ψ(1)(Le−i)
(70)
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J12 = −E

{
∂

∂ Le

(
∂L(Z )

∂ vec(Σ)

)T}
= N vec(Σ−1)T

(71)

J21 = −E

{
∂

∂ vec(Σ)∗

(
∂L(Z )

∂ Le

)}
= N vec(Σ−1)∗

(72)

and

J22 = −E

{
∂

∂ vec(Σ)∗

(
∂L(Z )

∂ vec(Σ)

)T}
= N Le(Σ

−1 ⊗Σ−1) .

(73)

In the evaluation of the submatrices of J, we have
used equations (63), (67), and (68), together with
the differential relation ∂/∂ vec(A) = vec(∂/∂A),
which is valid for an arbitrary complex matrix A
[36]. We thus have

J = N


d−1∑
i=0

Ψ(1)(Le−i) vec(Σ−1)T

vec(Σ−1)∗ Le(Σ
−1 ⊗Σ−1)

 (74)

and the inverse FIM in (40), defining the bound
discussed in section V-A, follows readily.
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